Package ‘survival’

July 17, 2025

Title Survival Analysis

Priority recommended

Version 3.8-3

Date 2024-12-17

Depends R (>=3.5.0)

Imports graphics, Matrix, methods, splines, stats, utils
LazyData Yes

LazyDataCompression xz

ByteCompile Yes

Description Contains the core survival analysis routines, including
definition of Surv objects,
Kaplan-Meier and Aalen-Johansen (multi-state) curves, Cox models,
and parametric accelerated failure time models.

License LGPL (>=2)

URL https://github.com/therneau/survival
NeedsCompilation yes

Author Terry M Therneau [aut, cre],
Thomas Lumley [ctb, trl] (original S->R port and R maintainer until
2009),
Atkinson Elizabeth [ctb],
Crowson Cynthia [ctb]

Maintainer Terry M Therneau <therneau.terry@mayo.edu>
Repository CRAN
Date/Publication 2024-12-17 20:20:02 UTC

Contents

QATEZ .« v v v e e e e e e e e e e e e e e e e e e
ABASUIV .« . L e e e
aggregate.SUrviit L.

https://github.com/therneau/survival

Contents

agregfit L e e e 9
aml ... e 10
anova.coxph L 11
attrassig@n e 12
basehaz e 13
bladder e 14
blogit 16
brier e 17
CCh . . e 19
cgd . . e 21
cgdO . . L e 23
CIPOISSOM . . v v v v v it e et e e e e e e e e e e e e e e 24
clogit e 25
ClUSter e 27
colon . . .o e 28
CONCOTAANCE v v it e e e e e e e e e e 29
concordancefit 33
COX.ZPh . . L e e e 34
COXph . . e e 36
coxph.control L 41
coxph.detail e 42
coxphoobject L 44
COXPh.WEESt e 45
coxphms.object L e 46
coXsSUrv.fit Lo 47
diabetic e 48
dsurvrego 49
finegray 51
flchain L 53
frailty 55
gbSg e 57
heart 58
hoel e 59
isratetable L. L 60
kidney 61
levels.Surv L L e 62
lines.surviit L e 62
logan 65
logLik.coxph e e 66
lung e 67
MEUS -« v v o e et e e e e e e e e e e 68
MEUS2 . . o ot e e e e e e e e e 69
model.frame.coxph L 70
model.matrix.coxph 71
myeloid e 72
myeloma e e e 73
nafld L e 74

neardate e e 76

Contents

3
NSK . . e 77
NWEICO . v v v v i e e e e e e e e e e e e e e e 80
OVAIAN . .« . v v v vt e e e e e e e e e 81
PO . o 81
PDCSEQ .« o o e e e e e 83
plotaareg L 85
plotcox.zph 85
plot.surviit e e e e e 87
predict.coxph L e 90
Predict.SsUIVICZ L L e e e 92
PriNtAareg oo e e e e e e e e e e 94
print.summary.coXph e 95
Print.SUMMArY.SUIVEXP . .« v o v v v v e e e e e e e e e e e e e e e e e e e 96
print.summary.surviit L. 96
print.surviit . ..o e e e 97
pseudoo e 99
psplineo 101
PYCATS . o v v o i e e e e e e e e e e e e e e 103
quantile.surviit L. oL 106
ratetable L L L 107
ratetableDate 108
ratetables L 109
TAES © o vt e e e e e e e e e e e e e e e 110
TALS2 . . L e e e e e e e 111
reliability L e e e e 111
residuals.coxph L 113
residuals.survfit oL L 115
residuals.survreg oL L L L 116
retinopathy L. e e 118
thDNase o e e e 119
ridge . . . 120
rotterdam e 122
TOYSION . . . v v v e e e e e e e e e e e 123
rright © . o L e 125
solder 126
stanford2 L e 127
statefig L 128
SIrata e e e e e e e e 130
SUMMATY.AATEZ .+« . v v v v v e 131
summary.CoXph e 133
SUMMATY.PYCATS . « . v ¢ v v v e e v e 134
SUMMATY.SUIVEXD « & v v v v v e 135
summary.surviito L e e 136
SUIV . . e e e 139
Surv-methods 141
SUIVZ o e e e 143
Surv2data e e e e 144

surveheck e 145

4 aareg
SUrVEONdeNSe e e e e e e e 147
survdiff . .. 148
SUIVEXD .+ v v v v v e e e e e e e e e e e e e e e e e e 150
survexp.fito L 153
SUIVEXP.ODJECt o o 154
SUrVEIL . . . L e e 155
survfit.coxph L e 156
survfitformula Lo 159
SUrvAE.MatriX e e 165
surviit.object L. 167
surviitD . . L e 169
survfitcoxph.fit e 170
survival-deprecated L e e 172
SUIVODTIEN v v ot it e e e e e e e e e e e 172
SUIVICZ . v v v v e v v e e e e e e e e e e e e e e e e e e e 174
Survreg.control L. 176
survreg.distributions L L. L L e e 177
SUIVIEZ.ODJECE . . o . vt o v i e e e e e e e e e e e e e e 179
survregDtest L. L L 180
survSPlit 181
TCUL . . o o e e e 183
timeline e 184
1910013 ¥ P 185
tobin e 187
transplant L. e e 188
udca . ..o 189
untangle.specials e 190
USPOP2 . v v o e 191
VCOV.COXPh . . o o o e e e 192
VEIETAN . . . v v v vt e 193
XUrm.Surv . . oL 193
VABS . o v i e e e e e e e e e e e e e 194
VAES_SCIUP . v v v v v e 196

Index 197

aareg Aalen’s additive regression model for censored data

Description

Returns an object of class "aareg"” that represents an Aalen model.

Usage

aareg(formula, data, weights, subset, na.action,

grtol=1e-07, nmin, dfbeta=FALSE, taper=1,
test = c('aalen', 'variance', 'nrisk'), cluster,
model=FALSE, x=FALSE, y=FALSE)

aareg

Arguments

formula

data

weights

subset

na.action

grtol

nmin

dfbeta

taper

test

cluster

model, x, y

a formula object, with the response on the left of a ‘~” operator and the terms,
separated by + operators, on the right. The response must be a Surv object. Due
to a particular computational approach that is used, the model MUST include an
intercept term. If "-1" is used in the model formula the program will ignore it.

data frame in which to interpret the variables named in the formula, subset,
and weights arguments. This may also be a single number to handle some
speci al cases — see below for details. If data is missing, the variables in the
model formula should be in the search path.

vector of observation weights. If supplied, the fitting algorithm minimizes the
sum of the weights multiplied by the squared residuals (see below for additional
technical details). The length of weights must be the same as the number of
observations. The weights must be nonnegative and it i s recommended that
they be strictly positive, since zero weights are ambiguous. To exclude particular
observations from the model, use the subset argument instead of zero weights.

expression specifying which subset of observations should be used in the fit. Th
is can be a logical vector (which is replicated to have length equal to the numb
er of observations), a numeric vector indicating the observation numbers to be
included, or a character vector of the observation names that should be included.
All observations are included by default.

a function to filter missing data. This is applied to the model. fr ame after any
subset argument has be en applied. The default is na.fail, which returns a
n error if any missing values are found. An alternative is na.excl ude, which
deletes observations that contain one or more missing values.

tolerance for detection of singularity in the QR decomposition

minimum number of observations for an estimate; defaults to 3 times the number
of covariates. This essentially truncates the computations near the tail of the data
set, when n is small and the calculations can become numerically unstable.

should the array of dfbeta residuals be computed. This implies computation of
the sandwich variance estimate. The residuals will always be computed if there
is a cluster term in the model formula.

allows for a smoothed variance estimate. Var(x), where x is the set of covariates,
is an important component of the calculations for the Aalen regression model.
At any given time point t, it is computed over all subjects who are still at risk
at time t. The tape argument allows smoothing these estimates, for example
taper=(1:4)/4 would cause the variance estimate used at any event time to be
a weighted average of the estimated variance matrices at the last 4 death times,
with a weight of 1 for the current death time and decreasing to 1/4 for prior event
times. The default value gives the standard Aalen model.

selects the weighting to be used, for computing an overall “average” coefficient
vector over time and the subsequent test for equality to zero.

the clustering group, optional. The variable will be searched for in the data
argument.

should copies of the model frame, the x matrix of predictors, or the response
vector y be included in the saved result.

6 aareg

Details

The Aalen model assumes that the cumulative hazard H(t) for a subject can be expressed as a(t) +
X B(t), where a(t) is a time-dependent intercept term, X is the vector of covariates for the subject
(possibly time-dependent), and B(t) is a time-dependent matrix of coefficients. The estimates are
inherently non-parametric; a fit of the model will normally be followed by one or more plots of the
estimates.

The estimates may become unstable near the tail of a data set, since the increment to B at time t is
based on the subjects still at risk at time t. The tolerance and/or nmin parameters may act to truncate
the estimate before the last death. The taper argument can also be used to smooth out the tail of
the curve. In practice, the addition of a taper such as 1:10 appears to have little effect on death times
when n is still reasonably large, but can considerably dampen wild occilations in the tail of the plot.

Value

an object of class "aareg” representing the fit, with the following components:

n vector containing the number of observations in the data set, the number of event
times, and the number of event times used in the computation

times vector of sorted event times, which may contain duplicates

nrisk vector containing the number of subjects at risk, of the same length as times

coefficient matrix of coefficients, with one row per event and one column per covariate

test.statistic the value of the test statistic, a vector with one element per covariate

test.var variance-covariance matrix for the test
test the type of test; a copy of the test argument above
tweight matrix of weights used in the computation, one row per event
call a copy of the call that produced this result
References

Aalen, O.0. (1989). A linear regression model for the analysis of life times. Statistics in Medicine,
8:907-925.

Aalen, O.0 (1993). Further results on the non-parametric linear model in survival analysis. Statis-
tics in Medicine. 12:1569-1588.

