Package ‘trip’

June 29, 2023
Type Package
Title Tracking Data
Version 1.10.0
Depends R (>=3.3.0)

Imports geodist, MASS, methods, raster, reproj, sp, spatstat.geom,
spatstat.explore, glue, viridis, traipse (>= 0.2.0), crsmeta,
dplyr, rlang

Suggests adehabitatLT, knitr, testthat, covr, rmarkdown, lubridate,
maps, spelling, lattice

Description Access and manipulate spatial tracking data, with straightforward
coercion from and to other formats. Filter for speed and create time spent
maps from tracking data. There are coercion methods to convert between 'trip'
and 'ltraj' from 'adehabitatLT', and between 'trip' and 'psp' and 'ppp' from
'spatstat'. Trip objects can be created from raw or grouped data frames, and
from types in the 'sp', sf', 'amt’, 'trackeR', 'mousetrap’, and other packages,
Sumner, MD (2011) <https:
//figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538>.

URL https://github.com/Trackage/trip

BugReports https://github.com/Trackage/trip/issues
NeedsCompilation no

ByteCompile yes

License GPL-3

LazyData yes

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

Author Michael D. Sumner [aut, cre],
Sebastian Luque [ctb],
Anthony Fischbach [ctb],
Tomislav Hengl [ctb]

https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538
https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538
https://github.com/Trackage/trip
https://github.com/Trackage/trip/issues

R topics documented:

Maintainer Michael D. Sumner <mdsumner@gmail . com>

Repository CRAN

Date/Publication 2023-06-29 14:30:02 UTC

R topics documented:

Index

trip-package L 3
adjust.duplicateTimes 3
ArgoS.SIZMA .« . . v v v e e e e e e e e e e 4
as.Other L e 5
ASATIP . o o e e e e e 6
CULLLID . . . o o o o e e e 7
forceCompliance e 9
homedist. e 10
interp_equal 11
makeGridTopology 11
octheme e 12
TASLEIIZE . . . v v v e e e e e e e e e e e e e e e 13
readArg0S L e 14
TEPIOJ « v v e e e e e e e e e e e e e e e e 16
sda . . e 17
sepldGaps L e e 17
speedfilter e 18
TimeOrderedRecords 20
TimeOrderedRecords-class L 20
trackAngle L e 21
trackDistance e 22
trIP-ACCESSOIS « . . v v v v e i e e e e e e e e e e e 23
trip-class L e e 24
trip-methods 25
trip.Split.eXact e e e 27
tripGrid e e 28
tripGridanterp e e e e e 29
walrus818 30
world_north L e 30
write_track_kmlo 31

trip-package 3

trip-package trip.

Description

Functions for accessing and manipulating spatial data for animal tracking, with straightforward
coercion from and to other formats. Filter for speed and create time spent maps from animal track
data. There are coercion methods to convert between ’trip’ and ’ltraj’ from ’adehabitatLT’, and
between 'trip’ and ’psp’ and *ppp’ from ’spatstat’. Trip objects can be created from raw or grouped
data frames, and from types in the ’sp’, ’sf’, amt’, ’trackeR’, and other packages.

adjust.duplicateTimes Adjust duplicate DateTime values

Description

Duplicated DateTime values within ID are adjusted forward (recursively) by one second until no
duplicates are present. This is considered reasonable way of avoiding the nonsensical problem of
duplicate times.

Usage

adjust.duplicateTimes(time, id)

Arguments

time vector of DateTime values

id vector of ID values, matching DateTimes that are assumed sorted within ID
Details

This function is used to remove duplicate time records in animal track data, rather than removing
the record completely.

Value

The adjusted DateTime vector is returned.

Warning

I have no idea what goes on at CLS when they output data that are either not ordered by time or
have duplicates. If this problem exists in your data it’s probably worth finding out why.

See Also

readArgos

4 argos.sigma

Examples

DateTimes with a duplicate within ID
tms <- Sys.time() + c(1:6, 6, 7:10) *10
id <- rep(”"a", length(tms))
range(diff(tms))

duplicate record is now moved one second forward
tms.adj <- adjust.duplicateTimes(tms, id)
range(diff(tms.adj))

argos.sigma Assign numeric values for Argos "class"

Description

Assign numeric values for Argos "class" by matching the levels available to given numbers. An
adjustment is made to allow sigma to be specified in kilometres, and the values returned are the
approximate values for longlat degrees. It is assumed that the levels are part of an "ordered" factor
from least precise to most precise.

Usage

argos.sigma(x, sigma = c(100, 80, 50, 20, 10, 4, 2), adjust = 111.12)

Arguments

X factor of Argos location quality "classes"

sigma numeric values (by default in kilometres)

adjust a numeric adjustment to convert from kms to degrees
Details

The available levels in Argos are levels=c("z2", "B", "A", "@", "1","2", "3").

The actual sigma values given by default are (as far as can be determined) a reasonable stab at what
Argos believes.

Value

Numeric values for given levels.

as.Other 5

Examples

cls <- ordered(sample(c("Z", "B", "A", "0", "1", "2", "3"), 30,
replace=TRUE),
levels=c("z", "B", "A", "o", "1", "2", "3"))
argos.sigma(cls)

as.Other As ("trip", other-classes)

Description

Coercing trip objects to other classes.
Function to create a SpatialLinesDataFrame from a trip object, resulting in a line segment for each
implicit segment along the tracks. The object stores the start and end times, duration and the ID of
the segment.

