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Abstract

This document explains diversity related methods
in vegan. The methods are briefly described, and
the equations used them are given often in more
detail than in their help pages. The methods dis-
cussed include common diversity indices and rar-
efaction, families of diversity indices, species abun-
dance models, species accumulation models and
beta diversity, extrapolated richness and probabil-
ity of being a member of the species pool. The
document is still incomplete and does not cover all
diversity methods in vegan.
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The vegan package has two major components:
multivariate analysis (mainly ordination), and
methods for diversity analysis of ecological commu-
nities. This document gives an introduction to the
latter. Ordination methods are covered in other
documents. Many of the diversity functions were
written by Roeland Kindt, Bob O’Hara and Péter
Sólymos.

Most diversity methods assume that data are
counts of individuals. The methods are used with
other data types, and some people argue that
biomass or cover are more adequate than counts
of individuals of variable sizes. However, this doc-
ument mainly uses a data set with counts: stem
counts of trees on 1 ha plots in the Barro Colorado
Island. The following steps make these data avail-
able for the document:

> library(vegan)

> data(BCI)

1 Diversity indices

Function diversity finds the most commonly used
diversity indices (Hill, 1973):

H = −
S
∑

i=1

pi logb pi Shannon–Weaver (1)

D1 = 1−
S
∑

i=1

p2i Simpson (2)

D2 =
1

∑S
i=1 p

2
i

inverse Simpson , (3)

where pi is the proportion of species i, and S is
the number of species so that

∑S
i=1 pi = 1, and b

is the base of the logarithm. It is most common
to use natural logarithms (and then we mark index
as H ′), but b = 2 has theoretical justification. The
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default is to use natural logarithms. Shannon index
is calculated with:

> H <- diversity(BCI)

which finds diversity indices for all sites.

Vegan does not have indices for evenness (equi-
tability), but the most common of these, Pielou’s
evenness J = H ′/ log(S) is easily found as:

> J <- H/log(specnumber(BCI))

where specnumber is a simple vegan function to
find the numbers of species.

vegan also can estimate series of Rényi and Tsal-
lis diversities. Rényi diversity of order a is (Hill,
1973):

Ha =
1

1− a
log

S
∑

i=1

pai , (4)

and the corresponding Hill number is Na =
exp(Ha). Many common diversity indices are spe-
cial cases of Hill numbers: N0 = S, N1 = exp(H ′),
N2 = D2, and N∞ = 1/(max pi). The correspond-
ing Rényi diversities are H0 = log(S), H1 = H ′,
H2 = − log(

∑

p2i ), and H∞ = − log(max pi). Tsal-
lis diversity of order q is (Tóthmérész, 1995):

Hq =
1

q − 1

(

1−
S
∑

i=1

pq

)

. (5)

These correspond to common diversity indices:
H0 = S − 1, H1 = H ′, and H2 = D1, and can
be converted to Hill numbers:

Nq = (1− (q − 1)Hq)
1

1−q . (6)

We select a random subset of five sites for Rényi
diversities:

> k <- sample(nrow(BCI), 6)

> R <- renyi(BCI[k,])

We can really regard a site more diverse if all of its
Rényi diversities are higher than in another site.
We can inspect this graphically using the standard
plot function for the renyi result (Fig. 1).

Finally, the α parameter of Fisher’s log-series can
be used as a diversity index (Fisher et al., 1943):

> alpha <- fisher.alpha(BCI)
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Figure 1: Rényi diversities in six randomly selected
plots. The plot uses Trellis graphics with a separate
panel for each site. The dots show the values for
sites, and the lines the extremes and median in the
data set.

2 Rarefaction

Species richness increases with sample size, and dif-
ferences in richness actually may be caused by dif-
ferences in sample size. To solve this problem, we
may try to rarefy species richness to the same num-
ber of individuals. Expected number of species in
a community rarefied from N to n individuals is
(Hurlbert, 1971):

Ŝn =

S
∑

i=1

(1− qi) , where qi =

(

N−xi

n

)

(

N
n

) . (7)

Here xi is the count of species i, and
(

N
n

)

is the
binomial coefficient, or the number of ways we can
choose n from N , and qi give the probabilities that
species i does not occur in a sample of size n. This
is positive only when N − xi ≥ n, but for other
cases qi = 0 or the species is sure to occur in the
sample. The variance of rarefied richness is (Heck
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et al., 1975):

s2 = qi(1− qi)

+ 2

S
∑

i=1

∑

j>i

[

(

N−xi−xj

n

)

(

N
n

) − qiqj

]

. (8)

Equation 8 actually is of the same form as the vari-
ance of sum of correlated variables:

VAR

(

∑

xi

)

=
∑

VAR(xi)+2

S
∑

i=1

∑

j>i

COV(xi, xj) .

