Package ‘vivid’

July 31, 2024

Title Variable Importance and Variable Interaction Displays
Version 0.2.9
Language en-US

Description A suite of plots for displaying variable importance and two-way variable interac-
tion jointly. Can also display partial dependence plots laid out in a pairs plot or 'zenplots' style.

License GPL (>=2)
Encoding UTF-8

Imports condvis2, ggplot2, GGally, RColorBrewer, colorspace, stats,
DendSer, ggalt, dplyr, igraph, flashlight, ggnewscale, sp

Suggests intergraph (>= 2.0-2), network (>= 1.12.0), sna (>=2.3-2),
mlr, MASS, tidymodels, e1071, gridExtra, lemon, mlr3,
mlr3learners, scales, ranger, vip, knitr, rmarkdown,
randomPForest, testthat (>= 3.0.0), labeling, zenplots, covr,
xgboost, bartMachine, caret, gbm, keras

VignetteBuilder knitr
RoxygenNote 7.2.3
Config/testthat/edition 3

URL https://alaninglis.github.io/vivid/
NeedsCompilation no

Author Alan Inglis [aut, cre],
Andrew Parnell [aut],
Catherine Hurley [aut]

Maintainer Alan Inglis <alan.n.inglis@gmail.com>
Repository CRAN
Date/Publication 2024-07-31 11:50:02 UTC

Contents

as.dataframe.vivid L L
pdpPairs

https://alaninglis.github.io/vivid/

Index

as.data.frame.vivid

pAPVars . ..o e e e e e e 5
PAPZen . . .o e e e e 6
vip2vivid ..o 8
VIVI o e e e e e 9
vividReorder L 11
viviHeatmap e e 12
viviNetwork e 13
vivilpdate o e 14
zPath . . o e 15

17

as.data.frame.vivid as.data.frame.vivid

Description

Takes a matrix of class vivid and turn it into a data frame containing variable names, Vimp and
Vint values, and the row and column index from the original matrix.

Usage

S3 method for class 'vivid'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments

X A matrix of class ’vivid’ to be converted to a data frame.

row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

optional Logical. If TRUE, setting row names and converting column names (to syn-

Value

tactic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, basi-
cally with the meaning of data.frame(*, check.names = !optional). See also the
make.names argument of the matrix method.

Additional arguments to be passed to or from methods.

A data frame of Vimp and Vint values and their index from the vivid matrix.

pdpPairs

Examples

library(ranger)
aqg <- na.omit(airquality)
aq <- aq[1:20,1# for speed

rf <- ranger(Ozone ~ ., data = aq, importance = "permutation”)
myMat <- vivi(fit = rF, data = aq, response = "Ozone")
myDf <- as.data.frame(myMat)
myDf
pdpPairs pdpPairs
Description

Creates a pairs plot showing bivariate pdp on upper diagonal, ice/univariate pdp on the diagonal and

data on the lower diagonal

Usage

pdpPairs(
data,
fit,
response,
vars = NULL,

pal = rev(RColorBrewer::brewer.pal(11, "RdY1Bu")),

fitlims = "pdp”,
gridSize = 10,

nmax = 500,
class = 1,
nlce = 30,

colorVar = NULL,
comboImage = FALSE,
predictFun = NULL,
convexHull = FALSE,
probability = FALSE

fit A supervised machine learning model, which understands condvis2::CVpredict

)
Arguments
data Data frame used for fit.
response The name of the response for the fit.

vars The variables to plot (and their order), defaults to all variables other than re-

sponse.

pal A vector of colors to show predictions, for use with scale_fill_gradientn

fitlims

gridSize

nmax

class

nlce
colorVar

comboImage

predictFun

convexHull

probability

Value

A pairs plot

Examples

pdpPairs

Specifies the fit range for the color map. Options are a numeric vector of length
2, "pdp" (default), in which cases limits are calculated from the pdp, or "all",
when limits are calculated from the observations and pdp. Predictions outside
fitlims are squished on the color scale.

The size of the grid for evaluating the predictions.

Uses sample of nmax data rows for the pdp. Default is 500. Use all rows if
NULL.

Category for classification, a factor level, or a number indicating which factor
level.

Number of ice curves to be plotted, defaults to 30.
Which variable to colour the predictions by.

If TRUE draws pdp for mixed variable plots as an image, otherwise an interac-
tion plot.

