Package ‘vcfR’

December &, 2023
Title Manipulate and Visualize VCF Data

Description Facilitates easy manipulation of variant call format (VCF) data.
Functions are provided to rapidly read from and write to VCF files. Once
VCEF data is read into R a parser function extracts matrices of data. This
information can then be used for quality control or other purposes. Additional
functions provide visualization of genomic data. Once processing is complete
data may be written to a VCF file (*.vcf.gz). It also may be converted into
other popular R objects (e.g., genlight, DNAbin). VcfR provides a link between
VCF data and familiar R software.

Version 1.15.0

Maintainer Brian J. Knaus <briank.lists@gmail.com>

URL https://github.com/knausb/vcfR,
https://knausb.github.io/vcfR_documentation/

Depends R (>=3.0.1)

LinkingTo Rcpp

Imports ape, dplyr, graphics, grDevices, magrittr, memuse, methods,
pinfsc50, Repp, stats, stringr, tibble, utils, vegan,
viridisLite

Suggests adegenet, ggplot2, knitr, poppr, reshape2, rmarkdown, scales,
testthat, tidyr

VignetteBuilder knitr

License GPL-3

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Author Brian J. Knaus [cre, aut] (<https://orcid.org/0000-0003-1665-4343>),
Niklaus J. Grunwald [aut] (<https://orcid.org/0000-0003-1656-7602>),
Eric C. Anderson [ctb] (<https://orcid.org/0000-0003-1326-0840>),
David J. Winter [ctb],
Zhian N. Kamvar [ctb] (<https://orcid.org/0000-0003-1458-7108>),
Javier F. Tabima [ctb] (<https://orcid.org/0000-0002-3603-2691>)

1

https://github.com/knausb/vcfR
https://knausb.github.io/vcfR_documentation/
https://orcid.org/0000-0003-1665-4343
https://orcid.org/0000-0003-1656-7602
https://orcid.org/0000-0003-1326-0840
https://orcid.org/0000-0003-1458-7108
https://orcid.org/0000-0002-3603-2691

2 R topics documented:

Repository CRAN
Date/Publication 2023-12-08 00:30:03 UTC

R topics documented:

addID . . . e 3
AD_frequency L e e e 4
check_keys e 5
chromo_plot 6
chromR functions 7
chromR-class e 8
chromR2vcfR o 9
chromR_example L 10
Convert to tidy data frames 10
create.chromR L 15
drplotelements L e e e 17
EXIraCt.@t L e e e e e 18
Format conversion 20
freq_peak e 22
freq_peak_plot L 24
genetic_diff e 26
Genotype matrix functions oL 27
getFIX . . e e 28
GE2POPSUM . . v v o v v o e 29
heatmap.bp e 30
INFO2f e 32
1S_het . o e 33
maf . . e e e 34
masplit. 34
ordisample L L e e e e e e 36
pairwise_genetic_diff oL oo 38
peak_to_ploid L 39
Process chromR objects 40
QUETY.ZL + © o o o o e e e e e e e e e e e 41
queryMETA e 42
Ranking e e 43
rePOS . . e e 44
show,chromR-method 45
show,vefR-method 46
VCFinputandoutput 48
vefR-class e e e 50
VefR2DNADIN o e 51
vefR2hapmap oL 53
vefR2migrate e 54
vefR_example e 55
VCeER_test e 56

addID 3

Windowing e e e e e 57
write.fasta L. e e 58
write.varinfo L L L e e 59
Index 60
addID Populate the ID column of VCF data
Description

Populate the ID column of VCF data by concatenating the chromosome, position and optionally an
index.

Usage

addID(x, sep = "_")

Arguments

X an object of class vcfR or chromR.

sep a character string to separate the terms.

Details

Variant callers typically leave the ID column empty in VCF data. However, the VCF data may
potentially include variants with IDs as well as variants without. This function populates the missing
elements by concatenating the chromosome and position. When this concatenation results in non-
unique names, an index is added to force uniqueness.

Examples

data(vcfR_test)
head(vcfR_test)
vcfR_test <- addID(vcfR_test)
head(vcfR_test)

4 AD_frequency

AD_frequency AD_frequency

Description

Create allele frequencies from matrices of allelic depths (AD)

Usage

AD_frequency(ad, delim = ",", allele = 1L, sum_type = OL, decreasing = 1L)
Arguments

ad a matrix of allele depths (e.g., "7,2")

delim character that delimits values

allele which (1-based) allele to report frequency for

sum_type type of sum to calculate, see details

decreasing should the values be sorted decreasing (1) or increasing (0)?
Details

Files containing VCF data frequently include data on allelic depth (e.g., AD). This is the number of
times each allele has been sequenced. Our naive assumption for diploids is that these alleles should
be observed at a frequency of 1 or zero for homozygous positions and near 0.5 for heterozygous
positions. Deviations from this expectation may indicate allelic imbalance or ploidy differences.
This function is intended to facilitate the exploration of allele frequencies for all positions in a
sample.

The alleles are sorted by their frequency within the function. The user can then specify is the would
like to calculate the frequency of the most frequent allele (allele = 1), the second most frequent
allele (allele = 2) and so one. If an allele is requested that does not exist it should result in NA for
that position and sample.

There are two methods to calculate a sum for the denominator of the frequency. When sum_type =
0 the alleles are sorted decendingly and the first two allele counts are used for the sum. This may be
useful when a state of diploidy may be known to be appropriate and other alleles may be interpreted
as erroneous. When sum_type = 1 a sum is taken over all the observed alleles for a variant.

Value

A numeric matrix of frequencies

check_keys 5

Examples

set.seed(999)
x1 <= round(rnorm(n=9, mean=10, sd=2))
x2 <= round(rnorm(n=9, mean=20, sd=2))

ad <- matriX(paSte(X1’ X2» Sep:”;"), nrOW=3, nC01=3)
colnames(ad) <- paste('Sample', 1:3, sep="_"
rownames(ad) <- paste('Variant', 1:3, sep="_")

ad[1,1] <- "9,23,12"
AD_frequency (ad=ad)

check_keys Check that INFO and FORMAT keys are unique

Description

The INFO and FORMAT columns contain information in key-value pairs. If for some reason a
key is not unique it will create issues in retrieving this information. This function checks the keys
defined in the meta section to make sure they are unique. Note that it does not actually check the
INFO and FORMAT columns, just their definitions in the meta section. This is because each variant
can have different information in their INFO and META cells. Checking these on large files will
therefore come with a performance cost.

Usage
check_keys(x)

Arguments

X an oblect of class vcfR

See Also
queryMETA()

Examples

data(vcfR_test)

check_keys(vcfR_test)

queryMETA(vcfR_test)

queryMETA(vcfR_test, element = 'DP')

Note that DP occurs as unique in INFO and FORMAT but they may be different.

6 chromo_plot

chromo_plot Plot chromR object

Description

plot chromR objects

Usage

chromo(
chrom,
boxp = TRUE,
dp.alpha = TRUE,
chrom.s = 1,

chrom.e = NULL,
drlist1 = NULL,
drlist2 = NULL,
drlist3 = NULL,
)
chromoqc(chrom, boxp = TRUE, dp.alpha = 255, ...)
Arguments
chrom an object of class chrom.
boxp logical specifying whether marginal boxplots should be plotted [T/F].
dp.alpha degree of transparency applied to points in dot plots [0-255].
chrom.s start position for the chromosome. (Deprecated. use xlim)
chrom.e end position for the chromosome. (Deprecated. use xlim)
drlisti a named list containing elements to create a drplot
drlist2 a named list containing elements to create a drplot
drlist3 a named list containing elements to create a drplot
arguments to be passed to other methods.
Details

Each drlist parameter is a list containing elements necessarry to plot a dr.plot. This list should
contain up to seven elements named title, dmat, rlist, dcol, rcol, rbcol and bwcol. These elements
are documented in the dr.plot page where they are presented as individual parameters. The one
exception is bwcol which is a vector of colors for the marginal box and whisker plot. This is
provided so that different colors may be used in the dot plot and the box and whisker plot. For
example, transparency may be desired in the dot plot but not the box and whisker plot. When one
(or more) of these elements is omitted an attempt to use default values is made.

chromR functions 7

Value

Returns an invisible NULL.

See Also

dr.plot

chromR functions chromR_functions

Description

Functions which act on chromR objects

Usage

masker(
X,
min_QUAL
min_DP = 1,
max_DP = 10000,
min_MQ = 20,
max_MQ = 100,
preserve = FALSE,

_

)

variant.table(x)

win.table(x)

Arguments
X object of class chromR
min_QUAL minimum variant quality
min_DP minimum cumulative depth
max_DP maximum cumulative depth
min_MQ minimum mapping quality
max_MQ maximum mapping quality
preserve a logical indicating whether or not to preserve the state of the current mask field.

Defaults to FALSE

arguments to be passed to methods

8 chromR-class

Details

The function masker creates a logical vector that determines which variants are masked. By mask-
ing certain variants, instead of deleting them, it preserves the dimensions of the data structure until a
change needs to be committed. Variants can be masked based on the value of the QUAL column of
the vcf object. Experience seems to show that this value is either at its maximum (999) or a rather
low value. The maximum and minimum sequence depth can also be used (mindp and maxdp).
The default is to mask all variants with depths of less than the 0.25 quantile and greater than the
0.75 quantile (these are also known as the lower and upper quartile). The minimum and maximum
mapping qualities (minmg, maxmq) can also be used.

This vector is stored in the var.info$mask slot of a chromR object.
The function variant.table creates a data.frame containing information about variants.

The funciton win.table

chromR-class chromR class

Description

A class for representing chromosomes (or supercontigs, contigs, scaffolds, etc.).

Details

Defines a class for chromosomal or contig data. This

This object has a number of slots.

* name name of the object (character)

* len length of the sequence (integer)

» window_size window size for windowing analyses (integer)
* seq object of class ape::DNAbin

* vef object of class vcfR

* ann annotation data in a gff-like data.frame

* var.info a data.frame containing information on variants

» win.info a data.frame containing information on windows

* seq.info a list containing information on the sequence

The seq slot contains an object of class ape::DNAbin. A DNAbin object is typically either a matrix
or list of DNAbin objects. The matrix form appears to be better behaved than the list form. Because
of this behavior this slot should be the matrix form. When this slot is not populated it is of class
"NULL" instead of "DNAbin". Note that characters need to be lower case when inserted into an
object of class DNADbin. The function tolower can facilitate this.

The vef slot is an object of class vefR vcfR-class.

The ann slot is a data.frame containing gff format data. When this slot is not populated it has nrows
equal to zero.

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

chromR2vcfR 9

The var.info slot contains a data.frame containing information about variants. Every row of this
data.frame is a variant. Columns will typically contain the chromosome name, the position of the
variant (POS), the mask as well as any other per variant information.

The win.info slot contains a data.frame containing information about windows. For example, win-
dow, start, end, length, A, C, G, T, N, other, variants and genic fields are stored here.

The seq.info slot is a list containing two matrices. The first matrix describes rectangles for called
nucleotides and the second describes rectangles for N’ calls. Within each matrix, the first column
indicates the start position and the second column indicates the end position of each rectangle.

See Also

vcfR-class, DNAbin, VCF specification gff3 format

chromR2vcfR Convert chrom objects to vcfR objects

Description

Convert chrom objects to vcfR objects.

Usage

chromR2vcfR(x, use.mask = FALSE)

Arguments

X Object of class chrom

use.mask Logical, determine if mask from chrom object should be used to subset vcf data
Details

The chrom object is subset and recast as a vcfR object. When use.mask is set to TRUE (the default),
the object is subset to only the variants (rows) indicated to include by the mask. When use.mask is
set to FALSE, all variants (rows) from the chrom object are included in the new vcfR object.

Value

Returns an object of class vcfR.

https://github.com/samtools/hts-specs
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

10 Convert to tidy data frames

chromR_example Example chromR object.

