
Package ‘yaImpute’
September 21, 2024

Type Package

Title Nearest Neighbor Observation Imputation and Evaluation Tools

Version 1.0-34.1

Date 2023-12-12

Description Performs nearest neighbor-based imputation using one or more alternative
approaches to processing multivariate data. These include methods based on canonical
correlation: analysis, canonical correspondence analysis, and a multivariate adaptation
of the random forest classification and regression techniques of Leo Breiman and Adele
Cutler. Additional methods are also offered. The package includes functions for
comparing the results from running alternative techniques, detecting imputation targets
that are notably distant from reference observations, detecting and correcting
for bias, bootstrapping and building ensemble imputations, and mapping results.

Depends R (>= 3.0.0)

Imports grDevices, graphics, stats, utils

Suggests vegan, ccaPP, randomForest, gam, fastICA, parallel, gower

Copyright ANN library is copyright University of Maryland and Sunil
Arya and David Mount. See file COPYRIGHTS for details.

Maintainer Jeffrey S. Evans <jeffrey_evans@tnc.org>

License GPL (>= 2)

URL https://github.com/jeffreyevans/yaImpute

BugReports https://github.com/jeffreyevans/yaImpute/issues

NeedsCompilation yes

Repository CRAN

Encoding UTF-8

RoxygenNote 7.2.3

Author Jeffrey S. Evans [aut, cre] (<https://orcid.org/0000-0002-5533-7044>),
Nicholas L. Crookston [aut],
Andrew O. Finley [aut],
John Coulston (Sunil Arya and David Mount for ANN) [ctb, com]

Date/Publication 2024-09-21 09:00:18 UTC

1

https://github.com/jeffreyevans/yaImpute
https://github.com/jeffreyevans/yaImpute/issues
https://orcid.org/0000-0002-5533-7044

2 ann

Contents

ann . 2
applyMask . 6
AsciiGridImpute . 8
bestVars . 13
buildConsensus . 14
compare.yai . 15
cor.yai . 16
correctBias . 17
ensembleImpute . 20
errorStats . 21
foruse . 23
grmsd . 24
impute.yai . 27
MoscowMtStJoe . 29
mostused . 32
newtargets . 33
notablyDifferent . 35
notablyDistant . 37
plot.compare.yai . 38
plot.notablyDifferent . 39
plot.varSel . 40
plot.yai . 41
predict.yai . 42
print.yai . 43
rmsd.yai . 43
TallyLake . 44
unionDataJoin . 46
vars . 47
varSelection . 48
whatsMax . 50
yai . 51
yaiRFsummary . 56
yaiVarImp . 57

Index 59

ann Approximate nearest neighbor search routines

Description

Given a set of reference data points S, ann constructs a kd-tree or box-decomposition tree (bd-tree)
for efficient k-nearest neighbor searches.

ann 3

Usage

ann(ref, target, k=1, eps=0.0, tree.type="kd",
search.type="standard", bucket.size=1, split.rule="sl_midpt",
shrink.rule="simple", verbose=TRUE, ...)

Arguments

ref an n × d matrix containing the reference point set S. Each row in ref corre-
sponds to a point in d-dimensional space.

target an m × d matrix containing the points for which k nearest neighbor reference
points are sought.

k defines the number of nearest neighbors to find. The default is k=1.

eps the ith nearest neighbor is at most (1+eps) from true ith nearest neighbor, where
eps≥ 0 . Specifically, the true (not squared) difference between the true ith and
the approximation of the ith point is a factor of (1+eps). The default value of
eps=0 is an exact search.

tree.type the data structures kd-tree or bd-tree as quoted key words kd and bd, respec-
tively. A brute force search can be specified with the quoted key word brute. If
brute is specified, then all subsequent arguments are ignored. The default is the
kd-tree.

search.type either standard or priority search in the kd-tree or bd-tree, specified by quoted
key words standard and priority, respectively. The default is the standard search.

bucket.size the maximum number of reference points in the leaf nodes. The default is 1.

split.rule is the strategy for the recursive splitting of those nodes with more points than the
bucket size. The splitting rule applies to both the kd-tree and bd-tree. Splitting
rule options are the quoted key words:

1. standard - standard kd-tree
2. midpt - midpoint
3. fair - fair-split
4. midpt - sliding-midpoint (default)
5. fair - fair-split rule

See supporting documentation, reference below, for a thorough description and
discussion of these splitting rules.

shrink.rule applies only to the bd-tree and is an additional strategy (beyond the splitting rule)
for the recursive partitioning of nodes. This argument is ignored if tree.type
is specified as kd. Shrinking rule options are quoted key words:

1. none - equivalent to the kd-tree
2. simple - simple shrink (default)
3. centroid - centroid shrink

See supporting documentation, reference below, for a thorough description and
discussion of these shrinking rules.

verbose if true, search progress is printed to the screen.

... currently no additional arguments.

4 ann

Details

The ann function calls portions of the Approximate Nearest Neighbor Library, written by David M.
Mount. All of the ann function arguments are detailed in the ANN Programming Manual found at
https://www.cs.umd.edu/~mount/ANN/.

Value

An object of class ann, which is a list with some or all of the following tags:

knnIndexDist an m×2k matrix. Each row corresponds to a target point in target and columns
1:k hold the ref matrix row indices of the nearest neighbors, such that column 1
index holds the ref matrix row index for the first nearest neighbor and column k
is the kth nearest neighbor index. Columns k+1:2k hold the Euclidean distance
from the target to each of the k nearest neighbors indexed in columns 1:k.

searchTime total search time, not including data structure construction, etc.

k as defined in the ann function call.

eps as defined in the ann function call.

tree.type as defined in the ann function call.

search.type as defined in the ann function call.

bucket.size as defined in the ann function call.

split.rule as defined in the ann function call.

shrink.rule as defined in the ann function call.

Author(s)

Andrew O. Finley <finleya@msu.edu>

Examples

Make a couple of bivariate normal classes
rmvn <- function(n, mu=0, V = matrix(1))
{

p <- length(mu)
if(any(is.na(match(dim(V),p))))

stop("Dimension problem!")
D <- chol(V)
matrix(rnorm(n*p), ncol=p) %*% D + rep(mu,rep(n,p))

}

m <- 10000

Class 1.
mu.1 <- c(20, 40)
V.1 <- matrix(c(-5,1,0,5),2,2); V.1 <- V.1%*%t(V.1)
c.1 <- cbind(rmvn(m, mu.1, V.1), rep(1, m))

Class 2.

https://www.cs.umd.edu/~mount/ANN/

ann 5

mu.2 <- c(30, 60)
V.2 <- matrix(c(4,2,0,2),2,2); V.2 <- V.2%*%t(V.2)
c.2 <- cbind(rmvn(m, mu.2, V.2), rep(2, m))

Class 3.
mu.3 <- c(15, 60)
V.3 <- matrix(c(5,5,0,5),2,2); V.3 <- V.3%*%t(V.3)
c.3 <- cbind(rmvn(m, mu.3, V.3), rep(3, m))

c.all <- rbind(c.1, c.2, c.3)
max.x <- max(c.all[,1]); min.x <- min(c.all[,1])
max.y <- max(c.all[,2]); min.y <- min(c.all[,2])

Check them out.
plot(c.1[,1], c.1[,2], xlim=c(min.x, max.x), ylim=c(min.y, max.y),

pch=19, cex=0.5,
col="blue", xlab="Variable 1", ylab="Variable 2")

points(c.2[,1], c.2[,2], pch=19, cex=0.5, col="green")
points(c.3[,1], c.3[,2], pch=19, cex=0.5, col="red")

Take a reference sample.
n <- 2000
ref <- c.all[sample(1:nrow(c.all), n),]

Compare search times
k <- 10
Do a simple brute force search.
brute <- ann(ref=ref[,1:2], target=c.all[,1:2],

tree.type="brute", k=k, verbose=FALSE)
print(brute$searchTime)

Do an exact kd-tree search.
kd.exact <- ann(ref=ref[,1:2], target=c.all[,1:2],

tree.type="kd", k=k, verbose=FALSE)
print(kd.exact$searchTime)

Do an approximate kd-tree search.
kd.approx <- ann(ref=ref[,1:2], target=c.all[,1:2],

tree.type="kd", k=k, eps=100, verbose=FALSE)
print(kd.approx$searchTime)

Takes too long to calculate for this many targets.
Compare overall accuracy of the exact vs. approximate search
##knn.mode <- function(knn.indx, ref){
x <- ref[knn.indx,]
as.numeric(names(sort(as.matrix(table(x))[,1],
decreasing=TRUE))[1])
##}

6 applyMask

applyMask Removes neighbors that share (or not) group membership with targets.

Description

Some of the nearest neighbors found using yai or newtargets are removed using this function.
This is possible when there are several reference observations for each target as is the case with
k>1. The function removes neighbor reference observations for a given target if the reference and
target are in (a) the same group or (b) from different groups, depending on the method used. Group
membership is identified for reference and target observations using two vectors, refGroups for
references and trgGroups for targets. If the group membership code is the same for a refernece
and a target, then they are in the same group while different codes mean a lack of common group
membership.

Usage

applyMask(object,refGroups=NULL, trgGroups=NULL, method="removeWhenCommon", k=1)

Arguments

object an object of class yai.

refGroups a vector, with length equal to the number of reference observations, of codes
that indicate group membership.

trgGroups a vector, with length equal to the number of target observations, of codes that
indicate group membership. The data type and coding scheme of refGroups
and trgGroups must be the same.

method is the strategy used for removing neighbors from the object, as follows:

1. removeWhenCommon - remove neighbors where the group membership of
a target is the same as the group membership of the near neighbor reference
(that is, keep near neighbors if they are not in the same group).

2. keepWhenCommon - keep near neighbors only when the reference is in the
same group as the target (that is, remove near neighbors if they are not in
the same group).

k the number of nearest neighbors to keep.

Value

An object of class yai, that is a copy of the first argument with the following elements replaced:

call the call.

neiDstTrgs a matrix of distances between a target (identified by its row name) and the k
references. There are k columns.

neiIdsTrgs a matrix of reference identifications that correspond to neiDstTrgs.

neiDstRefs set NULL as if noRefs=TRUE in the original call to yai.

neiIdsRefs set NULL as if noRefs=TRUE in the original call to yai.

applyMask 7

noRefs set TRUE regardless of original value.

k the value of k.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Acknowledgment: This function was inspired by correspondence with Clara Anton Fernandez.

See Also

yai newtargets

Examples

require (yaImpute)

data(iris)

build a base case, there are no targets,
turn off getting references neighbors.
mal <- yai(x=iris[,-5],method="mahalanobis", noRefs = TRUE)

create a new data, just a copy of the old with new row names.
iris2 <- iris
rownames(iris2) <- paste0("new.",rownames(iris))

do an imputation with k=55
m55 <- newtargets(mal,newdata=iris2,k=55)

get the 2 closest where the species codes don't match by
removing neighbors when the ref group membership is
in common with the target group membership (same species),
thereby forcing neighbors to be from different species.

in this case, the groups are species codes.

applyMask(m55,refGroups=iris$Species,trgGroups=iris2$Species,
method="removeWhenCommon",k=2)

get the 2 closest where the species codes do match by
removing neighbors when the ref group membership is
different than the target group membership (different species),
thereby forcing neighbors to be from the same species (this
is generally true anyway using the iris data).

applyMask(m55,iris$Species,trgGroups=iris2$Species,
method="keepWhenCommon",k=2)

8 AsciiGridImpute

AsciiGridImpute Imputes/Predicts data for Ascii Grid maps

Description

AsciiGridImpute finds nearest neighbor reference observations for each point in the input grid
maps and outputs maps of selected Y-variables in a corresponding set of output grid maps.