Function of (fit, data) to extract numeric predictions from fit. Uses condvis2::CVpredict

by default, which works for many fit classes.

If TRUE, then the convex hull is computed and any points outside the convex
hull are removed.

if TRUE, then returns the partial dependence for classification on the probability
scale. If FALSE (default), then the partial dependence is returned on a near logit
scale.

Load in the data:
aq <- na.omit(airquality)

f <- 1Im(Ozone ~

., data = aq)

pdpPairs(aq, f, "Ozone")

Run a ranger model:

library(ranger)
library(MASS)

Boston1 <- Boston[, c(4:6, 8, 13:14)]

Bostonl1$chas <- factor(Bostonl$chas)

fit <- ranger(medv ~ ., data = Bostonl, importance = "permutation")
pdpPairs(Boston1[1:30,], fit, "medv")

pdpPairs(Boston1[1:30, 1, fit, "medv"”, comboImage = TRUE)

viv <- vivi(Bostonl, fit, "medv")

show top variables only

pdpPairs(Boston1[1:30, 1, fit, "medv"”, comboImage = TRUE, vars = rownames(viv)[1:4])

library(ranger)

rf <- ranger(Species ~ ., data = iris, probability = TRUE)
pdpPairs(iris, rf, "Species”) # prediction probs for first class, setosa

pdpVars 5
pdpPairs(iris, rf, "Species”, class = "versicolor”) # prediction probs versicolor
pdpVars pdpVars
Description

Displays the individual conditional expectation (ICE) curves and aggregated partial dependence for
each variable in a grid.

Usage

pdpVars(
data,
fit,

response,
vars = NULL,

pal = rev(RColorBrewer: :brewer.pal(11, "RdY1Bu")),

gridSize = 10,

nmax = 500,
class = 1,
nlce = 30,

predictFun = NULL,
limits = NULL,
colorVar = NULL,
draw = TRUE,
probability = FALSE

A supervised machine learning model, which understands condvis2::CVpredict

The variables to plot (and their order), defaults to all variables other than re-

A vector of colors to show predictions, for use with scale_fill_gradientn

Uses sample of nmax data rows for the pdp. Default is 500. Use all rows if

Category for classification, a factor level, or a number indicating which factor

Arguments
data Data frame used for fit.
fit
response The name of the response for the fit.
vars
sponse.
pal
gridSize The size of the grid for evaluating the predictions.
nmax
NULL.
class
level.
nlce

Number of ice curves to be plotted, defaults to 30.

6 pdpZen

predictFun Function of (fit, data) to extract numeric predictions from fit. Uses condvis2::CVpredict
by default, which works for many fit classes.

limits A vector determining the limits of the predicted values.

colorVar Which variable to colour the predictions by.

draw If FALSE, then the plot will not be drawn. Default is TRUE.

probability if TRUE, then returns the partial dependence for classification on the probability
scale. If FALSE (default), then the partial dependence is returned on a near logit
scale.

Value

A grid displaying ICE curves and univariate partial dependence.

Examples

Load in the data:

aq <- na.omit(airquality)

fit <- 1m(Ozone ~ ., data = aq)
pdpVars(aq, fit, "Ozone")

Classification

library(ranger)

rfClassif <- ranger(Species ~ ., data = iris, probability = TRUE)
pdpVars(iris, rfClassif, "Species”, class = 3)

pp <- pdpVars(iris, rfClassif, "Species”, class = 2, draw = FALSE)

ppLL1]]
pdpVars(iris, rfClassif, "Species”, class = 2, colorVar = "Species")
pdpZen Create a zenplot displaying partial dependence values.
Description

Constructs a zigzag expanded navigation plot (zenplot) displaying partial dependence values.