Usage

S3 method for class 'trip'
as.ppp(X, ..., fatal)

S3 method for class 'trip'
as.psp(x, ..., from, to)

as.track_xyt.trip(x, ..., from, to)

explode(x, ...)

Arguments
X trip object.
reserved for future methods
fatal Logical value, see Details of as.ppp
X trip object
from see as. psp for that method.

to See as.psp.

6 as.trip

Value

ppp object
psp object
SpatialLinesDataFrame

SpatialLinesDataFrame object with each individual line segment identified by start/end time and
trip ID

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
sp::coordinates(d) <- ~xty
tr <- trip(d, c("tms"”, "id"))

as(tr, "ppp")
d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d, c("tms"”, "id"))

as(tr, "psp")

as.psp(tr)

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d)

spldf <- explode(tr)
summary (tr)

as.trip Coercion from other classes to trip objects

Description

Coercing objects to trip class

Usage
as.trip(x, ...)
Arguments
X, Itr Itraj object
Arguments passed to other methods. Ignored for 1traj method.
Value

S4 trip object

cut.trip 7

Methods

coerce signature(from="1traj", to="trip")

as.trip signature(x="1traj")

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d)
if (require(adehabitatLT)) {

1 <- as(tr, "ltraj")

ltraj2trip(l)

as.trip(l)

cut.trip Split trip events into exact time-based boundaries.

Description

Split trip events within a single object into exact time boundaries, adding interpolated coordinates
as required.

Usage
S3 method for class 'trip'
cut(x, breaks, ...)
Arguments
X A trip object.
breaks A character string such as the breaks argument for cut . POSIXt, or alternatively

a vector of date-time boundaries. (If the latter these must encompass all the time
range of the entire trip object.)

Unused arguments.

Details

Motion between boundaries is assumed linear and extra coordinates are added at the cut points.

This function was completely rewritten in version 1.1-20.

Value

list of S4 trip objects, each with aligned boundaries in time based on cutting the input into intervals

A list of trip objects, named by the time boundary in which they lie.

8 cut.trip

Author(s)

Michael D. Sumner and Sebastian Luque

See Also

See also tripGrid.

Examples

set.seed(66)
d <- data.frame(x=1:100, y=rnorm(100, 1, 10),
tms= as.POSIXct(as.character(Sys.time()), tz = "GMT") + c(seq(10, 1000, length=50),
seq(100, 1500, length=50)), id=gl(2, 50))
sp::coordinates(d) <- ~xty
tr <- trip(d, c("tms"”, "id"))

cut(tr, "200 sec")

bound.dates <- seq(min(tr$tms) - 1, max(tr$tms) + 1, length=5)
trip.list <- cut(tr, bound.dates)

bb <- sp::bbox(tr)

cn <- c(20, 8)

g <- sp::GridTopology(bb[, 11, apply(bb, 1, diff) / (cn - 1), cn)

tg <- tripGrid(tr, grid=g)

tg <- sp::as.image.SpatialGridDataFrame(tg)
tg$x <- tg$x - diff(tg$x[1:2]) / 2

tg$y <- tg$y - diff(tg$yl1:2]1) / 2

op <- par(mfcol=c(4, 1))

for (i in 1:length(trip.list)) {
plot(sp::coordinates(tr), pch=16, cex=0.7)
title(names(trip.list)[i], cex.main=0.9)
lines(trip.list[[i]])
abline(h=tg$y, v=tg$x, col="grey")
image(tripGrid(trip.list[[i]], grid=g), interpolate=FALSE,
col=c("white", grey(seq(@.2, 0.7, length=256))),add=TRUE)
abline(h=tg$y, v=tg$x, col="grey")
lines(trip.list[[i]])
points(trip.list[[i]], pch=16, cex=0.7)

3

par(op)
print(”"you may need to resize the window to see the grid data”)

cn <- c(200, 80)
g <- sp::GridTopology(bb[, 11, apply(bb, 1, diff) / (cn - 1), cn)

tg <- tripGrid(tr, grid=g)
tg <- sp::as.image.SpatialGridDataFrame(tg)

forceCompliance 9

tgdx <- tgbx - diff(tg$x[1:21) / 2
tgsy <- tgby - diff(tgsy[1:21) / 2

op <- par(mfcol=c(4, 1))
for (i in 1:length(trip.list)) {
plot(sp::coordinates(tr), pch=16, cex=0.7)
title(names(trip.list)[i], cex.main=0.9)
image(tripGrid(trip.list[[i]], grid=g, method="density", sigma=1),
interpolate=FALSE,
col=c("white", grey(seq(0.2, 0.7, length=256))),
add=TRUE)
lines(trip.list[[i]])
points(trip.list[[i]], pch=16, cex=0.7)
3

par(op)
print("you may need to resize the window to see the grid data”)

data(”"walrus818", package = "trip")

library(lubridate)

walrus_list <- cut(walrus818, seq(floor_date(min(walrus818$DataDT), "month"),
ceiling_date(max(walrus818$DataDT), "month"), by = "1 month"))

g <- rasterize(walrus818) x NA_real_

stk <- raster::stack(lapply(walrus_list, rasterize, grid = g))

st <- raster::aggregate(stk, fact = 4, fun = sum, na.rm = TRUE)

st[!st > @] <- NA_real_

plot(st, col = oc.colors(52))

forceCompliance Function to ensure dates and times are in order with trip ID

Description

A convenience function, that removes duplicate rows, sorts by the date-times within ID, and re-
moves duplicates from a data frame or SpatialPointsDataFrame.