AsciiGridPredict applies a predict function to each point in the input grid maps and outputs maps
of the prediction(s) in corresponding output grid maps (see Details).

One row of each grid map is read and processed at a time thereby avoiding the need to build huge
objects in R that would be necessary if all the rows of all the maps were processed together.

Usage

AsciiGridImpute(object,xfiles,outfiles,xtypes=NULL,ancillaryData=NULL,
ann=NULL,lon=NULL,lat=NULL,rows=NULL,cols=NULL,
nodata=NULL,myPredFunc=NULL,...)

AsciiGridPredict(object,xfiles,outfiles,xtypes=NULL,lon=NULL,lat=NULL,
rows=NULL,cols=NULL,nodata=NULL,myPredFunc=NULL,...)

Arguments

object An object of class yai, any object for which a predict function is defined,
or an object that is passed to a predict function you define using argument
myPredFunc. See Details.

xfiles A list of input file names where there is one grid file for each X-variable. List
elements must be given the same names as the X-variables they correspond with
and there must be one file for each X-variable used when object was built.

outfiles One of these two forms:

1. A file name that is understood to correspond to the single prediction re-
turned by the generic predict function related to object or returned by
myPredFunc. This form only applies to AsciiGridPredict, when the ob-
ject is not class yai.

2. A list of output file names where there is one grid file for each desired out-
put variable. While there may be many variables predicted for object, only
those for which an output grid is desire need to be specified. Note that some
predict functions return data frames, some return a single vector, and often
what is returned depends on the value of arguments passed to predict. In ad-
dition to names of the predicted variables, the following two special names
can be coded when the object class is yai: For distance=“filename” a map
of the distances is output and if useid=“filename” a map of integer indices
to row numbers of the reference observations is output. When the predict
function returns a vector, an additional special name of predict=“filename”
can be used.

AsciiGridImpute 9

xtypes A list of data type names that corresponds exactly to data type of the maps listed
in xfiles. Each value can be one of: "logical", "integer", "numeric",
"character". If NULL, or if a type is missing for a member of xfiles, type
"numeric" is used. See Details if you used factors as predictors.

ancillaryData A data frame of Y-variables that may not have been used in the original call to
yai. There must be one row for each reference observation, no missing data,
and row names must match those used in the original reference observations.

ann if NULL, the value is taken from object. When TRUE, ann is used to find
neighbors, and when FALSE a slow exact search is used (ignored for when
method randomForest is used when the original yai object was created).

lon if NULL, the value of cols is used. Otherwise, a 2-element vector given the
range of longitudes (horizontal distance) desired for the output.

lat if NULL, the value of rows is used. Otherwise, a 2-element vector given the
range of latitudes (vertical distance) desired for the output.

rows if NULL, all rows from the input grids are used. Otherwise, rows is a 2-element
vector given the rows desired for the output. If the second element is greater
than the number of rows, the header value YLLCORNER in the output is adjusted
accordingly. Ignored if lon is specified.

cols if NULL, all columns from the input grids are used. Otherwise, cols is a 2-
element vector given the columns desired for the output. If the first element is
greater than one, the header value XLLCORNER in the output is adjusted accord-
ingly. Ignored if lat is specified.

nodata the NODATA_VALUE for the output. If NULL, the value is taken from the input
grids.

myPredFunc called by AsciiGridPredict to predict output using the object and newdata
from the xfiles. Two arguments are passed by AsciiGridPredict to this func-
tion, the first is the value of object and the second is a data frame of the new
predictor variables created for each row of data from your input maps. If NULL,
the generic predict function is called for object.

... passed to myPredFunc, predict, or impute.

Details

The input maps are assumed to be Asciigrid maps with 6-line headers containing the following
tags: NCOLS, NROWS, XLLCORNER, YLLCORNER, CELLSIZE and NODATA_VALUE (case insensitive).
The headers should be identical for all input maps, a warning is issued if they are not. It is critical
that NODATA_VALUE is the same on all input maps.

The function builds data frames from the input maps one row at a time and builds predictions using
those data frames as newdata. Each row of the input maps is processed in sequence so that the
entire maps are not stored in memory. The function works by opening all the input and reads one
line (row) at a time from each. The output file(s) are created one line at time as the input maps are
processed.

Use AsciiGridImpute for objects builds with yai, otherwise use AsciiGridPredict. When
AsciiGridPredict is used, the following rules apply. First, when myPredFunc is not null it is
called with the arguments object, newdata, ... where the new data is the data frame built from

10 AsciiGridImpute

the input maps, otherwise the generic predict function is called with these same arguments. When
object and myPredFunc are both NULL a copy newdata used as the prediction. This is useful
when lat, lon, rows, or cols are used in to subset the maps.

The NODATA_VALUE is output for every NODATA_VALUE found on any grid cell on any one of the input
maps (the predict function is not called for these grid cells). NODATA_VALUE is also output for any
grid cell where the predict function returns an NA.

If factors are used as X-variables in object, the levels found the map data are checked against those
used in building the object. If new levels are found, the corresponding output map grid point is set
to NODATA_VALUE; the predict function is not called for these cells as most predict functions will fail
in these circumstances. Checking on factors depends on object containing a meaningful member
named xlevels, as done for objects produced by lm.

Asciigrid maps do not contain character data, only numbers. The numbers in the maps are matched
the xlevels by subscript (the first entry in a level corresponds to the numeric value 1 in the Asciigrid
maps, the second to the number 2 and so on). Care must be taken by the user to insure that the coding
scheme used in building the maps is identical to that used in building the object. See Value for
information on how you can check the matching of these codes.

Value

An invisible list containing the following named elements:

unexpectedNAs A data frame listing the map row numbers and the number of NA values generated
by the predict function for each row. If none are generated for a row the row is
not reported, if none are generated for any rows, the data frame is NULL.

illegalLevels A data frame listing levels found in the maps that were not found in the xlevels
for the object. The row names are the illegal levels, the column names are the
variable names, and the values are the number of grid cells where the illegal
levels were found.

outputLegend A data frame showing the relationship between levels in the output maps and
those found in object. The row names are level index values, the column names
are variable names, and the values are the levels. NULL if no factors are output.

inputLegend A data frame showing the relationship between levels found in the input maps
and those found in object. The row names are level index values (this function
assumes they correspond to numeric values on the maps), the column names are
variable names, and the values are the levels. NULL if no factors are input. This
information is consistent with that in xlevels.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

yai, impute, and newtargets

AsciiGridImpute 11

Examples

These commands write new files to your working directory

Use the iris data
data(iris)

Section 1: Imagine that the iris are planted in a planting bed.
The following set of commands create Asciigrid map
files for four attributes to illustrate the planting layout.

Change species from a character factor to numeric (the sp classes
can not handle character data).

sLen <- matrix(iris[,1],10,15)
sWid <- matrix(iris[,2],10,15)
pLen <- matrix(iris[,3],10,15)
pWid <- matrix(iris[,4],10,15)
spcd <- matrix(as.numeric(iris[,5]),10,15)

Create and change to a temp directory. You can delete these steps
if you wish to keep the files in your working directory.
curdir <- getwd()
setwd(tempdir())
cat ("Using working dir",getwd(),"\n")

Make maps of each variable.
header = c("NCOLS 15","NROWS 10","XLLCORNER 1","YLLCORNER 1",

"CELLSIZE 1","NODATA_VALUE -9999")
cat(file="slen.txt",header,sep="\n")
cat(file="swid.txt",header,sep="\n")
cat(file="plen.txt",header,sep="\n")
cat(file="pwid.txt",header,sep="\n")
cat(file="spcd.txt",header,sep="\n")

write.table(sLen,file="slen.txt",append=TRUE,col.names=FALSE,
row.names=FALSE)

write.table(sWid,file="swid.txt",append=TRUE,col.names=FALSE,
row.names=FALSE)

write.table(pLen,file="plen.txt",append=TRUE,col.names=FALSE,
row.names=FALSE)

write.table(pWid,file="pwid.txt",append=TRUE,col.names=FALSE,
row.names=FALSE)

write.table(spcd,file="spcd.txt",append=TRUE,col.names=FALSE,
row.names=FALSE)

Section 2: Create functions to predict species

set the random number seed so that example results are consistant
normally, leave out this command
set.seed(12345)

12 AsciiGridImpute

sample the data
refs <- sample(rownames(iris),50)
y <- data.frame(Species=iris[refs,5],row.names=rownames(iris[refs,]))

build a yai imputation for the reference data.
rfNN <- yai(x=iris[refs,1:4],y=y,method="randomForest")

make lists of input and output map files.

xfiles <- list(Sepal.Length="slen.txt",Sepal.Width="swid.txt",
Petal.Length="plen.txt",Petal.Width="pwid.txt")

outfiles1 <- list(distance="dist.txt",Species="spOutrfNN.txt",
useid="useindx.txt")

map the imputation-based predictions for the input maps
AsciiGridImpute(rfNN,xfiles,outfiles1,ancillaryData=iris)
read the asciigrids and get them ready to plot
spOrig <- t(as.matrix(read.table("spcd.txt",skip=6)))
sprfNN <- t(as.matrix(read.table("spOutrfNN.txt",skip=6)))
dist <- t(as.matrix(read.table("dist.txt",skip=6)))

demonstrate the use of useid:
spViaUse <- read.table("useindx.txt",skip=6)
for (col in colnames(spViaUse)) spViaUse[,col]=as.character(y$Species[spViaUse[,col]])

demonstrate how to use factors:
spViaLevels <- read.table("spOutrfNN.txt",skip=6)
for (col in colnames(spViaLevels)) spViaLevels[,col]=levels(y$Species)[spViaLevels[,col]]

identical(spViaLevels,spViaUse)

if (require(randomForest))
{

build a randomForest predictor
rf <- randomForest(x=iris[refs,1:4],y=iris[refs,5])
AsciiGridPredict(rf,xfiles,list(predict="spOutrf.txt"))
sprf <- t(as.matrix(read.table("spOutrf.txt",skip=6)))

} else sprf <- NULL

reset the directory to that where the example was started.
setwd(curdir)

par(mfcol=c(2,2),mar=c(1,1,2,1))
image(spOrig,main="Original",col=c("red","green","blue"),

axes=FALSE,useRaster=TRUE)
image(sprfNN,main="Using Impute",col=c("red","green","blue"),

axes=FALSE,useRaster=TRUE)
if (!is.null(sprf))

image(sprf,main="Using Predict",col=c("red","green","blue"),
axes=FALSE,useRaster=TRUE)

image(dist,main="Neighbor Distances",col=terrain.colors(15),
axes=FALSE,useRaster=TRUE)

bestVars 13

bestVars Computes the number of best X-variables

Description

The number of best variables is estimated by finding an apparent inflection point in the relationship
between the generalized root mean square distance (see grmsd and the number of X-variables.