See Also

print.aareg, summary.aareg, plot.aareg

Examples

Fit a model to the lung cancer data set
1fit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung,
nmin=1)
Not run:
1fit
Call:
aareg(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, nmin = 1

aeqSurv 7

)

n=227 (1 observations deleted due to missing values)
138 out of 138 unique event times used

slope coef se(coef) z p

Intercept 5.26e-03 5.99e-03 4.74e-03 1.26 0.207000
age 4.26e-05 7.02e-05 7.23e-05 ©0.97 0.332000

sex -3.29e-03 -4.02e-03 1.22e-03 -3.30 0.000976
ph.ecog 3.74e-03 3.80e-03 1.03e-03 3.70 0.000214

Chisg=26.73 on 3 df, p=6.7e-06; test weights=aalen
plot(1fit[4], ylim=c(-4,4)) # Draw a plot of the function for ph.ecog

End(Not run)
1fit2 <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung,
nmin=1, taper=1:10)
Not run: lines(1fit2[4], col=2) # Nearly the same, until the last point

A fit to the mulitple-infection data set of children with
Chronic Granuomatous Disease. See section 8.5 of Therneau and Grambsch.
fita2 <- aareg(Surv(tstart, tstop, status) ~ treat + age + inherit +
steroids + cluster(id), data=cgd)
Not run:
n= 203
69 out of 70 unique event times used

slope coef se(coef) robust se z p
Intercept 0.004670 0.017800 0.002780 ©.003910 4.55 5.30e-06
treatrIFN-g -0.002520 -0.010100 0.002290 0.003020 -3.36 7.87e-04
age -0.000101 -0.000317 0.000115 ©0.000117 -2.70 6.84e-03
inheritautosomal ©.001330 ©.003830 0.002800 0.002420 1.58 1.14e-01
steroids 0.004620 0.013200 0.010600 0.009700 1.36 1.73e-01

Chisq=16.74 on 4 df, p=0.0022; test weights=aalen

End(Not run)

aeqsSurv Adjudicate near ties in a Surv object

Description

The check for tied survival times can fail due to floating point imprecision, which can make actual
ties appear to be distinct values. Routines that depend on correct identification of ties pairs will then
give incorrect results, e.g., a Cox model. This function rectifies these.

Usage

aeqSurv(x, tolerance = sqgrt(.Machine$double.eps))

8 aggregate.survfit

Arguments

X a Surv object

tolerance the tolerance used to detect values that will be considered equal
Details

This routine is called by both survfit and coxph to deal with the issue of ties that get incorrectly
broken due to floating point imprecision. See the short vignette on tied times for a simple example.
Use the timefix argument of survfit or coxph.control to control the option if desired.

The rule for ‘equality’ is identical to that used by the all.equal routine. Pairs of values that are
within round off error of each other are replaced by the smaller value. An error message is generated
if this process causes a 0 length time interval to be created.

Value

a Surv object identical to the original, but with ties restored.

Author(s)

Terry Therneau

See Also

survfit, coxph.control

aggregate.survfit Average survival curves

Description

For a survfit object containing multiple curves, create average curves over a grouping.

Usage
S3 method for class 'survfit'
aggregate(x, by = NULL, FUN = mean, ...)
Arguments
X a survfit object which has a data dimension.
by an optional list or vector of grouping elements, each as long as dim(x) ['data’].
FUN a function to compute the summary statistic of interest.

optional further arguments to FUN.

agreg. fit 9

Details

The primary use of this is to take an average over multiple survival curves that were created from a
modeling function. That is, a marginal estimate of the survival. It is primarily used to average over
multiple predicted curves from a Cox model.

Value

a survfit object of lower dimension.

See Also

survfit

Examples

cfit <- coxph(Surv(futime, death) ~ sex + agexhgb, data=mgus2)

marginal effect of sex, after adjusting for the others

dummy <- rbind(mgus2, mgus2)

dummy$sex <- rep(c("F", "M"), each=nrow(mgus2)) # population data set
dummy <- na.omit(dummy) # don't count missing hgb in our "population
csurv <- survfit(cfit, newdata=dummy)

dim(csurv) # 2 * 1384 survival curves

csurv2 <- aggregate(csurv, dummy$sex)

agreg.fit Cox model fitting functions

Description

These are the the functions called by coxph that do the actual computation. In certain situations, e.g.
a simulation, it may be advantageous to call these directly rather than the usual coxph call using a
model formula.

Usage

agreg.fit(x, y, strata, offset, init, control, weights, method,
rownames, resid=TRUE, nocenter=NULL)
coxph.fit(x, y, strata, offset, init, control, weights, method,
rownames, resid=TRUE, nocenter=NULL)

Arguments
X Matix of predictors. This should not include an intercept.
y a Surv object containing either 2 columns (coxph.fit) or 3 columns (agreg.fit).
strata a vector containing the stratification, or NULL
offset optional offset vector

init initial values for the coefficients

10 aml

control the result of a call to coxph.control

weights optional vector of weights

method method for handling ties, one of "breslow" or "efron"

rownames this is only needed for a NULL model, in which case it contains the rownames
(if any) of the original data.

resid compute and return residuals.

nocenter an optional list of values. Any column of the X matrix whose values lie strictly

within that set will not be recentered. Note that the coxph function has (-1, 0, 1)
as the default.
Details

This routine does no checking that arguments are the proper length or type. Only use it if you know
what you are doing!

The resid and concordance arguments will save some compute time for calling routines that only
need the likelihood, the generation of a permutation distribution for instance.

Value

a list containing results of the fit

Author(s)

Terry Therneau

See Also

coxph

aml Acute Myelogenous Leukemia survival data

Description
Survival in patients with Acute Myelogenous Leukemia. The question at the time was whether the
standard course of chemotherapy should be extended (’maintainance’) for additional cycles.
Usage

aml
leukemia
data(cancer, package="survival")

Format

anova.coxph 11

time: survival or censoring time
status: censoring status
X: maintenance chemotherapy given? (factor)

Source

Rupert G. Miller (1997), Survival Analysis. John Wiley & Sons. ISBN: 0-471-25218-2.

anova. coxph Analysis of Deviance for a Cox model.

Description

Compute an analysis of deviance table for one or more Cox model fits, based on the log partial
likelihood.

Usage
S3 method for class 'coxph'
anova(object, ..., test = 'Chisq')
Arguments
object An object of class coxph

Further coxph objects

test a character string. The appropriate test is a chisquare, all other choices result in
no test being done.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the
reductions in the model Cox log-partial-likelihood as each term of the formula is added in turn are
given in as the rows of a table, plus the log-likelihoods themselves. A robust variance estimate is
normally used in situations where the model may be mis-specified, e.g., multiple events per subject.
In this case a comparison of likelihood values does not make sense (differences no longer have a
chi-square distribution), and anova will refuse to print results.

If more than one object is specified, the table has a row for the degrees of freedom and loglikelihood
for each model. For all but the first model, the change in degrees of freedom and loglik is also given.
(This only make statistical sense if the models are nested.) It is conventional to list the models from
smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in loglik for
each row.

12 attrassign

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova will only be valid if they are fitted to the
same dataset. This may be a problem if there are missing values.

See Also

coxph, anova.

Examples

fit <- coxph(Surv(futime, fustat) ~ resid.ds *rx + ecog.ps, data = ovarian)
anova(fit)

fit2 <- coxph(Surv(futime, fustat) ~ resid.ds +rx + ecog.ps, data=ovarian)
anova(fit2,fit)

attrassign Create new-style "assign" attribute

Description

The "assign" attribute on model matrices describes which columns come from which terms in the
model formula. It has two versions. R uses the original version, but the alternate version found in
S-plus is sometimes useful.

Usage

attrassign(object, ...)

Default S3 method:
attrassign(object, tt,...)
S3 method for class 'Im'
attrassign(object,...)

Arguments
object model matrix or linear model object
tt terms object

further arguments for other methods

basehaz 13

Details

For instance consider the following

survreg(Surv(time, status) ~ age + sex + factor(ph.ecog), lung)

R gives the compact for for assign, a vector (0, 1, 2, 3, 3, 3); which can be read as “the first column
of the X matrix (intercept) goes with none of the terms, the second column of X goes with term 1
of the model equation, the third column of X with term 2, and columns 4-6 with term 3”.

The alternate (S-Plus default) form is a list

$(Intercept) 1
$age 2
$sex 3
$factor(ph.ecog) 4 5 6

Value

A list with names corresponding to the term names and elements that are vectors indicating which
columns come from which terms

See Also

terms,model.matrix

Examples

formula <- Surv(time,status)~factor(ph.ecog)
tt <- terms(formula)

mf <- model.frame(tt,data=lung)

mm <- model.matrix(tt,mf)

a few rows of data

mm[1:3,]

old-style assign attribute
attr(mm,"assign")

alternate style assign attribute
attrassign(mm,tt)

basehaz Alias for the survfit function

Description

Compute the predicted survival curve for a Cox model.

Usage

basehaz(fit, newdata, centered=TRUE)

14 bladder

Arguments
fit a coxph fit
newdata a data frame containing one row for each predicted survival curve, said row
contains the covariate values for that curve
centered ignored if the newdata argument is present. Otherwise, if TRUE return data
from a predicted survival curve for the covariate values fit$mean, if FALSE
return a prediction for all covariates equal to zero.
Details

This function is an alias for survfit.coxph, which does the actual work and has a richer set of
options. Look at that help file for more discussion and explanation. This alias exists primarily
because some users look for predicted survival estimates under this name.

The function returns a data frame containing the time, cumhaz and optionally the strata (if the fitted
Cox model used a strata statement), which are copied from the survfit result.

If H(t; z) is the predicted cumulative hazard for an observation with covariate vector z, then H(t;x) =
H(t;z) r(x,z) where r(x,z)= exp(beta[1](x[1]- z[1]) + beta[2](x[2]-z[2]) + ...) = exp(sum(coef (fit)
* (x-z))) is the Cox model’s hazard ratio for covariate vector x vs covariate vector z. That is,
the cumulative hazard H for a single reference value z is sufficient to provide the hazard for any
covariate values. The predicted survival curve is S(t; X)= exp(-H(t;x)). There is not a simple trans-
formation for the variance of H, however.