(9)

The number of stems per hectare varies in our
data set:

> quantile(rowSums(BCI))

0% 25% 50% 75% 100%

340.0 409.0 428.0 443.5 601.0

To express richness for the same number of individ-
uals, we can use:

> Srar <- rarefy(BCI, min(rowSums(BCI)))

Rarefaction curves often are seen as an objective
solution for comparing species richness with differ-
ent sample sizes. However, rank orders typically
differ among different rarefaction sample sizes, rar-
efaction curves can cross.

As an extreme case we may rarefy sample size to
two individuals:

> S2 <- rarefy(BCI, 2)

This will not give equal rank order with the previ-
ous rarefaction richness:

> all(rank(Srar) == rank(S2))

[1] FALSE

Moreover, the rarefied richness for two individuals
is a finite sample variant of Simpson’s diversity in-
dex (Hurlbert, 1971) – or more precisely of D1 + 1,
and these two are almost identical in BCI:

> range(diversity(BCI, "simp") - (S2 -1))

[1] -0.002868298 -0.001330663

Rarefaction is sometimes presented as an ecolog-
ically meaningful alternative to dubious diversity
indices (Hurlbert, 1971), but the differences really
seem to be small.

3 Taxonomic and functional

diversity

Simple diversity indices only consider species iden-
tity: all different species are equally different. In
contrast, taxonomic and functional diversity in-
dices judge the differences of species. Taxonomic
and functional diversities are used in different fields
of science, but they really have very similar reason-
ing, and either could be used either with taxonomic
or functional traits of species.

3.1 Taxonomic diversity: average

distance of traits

The two basic indices are called taxonomic diver-
sity ∆ and taxonomic distinctness ∆∗ (Clarke and
Warwick, 1998):

∆ =

∑∑

i<j ωijxixj

n(n− 1)/2
(10)

∆∗ =

∑∑

i<j ωijxixj
∑∑

i<j xixj

. (11)

These equations give the index values for a single
site, and summation goes over species i and j, and
ω are the taxonomic distances among taxa, x are
species abundances, and n is the total abundance
for a site. With presence–absence data, both in-
dices reduce to the same index called ∆+, and for
this it is possible to estimate standard deviation.
There are two indices derived from ∆+: it can be
multiplied with species richness1 to give s∆+, or
it can be used to estimate an index of variation in
taxonomic distinctness Λ+ (Clarke and Warwick,
2001):

Λ+ =

∑∑

i<j ω
2
ij

n(n− 1)/2
− (∆+)2 . (12)

We still need the taxonomic differences among
species (ω) to calculate the indices. These can be
any distance structure among species, but usually
it is found from established hierarchic taxonomy.
Typical coding is that differences among species in
the same genus is 1, among the same family it is 2
etc. However, the taxonomic differences are scaled

1This text normally uses upper case letter S for species
richness, but lower case s is used here in accordance with
the original papers on taxonomic diversity
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Figure 2: Taxonomic diversity ∆+ for the dune
meadow data. The points are diversity values of
single sites, and the funnel is their approximate
confidence intervals (2× standard error).

to maximum 100 for easier comparison between dif-
ferent data sets and taxonomies. Alternatively, it
is possible to scale steps between taxonomic level
proportional to the reduction in the number of cat-
egories (Clarke and Warwick, 1999): if almost all
genera have only one species, it does not make a
great difference if two individuals belong to a dif-
ferent species or to a different genus.

Function taxondive implements indices of tax-
onomic diversity, and taxa2dist can be used to
convert classification tables to taxonomic distances
either with constant or variable step lengths be-
tween successive categories. There is no taxonomic
table for the BCI data in vegan2 but there is such
a table for the Dune meadow data (Fig. 2):

> data(dune)

> data(dune.taxon)

> taxdis <- taxa2dist(dune.taxon, varstep=TRUE)

> mod <- taxondive(dune, taxdis)

2Actually I made such a classification, but taxonomic dif-
ferences proved to be of little use in the Barro Colorado data:
they only singled out sites with Monocots (palm trees) in the
data.

