Package 'trajectories'

September 4, 2024

Version 0.2-9

Title Classes and Methods for Trajectory Data

Depends R (>= 3.0.0)

- **Imports** stats, utils, graphics, methods, lattice, sp (>= 1.1-0), spacetime (>= 1.0-0), zoo
- **Suggests** OpenStreetMap, RCurl, rjson, adehabitatLT, xts, knitr, rgl, forecast, MASS, spatstat (>= 2.0-1), spatstat.explore, spatstat.geom, taxidata, sf
- **Description** Classes and methods for trajectory data, with support for nesting individual Track objects in track sets (Tracks) and track sets for different entities in collections of Tracks. Methods include selection, generalization, aggregation, intersection, simulation, and plotting.

License GPL (>= 2)

URL https://github.com/edzer/trajectories

Additional_repositories http://cran.uni-muenster.de/pebesma/

BugReports https://github.com/edzer/trajectories/issues

VignetteBuilder knitr

Collate Class-Tracks.R Tracks-methods.R generalize.R stcube.R stplot.R difftrack.R compare-methods.R rtracks.R Trackstat.R

RoxygenNote 6.0.1

NeedsCompilation no

Author Edzer Pebesma [aut, cre] (<https://orcid.org/0000-0001-8049-7069>), Benedikt Klus [aut], Benedikt Graeler [ctb], Nikolai Gorte [ctb], Mehdi Moradi [aut]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>

Repository CRAN

Date/Publication 2024-09-04 17:40:02 UTC

Contents

A3	. 3
as.list.Tracks	. 3
as.list.TracksCollection	. 4
as.Track	
as.Track.arrow	. 5
as.Track.ppp	
auto.arima.Track	
avedistTrack	
avemove	
chimaps	
compare	
cut	
density.list	
difftrack-class	
dists	
downsample	
frechetDist	
generalize	
Kinhom.Track	
pcfinhom.Track	
plot.arwlen	
plot.distrack	
plot.gTrack	
plot.KTrack	
print.ArimaTrack	
print.arwlen	
print.distrack	
print.gTrack	
print.KTrack	
print.ppplist	
print.Track	
print.Tracks	
print.TracksCollection	
print.Trrow	
range.Track	
reTrack	
rTrack	
stbox	
stcube	. 33
storms	
Track-class	
Track.idw	
tsqTracks	
unique.Track	
umque.maex	. 41

Α3

Description

Trajectory, locally stored, from envirocar.org, see example below how it was imported

Usage

data(A3)

Examples

```
library(spacetime)
data(A3)
dim(A3)
# see demo(A3) to see how A3 was fetched, and created from the web service
```

as.list.Tracks as.list.Tracks

Description

Convert a "Tracks" object to a list of tracks

Usage

S3 method for class 'Tracks'
as.list(x,...)

Arguments

х	an object of class "Tracks"
	passed to arguments of as.list

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, rTracks, rTracksCollection, as.list

Examples

x <- rTracks()
as.list(x)</pre>

as.list.TracksCollection

as.list.TracksCollection

Description

Convert a "TracksCollection" object to a list of tracks

Usage

```
## S3 method for class 'TracksCollection'
as.list(x,...)
```

Arguments

х	an object of class "TracksCollection"
	passed to arguments of as.list

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, rTracks, rTracksCollection, as.list

Examples

```
x <- rTracksCollection()
as.list(x)</pre>
```

as.Track

Converts data to an object of class "Track"

Description

Function as.Track accepts converts x,y coordinates and thier corresponding time/date to an object of class Track. It can also accepts covariates for the corresponding locations, covariates must be a dataframe with some columns and length of each column is equal to length of x,y,t.

Usage

as.Track(x,y,t,covariate)

as.Track.arrow

Arguments

х	x coordinate.
У	y coordinate.
t	corresponding time and date of x,y.
covariate	additional information.

Details

An object of class "Track" can be created by some geographical locations and corresponding time/dates. Function as.Track converts locations and dates/times to an object of class "Track". time/date should be from class "POSIXct" "POSIXt". See example below.

Value

An object of class "Track".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

Track, as.POSIXct

Examples

```
x <- runif(10,0,1)
y <- runif(10,0,1)
date <- seq(as.POSIXct("2015-1-1 0:00"), as.POSIXct("2015-1-1 9:00"), by = "hour")
Z <- as.Track(x,y,date)
plot(Z)</pre>
```

as.Track.arrow Convert trajectory pattern to a list of marked point patterns

Description

Converting a list of Track objects to a list of marked point patterns. Each mark shows the length of movement.

Usage

as.Track.arrow(X,timestamp,epsilon=epsilon)

Arguments

Х	A list of Track objects
timestamp	based on secs, mins,
epsilon	(optional) movements with length less than epsilon are not considered in the calculation

Details

Converting a list of Track objetcs to a list of marked point patterns. Marks show the length of movement with respect to the previous location.

Value

a list of marked point patterns.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track.ppp

Examples

```
if (require(spatstat.geom)) {
X <- list()
for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Y <- as.Track.arrow(X,timestamp="120 secs")
}</pre>
```

	as.Track.ppp	Conver trajectory pattern to a	list of objects of class ppp
--	--------------	--------------------------------	------------------------------

Description

This function converts a list of Tracks to a list of point patterns (class "ppp")

Usage

as.Track.ppp(X,timestamp)

auto.arima.Track

Arguments

Х	a list of Track objects
timestamp	based on secs, mins,

Details

as.Track.ppp converts a list of Track objetcs to a list of ppp objetcs.