Many textbooks refer to H(t; 0) as "the" baseline hazard for a Cox model; this is returned by the
centered= FALSE option. However, due to potential overflow or underflow in the exp() function
this can be a very bad idea in practice. The authors do not recommend this option, but for users who
insist: caveat emptor. Offset terms can pose a particular challenge for the underlying code and are
always recentered; to override this use the newdata argument and include the offset as one of the
variables.

Value

a data frame with variable names of hazard, time and optionally strata. The first is actually the
cumulative hazard.

See Also

survfit.coxph

bladder Bladder Cancer Recurrences

bladder 15

Description

Data on recurrences of bladder cancer, used by many people to demonstrate methodology for recur-
rent event modelling.

Bladder1 is the full data set from the study. It contains all three treatment arms and all recurrences
for 118 subjects; the maximum observed number of recurrences is 9.

Bladder is the data set that appears most commonly in the literature. It uses only the 85 subjects
with nonzero follow-up who were assigned to either thiotepa or placebo, and only the first four re-
currences for any patient. The status variable is 1 for recurrence and O for everything else (including
death for any reason). The data set is laid out in the competing risks format of the paper by Wei,
Lin, and Weissfeld.

Bladder?2 uses the same subset of subjects as bladder, but formatted in the (start, stop] or Anderson-
Gill style. Note that in transforming from the WLW to the AG style data set there is a quite common
programming mistake that leads to extra follow-up time for 12 subjects: all those with follow-up
beyond their 4th recurrence. This "follow-up" is a side effect of throwing away all events after the
fourth while retaining the last follow-up time variable from the original data. The bladder2 data set
found here does not make this mistake, but some analyses in the literature have done so; it results
in the addition of a small amount of immortal time bias and shrinks the fitted coefficients towards
Zero.

Usage

bladder1
bladder
bladder2
data(cancer, package="survival")

Format
bladderl
id: Patient id
treatment: Placebo, pyridoxine (vitamin B6), or thiotepa
number: Initial number of tumours (8=8 or more)
size: Size (cm) of largest initial tumour
recur: Number of recurrences
start,stop: ~ The start and end time of each time interval
status: End of interval code, O=censored, 1=recurrence,
2=death from bladder disease, 3=death other/unknown cause
rtumor: Number of tumors found at the time of a recurrence
rsize: Size of largest tumor at a recurrence
enum: Event number (observation number within patient)
bladder
id: Patient id

rX: Treatment 1=placebo 2=thiotepa

16 blogit

number: Initial number of tumours (8=8 or more)

size: size (cm) of largest initial tumour
stop: recurrence or censoring time
enum: which recurrence (up to 4)
bladder2
id: Patient id
X: Treatment 1=placebo 2=thiotepa
number: Initial number of tumours (8=8 or more)
size: size (cm) of largest initial tumour
start: start of interval (0 or previous recurrence time)
stop: recurrence or censoring time
enum: which recurrence (up to 4)
Source

Andrews DF, Hertzberg AM (1985), DATA: A Collection of Problems from Many Fields for the
Student and Research Worker, New York: Springer-Verlag.

LJ Wei, DY Lin, L Weissfeld (1989), Regression analysis of multivariate incomplete failure time
data by modeling marginal distributions. Journal of the American Statistical Association, 84.

blogit Bounded link functions

Description

Alternate link functions that impose bounds on the input of their link function

Usage

blogit(edge = 0.05)
bprobit(edge= 0.05)
bcloglog(edge=.05)
blog(edge=.05)

Arguments

edge input values less than the cutpoint are replaces with the cutpoint. For all be blog
input values greater than (1-edge) are replaced with (1-edge)

brier 17

Details

When using survival psuedovalues for binomial regression, the raw data can be outside the range
(0,1), yet we want to restrict the predicted values to lie within that range. A natural way to deal with
this is to use glm with family = gaussian(link= "logit"). But this will fail. The reason is that
the family object has a component 1inkfun that does not accept values outside of (0,1).

This function is only used to create initial values for the iteration step, however. Mapping the
offending input argument into the range of (egde, 1-edge) before computing the link results in
starting estimates that are good enough. The final result of the fit will be no different than if explicit
starting estimates were given using the etastart or mustart arguments. These functions create
copies of the logit, probit, and complimentary log-log families that differ from the standard ones
only in this use of a bounded input argument, and are called a "bounded logit" = blogit, etc.

The same argument hold when using RMST (area under the curve) pseudovalues along with a log
link to ensure positive predictions, though in this case only the lower boundary needs to be mapped.

Value

a family object of the same form as make.family.

See Also

stats{make.family}

Examples

py <- pseudo(survfit(Surv(time, status) ~1, lung), time=730) #2 year survival
range (py)

pfit <- glm(py ~ ph.ecog, data=lung, family=gaussian(link=blogit()))

For each +1 change in performance score, the odds of 2 year survival

are multiplied by 1/2 = exp of the coefficient.

brier Compute the Brier score for a Cox model

Description

Compute the Brier score, for a coxph model

Usage

brier(fit, times, newdata, ties = TRUE, detail = FALSE, timefix = TRUE,
efron = FALSE)

18 brier

Arguments
fit result of a coxph fit
times time points at which to create the score
newdata optional, used to validate a prior fit with new data
ties if TRUE, treate tied event/censoring times properly
detail if TRUE, the returned object has more detail. This can be useful for debugging
or for instruction.
timefix deal with near ties in the data. See the tied times vignette.
efron use the same survival estimate for the NULL model as was used in the coxph
call
Details

Far more details are found in the vignette. At any time point tau, the scaled Brier score is essentially
the R-squared statistic where y = the 0/1 variable "event at or before tau", yhat is the probability
of an event by tau, as predicted by the model, and the ybar is the predicted probablity without
covariate, normally from a Kaplan-Meier. If R* = 1 — Y (y — §)?/ > (y — u)?, the Brier score is
formally only the numerator of the second term. The rescaled value is much more useful, however.

Many, perhaps even most algorithms do not properly deal with a tied censoring time/event time
pair. The tied option is present mostly verify that we get the same answer, when we make the
same mistake. The numerical size of the inaccuracy is very small; just large enough to generate
concern that this function is incorrect.

A sensible argument can be made that the NULL model should be a coxph call with no covariates,
rather than the Kaplan-Meier; but it turns out that the effect is very slight. This is allowed by the
efron argument.

Value

a list with components

rsquared the R? value, a scaled Brier score. This will be a vector with one entry for each
time point.
brier the brier score, a vector with one entry per time point
times the time points at which the score was computed
Author(s)
Terry Therneau
See Also

rttright

cch 19
Examples

cfit <- coxph(Surv(rtime, recur) ~ age + meno + size + pmin(nodes,11),

data= rotterdam)
round(cfit$concordance["concordance”], 3) # some predictive power
brier(cfit, times=c(4,6)*365.25) # values at 4 and 6 years
cch Fits proportional hazards regression model to case-cohort data

Description

Returns estimates and standard errors from relative risk regression fit to data from case-cohort stud-
ies. A choice is available among the Prentice, Self-Prentice and Lin-Ying methods for unstratified
data. For stratified data the choice is between Borgan I, a generalization of the Self-Prentice esti-
mator for unstratified case-cohort data, and Borgan II, a generalization of the Lin-Ying estimator.

Usage

cch(formula, data, subcoh, id, stratum=NULL, cohort.size,

non

method =c("Prentice”,"SelfPrentice”,"LinYing","I.Borgan”,"II.Borgan”),
robust=FALSE)

Arguments

formula

subcoh

id

stratum

cohort.size

data

method

robust

A formula object that must have a Surv object as the response. The Surv object
must be of type "right"”, or of type "counting”.

Vector of indicators for subjects sampled as part of the sub-cohort. Code 1 or
TRUE for members of the sub-cohort, @ or FALSE for others. If data is a data
frame then subcoh may be a one-sided formula.

Vector of unique identifiers, or formula specifying such a vector.
A vector of stratum indicators or a formula specifying such a vector

Vector with size of each stratum original cohort from which subcohort was sam-
pled

An optional data frame in which to interpret the variables occurring in the for-
mula.

Three procedures are available. The default method is "Prentice”, with options
for "SelfPrentice" or "LinYing".

For "LinYing" only, if robust=TRUE, use design-based standard errors even for
phase I

20 cch

Details

Implements methods for case-cohort data analysis described by Therneau and Li (1999). The three
methods differ in the choice of "risk sets" used to compare the covariate values of the failure with
those of others at risk at the time of failure. "Prentice" uses the sub-cohort members "at risk" plus the
failure if that occurs outside the sub-cohort and is score unbiased. "SelfPren" (Self-Prentice) uses
just the sub-cohort members "at risk". These two have the same asymptotic variance-covariance
matrix. "LinYing" (Lin-Ying) uses the all members of the sub-cohort and all failures outside the
sub-cohort who are "at risk". The methods also differ in the weights given to different score contri-
butions.

The data argument must not have missing values for any variables in the model. There must not be
any censored observations outside the subcohort.

Value

An object of class "cch" incorporating a list of estimated regression coefficients and two estimates
of their asymptotic variance-covariance matrix.

coef regression coefficients.

naive.var Self-Prentice model based variance-covariance matrix.

var Lin-Ying empirical variance-covariance matrix.
Author(s)

Norman Breslow, modified by Thomas Lumley

References

Prentice, RL (1986). A case-cohort design for epidemiologic cohort studies and disease prevention
trials. Biometrika 73: 1-11.

Self, S and Prentice, RL (1988). Asymptotic distribution theory and efficiency results for case-
cohort studies. Annals of Statistics 16: 64-81.

Lin, DY and Ying, Z (1993). Cox regression with incomplete covariate measurements. Journal of
the American Statistical Association 88: 1341-1349.

Barlow, WE (1994). Robust variance estimation for the case-cohort design. Biometrics 50: 1064—
1072

Therneau, TM and Li, H (1999). Computing the Cox model for case-cohort designs. Lifetime Data
Analysis 5: 99-112.