Description

An example chromR object containing parts of the *Phytophthora infestans* genome.

Format

A chromR object

Details

This data is a subset of the pinfsc50 dataset. It has been subset to positions between 500 and 600
kbp. The coordinate systems of the vcf and gff file have been altered by subtracting 500,000. This
results in a 100 kbp section of supercontig_1.50 that has positional data ranging from 1 to 100 kbp.

Examples

data(chromR_example)

Convert to tidy data frames
Convert vcfR objects to tidy data frames

Description

Convert the information in a vcfR object to a long-format data frame suitable for analysis or use
with Hadley Wickham’s packages, dplyr, tidyr, and ggplot2. These packages have been optimized
for operation on large data frames, and, though they can bog down with very large data sets, they
provide a good framework for handling and filtering large variant data sets. For some background
on the benefits of such "tidy" data frames, see doi:10.18637/jss.v059.110.

For some filtering operations, such as those where one wants to filter genotypes upon GT fields in
combination with INFO fields, or more complex operations in which one wants to filter loci based
upon the number of individuals having greater than a certain quality score, it will be advantageous
to put all the information into a long format data frame and use dplyr to perform the operations.
Additionally, a long data format is required for using ggplot2. These functions convert vcfR objects
to long format data frames.

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=ggplot2
https://doi.org/10.18637/jss.v059.i10

Convert to tidy data frames 11

Usage

vcfR2tidy(
X,

info_only = FALSE,
single_frame = FALSE,
toss_INFO_column = TRUE,

)

extract_info_tidy(x, info_fields = NULL, info_types = TRUE, info_sep = ";")

extract_gt_tidy(

X)
format_fields

= NULL,

format_types = TRUE,
dot_is_NA = TRUE,

alleles = TRUE,

allele.sep = "/",
gt_column_prepend = "gt_",
verbose = TRUE

)

vcf_field_names(x, tag = "INFO")

Arguments

X

info_only

single_frame

an object of class vcfR

if TRUE return a list with only a fix component (a single data frame that has
the parsed INFO information) and a meta component. Don’t extract any of the
FORMAT fields.

return a single tidy data frame in list component dat rather returning it in com-
ponents fix and/or gt.

toss_INFO_column

info_fields

info_types

if TRUE (the default) the INFO column will be removed from output as its
consituent parts will have been parsed into separate columns.

more options to pass to extract_info_tidy and extract_gt_tidy. See pa-
rameters listed below.

names of the fields to be extracted from the INFO column into a long format data
frame. If this is left as NULL (the default) then the function returns a column
for every INFO field listed in the metadata.

named vector of "i" or "n" if you want the fields extracted from the INFO col-
umn to be converted to integer or numeric types, respectively. When set to
NULL they will be characters. The names have to be the exact names of the
fields. For example info_types = c(AF = "n", DP = "i") will convert column
AF to numeric and DP to integer. If you would like the function to try to figure
out the conversion from the metadata information, then set info_types = TRUE.

12 Convert to tidy data frames

Anything with Number == 1 and (Type == Integer or Type == Numeric) will
then be converted accordingly.

info_sep the delimiter used in the data portion of the INFO fields to separate different
entries. By default it is ";", but earlier versions of the VCF standard apparently
used ":" as a delimiter.

format_fields names of the fields in the FORMAT column to be extracted from each individual
in the vcfR object into a long format data frame. If left as NULL, the function
will extract all the FORMAT columns that were documented in the meta section
of the VCF file.

format_types named vector of "i" or "n" if you want the fields extracted according to the FOR-
MAT column to be converted to integer or numeric types, respectively. When
set to TRUE an attempt to determine their type will be made from the meta in-
formation. When set to NULL they will be characters. The names have to be
the exact names of the format_fields. Works equivalently to the info_types
argument in extract_info_tidy, i.e., if you set it to TRUE then it uses the
information in the meta section of the VCF to coerce to types as indicated.

dot_is_NA if TRUE then a single "." in a character field will be set to NA. If FALSE no

conversion is done. Note that "." in a numeric or integer field (according to
format_types) with Number == 1 is always going to be set to NA.

alleles if TRUE (the default) then this will return a column, gt_GT_alleles that has
the genotype of the individual expressed as the alleles rather than as 0/1.

allele.sep character which delimits the alleles in a genotype (/ or |) to be passed to extract.gt.
Here this is not used for a regex (as it is in other functions), but merely for output
formatting.

gt_column_prepend
string to prepend to the names of the FORMAT columns

verbose logical to specify if verbose output should be produced in the output so that they
do not conflict with any INFO columns in the output. Default is "gt_". Should
be a valid R name. (i.e. don’t start with a number, have a space in it, etc.)

tag name of the lines in the metadata section of the VCEF file to parse out. Default is
"INFO". The only other one tested and supported, currently is, "FORMAT".

Details

The function vefR2tidy is the main function in this series. It takes a vcfR object and converts the
information to a list of long-format data frames. The user can specify whether only the INFO or
both the INFO and the FORMAT columns should be extracted, and also which INFO and FORMAT
fields to extract. If no specific INFO or FORMAT fields are asked for, then they will all be returned.
If single_frame == FALSE and info_only == FALSE (the default), the function returns a list with
three components: fix, gt, and meta as follows:

1. fix A data frame of the fixed information columns and the parsed INFO columns, and an ad-
ditional column, ChromKey—an integer identifier for each locus, ordered by their appearance
in the original data frame—that serves together with POS as a key back to rows in gt.

2. gt A data frame of the genotype-related fields. Column names are the names of the FORMAT
fields with gt_column_prepend (by default, "gt_") prepended to them. Additionally there are
columns ChromKey, and POS that can be used to associate each row in gt with a row in fix.

Convert to tidy data frames 13

3. meta The meta-data associated with the columns that were extracted from the INFO and FOR-
MAT columns in a tbl_df-ed data frame.

This is the default return object because it might be space-inefficient to return a single tidy data
frame if there are many individuals and the CHROM names are long and/or there are many INFO
fields. However, if single_frame = TRUE, then the results are returned as a list with component
meta as before, but rather than having fix and gt as before, both those data frames have been
joined into component dat and a ChromKey column is not returned, because the CHROM column
is available.

If info_only == FALSE, then just the fixed columns and the parsed INFO columns are returned, and
the FORMAT fields are not parsed at all. The return value is a list with components fix and meta.
No column ChromKey appears.

The following functions are called by vefR2tidy but are documented below because they may be
useful individually.

The function extract_info_tidy let’s you pass in a vector of the INFO fields that you want extracted
to a long format data frame. If you don’t tell it which fields to extract it will extract all the INFO
columns detailed in the VCF meta section. The function returns a tbl_df data frame of the INFO
fields along with with an additional integer column Key that associates each row in the output data
frame with each row (i.e. each CHROM-POS combination) in the original vcfR object x.

The function extract_gt_tidy let’s you pass in a vector of the FORMAT fields that you want ex-
tracted to a long format data frame. If you don’t tell it which fields to extract it will extract all the
FORMAT columns detailed in the VCF meta section. The function returns a tbl_df data frame of
the FORMAT fields with an additional integer column Key that associates each row in the output
data frame with each row (i.e. each CHROM-POS combination), in the original vcfR object x, and
an additional column Indiv that gives the name of the individual.

The function vef_field_names is a helper function that parses information from the metadata section
of the VCF file to return a data frame with the metadata information about either the INFO or FOR-
MAT tags. It returns a tbl_df-ed data frame with column names: "Tag", "ID", "Number","Type",
"Description", "Source", and "Version".

Value

An object of class tidy::data_frame or a list where every element is of class tidy::data_frame.

Note

To run all the examples, you can issue this: example("vcfR2tidy")

Author(s)

Eric C. Anderson <eric.anderson @noaa.gov>

See Also

dplyr, tidyr.

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tidyr

14 Convert to tidy data frames

Examples

load the data
data("vcfR_test")
vcf <- vcfR_test

extract all the INFO and FORMAT fields into a list of tidy
data frames: fix, gt, and meta. Here we don't coerce columns
to integer or numeric types...

Z <- vcfR2tidy(vcf)

names(Z)

here is the meta data in a table
Z$meta

here is the fixed info
Z$fix

here are the GT fields. Note that ChromKey and POS are keys
back to Z$fix
Z$gt

Note that if you wanted to tidy this data set even further
you could break up the comma-delimited columns easily
using tidyr::separate

here we put the data into a single, joined data frame (list component
dat in the returned list) and the meta data. Let's just pick out a
few fields:
vcfR2tidy(vcf,

single_frame = TRUE,

info_fields = c("AC", "AN", "MQ"),

format_fields = c("GT", "PL"))

note that the "gt_GT_alleles” column is always returned when any
FORMAT fields are extracted.

Here we extract a single frame with all fields but we automatically change
types of the columns according to the entries in the metadata.
vcfR2tidy(vef, single_frame = TRUE, info_types = TRUE, format_types = TRUE)

create.chromR 15

for comparison, here note that all the INFO and FORMAT fields that were
extracted are left as character ("chr” in the dplyr summary)
vcfR2tidy(vef, single_frame = TRUE)

Below are some examples with the vcfR2tidy "subfunctions”

extract the AC, AN, and MQ fields from the INFO column into

a data frame and convert the AN values integers and the MQ

values into numerics.

extract_info_tidy(vcf, info_fields = c("AC", "AN", "MQ"), info_types = c(AN ="i", MQ = "n"))

extract all fields from the INFO column but leave
them as character vectors
extract_info_tidy(vcf)

extract all fields from the INFO column and coerce
types according to metadata info
extract_info_tidy(vcf, info_types = TRUE)

get the INFO field metadata in a data frame
vcf_field_names(vcf, tag = "INFQO")

get the FORMAT field metadata in a data frame
vcf_field_names(vcf, tag = "FORMAT")

create.chromR Create chromR object

Description

Creates and populates an object of class chromR.

Usage

create.chromR(vcf, name = "CHROM", seq = NULL, ann = NULL, verbose = TRUE)
vcfR2chromR(x, vcf)

seq2chromR(x, seq = NULL)

16 create.chromR

ann2chromR(x, gff)

Arguments

vef an object of class vcfR

name a name for the chromosome (for plotting purposes)

seq a sequence as a DNAbin object

ann an annotation file (gff-like)

verbose should verbose output be printed to the console?

X an object of class chromR

gff a data.frame containing annotation data in the gff format
Details

Creates and names a chromR object from a name, a chromosome (an ape::DNAbin object), variant
data (a vcfR object) and annotation data (gft-like). The function create.chromR is a wrapper which
calls functions to populate the slots of the chromR object.

The function vef2chromR is called by create.chromR and transfers the data from the slots of a
vcfR object to the slots of a chromR object. It also tries to extract the "'DP’ and "MQ’ fileds (when
present) from the fix slot’s INFO column. It is not anticipated that a user would need to use this
function directly, but its placed here in case they do.

The function seq2chromR is currently defined as a generic function. This may change in the future.
This function takes an object of class DNAbin and assigns it to the ’seq’ slot of a chromR object.

The function ann2chromR is called by create.chromR and transfers the information from a gff-like
object to the ann’ slot of a chromR object. It is not anticipated that a user would need to use this
function directly, but its placed here in case they do.