Value

A list of point patterns, objects of class "ppp".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

avedistTrack, as.ppp

Examples

```
if (require(spatstat.geom)) {
  X <- list()
  for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
  }
  Y <- as.Track.ppp(X,timestamp="120 secs")
}</pre>
```

auto.arima.Track *Fitting arima model to a track*

Description

Fit arima models to objects of class "Track".

Usage

auto.arima.Track(X, ...)

Х	an object of class "Track"
	passed to arguments of auto.arima

Details

This fita arima models to the x,y locations of objects of class "Track".

Value

an object of class "ArimaTrack"

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, auto.arima

Examples

```
if (require(forecast)) {
  X <- rTrack()
  auto.arima.Track(X)
}</pre>
```

avedistTrack Average pairwise distance of trajectory pattern over time

Description

This measures the average of pairwise distances between tracks over time.

Usage

```
avedistTrack(X,timestamp)
```

Arguments

Х	a list of some objects of class "Track"
timestamp	timestamp to calculate the pairwise distances between tarcks

Details

This function calculates the average pairwise distance between a list of tracks according to a given timestamp.

Value

An object of class "distrack". It can be plotted over time.

avemove

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

as.Track.ppp

Examples

```
if (require(spatstat.geom)) {
    X <- list()
    for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
    }
    ave <- avedistTrack(X,timestamp = "120 secs")
    plot(ave,type="1")
}</pre>
```

avemove

Average movement of trajectory pattern

Description

This returns the average movements of a lits of objects of class "Track" over time.

Usage

avemove(X,timestamp,epsilon=epsilon)

Arguments

Х	a list of some objects of class Track
timestamp	timestamp to calculate the pairwise distances between tarcks
epsilon	(optional) movements with length less than epsilon are not considered in the calculation

Details

when analysying a list of tracks, avemove calculate the average of movements based on given timestamp.

Value

an object of class "numeric" or "arwlen".

chimaps

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

as.Track.arrow

Examples

```
if (require(spatstat.geom)) {
    X <- list()
    for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
    }
    avemove(X,timestamp = "30 secs")
}</pre>
```

```
chimaps
```

Chimaps of tarjectory pattern.

Description

Computes the chimaps, corresponding to a list of objects of class "Track". chimaps are based on the discrepancy between computed and expected intensity in a given location.

Usage

```
chimaps(X,timestamp,rank,...)
```

Arguments

Х	A list of Track objects
timestamp	based on secs, mins,
rank	a number between one and the length of corresponding time sequance which is created based on given timestamp.
	passed to arguments of density.Track

Details

[estimated intensity - expected intensity] / sqrt(expected intensity).

Value

an image of class "im".

10

compare

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

density.list, density.ppp

Examples

```
if (require(spatstat.geom)) {
    X <- list()
    for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
    }
    chimaps(X, timestamp = "180 secs",rank = 2)
}</pre>
```

compare

Compares objects of class Track

Description

Calculates distances between two tracks for the overlapping time interval.

Usage

```
## S4 method for signature 'Track'
compare(tr1, tr2)
```

Arguments

tr1	An object of class Track.
tr2	An object of class Track.

Value

A difftrack object. Includes both tracks extended with additional points for the timestamps of the other track. Also includes SpatialLines representing the distances between the tracks.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

Examples

12

```
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003
## compare and plot
difftrack <- compare(A3, track2)
plot(difftrack)
```

```
cut
```

obtain ranges of space and time coordinates

Description

obtain ranges of space and time coordinates

Usage

```
## S3 method for class 'Track'
cut(x, breaks, ..., include.lowest = TRUE, touch = TRUE)
## S3 method for class 'Tracks'
cut(x, breaks, ...)
## S3 method for class 'TracksCollection'
cut(x, breaks, ...)
```

Arguments

Х	object of class Track, Tracks or TracksCollection
breaks	define the breaks; see cut
	passed down to Tracks and Track methods, then to cut
include.lowest	see cut
touch	logical; if FALSE, Track objects will be formed from unique sets of points, meaning that gaps between two consecutive Track objects will arise; if FALSE, the first point from each next track is copied, meaning that sets of Track are seamless.

Details

sub-trajectories can be invalid, if they have only one point, and are ignored. This can happen at the start only if touch=FALSE, and at the end in any case.

cut

density.list

Value

The cut method applied to a Track object cuts the track in pieces, and hence returns a Tracks object. cut.Tracks returns a Tracks object, cut.TracksCollection returns a TracksCollection.

Examples

```
# example might take too long for CRAN checks
data(storms)
dim(storms)
dim(cut(storms, "week", touches = FALSE)) # same number of geometries
dim(cut(storms, "week")) # increase of geometries = increase of tracks
```

density.list Kernel estimate of intensity of trajectory pattern

Description

Estimating the intensity of a list of tracks.

Usage

```
## S3 method for class 'list'
density(x, timestamp,...)
```

Arguments

х	a list of "Track" objects, an object of class "Tracks" or "TracksCollection"
timestamp	based on secs, mins,
	passed to arguments of density.ppp

Details

This estimate the average intensity function of moving objects over time. Bandwidth selection methods such as bw.diggle, bw.scott and bw.ppl can be passed to this density.list.

Value

an image of class "im".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, density.ppp

Examples

```
if (require(spatstat.explore)) {
    X <- list()
    for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
    }
    density(X, timestamp = "180 secs")
}</pre>
```

difftrack-class Class "difftrack"

Description

Class that represents differences between two Track objects.