Usage

pdpZen(
data,
fit,
response,
zpath = NULL,
pal = rev(RColorBrewer::brewer.pal(11, "RdY1Bu")),
fitlims = "pdp”,
gridSize = 10,

pdpZen 7

nmax = 500,
class = 1,
comboImage = FALSE,
rug = TRUE,
predictFun = NULL,

convexHull = FALSE,
probability = FALSE,

Arguments

data Data frame used for fit

fit A supervised machine learning model, which understands condvis2::CVpredict

response The name of the response for the fit

zpath Plot shows consecutive pairs of these variables. Defaults to all variables other
than response. Recommend constructing zpath witn calcZpath.

pal A vector of colors to show predictions, for use with scale_fill_gradientn

fitlims Specifies the fit range for the color map. Options are a numeric vector of length
2, "pdp" (default), in which cases limits are calculated from the pdp, or "all",
when limits are calculated from the observations and pdp predictions outside
fitlims are squished on the color scale.

gridSize The size of the grid for evaluating the predictions.

nmax Uses sample of nmax data rows for the pdp. Default is 500. Use all rows if
NULL.

class Category for classification, a factor level, or a number indicating which factor
level.

comboImage If TRUE draws pdp for mixed variable plots as an image, otherwise an interac-
tion plot.

rug If TRUE adds rugs for the data to the pdp plots

predictFun Function of (fit, data) to extract numeric predictions from fit. Uses condvis2::CVpredict
by default, which works for many fit classes.

convexHull If TRUE, then the convex hull is computed and any points outside the convex

hull are removed.

probability if TRUE, then returns the partial dependence for classification on the probability
scale. If FALSE (default), then the partial dependence is returned on a near logit
scale.

passed on to zenplot

Value

A zenplot of partial dependence values.

8 vip2vivid

Examples

Not run:
To use this function, install zenplots and graph from Bioconductor.
if (!requireNamespace("graph”, quietly = TRUE)) {
install.packages("BiocManager")
BiocManager::install("graph")
3

install.packages(”zenplots")

library(MASS)

library(ranger)

Boston1 <- Boston

Bostonl1$chas <- factor(Bostonl$chas)

rf <- ranger(medv ~ ., data = Bostonl)

pdpZen(Boston1[1:30@,], rf, response = "medv”, zpath = names(Boston1)[1:4], comboImage = T)
Find the top variables in rf

set.seed(123)

viv <- vivi(Bostonl, rf, "medv”, nmax = 30) # use 30 rows, for speed
pdpZen(Bostonl, rf, response = "medv"”, zpath = rownames(viv)[1:4], comboImage = T)
zpath <- zPath(viv, cutoff = .2) # find plots whose interaction score exceeds .2
pdpZen(Boston1, rf, response = "medv"”, zpath = zpath, combolImage = T)

End(Not run)

vip2vivid vip2vivid

Description

Takes measured importance and interactions from the vip package and turns them into a matrix
which can be used for plotting. Accepts any of the variable importance methods supplied by vip.

Usage

vip2vivid(importance, interaction, reorder = TRUE)

Arguments
importance Measured importance from the vip package using vi function.
interaction Measured interaction from the vip package using vint function.
reorder If TRUE (default) uses DendSer to reorder the matrix of interactions and vari-
able importances.
Value

A matrix of interaction values, with importance on the diagonal.

vivi 9

Examples

Not run:

library(ranger)

library(vip)

aq <- na.omit(airquality) # get data

nameAq <- names(aq[-1]) # get feature names

rF <- ranger(Ozone ~ ., data = aq, importance = "permutation”) # create ranger random forest fit
vImp <- vi(rF) # vip importance
vInt <- vint(rF, feature_names = nameAq) # vip interaction

vip2vivid(vImp, vInt)

End(Not run)

vivi Vivi

Description

Creates a matrix displaying variable importance on the diagonal and variable interaction on the
off-diagonal.

Usage
vivi(

data,
fit,
response,
gridSize = 50,
importanceType = "agnostic”,
nmax = 500,
reorder = TRUE,
class = 1,
predictFun = NULL,
normalized = FALSE,
numPerm = 4,
showVimpError = FALSE,

vars = NULL
)
Arguments
data Data frame used for fit.
fit A supervised machine learning model, which understands condvis2::CVpredict
response The name of the response for the fit.

gridSize The size of the grid for evaluating the predictions.

10 vivi

importanceType Used to select the importance metric. By default, an agnostic importance mea-
sure is used. If an embedded metric is available, then setting this argument to the
importance metric will use the selected importance values in the vivid-matrix.
Please refer to the examples given for illustration. Alternatively, set to equal
"agnostic" (the default) to override embedded importance measures and return
agnostic importance values.

nmax Maximum number of data rows to consider. Default is 500. Use all rows if
NULL.
reorder If TRUE (default) uses DendSer to reorder the matrix of interactions and vari-

able importances.

class Category for classification, a factor level, or a number indicating which factor
level.

predictFun Function of (fit, data) to extract numeric predictions from fit. Uses condvis2::CVpredict
by default, which works for many fit classes.

normalized Should Friedman’s H-statistic be normalized or not. Default is FALSE.

numPerm Number of permutations to perform for agnostic importance. Default is 4.

showVimpError Logical. If TRUE, and numPerm > 1 then a tibble containing the variable names,
their importance values, and the standard error for each importance is printed to
the console.

vars A vector of variable names to be assessed.