Borgan, O, Langholz, B, Samuelsen, SO, Goldstein, L. and Pogoda, J (2000) Exposure stratified
case-cohort designs. Lifetime Data Analysis 6, 39-58.
See Also

twophase and svycoxph in the "survey" package for more general two-phase designs. http://
faculty.washington.edu/tlumley/survey/

http://faculty.washington.edu/tlumley/survey/
http://faculty.washington.edu/tlumley/survey/

cgd 21

Examples

The complete Wilms Tumor Data

(Breslow and Chatterjee, Applied Statistics, 1999)
subcohort selected by simple random sampling.

#H#

subcoh <- nwtco$in.subcohort

selccoh <- with(nwtco, rel==1|subcoh==1)

ccoh.data <- nwtco[selccoh,]

ccoh.data$subcohort <- subcoh[selccoh]

central-lab histology

ccoh.datashistol <- factor(ccoh.data$histol,labels=c("FH","UH"))

tumour stage

ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III","IV"))
ccoh.data$age <- ccoh.data$age/12 # Age in years

#H#
Standard case-cohort analysis: simple random subcohort
#H#

fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028)

fit.ccP

fit.ccSP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="SelfPren")

summary (fit.ccSP)

#H#

(post-)stratified on instit

##

stratsizes<-table(nwtco$instit)

fit.BI<- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data,
subcoh = ~subcohort, id=~seqno, stratum=~instit, cohort.size=stratsizes,
method="I.Borgan")

summary (fit.BI)

cgd Chronic Granulotamous Disease data

Description

Data are from a placebo controlled trial of gamma interferon in chronic granulotomous disease
(CGD). Contains the data on time to serious infections observed through end of study for each
patient.

22 cgd

Usage

cgd
data(cgd)

Format

id subject identification number

center enrolling center

random date of randomization

treatment placebo or gamma interferon

sex sex

age age in years, at study entry

height height in cm at study entry

weight weight in kg at study entry

inherit pattern of inheritance

steroids use of steroids at study entry,l=yes
propylac use of prophylactic antibiotics at study entry
hos.cat a categorization of the centers into 4 groups
tstart, tstop start and end of each time interval
status 1=the interval ends with an infection

enum observation number within subject

Details

The cgd@ data set is in the form found in the references, with one line per patient and no recoding
of the variables. The cgd data set (this one) has been cast into (start, stop] format with one line per
event, and covariates such as center recoded as factors to include meaningful labels.

Source

Fleming and Harrington, Counting Processes and Survival Analysis, appendix D.2.

See Also

link{cgd@}

cgd0 23

cgdo Chronic Granulotomous Disease data

Description

Data are from a placebo controlled trial of gamma interferon in chronic granulotomous disease
(CGD). Contains the data on time to serious infections observed through end of study for each
patient.

Usage
cgdo

Format

id subject identification number

center enrolling center

random date of randomization

treatment placebo or gamma interferon

sex sex

age age in years, at study entry

height height in cm at study entry

weight weight in kg at study entry

inherit pattern of inheritance

steroids use of steroids at study entry,l=yes
propylac use of prophylactic antibiotics at study entry
hos.cat a categorization of the centers into 4 groups
futime days to last follow-up

etimel-etime7 up to 7 infection times for the subject

Details

The cgdraw data set (this one) is in the form found in the references, with one line per patient and
no recoding of the variables.

The cgd data set has been further processed so as to have one line per event, with covariates such
as center recoded as factors to include meaningful labels.

Source

Fleming and Harrington, Counting Processes and Survival Analysis, appendix D.2.

See Also
cgd

24 cipoisson

cipoisson Confidence limits for the Poisson

Description

Confidence interval calculation for Poisson rates.

Usage

cipoisson(k, time =1, p = 0.95, method = c("exact”, "anscombe"))
Arguments

k Number of successes

time Total time on trial

p Probability level for the (two-sided) interval

method The method for computing the interval.
Details

The likelihood method is based on equation 10.10 of Feller, which relates poisson probabilities to
tail area of the gamma distribution. The Anscombe approximation is based on the fact that sqrt(k +
3/8) has a nearly constant variance of 1/4, along with a continuity correction.

There are many other proposed intervals: Patil and Kulkarni list and evaluate 19 different sugges-
tions from the literature!. The exact intervals can be overly broad for very small values of k, many
of the other approaches try to shrink the lengths, with varying success.

Value

a vector, matrix, or array. If both k and time are single values the result is a vector of length 2
containing the lower an upper limits. If either or both are vectors the result is a matrix with two
columns. If k is a matrix or array, the result will be an array with one more dimension; in this case
the dimensions and dimnames (if any) of k are preserved.

References

FJ. Anscombe (1949). Transformations of Poisson, binomial and negative-binomial data. Biometrika,
35:246-254.

W.F. Feller (1950). An Introduction to Probability Theory and its Applications, Volume 1, Chapter
6, Wiley.

V. V. Patil and H.F. Kulkarni (2012). Comparison of confidence intervals for the poisson mean:
some new aspects. Revstat 10:211-227.

See Also

ppois, gpois

clogit 25

Examples

cipoisson(4) # 95\% confidence limit

lower upper

1.089865 10.24153

ppois(4, 10.24153) #chance of seeing 4 or fewer events with large rate
[1] 0.02500096

1-ppois(3, 1.08986) #chance of seeing 4 or more, with a small rate

[1] 0.02499961

clogit Conditional logistic regression

Description

Estimates a logistic regression model by maximising the conditional likelihood. Uses a model
formula of the form case.status~exposure+strata(matched.set). The default is to use the
exact conditional likelihood, a commonly used approximate conditional likelihood is provided for
compatibility with older software.

Usage
clogit(formula, data, weights, subset, na.action,
method=c("exact"”, "approximate"”, "efron”, "breslow"),
)
Arguments
formula Model formula
data data frame
weights optional, names the variable containing case weights
subset optional, subset the data
na.action optional na.action argument. By default the global option na.action is used.
method use the correct (exact) calculation in the conditional likelihood or one of the
approximations

optional arguments, which will be passed to coxph.control

Details

It turns out that the loglikelihood for a conditional logistic regression model = loglik from a Cox
model with a particular data structure. Proving this is a nice homework exercise for a PhD statistics
class; not too hard, but the fact that it is true is surprising.

When a well tested Cox model routine is available many packages use this ‘trick’ rather than writing
a new software routine from scratch, and this is what the clogit routine does. In detail, a stratified
Cox model with each case/control group assigned to its own stratum, time set to a constant, status

26

clogit

of 1=case O=control, and using the exact partial likelihood has the same likelihood formula as a
conditional logistic regression. The clogit routine creates the necessary dummy variable of times
(all 1) and the strata, then calls coxph.

The computation of the exact partial likelihood can be very slow, however. If a particular strata
had say 10 events out of 20 subjects we have to add up a denominator that involves all possible
ways of choosing 10 out of 20, which is 20!/(10! 10!) = 184756 terms. Gail et al describe a
fast recursion method which partly ameliorates this; it was incorporated into version 2.36-11 of the
survival package. The computation remains infeasible for very large groups of ties, say 100 ties
out of 500 subjects, and may even lead to integer overflow for the subscripts — in this latter case
the routine will refuse to undertake the task. The Efron approximation is normally a sufficiently
accurate substitute.

Most of the time conditional logistic modeling is applied data with 1 case + k controls per set, in
which case all of the approximations for ties lead to exactly the same result. The ’approximate’
option maps to the Breslow approximation for the Cox model, for historical reasons.

Case weights are not allowed when the exact option is used, as the likelihood is not defined for
fractional weights. Even with integer case weights it is not clear how they should be handled. For
instance if there are two deaths in a strata, one with weight=1 and one with weight=2, should the
likelihood calculation consider all subsets of size 2 or all subsets of size 3? Consequently, case
weights are ignored by the routine in this case.

Value

An object of class "clogit"”, which is a wrapper for a "coxph” object.

References

Michell H Gail, Jay H Lubin and Lawrence V Rubinstein. Likelihood calculations for matched
case-control studies and survival studies with tied death times. Biometrika 68:703-707, 1980.

John A. Logan. A multivariate model for mobility tables. Am J Sociology 89:324-349, 1983.

Author(s)

Thomas Lumley

See Also

strata,coxph,glm

Examples

Not run: clogit(case ~ spontaneous + induced + strata(stratum), data=infert)

A multinomial response recoded to use clogit

The revised data set has one copy per possible outcome level, with new
variable tocc = target occupation for this copy, and case = whether

that is the actual outcome for each subject.

See the reference below for the data.

resp <- levels(logan$occupation)

n <- nrow(logan)

cluster 27

indx <- rep(1:n, length(resp))
logan2 <- data.frame(logan[indx,],

id = indx,
tocc = factor(rep(resp, each=n)))
logan2$case <- (logan2$occupation == logan2$tocc)

clogit(case ~ tocc + tocc:education + strata(id), logan2)

cluster Identify clusters.

Description

This is a special function used in the context of survival models. It identifies correlated groups of
observations, and is used on the right hand side of a formula. This style is now discouraged, use the
cluster option instead.

Usage

cluster(x)

Arguments

X A character, factor, or numeric variable.

Details

The function’s only action is semantic, to mark a variable as the cluster indicator. The resulting
variance is what is known as the “working independence” variance in a GEE model. Note that one
cannot use both a frailty term and a cluster term in the same model, the first is a mixed-effects
approach to correlation and the second a GEE approach, and these don’t mix.