Usage

bestVars(obj,nbest=NULL)

Arguments

obj an object create by varSelection

nbest number of variables designated as the best; if null the number is estimated

Value

An character vector of variable names in decreasing order of importance.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

varSelection

Examples

require(yaImpute)

data(iris)
set.seed(12345)

x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[,3:4] # Petal.Length Petal.Width

vsel <- varSelection(x=x,y=y,nboot=5,useParallel=FALSE)

bestVars(vsel)

14 buildConsensus

buildConsensus Finds the consensus imputations among a list of yai objects

Description

Several objects of class yai are combined into a new object forming a consensus among the many.
The intention is that the many would be formed by running yai several times with bootstrap=TRUE
or by varying other options.

Usage

buildConsensus(reps, noTrgs=FALSE, noRefs=FALSE, k=NULL)

Arguments

reps a list of objects class yai.

noTrgs If TRUE neighbor relationships for target observations are not merged.

noRefs If TRUE neighbor relationships for reference observations are not merged.

k If not specified, the minimum value of k among the objects is used.

Value

An object of class yai

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
John Coulston <jcoulston@fs.fed.us>

See Also

yai

Examples

require (yaImpute)
data(iris)

set.seed(123)

form some test data, y's are defined only for reference
observations.
refs=sample(rownames(iris),50)
x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[refs,3:4] # Petal.Length Petal.Width

reps <- replicate(20, yai(x=x,y=y,method="msn",bootstrap=TRUE,k=2),

compare.yai 15

simplify=FALSE)

buildConsensus(reps)

compare.yai Compares different k-NN solutions

Description

Provides a convenient display of the root mean square differences (see rmsd.yai) or correlations
(see cor.yai) between observed and imputed values for each of several imputations. Each col-
umn of the returned data frame corresponds to an imputation result and each row corresponds to a
variable.

Usage

compare.yai(...,ancillaryData=NULL,vars=NULL,method="rmsd",scale=TRUE)

Arguments

... a list of objects created by yai or impute.yai that you wish to compare.

ancillaryData a data frame that defines new variables, passed to impute.yai.

vars a list of variable names you want to include; if NULL all available variables are
included.

method when rmsd is specified, the comparison is based on root mean square differences
between observed an imputed, and
when cor is specified, the comparison is based on correlations between observed
and imputed.

scale passed to rmsd.yai

Value

A data.frame of class c("compare.yai","data.frame"), where the columns are the names of the
. . . -arguments and the rows are a union of variable names. NA’s are returned when the variables are
factors. The scale values (if used) are returned as an attribute (all if some are different than others,
a warning is issued).

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

See Also

yai, plot.compare.yai, impute.yai, rmsd.yai

16 cor.yai

Examples

require(yaImpute)

data(iris)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[refs,3:4] # Petal.Length Petal.Width

build yai objects using 2 methods
msn <- yai(x=x,y=y)
mal <- yai(x=x,y=y,method="mahalanobis")

compare the y variables
compare.yai(msn,mal)

compare the all variables in iris
compare.yai(msn,mal,ancillaryData=iris) # Species is a factor, no comparison is made

cor.yai Correlation between observed and imputed

Description

Computes the correlation between observed and imputed values for each observation that has both.

Usage

cor.yai (object,vars=NULL,...)

Arguments

object an object created by yai or impute.yai.

vars a list of variables names you want to include, if NULL all available variables are
included.

... passed to called methods (not currently used)

Details

The correlations are computed using cor.yai. For data imputation, such correlations are likely not
appropriate (Stage and Crookston 2007).

Value

A data frame with the row names as vars and the column as cor.

correctBias 17

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

References

Stage, A.R.; Crookston, N.L. (2007). Partitioning error components for accuracy-assessment of
near neighbor methods of imputation. For. Sci. 53(1):62-72. https://academic.oup.com/
forestscience/article/53/1/62/4604364

See Also

yai, impute.yai, rmsd.yai

correctBias Correct bias by selecting different near neighbors

Description

Change the neighbor selections in a yai object such that bias (if any) in the average value of an
expression of one or more variables is reduced to be within a defined confidence interval.

Usage

correctBias(object,trgVal,trgValCI=NULL,nStdev=1.5,excludeRefIds=NULL,trace=FALSE)

Arguments

object an object of class yai with k > 1.

trgVal an expression defining a variable or combination of variables that is applied
to each member of the population (see details). If passed as a character string it
is coerced into an expression. The expression can refer to one or more X- and
Y-variables defined for the reference observations.

trgValCI The confidence interval that should contain the mean(trgVal). If the mean falls
within this interval, the problem is solved. If NULL, the interval is based on
nStdev.

nStdev the number of standard deviations in the vector of values used to compute the
confidence interval when one is computed, ignored if trgValCI is not NULL.

excludeRefIds identities of reference observations to exclude from the population, if coded as
"all" then all references are excluded (see details).

trace if TRUE, detailed output is produced.

https://academic.oup.com/forestscience/article/53/1/62/4604364
https://academic.oup.com/forestscience/article/53/1/62/4604364

18 correctBias

Details

Imputation as it is defined in yaImpute can yield biased results. Lets say that you have a collection
of reference observations that happen to be selected in a non-biased way among a population. In
this discussion, population is a finite set of all individual sample units of interest; the reference
plus target observations often represent this population (but this need not be true, see below). If the
average of a measured attribute is computed from this random sample, it is an unbiased estimate of
the true mean.

Using yai, while setting k=1, values for each of several attributes are imputed from a single ref-
erence observation to a target observation. Once the imputation is done over all the target obser-
vations, an average of any one measured attribute can be computed over all the observations in the
population. There is no guarantee that this average will be within a pre-specified confidence interval.

Experience shows that despite any lack of guarantee, the results are accurate (not biased). This
tends to hold true when the reference data contains samples that cover the variation of the targets,
even when they are not a random sample, and even if some of the reference observations are from
sample units that are outside the target population.

Because there is no guarantee, and because the reference observations might profitably come from
sample units beyond those in the population (so as to insure all kinds of targets have a matching
reference), it is necessary to test the imputation results for bias. If bias is found, it would be helpful
to do something to correct it.

The correctBias() function is designed to check for, and correct discovered bias by selecting
alternative nearby reference observations to be imputed to targets that contribute to the bias. The
idea is that even if one reference is closest to a target, its attribute(s) of interest might be greater
(or less) than the mean. An alternative neighbor, one that may be almost as close, might reduce
the overall bias if it were used instead. If this is the case, correctBias() switches the neighbor
selections. It makes as many switches as it can until the mean among the population targets falls
within the specified confidence interval. There is no guarantee that the goal will be met.

The details of the method are:

1. An attribute of interest is established by naming one in the call with argument tarVal. Note
that this can be a simple variable name enclosed in quotations marks or it can be an expression
of one or more variables. If the former, it is converted into an expression that is executed in the
environment of the reference observations (both the X- and Y-variables). A confidence interval
is computed for this value under the assumption that the reference observations are an unbiased
sample of the target population. This may not be the case. Regardless, a confidence interval is
necessary and it can alternatively be supplied using trgValCI.

2. One of several possible passes through the data are taken to find neighbor switches that will
result in the bias being corrected. A pass includes computing the attribute of interest by applying
the expression to values imputed to all the targets, under the assumption that the next neighbor is
used in place of the currently used neighbor. This computation results in a vector with one element
for each target observation that measures the contribution toward reducing the bias that would be
made if a switch were made. The target observations are then ordered into increasing order of how
much the distance from the currently selected reference would increase if the switch were to take

correctBias 19

place. Enough switches are made in this order to correct the bias. If the bias is not corrected by
the first pass, another pass is done using the next neighbor(s). The number of possible passes is
equal to k-1 where k is set in the original call to yai. Note that switches are made among targets
only, and never among reference observations that may make up the population. That is, reference
observations are always left to represent themselves with k=1.

3. Here are details of the argument excludeRefIds. When computing the mean of the attribute
of interest (using the expression), correctBias() must know which observations represent the
population. Normally, all the target observations would be in this set, but perhaps not all of the
reference observations. When excludeRefIds is left NULL, the population is made of all refer-
ence and all target observations. Reference observations that should be left out of the calculations
because they are not part of the population can be specified using the excludeRefIds argument
as a vector of character strings identifying the rownames to leave out, or a vector of row numbers
that identify the row numbers to leave out. If excludeRefIds="all", all reference observations are
excluded.

Value

An object of class yai where k = 1 and the neighbor selections have been changed as described
above. In addition, the call element is changed to show both the original call to yai and the call to
this function. A new list called biasParameters is added to the yai object with these tags:

trgValCI the target CI.

curVal the value of the bias that was achieved.

npasses the number of passes through the data taken to achieve the result.

oldk the old value of k.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

yai

Examples

data(iris)

set.seed(12345)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build an msn run, first build dummy variables for species.

sp1 <- as.integer(iris$Species=="setosa")

20 ensembleImpute

sp2 <- as.integer(iris$Species=="versicolor")
y2 <- data.frame(cbind(iris[,4],sp1,sp2),row.names=rownames(iris))
y2 <- y2[refs,]

names(y2) <- c("Petal.Width","Sp1","Sp2")

find 5 refernece neighbors for each target
msn <- yai(x=x,y=y2,method="msn",k=5)

check for and correct for bias in mean "Petal.Width". Neighbor
selections will be changed as needed to bring the imputed values
into line with the CI. In this case, no changes are made (npasses
returns as zero).

msnCorr = correctBias(msn,trgVal="Petal.Width")
msnCorr$biasParameters

ensembleImpute Computes the mean, median, or mode among a list of impute.yai ob-
jects

Description

Several objects of class impute.yai or yai are combined by computing the mean, median, or mode
of separate, individual imputations. The intention is that the members of the first argument would
be formed by running yai several times with bootstrap=TRUE or by varying other options.

Usage

ensembleImpute(imputes, method="mean",...)

Arguments

imputes a list of objects class impute.yai or yai. Function impute.yai is called for list
members where the class is yai.

method when "mean", the continuous variables are averaged using mean, otherwise the
median is used. Mode is always used for character data (generally the case for
factors).

... passed to impute.yai.

Value

An object of class c("impute.yai","data.frame"), see impute.yai. The attributes of the data.frame
include the following:

1. sd - A data.frame of standard deviations for continuous variables if there are any. The columns
are not reported if the standard deviation is zero for all observations which is typically true of
"observed" values.

errorStats 21

2. N - the number of replications used to compute the corresponding data; reported only if the
number differs from the total number of replications. This will be the case when bootstrap,
sampleVar, or both are used in yai.