Objects from the Class

Objects can be created by calls of the form new("difftrack", ...). Objects of class difftrack contain 2 objects of class Track extended with points for timestamps of the other track and 2 SpatialLinesDataFrame conataining the the lines and distances between tracks.

Slots

track1: Extended track1
track2: Extended track2
conns1: Lines between the original track1 and the new points on track2
conns2: Lines between the original track2 and the new points on track1

Methods

plot signature(x = "difftrack", y = "missing"): plot a difftrack

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

Examples

```
showClass("difftrack")
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003</pre>
```

14

dists

```
## compare and plot
difftrack <- compare(A3, track2)
plot(difftrack)
## space-time cube of the difftrack
## Not run:
stcube(difftrack)
## End(Not run)
```

dists

Calculate distances between two Tracks objects

Description

Calculates a distance matrix with distances for each pair of tracks.

Usage

```
## S4 method for signature 'Tracks,Tracks'
dists(tr1, tr2, f, ...)
```

Arguments

tr1	An object of class Tracks.
tr2	An object of class Tracks.
f	A function to calculate distances. Default is mean.
	Additional parameters passed to f.

Details

f can be any function applicable to a numerical vector or frechetDist.

Value

A matrix with distances between each pair of tracks or NA if they don't overlap in time.

Examples

```
## example tracks
library(sp)
library(xts)
data(A3)
track2 <- A3
index(track2@time) <- index(track2@time) + 32
track2@sp@coords <- track2@sp@coords + 0.003</pre>
```

downsample

```
## create Tracks objects
tracks1 <- Tracks(list(A3, track2))
tracks2 <- Tracks(list(track2, A3))
## calculate distances
## Not run:
dists(tracks1, tracks2)
dists(tracks1, tracks2, sum)
dists(tracks1, tracks2, frechetDist)
## End(Not run)</pre>
```

downsample

Downsample a Track

Description

Downsamples a Track to the size (amount of points) of another Track.

Usage

```
## S4 method for signature 'Track'
downsample(track1, track2)
```

Arguments

track1	Track that will be downsampled.
track2	Reference Track.

Value

A Track object. The downsampled track1.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

16

frechetDist

Description

Compute the discrete Frechet distance between two Track objects.

Usage

```
## S4 method for signature 'Track'
frechetDist(track1, track2)
```

Arguments

track1	An object of class Track.
track2	An object of class Track.

Value

Discrete Frechet distance.

Author(s)

Nikolai Gorte <n.gorte@gmail.com>

References

http://en.wikipedia.org/wiki/Fr\'echet_distance

generalize

Generalize objects of class Track, Tracks and TracksCollection

Description

Generalize objects of class Track, Tracks and TracksCollection.

Usage

```
## S4 method for signature 'Track'
generalize(t, FUN = mean, ..., timeInterval, distance, n, tol, toPoints)
## S4 method for signature 'Tracks'
generalize(t, FUN = mean, ...)
## S4 method for signature 'TracksCollection'
generalize(t, FUN = mean, ...)
```

Arguments

t	An object of class Track, Tracks or TracksCollection.
FUN	The generalization method to be applied. Defaults to mean if none is passed.
timeInterval	(lower limit) time interval to split Track into segments
distance	(lower limit) distance to split Track into segments
n	number of points to form segments
tol	tolerance passed on to st_simplify, to generalize segments using the Douglas-Peucker algorithm.
toPoints	keep mid point rather than forming SpatialLines segments
	Additional arguments passed to FUN

Value

An object of class Track, Tracks or TracksCollection.

Kinhom.Track Inhomogeneous K-function for trajectory pattern	
--	--

Description

Estimate the variability area of K-function of a list of tracks.

Usage

Arguments

Х	A list of Track objects
timestamp	based on secs, mins,
correction	the type of correction to be used in computing K-function
q	(optional) a numeric value between 0 and 1. quantile to be applied to calculate the variability area
sigma	method to be used in computing intensity function
	passed to the arguments of Kinhom

Details

This calculates the variability area of K-function over time. If sigma=default, it calculates the variability area using the defaults of Kinhom, otherwise it first estimate the intensity function using the given sigma as bandwidth selection method and then using the estimated intensity function, it estimates the variability area.

18

pcfinhom.Track

Value

an object of class "KTrack".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track.ppp, Kinhom

Examples

```
if (require(spatstat)) {
X <- list()
for(i in 1:50){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Kinhom.Track(X, timestamp = "180 secs")
}</pre>
```

pcfinhom.Track Pair correlation function of trajectory pattern

Description

Pair correlation function of trajectory pattern

Usage

Х	A list of Track objects
timestamp	based on secs, mins,
correction	the type of correction to be used in computing pair correlation function
q	(optional) a numeric value between 0 and 1. quantile to be applied to calculate the variability area
sigma	method to be used in computing intensity function
	passed to the arguments of pcfinhom

Details

This calculates the variability area of pair correlation function over time. If sigma=default, it calculates the variability area using the defaults of pcfinhom, otherwise it first estimate the intensity function using the given sigma as bandwidth selection method and then using the estimated intensity function, it estimates the variability area.

Value

an object of class "gTrack"

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track.ppp, pcfinhom

Examples

```
if (require(spatstat.explore)) {
    X <- list()
    for(i in 1:100){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
    }
    g <- pcfinhom.Track(X,timestamp = "180 sec")
    plot(g)
}</pre>
```

plot.arwlen

Methods for class "arwlen"

Description

Methods for class "arwlen"

Usage

S3 method for class 'arwlen'
plot(x, ...)