Value

See Also

coxph, survreg

Examples

marginal.model <- coxph(Surv(time, status) ~ rx, data= rats, cluster=litter,
subset=(sex=="f"))

frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats,
subset=(sex=="'f"))

28 colon

colon Chemotherapy for Stage B/C colon cancer

Description

These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer.
Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU
is a moderately toxic (as these things go) chemotherapy agent. There are two records per person,
one for recurrence and one for death

Usage
colon
data(cancer, package="survival")
Format
id: id
study: 1 for all patients
rx: Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU
sex: I=male
age: in years
obstruct: obstruction of colon by tumour
perfor: perforation of colon
adhere: adherence to nearby organs
nodes: number of lymph nodes with detectable cancer
time: days until event or censoring
status: censoring status
differ: differentiation of tumour (1=well, 2=moderate, 3=poor)
extent: Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures)
surg: time from surgery to registration (O=short, 1=long)
node4: more than 4 positive lymph nodes
etype: event type: l=recurrence,2=death
Note

The study is originally described in Laurie (1989). The main report is found in Moertel (1990).
This data set is closest to that of the final report in Moertel (1991). A version of the data with less
follow-up time was used in the paper by Lin (1994).

Peter Higgins has pointed out a data inconsistency, revealed by table (colon$nodes, colon$node4).
We don’t know which of the two variables is actually correct so have elected not to ’fix’ it. (Real
data has warts, why not have some in the example data too?)

concordance 29

References

JA Laurie, CG Moertel, TR Fleming, HS Wieand, JE Leigh, J Rubin, GW McCormack, JB Gerst-
ner, JE Krook and J Malliard. Surgical adjuvant therapy of large-bowel carcinoma: An evaluation
of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treat-
ment Group and the Mayo Clinic. J Clinical Oncology, 7:1447-1456, 1989.

DY Lin. Cox regression analysis of multivariate failure time data: the marginal approach. Statistics
in Medicine, 13:2233-2247, 1994.

CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, PJ Goodman, JS Ungerleider,
WA Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard. Levamisole and fluorouracil for
adjuvant therapy of resected colon carcinoma. New England J of Medicine, 332:352-358, 1990.

CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, CM Tangen, JS Ungerleider, WA
Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard, Fluorouracil plus Levamisole as an
effective adjuvant therapy after resection of stage II colon carcinoma: a final report. Annals of
Internal Med, 122:321-326, 1991.

concordance Compute the concordance statistic for data or a model

Description

The concordance statistic compute the agreement between an observed response and a predictor. It
is closely related to Kendall’s tau-a and tau-b, Goodman’s gamma, and Somers’ d, all of which can
also be calculated from the results of this function.

Usage

concordance(object, ...)
S3 method for class 'formula'
concordance(object, data, weights, subset, na.action,
cluster, ymin, ymax, timewt= c("n"”, "S", "S/G", "n/G2", "I"),

influence=0, ranks = FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10, ...)
S3 method for class 'lm'
concordance(object, ..., newdata, cluster, ymin, ymax,

influence=0, ranks=FALSE, timefix=TRUE, keepstrata=10)

S3 method for class 'coxph'

concordance(object, ..., newdata, cluster, ymin, ymax,
timewt= c("n", "S", "S/G", "n/G2", "I"), influence=0,
ranks=FALSE, timefix=TRUE, keepstrata=10)

S3 method for class 'survreg'

concordance(object, ..., newdata, cluster, ymin, ymax,
timewt= c("n"”, "S", "S/G", "n/G2", "I"), influence=0,
ranks=FALSE, timefix=TRUE, keepstrata=10)

30

Arguments

object

data

weights

subset

na.action

newdata
cluster

ymin, ymax

timewt

influence

ranks

reverse

timefix

keepstrata

Details

concordance

a fitted model or a formula. The formula should be of the form y ~x or y ~ x
+ strata(z) with a single numeric or survival response and a single predictor.
Counts of concordant, discordant and tied pairs are computed separately per
stratum, and then added.

a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument. Only applicable if object is a formula.

optional vector of case weights. Only applicable if object is a formula.

expression indicating which subset of the rows of data should be used in the fit.
Only applicable if object is a formula.

a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is options()\$na.action. Only applicable
if object is a formula.

multiple fitted models are allowed. Only applicable if object is a model object.
optional, a new data frame in which to evaluate (but not refit) the models
optional grouping vector for calculating the robust variance

compute the concordance over the restricted range ymin <=y <= ymax. (For
survival data this is a time range.)

the weighting to be applied. The overall statistic is a weighted mean over event
times.

1= return the dfbeta vector, 2= return the full influence matrix, 3 = return both

if TRUE, return a data frame containing the scaled ranks that make up the overall
score.

if TRUE then assume that larger x values predict smaller response values y;
a proportional hazards model is the common example of this, larger hazard =
shorter survival.

correct for possible rounding error. See the vignette on tied times for more
explanation. Essentially, exact ties are an important part of the concordance
computatation, but "exact" can be a subtle issue with floating point numbers.

either TRUE, FALSE, or an integer value. Computations are always done within
stratum, then added. If the total number of strata greater than keepstrata, or
keepstrata=FALSE, those subtotals are not kept in the output.

The concordance is an estimate of Pr(z; < z;ly; < y;), for a model fit replace = with ¢, the
predicted response from the model. For a survival outcome some pairs of values are not comparable,
e.g., censored at time 5 and a death at time 6, as we do not know if the first observation will or will
not outlive the second. In this case the total number of evaluable pairs is smaller.

Relatations to other statistics: For continuous x and y, 2C- 1 is equal to Somers’ d. If the response
is binary, C is equal to the area under the receiver operating curve or AUC. For a survival response
and binary predictor C is the numerator of the Gehan-Wilcoxon test.

A naive compuation requires adding up over all n(n-1)/2 comparisons, which can be quite slow
for large data sets. This routine uses an O(n log(n)) algorithm. At each uncensored event time y,

concordance 31

compute the rank of x for the subject who had the event as compared to the x values for all others
with a longer survival, where the rank has value between 0 and 1. The concordance is a weighted
mean of these ranks, determined by the timewt option. The rank vector can be efficiently updated
as subjects are added to the risk set. For further details see the vignette.

The variance is based on an infinetesimal jackknife. One advantage of this approach is that it also
gives a valid covariance for the covariance based on multiple different predicted values, even if
those predictions come from quite different models. See for instance the example below which has
a poisson and two non-nested Cox models. This has been useful to compare a machine learning
model to a Cox model fit, say. It is absolutely critical, however, that the predicted values line up
exactly, with the same observation in each row; otherwise the result will be nonsense. (Be alert to
the impact of missing values.)

The timewt option is only applicable to censored data. In this case the default corresponds to
Harrell’s C statistic, which is closely related to the Gehan-Wilcoxon test; timewt="S" corrsponds
to the Peto-Wilcoxon, timewt="S/G" is suggested by Schemper, and timewt="n/G2" corresponds
to Uno’s C. It turns out that the Schemper and Uno weights are computationally identical, we have
retained both option labels as a user convenience. The timewt= "I" option is related to the log-rank
statistic.

When the number of strata is very large, such as in a conditional logistic regression for instance
(clogit function), a much faster computation is available when the individual strata results are not
retained; use keepstrata=FALSE or keepstrata=0 to do so. In the general case the keepstrata =
10 default simply keeps the printout managable: it retains and prints per-strata counts if the number
of strata is <= 10.

Value

An object of class concordance containing the following components:

concordance the estimated concordance value or values

count a vector containing the number of concordant pairs, discordant, tied on x but not
y, tied on y but not X, and tied on both x and y

n the number of observations

var a vector containing the estimated variance of the concordance based on the in-
finitesimal jackknife (IJ) method. If there are multiple models it contains the
estimtated variance/covariance matrix.

cvar a vector containing the estimated variance(s) of the concordance values, based
on the variance formula for the associated score test from a proportional hazards
model. (This was the primary variance used in the survConcordance function.)

dfbeta optional, the vector of leverage estimates for the concordance

influence optional, the matrix of leverage values for each of the counts, one row per ob-
servation

ranks optional, a data frame containing the Somers’ d rank at each event time, along

with the time weight, and the case weight of the observation. The time weighted
sum of the ranks will equal concordant pairs - discordant pairs.

32 concordance

Note

A coxph model that has a numeric failure may have undefined predicted values, in which case the
concordance will be NULL.

Computation for an existing coxph model along with newdata has some subtleties with respect to
extra arguments in the original call. These include

e tt() terms in the model. This is not supported with newdata.

* subset. Any subset clause in the original call is ignored, i.e., not applied to the new data.

* strata() terms in the model. The new data is expected to have the strata variable(s) found in the
original data set, with concordance computed within strata. The levels of the strata variable
need not be the same as in the original data.

* id or cluster directives. This has not yet been sorted out.

Author(s)

Terry Therneau

References

F Harrell, R Califf, D Pryor, K Lee and R Rosati, Evaluating the yield of medical tests, J] Am
Medical Assoc, 1982.

R Peto and J Peto, Asymptotically efficient rank invariant test procedures (with discussion), J Royal
Stat Soc A, 1972.

M Schemper, Cox analysis of survival data with non-proportional hazard functions, The Statistician,
1992.

H Uno, T Cai, M Pencina, R D’ Agnostino and Lj Wei, On the C-statistics for evaluating overall
adequacy of risk prediction procedures with censored survival data, Statistics in Medicine, 2011.

See Also

coxph

Examples

fitl <- coxph(Surv(ptime, pstat) ~ age + sex + mspike, mgus2)
concordance(fit1, timewt="n/G2") # Uno's weighting

logistic regression
fit2 <- glm(I(sex=='M') ~ age + log(creatinine), binomial, data= flchain)
concordance(fit2) # equal to the AUC

compare multiple models
options(na.action = na.exclude) # predict all 1384 obs, including missing
fit3 <- glm(pstat ~ age + sex + mspike + offset(log(ptime)),
poisson, data= mgus2)
fit4 <- coxph(Surv(ptime, pstat) ~ age + sex + mspike, mgus2)
fit5 <- coxph(Surv(ptime, pstat) ~ age + sex + hgb + creat, mgus2)

concordancefit 33

tdata <- mgus2; tdata$ptime <- 6@ # prediction at 60 months
p3 <- -predict(fit3, newdata=tdata)

p4 <- -predict(fit4) # high risk scores predict shorter survival
p5 <- -predict(fit5)

options(na.action = na.omit) # return to the R default

cfit <- concordance(Surv(ptime, pstat) ~p3 + p4 + p5, mgus2)
cfit

round(coef(cfit), 3)

round(cov2cor(vcov(cfit)), 3) # high correlation

test <- c(1, -1, @) # contrast vector for model 1 - model 2
round(c(difference = test %*% coef(cfit),
sd= sqrt(test %*% vcov(cfit) %*% test)), 3)

concordancefit Compute the concordance

Description

This is the working routine behind the concordance function. It is not meant to be called by users,
but is available for other packages to use. Input arguments, for instance, are assumed to all be the
correct length and type, and missing values are not allowed: the calling routine is responsible for
these things.