See Also

chromR-class, vefR-class, DNAbin, VCF specification gff3 format

Examples

library(vcfR)

data(vcfR_example)

chrom <- create.chromR('sc50', seq=dna, vcf=vcf, ann=gff)
head(chrom)

chrom

plot(chrom)

chrom <- masker(chrom, min_QUAL = 1, min_DP = 300, max_DP = 700, min_MQ = 59, max_MQ = 61)
chrom <- proc.chromR(chrom, win.size=1000)

plot(chrom)
chromoqc(chrom)

https://github.com/samtools/hts-specs
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

dr.plot elements

17

dr.plot elements dr.plot elements

Description

Plot chromR objects and their components

Usage

dr.plot(
dmat = NULL,
rlst = NULL,
chrom.s = 1,
chrom.e = NULL,
title = NULL,
hline = NULL,
dcol = NULL,
rcol = NULL,
rbcol = NULL,

)

null.plot()

Arguments

dmat

rlst
chrom.s
chrom.e
title
hline
dcol
rcol

rbcol

Details

a numeric matrix for dot plots where the first column is position (POS) and
subsequent columns are y-values.

a list containing numeric matrices containing rectangle coordinates.
start position for the chromosome

end position for the chromosome

optional string to be used for the plot title.

vector of positions to be used for horizontal lines.

vector of colors to be used for dot plots.

vector of colors to be used for rectangle plots.

vector of colors to be used for rectangle borders.

arguments to be passed to other methods.

Plot details The parameter rlist is list of numeric matrices containing rectangle coordinates. The
first column of each matrix is the left positions, the second column is the bottom coordinates, the
third column is the right coordinates and the fourth column is the top coordinates.

18

Value

Returns the y-axis minimum and maximum values invisibly.

See Also

rect chromo

extract.gt

extract.gt

Extract elements from vcfR objects

Description

Extract elements from the ’gt’ slot, convert extracted genotypes to their allelic state, extract indels
from the data structure or extract elements from the INFO column of the ’fix’ slot.

Usage

extract.gt(

)

extract.haps(x, mask = FALSE, unphased_as_NA = TRUE, verbose

X’
element = "GT",
mask = FALSE,

as.numeric = FALSE,
return.alleles = FALSE,
IDtoRowNames = TRUE,
extract = TRUE,
convertNA = TRUE

is.indel(x)

extract.indels(x, return.indels = FALSE)

extract.info(x, element, as.numeric = FALSE, mask = FALSE)

Arguments
X An object of class chromR or vcfR
element
and "GQ"
mask

as.numeric

return.alleles

= TRUE)

element to extract from vcf genotype data. Common options include "DP", "GT"

a logical indicating whether to apply the mask (TRUE) or return all variants

(FALSE). Alternatively, a vector of logicals may be provided.

logical, should the matrix be converted to numerics

logical indicating whether to return the genotypes (0/1) or alleles (A/T)

extract.gt 19

IDtoRowNames logical specifying whether to use the ID column from the FIX region as row-

names
extract logical indicating whether to return the extracted element or the remaining string
convertNA logical indicating whether to convert "." to NA.

unphased_as_NA logical specifying how to handle unphased genotypes
verbose should verbose output be generated

return.indels logical indicating whether to return indels or not

Details

The function extract.gt isolates elements from the ’gt’ portion of vcf data. Fields available for
extraction are listed in the FORMAT column of the "gt’ slot. Because different vcf producing
software produce different fields the options will vary by software. The mask parameter allows
the mask to be implemented when using a chromR object. The ’as.numeric’ option will convert
the results from a character to a numeric. Note that if the data is not actually numeric, it will
result in a numeric result which may not be interpretable. The ’return.alleles’ option allows the
default behavior of numerically encoded genotypes (e.g., 0/1) to be converted to their nucleic acid
representation (e.g., A/T). Note that this is not used for a regular expression as similar parameters
are used in other functions. Extract allows the user to extract just the specified element (TRUE) or
every element except the one specified.

Note that when ’as.numeric’ is set to "TRUE’ but the data are not actually numeric, unexpected
results will likely occur. For example, the genotype field will typically be populated with values
such as "0/1" or "110". Although these may appear numeric, they contain a delimiter (the forward
slash or the pipe) that is non-numeric. This means that there is no straight forward conversion to a
numeric and unexpected values should be expected.

The function extract.haps uses extract.gt to isolate genotypes. It then uses the information in the
REF and ALT columns as well as an allele delimiter (gt_split) to split genotypes into their allelic
state. Ploidy is determined by the first non-NA genotype in the first sample.

The VCEF specification allows for genotypes to be delimited with a ’I” when they are phased and a
’/> when unphased. This becomes important when dividing a genotype into two haplotypes. When
the alleels are phased this is straight forward. When the alleles are unphased it presents a decision.
The default is to handle unphased data by converting them to NAs. When unphased_as_NA is set to
TRUE the alleles will be returned in the order they appear in the genotype. This does not assign each
allele to it’s correct chromosome. It becomes the user’s responsibility to make informed decisions
at this point.

The function is.indel returns a logical vector indicating which variants are indels (variants where
an allele is greater than one character).

The function extract.indels is used to remove indels from SNPs. The function queries the 'REF’
and "ALT’ columns of the ’fix’ slot to see if any alleles are greater than one character in length.
When the parameter return_indels is FALSE only SNPs will be returned. When the parameter
return_indels is TRUE only indels will be returned.

The function extract.info is used to isolate elements from the INFO column of vcf data.

See Also

is.polymorphic

20 Format conversion

Examples

data(vcfR_test)
gt <- extract.gt(vcfR_test)
gt <- extract.gt(vcfR_test, return.alleles = TRUE)

data(vcfR_test)
is.indel(vcfR_test)

data(vcfR_test)

getFIX(vcfR_test)

vcf <- extract.indels(vcfR_test)
getFIX(vcf)
vef@fix[nrow(vef@fix), 'ALT'] <- ". A"
vcf <- extract.indels(vcf)
getFIX(vcf)

data(vcfR_test)

vcfR_test@fix[1, "ALT'] <- "<NON_REF>"
vcf <- extract.indels(vcfR_test)
getFIX(vcf)

data(vcfR_test)
extract.haps(vcfR_test, unphased_as_NA = FALSE)
extract.haps(vcfR_test)

Format conversion Convert vcfR objects to other formats

Description

Convert vcfR objects to objects supported by other R packages

Usage
vcfR2genind(x, sep = "[|/]", return.alleles = FALSE, ...)

vcfR2loci(x, return.alleles = FALSE)

vcfR2genlight(x, n.cores = 1)

Arguments
X an object of class chromR or vcfR
sep character (to be used in a regular expression) to delimit the alleles of genotypes

return.alleles should the VCF encoding of the alleles be returned (FALSE) or the actual alleles
(TRUE).

Format conversion 21

pass other parameters to adegenet::df2genlight

n.cores integer specifying the number of cores to use.

Details

After processing vcf data in vcfR, one will likely proceed to an analysis step. Within R, three
obvious choices are: pegas, adegenet and poppr. The package pegas uses objects of type loci. The
function vefR2loci calls extract.gt to create a matrix of genotypes which is then converted into an
object of type loci.

The packages adegenet and poppr use the genind object. The function vefR2genind uses extract.gt
to create a matrix of genotypes and uses the adegenet function df2genind to create a genind object.
The package poppr additionally uses objects of class genclone which can be created from genind
objects using poppr::as.genclone. A genind object can be converted to a genclone object with the
function poppr::as.genclone.

The function vcfR2genlight calls the 'new’ method for the genlight object. This method implements
multi-threading through calls to the function parallel::mclapply. Because *forks’ do not exist
in the windows environment, this will only work for windows users when n.cores=1. In the Unix
environment, users may increase this number to allow the use of multiple threads (i.e., cores).

The parameter ... is used to pass parameters to other functions. In vcfR2genind it is used to pass pa-
rameters to adegenet: :df2genind. For example, setting check.ploidy=FALSE may improve the
performance of adegenet: : df2genind, as long as you know the ploidy. See ?adegenet: :df2genind
to see these options.

Note

For users of poppr: If you wish to use vefR2genind(), it is strongly recommended to use
it with the option return.alleles = TRUE. The reason for this is because the poppr package
accomodates mixed-ploidy data by interpreting "0" alleles in genind objects to be NULL alleles
in both poppr: : poppr.amova() and poppr: :locus_table().

See Also

extract.gt, alleles2consensus, adegenet: :df2genind, adegenet: :genind, pegas, adegenet,
and poppr. To convert to objects of class DNAbin see vcfR2DNAbin.

Examples

adegenet_installed <- require("adegenet")

if (adegenet_installed) {
data(vcfR_test)
convert to genlight (preferred method with bi-allelic SNPs)
gl <- vcfR2genlight(vcfR_test)

convert to genind, keeping information about allelic state
(slightly slower, but preferred method for use with the "poppr” package)
gid <- vcfR2genind(vcfR_test, return.alleles = TRUE)

convert to genind, returning allelic states as 0, 1, 2, etc.
(not preferred, but slightly faster)

https://cran.r-project.org/package=pegas
https://cran.r-project.org/package=adegenet
https://cran.r-project.org/package=poppr
https://cran.r-project.org/package=pegas
https://cran.r-project.org/package=adegenet
https://cran.r-project.org/package=poppr

22 freq_peak

gid2 <- vcfR2genind(vcfR_test, return.alleles = FALSE)
3

freq_peak freq_peak

Description

Find density peaks in frequency data.

Usage

freq_peak(myMat, pos, winsize = 10000L, bin_width = .02, lhs = TRUE)

Arguments
myMat a matrix of frequencies [0-1].
pos a numeric vector describing the position of variants in myMat.
winsize sliding window size.
bin_width Width of bins to summarize ferequencies in (0-1].
lhs logical specifying whether the search for the bin of greatest density should favor
values from the left hand side.
Details

Noisy data, such as genomic data, lack a clear consensus. Summaries may be made in an attempt
to ’clean it up.” Common summaries, such as the mean, rely on an assumption of normalicy. An
assumption that frequently can be violated. This leaves a conundrum as to how to effectively sum-
marize these data.

Here we implement an attempt to summarize noisy data through binning the data and selecting the
bin containing the greatest density of data. The data are first divided into parameter sized windows.
Next the data are categorized by parameterizable bin widths. Finally, the bin with the greatest
density, the greatest count of data, is used as a summary. Because this method is based on binning
the data it does not rely on a distributional assumption.

The parameter lhs specifyies whether the search for the bin of greatest density should be performed
from the left hand side. The default value of TRUE starts at the left hand side, or zero, and selects a
new bin as having the greatest density only if a new bin has a greater density. If the new bin has an
equal density then no update is made. This causees the analysis to select lower frequencies. When
this parameter is set to FALSE ties result in an update of the bin of greatest density. This causes
the analysis to select higher frequencies. It is recommended that when testing the most abundant
allele (typically [0.5-1]) to use the default of TRUE so that a low value is preferred. Similarly, when
testing the less abundant alleles it is recommended to set this value at FALSE to preferentially select
high values.

freq_peak 23

Value
A freq_peak object (a list) containing:

* The window size

* The binwidth used for peak binning

* a matrix containing window coordinates
* a matrix containing peak locations

* a matrix containing the counts of variants for each sample in each window

The window matrix contains start and end coordinates for each window, the rows of the original
matrix that demarcate each window and the position of the variants that begin and end each window.

The matrix of peak locations contains the midpoint for the bin of greatest density for each sample
and each window. Alternatively, if ‘count = TRUE® the number of non-missing values in each
window is reported. The number of non-mising values in each window may be used to censor
windows containing low quantities of data.