3.2 Functional diversity: the height

of trait tree

In taxonomic diversity the primary data were tax-
onomic trees which were transformed to pairwise
distances among species. In functional diversity
the primary data are species traits which are trans-
lated to pairwise distances among species and then
to clustering trees of species traits. The argument
for using trees is that in this way a single deviant
species will have a small influence, since its differ-
ence is evaluated only once instead of evaluating its
distance to all other species (Petchey and Gaston,
2006).

Function treedive implements functional diver-
sity defined as the total branch length in a trait
dendrogram connecting all species, but excluding
the unnecessary root segments of the tree (Petchey
and Gaston, 2002, 2006). The example uses the
taxonomic distances of the previous chapter. These
are first converted to a hierarchic clustering (which
actually were their original form before taxa2dist

converted them into distances)

> tr <- hclust(taxdis, "aver")

> mod <- treedive(dune, tr)

4 Species abundance models

Diversity indices may be regarded as variance mea-
sures of species abundance distribution. We may
wish to inspect abundance distributions more di-
rectly. Vegan has functions for Fisher’s log-series
and Preston’s log-normal models, and in addition
several models for species abundance distribution.

4.1 Fisher and Preston

In Fisher’s log-series, the expected number of
species f̂ with n individuals is (Fisher et al., 1943):

f̂n =
αxn

n
, (13)

where α is the diversity parameter, and x is a nui-
sance parameter defined by α and total number of
individuals N in the site, x = N/(N − α). Fisher’s
log-series for a randomly selected plot is (Fig. 3):

> k <- sample(nrow(BCI), 1)

> fish <- fisherfit(BCI[k,])

> fish
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Figure 3: Fisher’s log-series fitted to one randomly
selected site (32).

Fisher log series model

No. of species: 88

Fisher alpha: 32.34465

We already saw α as a diversity index.
Preston’s log-normal model is the main chal-

lenger to Fisher’s log-series (Preston, 1948). In-
stead of plotting species by frequencies, it bins
species into frequency classes of increasing sizes. As
a result, upper bins with high range of frequencies
become more common, and sometimes the result
looks similar to Gaussian distribution truncated at
the left.

There are two alternative functions for the log-
normal model: prestonfit and prestondistr.
Function prestonfit uses traditionally binning ap-
proach, and is burdened with arbitrary choices of
binning limits and treatment of ties. It seems that
Preston split ties between adjacent octaves: only
half of the species observed once were in the first oc-
tave, and half were transferred to the next octave,
and the same for all species at the octave limits
occurring 2, 4, 8, 16. . . times (Williamson and Gas-
ton, 2005). Function prestonfit can either split
the ties or keep all limit cases in the lower octave.
Function prestondistr directly maximizes trun-
cated log-normal likelihood without binning data,
and it is the recommended alternative. Log-normal

models usually fit poorly to the BCI data, but here
our random plot (number 32):

> prestondistr(BCI[k,])

Preston lognormal model

Method: maximized likelihood to log2 abundances

No. of species: 88

mode width S0

1.269113 1.615503 23.622790

Frequencies by Octave

0 1 2 3 4

Observed 13.50000 21.50000 22.50000 19.50000 5.000000

Fitted 17.35084 23.29729 21.32478 13.30631 5.660112

5 6

Observed 4.000000 2.0000000

Fitted 1.641294 0.3244457

4.2 Ranked abundance distribution

An alternative approach to species abundance
distribution is to plot logarithmic abundances
in decreasing order, or against ranks of species
(Whittaker, 1965). These are known as ranked
abundance distribution curves, species abundance
curves, dominance–diversity curves or Whittaker
plots. Function radfit fits some of the most pop-
ular models (Wilson, 1991) using maximum likeli-
hood estimation:

âr =
N

S

S
∑

k=r

1

k
brokenstick

(14)

âr = Nα(1− α)r−1 preemption
(15)

âr = exp [log(µ) + log(σ)Φ] log-normal
(16)

âr = Np̂1r
γ Zipf

(17)

âr = Nc(r + β)γ Zipf–Mandelbrot
(18)

In all these, âr is the expected abundance of species
at rank r, S is the number of species, N is the num-
ber of individuals, Φ is a standard normal function,
p̂1 is the estimated proportion of the most abun-
dant species, and α, µ, σ, γ, β and c are the esti-
mated parameters in each model.