3. methods - the method used for each variable.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
John Coulston <jcoulston@fs.fed.us>

See Also

yai buildConsensus impute.yai

Examples

require (yaImpute)
data(iris)

set.seed(123)

form some test data, y's are defined only for reference
observations.
refs=sample(rownames(iris),50)
x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[refs,3:4] # Petal.Length Petal.Width

reps <- replicate(10, yai(x=x,y=y,method="msn",bootstrap=TRUE,k=2),
simplify=FALSE)

ensembleImpute(reps,ancillaryData=iris)

errorStats Compute error components of k-NN imputations

Description

Error properties of estimates derived from imputation differ from those of regression-based esti-
mates because the two methods include a different mix of error components. This function com-
putes a partitioning of error statistics as proposed by Stage and Crookston (2007).

Usage

errorStats(mahal,...,scale=FALSE,pzero=0.1,plg=0.5,seeMethod="lm")

22 errorStats

Arguments

mahal An object of class yai computed with method="mahalanobis".

... Other objects of class yai for which statistics are desired. All objects should be
for the same data and variables used for the first argument.

scale When TRUE, the errors are scaled by their respective standard deviations.

pzero The lower tail p-value used to pick reference observations that are zero distance
from each other (used to compute rmmsd0).

plg The upper tail p-value used to pick reference observations that are substantially
distant from each other (used to compute rmsdlg).

seeMethod Method used to compute SEE: seeMethod="lm" uses lm and seeMethod="gam"
uses gam. In both cases, the model formula is a simple linear combination of the
X-variables.

Details

See https://academic.oup.com/forestscience/article/53/1/62/4604364

Value

A list that contains several data frames. The column names of each are a combination of the name
of the object used to compute the statistics and the name of the statistic. The rownames correspond
the the Y-variables from the first argument. The data frame names are as follows:

common statistics used to compute other statistics.
name of first argument

error statistics for the first yai object.
names of ... arguments

error statistics for each of the remaining yai objects, if any.

see standard error of estimate for individual regressions fit for corresponding Y-
variables.

rmmsd0 root mean square difference for imputations based on method="mahalanobis"
(always based on the first argument to the function).

mlf square root of the model lack of fit: sqrt(see2 − (rmmsd02/2)).

rmsd root mean square error.

rmsdlg root mean square error of the observations with larger distances.

sei standard error of imputation sqrt(rmsd2 − (rmmsd02/2)).

dstc distance component: sqrt(rmsd2 − rmmsd02).

Note that unlike Stage and Crookston (2007), all statistics reported here are in the natural units, not
squared units.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Albert R. Stage

https://academic.oup.com/forestscience/article/53/1/62/4604364

foruse 23

References

Stage, A.R.; Crookston, N.L. (2007). Partitioning error components for accuracy-assessment of
near neighbor methods of imputation. For. Sci. 53(1):62-72. https://academic.oup.com/
forestscience/article/53/1/62/4604364

See Also

yai, TallyLake

Examples

require (yaImpute)

data(TallyLake)

diag(cov(TallyLake[,1:8])) # see col A in Table 3 in Stage and Crookston

mal=yai(x=TallyLake[,9:29],y=TallyLake[,1:8],
noTrgs=TRUE,method="mahalanobis")

msn=yai(x=TallyLake[,9:29],y=TallyLake[,1:8],
noTrgs=TRUE,method="msn")

variable "see" for "mal" matches col B (when squared and scaled)
other columns don't match exactly as Stage and Crookston used different
software to compute values

errorStats(mal,msn)

foruse Report a complete imputation

Description

Provides a matrix of all observations with the reference observation identification best used to rep-
resent it, followed by the distance.

Usage

foruse(object,kth=NULL,method="kth",targetsOnly=FALSE)

https://academic.oup.com/forestscience/article/53/1/62/4604364
https://academic.oup.com/forestscience/article/53/1/62/4604364

24 grmsd

Arguments

object an object created by yai

kth when NULL (and method="kth"), the best pick is reported (a reference observa-
tion represents itself), otherwise the kth neighbor is picked.

method the method used to select references to represent observations, as follows:
kth: the kth nearest neighbor is picked;
random: for each observation, the value of kth is selected at random from the 1
to k neighbors (1 to kth if is kth specified);
randomWeighted: 1/(1+d) is used as a probability weight factor in selecting
the value of kth, where d is the distance..

targetsOnly when is TRUE, reporting of references is not done.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

Examples

require(yaImpute)

data(iris)

form some test data
set.seed(1234)
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build a yai object using mahalanobis
mal <- yai(x=x,y=y,method="mahalanobis",k=3)

foruse(mal) # for references, use is equal to the rowname
foruse(mal,kth=1) # for references, use is an row to the kth reference.

get all the choices:
cbind(foruse(mal),foruse(mal,kth=1),foruse(mal,kth=2),foruse(mal,kth=3))

grmsd Generalized Root Mean Square Distance Between Observed and Im-
puted Values

grmsd 25

Description

Computes the root mean square distance between predicted and corresponding observed values in
an orthogonal multivariate space. This value is the mean Mahalanobis distance between observed
and imputed values in a space defined by observations and variables were observed and predicted
values are defined. The statistic provides a way to compare imputation (or prediction) results. While
it is designed to work with imputation, the function can be used with objects that inherit from lm or
with matrices and data frames that follow the column naming convention described in the details.

Usage

grmsd(...,ancillaryData=NULL,vars=NULL,wts=NULL,rtnVectors=FALSE,imputeMethod="closest")

Arguments

... objects created by any combination of yai, impute.yai, ensembleImpute,
buildConsensus, lm and data frames or matrices that follow the column nam-
ing convention described in the details below. If an object is of class yai, a call
to impute.yai is generated internally.

ancillaryData a data frame that defines variables, passed to impute.yai.

vars a list of variable names you want to include; if NULL all available variables are
included (note that if impute.yai the Y-variables are returned when vars=NULL).

wts A vector of weights used to compute the mean distances, see details below.

rtnVectors The vectors of individual distances are returned (see Value) rather than the mean
Mahalanobis distance.

imputeMethod passed as method to impute.yai.

Details

This function is designed to compute the root mean square distance between observed and predicted
observations over several variables at once. It is the Mahalanobis distance between observed and
predicted but the name emphasizes the similarities to root mean square difference (or error, see
rmsd). Here are some notable characteristics.

1. In the univariate case this function returns the same value as rmsd with scale=TRUE. In that
case the root mean square difference is computed after scale has been called on the variable.

2. Like rmsd, grmsd is zero if the imputed values are exactly the same as the observed values
over all variables.

3. Like rmsd, grmsd is ~1.0 when the mean of each variable is imputed in place of a near neighbor
(it would be exactly 1.0 if the maximum likelihood estimate of the covariance were used rather
than the unbiased estimate – it approaches 1 as n gets large.) This situation corresponds to
regression where the slope is zero. It indicates that the imputation error is, over all, the same
as it would be if the means of the variables were imputed rather than near neighbors (it does
not signal that the means were imputed).

4. Like rmsd, values of grmsd > 1.0 indicate that, on average, the errors in the imputation are
greater than they would be if the mean of the corresponding variables were imputed for each
observation.

26 grmsd

5. Note that individual rmsd values can be computed even when the variance of the variable is
zero. In contrast, grmsd can only be computed in the situation where the observed data matrix
is full rank. Rank is determined using qr and columns are removed from the analysis to create
this condition if necessary (with a warning).

Observed and predicted are matched using the column names. Column names that have ".o" are
matched to those that do not. Columns that do not have matching observed and imputed (predicted)
values are ignored.

Several objects may be passed as ". . . ". Function impute.yai is called for any objects that were
created by yai; ancillaryData and vars are passed to impute.yai when it is used.

When objects inherit from lm, a suitable matrix is formed using by calling the predict and resid
functions.

Factors, if found, are removed (with a warning).

When argument wts is defined there must be one value for each pair of observed and predicted
variables. If the values are named (preferred), then the names are matched to the names of pre-
dicted variables (no .o suffix). The matched values effectively scale the axes in which distances are
computed. When this is done, the resulting distances are not Mahalanobis distances.

Value

When rtnVectors=FALSE, a sorted named vector of mean distances is returned; the names are
taken from the arguments.

When rtnVectors=TRUE the function returns vectors of distances, sorted and named as done wnen
this argument is FALSE.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

yai, impute.yai, rmsd.yai, notablyDifferent

Examples

require(yaImpute)

data(iris)
set.seed(12345)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[refs,3:4] # Petal.Length Petal.Width

build yai objects using 2 methods
msn <- yai(x=x,y=y)
mal <- yai(x=x,y=y,method="mahalanobis")

impute.yai 27

compute the average distances between observed and imputed (predicted)
grmsd(msn,mal,lmFit=lm(as.matrix(y) ~ ., data=x[refs,]))

use the all variables and observations in iris
Species is a factor and is automatically deleted with a warning
grmsd(msn,mal,ancillaryData=iris)

here is an example using lm, and another using column
means as predictions.

impMean <- y
colnames(impMean) <- paste0(colnames(impMean),".o")
impMean <- cbind(impMean,y)
set the predictions to the mean's of the variables
impMean[,"Petal.Length"] <- mean(impMean[,"Petal.Length"])
impMean[,"Petal.Width"] <- mean(impMean[,"Petal.Width"])

grmsd(msn, mal, lmFit=lm(as.matrix(y) ~ ., data=x[refs,]), impMean)

compare to using function rmsd (values match):
msnimp <- na.omit(impute(msn))
grmsd(msnimp[,c("Petal.Length","Petal.Length.o")])
rmsd(msnimp[,c("Petal.Length","Petal.Length.o")],scale=TRUE)

these are multivariate cases and they don't match
because the covariance of the two variables is > 0.
grmsd(msnimp)
colSums(rmsd(msnimp,scale=TRUE))/2

get the vectors and make a boxplot, identify outliers
stats <- boxplot(grmsd(msn,mal,ancillaryData=iris[,-5],rtnVectors=TRUE),

ylab="Mahalanobis distance")
stats$out
118 132
#2.231373 1.990961

impute.yai Impute variables from references to targets

Description

Imputes the observation for variables from a reference observation to a target observation. Also,
imputes a value for a reference from other references. This practice is useful for validation (see
yai). Variables not available in the original data may be imputed using argument ancillaryData.

Usage

S3 method for class 'yai'
impute(object,ancillaryData=NULL,method="closest",

method.factor=method,k=NULL,vars=NULL,
observed=TRUE,...)

28 impute.yai

Arguments

object an object of class yai.

ancillaryData a data frame of variables that may not have been used in the original call to yai.
There must be one row for each reference observation, no missing data, and row
names must match those used in the reference observations.

method the method used to compute the imputed values for continuous variables, as
follows:
closest: use the single neighbor that is closest (this is the default and is always
used when k=1);
mean: the mean of the k neighbors is taken;
median: the median of the k neighbors is taken;
dstWeighted: a weighted mean is taken over the k neighbors where the weights
are 1/(1+d).

method.factor the method used to compute the imputed values for factors, as follows:
closest: use the single neighbor that is closest (this is the default and is always
used when k=1);
mean or median: actually is the mode\-\-it is the factor level that occurs the most
often among the k neighbors;
dstWeighted: a mode where the count is the sum of the weights (1/(1+d)) rather
than each having a weight of 1.

k the number neighbors to use in averages, when NULL all present are used.

vars a character vector of variables to impute, when NULL, the behavior depends on
the value of ancillaryData: when it is NULL, the Y-variables are imputed and
otherwise all present in ancillaryData are imputed.

observed when TRUE, columns are created for observed values (those from the target
observations) as well as imputed values (those from the reference observations.