See Also

peak_to_ploid, freq_peak_plot

Examples

data(vcfR_example)

gt <- extract.gt(vcf)

hets <- is_het(gt)

Censor non-heterozygous positions.
is.na(vcf@gt[,-1]1['hets]) <- TRUE

Extract allele depths.

ad <- extract.gt(vcf, element = "AD")

adl <- masplit(ad, record = 1)

ad2 <- masplit(ad, record = 2)

freql <- adl/(ad1+ad2)

freq2 <- ad2/(ad1+ad2)

myPeaks1 <- freq_peak(freql, getP0S(vcf))
is.na(myPeaks1$peaks[myPeaks1$counts < 20]) <- TRUE
myPeaks2 <- freq_peak(freq2, getPOS(vcf), lhs = FALSE)
is.na(myPeaks2$peaks[myPeaks2$counts < 20]) <- TRUE
myPeaks1

Visualize
mySample <- "P17777us22"

myWin <- 2

hist(freql[myPeaks1$wins[myWin, 'START _row']:myPeaks1$wins[myWin, 'END_row'], mySample],
breaks=seq(@,1,by=0.02), col="#A6CEE3", main="", xlab="", xaxt="n")

hist(freqg2[myPeaks2$wins[myWin, 'START _row']:myPeaks2$wins[myWin, 'END_row'], mySample],
breaks=seq(0,1,by=0.02), col="#1F78B4", main="", xlab="", xaxt="n", add = TRUE)

axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4"',"'1/3"','1/2",'2/3",'3/4"',1), las=3)

abline(v=myPeaks1$peaks[myWin,mySample], col=2, lwd=2)

abline(v=myPeaks2$peaks[myWin,mySample], col=2, lwd=2)

24

Visualize #2
mySample <- "P17777us22"
plot(getPOS(vcf), freql[,mySample], ylim=c(@,1), type="n", yaxt='n',
main = mySample, xlab = "P0S", ylab = "Allele balance")
axis(side=2, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(o,'1/4','1/3','1/2"','2/3","'3/4',1), las=1)
abline(h=c(0.25,0.333,0.5,0.666,0.75), col=8)
points(getPOS(vcf), freql[,mySample], pch = 20, col= "#A6CEE3")
points(getP0OS(vcf), freq2[,mySample], pch = 20, col= "#1F78B4")
segments(x@=myPeaks1$wins[, 'START_pos'], y@=myPeaks1$peaks[,mySample],
x1=myPeaks1$wins[, 'END_pos'], lwd=3)
segments(x@=myPeaks1$wins[, 'START_pos'], y@=myPeaks2$peaks[,mySample],
x1=myPeaks1$wins[, '"END_pos'], lwd=3)

freq_peak_plot

freq_peak_plot Plot freq_peak object

Description

Converts allele balance data produced by freq_peak() to a copy number by assinging the allele

balance data (frequencies) to its closest expected ratio.

Usage

freq_peak_plot(

pos,

posUnits = "bp",
abl = NULL,

ab2 = NULL,

fp1 = NULL,

fp2 = NULL,
mySamp = 1,

coll = "#A6CEE3",
col2 = "#1F78B4",

alpha = 44,
main = NULL,
mhist = TRUE,

layout = TRUE,

Arguments

pos chromosomal position of variants

freq_peak_plot

posUnits
ab1
ab2
fp1
fp2
mySamp
coll
col2
alpha
main
mhist

layout

Details

25

units Cbp’, ’Kbp’, "Mbp’, ’Gbp’) for ‘pos‘ to be converted to in the main plot
matrix of allele balances for allele 1

matrix of allele balances for allele 2

freq_peak object for allele 1

freq_peak object for allele 2

sample indicator

color 1

color 2

sets the transparency for dot plot (0-255)

main plot title.

logical indicating to include a marginal histogram
call layout

parameters passed on to other functions

Creates a visualization of allele balance data consisting of a dot plot with position as the x-axis and
frequency on the y-axis and an optional marginal histogram. The only required information is a
vector of chromosomal positions, however this is probably not going to create an interesting plot.

Value

An invisible NULL.

See Also

freq_peak, peak_to_ploid

Examples

An empty plot.

freq_peak_plot(pos=1:40)

data(vcfR_example)

gt <- extract.gt(vcf)

hets <- is_het(gt)

Censor non-heterozygous positions.
is.na(vcf@gt[,-1]1['hets]) <- TRUE

Extract allele depths.

ad <- extract.gt(vcf, element = "AD")

adl <- masplit(ad, record = 1)

ad2 <- masplit(ad, record = 2)

freql <- adl/(ad1+ad2)

freq2 <- ad2/(ad1+ad2)

myPeaks1 <- freq_peak(freql, getP0S(vcf))
is.na(myPeaks1$peaks[myPeaks1$counts < 20]) <- TRUE

26

genetic_diff

myPeaks2 <- freq_peak(freq2, getPOS(vcf), lhs = FALSE)
is.na(myPeaks2$peaks[myPeaks2$counts < 20]) <- TRUE
freq_peak_plot(pos = getP0S(vcf), abl = freql, ab2 = freq2, fpl = myPeaks1, fp2=myPeaks2)

genetic_diff Genetic differentiation

Description

Calculate measures of genetic differentiation.

Usage

genetic_diff(vcf, pops, method = "nei")

Arguments

vef a vcfR object

pops factor indicating populations

method the method to measure differentiation
Details

Measures of genetic differentiation, or fixation indicies, are commonly reported population genetic
parameters. This function reports genetic differentiation for all variants presented to it.

The method nei returns Nei’s Gst as well as Hedrick’s G’st, a correction for high alleleism (Hedrick
2005). Here it is calculated as in equation 2 from Hedrick (2005) with the exception that the
heterozygosities are weighted by the number of alleles observed in each subpopulation. This is
similar to hierfstat: :pairwise.fst() but by using the number of alleles instead of the number
of individuals it avoids making an assumption about how many alleles are contributed by each
individual. G’st is calculated as in equation 4b from Hedrick (2005). This method is based on
heterozygosity where all of the alleles in a population are used to calculate allele frequecies. This
may make this a good choice when there is a mixture of ploidies in the sample.

The method jost return’s Jost’s D as a measure of differentiation. This is calculated as in equation
13 from Jost (2008). Examples are available at Jost’s website: http://www. loujost.com.

A nice review of Fst and some of its analogues can be found in Holsinger and Weir (2009).

References

Hedrick, Philip W. "A standardized genetic differentiation measure." Evolution 59.8 (2005): 1633-
1638.

Holsinger, Kent E., and Bruce S. Weir. "Genetics in geographically structured populations: defin-
ing, estimating and interpreting FST." Nature Reviews Genetics 10.9 (2009): 639-650.

http://www.loujost.com

Genotype matrix functions 27

Jost, Lou. "GST and its relatives do not measure differentiation." Molecular ecology 17.18 (2008):

4015-4026.

Whitlock, Michael C. "G’ST and D do not replace FST." Molecular Ecology 20.6 (2011): 1083-

1091.

See Also

poppr.amova in poppr, amova in ade4, amova in pegas, hierfstat, DEMEtics, and, mmod.

Examples

data(vcfR_example)

myPops <- as.factor(rep(c('a','b'), each = 9))

myDiff <- genetic_diff(vcf, myPops, method = "nei")

colMeans(myDiff[,c(3:8,11)]1, na.rm = TRUE)

hist(myDiff$Gprimest, xlab = expression(italic("G'"["ST"1)),
col="skyblue', breaks = seq(@, 1, by = 0.01))

Genotype matrix functions

Genotype matrix functions

Description

Functions which modify a matrix or vector of genotypes.

Usage

alleles2consensus(x, sep = "/", NA_to_n = TRUE)

get.alleles(x2, split = "/", na.rm = FALSE, as.numeric = FALSE)

Arguments

X
sep
NA_to_n
X2
split
na.rm

as.numeric

a matrix of alleles as genotypes (e.g., A/A, C/G, etc.)

a character which delimits the alleles in a genotype (/ or |)
logical indicating whether NAs should be scores as n

a vector of genotypes

character passed to strsplit to split the genotype into alleles
logical indicating whether to remove NAs

logical specifying whether to convert to a numeric

https://cran.r-project.org/package=poppr
https://cran.r-project.org/package=ade4
https://cran.r-project.org/package=pegas
https://cran.r-project.org/package=hierfstat
https://cran.r-project.org/package=DEMEtics
https://cran.r-project.org/package=mmod

28 getFIX

Details

The function alleles2consensus converts genotypes to a single consensus allele using ITUPAC am-
biguity codes for heterozygotes. Note that some functions, such as ape::seg.sites do not recognize
ambiguity characters (other than ’'n’). This means that these functions, as well as functions that
depend on them (e.g., pegas::tajima.test), will produce unexpected results.

Missing data are handled in a number of steps. When both alleles are missing (°.”) the genotype is
converted to NA. Secondly, if one of the alleles is missing (’.”) the genotype is converted to NA>
Lastly, NAs can be optionally converted to "n’ for compatibility with DNAbin objects.

The function get.alleles takes a vector of genotypes and returns the unique alleles.

getFIX Get elements from the fixed region of a VCF file

Description

Both chromR objects and vcfR objects contain a region with fixed variables. These accessors allow
you to isolate these variables from these objects.

Usage
getFIX(x, getINFO = FALSE)

getCHROM(x)
getPOS(x)
getQUAL (x)
getALT(x)
getREF (x)
getID(x)
getFILTER(X)

getINFO(x)

Arguments

X a vcfR or chromR object

getINFO logical specifying whether getFIX should return the INFO column

Value

a vector or data frame

gt2popsum 29

Examples

library("vcfR")
data("vcfR_example™)
data("chromR_example")
getFIX(vcf) %>% head
getFIX(chrom) %>% head

getCHROM(vcf) %>% head
getCHROM(chrom) %>% head

getPOS(vcf) %>% head
getPOS(chrom) %>% head

getID(vcf) %>% head
getID(chrom) %>% head

getREF (vcf) %>% head
getREF (chrom) %>% head

getALT(vcf) %>% head
getALT(chrom) %>% head

getQUAL (vcf) %>% head
getQUAL (chrom) %>% head

getFILTER(vcf) %>% head
getFILTER(chrom) %>% head

getINFO(vcf) %>% head
getINFO(chrom) %>% head

gt2popsum Population genetics summaries

Description

Functions that make population genetics summaries

Usage

gt2popsum(x, deprecated = TRUE)

gt.to.popsum(x)

Arguments
X object of class chromR or vcfR
deprecated logical specifying whether to run the function (FALSE) or present deprecation

message (TRUE).

30 heatmap.bp

Details

The function ‘gt2popsum‘ was deprecated in vcfR 1.8.0. This was because it was written entirely
in R and did not perform well. Users should use ‘gt.to.popsum()‘ instead because it has similar
functionality but includes calls to C++ to increase its performance.

This function creates common population genetic summaries from either a chromR or vcfR object.
The default is to return a matrix containing allele counts, He, and Ne. Allele_counts is the a comma
delimited string of counts. The first position is the count of reference alleles, the second positions
is the count of the first alternate alleles, the third is the count of second alternate alleles, and so on.
He is the gene diversity, or heterozygosity, of the population. This is 1 — Y~ 22, or the probability
that two alleles sampled from the population are different, following Nei (1973). Ne is the effective
number of alleles in the population. This is 1/ ? or one minus the homozygosity, from Nei
(1987) equation 8.17.

Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National
Academy of Sciences, 70(12), pp.3321-3323.

Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press.

Examples

data(vcfR_test)

Check the genotypes.
extract.gt(vcfR_test)

Summarize the genotypes.
gt.to.popsum(vcfR_test)

heatmap.bp Heatmap with barplots

Description

Heatmap of a numeric matrix with barplots summarizing columns and rows.

Usage

heatmap.bp(
X,
cbarplot = TRUE,
rbarplot = TRUE,
legend = TRUE,
clabels = TRUE,
rlabels = TRUE,
na.rm = TRUE,
scale = c("row"”, "column”, "none"),
col.ramp = viridisLite::viridis(n = 100, alpha = 1),

heatmap.bp

Arguments

X
charplot
rbarplot
legend
clabels
rlabels
na.rm

scale

col.ramp

Details

31

a numeric matrix.

a logical indicating whether the columns should be summarized with a barplot.
a logical indicating whether the rows should be summarized with a barplot.

a logical indicating whether a legend should be plotted.

a logical indicating whether column labels should be included.

a logical indicating whether row labels should be included.

a logical indicating whether missing values should be removed.

character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is "none".

vector of colors to be used for the color ramp.

additional arguments to be passed on.

The function heatmap.bp creates a heatmap from a numeric matrix with optional barplots to sum-
marize the rows and columns.