х	an object of class "arwlen"
	passed on to plot

plot.distrack

Value

a plot.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

avemove

plot.distrack

Methods for class "distrack"

Description

The plot method for "distrack" objects.

Usage

S3 method for class 'distrack'
plot(x, ...)

Arguments

х	an object of class "distrack"
	ignored

Details

This plots an object of class "distrack".

Author(s)

plot.gTrack

Description

plot method

Usage

S3 method for class 'gTrack'
plot(x, type = "l", col = "grey70",cex=1,line=2.2, ...)

Arguments

х	an object of class "gTrack"
type	line type
col	line color
cex	used for size of legend
line	specifying a value for line overrides the default placement of labels, and places them this many lines outwards from the plot edge
	passed on to plot

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

plot.KTrack Methods for class "KTrack"

Description

Methods for class "KTrack"

Usage

```
## S3 method for class 'KTrack'
plot(x, type = "l", col = "grey70",cex=1,line=2.2, ...)
```

print.ArimaTrack

Arguments

x	an object of class KTrack
type	line type
col	color
cex	used for size of legend
line	specifying a value for line overrides the default placement of labels, and places them this many lines outwards from the plot edge
	passed on to plot

Details

plotting the variability area of K-function of a list of tracks.

Value

a plot.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

print.ArimaTrack Methods for class "ArimaTrack"

Description

print method.

Usage

```
## S3 method for class 'ArimaTrack'
print(x, ...)
```

Arguments

х	an object of class "ArimaTrack"
	ignored

Author(s)

print.arwlen

Description

to print an object of class "arwlen".

Usage

S3 method for class 'arwlen'
print(x,...)

Arguments

Х	an object of class "arqlen"
	ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

print.distrack Methods for class "distrack"

Description

This is a method for class "distrack".

Usage

```
## S3 method for class 'distrack'
print(x,...)
```

Arguments

х	an object of class "distrack"
	ignored

Details

This is a method for class "distrack".

Value

See the documentation on the corresponding generic function.

print.gTrack

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

Examples

```
if (require(spatstat.geom)) {
  X <- list()
  for(i in 1:10){
   m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
   X[[i]] <- rTrack(bbox = m,transform = TRUE)
  }
  ave <- avedistTrack(X,timestamp = "30 secs")
  plot(ave,type="1")
}</pre>
```

print.gTrack

Methods for class "gTrack"

Description

print method.

Usage

S3 method for class 'gTrack'
print(x,...)

Arguments

х	an object of class "gTrack"
	ignored

Author(s)

print.KTrack

Description

Methods for class "KTrack"

Usage

S3 method for class 'KTrack'
print(x,...)

Arguments

х	an object of class "KTrack"
	ignored

Details

to print an object of class "KTrack".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

print.ppplist Methods for class "Track"

Description

method to print an object of class "ppplist"

Usage

```
## S3 method for class 'ppplist'
print(x,...)
```

Arguments

х	an object of class "ppplist"
	ignored

Author(s)

print.Track

Description

method to print an object of class "Track"

Usage

S3 method for class 'Track'
print(x,...)

Arguments

х	an object of class "Track"
	ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

print.Tracks Methods for class "Tracks"

Description

method to print an object of class "Tracks"

Usage

S3 method for class 'Tracks'
print(x,...)

Arguments

х	an object of class "Tracks"
	ignored

Author(s)

print.TracksCollection

Methods for class "TracksCollection"

Description

method to print an object of class "TracksCollection"

Usage

```
## S3 method for class 'TracksCollection'
print(x, ...)
```

Arguments

Х	an object of class "TracksCollection"
	ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

print.Trrow Methods for class "Trrow"

Description

Print objetcs of class "Trrow"

Usage

S3 method for class 'Trrow'
print(x,...)

Arguments

х	an object of class "Trrow"
	ignored

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

as.Track.arrow

range.Track

Description

Retrieves the range of a "Track" object

Usage

S3 method for class 'Track'
range(X,...)

Arguments

Х	an object of class "Track"
	passed to arguments of range

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, rTracks, rTracksCollection, range

Examples

```
x <- rTrack()
range(x)</pre>
```

reTrack

Reconstruct objects of class "Track"

Description

Function reTrack accepts X as an object of class "Track". Output is a reconstructed Track (again an object of class Track), based on a regular "timestamp". It only returns the interpolated points.

Usage

```
reTrack(X,at=c("track","dfrm"),timestamp=timestamp,tsq=NULL)
```

Arguments

Х	an object of class Track
at	to set the type of output as either an object of class "Track" or data.frame
timestamp	timestamp which Track be reconstructed based on
tsq	a time sequence to reconstruct Track X based on it. This is optional. If this is not given, the function creates the time sequence based on timestamp.

Details

Sometimes tracks data are not collected according to a regular timestamp. In order to compare different tracks which share some time intervals, we might need to be aware of the locations in a regular timestamp. Function reTrack unables us to reconstruct an object of class "Track" based on a regular timestamp. Time sequance can be given by user, if not reTrack creates a regulare time sequance based on the given timestamp.