Details

If the argument importanceType = 'agnostic’, then an agnostic permutation importance (1) is
calculated. Friedman’s H statistic (2) is used for measuring the interactions. This measure is based
on partial dependence curves and relates the interaction strength of a pair of variables to the total
effect strength of that variable pair.

Value

A matrix of interaction values, with importance on the diagonal.

References

1: Fisher A., Rudin C., Dominici F. (2018). All Models are Wrong but many are Useful: Vari-
able Importance for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class
Reliance. Arxiv.

2: Friedman, J. H. and Popescu, B. E. (2008). “Predictive learning via rule ensembles.” The Annals
of Applied Statistics. JSTOR, 916-54.

Examples

aq <- na.omit(airquality)

f <- 1m(Ozone ~ ., data = aq)

m <- vivi(fit = f, data = aq, response = "Ozone") # as expected all interactions are zero
viviHeatmap(m)

vividReorder 11

Select importance metric
library(randomForest)
rf1 <- randomForest(Ozone~., data = aq, importance = TRUE)

m2 <- vivi(fit = rf1, data = aq, response = 'Ozone',
importanceType = '%IncMSE') # select %IncMSE as the importance measure
viviHeatmap(m2)
library(ranger)
rf <- ranger(Species ~ ., data = iris, importance = "impurity"”, probability = TRUE)
vivi(fit = rf, data = iris, response = "Species”) # returns agnostic importance
vivi(fit = rf, data = iris, response = "Species”,
importanceType = "impurity”) # returns selected 'impurity' importance.
vividReorder vividReorder
Description

Reorders a square matrix so that values of high importance and interaction strength are pushed to
the top left of the matrix.

Usage

vividReorder(d)

Arguments

d A matrix such as that returned by vivi

Value

A reordered version of d.

Examples

f <- Im(Sepal.Length ~ ., data = iris[, -51)

m <- vivi(fit = f, data = iris[, -5], response = "Sepal.Length")
corimp <- abs(cor(iris[, -51)[1, -11)

viviUpdate(m, corimp) # use correlation as importance and reorder

12 viviHeatmap

viviHeatmap viviHeatmap

Description

Plots a Heatmap showing variable importance on the diagonal and variable interaction on the off-

diagonal.
Usage
viviHeatmap(
mat,
intPal = rev(colorspace::sequential_hcl(palette = "Purples 3", n = 100)),
impPal = rev(colorspace::sequential_hcl(palette = "Greens 3", n = 100)),

intLims = NULL,
impLims = NULL,
border = FALSE,

angle = @
)
Arguments
mat A matrix, such as that returned by vivi, of values to be plotted.
intPal A vector of colours to show interactions, for use with scale_fill_gradientn.
impPal A vector of colours to show importance, for use with scale_fill_gradientn.
intLims Specifies the fit range for the color map for interaction strength.
impLims Specifies the fit range for the color map for importance.
border Logical. If TRUE then draw a black border around the diagonal elements.
angle The angle to rotate the x-axis labels. Defaults to zero.
Value

A heatmap plot showing variable importance on the diagonal and variable interaction on the off-

diagonal.
Examples
library(ranger)
aq <- na.omit(airquality)
rF <- ranger(Ozone ~ ., data = aq, importance = "permutation”)
myMat <- vivi(fit = rF, data = aq, response = "Ozone")

viviHeatmap(myMat)

viviNetwork

13

viviNetwork

viviNetwork

Description

Create a Network plot displaying variable importance and variable interaction.

Usage
viviNetwork(
mat,
intThreshold = NULL,
intLims = NULL,
impLims = NULL,
intPal = rev(colorspace::sequential_hcl(palette = "Purples 3", n = 100)),
impPal = rev(colorspace::sequential_hcl(palette = "Greens 3", n = 100)),

removeNode = FALSE,
layout = igraph::layout_in_circle,

cluster
nudge_x
nudge_y

NULL,
0.05,
0.03,

edgeWidths = 1:4

Arguments

mat

A matrix, such as that returned by vivi, of values to be plotted.

intThreshold Remove edges with weight below this value if provided.

intLims
impLims
intPal
impPal

removeNode

layout

cluster

nudge_x
nudge_y
edgeWidths

Specifies the fit range for the color map for interaction strength.