See Also

heatmap, image, heatmap?2 in gplots, pheatmap.

Examples

library(vcfR)

x <- as.matrix(mtcars)

heatmap.bp(x)

heatmap.bp(x, scale="col")
Use an alternate color ramp
heatmap.bp(x, col.ramp = colorRampPalette(c("red”, "yellow”, "#008000"))(100))

heatmap.bp(x)

Not run:

heatmap.bp(x, cbarplot = FALSE, rbarplot = FALSE, legend = FALSE)
heatmap.bp(x, cbarplot = FALSE, rbarplot = TRUE, legend = FALSE)
heatmap.bp(x, cbarplot = FALSE, rbarplot = FALSE, legend = TRUE)
heatmap.bp(x, cbarplot = FALSE, rbarplot = TRUE, legend = TRUE)

heatmap.bp(x, cbarplot = TRUE, rbarplot = FALSE, legend = FALSE)

heatmap.bp(x, cbarplot = TRUE, rbarplot

TRUE, legend = FALSE)

heatmap.bp(x, cbharplot = TRUE, rbarplot = FALSE, legend = TRUE)

heatmap.bp(x, cbarplot = TRUE, rbarplot

End(Not run)

TRUE, legend = TRUE)

https://cran.r-project.org/package=gplots
https://cran.r-project.org/package=pheatmap

32 INFO2df

INFO2df Reformat INFO data as a data.frame

Description

Reformat INFO data as a data.frame and handle class when possible.

Usage

INFO2df (x)

metaINFO2df(x, field = "INFO")

Arguments

X an object of class vcfR or chromR.

field should either the INFo or FORMAT data be returned?
Details

The INFO column of VCF data contains descriptors for each variant. Because this column may
contain many comma delimited descriptors it may be difficult to interpret. The function INFO2df
converts the data into a data.frame. The function metalNFO2df extracts the information in the meta
section that describes the INFO descriptors. This function is called by INFO2df to help it handle
the class of the data.

Value

A data.frame

Examples

data(vcfR_test)
metaINFO2df (vcfR_test)
getINFO(vcfR_test)
INFO2df (vcfR_test)

is_het 33

is_het Query genotypes for heterozygotes

Description

Query a matrix of genotypes for heterozygotes

Usage

is_het(x, na_is_false = TRUE)

is.het(x, na_is_false = TRUE)

Arguments

X a matrix of genotypes

na_is_false should missing data be returned as NA (FALSE) or FALSE (TRUE)

Details

This function was designed to identify heterozygous positions in a matrix of genotypes. The matrix
of genotypes can be created with extract.gt. Because the goal was to identify heterozygotes it
may be reasonable to ignore missing values by setting na_is_false to TRUE so that the resulting ma-
trix will consist of only TRUE and FALSE. In order to preserve missing data as missing na_is_false
can be set to FALSE where if at least one allele is missing NA is returned.

See Also

extract.gt

Examples

data(vcfR_test)

gt <- extract.gt(vcfR_test)

hets <- is_het(gt)

Censor non-heterozygous positions.
is.na(vcfR_test@gt[,-1]1[!'hets]) <- TRUE

34 masplit

maf Minor allele frequency

Description

Calculate the minor (or other) allele frequency.

Usage

maf(x, element = 2)

Arguments
X an object of class vcfR or chromR
element specify the allele number to return
Details

The function maf() calculates the counts and frequency for an allele. A variant may contain more
than two alleles. Rare alleles may be true rare alleles or the result of genotyping error. In an attempt
to address these competing issues we sort the alleles by their frequency and the report statistics
based on their position. For example, setting element=1 would return information about the major
(most common) allele. Setting element=2 returns information about the second allele.

Value

a matrix of four columns. The first column is the total number of alleles, the second is the number
of NA genotypes, the third is the count and fourth the frequency.

masplit masplit

Description

Split a matrix of delimited strings.

Usage

masplit(
myMat,
delim = " ",
count = QL,
record = 1L,
sort = 1L,
decreasing = 1L

masplit 35

Arguments

myMat a matrix of delimited strings (e.g., "7,2").

delim character that delimits values.

count return the count of delimited records.

record which (1-based) record to return.

sort should the records be sorted prior to selecting the element (0,1)?

decreasing should the values be sorted decreasing (1) or increasing (0)?
Details

Split a matrix of delimited strings that represent numerics into numerics. The parameter count
returns a matrix of integers indicating how many delimited records exist in each element. This is
intended to help if you do not know how many records are in each element particularly if there
is a mixture of numbers of records. The parameter record indicates which record to return (first,
second, third, ...). The parameter sort indicates whether the records in each element should be
sorted (1) or not (0) prior to selection. When sorting has been selected decreasing indicates if the
sorting should be performed in a decreasing (1) or increasing (0) manner prior to selection.

Value

A numeric matrix

Examples

set.seed(999)
x1 <= round(rnorm(n=9, mean=10, sd=2))
x2 <= round(rnorm(n=9, mean=20, sd=2))

ad <- matrix(paste(x1, x2, sep=","), nrow=3, ncol=3)
colnames(ad) <- paste('Sample', 1:3, sep="_")
rownames(ad) <- paste('Variant', 1:3, sep="_")

ad[1,1] <- "9,23,12"
is.na(ad[3,1]) <- TRUE

ad

masplit(ad, count = 1)

masplit(ad, sort = @)

masplit(ad, sort = @, record = 2)
masplit(ad, sort = @, record = 3)
masplit(ad, sort = 1, decreasing = @)

36 ordisample

ordisample Ordinate a sample’s data

Description

Ordinate information from a sample’s GT region and INFO column.

Usage

ordisample(
X,
sample,
distance = "bray"”,
plot = TRUE,
alpha = 88,
verbose = TRUE,

)

Arguments
X an object of class vcfR or chromR.
sample a sample number where the first sample (column) is 2
distance metric to be used for ordination, options are in vegdist
plot logical specifying whether to plot the ordination
alpha alpha channel (transparency) ranging from 0-255
verbose logical specifying whether to produce verbose output

parameters to be passed to child processes
Details

The INFO column of VCF data contains descriptors for each variant. Each sample typically includes
several descriptors of each variant in the GT region as well. This can present an overwhelming
amount of information. Ordination is used in this function to reduce this complexity.

The ordination procedure can be rather time consuming depending on how much data is used. 1
good recommendation is to always start with a small subset of your full dataset and slowly scale
up. There are several steps in this function that attempt to eliminate variants or characters that have
missing values in them. This that while starting with a small number is good, you will need to have
a large enough number so that a substantial amount of the data make it to the ordination step. In the
example I use 100 variants which appears to be a reasonable compromise.

The data contained in VCF files can frequently contain a large fraction of missing data. I advo-
vate censoring data that does not meet quality control thresholds as missing which compounds the
problem. An attempt is made to omit these missing data by querying the GT and INFO data for
missingness and omitting the missing variants. The data may also include characters (columns) that

ordisample 37

contain all missing values which are omitted as well. When verbose == TRUE these omissions are
reported as messages.

Some data may contain multiple values. For example, AD is the sequence depth for each observed
allele. In these instances the values are sorted and the largest value is used.

Several of the steps of this ordination make distributional assumptions. That is, they assume the
data to be normally distributed. There is no real reason to assume this assumption to be valid with
VCF data. It has been my experience that this assumption is frequently violated with VCF data. It is
therefore suggested to use this funciton as an exploratory tool that may help inform other decisions.
These analyst may be able to address these issues through data transformation or other topics beyond
the scope of this function. This function is intended to provide a rapid assessment of the data which
may help determine if more elegant handling of the data may be required. Interpretation of the
results of this function need to take into account that assumptions may have been violated.

Value
A list consisting of two objects.

* an object of class 'metaMDS’ created by the function vegan::metaMDS

* an object of class “envfit’ created by the function vegan::envfit

This list is returned invisibly.

See Also

metaMDS, vegdist, monoMDS, isoMDS

Examples

Not run:

Example of normally distributed, random data.

set.seed(9)

x1 <= rnorm(500)

set.seed(99)

y1 <= rnorm(500)

plot(x1, y1, pch=20, col="#8B451388", main="Normal, random, bivariate data")

data(vcfR_example)
ordisample(vcf[1:100,], sample = "P17777us22")

vars <- 1:100

myOrd <- ordisample(vcf[vars,], sample = "P17777us22", plot = FALSE)
names (myOrd)

plot(myOrd$metaMDS, type = "n")

points(myOrd$metaMDS, display = "sites”, pch=20, col="#8B451366")
text(myOrd$metaMDS, display = "spec”, col="blue")

plot(myOrd$envfit, col = "#008000", add = TRUE)

head (myOrd$metaMDS$points)

myOrd$envfit

pairs(myOrd$datal)

38 pairwise_genetic_diff

Seperate heterozygotes and homozygotes.

gt <- extract.gt(vcf)

hets <- is_het(gt, na_is_false = FALSE)
vcfhe <- vcf

vcfhe@gt[,-1]1[!'hets & !is.na(hets) 1 <- NA
vcfho <- vcf

vcfho@gt[,-11[hets & !is.na(hets)] <- NA

myOrdhe <- ordisample(vcfhe[vars,], sample = "P17777us22", plot = FALSE)
myOrdho <- ordisample(vcfho[vars,], sample = "P17777us22", plot = FALSE)
pairs(myOrdhe$datal)

pairs(myOrdho$datal)

hist(myOrdho$datal$PL, breaks = seq(@,9000, by=100), col="#8B4513")

End(Not run)

pairwise_genetic_diff Pairwise genetic differentiation across populations

Description

pairwise_genetic_diff Calculate measures of genetic differentiation across all population pairs.

Usage

pairwise_genetic_diff(vcf, pops, method = "nei”)
Arguments

vef a vcfR object

pops factor indicating populations

method the method to measure differentiation
Value

a data frame containing the pairwise population differentiation indices of interest across all pairs of
populations in the population factor.

Author(s)

Javier F. Tabima

See Also

genetic_diff in vcfR

peak_to_ploid 39

Examples

data(vcfR_example)

pops <- as.factor(rep(c('a','b'), each = 9))

myDiff <- pairwise_genetic_diff(vcf, pops, method = "nei")
colMeans(myDiff[,c(4:ncol(myDiff))], na.rm = TRUE)

pops <- as.factor(rep(c('a','b','c'), each = 6))

myDiff <- pairwise_genetic_diff(vcf, pops, method = "nei")
colMeans(myDiff[,c(4:ncol(myDiff))], na.rm = TRUE)

peak_to_ploid Convert allele balance peaks to ploidy

Description

Converts allele balance data produced by freq_peak() to a copy number by assinging the allele
balance data (frequencies) to its closest expected ratio.

Usage

peak_to_ploid(x)

Arguments

X an object produced by freq_peak().

Details

Converts allele balance data produced by freq_peak() to copy number. See the examples section
for a graphical representation of the expectations and the bins around them. Once a copy number
has called a distance from expectation (dfe) is calculated as a form of confidence. The bins around
different copy numbers are of different width, so the dfe is scaled by its respective bin width. This
results in a dfe that is O when it is exactly at our expectation (high confidence) and at 1 when it is
half way between two expectations (low confidence).

Value

A list consisting of two matrices containing the calls and the distance from expectation (i.e., confi-
dence).