... passed to other methods, currently not used.

Value

An object of class c("impute.yai","data.frame"), with rownames identifying observations and
column names identifying variables. When observed=TRUE additional columns are created with a
suffix of .o.

NA’s fill columns of observed values when no corresponding value is known, as in the case for
Y-variables from target observations.

Scale factors for each variable are returned as an attribute (see attributes).

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>
Emilie Henderson <emilie.henderson@oregonstate.edu>

MoscowMtStJoe 29

See Also

yai

Examples

require(yaImpute)

data(iris)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build a yai object using mahalanobis
mal <- yai(x=x,y=y,method="mahalanobis")

output a data frame of observed and imputed values
of all variables and observations.

impute(mal)
malImp=impute(mal,ancillaryData=iris)
plot(malImp)

MoscowMtStJoe Moscow Mountain and St. Joe Woodlands (Idaho, USA) Tree and Li-
DAR Data

Description

Data used to compare the utility of discrete-return light detection and ranging (LiDAR) data and
multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree
density across two diverse coniferous forest landscapes in north-central Idaho, USA.

Usage

data(MoscowMtStJoe)

Format

A data frame with 165 rows and 64 columns:

Ground based measurements of trees:

• ABGR_BA - Basal area (m2/ha) of ABGR

• ABLA_BA - Basal area (m2/ha) of ABLA

• ACGL_BA - Basal area (m2/ha) of ACGL

30 MoscowMtStJoe

• BEOC_BA - Basal area (m2/ha) of BEOC

• LAOC_BA - Basal area (m2/ha) of LAOC

• PICO_BA - Basal area (m2/ha) of PICO

• PIEN_BA - Basal area (m2/ha) of PIEN

• PIMO_BA - Basal area (m2/ha) of PIMO

• PIPO_BA - Basal area (m2/ha) of PIPO

• POBA_BA - Basal area (m2/ha) of POBA

• POTR_BA - Basal area (m2/ha) of POTR

• PSME_BA - Basal area (m2/ha) of PSME

• SAEX_BA - Basal area (m2/ha) of SAEX

• THPL_BA - Basal area (m2/ha) of THPL

• TSHE_BA - Basal area (m2/ha) of TSHE

• TSME_BA - Basal area (m2/ha) of TSME

• UNKN_BA - Basal area (m2/ha) of unknown species

• Total_B - Basal area (m2/ha) total over all species

• ABGR_TD - Trees per ha of ABGR

• ABLA_TD - Trees per ha of ABLA

• ACGL_TD - Trees per ha of ACGL

• BEOC_TD - Trees per ha of BEOC

• LAOC_TD - Trees per ha of LAOC

• PICO_TD - Trees per ha of PICO

• PIEN_TD - Trees per ha of PIEN

• PIMO_TD - Trees per ha of PIMO

• PIPO_TD - Trees per ha of PIPO

• POBA_TD - Trees per ha of POBA

• POTR_TD - Trees per ha of POTR

• PSME_TD - Trees per ha of PSME

• SAEX_TD - Trees per ha of SAEX

• THPL_TD - Trees per ha of THPL

• TSHE_TD - Trees per ha of TSHE

• TSME_TD - Trees per ha of TSME

• UNKN_TD - Trees per ha of unknown species

• Total_T - Trees per ha total over all species

Geographic Location, Slope and Aspect:

1. EASTING - UTM (Zone 11) easting at plot center

2. NORTHING - UTM (Zone 11) northing at plot center

3. ELEVATION - Mean elevation (m) above sea level over plot

MoscowMtStJoe 31

4. SLPMEAN - Mean slope (percent) over plot

5. ASPMEAN - Mean aspect (degrees) over plot

Advanced Land Imager (ALI):

1. B1MEAN - Mean of 30 m ALI band 1 pixels intersecting plot

2. B2MEAN - Mean of 30 m ALI band 2 pixels intersecting plot

3. B3MEAN - Mean of 30 m ALI band 3 pixels intersecting plot

4. B4MEAN - Mean of 30 m ALI band 4 pixels intersecting plot

5. B5MEAN - Mean of 30 m ALI band 5 pixels intersecting plot

6. B6MEAN - Mean of 30 m ALI band 6 pixels intersecting plot

7. B7MEAN - Mean of 30 m ALI band 7 pixels intersecting plot

8. B8MEAN - Mean of 30 m ALI band 8 pixels intersecting plot

9. B9MEAN - Mean of 30 m ALI band 9 pixels intersecting plot

10. PANMEA - Mean of 10 m PAN band pixels intersecting plot

11. PANSTD - Standard deviation of 10 m PAN band pixels intersecting plot

LiDAR Intensity:

1. INTMEAN - Mean of 2 m intensity pixels intersecting plot

2. INTSTD - Standard deviation of 2 m intensity pixels intersecting plot

3. INTMIN - Minimum of 2 m intensity pixels intersecting plot

4. INTMAX - Maximum of 2 m intensity pixels intersecting plot

LiDAR Height:

1. HTMEAN - Mean of 6 m height pixels intersecting plot

2. HTSTD - Standard deviation of 6 m height pixels intersecting plot

3. HTMIN - Minimum of 6 m height pixels intersecting plot

4. HTMAX - Maximum of 6 m height pixels intersecting plot

LiDAR Canopy Cover:

1. CCMEAN - Mean of 6 m canopy cover pixels intersecting plot

2. CCSTD - Standard deviation of 6 m canopy cover pixels intersecting plot

3. CCMIN - Minimum of 6 m canopy cover pixels intersecting plot

4. CCMAX - Maximum of 6 m canopy cover pixels intersecting plot

Source

Dr. Andrew T. Hudak
USDA Forest Service
Rocky Mountain Research Station
1221 South Main
Moscow, Idaho, USA 83843

32 mostused

References

Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Mor-
gan, P. (2006). Regression modeling and mapping of coniferous forest basal area and tree density
from discrete-return lidar and multispectral satellite data. Can. J. Remote Sensing. 32(2):126-138.
https://www.tandfonline.com/doi/abs/10.5589/m06-007

mostused Tabulate references most often used in imputation

Description

Provides a matrix of reference observations that are used most often as sources of imputation and a
column of the counts. The observations are listed in sorted order, most often used first.

Usage

mostused(object,n=20,kth=NULL)

Arguments

object (1) a data frame created by foruse, or (2) an object created by yai in which
case foruse is called automatically.

n the number of mostused in sorted order.

kth passed to foruse, if called.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

See Also

yai

Examples

require(yaImpute)

data(iris)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build a yai object using mahalanobis
mal <- yai(x=x,y=y,method="mahalanobis")

https://www.tandfonline.com/doi/abs/10.5589/m06-007

newtargets 33

mostused(mal,kth=1)

newtargets Finds K nearest neighbors for new target observations

Description

Finds nearest neighbor reference observations for a given set of target observations using an es-
tablished (see yai) object. Intended use is to facilitate breaking up large imputation problems (see
AsciiGridImpute).

Usage

newtargets(object,newdata,k=NULL,ann=NULL)

Arguments

object an object of class yai.

newdata a data frame or matrix of new targets for which neighbors are are found. Must
include at least the X-variables used in the original call to yai.

k if NULL, the value is taken from object, otherwise the number of nearest neigh-
bors to find.

ann if NULL, the value is taken from object. When TRUE ann is used to find
neighbors, and when FALSE a slow exact search is used.

Value

An object of class yai, that is a copy of the first argument with the following elements replaced:

call the call.

obsDropped a list of the row names for observations dropped for various reasons (missing
data).

trgRows a list of the row names for target observations as a subset of all observations.

xall the X-variables for all observations.

neiDstTrgs a matrix of distances between a target (identified by its row name) and the k
references. There are k columns.

neiIdsTrgs a matrix of reference identifications that correspond to neiDstTrgs.

neiDstRefs set NULL as if noRefs=TRUE in the original call to yai.

neiIdsRefs set NULL as if noRefs=TRUE in the original call to yai.

k the value of k, replaced if changed.

ann the value of the ann argument.

34 newtargets

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

See Also

yai

Examples

require (yaImpute)

data(iris)

set the random number seed so that example results are consistant
normally, leave out this command
set.seed(12345)

form some test data
refs=sample(rownames(iris),50) # just the reference observations
x <- iris[refs,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build a yai object using mahalanobis
mal <- yai(x=x,y=y,method="mahalanobis")

get imputations for the target observations (not references)
malNew <- newtargets(mal,iris[!(rownames(iris) %in% rownames(x)),])

output a data frame of observed and imputed values for
the observations that are not in the original yai object

impute(malNew,vars=yvars(malNew))

in this example, Y is not specified (not required for mahalanobis).
mal2 <- yai(x=x,method="mahalanobis")
identical(foruse(mal),foruse(mal2))

if (require(randomForest))
{

here, method randomForest's unsupervised classification is used (no Y).
rf <- yai(x=x,method="randomForest")
now get imputations for the targets in the iris data (those that are
not references).
rfNew <- newtargets(rf,iris[!(rownames(iris) %in% rownames(x)),])

}

notablyDifferent 35

notablyDifferent Finds observations with large differences between observed and im-
puted values

Description

This routine identifies observations with large errors as measured by scaled root mean square error
(see rmsd.yai). A threshold is used to detect observations with large differences.

Usage

notablyDifferent(object,vars=NULL,threshold=NULL,p=.05,...)

Arguments

object an object of class yai.

vars a vector of character strings naming the variables to use, if null the X-variables
form object are used.

threshold a threshold that if exceeded the observations are listed as notably different.

p (1-p)*100 is the percentile point in the distribution of differences used to com-
pute the threshold (used when threshold is NULL).

... additional arguments passed to impute.yai.

Details

The scaled differences are computed a follows:

1. A matrix of differences between observed and imputed values is computed for each observa-
tion (rows) and each variable (columns).

2. These differences are scaled by dividing by the standard deviation of the observed values
among the reference observations.

3. The scaled differences are squared.

4. Row means are computed resulting in one value for each observation.

5. The square root of each of these values is taken.

These values are Euclidean distances between the target observations and their nearest references as
measured using specified variables. All the variables that are used must have observed and imputed
values. Generally, this will be the X-variables and not the Y-variables.

When threshold is NULL, the function computes one using the quantile function with its default
arguments and probs=1-p.