Usage

forceCompliance(x, tor)

Arguments

X data.frame or SpatialPointsDataFrame-class

tor character vector of names of date-times and trip ID columns

10 homedist

Value

data.frame or SpatialPointsDataFrame-class.

Note

It’s really important that data used are of a given quality, but this function makes the most common
trip problems easy to apply.

See Also

trip

homedist Calculate maximum distance from 'home’ for each trip

Description

This function returns a distance from a given home’ coordinate for each individual trip. Use the
home argument to provide a single, common 2-element (x,y or lon,lat) coordinate. If home is NULL
(the default), then each individual trip’s first location is used.

Usage

homedist(x, home = NULL)

Arguments
X trip object
home see details
Value

numeric vector of distances in km (for longlat), or in the units of the trip’s projection

See Also

spDistsN1

interp_equal 11

interp_equal Track intermediate points

Description

Calculate great circle intermediate points on longitude, latitude input vectors. A spherical model is
used, from the geosphere package.

Usage

interp_equal(x, distance = NULL, duration = NULL)

Arguments
X trip object
distance optional minimum distance (metres) between interpolated points
duration optional minimum duration (seconds) between interpolated points
Details

For the result to be sensible, the input must either be in longitude/latitude, or be in a projection
and have a valid CRS. Great circle movement is assumed, there’s no way to use this to interpolate
equal-distance in the native projection.

If no input distance or duration is provided a default is used of 15 points between each input
point.

if both distance AND duration is provided, distance is ignored.

Note, the original implementation of this function was called ’interpequal()’, and was used for time
spent calculations. The functionality is now provided by the traipse package.

Value

S4 trip object with interpolated new locations based on distance or duration parameters

makeGridTopology Generate a GridTopology from a Spatial object

Description

Sensible defaults are assumed, to match the extents of data to a manageable grid.

12 oc.theme

Usage
makeGridTopology(
obj,
cells.dim = c(100, 100),
xlim = NULL,
ylim = NULL,
buffer = 0,

cellsize = NULL,
adjust2longlat = FALSE

)
Arguments
obj any Spatial object, or other object for which bbox will work
cells.dim the number of cells of the grid, x then y
x1lim x limits of the grid
ylim y limits of the grid
buffer proportional size of the buffer to add to the grid limits
cellsize pixel cell size

adjust2longlat assume cell size is in kilometres and provide simple adjustment for earth-radius
cells at the north-south centre of the grid

Details

Approximations for kilometres in longlat can be made using cellsize and adjust2longlat.

Value

S4 class GridTopology with properties set variously from input parameters

oc.theme SeaWiF'S ocean colour colours

Description

Generate ocean colour colours, using the SeaWiFS scheme

Usage

oc.theme(x = 50)

oc.colors(n)

rasterize

Arguments
X Number of colours to generate as part of a theme
n Number of colours to generate

Details

This is a high-contrast palette, log-scaled originally for ocean chlorophyll.

Value

A set of colours or a theme object.

See Also

Similar functions in sp spplot, bpy.colors

Examples

oc.colors(10)
library(lattice)
trellis.par.set(oc.theme())

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

tr <- trip(d)

tg <- tripGrid(tr)
plot(tg)

13

rasterize Rasterize trip objects based on line-segment attributes.

Description

Trip rasterize.

Arguments
X trip object
y Raster* object
field attribute from which differences will be calculated, defaults to the time-stamp
between trip locations
Value

RasterLayer

14 readArgos

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d, c("tms", "id"))

tr$temp <- sort(runif(nrow(tr)))
r <- rasterize(tr)

rasterize(tr, grid = r)
rasterize(tr, r, field = "temp")
rasterize(tr, method = "density")

rasterize(tr, method = "density”, grid = r)

rasterize(tr, r, field = "tms")
rasterize(tr, r)

readArgos Read Argos "DAT" or "DIAG" files

Description

Return a (Spatial) data frame of location records from raw Argos files. Multiple files may be read,
and each set of records is appended to the data frame in turn. Basic validation of the data is enforced
by default.

Usage

readArgos(
X!
correct.all = TRUE,
dtFormat = "%Y-%m-%d %H:%M:%S",
tz = "GMT",
duplicateTimes.eps = 0.01,
p4 = "+proj=longlat +ellps=WGS84",
verbose = FALSE,
read_alt = NULL,

)

readDiag(x, return_trip = FALSE, read_alt = 1L, ...)
Arguments

X vector of file names of Argos "DAT" or "DIAG" files.

correct.all logical - enforce validity of data as much as possible? (see Details)

readArgos 15

dtFormat the DateTime format used by the Argos data "date" and "time" pasted together

tz timezone - GMT/UTC is assumed
duplicateTimes.eps
what is the tolerance for times being duplicate?

p4 PROJ.4 projection string, "+proj=longlat +ellps=WGS84" is assumed
verbose if TRUE, details on date-time adjustment is reported
read_alt is NULL by default, with longitude and latitude read from the PRV message, if

1 or 2 then attempt is made to read the alternative locations (but these are not
always present)

reserved for future use

return_trip for readDiag() if TRUE will return a trip object, use read_alt to control the
location

Details
readArgos performs basic validation checks for class trip are made, and enforced based on
correct.all:

No duplicate records in the data, these are simply removed. Records are ordered by DateTime

"non

("date", "time", "gmt") within ID ("ptt"). No duplicate DateTime values within ID are allowed: to
enforce this the time values are moved forward by one second - this is done recursively and is not
robust.