It is customary to define the models for propor-
tions pr instead of abundances ar, but there is no
reason for this, and radfit is able to work with the
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Figure 4: Ranked abundance distribution models
for a random plot (no. 32). The best model has
the lowest aic.

original abundance data. We have count data, and
the default Poisson error looks appropriate, and our
example data set gives (Fig. 4):

> rad <- radfit(BCI[k,])

> rad

RAD models, family poisson

No. of species 88, total abundance 459

par1 par2 par3 Deviance

Null 102.582

Preemption 0.049891 116.362

Lognormal 0.95171 1.2062 26.202

Zipf 0.15729 -0.89044 18.250

Mandelbrot 0.2724 -1.0443 0.97477 13.913

AIC BIC

Null 364.811 364.811

Preemption 380.591 383.068

Lognormal 292.431 297.386

Zipf 284.479 289.434

Mandelbrot 282.142 289.574

Function radfit compares the models using al-
ternatively Akaike’s or Schwartz’s Bayesian infor-
mation criteria. These are based on log-likelihood,
but penalized by the number of estimated param-
eters. The penalty per parameter is 2 in aic, and
logS in bic. Brokenstick is regarded as a null
model and has no estimated parameters in ve-

gan. Preemption model has one estimated param-

eter (α), log-normal and Zipf models two (µ, σ, or
p̂1, γ, resp.), and Zipf–Mandelbrot model has three
(c, β, γ).

Function radfit also works with data frames,
and fits models for each site. It is curious that
log-normal model rarely is the choice, although it
generally is regarded as the canonical model, in
particular in data sets like Barro Colorado tropi-
cal forests.

5 Species accumulation and

beta diversity

Species accumulation models and species pool mod-
els study collections of sites, and their species rich-
ness, or try to estimate the number of unseen
species.

5.1 Species accumulation models

Species accumulation models are similar to rarefac-
tion: they study the accumulation of species when
the number of sites increases. There are several al-
ternative methods, including accumulating sites in
the order they happen to be, and repeated accu-
mulation in random order. In addition, there are
three analytic models. Rarefaction pools individ-
uals together, and applies rarefaction equation (7)
to these individuals. Kindt’s exact accumulator re-
sembles rarefaction (Ugland et al., 2003):

Ŝn =
S
∑

i=1

(1 − pi), where pi =

(

N−fi
n

)

(

N
n

) , (19)

and fi is the frequency of species i. Approximate
variance estimator is:

s2 = pi(1− pi)

+ 2

S
∑

i=1

∑

j>i

(

rij
√

pi(1− pi)
√

pj(1− pj)

)

, (20)

where rij is the correlation coefficient between
species i and j. Both of these are unpublished:
eq. 19 was developed by Roeland Kindt, and eq. 20
by Jari Oksanen. The third analytic method was
suggested by Coleman et al. (1982):

Sn =

S
∑

i=1

(1− pi), where pi =

(

1−
1

n

)fi

, (21)
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Figure 5: Species accumulation curve for the BCI
data; exact method.

and the suggested variance is s2 = pi(1− pi) which
ignores the covariance component. In addition,
eq. 21 does not properly handle sampling without
replacement and underestimates the species accu-
mulation curve.

The recommended is Kindt’s exact method
(Fig. 5):

> sac <- specaccum(BCI)

> plot(sac, ci.type="polygon", ci.col="yellow")

5.2 Beta diversity

Whittaker (1960) divided diversity into various
components. The best known are diversity in one
spot that he called alpha diversity, and the diver-
sity along gradients that he called beta diversity.
The basic diversity indices are indices of alpha di-
versity. Beta diversity should be studied with re-
spect to gradients (Whittaker, 1960), but almost
everybody understand that as a measure of gen-
eral heterogeneity (Tuomisto, 2010a,b): how many
more species do you have in a collection of sites
compared to an average site.