Value

Either an object of class "Track" or a data.frame

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, as.Track, as.POSIXct, compare

Examples

```
library(sp)
library(spacetime)
# t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))
t0 = as.POSIXct("2013-09-30 02:00:00", tz = "Europe/Berlin")
# person A, track 1:
x = c(7,6,5,5,4,3,3)
y = c(7,7,6,5,5,6,7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
reTrack(A1,timestamp = "1 sec")
```

Description

Generate random Track, Tracks or TracksCollection objects

Usage

```
rTrack(n = 100, origin = c(0,0), start = as.POSIXct("1970-01-01"), ar = .8,
step = 60, sd0 = 1, bbox = bbox, transform = FALSE, nrandom = FALSE, ...)
rTracks(m = 20, start = as.POSIXct("1970-01-01"), delta = 7200, sd1 = 0,
origin = c(0,0), ...)
rTracksCollection(p = 10, sd2 = 0, ...)
```

Arguments

n	number of points per Track
origin	numeric, length two, indicating the origin of the Track
start	POSIXct, indicating the start time of the Track
ar	numeric vector, indicating the amound of correlation in the Track
step	numeric; time step(s) in seconds between Track fixes
sd0	standard deviation of the random steps in a Track
sd1	standard deviation of the consecutive Track origin values (using rnorm)
sd2	standard deviation of the consecutive Tracks origin values (using rnorm)
bbox	bbox object FIXME:fill in
transform	logical; FIXME:fill in
nrandom	logical; if TRUE, draw n from rpois(n)
	rTrack: arguments passed on to arima.sim, rTracks: arguments passed on to rTrack; rTracksCollection: arguments passed on to rTracks
m	number of Track objects to simulate
delta	time difference between consecutive Track start times
р	number of IDs with Tracks to generate

Details

ar is passed on to arima.sim as ar element, and may contain multiple AR coefficients. The generated track is a cumsum over the simulated AR values, for each dimension. In case it has length 1 and value 0, random walk is created using rnorm. If bbox is given, the generated track will be transformed to bbox. If transform is TRUE and no bbox is given, it transforms the track to a unit box. If nrandom is TRUE, it generates a random number using rpois with parameter n as the number of locations per track.

Value

An object of class Track, Tracks or TracksCollection.

Author(s)

Edzer Pebesma <edzer.pebesma@uni-muenster.de>, Mohammad Mehdi Moradi <moradi@uji.es>

Examples

```
x = rTrack()
dim(x)
plot(x)
# x = rTracks(sd1 = 120)
# dim(x)
# plot(as(x, "SpatialLines"), col = 1:dim(x)[1], axes=TRUE)
# x = rTracksCollection() # star
# dim(x)
# plot(x)
x = rTracksCollection(sd2 = 200,p=4,m=10)
plot(x, col=1:dim(x)[1])
```

stbox

obtain ranges of space and time coordinates

Description

obtain ranges of space and time coordinates

Usage

stbox(obj)

Arguments

obj object of a class deriving from Tracks or TracksCollection.

Value

stbox returns a data.frame, with three columns representing x-, y- and time-coordinates, and two rows containing min and max values.

Methods

stbox signature(x = "Tracks"): obtain st range from object
stbox signature(x = "TracksCollection"): obtain st range from object

stcube

Description

Draw a space-time cube for a Track, TRacks, TracksCollection, difftrack or STI(DF) class.

Usage

```
## S4 method for signature 'Track'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l",
aspect, xlim = stbox(x)[[1]] + c(-0.1,0.1) * diff(stbox(x)[[1]]),
         ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),
zlim = stbox(x)$time, showMap = FALSE, mapType = "osm",
mapZoom = NULL, \ldots, y, z)
## S4 method for signature 'Tracks'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "l",
aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
normalizeBy = "week", mapZoom = NULL, ..., y, z, col)
## S4 method for signature 'TracksCollection'
stcube(x, xlab = "x", ylab = "y", zlab = "t",
type = "l", aspect, xlim, ylim, zlim, showMap = FALSE, mapType = "osm",
normalizeBy = "week", mapZoom = NULL, ..., y, z, col)
## S4 method for signature 'difftrack'
stcube(x, showMap = FALSE, mapType = "osm", normalizeBy = "week", ..., y, z)
## S4 method for signature 'STI'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "p", aspect,
                      xlim = stbox(x)[[1]] + c(-0.1, 0.1) * diff(stbox(x)[[1]]),
                     ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),
                     zlim = stbox(x)$time,
                    showMap = FALSE, mapType = "osm", mapZoom = NULL, ..., y, z)
## S4 method for signature 'STIDF'
stcube(x, xlab = "x", ylab = "y", zlab = "t", type = "p", aspect,
                      xlim = stbox(x)[[1]] + c(-0.1, 0.1) * diff(stbox(x)[[1]]),
                     ylim = stbox(x)[[2]] + c(-0.1, 0.1) * diff(stbox(x)[[2]]),
                     zlim = stbox(x)$time,
                 showMap = FALSE, mapType = "osm", mapZoom = NULL, col, ..., y, z)
```

Х	An object of class Track, Tracks, or TracksCollection or difftrack.
xlab, ylab, zlab	, type, aspect, xlim, ylim, zlim
	Arguments passed to plot3d() of package rgl.
showMap	Flag if a basemap is to be shown on the xy plane; for this to function, you may need to load library raster first, see also the stcube demo script.
тарТуре	The tile server from which to get the map. Passed as type to openmap() of package OpenStreetMap.

storms

normalizeBy	An abstract time period (either week or day) to be normalized by.
mapZoom	Set a zoom level for the map used as background. Null will use the osm package default strategie.
y, z, col	Ignored, but included in the method signature for implementation reasons.
	Additional arguments passed to plot3d() of package rgl.