Usage

concordancefit(y, x, strata, weights, ymin = NULL, ymax = NULL,
timewt = c("n", "S", "S/G", "n/G2", "I"), cluster, influence =0,
ranks = FALSE, reverse = FALSE, timefix = TRUE, keepstrata=10,
std.err = TRUE)

Arguments
y the response. It can be numeric, factor, or a Surv object
the predictor, a numeric vector
strata optional numeric vector that stratifies the data
weights options vector of case weights
ymin, ymax restrict the comparison to response values in this range
timewt the time weighting to be used

cluster, influence, ranks, reverse, timefix
see the help for the concordance function

keepstrata either TRUE, FALSE, or an integer value. Computations are always done within
stratum, then added. If the total number of strata greater than keepstrata, or
keepstrata=FALSE, those subtotals are not kept in the output.

std.err compute the standard error; not doing so saves some compute time.

34

Details

cox.zph

This function is provided for those who want a “direct” call to the concordance calculations, without
using the formula interface. A primary use has been other packages. The routine does minimal
checking of its input arguments, under the assumption that this has already been taken care of by

the calling routine.

Value

a list containing the results

Author(s)

Terry Therneau

See Also

concordance

cox.zph

Test the Proportional Hazards Assumption of a Cox Regression

Description

Test the proportional hazards assumption for a Cox regression model fit (coxph).

Usage

cox.zph(fit, transform="km", terms=TRUE, singledf=FALSE, global=TRUE)

Arguments
fit

transform

terms

singledf

global

the result of fitting a Cox regression model, using the coxph or coxme functions.

a character string specifying how the survival times should be transformed be-
fore the test is performed. Possible values are "km", "rank”, "identity"” or a
function of one argument.

if TRUE, do a test for each term in the model rather than for each separate
covariate. For a factor variable with k levels, for instance, this would lead to a
k-1 degree of freedom test. The plot for such variables will be a single curve
evaluating the linear predictor over time.

use a single degree of freedom test for terms that have multiple coefficients, i.e.,
the test that corresponds most closely to the plot. If terms=FALSE this argument
has no effect.

should a global chi-square test be done, in addition to the per-variable or per-
term tests tests.

cox.zph 35

Details

The computations require the original x matrix of the Cox model fit. Thus it saves time if the x=TRUE
option is used in coxph. This function would usually be followed by both a plot and a print of the
result. The plot gives an estimate of the time-dependent coefficient 3(¢). If the proportional hazards
assumption holds then the true 5(t) function would be a horizontal line. The table component
provides the results of a formal score test for slope=0, a linear fit to the plot would approximate the
test.

Random effects terms such a frailty or random effects in a coxme model are not checked for
proportional hazards, rather they are treated as a fixed offset in model.

If the model contains strata by covariate interactions, then the y matrix may contain structural zeros,
i.e., deaths (rows) that had no role in estimation of a given coefficient (column). These are marked
as NA. If an entire row is NA, for instance after subscripting a cox. zph object, that row is removed.

Value

an object of class "cox.zph", with components:

table a matrix with one row for each variable, and optionally a last row for the global
test. Columns of the matrix contain a score test of for addition of the time-
dependent term, the degrees of freedom, and the two-sided p-value.

X the transformed time axis.

time the untransformed time values; there is one entry for each event time in the data
strata for a stratified coxph model, the stratum of each of the events

y the matrix of scaled Schoenfeld residuals. There will be one column per term

or per variable (depending on the terms option above), and one row per event.
The row labels are a rounded form of the original times.

var a variance matrix for the covariates, used to create an approximate standard error
band for plots
transform the transform of time that was used
call the calling sequence for the routine.
Note

In versions of the package before survival3.0 the function computed a fast approximation to the
score test. Later versions compute the actual score test.

References
P. Grambsch and T. Therneau (1994), Proportional hazards tests and diagnostics based on weighted
residuals. Biometrika, 81, 515-26.

See Also

coxph, Surv.

36 coxph
Examples

fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps,

data=ovarian)

temp <- cox.zph(fit)

print(temp) # display the results

plot(temp) # plot curves

coxph Fit Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata,
multiple events per subject, and other extensions are incorporated using the counting process for-
mulation of Andersen and Gill.

Usage

coxph(formula, data=, weights, subset,
na.action, init, control,

non

ties=c("efron”,"breslow”, "exact"),
singular.ok=TRUE, robust,
model=FALSE, x=FALSE, y=TRUE, tt, method=ties,

id, cluster, istate, statedata, nocenter=c(-1, 0, 1), ...)
Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms
on the right. The response must be a survival object as returned by the Surv
function. For a multi-state model the formula may be a list of formulas.

data a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument.

weights vector of case weights, see the note below. For a thorough discussion of these
see the book by Therneau and Grambsch.

subset expression indicating which subset of the rows of data should be used in the fit.
All observations are included by default.

na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is options()\$na.action.

init vector of initial values of the iteration. Default initial value is zero for all vari-
ables.

control Object of class coxph.control specifying iteration limit and other control op-

tions. Default is coxph.control(...).

coxph 37

ties a character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used
as the default, it is more accurate when dealing with tied death times, and is as
efficient computationally. (But see below for multi-state models.) The “exact
partial likelihood” is equivalent to a conditional logistic model, and is appropri-
ate when the times are a small set of discrete values.

singular.ok logical value indicating how to handle collinearity in the model matrix. If TRUE,
the program will automatically skip over columns of the X matrix that are linear
combinations of earlier columns. In this case the coefficients for such columns
will be NA, and the variance matrix will contain zeros. For ancillary calcula-
tions, such as the linear predictor, the missing coefficients are treated as zeros.

robust should a robust variance be computed. The default is TRUE if: there is a
cluster argument, there are case weights that are not O or 1, or there are id
values with more than one event.

id optional variable name that identifies subjects. Only necessary when a subject

can have multiple rows in the data, and there is more than one event type. This
variable will normally be found in data.

cluster optional variable which clusters the observations, for the purposes of a robust
variance. If present, it implies robust. This variable will normally be found in
data.

istate optional variable giving the current state at the start each interval. This variable
will normally be found in data.

statedata optional data set used to describe multistate models.

model logical value: if TRUE, the model frame is returned in component model.

X logical value: if TRUE, the X matrix is returned in component x.

y logical value: if TRUE, the response vector is returned in component y.

tt optional list of time-transform functions.

method alternate name for the ties argument.

nocenter columns of the X matrix whose values lie strictly within this set are not recen-

tered. Remember that a factor variable becomes a set of 0/1 columns.
Other arguments will be passed to coxph.control

Details

The proportional hazards model is usually expressed in terms of a single survival time value for each
person, with possible censoring. Andersen and Gill reformulated the same problem as a counting
process; as time marches onward we observe the events for a subject, rather like watching a Geiger
counter. The data for a subject is presented as multiple rows or "observations", each of which
applies to an interval of observation (start, stop].

The routine internally scales and centers data to avoid overflow in the argument to the exponential
function. These actions do not change the result, but lead to more numerical stability. Any column
of the X matrix whose values lie within nocenter list are not recentered. The practical consequence
of the default is to not recenter dummy variables corresponding to factors. However, arguments to
offset are not scaled since there are situations where a large offset value is a purposefully used. In
general, however, users should not avoid very large numeric values for an offset due to possible loss
of precision in the estimates.

38 coxph

Value

an object of class coxph representing the fit. See coxph.object and coxphms.object for details.

Side Effects

Depending on the call, the predict, residuals, and survfit routines may need to reconstruct the
X matrix created by coxph. It is possible for this to fail, as in the example below in which the predict
function is unable to find tform.

tfun <- function(tform) coxph(tform, data=lung)
fit <- tfun(Surv(time, status) ~ age)
predict(fit)

In such a case add the model=TRUE option to the coxph call to obviate the need for reconstruction,
at the expense of a larger fit object.

Case weights

Case weights are treated as replication weights, i.e., a case weight of 2 is equivalent to having 2
copies of that subject’s observation. When computers were much smaller grouping like subjects
together was a common trick to used to conserve memory. Setting all weights to 2 for instance
will give the same coefficient estimate but halve the variance. When the Efron approximation for
ties (default) is employed replication of the data will not give exactly the same coefficients as the
weights option, and in this case the weighted fit is arguably the correct one.

When the model includes a cluster term or the robust=TRUE option the computed variance treats
any weights as sampling weights; setting all weights to 2 will in this case give the same variance as
weights of 1.

Special terms

There are a few special terms that may be used in the model equation: strata, tt, pspline,
frailty and ridge. Each look like an ordinary function, e.g. + strata(group) but are specially
identifies so that they can be treated in a special way. The term + cluster(group) is also but is
depricated, use a a cluster arguement outside the formula instead.

A strata term identifies a stratified Cox model; separate baseline hazard functions are fit for each
strata.

A time-transform term allows variables to vary dynamically in time. In this case the tt argument
will be a function or a list of functions (if there are more than one tt() term in the model) giving the
appropriate transform. See the examples below. If the id variable is not unique, it is assumed that
it identifies clusters of correlated observations.

A time-transform term allows variables to vary dynamically in time. In this case the tt argument
will be a function or a list of functions (if there are more than one tt() term in the model) giving the
appropriate transform. See the examples below.