The best known index of beta diversity is based
on the ratio of total number of species in a collec-
tion of sites S and the average richness per one site

ᾱ (Tuomisto, 2010a):

β = S/ᾱ− 1 . (22)

Subtraction of one means that β = 0 when there are
no excess species or no heterogeneity between sites.
For this index, no specific functions are needed, but
this index can be easily found with the help of ve-

gan function specnumber:

> ncol(BCI)/mean(specnumber(BCI)) - 1

[1] 1.478519

The index of eq. 22 is problematic because S in-
creases with the number of sites even when sites
are all subsets of the same community. Whittaker
(1960) noticed this, and suggested the index to be
found from pairwise comparison of sites. If the
number of shared species in two sites is a, and the
numbers of species unique to each site are b and c,
then ᾱ = (2a + b + c)/2 and S = a + b + c, and
index 22 can be expressed as:

β =
a+ b+ c

(2a+ b+ c)/2
− 1 =

b+ c

2a+ b+ c
. (23)

This is the Sørensen index of dissimilarity, and it
can be found for all sites using vegan function
vegdist with binary data:

> beta <- vegdist(BCI, binary=TRUE)

> mean(beta)

[1] 0.3399075

There are many other definitions of beta diver-
sity in addition to eq. 22. All commonly used in-
dices can be found using betadiver (Koleff et al.,
2003). The indices in betadiver can be referred to
by subscript name, or index number:

> betadiver(help=TRUE)

1 "w" = (b+c)/(2*a+b+c)

2 "-1" = (b+c)/(2*a+b+c)

3 "c" = (b+c)/2

4 "wb" = b+c

5 "r" = 2*b*c/((a+b+c)^2-2*b*c)

6 "I" = log(2*a+b+c) - 2*a*log(2)/(2*a+b+c) -

((a+b)*log(a+b) + (a+c)*log(a+c)) / (2*a+b+c)

7 "e" = exp(log(2*a+b+c) - 2*a*log(2)/(2*a+b+c)

- ((a+b)*log(a+b) + (a+c)*log(a+c)) /

(2*a+b+c))-1

8 "t" = (b+c)/(2*a+b+c)

9 "me" = (b+c)/(2*a+b+c)

10 "j" = a/(a+b+c)

11 "sor" = 2*a/(2*a+b+c)

12 "m" = (2*a+b+c)*(b+c)/(a+b+c)

13 "-2" = pmin.int(b,c)/(pmax.int(b,c)+a)
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14 "co" = (a*c+a*b+2*b*c)/(2*(a+b)*(a+c))

15 "cc" = (b+c)/(a+b+c)

16 "g" = (b+c)/(a+b+c)

17 "-3" = pmin.int(b,c)/(a+b+c)

18 "l" = (b+c)/2

19 "19" = 2*(b*c+1)/(a+b+c)/(a+b+c-1)

20 "hk" = (b+c)/(2*a+b+c)

21 "rlb" = a/(a+c)

22 "sim" = pmin.int(b,c)/(pmin.int(b,c)+a)

23 "gl" = 2*abs(b-c)/(2*a+b+c)

24 "z" = (log(2)-log(2*a+b+c)+log(a+b+c))/log(2)

Some of these indices are duplicates, and many of
them are well known dissimilarity indices. One of
the more interesting indices is based on the Arrhe-
nius species–area model

Ŝ = cXz , (24)

where X is the area (size) of the patch or site, and c
and z are parameters. Parameter c is uninteresting,
but z gives the steepness of the species area curve
and is a measure of beta diversity. In islands typi-
cally z ≈ 0.3. This kind of islands can be regarded
as subsets of the same community, indicating that
we really should talk about gradient differences if
z ' 0.3. We can find the value of z for a pair of
plots using function betadiver:

> z <- betadiver(BCI, "z")

> quantile(z)

0% 25% 50% 75% 100%

0.2732845 0.3895024 0.4191536 0.4537180 0.5906091

The size X and parameter c cancel out, and the
index gives the estimate z for any pair of sites.

Function betadisper can be used to analyse
beta diversities with respect to classes or factors
(Anderson, 2006; Anderson et al., 2006). There is
no such classification available for the Barro Col-
orado Island data, and the example studies beta
diversities in the management classes of the dune
meadows (Fig. 6):

> data(dune)

> data(dune.env)

> z <- betadiver(dune, "z")

> mod <- with(dune.env, betadisper(z, Management))

> mod

Homogeneity of multivariate dispersions

Call: betadisper(d = z, group = Management)

No. of Positive Eigenvalues: 12

No. of Negative Eigenvalues: 7

Average distance to median:
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Figure 6: Box plots of beta diversity measured as
the average steepness (z) of the species area curve
in the Arrhenius model S = cXz in Management
classes of dune meadows.