Specifies the fit range for the color map for importance.

A vector of colours to show interactions, for use with scale_fill_gradientn.
A vector of colours to show importance, for use with scale_fill_gradientn.

If TRUE, then removes nodes with no connecting edges when thresholding in-
teraction values.

igraph layout function or a numeric matrix with two columns, one row per node.
Defaults to igraph::layout_as_circle

Either a vector of cluster memberships for nodes or an igraph clustering func-
tion.

Nudge (centered) labels by this amount, outward horizontally.
Nudge (centered) labels by this amount, outward vertically.

A vector specifying the scaling of the edges for the displayed graph. Values
must be positive.

14 viviUpdate

Value

A plot displaying interaction strength between variables on the edges and variable importance on
the nodes.

Examples

library(ranger)

aq <- na.omit(airquality)

rF <- ranger(Ozone ~ ., data = aq, importance = "permutation”)
myMat <- vivi(fit = rF, data = aq, response = "Ozone")
viviNetwork(myMat)

viviUpdate viviUpdate

Description

Creates a matrix displaying updated variable importance on the diagonal and variable interaction
on the off-diagonal.

Usage

viviUpdate(mat, newImp, reorder = TRUE)

Arguments
mat A matrix, such as that returned by vivi.
newImp A named vector of variable importances.
reorder If TRUE (default) uses DendSer to reorder the matrix of interactions and vari-
able importances.
Value

A matrix of values, of class vivid, with updated variable importances.

Examples

f <- Im(Sepal.Length ~ ., data = iris[, -5])

m <- vivi(iris[, -5]1, f, "Sepal.Length")

corimp <- abs(cor(iris[, -51)[1, -11)

viviUpdate(m, corimp) # use correlation as updated importance

zPath 15

zPath zPath

Description

Constructs a zenpath for connecting and displaying pairs.

Usage

zPath(
viv,
cutoff = NULL,
method = c("greedy.weighted”, "strictly.weighted”),
connect = TRUE

)
Arguments
viv A matrix, created by vivi to be used to calculate the path.
cutoff Do not include any variables that are below the cutoff interaction value.
method String indicating the method to use. The available methods are: "greedy.weighted":
Sort all pairs according to a greedy (heuristic) Euler path with x as weights vis-
iting each edge precisely once. "strictly.weighted": Strictly respect the order
of the weights - so the first, second, third, and so on, adjacent pair of numbers
of the output of zenpath() corresponds to the pair with largest, second-largest,
third-largest, and so on, weight. see zenpath
connect If connect is TRUE, connect the edges from separate eulerians (strictly.weighted
only).
Details

Construct a path of indices to visit to order variables

Value

Returns a zpath from viv showing pairs with viv entry over the cutoff

Examples

Not run:
To use this function, install zenplots and graph from Bioconductor.
if (!requireNamespace("graph”, quietly = TRUE)) {
install.packages(”"BiocManager")
BiocManager::install("graph")
}
install.packages("zenplots”)

16

aq <- na.omit(airquality) * 1.0

Run an mlr3 ranger model:

library(mlr3)

library(mlr3learners)

library(ranger)

ozonet <- TaskRegr$new(id = "airQ", backend = aq, target = "Ozone")
ozonel <- 1rn("regr.ranger"”, importance = "permutation”)

ozonef <- ozonel$train(ozonet)
viv <- vivi(aq, ozonef, "Ozone")
Calculate Zpath:

zpath <- zPath(viv, .8)

zpath

End(Not run)

zPath

Index

as.data.frame.vivid, 2

pdpPairs, 3
pdpVars, 5
pdpZen, 6

vip2vivid, 8
vivi, 9
vividReorder, 11
viviHeatmap, 12
viviNetwork, 13
viviUpdate, 14

zPath, 15

17

	as.data.frame.vivid
	pdpPairs
	pdpVars
	pdpZen
	vip2vivid
	vivi
	vividReorder
	viviHeatmap
	viviNetwork
	viviUpdate
	zPath
	Index