If validation fails the function will return a SpatialPointsDataFrame-class. Files that are not
obviously of the required format are skipped.

Argos location quality data "class" are ordered, assuming that the available levels is levels=c("Z2",
IIB” s HAH , Il@ll R II-I n , 112" , II3”).

A projection string is added to the data, assuming the PROJ.4 longlat - if any longitudes are greater
than 360 the PROJ.4 argument "+over" is added.

readDiag simply builds a data. frame.

With read_alt the default value NULL returns the PRV location as-is. Some files may have a
standardized location, and a dummy. If read_alt is set to 1 or 2 the corresponding "alternative"
location is returned. 1 is a standardized location corresponding to the original PRV message, and 2
is a "dummy" location.

Value

readArgos returns a trip object, if all goes well, or simply a SpatialPointsDataFrame-class.

readDiag returns a data. frame with 8 columns:

* lon1,lat1 first pair of coordinates

* lon1,lat1 second pair of coordinates

* gmt DateTimes as POSIXct

¢ id Platform Transmitting Terminal (PTT) ID
* Iq Argos location quality class

* iq some other thing

16 reproj

Warning

This works on some Argos files I have seen.

References

The Argos data documentation was (ca. 2003) at http://www.argos-system.org/manual. Specific de-
tails on the PRV ("provide data") format were found in Chapter 4_4_8, originally at ’http://www.cls.fr/manuel/html/chap4/cha

See Also

trip, SpatialPointsDataFrame-class, adjust.duplicateTimes, for manipulating these data,
and argos. sigma for relating a numeric value to Argos quality "classes".

sepIdGaps for splitting the IDs in these data on some minimum gap.

order, duplicated,, ordered for general manipulation of this type.

Examples

argosfile <-
system.file("extdata/argos/98feb.dat”, package = "trip"”, mustWork = TRUE)
argos <- readArgos(argosfile)

reproj Reprojection

Description

A reproj method for trip objects.

Usage

S3 method for class 'trip'

reproj(x, target, ..., source = NULL)
Arguments

X trip object

target target projection

ignored

source projection of source data, usually ignore this for trips

Value

a trip reprojected to ’target’

sda 17

sda Filter track for speed, distance and angle.

Description

Create a filter index of a track for "bad" points with a combination of speed, distance and angle
tests.

Usage

sda(x, smax, ang = c(15, 25), distlim = c(2.5, 5), pre = NULL)

Arguments
X trip object
smax maximum speed, in km/h
ang minimum turning angle/s in degrees
distlim maximum step lengths in km
pre include this filter in the removal
Details

This is an independent implementation from that in the package argosfilter by Freitas 2008.

Value

logical vector, with FALSE values where the tests failed

References

Freitas, C., Lydersen, C., Fedak, M. A. and Kovacs, K. M. (2008), A simple new algorithm to filter
marine mammal Argos locations. Marine Mammal Science, 24: 3157V325. doi: 10.1111/j.1748-
7692.2007.00180.x

sepIldGaps Separate a set of IDs based on gaps

Description

A new set of ID levels can be created by separating those given based on a minimum gap in another
set of data. This is useful for separating instruments identified only by their ID into separate events
in time.

18 speedfilter

Usage
sepIdGaps(id, gapdata, minGap = 3600 * 24 * 7)

Arguments

id existing ID levels

gapdata data matching id with gaps to use as separators

minGap the minimum "gap" to use in gapdata to create a new ID level
Details

The assumption is that a week is a long time for a tag not to record anything.

Value
A new set of ID levels, named following the pattern that "ID" split into 3 would provided "ID",
"ID_2" and "ID_3".

Warning
It is assumed that each vector provides is sorted by gapdata within id. No checking is done, and
so it is suggested that this only be used on ID columns within existing, validated trip objects.

See Also

trip

Examples

id <- gl(2, 8)

gd <- Sys.time() + 1:16

gdlc(4:6, 12:16)] <- gd[c(4:6, 12:16)] + 10000
sepIldGaps(id, gd, 1000)

speedfilter Filter track data for speed

Description

Create a filter of a track for "bad" points implying a speed of motion that is unrealistic.

Usage
speedfilter(x, max.speed = NULL, test = FALSE)

speedfilter 19

Arguments
X trip object
max . speed speed in kilometres (or other unit) per hour, the unit is kilometres if the trip is in
longitude latitude coordinates, or in the unit of the projection projection (usually
metres per hour)
test cut the algorithm short and just return first pass
Details

Using an algorithm (McConnnell et al., 1992), points are tested for speed between previous / next
and 2nd previous / next points. Contiguous sections with an root mean square speed above a given
maximum have their highest rms point removed, then rms is recalculated, until all points are below
the maximum. By default an (internal) root mean square function is used, this can be specified by
the user.

If the coordinates of the trip data are not projected, or NA the distance calculation assumes longlat
and kilometres (great circle). For projected coordinates the speed must match the units of the
coordinate system. (The PROJ.4 argument "units=km" is suggested).

Value

Logical vector matching positions in the coordinate records that pass the filter.

Warning

This algorithm is destructive, and provides little information about location uncertainty. It is pro-
vided because it’s commonly used and provides an illustrative benchmark for further work.