0.2532 0.2512 0.4406 0.3635

Eigenvalues for PCoA axes:

(Showing 8 of 19 eigenvalues)

PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6

1.65466 0.88696 0.53336 0.37435 0.28725 0.22445

PCoA7 PCoA8

0.16128 0.08099

6 Species pool

6.1 Number of unseen species

Species accumulation models indicate that not
all species were seen in any site. These unseen
species also belong to the species pool. Functions
specpool and estimateR implement some meth-
ods of estimating the number of unseen species.
Function specpool studies a collection of sites, and
estimateR works with counts of individuals, and
can be used with a single site. Both functions as-
sume that the number of unseen species is related
to the number of rare species, or species seen only
once or twice.

The incidence-based functions group species by
their number of occurrences fi = f0, f1, . . . , fN ,
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where f is the number of species occurring in ex-
actly i sites in the data: fN is the number of species
occurring on every N site, f1 the number of species
occurring once, and f0 the number of species in the
species pool but not found in the sample. The total
number of species in the pool Sp is

Sp =

N
∑

i=0

fi = f0 + So , (25)

where So =
∑

i>0 fi is the observed number of
species. The sampling proportion i/N is an es-
timate for the commonness of the species in the
community. When species is present in the com-
munity but not in the sample, i = 0 is an obvious
under-estimate, and consequently, for values i > 0
the species commonness is over-estimated (Good,
1953). The models for the pool size estimate the
number of species missing in the sample f0.

Function specpool implements the following
models to estimate the number of missing species
f0. Chao estimator is (Chao, 1987; Chiu et al.,
2014):

f̂0 =

{

f2

1

2f2
N−1
N

if f2 > 0
f1(f1−1)

2
N−1
N

if f2 = 0 .
(26)

The latter case for f2 = 0 is known as the bias-
corrected form. Chiu et al. (2014) introduced the
small-sample correction term N

N−1 , but it was not
originally used (Chao, 1987).

The first and second order jackknife estimators
are (Smith and van Belle, 1984):

f̂0 = f1
N − 1

N
(27)

f̂0 = f1
2N − 3

N
+ f2

(N − 2)2

N(N − 1)
. (28)

The bootstrap estimator is (Smith and van Belle,
1984):

f̂0 =

So
∑

i=1

(1− pi)
N . (29)

The idea in jackknife seems to be that we missed
about as many species as we saw only once, and the
idea in bootstrap that if we repeat sampling (with
replacement) from the same data, we miss as many
species as we missed originally.

The variance estimaters only concern the esti-
mated number of missing species f̂0, although they

are often expressed as they would apply to the
pool size Sp; this is only true if we assume that
VAR(So) = 0. The variance of the Chao estimate
is (Chiu et al., 2014):

VAR(f̂0) = f1

(

A2G
3

4
+A2G2 +A

G

2

)

,

where A =
N − 1

N
and G =

f1
f2

. (30)

For the bias-corrected form of eq. 26 (case f2 = 0),
the variance is (Chiu et al., 2014, who omit small-
sample correction in some terms):

VAR(f̂0) =
1
4A

2f1(2f1 − 1)2 + 1
2Af1(f1 − 1)

− 1
4A

2 f
4
1

Sp

. (31)

The variance of the first-order jackknife is based
on the number of “singletons” r (species occurring
only once in the data) in sample plots (Smith and
van Belle, 1984):

VAR(f̂0) =

(

N
∑

i=1

r2i −
f1
N

)

N − 1

N
. (32)

Variance of the second-order jackknife is not evalu-
ated in specpool (but contributions are welcome).

The variance of bootstrap estimator is(Smith and
van Belle, 1984):

VAR(f̂0) =

So
∑

i=1

qi(1− qi)

+ 2

So
∑

i 6=j

[

(Zij/N)N − qiqj
]

where qi = (1− pi)
N , (33)

and Zij is the number of sites where both species
are absent.

The extrapolated richness values for the whole
BCI data are:

> specpool(BCI)

Species chao chao.se jack1 jack1.se jack2

All 225 236.3732 6.54361 245.58 5.650522 247.8722

boot boot.se n

All 235.6862 3.468888 50

If the estimation of pool size really works, we should
get the same values of estimated richness if we take
a random subset of a half of the plots (but this is
rarely true):
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> s <- sample(nrow(BCI), 25)

> specpool(BCI[s,])