Value

A space-time cube.

Examples

Not run: demo(stcube)

storms

Storm trajectories

Description

storm trajectories, 2009-2012, from http://weather.unisys.com/hurricane/atlantic/

Usage

data(storms)

Examples

```
data(storms)
dim(storms)
plot(storms)
x = approxTracksCollection(storms, by = "30 min", FUN = spline)
plot(x, col = 'red', add = TRUE)
## Not run:
demo(storms) # regenerates these data from their source
## End(Not run)
```

Description

Classes for representing sets of trajectory data, with attributes, for different IDs (persons, objects, etc)

Usage

```
Track(track, df = fn(track), fn = TrackStats)
 Tracks(tracks, tracksData = data.frame(row.names=names(tracks)),
  fn = TrackSummary)
 TracksCollection(tracksCollection, tracksCollectionData,
  fn = TracksSummary)
 TrackStats(track)
 TrackSummary(track)
 TracksSummary(tracksCollection)
 ## S4 method for signature 'Track'
x[i, j, ..., drop = TRUE]
 ## S4 method for signature 'TracksCollection'
x[i, j, ..., drop = TRUE]
 ## S4 method for signature 'Track,data.frame'
coerce(from, to)
 ## S4 method for signature 'Tracks,data.frame'
coerce(from, to)
  ## S4 method for signature 'TracksCollection,data.frame'
coerce(from, to)
```

track	object of class STIDF-class, representing a single trip
df	$optional {\tt data.frame}$ with information between track points
tracks	named list with Track objects
tracksData	data.frame with summary data for each Track
tracksCollectic	n
	list, with Tracks objects
tracksCollectic	nData
	data.frame, with summary data on tracksCollection
fn	function;
x	object of class Track etc
i	selection of spatial entities
j	selection of temporal entities (see syntax in package xts)
	selection of attribute(s)

drop	logical
from	from
to	target class

Value

Functions Track, Tracks and TracksCollection are constructor functions that take the slots as arguments, check object validity, and compute summary statistics on the track and tracks sets.

TrackStats returns a data.frame with for each track segment the distance, duration, speed, and direction. In case data are geographical coordinates (long/lat), distance is in m, and direction is initial bearing.

TrackSummary reports for each track xmin, xmax, ymin, ymax, tmin, tmax, (number of points) n, (total) distance, and medspeed (median speed).

TracksSummary reports for each Tracks of a TracksCollection (number of tracks) n, xmin, xmax, ymin, ymax, tmin, tmin, tmax.

Objects from the Class

Objects of class Track extend STIDF-class and contain single trips or tracks, objects of class Tracks contain multiple Track objects for a single ID (person, object or tracking device), objects of class TracksCollection contain multiple Tracks objects for different IDs.

Slots of class "Track"

sp: spatial locations of the track points, with length n

time: time stamps of the track points

endTime: end time stamps of the track points

data: data.frame with n rows, containing attributes of the track points

connections: data.frame, with n-1 rows, containing attributes between the track points such as distance and speed

Slots of class "Tracks"

tracks: list with Track objects, of length m

tracksData: data.frame with m rows, containing summary data for each Track object

Slots of class "TracksCollection"

tracksCollection: list Tracks objects, of length p

tracksCollectionData: data.frame with p rows, containing summary data for each Tracks object

Track-class

Methods

[[signature(obj = "Track"): retrieves the attribute element [[signature(obj = "Tracks"): retrieves the attribute element [[signature(obj = "TracksCollection"): retrieves the attribute element [[<- signature(obj = "Track"): sets or replaces the attribute element</pre> [[<- signature(obj = "Tracks"): sets or replaces the attribute element</pre> [[<- signature(obj = "TracksCollection"): sets or replaces the attribute element \$ signature(obj = "Track"): retrieves the attribute element \$ signature(obj = "Tracks"): retrieves the attribute element \$ signature(obj = "TracksCollection"): retrieves the attribute element \$<- signature(obj = "Track"): sets or replaces the attribute element</pre> \$<- signature(obj = "Tracks"): sets or replaces the attribute element</pre> \$<- signature(obj = "TracksCollection"): sets or replaces the attribute element</pre> coerce signature(from = Track, to = data.frame) coerce to data.frame **coerce** signature(from = Tracks, to = data.frame) coerce to data.frame coerce signature(form = TracksCollection, to = data.frame) coerce to data.frame **plot** signature(x = "TracksCollection", y = "missing"): plots sets of sets of tracks stplot signature(obj = "TracksCollection"): plots sets of sets of tracks

Note

segments is a data.frame form in which track segments instead of track points form a record, with x0, y0, x1 and y1 the start and end coordinates