It is possible for the filter to become stuck in an infinite loop, depending on the function passed to
the filter. Several minutes is probably too long for hundreds of points, test on smaller sections if
unsure.
Note
This algorithm was originally taken from IDL code by David Watts at the Australian Antarctic
Division, and used in various other environments before the development of this version.
Author(s)
David Watts and Michael D. Sumner

References

The algorithm comes from McConnell, B. J. and Chambers, C. and Fedak, M. A. (1992) Foraging
ecology of southern elephant seals in relation to the bathymetry and productivity of the southern
ocean. Antarctic Science 4 393-398

See Also

sda for a fast distance angle filter to combine with speed filtering

20 TimeOrderedRecords-class

TimeOrderedRecords TimeOrderedRecords

Description

Object to identify DateTimes and IDs in a Spatial object.

Usage

TimeOrderedRecords(x)

Arguments
X Character vector of 2 elements specifying the data columns of DateTimes and
IDs
Value

TimeOrderedRecords holds a 2-element character vector, naming the data columns of DateTimes
and IDs.

Examples

##' tor <- TimeOrderedRecords(c("datetime”, "ID"))

TimeOrderedRecords-class
A class for the identifiers of DateTime and ID records in spatial data.

Description
The main use of this class and creator function is for SpatialPointsDataFrame-classs which are
used with TimeOrderedRecords for the class trip.

Value

S4 object, TimeOrderedRecords (a class to hold the names of the date-time and id columns)

Slots

TOR.columns: 2-element vector of class "character”

Note

Future versions may change significantly, this class is very basic and could probably be imple-
mented in a better way. Specifying TOR columns by formula would be a useful addition.

trackAngle 21

See Also

TimeOrderedRecords, trip for creating trip objects, and trip-class for that class

Examples

showClass("TimeOrderedRecords")
tor <- new("TimeOrderedRecords”, TOR.columns=c("datetime”, "ID"))

trackAngle Determine internal angles along a track

Description

Calculate the angles between subsequent 2-D coordinates using Great Circle distance (spherical)
methods.

Usage

trackAngle(x)

S3 method for class 'trip'
trackAngle(x)

Default S3 method:
trackAngle(x)

Arguments

X trip object, or matrix of 2-columns, with x/y coordinates

Details

If x is a trip object, the return result has an extra element for the start and end point of each individual
trip, with value NA.

This is an optimized hybrid of "raster::bearing" and "maptools::gzAzimuth". New code is in the
traipse package.

Value

Vector of angles (degrees) between coordinates.

22 trackDistance

trackDistance Determine distances along a track

Description
Calculate the distances between subsequent 2-D coordinates using Euclidean or Great Circle dis-
tance (WGS84 ellipsoid) methods.

Usage

trackDistance(x1, y1, x2, y2, longlat = TRUE, prev = FALSE)

Arguments
x1 trip object, matrix of 2-columns, with x/y coordinates OR a vector of x start
coordinates
y1 vector of y start coordinates, if x1 is not a matrix
X2 vector of x end coordinates, if x1 is not a matrix
y2 vector of y end coordinates, if x1 is not a matrix
longlat if FALSE, Euclidean distance, if TRUE Great Circle distance
prev if TRUE and x1 is a trip, the return value has a padded end value (\"prev\"ious),
rather than start (\"next\")
Details

If x1 is a trip object, arguments x2, x3, y2 are ignored and the return result has an extra element for
the start point of each individual trip, with value 0.0.

The prev argument is ignore unless x1 is a trip.

Distance values are in the units of the input coordinate system when longlat is FALSE, and in
kilometres when longlat is TRUE.

This originally used spDistsN1, then implemented the sp gcdist source directly in R, and now
uses geodist.

Please see the traipse package for a more modern approach.

Value

Vector of distances between coordinates.

References

Original source taken from sp package, but now using Helmert from Karney (2013) see the geodist
package.

trip-accessors 23

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d, c("tms", "id"))

the method knows this is a trip, so there is a distance for every
point, including @s as the start and at transitions between

individual trips

trackDistance(tr)

the default method does not know about the trips, so this is
##(n-1) distances between all points
trackDistance(coordinates(tr), longlat = FALSE)

we get NA at the start, end and at transitions between trips

angles <- trackAngle(tr)

trip-accessors Functions to retrieve DateTime and ID data from within (Spatial) data
frames.

Description

Functions for retrieving the names of the columns used for DateTime and ID, as well as the data.

Usage
getTORnames (obj)

getTimeID(obj)

S3 method for class 'summary.TORdata'

print(x, ...)
Arguments
obj trip object.
X trip object
currently ignored
Value

getTORnames retrieves the column names from an object extending the class TimeOrderedRecords,
and getTimeID returns the data as a data frame from an object extending the class TimeOrderedRecords.

See Also

trip-class, for the use of this class with SpatialPointsDataFrame-class.

trip

24 trip-class

Examples
tor <- TimeOrderedRecords(c("time"”, "id"))
getTORnames (tor)
trip-class A class for sets of animal trips (track data).
Description

An extension of SpatialPointsDataFrame-class by including "TimeOrderedRecords”. The
records within the data frame are explicitly ordered by DateTime data within IDs.

Objects from the Class

Objects can be created by calls of the form trip(obj="SpatialPointsDataFrame"”, TORnames="TimeOrderedRecords").
The object contains all the slots present within a SpatialPointsDataFrame-class, particularly
data which contains columns of at least those specified by TOR. columns.