See Also

freq_peak, freq_peak_plot

40 Process chromR objects

Examples

Thresholds.

plot(c(@.0, 1), c(0,1), type = "n", xaxt = "n", xlab = "Expectation”, ylab = "Allele balance")
myCalls <- «¢(1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5)

axis(side = 1, at = myCalls, labels =c('1/5"', "1/4", "1/3"','1/2", '2/3", '3/4', '4/5"), las=2)
abline(v=myCalls)

abline(v=c(7/40, 9/40, 7/24, 5/12), lty=3, col ="#B22222")

abline(v=c(7/12, 17/24, 31/40, 33/40), 1ty=3, col ="#B22222")

text(x=7/40, y=0.1, labels = "7/40", srt = 90)

text(x=9/40, y=0.1, labels = "9/40", srt = 90)

text(x=7/24, y=0.1, labels = "7/24", srt = 90)

text(x=5/12, y=0.1, labels = "5/12", srt = 90)

text(x=7/12, y=0.1, labels = "7/12", srt = 90)

text(x=17/24, y=0.1, labels = "17/24", srt = 90)

text(x=31/40, y=0.1, labels "31/40", srt = 90)

text(x=33/40, y=0.1, labels "33/40", srt = 90)

Prepare data and visualize

data(vcfR_example)

gt <- extract.gt(vcf)

Censor non-heterozygous positions.

hets <- is_het(gt)

is.na(vcf@gt[,-1]1['hets]) <- TRUE

Extract allele depths.

ad <- extract.gt(vcf, element = "AD")

adl <- masplit(ad, record = 1)

ad2 <- masplit(ad, record = 2)

freql <- adl/(adl1+ad2)

freq2 <- ad2/(ad1+ad2)

myPeaks1 <- freq_peak(freql, getP0S(vcf))

Censor windows with fewer than 20 heterozygous positions
is.na(myPeaks1$peaks[myPeaks1$counts < 20]) <- TRUE
Convert peaks to ploidy call
peak_to_ploid(myPeaks1)

Process chromR objects
Process chromR object

Description

Functions which process chromR objects

Create representation of a sequence. Begining and end points are determined for stretches of nu-
cleotides. Stretches are determined by querying each nucleotides in a sequence to determine if it is
represented in the database of characters (chars).

query.gt 41
Usage

proc.chromR(x, win.size = 1000, verbose = TRUE)

regex.win(x, max.win = 1000, regex = "[acgtwsmkrybdhv]")

seg2rects(x, chars = "acgtwsmkrybdhv”, lower = TRUE)

var.win(x, win.size = 1000)

Arguments
X object of class chromR
win.size integer indicating size for windowing processes
verbose logical indicating whether verbose output should be reported
max.win maximum window size
regex a regular expression to indicate nucleotides to be searched for
chars a vector of characters to be used as a database for inclusion in rectangles
lower converts the sequence and database to lower case, making the search case insen-
sitive
Details

The function proc_chromR() calls helper functions to process the data present in a chromR object
into summaries statistics.

The function regex.win() is used to generate coordinates to define rectangles to represent regions of
the chromosome containing called nucleotides (acgtwsmkrybdhv). It is then called a second time
to generate coordinates to define rectangles to represent regions called as uncalled nucleotides (n,
but not gaps).

The function gt2popsum is called to create summaries of the variant data.
The function var.win is called to create windowized summaries of the chromR object.

Each window receives a name and its coordinates. Several attempts are made to name the windows
appropriately. First, the CHROM column of vcfR@fix is queried for a name. Next, the label of
the sequence is queried for a name. Next, the first cell of the annotation matrix is queried. If an
appropriate name was not found in the above locations the chromR object’s 'name’ slot is used.
Note that the 'name’ slot has a default value. If this default value is not updated then all of your
windows may receive the same name.

query.gt Query the gt slot

Description

Query the ’gt’ slot of objects of class vcfR

42 queryMETA

Usage

is.polymorphic(x, na.omit = FALSE)

is.biallelic(x)

Arguments
X an object of class vcfR
na.omit logical to omit missing data
Details

The function is_polymorphic returns a vector of logicals indicating whether a variant is polymor-
phic. Only variable sites are reported in vcf files. However, once someone manipulates a vcfR
object, a site may become invariant. For example, if a sample is removed it may result in a site
becoming invariant. This function queries the sites in a vcfR object and returns a vector of logicals
(TRUE/FALSE) to indicate if they are actually variable.

The function is_bialleleic returns a vector of logicals indicating whether a variant is biallelic. Some
analyses or downstream analyses only work with biallelic loci. This function can help manage this.

Note that is_bialleleic queries the ALT column in the fix slot to count alleles. If you remove samples
from the gt slot you may invalidate the information in the fix slot. For example, if you remove the
samples with the alternate allele you will make the position invariant and this function will provide
inaccurate information. So use caution if you’ve made many modifications to your data.

See Also

extract.gt

queryMETA Query the META section of VCF data

Description

Query the META section of VCF data for information about acronyms.

Usage

queryMETA(x, element = NULL, nice = TRUE)

Arguments
X an object of class vcfR or chromR.
element an acronym to search for in the META portion of the VCF data.

nice logical indicating whether to format the data in a *nice’ manner.

Ranking 43

Details

The META portion of VCF data defines acronyms that are used elsewhere in the data. In order
to better understand these acronyms they should be referenced. This function facilitates looking
up of acronyms to present their relevant information. When “element’ is 'NULL’ (the default), all
acronyms from the META region are returned. When ’element’ is specified an attempt is made to
return information about the provided element. The function grep is used to perform this query. If
‘nice’ is set to FALSE then the data is presented as it was in the file. If 'nice’ is set to TRUE the
data is processed to make it appear more 'nice’.

See Also

grep, regex.

Examples

data(vcfR_test)
queryMETA(vcfR_test)
queryMETA(vcfR_test, element = "DP")

Ranking Ranking variants within windows

Description

Rank variants within windows.

Usage

rank.variants.chromR(x, scores)

Arguments

X an object of class Crhom or a data.frame containing...

scores a vector of scores for each variant to be used to rank the data

44 rePOS

rePOS Create non-overlapping positions (POS) for VCF data

Description

Converts allele balance data produced by freq_peak() to a copy number by assinging the allele
balance data (frequencies) to its closest expected ratio.

Usage

rePOS(x, lens, ret.lens = FALSE, buff = @)

Arguments
X a vcfR object
lens a data.frame describing the reference
ret.lens logical specifying whether lens should be returned
buff an integer indicating buffer length
Details

Each chromosome in a genome typically begins with position one. This creates a problem when
plotting the data associated with each chromosome because the information will overlap. This
function uses the information in the data.frame lens to create a new coordinate system where
chromosomes do not overlap.

The data.frame lens should have a row for each chromosome and two columns. The first column is
the name of each chromosome as it appears in the vcfR object. The second column is the length of
each chromosome.

The parameter buff indicates the length of a buffer to put in between each chromosome. This buffer
may help distinguish chromosomes from one another.

In order to create the new coordinates the lens data.frame is updated with the new start positions.
The parameter

Value

Either a vector of integers that represent the new coordinate system or a list containing the vector
of integers and the lens data.frame.

Examples

Create some VCF data.
data(vcfR_example)

vcf1 <-vcf[1:500,]

vef2 <-vcf[500:1500,]

vcf3 <- vcf[1500:2533]
vefi1@fix[, 'CHROM'] <- 'chroml'

show,chromR-method 45

vef2@fix[, 'CHROM'] <- 'chrom2'

vef3@efix[, 'CHROM'] <- 'chrom3'

vef2@efix[, 'POS'] <- as.character(getP0S(vcf2) - 21900)
vef3@efix[, 'POS'] <- as.character(getPOS(vcf3) - 67900)
vcf <- rbind2(vcf1, vcf2)

vcf <= rbind2(vcf, vcf3)

rm(vcf1, vcf2, vcf3)

Create lens

lens <- data.frame(matrix(nrow=3, ncol=2))
lens[1,1] <- 'chrom1'

lens[2,1] <~ 'chrom2'

lens[3,1] <- 'chrom3'

lens[1,2] <- 22000

lens[2,2] <- 47000

lens[3,2] <- 32089

Illustrate the issue.
dp <- extract.info(vcf, element="DP", as.numeric=TRUE)
plot(getP0S(vcf), dp, col=as.factor(getCHROM(vcf)))

Resolve the issue.

newP0S <- rePQOS(vcf, lens)

dp <- extract.info(vcf, element="DP", as.numeric=TRUE)
plot(newPOS, dp, col=as.factor(getCHROM(vcf)))

Illustrate the buffer

newP0S <- rePOS(vcf, lens, buff=10000)

dp <- extract.info(vcf, element="DP", as.numeric=TRUE)
plot(newPQS, dp, col=as.factor(getCHROM(vcf)))

show, chromR-method chromR-method

Description

Methods that act on objects of class chromR

Usage
S4 method for signature 'chromR'
show(object)

S4 method for signature 'chromR'
plot(x, y, ...)

S4 method for signature 'chromR'
print(x, y, ...)

46 show, vcfR-method

S4 method for signature 'chromR'
head(x, n = 6)

S4 replacement method for signature 'chromR,character’
names(x) <- value

S4 method for signature 'chromR'

length(x)
Arguments
object an object of class chromR
X an object of class chromR
y not currently used
Arguments to be passed to methods
n integer indicating the number of elements to be printed from an object
value a character containing a name
Details

Methods that act on objects of class chromR.

show, vcfR-method show

Description

Display a summary of a vcfR object.
head returns the first parts of an object of class vcfR.
The brackets (’[]”) subset objects of class vcfR

The plot method visualizes objects of class vefR

Usage

S4 method for signature 'vcfR'
show(object)

S4 method for signature 'vcfR'
head(x, n = 6, maxchar = 80)

S4 method for signature 'vcfR,ANY,ANY,ANY'
x[i, j, samples = NULL, ..., drop]

S4 method for signature 'vcfR'

show, vcfR-method 47

plot(x, vy, ...)

S4 method for signature 'vcfR,missing'
rbind2(x, y, ...)

S4 method for signature 'vcfR,ANY'
rbind2(x, vy, ...)

S4 method for signature 'vcfR,vcfR'
rbind2(x, vy, ...)

S4 method for signature 'vcfR'

dim(x)
S4 method for signature 'vcfR'
nrow(x)
Arguments
object a vcfR object
X object of class vcfR
n number of rows to print
maxchar maximum number of characters to print per line
i vector of rows (variants) to include
j vector of columns (samples) to include
samples vector (numeric, character or logical) specifying samples, see details
arguments to be passed to other methods
drop delete the dimensions of an array which only has one level
y not used
Details

The method show is used to display an object. Because vcf data are relatively large, this has been
abbreviated. Here we display the first four lines of the meta section, and truncate them to no more
than 80 characters. The first eight columns and six rows of the fix section are also displayed.

The method head is similar to show, but is more flexible. The number of rows displayed is param-
eterized by the variable n. And the maximum number of characters to print per line (row) is also
parameterized. In contract to show, head includes a summary of the gt portion of the vcfR object.

The square brackets ([]) are used to subset objects of class vcfR. Rows are subset by providing
a vector i to specify which rows to use. The columns in the fix slot will not be subset by j. The
parameter j is a vector used to subset the columns of the gt slot. Note that it is essential to include
the first column here (FORMAT) or downsream processes will encounter trouble.

The samples parameter allows another way to select samples. Because the first column of the gt
section is the FORMAT column you typically need to include that column and sample numbers
therefore begin at two. Use of the samples parameter allows you to select columns by a vector of

48 VCF input and output

numerics, logicals or characters. When numerics are used the samples can be selected starting at
one. The function will then add one to this vector and include one to select the desired samples and
the FORMAT column. When a vector of characters is used it should contain the desired sample
names. The function will add the FORMAT column if it is not the first element. When a vector
of logicals is used a TRUE will be added to the vector to ensure the FORMAT column is selected.
Note that specification of samples will override specification of j.

The plot method generates a histogram from data found in the "QUAL’ column from the ’fix’ slot.

VCF input and output Read and write vcf format files

Description

Read and files in the *.vcf structured text format, as well as the compressed *.vcf.gz format. Write
objects of class vcfR to *.vef.gz.