36 notablyDifferent

Value

A named list of several items. In all cases vectors are named using the observation ids which are
the row names of the data used to build the yaiobject.

call The call.

vars The variables used (may be fewer than requested).

threshold The threshold value.
notablyDifferent.refs

A sorted named vector of references that exceed the threshold.
notablyDifferent.trgs

A sorted named vector of targets that exceed the threshold.

rmsdS.refs A sorted named vector of scaled RMSD references.

rmsdS.trgs A sorted named vector of scaled RMSD targets.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

notablyDistant, plot.notablyDifferent, yai, grmsd

Examples

data(iris)

set.seed(12345)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build an msn run, first build dummy variables for species.

sp1 <- as.integer(iris$Species=="setosa")
sp2 <- as.integer(iris$Species=="versicolor")
y2 <- data.frame(cbind(iris[,4],sp1,sp2),row.names=rownames(iris))
y2 <- y2[refs,]

names(y2) <- c("Petal.Width","Sp1","Sp2")

msn <- yai(x=x,y=y2,method="msn")

notablyDifferent(msn)

notablyDistant 37

notablyDistant Find notably distant targets

Description

Notably distant targets are those with relatively large distances from the closest reference observa-
tion. A suitable threshold is used to detect large distances.

Usage

notablyDistant(object,kth=1,threshold=NULL,p=0.01,method="distribution")

Arguments

object an object of class yai.

kth the kth neighbor is used.

threshold the thereshold distance that identifies notably large distances between observa-
tions.

p (1-p)*100 is the percentile point in the distribution of distances used to com-
pute the threshold (only used when threshold is NULL).

method the method used to compute the threshold, see details.

Details

When threshold is NULL, the function computes one using one of two methods. When method
is "distribution", assumption is made that distances follow the lognormal distribution, unless the
method used to find neighbors is randomForest, in which case the distances are assumed to follow
the beta distribution. A specified p value is used to compute the threshold, which is the point in
the distribution where a fraction, p, of the neighbors are larger than the threshold.

When method is "quantile", the function uses the quantile function with probs=1-p.

Value

List of two data frames that contain 1) the references that are notably distant from other references,
2) the targets that are notably distant from the references, 3) the threshold used, and 4) the method
used.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

notablyDifferent yai

38 plot.compare.yai

Examples

data(iris)

set.seed(12345)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

build an msn run, first build dummy variables for species.

sp1 <- as.integer(iris$Species=="setosa")
sp2 <- as.integer(iris$Species=="versicolor")
y2 <- data.frame(cbind(iris[,4],sp1,sp2),row.names=rownames(iris))
y2 <- y2[refs,]

names(y2) <- c("Petal.Width","Sp1","Sp2")

msn <- yai(x=x,y=y2,method="msn")

notablyDistant(msn)

plot.compare.yai Plots a compare.yai object

Description

Provides a matrix of plots for objects created by compare.yai.

Usage

S3 method for class 'compare.yai'
plot(x,pointColor=1,lineColor=2,...)

Arguments

x a data frame created by compare.yai.

pointColor the color used for the points.

lineColor the color of the 1:1 line.

... passed to plot functions.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

plot.notablyDifferent 39

See Also

yai, compare.yai, impute.yai, rmsd.yai

plot.notablyDifferent Plots the scaled root mean square differences between observed and
predicted

Description

Provides a descriptive plot of the Imputation Error Profile for object(s) created by notablyDifferent.

Usage

S3 method for class 'notablyDifferent'
plot(x,add=FALSE,...)

Arguments

x 1. an object create by notablyDifferent, or
2. a (named) list of such objects.

add set TRUE if you want to add this plot to an existing plot.

... passed to plot functions.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

notablyDistant and yai

Examples

require(yaImpute)

data(iris)

set.seed(12345)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

mal <- notablyDifferent(yai(x=x,y=y,method="mahalanobis"),vars=colnames(x))
if (require(randomForest))
{

40 plot.varSel

rf <- notablyDifferent(yai(x=x,y=y,method="randomForest"),vars=colnames(x))
plot.notablyDifferent(list(Mahalanobis=mal,randomForest=rf))

}

plot.varSel Boxplot of mean Mahalanobis distances from varSelection()

Description

Provides a descriptive plot of now the mean Mahalanobis distances change as variables are added
or deleted using varSelection.

Usage

S3 method for class 'varSel'
plot(x,main=NULL,nbest=NULL,arrows=TRUE,...)

Arguments

x an object create by varSelection

main becomes the plot title, if NULL one is generated
nbest number of variables designated in the plot as the best; if null the number is

computed by bestVars

arrows if true, an arrow is added to the plot designating the best variables.
... passed to boxplot functions

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

varSelection and yai

Examples

require(yaImpute)

data(iris)
set.seed(12345)

x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[,3:4] # Petal.Length Petal.Width

vsel <- varSelection(x=x,y=y,nboot=5,useParallel=FALSE)

plot(vsel)

plot.yai 41

plot.yai Plot observed verses imputed data

Description

Provides a matrix of plots of observed verses imputed values for variables in an object created by
impute.yai, which are of class c("impute.yai","data.frame").

Usage

S3 method for class 'yai'
plot(x,vars=NULL,pointColor=1,lineColor=2,spineColor=NULL,residual=FALSE,...)

Arguments

x 1. a data frame created by impute.yai, or
2. an object created by yai.

vars a list of variable names you want to include, if NULL all available Y-variables
are included.

pointColor a color vector for the xy plots (continuous variables).

lineColor a color 1:1 lines in xy plots.

spineColor a color vector for the spine plots (factors), one value per level.

residual plots in a residual format (observed-imputed over imputed).

... passed to called functions.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

Examples

require(yaImpute)

data(iris)

form some test data
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length
y <- iris[refs,4:5] # Petal.Width Species

mal <- yai(x=x,y=y,method="mahalanobis")
malImp=impute(mal,newdata=iris)
plot(malImp)

42 predict.yai

predict.yai Generic predict function for class yai

Description

Provides a generic interface for getting predicted values for yai objects.

Usage

S3 method for class 'yai'
predict(object,newdata,...)

Arguments

object an object of class yai which is passed as argument to newtargets, impute.yai,
or both of these functions, see details.

newdata a data frame that at a minimum contains the X-variables for new observations.

... passed to newtargets and impute.yai, see details.

Details

When argument newdata is present function newtargets is called followed by a call to impute.yai.
If include in the . . . , the arguments k and ann are passed to newtargets.

When argument newdata is absent, impute.yai is called without first calling newtargets.

All of the . . . arguments are passed to impute.yai.

Another form of prediction in imputation is to get the identity of the imputed observations. Use
function foruse for this purpose.

Value

An object of class impute.yai.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

foruse, newtargets impute.yai

print.yai 43

print.yai Print a summary of a yai object

Description

Provides a summary of a yai object, showing the call and essential data customized for each method
used.

Usage

S3 method for class 'yai'
print(x,...)

Arguments

x an object of class yai.

... not used

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

rmsd.yai Root Mean Square Difference between observed and imputed

Description

Computes the root mean square difference (RMSD) between observed and imputed values for each
observation that has both. RMSD is computationally like RMSE, but they differ in interpretation.
The RMSD values can be scaled to afford comparisons among variables.

Usage

rmsd.yai (object,vars=NULL,scale=FALSE,...)

Arguments

object an object created by yai or impute.yai

vars a list of variable names you want to include, if NULL all available variables are
included

scale when TRUE, the values are scaled (see details), if a named vector, the values are
scaled by the corresponding values.

... passed to called methods, very useful for passing argument ancillaryData to
function impute.yai

44 TallyLake

Details

By default, RMSD is computed using standard formula for its related statistic, RMSE. When
scale=TRUE, or set of values is supplied, RMSD is divided by the scaling factor. The scaling
factor is the standard deviation of the reference observations under the assumption that they are
representative of the population.

Value

A data frame with the row names as vars and the column as rmsd. When scale=TRUE, the column
name is rmsdS. The scaling factors used, if any, are returned as an attribute.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

See Also

yai, impute.yai and doi:10.18637/jss.v023.i10.

TallyLake Tally Lake, Flathead National Forest, Montana, USA

Description

Polygon-based reference data used by Stage and Crookston (2007) to demonstrate partitioning of
error components and related statistics. Observations are summaries of data collected on forest
stands (ploygons).

Usage

data(TallyLake)

Format

A data frame with 847 rows and 29 columns:

Ground based measurements of trees (Y-variables):

1. TopHt - Height of tallest trees (ft)

2. LnVolL - Log of the volume (ft3/acre) of western larch

3. LnVolDF - Log of the volume (ft3/acre) of Douglas-fir

4. LnVolLP - Log of the volume (ft3/acre) of lodgepole pine

5. LnVolES - Log of the volume (ft3/acre) of Engelmann spruce

6. LnVolAF - Log of the volume (ft3/acre) of alpine fir

7. LnVolPP - Log of the volume (ft3/acre) of ponderosa pine

https://doi.org/10.18637/jss.v023.i10

TallyLake 45

8. CCover - Canopy cover (percent)

Geographic Location, Slope, and Aspect (X-variables):

1. utmx - UTM easting at plot center

2. utmy - UTM northing at plot center

3. elevm - Mean elevation (ft) above sea level over plot

4. eevsqrd - (elevm− 1600)2

5. slopem - Mean slope (percent) over plot

6. slpcosaspm - Mean of slope (proportion) times the cosine of aspect (see Stage (1976) for
description of this transformation

7. slpsinaspm - Mean of slope (proportion) times the sine of aspect

Additional X-variables:

1. ctim - Mean of slope curviture over pixels in stand

2. tmb1m - Mean of LandSat band 1 over pixels in stand

3. tmb2m - Mean of LandSat band 2 over pixels in stand

4. tmb3m - Mean of LandSat band 3 over pixels in stand

5. tmb4m - Mean of LandSat band 4 over pixels in stand

6. tmb5m - Mean of LandSat band 5 over pixels in stand

7. tmb6m - Mean of LandSat band 6 over pixels in stand

8. durm - Mean of light duration over pixels in stand

9. insom - Mean of solar insolation over pixels in stand

10. msavim - Mean of AVI for pixels in stand

11. ndvim - Mean of NDVI for pixels in stand

12. crvm - Mean of slope curviture for pixels in stand

13. tancrvm - Mean of tangent curvature for pixels in stand

14. tancrvsd - Standard deviation of tangent curvature for pixels in stand

Source

USDA Forest Service

References

Stage, A.R.; Crookston, N.L. 2007. Partitioning error components for accuracy-assessment of near
neighbor methods of imputation. For. Sci. 53(1):62-72 https://academic.oup.com/forestscience/
article/53/1/62/4604364

Stage, A.R. (1976). An expression for the effect of aspect, slope, and habitat type on tree growth.
For. Sci. 22(4):457-460. https://academic.oup.com/forestscience/article-abstract/22/
4/457/4675852

https://academic.oup.com/forestscience/article/53/1/62/4604364
https://academic.oup.com/forestscience/article/53/1/62/4604364
https://academic.oup.com/forestscience/article-abstract/22/4/457/4675852
https://academic.oup.com/forestscience/article-abstract/22/4/457/4675852

46 unionDataJoin

unionDataJoin Combines data from several sources

Description

Takes any combination of several data frames or matrices and creates a new data frame. The rows
are defined by a union of all row names in the arguments, and the columns are defined by a union
of all column names in the arguments. The data are loaded into this new frame where column and
row names match the individual inputs. Duplicates are tolerated with the last one specified being
the one kept. NAs are returned for combinations of rows and columns where no data exist. Factors
are processed as necessary.