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

http://www.jstatsoft.org/v51/i07/

Examples

```
library(sp)
library(spacetime)
# t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))
t0 = as.POSIXct("2013-09-30 02:00:00", tz = "Europe/Berlin")
# person A, track 1:
x = c(7,6,5,5,4,3,3)
y = c(7,7,6,5,5,6,7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
```

```
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
# person A, track 2:
x = c(7, 6, 6, 7, 7)
y = c(6,5,4,4,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A2 = Track(stidf)
# Tracks for person A:
A = Tracks(list(A1=A1,A2=A2))
# person B, track 1:
x = c(2, 2, 1, 1, 2, 3)
y = c(5,4,3,2,2,3)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B1 = Track(stidf)
# person B, track 2:
x = c(3,3,4,3,3,4)
y = c(5,4,3,2,1,1)
n = length(x)
t = max(t) + cumsum(runif(n) * 60)
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B2 = Track(stidf)
# Tracks for person A:
B = Tracks(list(B1=B1,B2=B2))
Tr = TracksCollection(list(A=A,B=B))
stplot(Tr, scales = list(draw=TRUE))
stplot(Tr, attr = "direction", arrows=TRUE, lwd = 3, by = "direction")
stplot(Tr, attr = "direction", arrows=TRUE, lwd = 3, by = "IDs")
plot(Tr, col=2, axes=TRUE)
dim(Tr)
dim(Tr[2])
dim(Tr[2][1])
u = stack(Tr) # four IDs
dim(u)
dim(unstack(u, c(1,1,2,2))) # regroups to original
dim(unstack(u, c(1,1,2,3))) # regroups to three IDs
dim(unstack(u, c(1,2,2,1))) # regroups differently
as(Tr, "data.frame")[1:10,] # tracks separated by NA rows
as(Tr, "segments")[1:10,] # track segments as records
Tr[["distance"]] = Tr[["distance"]] * 1000
Tr$distance = Tr$distance / 1000
Tr$distance
# work with custum TrackStats function:
MyStats = function(track) {
df = apply(coordinates(track@sp), 2, diff) # requires sp
data.frame(distance = apply(df, 1, function(x) sqrt(sum(x<sup>2</sup>))))
}
crs = CRS(as.character(NA))
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
B2 = Track(stidf) # no longer longlat;
```

38

Track.idw

```
B3 = Track(stidf, fn = MyStats)
all.equal(B3$distance, B2$distance)
# approxTrack:
opar = par()
par(mfrow = c(1, 2))
plot(B2, ylim = c(.5, 6))
plot(B2, pch = 16, add = TRUE)
title("irregular time steps")
i = index(B2)
B3 = approxTrack(B2, seq(min(i), max(i), length.out = 50))
plot(B3, col = 'red', type = 'p', add = TRUE)
B4 = approxTrack(B2, seq(min(i), max(i), length.out = 50), FUN = spline)
plot(B4, col = 'blue', type = 'b', add = TRUE)
# regular time steps:
t = max(t) + (1:n) * 60 \# regular
B2 = Track(STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n))))
plot(B2, ylim = c(.5, 6))
plot(B2, pch = 16, add = TRUE)
title("constant time steps")
i = index(B2)
B3 = approxTrack(B2)
plot(B3, type = 'p', col = 'red', add = TRUE)
B4 = approxTrack(B2, FUN = spline)
plot(B4, type = 'p', col = 'blue', add = TRUE)
# par(opar) # good to do, but would generate warnings
smth = function(x,y,xout,...) predict(smooth.spline(as.numeric(x), y), as.numeric(xout))
data(storms)
plot(storms, type = 'p')
storms.smooth = approxTracksCollection(storms, FUN = smth, n = 200)
plot(storms.smooth, add = TRUE, col = 'red')
```

Track.idw

Movement smoothing of trajectory pattern

Description

Movement smoothing of trajectory pattern

Usage

Track.idw(X,timestamp,epsilon=epsilon,...)

Х	a list of objects of class "Track"
timestamp	based on secs, mins,

epsilon	(optional) movements with length less than epsilon are not considered in the calculation
	passed to arguments of fucntion idw in spatstat

Details

Performs spatial smoothing to the movements of a list of tracks.

Value

an image of class "im".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

as.Track.arrow, idw

Examples

```
if (require(spatstat.geom)) {
X <- list()
for(i in 1:10){
    m <- matrix(c(0,10,0,10),nrow=2,byrow = TRUE)
    X[[i]] <- rTrack(bbox = m,transform = TRUE)
}
Track.idw(X,timestamp="180 secs")
}</pre>
```

tsqTracks

tsqTracks

Description

tsqtracks returns a sequance of time based on a list of tracks (or a single object of class "Track"") and an argument timestamp.

Usage

```
tsqTracks(X,timestamp)
```

Х	either an object of class "Track"" or a list of some objects of class "Track"
timestamp	a timestamp to create the time sequence based on it

unique.Track

Details

This creates a sequence of time based on a track or a list of tracks.

Value

An object of class "POSIXct" or "POSIXt".

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack

Examples

```
library(sp)
library(spacetime)
# t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))
t0 = as.POSIXct("2013-09-30 02:00:00", tz = "Europe/Berlin")
# person A, track 1:
x = c(7,6,5,5,4,3,3)
y = c(7,7,6,5,5,6,7)
n = length(x)
set.seed(131)
t = t0 + cumsum(runif(n) * 60)
crs = CRS("+proj=longlat +datum=WGS84") # longlat
stidf = STIDF(SpatialPoints(cbind(x,y),crs), t, data.frame(co2 = rnorm(n)))
A1 = Track(stidf)
tsqTracks(A1,timestamp = "1 sec")
```

unique.Track unique.Track

Description

Removing duplicated points in a track

Usage

S3 method for class 'Track'
unique(x,...)

x	an object of class "Track"
	passed to arguments of unique

Details

This function removes duplicated points in an object of class "Track".

Value

An object of class Track with no duplicated point.