Usage
read.vcfR(
file,
limit = 1e+07,
nrows = -1,
skip = 0,
cols = NULL,

convertNA = TRUE,
checkFile = TRUE,
check_keys = TRUE,
verbose = TRUE

)
write.vcf(x, file = "", mask = FALSE, APPEND = FALSE)
Arguments
file A filename for a variant call format (vcf) file.
limit amount of memory (in bytes) not to exceed when reading in a file.
nrows integer specifying the maximum number of rows (variants) to read in.
skip integer specifying the number of rows (variants) to skip before beginning to read
data.
cols vector of column numbers to extract from file.
convertNA logical specifying to convert VCF missing data to NA.
checkFile test if the first line follows the VCF specification.
check_keys logical determining if check_keys() is called to test if INFO and FORMAT

keys are unique.

VCF input and output 49

verbose report verbose progress.

X An object of class vcfR or chromR.

mask logical vector indicating rows to use.

APPEND logical indicating whether to append to existing vcf file or write a new file.
Details

The function read.vcfR reads in files in *.vcf (text) and *.vcf.gz (gzipped text) format and returns
an object of class vcfR. The parameter ’limit’ is an attempt to keep the user from trying to read in
a file which contains more data than there is memory to hold. Based on the dimensions of the data
matrix, an estimate of how much memory needed is made. If this estimate exceeds the value of
’limit’ an error is thrown and execution stops. The user may increase this limit to any value, but is
encourages to compare that value to the amout of available physical memory.

It is possible to input part of a VCF file by using the parameters nrows, skip and cols. The first eight
columns (the fix region) are part of the definition and will always be included. Any columns beyond
eight are optional (the gt region). You can specify which of these columns you would like to input
by setting the cols parameter. If you want a usable vcfR object you will want to always include
nine (the FORMAT column). If you do not include column nine you may experience reduced
functionality.

According to the VCF specification missing data are encoded by a period ("."). Within the R
language, missing data can be encoded as NA. The parameter ‘convertNA* allows the user to either
retain the VCF representation or the R representation of missing data. Note that the conversion only
takes place when the entire value can be determined to be missing. For example, ".I.:48:8:51,51"
would be retained because the missing genotype is accompanied by other delimited information. In
contrast, ".|." should be converted to NA when convertNA = TRUE.

If file begins with http://, https://, ftp://, or ftps:// it is interpreted as a link. When this happens, file
is split on the delimiter ’/* and the last element is used as the filename. A check is performed to
determine if this file exists in the working directory. If a local file is found it is used. If a local file
is not found the remote file is downloaded to the working directory and read in.

The function write.vef takes an object of either class vcfR or chromR and writes the vef data to a
vef.gz file (gzipped text). If the parameter 'mask’ is set to FALSE, the entire object is written to
file. If the parameter 'mask’ is set to TRUE and the object is of class chromR (which has a mask
slot), this mask is used to subset the data. If an index is supplied as 'mask’, then this index is used,
and recycled as necessary, to subset the data.

Because vcfR provides the opportunity to manipulate VCF data, it also provides the opportunity for
the user to create invalid VCEF files. If there is a question regarding the validity of a file you have
created one option is the VCF validator from VCF tools.

Value
read.vcfR returns an object of class vcfR-class. See the vignette: vignette('vcf_data'). The
function write.vcf creates a gzipped VCEF file.

See Also
CRAN: pegas::read.vcf, PopGenome::readVCEF, data.table::fread

https://vcftools.github.io/perl_module.html#vcf-validator
https://cran.r-project.org/package=pegas
https://cran.r-project.org/package=PopGenome
https://cran.r-project.org/package=data.table

50 vcfR-class

Bioconductor: VariantAnnotation::readVcf

Use: browseVignettes('vcfR’) to find examples.

Examples

data(vcfR_test)

vcfR_test

head(vcfR_test)

CRAN requires developers to us a tempdir when writing to the filesystem.
You may want to implement this example elsewhere.

orig_dir <- getwd()

temp_dir <- tempdir()

setwd(temp_dir)

write.vcf(vcfR_test, file = "vcfR_test.vcf.gz")

vef <- read.vcfR(file = "vcfR_test.vcf.gz", verbose = FALSE)
vef

setwd(orig_dir)

vcfR-class vefR class

Description

An S4 class for storing VCF data.

Details

Defines a class for variant call format data. A vcfR object contains three slots. The first slot is
a character vector which holds the meta data. The second slot holds an eight column matrix to
hold the fixed data. The third slot is a matrix which holds the genotype data. The genotype data is
optional according to the VCF definition. When it is missing the gt slot should consist of a character
matrix with zero rows and columns.

See vignette('vcf_data') for more information. See the VCF specification for the file specifi-
cation.

Slots

meta character vector for the meta information
fix matrix for the fixed information

gt matrix for the genotype information

https://www.bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://samtools.github.io/hts-specs/

vcfR2DNADbin

51

vcfR2DNAbin

Convert vc¢fR to DNAbin

Description

Convert objects of class vcfR to objects of class ape::DNAbin

Usage

vcfR2DNAbin(
X,
extract.inde
consensus =
extract.haps

1s = TRUE,
FALSE,
= TRUE,

unphased_as_NA = TRUE,
asterisk_as_del = FALSE,
ref.seq = NULL,
start.pos = NULL,
verbose = TRUE

Arguments

X

extract.indels
consensus
extract.haps
unphased_as_NA

asterisk_as_de

ref.seq
start.pos

verbose

Details

an object of class chromR or vcfR

logical indicating to remove indels (TRUE) or to include them while retaining
alignment

logical, indicates whether an [UPAC ambiguity code should be used for diploid
heterozygotes

logical specifying whether to separate each genotype into alleles based on a
delimiting character

logical indicating how to handle alleles in unphased genotypes
1

logical indicating that the asterisk allele should be converted to a deletion (TRUE)
or NA (FALSE)

reference sequence (DNADbin) for the region being converted
chromosomal position for the start of the ref.seq

logical specifying whether to produce verbose output

Objects of class DNADbin, from the package ape, store nucleotide sequence information. Typically,
nucleotide sequence information contains all the nucleotides within a region, for example, a gene.
Because most sites are typically invariant, this results in a large amount of redundant data. This is
why files in the vcf format only contain information on variant sites, it results in a smaller file. Nu-
cleotide sequences can be generated which only contain variant sites. However, some applications

52

vcfR2DNADbin

require the invariant sites. For example, inference of phylogeny based on maximum likelihood or
Bayesian methods requires invariant sites. The function vefR2DNADbin therefore includes a number
of options in attempt to accomodate various scenarios.

The presence of indels (insertions or deletions)in a sequence typically presents a data analysis prob-
lem. Mutation models typically do not accomodate this data well. For now, the only option is for
indels to be omitted from the conversion of vcfR to DNAbin objects. The option extract.indels was
included to remind us of this, and to provide a placeholder in case we wish to address this in the
future.

The ploidy of the samples is inferred from the first non-missing genotype. All samples and all
variants within each sample are assumed to be of the same ploid.

Conversion of haploid data is fairly straight forward. The options consensus and extract.haps
are not relevant here. When vefR2DNAbin encounters missing data in the vcf data (NA) it is coded
as an ambiguous nucleotide (n) in the DNAbin object. When no reference sequence is provided
(option ref.seq), a DNADbin object consisting only of variant sites is created. When a reference
sequence and a starting position are provided the entire sequence, including invariant sites, is re-
turned. The reference sequence is used as a starting point and variable sitees are added to this.
Because the data in the vcfR object will be using a chromosomal coordinate system, we need to tell
the function where on this chromosome the reference sequence begins.

Conversion of diploid data presents a number of scenarios. When the option consensus is TRUE
and extract.haps is FALSE, each genotype is split into two alleles and the two alleles are con-
verted into their [UPAC ambiguity code. This results in one sequence for each diploid sample. This
may be an appropriate path when you have unphased data. Note that functions called downstream
of this choice may handle IUPAC ambiguity codes in unexpected manners. When extract.haps is
set to TRUE, each genotype is split into two alleles. These alleles are inserted into two sequences.
This results in two sequences per diploid sample. Note that this really only makes sense if you have
phased data. The options ref.seq and start.pos are used as in halpoid data.

When a variant overlaps a deletion it may be encoded by an asterisk allele (*). The GATK site
covers this in a post on Spanning or overlapping deletions]. This is handled in vcfR by allowing the
user to decide how it is handled with the paramenter asterisk_as_del. When asterisk_as_del
is TRUE this allele is converted into a deletion (’-’). When asterisk_as_del is FALSE the asterisk
allele is converted to NA. If extract.indels is set to FALSE it should override this decision.

Conversion of polyploid data is currently not supported. However, I have made some attempts at
accomodating polyploid data. If you have polyploid data and are interested in giving this a try, feel
free. But be prepared to scrutinize the output to make sure it appears reasonable.

Creation of DNADbin objects from large chromosomal regions may result in objects which occupy
large amounts of memory. If in doubt, begin by subsetting your data and the scale up to ensure you
do not run out of memory.

See Also

ape

Examples

library(ape)
data(vcfR_test)

https://gatk.broadinstitute.org/hc/en-us/articles/360035531912-Spanning-or-overlapping-deletions-allele-
https://cran.r-project.org/package=ape

vcfR2hapmap

Create an example reference sequence.

nucs <- c('a','c','g','t")

set.seed(9)

myRef <- as.DNAbin(matrix(nucs[round(runif(n=20, min=0.5, max=4.5))]1, nrow=1))

Recode the POS data for a smaller example.
set.seed(99)
vcfR_test@fix[, 'POS'] <- sort(sample(10:20, size=length(getPOS(vcfR_test))))

Just vcfR

myDNA <- vcfR2DNAbin(vcfR_test)
seg.sites(myDNA)

image (myDNA)

ref.seq, no start.pos

myDNA <- vcfR2DNAbin(vcfR_test, ref.seq = myRef)
seg.sites(myDNA)

image (myDNA)

ref.seq, start.pos = 4.

Note that this is the same as the previous example but the variants are shifted.
myDNA <- vcfR2DNAbin(vcfR_test, ref.seq = myRef, start.pos = 4)

seg.sites(myDNA)

image (myDNA)

ref.seq, no start.pos, unphased_as_NA = FALSE

myDNA <- vcfR2DNAbin(vcfR_test, unphased_as_NA = FALSE, ref.seq = myRef)
seg.sites(myDNA)

image (myDNA)

53

vcfR2hapmap Convert a vcfR object to hapmap

Description

Converts a vcfR object to hapmap

Usage

vcfR2hapmap (vef)
Arguments

vef a vcfR object.
Details

Converts a vcfR object to a hapmap format.

54 vcfR2migrate

Value

a data.frame that can be used as an input for GAPIT.

Author(s)

Brian J. Knaus

Examples

data(vcfR_test)
myHapMap <- vcfR2hapmap(vcfR_test)
class(myHapMap)
Not run:
Example of how to create a (GAPIT compliant) HapMap file.
write.table(myHapMap,
file = "myHapMap.hmp.txt",
sep = "\t",
row.names = FALSE,
col.names = FALSE)

End(Not run)

vcfR2migrate Convert a vcfR object to MigrateN input file

Description

The function converts a vcfR object to a text format that can be used as an infile for MigrateN.

Usage

vcfR2migrate(
vcf,
pop,
1n_pop,
out_file = "MigrateN_infile.txt",
method = c("N", "H")

)
Arguments
vcf a vcfR object.
pop factor indicating population membership for each sample.
in_pop vector of population names indicating which population to include in migrate
output file.
out_file name of output file.

method should "N’ or "H’ format data be generated?

vcfR_example 55

Details

This function converts a vcfR object to a text file which can be used as input for MigrateN. The
function will remove loci with missing data, indels, and loci that are not bialleleic (loci with more
than two alleles). Thus, only SNP data analysed where the length of each locus (inmutational steps)
is 1 (as opposed to microsatellites or indels).