Usage

unionDataJoin(...,warn=TRUE)

Arguments

... a list of data frames, matrices, or any combination.

warn when TRUE, warn when a column name is found in more than one data source.

Value

A data frame.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

Examples

require(yaImpute)

d1=data.frame(x1=c("a","b","c","d","e","f"))
d2=data.frame(x1=as.character(seq(1,4)),row.names=seq(5,8))
d3=data.frame(x2=seq(1:10))

note the levels
levels(d1$x1)
[1] "a" "b" "c" "d" "e" "f"

levels(d2$x1)
[1] "1" "2" "3" "4"

all=unionDataJoin(d1,d2,d3,warn=FALSE)
all
x1 x2
1 a 1

vars 47

2 b 2
3 c 3
4 d 4
5 1 5
6 2 6
7 3 7
8 4 8
9 <NA> 9
10 <NA> 10

levels(all$x1)
[1] "1" "2" "3" "4" "a" "b" "c" "d"

vars List variables in a yai object

Description

Provides a character vector, or a list of character vectors of all the variables in a yai object, just the
X-variables (xvars), or just the Y-variables (yvars).

Usage

vars(object)
xvars(object)
yvars(object)

Arguments

object an object created by yai.

Value

yvars A character vector of Y-variables.

xvars A character vector of X-variables.

vars A list of both vectors.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

See Also

yai

48 varSelection

varSelection Select variables for imputation models

Description

Computes grmsd (generalized root mean square distance) as variables are added to (method="addVars")
or removed from (method="delVars") an k-NN imputation model. When adding variables the
function keeps variables that strengthen imputation and deletes that weaken the imputation the
least. The measure of model strength is grmsd between imputed and observed Y-variables among
the reference observations.

Usage

varSelection(x,y,method="addVars",yaiMethod="msn",imputeMethod="closest",
wts=NULL,nboot=20,trace=FALSE,
useParallel=if (.Platform$OS.type == "windows") FALSE else TRUE,...)

Arguments

x a set of X-Variables as used in yai.

y a set of Y-Variables as used in yai.

method if addVars, the X-Variables are added and if delVars they are deleted (see de-
tails).

yaiMethod passed as method to yai.

imputeMethod passed as method to impute.yai.

wts passed as argument wts to grmsd which is used to score the alternative varialbe
sets.

nboot the number of bootstrap samples used at each variable selection step (see De-
tails). When nboot is zero, NO bootstraping is done.

trace if TRUE information at each step is output.

useParallel function link{parallel:mclapply} from parallel will be used if it is available
for running the bootstraps. It it is not available, link{lapply} is used (which
is the only option on windows).

... passed to link{yai}

Details

This function tracks the effect on generalized root mean square distance (see grmsd) when variables
are added or deleted one at a time. When adding variables, the function starts with none, and keeps
the single variable that provides the smallest grmsd. When deleting variables, the functions starts
with all X-Variables and deletes them one at a time such that those that remain provide the smallest
grmsd. The function uses the following steps:

varSelection 49

1. Function yai is run for all the Y-variables and candidate X-variable(s). The result is passed to
impute.yai to get imputed values of Y-variables. That result is passed to grmsd to compute
a mean Mahalanobis distance for the case where the candidate variable is included (or deleted
depending on method). However, these steps are done once for each bootstrap replication and
the resulting values are averaged to provide an average mean Mahalanobis distance over the
bootstraps.

2. Step one is done for each candidate X-variable forming a vector of grmsd values, one corre-
sponding to the case where each candidate is added or deleted.

3. When variables are being added (method="addVars"), the variable that is related to the small-
est grmsd is kept. When variables are being deleted (method="delVars"), the variable that is
related to the largest grmsd is deleted.

4. Once a variable has been added or deleted, the function proceeds to select another variable for
selection or deletion by considering all remaining variables.

Value

An list of class varSel with these tags:

call the call

grmsd a 2-column matrix of the mean and std dev of the mean Mahalanobis distances
associated with adding or removing the variables stored as the rownames. When
nboot<2, the std dev are NA

allgrmsd a list of the grmsd values that correspond to each bootstrap replication. The data
in grmsd are based on these vectors of information.

method the value of argument method.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

yai, impute.yai, bestVars and grmsd

Examples

data(iris)

set.seed(12345)

x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[,3:4] # Petal.Length Petal.Width

vsel <- varSelection(x=x,y=y,nboot=5,useParallel=FALSE)
vsel

bestVars(vsel)

50 whatsMax

plot(vsel)

whatsMax Find maximum column for each row

Description

For each row, the function identifies the column that has the maximum value. The function returns a
data frame with two columns: the first is the column name corresponding to the column of maximum
value and the second is the correspond maximum. The first column is converted to a factor.

If the maximum is zero, the maximum column is identified as "zero".

If there are over nbig factors in column 1, the maximum values that are less than the largest are
combined and identified as "other".

Intended use is to transform community ecology data for use in yai where method is randomForest.

Usage

whatsMax(x,nbig=30)

Arguments

x a data frame or matrix of numeric values.

nbig see description–the maximum number of factors, the remainder called ’other’.

Value

A data frame.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

Examples

data(MoscowMtStJoe)

get the basal area by species columns
yba <- MoscowMtStJoe[,1:17]

for each row, pick the species that has the max basal area
create "other" for those not in the top 7.

ybaB <- whatsMax(yba,nbig=7)
levels(ybaB[,1])

yai 51

yai Find K nearest neighbors

Description

Given a set of observations, yai

1. separates the observations into reference and target observations,

2. applies the specified method to project X-variables into a Euclidean space (not always, see
argument method), and

3. finds the k-nearest neighbors within the referenece observations and between the reference
and target observations.

An alternative method using randomForest classification and regression trees is provided for steps
2 and 3. Target observations are those with values for X-variables and not for Y-variables, while
reference observations are those with no missing values for X-and Y-variables (see Details for the
exception).

Usage

yai(x=NULL,y=NULL,data=NULL,k=1,noTrgs=FALSE,noRefs=FALSE,
nVec=NULL,pVal=.05,method="msn",ann=TRUE,mtry=NULL,ntree=500,
rfMode="buildClasses",bootstrap=FALSE,ppControl=NULL,sampleVars=NULL,
rfXsubsets=NULL)

Arguments

x 1) a matrix or data frame containing the X-variables for all observations with
row names are the identification for the observations, or 2) a one-sided formula
defining the X-variables as a linear formula. If a formula is coded for x, one
must be used for y as well, if needed.

y 1) a matrix or data frame containing the Y-variables for the reference observa-
tions, or 2) a one-sided formula defining the Y-variables as a linear formula.

data when x and y are formulas, then data is a data frame or matrix that contains all
the variables with row names are the identification for the observations. The
observations are split by yai into two sets.

k the number of nearest neighbors; default is 1.

noTrgs when TRUE, skip finding neighbors for target observations.

noRefs when TRUE, skip finding neighbors for reference observations.

nVec number of canonical vectors to use (methods msn and msn2), or number of in-
dependent of X-variables reference data when method mahalanobis. When
NULL, the number is set by the function.

pVal significant level for canonical vectors, used when method is msn or msn2.

method is the strategy used for computing distance and therefore for finding neighbors;
the options are quoted key words (see details):

52 yai

1. euclidean - distance is computed in a normalized X space.
2. raw - like euclidean, except no normalization is done.
3. mahalanobis - distance is computed in its namesakes space.
4. ica - like mahalanobis, but based on Independent Component Analysis using

package fastICA.
5. msn - distance is computed in a projected canonical space.
6. msn2 - like msn, but with variance weighting (canonical regression rather

than correlation).
7. msnPP - like msn, except that the canonical correlation is computed using

projection pursuit from ccaPP (see argument ppControl).
8. gnn - distance is computed using a projected ordination of Xs found using

canonical correspondence analysis (cca from package vegan). If cca fails,
rda is used and a warning is issued.

9. randomForest - distance is one minus the proportion of randomForest trees
where a target observation is in the same terminal node as a reference ob-
servation (see randomForest).

10. random - like raw except that the X space is a single vector of uniform
random [0,1] numbers generated using runif, results in random assignment
of neighbors, and forces ann to be FALSE.

11. gower - distance is computed in its namesakes space using function gower_topn
from package gower; forces ann to be FALSE.

ann TRUE if ann is used to find neighbors, FALSE if a slow search is used.

mtry the number of X-variables picked at random when method is randomForest,
see randomForest, default is sqrt(number of X-variables).

ntree the number of classification and regression trees when method is randomForest.
When more than one Y-variable is used, the trees are divided among the vari-
ables. Alternatively, ntree can be a vector of values corresponding to each Y-
variable.

rfMode when buildClasses and method is randomForest, continuous variables are
internally converted to classes forcing randomForest to build classification trees
for the variable. Otherwise, regression trees are built if your version of random-
Forest is newer than 4.5-18.

bootstrap if TRUE, the reference observations are sampled with replacement.

ppControl used to control how canoncial correlation analysis via projection pursuit is done,
see Details.

sampleVars the X- and/or Y-variables will be sampled (without replacement) if this is not
NULL and greater than zero. If specified as a single unnamed value, that value
is used to control the sample size of both X and Y variables. If two unnamed
values, then the first is taken for X-variables and the second for Y-variables. If
zero, no sampling is done. Otherwise, values are less than 1.0 they are taken as
the proportion of the number of variables. Values greater or equal to 1 are num-
ber of variables to be included in the sample. Specification of a large number
will cause the sequence of variables to be randomized.

rfXsubsets a named list of character vectors where there is one vector for each Y-variable,
see details, only applies when method="randomForest"

yai 53

Details

See the paper at doi:10.18637/jss.v023.i10 (it includes examples).

The following information is in addition to the content in the papers.

You need not have any Y-variables to run yai for the following methods: euclidean, raw, mahalanobis,
ica, random, and randomForest (in which case unsupervised classification is performed). How-
ever, normally yai classifies reference observations as those with no missing values for X- and
Y- variables and target observations are those with values for X- variables and missing data for
Y-variables. When Y is NULL (there are no Y-variables), all the observations are considered refer-
ences. See newtargets for an example of how to use yai in this situation.

When bootstrap=TRUE the reference observations are sampled with replacement. The sample size
is set to the number of reference observations. Normally, about a third of the reference observations
are left out of the sample; they are often called out-of-bag samples. The out-of-bag observations are
then treated as targets.

When method="msnPP" projection pursuit from ccaPP is used. The method is further controlled
using argument ppControl to specify a character vector that has has two named components.

1. method - One of the following "spearman", "kendall", "quadrant", "M", "pearson", de-
fault is "spearman"

2. searc - If "data" or "proj", then ccaProj is used, otherwise the default ccaGrid is used.

Here are some details on argument rfXsubsets. When method="randomForest" one call to
randomForest is generated for for each Y-variable. When argument rfXsubsets is left NULL,
all the X-variables are used for each of the Y-variables. However, sometimes better results can
be achieved by using specific subsets of X-variables for each Y-variable. This is done by setting
rfXsubsets equal to a named list of character vectors. The names correspond to the Y-variable
names and the character vectors hold the list of X-variables for the corresponding Y-variable.