Author(s)

Mohammad Mehdi Moradi <moradi@uji.es>

See Also

rTrack, rTracks, rTracksCollection, unique

Examples

x <- rTrack()
unique(x)</pre>

Index

* classes difftrack-class, 14 Track-class, 35 * compare compare, 11 * datasets A3. 3 storms, 34 * dists dists, 15 * downsample downsample, 16 * dplot cut, 12 stbox, 32* generalize generalize, 17 * methods frechetDist, 17 * random rTrack, 31 * space-time cube stcube, 33 [,Track,ANY,ANY,ANY-method (Track-class), 35 [, Track-method (Track-class), 35 [,Tracks,ANY,ANY,ANY-method (Track-class), 35 [,Tracks-method (Track-class), 35 [,TracksCollection,ANY,ANY,ANY-method (Track-class), 35 [,TracksCollection-method (Track-class), 35 [[,Track,ANY,missing-method (Track-class), 35 [[,Tracks,ANY,missing-method (Track-class), 35 [[,TracksCollection,ANY,missing-method (Track-class), 35

[[<-,Track,ANY,missing-method (Track-class), 35 [[<-,Tracks,ANY,missing-method (Track-class), 35 [[<-,TracksCollection,ANY,missing-method (Track-class), 35 \$,Track-method (Track-class), 35 \$,TracksCollection-method (Track-class), 35 \$<-,Track-method (Track-class), 35 \$<-,Track-method (Track-class), 35 \$<-,Tracks-method (Track-class), 35 \$<-,Tracks-method (Track-class), 35 \$<-,Tracks-method (Track-class), 35 \$<-,Tracks-method (Track-class), 35 \$<-,TracksCollection-method (Track-class), 35

A3, <mark>3</mark>

aggregate, Track-method (Track-class), 35 aggregate, Tracks-method (Track-class), 35 aggregate, TracksCollection-method (Track-class), 35 approxTrack (Track-class), 35 approxTracks (Track-class), 35 approxTracksCollection (Track-class), 35 arima.sim, 31 as.list, 3, 4 as.list.Tracks, 3 as.list.TracksCollection, 4 as.POSIXct, 5, 30 as.ppp, 7 as.Track, 4, 30 as.Track.arrow, 5, 10, 40 as.Track.ppp, 6, 6, 9, 19, 20 auto.arima, 7, 8 auto.arima.Track,7 avedistTrack, 7,8 avemove, 9

chimaps, 10

coerce, Track, data.frame-method (Track-class), 35 coerce, Tracks, data.frame-method (Track-class), 35 coerce,TracksCollection,data.frame-method (Track-class), 35 compare, 11, 30 compare, Track-method (compare), 11 coordnames, Track-method (Track-class), 35 coordnames,Tracks-method(Track-class), 35 coordnames, TracksCollection-method (Track-class), 35 cumsum, 31 cut, 12, 12 density.list, 11, 13 density.ppp, 11, 13 difftrack (difftrack-class), 14 difftrack-class, 14 dists, 15 dists, Tracks, Tracks-method (dists), 15 downsample, 16 downsample, Track-method (downsample), 16 frechetDist, 15, 17 frechetDist,Track-method(frechetDist), 17 generalize, 17 generalize, Track-method (generalize), 17 generalize,Tracks-method (generalize), 17 generalize, TracksCollection-method (generalize), 17 idw. 40 Kinhom, 19 Kinhom.Track. 18 pcfinhom, 20 pcfinhom.Track, 19

plot,difftrack,ANY-method (difftrack-class), 14 plot,Track,missing-method (Track-class), 35 plot,Tracks,ANY-method (Track-class), 35 plot, TracksCollection, ANY-method (Track-class), 35 plot.arwlen, 20 plot.distrack, 21 plot.gTrack, 22 plot.KTrack, 22 print.ArimaTrack, 23 print.arwlen, 24 print.distrack, 24 print.gTrack, 25 print.KTrack, 26 print.ppplist, 26 print.Track, 27 print.Tracks, 27 print.TracksCollection, 28 print.Trrow, 28 range, 29 range.Track, 29 reTrack, 29 rnorm. 31 rpois, 31 rTrack, 3, 4, 6, 8, 13, 19, 20, 29, 30, 31, 42 rTracks, *3*, *4*, *29*, *42* rTracks (rTrack), 31 rTracksCollection, 3, 4, 29, 42 rTracksCollection (rTrack), 31 segments-class (Track-class), 35 segPanel (Track-class), 35 SpatialLines, 18 SpatialLinesDataFrame, 14 spTransform,Track,CRS-method (Track-class), 35 spTransform, Tracks, CRS-method (Track-class), 35 spTransform,TracksCollection,CRS-method (Track-class), 35 st_simplify, 18 stbox, 32 stbox, Tracks-method (stbox), 32 stbox,TracksCollection-method(stbox), 32 stcube, 33 stcube,difftrack-method(stcube), 33 stcube, STI-method (stcube), 33 stcube,STIDF-method (stcube), 33 stcube, Track-method (stcube), 33 stcube, Tracks-method (stcube), 33

44

INDEX

stcube,TracksCollection-method
 (stcube), 33
STIDF-class, 35, 36
storms, 34
stplot,TracksCollection-method
 (Track-class), 35

```
Track, 5, 14

Track (Track-class), 35

Track-class, 35

Track.idw, 39

Tracks (Track-class), 35

Tracks-class (Track-class), 35

TracksCollection (Track-class), 35

TracksCollection-class (Track-class), 35

TracksPanel (Track-class), 35

TrackStats (Track-class), 35

TrackStats (Track-class), 35

TrackStats (Track-class), 35

TrackSummary (Track-class), 35

TrackSummary (Track-class), 35

TrackSummary (Track-class), 35
```

unique, 42 unique.Track, 41