See Also

trip for examples of directly using the class.

trip-accessors describes methods for accessing information on trip objects.

Examples

showClass("trip")

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))
tr <- trip(d)

summary (tr)
plot(tr)
lines(tr)

dim(tr)

names(tr)

subset(tr, id == "2")
as.data.frame(tr)

trf1:3, 1
trl, 1]
tr[[1]]

trip-methods 25

trip-methods Function to handle animal track data, organized as trip objects

Description

Create an object of class trip, extending the basic functionality of SpatialPointsDataFrame-class
by specifying the data columns that define the "TimeOrdered" quality of the records.

Usage

trip(obj, TORnames, correct_all = TRUE)
trip(obj) <- value

S4 method for signature 'trip,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'trip,ANY,ANY,ANY'

x[i, j, ..., drop = TRUE]
Arguments
obj A data frame, a grouped data frame or a SpatialPointsDataFrame-class con-
taining at least two columns with the DateTime and ID data as per TORnames.
See Details.
TORnames Either a TimeOrderedRecords object, or a 2-element character vector specify-
ing the DateTime and ID column of obj
correct_all logical value, if TRUE the input data is corrected for common problems
value A 4-element character vector specifying the X, Y, DateTime coordinates and ID
of obj.
X trip object
f grouping vector as per split()
drop unused but necessary for method consistency
i, 3, ... indices specifying elements to extract
Details

The original form of trip() required very strict input as a ’SpatialPointsDataFrame’ and specifying
which were the time and ID columns, but the input can be more flexible. If the object is a grouped
data frame (’dplyr-style’) then the (first) grouping is assumed to define individual trips and that
columns 1, 2, 3 are the x-, y-, time-coordinates in that order. It can also be a trip object for
redefining TORnames.

The trip() function can ingest track_xyt, telemetry, SpatialPointsDataFrame, sf, trackeRdata,
grouped_df, data.frame, tbl_df, mousetrap, and in some cases lists of those objects. Please get
in touch if you think something that should work does not.

26 trip-methods

Track data often contains problems, with missing values in location or time, times out of order or
with duplicated times. The correct_all argument is set to TRUE by default and will report any
inconsistencies. Data really should be checked first rather than relying on this auto-cleanup. The
following problems are common:

* duplicated records (every column with the same value in another row)

* duplicated date-time values

* missing date-time values, or missing x or y coordinates

* records out of order within trip ID
For some data types there’s no formal structure, but a simple convention such as a set of names in
a data frame. For example, the VTrack package has AATAMS1 which may be turned into a trip with

trip(AATAMS1 %>% dplyr::select(longitude, latitude, timestamp, tag.ID, everything())
In time we can add support for all kinds of variants, detected by the names and contents.

See Chapter 2 of the trip thesis for more details.

Value

A trip object, with the usual slots of a SpatialPointsDataFrame-class and the added TimeOrderedRecords.
For the most part this can be treated as a data.frame with Spatial coordinates.

Methods

Most of the methods available are by virtue of the sp package. Some, such as split.data.frame
have been added to SPDF so that trip has the same functionality.
trip signature(obj="SpatialPointsDataFrame"”,TORnames="ANY")The main construction.

trip signature(obj="SpatialPointsDataFrame"”,TORnames="TimeOrderedRecords")Object and
TimeOrdered records class

trip signature(obj="ANY", TORnames="TimeOrderedRecords"): create a trip object from a
data frame.

trip signature(obj="trip"”, TORnames="ANY"): (Re)-create a trip object using a character
vector for TORnames.

trip signature(obj="trip"”, TORnames="TimeOrderedRecords"): (re)-create a trip object us-
ing a TimeOrderedRecords object.

See Also

speedfilter, and tripGrid for simplistic speed filtering and spatial time spent gridding.

Examples

d <- data.frame(x=1:10, y=rnorm(10), tms=Sys.time() + 1:10, id=gl(2, 5))

the simplest way to create a trip is by order of columns

https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538

trip.split.exact

trip(d)

tr <- trip(d)
real world data in CSV
mi_dat <- read.csv(system.file("extdata/MI_albatross_sub10.csv"”, package = "trip"),
stringsAsFactors = FALSE)
mi_dat$gmt <- as.POSIXct(mi_dat$gmt, tz = "UTC")
mi_dat$sp_id <- sprintf("%s%s_%s_%s", mi_dat$species,
substr(mi_dat$breeding_status, 1, 1), mi_dat$band, mi_dat$tag_ID)
sp::coordinates(mi_dat) <- c("lon"”, "lat")
there are many warnings, but the outcome is fine
(sp_id == 'WAi_14030938_2123"' has < 3 locations as does LMi_12143650_14257)
mi_dat <- trip(mi_dat, c("gmt"”, "sp_id"))
plot(mi_dat, pch = ".")
#lines(mi_dat) ## ugly

mi_dat_polar <- reproj(mi_dat, "+proj=stere +lat_0=-90 +lon_0=154 +datum=WGS84")
plot(mi_dat_polar, pch = ".")
lines(mi_dat_polar)

trip.split.exact Deprecated functions in trip

Description

These functions will be declared defunct in a future release.