Species chao chao.se jack1 jack1.se jack2

All 206 225.5323 10.73448 228.08 6.355848 237.7783

boot boot.se n

All 216.5246 3.554016 25

6.2 Pool size from a single site

The specpool function needs a collection of sites,
but there are some methods that estimate the num-
ber of unseen species for each single site. These
functions need counts of individuals, and species
seen only once or twice, or other rare species, take
the place of species with low frequencies. Function
estimateR implements two of these methods:

> estimateR(BCI[k,])

32

S.obs 88.000000

S.chao1 108.647059

se.chao1 10.479480

S.ACE 108.177037

se.ACE 4.625314

In abundance based models ai denotes the number
of species with i individuals, and takes the place of
fi of previous models. Chao’s method is similar as
the bias-corrected model eq. 26 (Chao, 1987; Chiu
et al., 2014):

Sp = So +
a1(a1 − 1)

2(a2 + 1)
. (34)

When f2 = 0, eq. 34 reduces to the bias-corrected
form of eq. 26, but quantitative estimators are
based on abundances and do not use small-sample
correction. This is not usually needed because sam-
ple sizes are total numbers of individuals, and these
are usually high, unlike in frequency based models,
where the sample size is the number of sites (Chiu
et al., 2014).

A commonly used approximate variance estima-
tor of eq. 34 is:

s2 =
a1(a1 − 1)

2
+

a1(2a1 + 1)2

(a2 + 1)2

+
a21a2(a1 − 1)2

4(a2 + 1)4
. (35)

However, vegan does not use this, but instead the
following more exact form which was directly de-
rived from eq. 34 following Chiu et al. (2014, web

appendix):

s2 =
1

4

1

(a2 + 1)4Sp

[a1(Spa
3
1a2 + 4Spa

2
1a

2
2

+ 2Spa1a
3
2 + 6Spa

2
1a2 + 2Spa1a

2
2 − 2Spa

3
2

+ 4Spa
2
1 + Spa1a2 − 5Spa

2
2 − a31 − 2a21a2

− a1a
2
2 − 2Spa1 − 4Spa2 − Sp)] . (36)

The variance estimators only concern the number
of unseen species like previously.

The ace is estimator is defined as (O’Hara,
2005):

Sp = Sabund +
Srare

CACE
+

a1
CACE

γ2 , where

CACE = 1−
a1

Nrare

γ2 =
Srare

CACE

10
∑

i=1

i(i− 1)a1
Nrare − 1

Nrare
.

(37)

Now a1 takes the place of f1 above, and means the
number of species with only one individual. Here
Sabund and Srare are the numbers of species of abun-
dant and rare species, with an arbitrary upper limit
of 10 individuals for a rare species, and Nrare is the
total number of individuals in rare species. The
variance estimator uses iterative solution, and it is
best interpreted from the source code or following
O’Hara (2005).

The pool size is estimated separately for each
site, but if input is a data frame, each site will be
analysed.

If log-normal abundance model is appropriate, it
can be used to estimate the pool size. Log-normal
model has a finite number of species which can be
found integrating the log-normal:

Sp = Sµσ
√
2π , (38)

where Sµ is the modal height or the expected num-
ber of species at maximum (at µ), and σ is the
width. Function veiledspec estimates this inte-
gral from a model fitted either with prestondistr

or prestonfit, and fits the latter if raw site data
are given. Log-normal model may fit poorly, but
we can try:

> veiledspec(prestondistr(BCI[k,]))

Extrapolated Observed Veiled

95.65968 88.00000 7.65968
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Figure 7: Beals smoothing for Ceiba pentandra.

> veiledspec(BCI[k,])

Extrapolated Observed Veiled

98.95767 88.00000 10.95767

6.3 Probability of pool membership

Beals smoothing was originally suggested as a tool
of regularizing data for ordination. It regularizes
data too strongly, but it has been suggested as a
method of estimating which of the missing species
could occur in a site, or which sites are suitable for
a species. The probability for each species at each
site is assessed from other species occurring on the
site.

Function beals implement Beals smoothing
(McCune, 1987; De Cáceres and Legendre, 2008):

> smo <- beals(BCI)

We may see how the estimated probability of oc-
currence and observed numbers of stems relate in
one of the more familiar species. We study only one
species, and to avoid circular reasoning we do not
include the target species in the smoothing (Fig. 7):

> j <- which(colnames(BCI) == "Ceiba.pentandra")

> plot(beals(BCI, species=j, include=FALSE), BCI[,j],

ylab="Occurrence", main="Ceiba pentandra",

xlab="Probability of occurrence")
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