Value

An object of class yai, which is a list with the following tags:

call the call.

yRefs, xRefs matrices of the X- and Y-variables for just the reference observations (unscaled).
The scale factors are attached as attributes.

obsDropped a list of the row names for observations dropped for various reasons (missing
data).

trgRows a list of the row names for target observations as a subset of all observations.

xall the X-variables for all observations.

cancor returned from cancor function when method msn or msn2 is used (NULL other-
wise).

ccaVegan an object of class cca (from package vegan) when method gnn is used.

ftest a list containing partial F statistics and a vector of Pr>F (pgf) corresponding to
the canonical correlation coefficients when method msn or msn2 is used (NULL
otherwise).

yScale, xScale scale data used on yRefs and xRefs as needed.

https://doi.org/10.18637/jss.v023.i10

54 yai

k the value of k.

pVal as input; only used when method msn, msn2 or msnPP is used.

projector NULL when not used. For methods msn, msn2, msnPP, gnn and mahalanobis,
this is a matrix that projects normalized X-variables into a space suitable for
doing Eculidian distances.

nVec number of canonical vectors used (methods msn and msn2), or number of inde-
pendent X-variables in the reference data when method mahalanobis is used.

method as input, the method used.

ranForest a list of the forests if method randomForest is used. There is one forest for each
Y-variable, or just one forest when there are no Y-variables.

ICA a list of information from fastICA when method ica is used.

ann the value of ann, TRUE when ann is used, FALSE otherwise.

xlevels NULL if no factors are used as predictors; otherwise a list of predictors that have
factors and their levels (see lm).

neiDstTrgs a matrix of distances between a target (identified by its row name) and the k
references. There are k columns.

neiIdsTrgs a matrix of reference identifications that correspond to neiDstTrgs.
neiDstRefs, neiIdsRefs

counterparts for references.

bootstrap a vector of reference rownames that constitute the bootstrap sample; or the value
FALSE when bootstrap is not used.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
John Coulston <jcoulston@fs.usda.gov>
Andrew O. Finley <finleya@msu.edu>

See Also

grmsd ensembleImpute

Examples

require (yaImpute)

data(iris)

set the random number seed so that example results are consistent
normally, leave out this command
set.seed(12345)

form some test data, y's are defined only for reference
observations.
refs=sample(rownames(iris),50)
x <- iris[,1:2] # Sepal.Length Sepal.Width
y <- iris[refs,3:4] # Petal.Length Petal.Width

yai 55

build yai objects using 2 methods
msn <- yai(x=x,y=y)
mal <- yai(x=x,y=y,method="mahalanobis")
compare these results using the generalized mean distances. mal wins!
grmsd(mal,msn)

use projection pursuit and specify ppControl (loads package ccaPP)
if (require(ccaPP))
{

msnPP <- yai(x=x,y=y,method="msnPP",ppControl=c(method="kendall",search="proj"))
grmsd(mal,msnPP,msn)

}

#############

data(MoscowMtStJoe)

convert polar slope and aspect measurements to cartesian
(which is the same as Stage's (1976) transformation).

polar <- MoscowMtStJoe[,40:41]
polar[,1] <- polar[,1]*.01 # slope proportion
polar[,2] <- polar[,2]*(pi/180) # aspect radians
cartesian <- t(apply(polar,1,function (x)

{return (c(x[1]*cos(x[2]),x[1]*sin(x[2]))) }))
colnames(cartesian) <- c("xSlAsp","ySlAsp")
x <- cbind(MoscowMtStJoe[,37:39],cartesian,MoscowMtStJoe[,42:64])
y <- MoscowMtStJoe[,1:35]

msn <- yai(x=x, y=y, method="msn", k=1)
mal <- yai(x=x, y=y, method="mahalanobis", k=1)
the results can be plotted.
plot(mal,vars=yvars(mal)[1:16])

compare these results using the generalized mean distances..
grmsd(mal,msn)

try method="gower"
if (require(gower))
{

gow <- yai(x=x, y=y, method="gower", k=1)
compare these results using the generalized mean distances..
grmsd(mal,msn,gow)

}

try method="randomForest"
if (require(randomForest))
{

reduce the plant community data for randomForest.
yba <- MoscowMtStJoe[,1:17]
ybaB <- whatsMax(yba,nbig=7) # see help on whatsMax

56 yaiRFsummary

rf <- yai(x=x, y=ybaB, method="randomForest", k=1)

build the imputations for the original y's
rforig <- impute(rf,ancillaryData=y)

compare the results using individual rmsd's
compare.yai(mal,msn,rforig)
plot(compare.yai(mal,msn,rforig))

build another randomForest case forcing regression
to be used for continuous variables. The answers differ
but one is not clearly better than the other.

rf2 <- yai(x=x, y=ybaB, method="randomForest", rfMode="regression")
rforig2 <- impute(rf2,ancillaryData=y)
compare.yai(rforig2,rforig)

}

yaiRFsummary Build Summary Data For Method RandomForest

Description

When method randomforest is used to build a yai object, the randomForest package computes
several statistics. This function summarizes some of them, including the variable importance scores
computed by function yaiVarImp.

Usage

yaiRFsummary(object, nTop=0)

Arguments

object an object of class yai.

nTop the nTop most important variables are plotted (returned).

Value

A list containing:

forestAttributes

a data frame reporting the error rates and other data from the randomForest(s).
scaledImportance

the data frame computed by yaiVarImp.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>
Andrew O. Finley <finleya@msu.edu>

yaiVarImp 57

See Also

yai, yaiVarImp

yaiVarImp Reports or plots importance scores for yai method randomForest

Description

When method randomforest is used to build a yai object, the randomForest package computes
variable importance scores. This function computes a composite of the scores and scales them
using scale. By default the scores are plotted and scores themselves are invisibly returned. For
classification, the scores are derived from "MeanDecreaseAccuracy" and for regression they are
based in " using importance.

Usage

yaiVarImp(object, nTop=20, plot=TRUE, ...)

Arguments

object an object of class yai

nTop the nTop most important variables are plotted (returned); if NA or zero, all are
returned

plot if FALSE, no plotting is done, but the scores are returned.

... passed to the boxplot function.

Value

A data frame with the rows corresponding to the randomForest built for each Y-variable and the
columns corresponding to the nTop most important Y-variables in sorted order.

Author(s)

Nicholas L. Crookston <ncrookston.fs@gmail.com>

See Also

yai, yaiRFsummary, compare.yai

58 yaiVarImp

Examples

if (require(randomForest))
{

data(MoscowMtStJoe)

get the basal area by species columns
yba <- MoscowMtStJoe[,1:17]
ybaB <- whatsMax(yba,nbig=7) # see help on whatsMax

ba <- cbind(ybaB,TotalBA=MoscowMtStJoe[,18])
x <- MoscowMtStJoe[,37:64]
x <- x[,-(4:5)]
rf <- yai(x=x,y=ba,method="randomForest")

yaiVarImp(rf)

keep=colnames(yaiVarImp(rf,plot=FALSE,nTop=9))

newx <- x[,keep]
rf2 <- yai(x=newx,y=ba,method="randomForest")

yaiVarImp(rf2,col="gray")

compare.yai(rf,rf2)
}

Index

∗ datasets
MoscowMtStJoe, 29
TallyLake, 44

∗ hplot
plot.compare.yai, 38
plot.notablyDifferent, 39
plot.yai, 41

∗ misc
ann, 2
cor.yai, 16
correctBias, 17
impute.yai, 27
mostused, 32
notablyDistant, 37
unionDataJoin, 46
vars, 47
whatsMax, 50
yaiRFsummary, 56
yaiVarImp, 57

∗ multivariate
applyMask, 6
bestVars, 13
buildConsensus, 14
compare.yai, 15
cor.yai, 16
correctBias, 17
ensembleImpute, 20
errorStats, 21
foruse, 23
grmsd, 24
impute.yai, 27
mostused, 32
newtargets, 33
notablyDifferent, 35
notablyDistant, 37
plot.varSel, 40
rmsd.yai, 43
varSelection, 48
yai, 51

yaiRFsummary, 56
yaiVarImp, 57

∗ predict
predict.yai, 42

∗ print
print.yai, 43

∗ spatial
AsciiGridImpute, 8

∗ tree
yaiRFsummary, 56
yaiVarImp, 57

∗ utilities
AsciiGridImpute, 8

ann, 2, 9, 33, 52, 54
applyMask, 6
AsciiGridImpute, 8, 33
AsciiGridPredict (AsciiGridImpute), 8
attributes, 28

bestVars, 13, 40, 49
boxplot, 57
buildConsensus, 14, 21, 25

cca, 52
ccaGrid, 53
ccaProj, 53
compare.yai, 15, 38, 39, 57
cor.yai, 15, 16, 16
correctBias, 17

ensembleImpute, 20, 25, 54
errorStats, 21
expression, 17, 18

fastICA, 52, 54
foruse, 23, 32, 42

gam, 22
gower_topn, 52
grmsd, 13, 24, 36, 48, 49, 54

59

60 INDEX

importance, 57
impute, 10
impute (impute.yai), 27
impute.yai, 15–17, 20, 21, 25, 26, 27, 35, 39,

41–44, 48, 49
invisible, 10

list, 8
lm, 10, 22, 25, 26, 54

MoscowMtStJoe, 29
mostused, 32

newtargets, 6, 7, 10, 33, 42, 53
notablyDifferent, 26, 35, 37, 39
notablyDistant, 36, 37, 39

plot.compare.yai, 15, 38
plot.impute.yai (plot.yai), 41
plot.notablyDifferent, 36, 39
plot.varSel, 40
plot.yai, 41
predict, 8, 10, 26
predict.yai, 42
print.yai, 43

qr, 26
quantile, 35, 37

randomForest, 51–53, 56, 57
rda, 52
resid, 26
rmsd, 25, 26
rmsd (rmsd.yai), 43
rmsd.yai, 15, 17, 26, 35, 39, 43
runif, 52

scale, 25, 57
summary.yai (print.yai), 43

TallyLake, 23, 44

unionDataJoin, 46

vars, 47
varSelection, 13, 40, 48

whatsMax, 50

xvars (vars), 47

yai, 6–10, 14–29, 32–37, 39–44, 47–50, 51,
56, 57

yaImpute (yai), 51
yaiRFsummary, 56, 57
yaiVarImp, 56, 57, 57
yvars (vars), 47

	ann
	applyMask
	AsciiGridImpute
	bestVars
	buildConsensus
	compare.yai
	cor.yai
	correctBias
	ensembleImpute
	errorStats
	foruse
	grmsd
	impute.yai
	MoscowMtStJoe
	mostused
	newtargets
	notablyDifferent
	notablyDistant
	plot.compare.yai
	plot.notablyDifferent
	plot.varSel
	plot.yai
	predict.yai
	print.yai
	rmsd.yai
	TallyLake
	unionDataJoin
	vars
	varSelection
	whatsMax
	yai
	yaiRFsummary
	yaiVarImp
	Index