Usage

as.SpatiallLinesDataFrame.trip(from)
trip.split.exact(x, dates)
as.ltraj.trip(xy)

as.trip.SpatiallLinesDataFrame(from)

Arguments
from trip object
X see cut.trip
dates see cut.trip
Xy trip object
See Also

cut.trip, as.Other

28 tripGrid

tripGrid Generate a grid of time spent by line-to-cell gridding

Description

Create a grid of time spent from an object of class trip by exact cell crossing methods, weighted
by the time between locations for separate trip events.

Usage
tripGrid(x, grid = NULL, method = "pixellate”, ...)
Arguments
X object of class trip
grid GridTopology - will be generated automatically if NULL
method pixellate or density
pass arguments to density.psp if that method is chosen (and temporary mecha-
nism to direct users of legacy methods to tripGrid.interp)
Details

Zero-length lines cannot be summed directly, their time value is summed by assuming the line is
a point. A warning used to be given, but as it achieved nothing but create confusion it has been
removed. The density method returns proportionate values, not summed time durations.

See pixellate.psp and pixellate.ppp for the details on the method used. See density.psp for
method="density".

Trip events are assumed to start and end as per the object passed in. To work with inferred "cutoft"
positions see split.trip.exact.

Value

tripGrid returns an object of class SpatialGridDataFrame, with one column "z" containing the
time spent in each cell in seconds.

tripGrid.interp 29

tripGrid.interp Generate a grid of time spent using approximate methods

Description

Create a grid of time spent from an object of class trip by approximating the time between locations
for separate trip events.

Usage
tripGrid.interp(x, grid = NULL, method = "count"”, dur = NULL, ...)
kdePoints(x, h = NULL, grid = NULL, resetTime = TRUE, ...)

countPoints(x, dur = 1, grid = NULL)

Arguments
X object of class trip
grid GridTopology - will be generated automatically if NULL
method name of method for quantifying time spent, see Details
dur The \"dur\"ation of time used to interpolate between available locations (see
Details)
e other arguments passed to interpequal or kdePoints
h kernel bandwidth
resetTime rescale result back to the total duration of the input
Details

This set of functions was the the original tripGrid from prior to version 1.1-6. tripGrid should be
used for more exact and fast calculations assuming linear motion between fixes.

The intention is for tripGrid.interp to be used for exploring approximate methods of line-to-cell
gridding.

Trip locations are first interpolated, based on an equal-time spacing between records. These interpo-
lated points are then "binned" to a grid of cells. The time spacing is specified by the dur (duration)
argument to interpequal in seconds (i.e. dur=3600 is used for 1 hour). Shorter time periods will
require longer computation with a closer approximation to the total time spent in the gridded result.

Currently there are methods "count" and "kde" for quantifying time spent, corresponding to the
functions "countPoints" and "kdePoints". "kde" uses kernel density to smooth the locations, "count"
simply counts the points falling in a grid cell.

Value

"nn

tripGrid returns an object of class SpatialGridDataFrame, with one column "z" containing the
time spent in each cell in seconds. If kdePoints is used the units are not related to the time values
and must be scaled for further use.

30 world_north

See Also
bandwidth.nrd for the calculation of bandwidth values used internally when not supplied by the
user
walrus818 Walrus tracking data set.
Description

Behavior of Pacific Walruses Tracked from the Alaska Coast of the Chukchi Sea.

Details

Data set is provided as a ’trip’ object. This is the abstract for the work:

"We tracked movements and haulout foraging behavior of walruses instrumented with satellite-
linked data loggers from the Alaskan shores of the Chukchi Sea during the autumn of 2009 (n=13)
and 2010 (n=2)." Jay, C. V. and Fischbach, A.S.

Examples

data(walrus818)
plot(walrus818)
lines(walrus818)

world_north World north polygons

Description

A spatial polygons object with coastlines of the northern hemisphere.

Usage

world_north

Format

An object of class SpatialPolygonsDataFrame with 185 rows and 11 columns.

Details

This data set exists purely to avoid requiring reprojection in the vignette, the data uses the same
projection as walrus818.

write_track _kml 31

write_track_kml Create a time-continuous KML file

Description

Export track data to a KML file, for use in Google Earth the continuous time slider.

Usage
write_track_kml(
id,
lon,
lat,
utc,
z = NULL,
kml_file = tempfile(fileext = ".kmz"),
name = NULL,

altitude_mode = c("absolute”, “clampToGround”, "clampToSeaFloor", "relativeToGround”,
"relativeToSeaFloor")

)
Arguments
id vector of grouping IDs (or a trip object)
lon vector of longitude (ignored if id is a trip)
lat vector of latitude (ignored if id is a trip)
utc vector of POSIXct date-times (ignored if id is a trip)
z vector of elevations, this cannot be set if ’id’ is a trip
kml_file filename for KML (KML or KMZ) (must end in .kml or .kmz)
name internal name of dat (derived from kml_file if not specified)

altitude_mode the altitude mode, *absolute’, ’clampToGround’, ’clampToSeaFloor’, 'relative-
ToGround’, or ’relativeToSeaFloor’, see Details

Details

To include altitude set every argument explicitly, by input of separate ’id’, ’lon’, ’lat’, "utc’ and ’z’
arguments. If the first argument ’id’ is a trip object there is no facility to include the 'z’ altitude
values.

If ’z’ is included it is applied as a third coordinate, with ’altitude_mode’ controlling the interpreta-
tion, see https://developers.google.com/kml/documentation/altitudemode. If the ’kml_file’
ends with ".kmz" the file is compressed, otherwise it must end with ".kml" and the compression
archive step is not applied.