One user mistake that has recently arisen is to slavishly follow the advice of some coding guides and
prepend survival: : onto everthing, including the special terms, e.g., survival: :coxph(survival:Surv(time,
status) ~ age + survival::strata(inst), data=lung)

coxph 39

First, for this actually will not fit the model that was intended, as the :: interferes with the recognition
of specials by the underlying model. frame function; there will a coefficient per institution rather
than fitting a stratified model. A similar issue arises from using stats: :offset as a term in a glm
model.

From survival 3.8-1 onward it is also unnessary: the common formula arguments that are part of
the survival namespace will be found in that namespace, i.e., Surv, strata, tt, pspline, and cluster.
A survival:: prefex found on any of these is actually removed before evaluation of the formula.
This only affects the formula itself; whether to use the qualified form survival: : coxph for the call
itself is a different discussion.

Robust variance

The robust estimate arises from many different arguments and thus has had many labels. It is
variously known as the Huber sandwich estimator, White’s estimate (linear models/econometrics),
the Horvitz-Thompson estimate (survey sampling), the working independence variance (generalized
estimating equations), the infinitesimal jackknife, and the Wei, Lin, Weissfeld (WLW) estimate.

If there is an id or cluster argument in the call, or robust=TRUE, the robust variance is computed.

Convergence

In certain data cases the actual MLE estimate of a coefficient is infinity, e.g., a dichotomous variable
where one of the groups has no events. When this happens the associated coefficient grows at a
steady pace and a race condition will exist in the fitting routine: either the log likelihood converges,
the information matrix becomes effectively singular, an argument to exp becomes too large for the
computer hardware, or the maximum number of interactions is exceeded. (Most often number 1 is
the first to occur.) The routine attempts to detect when this has happened, not always successfully.
The primary consequence for the user is that the Wald statistic = coefficient/se(coefficient) is not
valid in this case and should be ignored; the likelihood ratio and score tests remain valid however.

Ties

There are three possible choices for handling tied event times. The Breslow approximation is the
easiest to program and hence became the first option coded for almost all computer routines. It
then ended up as the default option when other options were added in order to "maintain backwards
compatability”. The Efron option is more accurate if there are a large number of ties, and it is the
default option here. In practice the number of ties is usually small, in which case all the methods
are statistically indistinguishable.

Using the "exact partial likelihood" approach the Cox partial likelihood is equivalent to that for
matched logistic regression. (The clogit function uses the coxph code to do the fit.) It is tech-
nically appropriate when the time scale is discrete and has only a few unique values, and some
packages refer to this as the "discrete” option. There is also an "exact marginal likelihood" due to
Prentice which is not implemented here.

The calculation of the exact partial likelihood is numerically intense. Say for instance 180 subjects
are at risk on day 7 of which 15 had an event; then the code needs to compute sums over all 180-
choose-15 > 10”743 different possible subsets of size 15. There is an efficient recursive algorithm
for this task, but even with this the computation can be insufferably long. With (start, stop) data it
is much worse since the recursion needs to start anew for each unique start time.

40 coxph

Multi state models are a more difficult case. First of all, a proper extension of the Efron argument is
much more difficult to do, and this author is not yet fully convinced that the resulting algorithm is
defensible. Secondly, the current code for Efron case does not consistently compute that extended
logic (and extension would require major changes in the code). Due to this complexity, the default
is ties='breslow' for the multistate case. If ties='efron' is selected the current code will, in
effect, only apply to to tied transitions of the same type.

A separate issue is that of artificial ties due to floating-point imprecision. See the vignette on this
topic for a full explanation or the timefix option in coxph.control. Users may need to add
timefix=FALSE for simulated data sets.

Penalized regression

coxph can maximise a penalised partial likelihood with arbitrary user-defined penalty. Supplied
penalty functions include ridge regression (ridge), smoothing splines (pspline), and frailty models
(frailty).

References

Andersen, P. and Gill, R. (1982). Cox’s regression model for counting processes, a large sample
study. Annals of Statistics 10, 1100-1120.

Therneau, T., Grambsch, P., Modeling Survival Data: Extending the Cox Model. Springer-Verlag,
2000.

See Also

coxph.object, coxphms.object, coxph.control, cluster, strata, Surv, survfit, pspline.

Examples

Create the simplest test data set

testl <- list(time=c(4,3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x=c(0,2,1,1,1,0,0),
sex=c(0,0,0,0,1,1,1))

Fit a stratified model

coxph(Surv(time, status) ~ x + strata(sex), testl)

Create a simple data set for a time-dependent model

test2 <- list(start=c(1,2,5,2,1,7,3,4,8,8),
stop=c(2,3,6,7,8,9,9,9,14,17),
event=c(1,1,1,1,1,1,1,0,0,0),
x=c(1,0,0,1,0,1,1,1,0,0))

summary (coxph(Surv(start, stop, event) ~ x, test2))

#

Create a simple data set for a time-dependent model
#

test2 <- list(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8),

stop =c(2, 3, 6, 7, 8, 9, 9, 9
event=c(1, 1, 1, 1, 1, 1, 1, @, 0, 9),
X =c(1, 0, 0, 1, 0, 1, 1, 1

’ ’

coxph.control 41

summary (coxph(Surv(start, stop, event) ~ x, test2))
Fit a stratified model, clustered on patients

bladder1 <- bladder[bladder$enum < 5,]
coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum),
cluster = id, bladder1)

Fit a time transform model using current age
coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung,
tt=function(x,t,...) pspline(x + t/365.25))

coxph.control Ancillary arguments for controlling coxph fits

Description
This is used to set various numeric parameters controlling a Cox model fit. Typically it would only
be used in a call to coxph.

Usage

coxph.control(eps = 1e-09, toler.chol = .Machine$double.eps*@.75,
iter.max = 20, toler.inf = sqrt(eps), outer.max = 10, timefix=TRUE)

Arguments
eps Iteration continues until the relative change in the log partial likelihood is less
than eps, or the absolute change is less than sqrt(eps). Must be positive.
toler.chol Tolerance for detection of singularity during a Cholesky decomposition of the
variance matrix, i.e., for detecting a redundant predictor variable.
iter.max Maximum number of iterations to attempt for convergence.
toler.inf Tolerance criteria for the warning message about a possible infinite coefficient
value.
outer.max For a penalized coxph model, e.g. with pspline terms, there is an outer loop of
iteration to determine the penalty parameters; maximum number of iterations
for this outer loop.
timefix Resolve any near ties in the time variables.
Details

The convergence tolerances are a balance. Users think they want THE maximum point of the like-
lihood surface, and for well behaved data sets where this is quadratic near the max a high accuracy
is fairly inexpensive: the number of correct digits approximately doubles with each iteration. Con-
versely, a drop of .0001 from the maximum in any given direction will be correspond to only about
1/20 of a standard error change in the coefficient. Statistically, more precision than this is straining

42

coxph.detail

at a gnat. Based on this the author originally had set the tolerance to le-5, but relented in the face
of multiple "why is the answer different than package X" queries.

Asking for results that are too close to machine precision (double.eps) is a fool’s errand; a reason-
able critera is often the square root of that precision. The Cholesky decompostion needs to be held
to a higher standard than the overall convergence criterion, however. The tolerance.inf value
controls a warning message; if it is too small incorrect warnings can appear, if too large some actual
cases of an infinite coefficient will not be detected.

The most difficult cases are data sets where the MLE coefficient is infinite; an example is a data
set where at each death time, it was the subject with the largest covariate value who perished. In
that situation the coefficient increases at each iteration while the log-likelihood asymptotes to a
maximum. As iteration proceeds there is a race condition condition for three endpoint: exp(coef)
overflows, the Hessian matrix become singular, or the change in loglik is small enough to satisfy
the convergence criterion. The first two are difficult to anticipate and lead to numeric diffculties,
which is another argument for moderation in the choice of eps.

See the vignette "Roundoff error and tied times" for a more detailed explanation of the timefix
option. In short, when time intervals are created via subtraction then two time intervals that are
actually identical can appear to be different due to floating point round off error, which in turn can
make coxph and survfit results dependent on things such as the order in which operations were
done or the particular computer that they were run on. Such cases are unfortunatedly not rare in
practice. The timefix=TRUE option adds logic similar to all.equal to ensure reliable results. In
analysis of simulated data sets, however, where often by defintion there can be no duplicates, the
option will often need to be set to FALSE to avoid spurious merging of close numeric values.

Value

a list containing the values of each of the above constants

See Also

coxph

coxph.detail Details of a Cox Model Fit

Description

Returns the individual contributions to the first and second derivative matrix, at each unique event
time.

Usage

coxph.detail(object, riskmat=FALSE, rorder=c("data”, "time"))

coxph.detail

Arguments

object
riskmat

rorder

Details

43

a Cox model object, i.e., the result of coxph.
include the at-risk indicator matrix in the output?

should the rows of x, y and riskmat be returned in the original data order, or
sorted by time within strata.

This function may be useful for those who wish to investigate new methods or extensions to the
Cox model. The example below shows one way to calculate the Schoenfeld residuals.

Value

a list with components

time
nevent

means

nrisk

score

imat

hazard

varhaz

X?y

strata

wtrisk

riskmat

See Also

the vector of unique event times
the number of events at each of these time points.

a matrix with one row for each event time and one column for each variable in
the Cox model, containing the weighted mean of the variable at that time, over
all subjects still at risk at that time. The weights are the risk weights exp(x %%
fit$coef).

number of subjects at risk.

the contribution to the score vector (first derivative of the log partial likelihood)
at each time point.

the contribution to the information matrix (second derivative of the log partial
likelihood) at each time point.

the hazard increment. Note that the hazard and variance of the hazard are always
for some particular future subject. This routine uses object$means as the future
subject.

the variance of the hazard increment.
copies of the input data.

only present for a stratified Cox model, this is a table giving the number of time
points of component time that were contributed by each of the strata.

the weighted number at risk

a matrix with one row for each observation and one colum for each unique event
time, containing a 0/1 value to indicate whether that observation was (1) or was
not (0) at risk at the given time point. Rows are in the order of the original data
(after removal of any missings by coxph), or in time order.

coxph, residuals.coxph

44 coxph.object

Examples

fit <- coxph(Surv(futime,fustat) ~ age + rx + ecog.ps, ovarian, x=TRUE)
fitd <- coxph.detail(fit)

There is one Schoenfeld residual for each unique death. It is a

vector (covariates for the subject who died) - (weighted mean covariate
vector at that time). The weighted mean is defined over the subjects

still at risk, with exp(X beta) as the weight.

events <- fit$y[,2]==1

etime <- fit$y[events,1] #the event times --- may have duplicates
indx <- match(etime, fitd$time)

schoen <- fit$x[events,] - fitd$means[indx,]

coxph.object Proportional Hazards Regression Object

Description

This class of objects is returned by the coxph class of functions to represent a fitted proportional
hazards model. Objects of this class have methods for the functions print, summary, residuals,
predict and survfit.