The output file should contain Unix line endings ("\n"). Note that opening the output file in a
Windows text editor (just to validate number of markers, individuals or populations) might change
the end of line character (eol) to a Windows line ending ("\r\n"). This may produce an error running
migrate-n. Because these are typically non-printing characters, this may be a difficult problem
to troubleshoot. The easiest way to circumvent the problem is to transfer the output file to Unix
machine and view it there. If you do introduce Windows line endings you can convert them back to
Unix with a program such as ‘dos2unix‘ or ‘fromdos‘ to change the line endings.

Value

a text file that can be used as an input for MigrateN software (SNP format).

Author(s)
Shankar Shakya and Brian J. Knaus

See Also

Migrate-N website.

Examples

Not run:

data(vcfR_example)

my_pop <- as.factor(paste("pop_", rep(c("A", "B", "C"), each = 6), sep = ""))

vcfR2migrate(vef = vcf , pop = my_pop , in_pop = c("pop_A","pop_C"),
out_file = "my2pop.txt"”, method = 'H")

End(Not run)

vcfR_example Example data for vcfR.

Description

An example dataset containing parts of the *Phytophthora infestans* genome.

Format

A DNADin object, a data.frame and a vcfR object

http://popgen.sc.fsu.edu/Migrate/Migrate-n.html

56 vcfR_test

Details

* dna DNAbin object
o off gff format data.frame
* vcf vcfR object

This data is a subset of the pinfsc50 dataset. It has been subset to positions between 500 and 600
kbp. The coordinate systems of the vcf and gff file have been altered by subtracting 500,000. This
results in a 100 kbp section of supercontig_1.50 that has positional data ranging from 1 to 100 kbp.

Note that it is encouraged to keep package contents small to facilitate easy downloading and instal-
lation. This is why a mitochondrion was chosen as an example. In practice I’ve used this package
on supercontigs. This package was designed for much larger datasets in mind than in this example.

Examples

data(vcfR_example)

vcfR_test Test data for vcfR.

Description

A test file containing a diversity of examples intended to test functionality.

Format

A vcfR object

Details

* vcfR_test vcfR object

This data set began as the example (section 1.1) from The Variant Call Format Specification VCFv4.3
. This data consisted of 3 samples and 5 variants. As I encounter examples that challenge the code
in vcfR they can be added to this data set.

Examples

data(vcfR_test)

Not run:
When I add data it can be saved with this command.
save(vcfR_test, file="data/vcfR_test.RData")

http://samtools.github.io/hts-specs/

vep 57

End(Not run)

vep Example data from the Variant Effect Predictor (VEP).

Description

Example data to use with unit tests.

Format

A vcfR object

Details

* vep vcfR object

Output from the VEP may include values with multiple equals signs. This does not appear to
conform with the VCF specification (at the time of writing this VCF v4.3). But it appears fairly
easy to accomodate. This example data can be used to make unit tests to validate functionality.

Examples

data(vep)
vcfR2tidy(vep, info_only = TRUE)$fix

Windowing Create window summaries of data

Description

Create windows of non-overlapping data and summarize.

Usage
NM2winNM(x, pos, maxbp, winsize = 100L, depr = TRUE)
z.score(x)

windowize.NM(x, pos, starts, ends, summary = "mean”, depr = TRUE)

https://useast.ensembl.org/info/docs/tools/vep/index.html
http://samtools.github.io/hts-specs/

58 write.fasta

Arguments
X A NumericMatrix
pos A vector of chromosomal positions for each row of data (variants)
maxbp Length of chromosome
winsize Size (in bp) for windows
depr logical (T/F), this function has been deprecated, set to FALSE to override.
starts integer vector of starting positions for windows
ends integer vector of ending positions for windows
summary string indicating type of summary (mean, median, sum)
Details

The numeric matrix where samples are in columns and variant data are in rows. The windowing
process therefore occurs along columns of data. This matrix could be created with extract.gt.

The chromosome is expected to contain positions 1 though maxbp. If maxbp is not specified this
can be inferred from the last element in pos.

write.fasta Create fasta format output

Description

Generate fasta format output

Usage

write.fasta(
X,
file = ",
rowlength = 80,
tolower = TRUE,
verbose = TRUE,
APPEND = FALSE,

depr = TRUE
)
Arguments
X object of class chromR
file name for output file
rowlength number of characters each row should not exceed
tolower convert all characters to lowercase (T/F)
verbose should verbose output be generated (T/F)
APPEND should data be appended to an existing file (T/F)

depr logical (T/F), this function has been deprecated, set to FALSE to override.

write.var.info 59

Details

The function write_fasta takes an object of class chromR and writes it to a fasta.gz (gzipped text)
format file. The sequence in the seq slot of the chromR object is used to fill in the invariant sites.
The parameter tolower’, when set to TRUE, converts all the characters in teh sequence to lower
case. This is important because some software, such as ape::DNAbin, requires sequences to be in
lower case.

write.var.info Write summary tables from chromR objects

Description

Write summary tables from chromR objects.

Usage
write.var.info(x, file = "", mask = FALSE, APPEND = FALSE)

write.win.info(x, file "" APPEND = FALSE)

Arguments
X An object of class chromR
file A filename for the output file
mask logical vector indicating rows to use
APPEND logical indicating whether to append to existing file (omitting the header) or
write a new file
Details

The function write.var.info takes the variant information table from a chromR object and writes it
as a comma delimited file.

The function write.win.info takes the window information table from a chromR object and writes
it as a comma delimited file.

See Also

write.vcf

Index

+ datasets

chromR_example, 10

vcfR_example, 55

vcfR_test, 56

vep, 57
[,vcfR,ANY, ANY, ANY-method

(show, vcfR-method), 46

[,vcfR-method (show, vcfR-method), 46

AD_frequency, 4

addID, 3

alleles2consensus (Genotype matrix
functions), 27

ann2chromR (create.chromR), 15

check_keys, 5
chrom (chromR_example), 10
chromo, /8
chromo (chromo_plot), 6
chromo_plot, 6
chromoqc (chromo_plot), 6
chromR functions, 7
chromR, chromR-method

(show, chromR-method), 45
chromR-class, 8
chromR2vcfR, 9
chromR_example, 10
Convert to tidy data frames, 10
create.chromR, 15

dim,vcfR-method (show, vcfR-method), 46

dim.vcfR (show,vcfR-method), 46
dna (vcfR_example), 55
DNAbin, 9, 16

dr.plot, 7

dr.plot (dr.plot elements), 17
dr.plot elements, 17

extract.gt, 12, 18, 33, 42, 58
extract.haps (extract.gt), 18

extract.indels (extract.gt), 18
extract.info (extract.gt), 18
extract_gt_tidy, 1/

extract_gt_tidy (Convert to tidy data

frames), 10
extract_info_tidy, 11, 12
extract_info_tidy (Convert to tidy

data frames), 10

Format conversion, 20
freq_peak, 22
freq_peak_plot, 24

genetic_diff, 26, 38

Genotype matrix functions, 27

get.alleles (Genotype matrix
functions), 27

getALT (getFIX), 28

getALT, chromR-method (getFIX), 28

getALT,vcfR-method (getFIX), 28

getCHROM (getFIX), 28

getCHROM, chromR-method (getFIX), 28

getCHROM, vcfR-method (getFIX), 28

getFILTER (getFIX), 28

getFILTER, chromR-method (getFIX), 28

getFILTER, vcfR-method (getFIX), 28

getFIX, 28

getFIX,chromR-method (getFIX), 28

getFIX,vcfR-method (getFIX), 28

getID (getFIX), 28

getID,chromR-method (getFIX), 28

getID,vcfR-method (getFIX), 28

getINFO (getFIX), 28

getINFO, chromR-method (getFIX), 28

getINFO, vcfR-method (getFIX), 28

getPOS (getFIX), 28

getPOS, chromR-method (getFIX), 28

getPOS, vcfR-method (getFIX), 28

getQUAL (getFIX), 28

getQUAL, chromR-method (getFIX), 28

INDEX

getQUAL, vcfR-method (getFIX), 28
getREF (getFIX), 28

getREF, chromR-method (getFIX), 28
getREF,vcfR-method (getFIX), 28
gff (vcfR_example), 55

grep, 43

gt.to.popsum (gt2popsum), 29
gt2popsum, 29

head (show, vcfR-method), 46
head, chromR-method
(show, chromR-method), 45
head, vcfR-method (show, vcfR-method), 46
heatmap, 31
heatmap.bp, 30

image, 31

INFO2df, 32

is.biallelic (query.gt), 41
is.het (is_het), 33

is.indel (extract.gt), 18
is.polymorphic (query.gt), 41
is_biallelic (query.gt), 41
is_het, 33

isoMDS, 37

length, chromR-method
(show, chromR-method), 45

maf, 34

masker (chromR functions), 7
masplit, 34

metaINFO2df (INFO2df), 32
metaMDS, 37

monoMDS, 37

names<-,chromR, character-method
(show, chromR-method), 45

NM2winNM (Windowing), 57

nrow, vcfR-method (show, vcfR-method), 46

nrow.vcfR (show,vcfR-method), 46

null.plot (dr.plot elements), 17

ordisample, 36

pairwise_genetic_diff, 38
peak_to_ploid, 39
plot, chromR-method

(show, chromR-method), 45
plot,vcfR-method (show,vcfR-method), 46

61

Population genetics summaries
(gt2popsum), 29
print,chromR-method
(show, chromR-method), 45
proc.chromR (Process chromR objects), 40
Process chromR objects, 40

query.gt, 41
queryMETA, 42

rank.variants.chromR (Ranking), 43
Ranking, 43
rbind2,vcfR, ANY-method

(show, vcfR-method), 46
rbind2,vcfR,missing-method

(show, vcfR-method), 46
rbind2,vcfR,vcfR-method

(show, vcfR-method), 46
rbind2.vcfR (show,vcfR-method), 46
read.vcfR (VCF input and output), 48
rect, I8
regex, 43
regex.win (Process chromR objects), 40
reP0S, 44

seq2chromR (create.chromR), 15
seq2rects (Process chromR objects), 40
show, chromR-method, 45

show, vefR-method, 46

tolower, 8

var.win (Process chromR objects), 40

variant.table (chromR functions), 7

vcf (vefR_example), 55

VCF input and output, 48

vcf2chromR (create.chromR), 15

vcf_field_names (Convert to tidy data
frames), 10

vcf_test (vcfR_test), 56

vcfR, 38

vcfR-class, 50

vcfR2chromR (create.chromR), 15

vcfR2DNAbin, 51

vcfR2genind (Format conversion), 20

vcfR2genlight (Format conversion), 20

vcfR2hapmap, 53

vcfR2loci (Format conversion), 20

vcfR2migrate, 54

62 INDEX

vcfR2tidy (Convert to tidy data
frames), 10

vcfR_example, 55

vcfR_test, 56

vegdist, 36, 37

vep, 57

win.table (chromR functions), 7
Windowing, 57

windowize.NM (Windowing), 57
write.fasta, 58

write.var.info, 59

write.vcf, 59

write.vcf (VCF input and output), 48
write.win.info (write.var.info), 59

z.score (Windowing), 57

	addID
	AD_frequency
	check_keys
	chromo_plot
	chromR functions
	chromR-class
	chromR2vcfR
	chromR_example
	Convert to tidy data frames
	create.chromR
	dr.plot elements
	extract.gt
	Format conversion
	freq_peak
	freq_peak_plot
	genetic_diff
	Genotype matrix functions
	getFIX
	gt2popsum
	heatmap.bp
	INFO2df
	is_het
	maf
	masplit
	ordisample
	pairwise_genetic_diff
	peak_to_ploid
	Process chromR objects
	query.gt
	queryMETA
	Ranking
	rePOS
	show,chromR-method
	show,vcfR-method
	VCF input and output
	vcfR-class
	vcfR2DNAbin
	vcfR2hapmap
	vcfR2migrate
	vcfR_example
	vcfR_test
	vep
	Windowing
	write.fasta
	write.var.info
	Index