Sadly the interactive time slider is only available with the desktop version of Google Earth, the data
loads into the browser version but can’t be interactive.

https://developers.google.com/kml/documentation/altitudemode

32 write_track_kml

Value

character vector, file name location of file produced

Author(s)

Original implementation by Tomislav Hengl in the *plotKML’ package for ’SpatialLinesDataFrame’,
adapted by M. Sumner for use in continuous-time form.

Examples

kfile <- write_track_kml(walrus818[seq(1, 1000, by = 5), 1)
print(kfile)
unlink(kfile)

Index

* 10
readArgos, 14
* chron
cut.trip, 7
x classes
trip-class, 24
* color
oc.theme, 12
+ datasets
world_north, 30
* manip
argos.sigma, 4
cut.trip, 7
makeGridTopology, 11
readArgos, 14
sepIdGaps, 17
speedfilter, 18
trip-accessors, 23
tripGrid, 28
tripGrid.interp, 29
[,trip,ANY,ANY, ANY-method
(trip-methods), 25
[,trip-method (trip-methods), 25
[[<-,trip,ANY,missing-method
(trip-methods), 25

adjust.duplicateTimes, 3, 16

argos.sigma, 4, 16

as.ltraj.trip (trip.split.exact), 27

as.Other, 5, 27

as.ppp, 5

as.ppp (as.Other), 5

as.psp, 5

as.psp (as.Other), 5

as.SpatiallLinesDataFrame.trip
(trip.split.exact), 27

as.track_xyt.trip (as.Other), 5

as.trip, 6

as.trip,ltraj-method (as.trip), 6

as.trip, track_xyt-method (as.trip), 6

33

as.trip-methods (as.trip), 6
as.trip.SpatiallLinesDataFrame
(trip.split.exact), 27

bandwidth.nrd, 30
bpy.colors, I3

coerce,trip,ltraj-method (as.trip), 6
countPoints (tripGrid.interp), 29
cut.POSIXt, 7

cut.trip, 7,27

data.frame, 9, 10
duplicated, 16

explode (as.Other), 5
forceCompliance, 9

geodist, 22
getTimelD (trip-accessors), 23
getTORnames (trip-accessors), 23

homedist, 10

interp_equal, 11
interpequal (tripGrid.interp), 29

kdePoints (tripGrid.interp), 29

lines, trip-method (trip-class), 24
ltraj2trip (as.trip), 6

makeGridTopology, 11

oc.colors (oc.theme), 12
oc.theme, 12

order, 16

ordered, /16

plot,trip,missing-method (trip-class),
24

34

print.summary.TORdata (trip-accessors),
23

rasterize, 13

rasterize,trip,missing-method
(rasterize), 13

rasterize,trip,RasterLayer-method
(rasterize), 13

readArgos, 3, 14

readDiag (readArgos), 14

readDiag(), 15

reproj, 16

sda, 17, 19

sepldGaps, 16, 17

show, summary . TORdata-method
(trip-class), 24

show, trip-method (trip-class), 24

spDistsN1, 10, 22

speedfilter, 18, 26

split(), 25

split,trip,ANY-method (trip-methods), 25

spplot, 13

subset, trip-method (trip-class), 24

summary, trip-method (trip-class), 24

TimeOrderedRecords, 20, 2/

TimeOrderedRecords-class, 20

trackAngle, 21

trackDistance, 22

trip, 10, 16, 18, 21, 23, 24

trip (trip-methods), 25

trip(), 25

trip,ANY,TimeOrderedRecords-method
(trip-methods), 25

trip,data.frame, ANY-method
(trip-methods), 25

trip,grouped_df,ANY-method
(trip-methods), 25

trip,list,ANY-method (trip-methods), 25

trip,mousetrap, ANY-method
(trip-methods), 25

trip,sf,ANY-method (trip-methods), 25

trip,SpatialPointsDataFrame, ANY-method
(trip-methods), 25

INDEX

trip,track_xyt,ANY-method
(trip-methods), 25

trip,trackeRdata,ANY-method
(trip-methods), 25

trip,trip,ANY-method (trip-methods), 25

trip,trip,TimeOrderedRecords-method
(trip-methods), 25

trip-accessors, 23

trip-class, 24

trip-deprecated (trip.split.exact), 27

trip-methods, 25

trip-package, 3

trip.split.exact, 27

trip<- (trip-methods), 25

trip<-,data.frame,character-method
(trip-methods), 25

tripGrid, 8, 26, 28

tripGrid.interp, 28, 29

tripTransform (trip.split.exact), 27

walrus818, 30, 30
world_north, 30
write_track_kml, 31

trip,SpatialPointsDataFrame, TimeOrderedRecords-method

(trip-methods), 25
trip,telemetry, ANY-method
(trip-methods), 25

	trip-package
	adjust.duplicateTimes
	argos.sigma
	as.Other
	as.trip
	cut.trip
	forceCompliance
	homedist
	interp_equal
	makeGridTopology
	oc.theme
	rasterize
	readArgos
	reproj
	sda
	sepIdGaps
	speedfilter
	TimeOrderedRecords
	TimeOrderedRecords-class
	trackAngle
	trackDistance
	trip-accessors
	trip-class
	trip-methods
	trip.split.exact
	tripGrid
	tripGrid.interp
	walrus818
	world_north
	write_track_kml
	Index