Arguments

coefficients the vector of coefficients. If the model is over-determined there will be missing
values in the vector corresponding to the redundant columns in the model matrix.

var the variance matrix of the coefficients. Rows and columns corresponding to any
missing coefficients are set to zero.

naive.var this component will be present only if the robust option was true. If so, the
var component will contain the robust estimate of variance, and this component
will contain the ordinary estimate. (A far better name would be asymp.var
since it contains the model-based asympotitic variance estimate, which is not
necessarily "naive"; but that ship has sailed.)

loglik a vector of length 2 containing the log-likelihood with the initial values and with
the final values of the coefficients.

score value of the efficient score test, at the initial value of the coefficients.
rscore the robust log-rank statistic, if a robust variance was requested.

wald. test the Wald test of whether the final coefficients differ from the initial values.
iter number of iterations used.

linear.predictors

the vector of linear predictors, one per subject. Note that this vector has been
centered, see predict.coxph for more details.

residuals the martingale residuals.

coxph.wtest 45

means vector of values used as the reference for each covariate. For instance, a later
call to predict(fit, type='risk') will give the hazard ratio between an ob-
servation and this reference. (For most covariates this will contain the mean.)

n the number of observations used in the fit.

nevent the number of events (usually deaths) used in the fit.

n.id if the call had an id argument, the number of unique id values

concordance a vector of length 6, containing the number of pairs that are concordant, discor-

dant, tied on x, tied on y, and tied on both, followed by the standard error of the
concordance statistic.

first the first derivative vector at the solution.

weights the vector of case weights, if one was used.

method the method used for handling tied survival times.

na.action the na.action attribute, if any, that was returned by the na.action routine.
timefix the value of the timefix option used in the fit

The object will also contain the following, for documentation see the 1m object:
terms, assign, formula, call, and, optionally, x, y, and/or frame.

Components

The following components must be included in a legitimate coxph object.

See Also

coxph, coxph.detail, cox.zph, residuals.coxph, survfit, survreg.

coxph.wtest Compute a quadratic form

Description
This function is used internally by several survival routines. It computes a simple quadratic form,
while properly dealing with missings.

Usage

coxph.wtest(var, b, toler.chol = 1e-09)

Arguments
var variance matrix
b vector

toler.chol tolerance for the internal cholesky decomposition

46 coxphms.object

Details

Compute b’ V-inverse b. Equivalent to sum(b * solve(V,b)), except for the case of redundant covari-
ates in the original model, which lead to NA values in V and b.

Value

a real number

Author(s)

Terry Therneau

coxphms.object Multi-state Proportional Hazards Regression Object

Description

This class of objects is returned by the coxph class of functions to represent a fitted hazards model,
when the model has multiple states. The object inherits from the coxph class.

Arguments
states a character vector listing the states in the model
cmap the coefficient map. A matrix containing a column for each transition and a row
for each coefficient, the value maps that transition/coefficient pair to a position
in the coefficient vector. If a particular covariate is not used by a transition the
matrix will contain a zero in that position, if two transitions share a coefficient
the matrix will contain repeats.
smap the stratum map. The row labeled ‘(Baseline)’ identifies transitions that do or
do not share a baseline hazard. Further rows correspond to strata() terms in the
model, each of which may apply to some transitions and not others.
rmap mapping for the residuals and linear predictors. A two column matrix with one
row for each element of the vectors and two columns, the first contains the data
row and the second the transition.
Details

In a multi-state model a set of intermediate observations is created during the computation, with a
separate set of data rows for each transition. An observation (id and time interval) that is at risk
for more than one transition will for instance have a linear predictor and residual for each of the
potential transitions. As a result the vector of linear predictors will be longer than the number of
observations. The rmap matrix shows the mapping.

Components

The object has all the components of a coxph object, with the following additions and variations.

coxsurv.fit 47

See Also

coxph, coxph.object

coxsurv.fit A direct interface to the ‘computational engine’ of survfit.coxph

Description

This program is mainly supplied to allow other packages to invoke the survfit.coxph function at a
‘data’ level rather than a ‘user’ level. It does no checks on the input data that is provided, which can
lead to unexpected errors if that data is wrong.

Usage

coxsurv.fit(ctype, stype, se.fit, varmat, cluster,
Yy, X, wt, risk, position, strata, oldid,
y2, x2, risk2, strata2, id2, unlist=TRUE)

Arguments

stype survival curve computation: 1=direct, 2=exp(-cumulative hazard)

ctype cumulative hazard computation: 1=Breslow, 2=Efron

se.fit if TRUE, compute standard errors

varmat the variance matrix of the coefficients

cluster vector to control robust variance

y the response variable used in the Cox model. (Missing values removed of
course.)

X covariate matrix used in the Cox model

wt weight vector for the Cox model. If the model was unweighted use a vector of
Is.

risk the risk score exp(X beta + offset) from the fitted Cox model.

position optional argument controlling what is counted as ’censored’. Due to time depen-
dent covariates, for instance, a subject might have start, stop times of (1,5)(5,30)(30,100).
Times 5 and 30 are not 'real’ censorings. Position is 1 for a real start, 2 for an
actual end, 3 for both, O for neither.

strata strata variable used in the Cox model. This will be a factor.

oldid identifier for subjects with multiple rows in the original data.

y2, x2, risk2, strata2
variables for the hypothetical subjects, for which prediction is desired

id2 optional; if present and not NULL this should be a vector of identifiers of length
nrow(x2). A non-null value signifies that x2 contains time dependent covari-
ates, in which case this identifies which rows of x2 go with each subject.

unlist if FALSE the result will be a list with one element for each strata. Otherwise the
strata are “unpacked” into the form found in a survfit object.

48 diabetic

Value

a list containing nearly all the components of a survfit object. All that is missing is to add the
confidence intervals, the type of the original model’s response (as in a coxph object), and the class.

Note

The source code for for both this function and survfit. coxph is written using noweb. For complete
documentation see the inst/sourcecode. pdf file.

Author(s)

Terry Therneau

See Also

survfit.coxph

diabetic Ddiabetic retinopathy

Description

Partial results from a trial of laser coagulation for the treatment of diabetic retinopathy.

Usage

diabetic
data(diabetic, package="survival")

Format

A data frame with 394 observations on the following 8 variables.

id subject id

laser laser type: xenon or argon

age age at diagnosis

eye a factor with levels of left right
trt treatment: O = no treatment, 1= laser
risk risk group of 6-12

time time to event or last follow-up

status status of 0= censored or 1 = visual loss

dsurvreg 49

Details

The 197 patients in this dataset were a 50% random sample of the patients with "high-risk" diabetic
retinopathy as defined by the Diabetic Retinopathy Study (DRS). Each patient had one eye random-
ized to laser treatment and the other eye received no treatment. For each eye, the event of interest
was the time from initiation of treatment to the time when visual acuity dropped below 5/200 two
visits in a row. Thus there is a built-in lag time of approximately 6 months (visits were every 3
months). Survival times in this dataset are therefore the actual time to blindness in months, minus
the minimum possible time to event (6.5 months). Censoring was caused by death, dropout, or end
of the study.

References

Huster, Brookmeyer and Self, Biometrics, 1989.
American Journal of Ophthalmology, 1976, 81:4, pp 383-396

Examples

juvenile diabetes is defined as and age less than 20

juvenile <- 1x(diabetic$age < 20)

coxph(Surv(time, status) ~ trt + juvenile, cluster= id,
data= diabetic)

dsurvreg Distributions available in survreg.

Description

Density, cumulative distribution function, quantile function and random generation for the set of
distributions supported by the survreg function.

Usage

dsurvreg(x, mean, scale=1, distribution='weibull', parms)
psurvreg(q, mean, scale=1, distribution='weibull', parms)
gsurvreg(p, mean, scale=1, distribution='weibull', parms)
rsurvreg(n, mean, scale=1, distribution="'weibull', parms)

Arguments
X vector of quantiles. Missing values (NAs) are allowed.
q vector of quantiles. Missing values (NAs) are allowed.
p vector of probabilities. Missing values (NAs) are allowed.
n number of random deviates to produce
mean vector of location (linear predictor) parameters for the model. This is replicated

to be the same length as p, q or n.

50

dsurvreg

scale vector of (positive) scale factors. This is replicated to be the same length as p, q
orn.

distribution character string giving the name of the distribution. This must be one of the
elements of survreg.distributions

parms optional parameters, if any, of the distribution. For the t-distribution this is the
degrees of freedom.

Details

Elements of g or p that are missing will cause the corresponding elements of the result to be missing.

The location and scale values are as they would be for survreg. The label "mean" was an
unfortunate choice (made in mimicry of qnorm); a more correct label would be "linear predictor”.
Since almost none of these distributions are symmetric the location parameter is not actually a mean.

The survreg routines use the parameterization found in chapter 2 of Kalbfleisch and Prentice.
Translation to the usual parameterization found in a textbook is not always obvious. For example,
the Weibull distribution has cumulative distribution function F(t) = 1 — =), The actual fit
uses the fact that log(¢) has an extreme value distribution, with location and scale of «, o, which
are the location and scale parameters reported by the survreg function. The parameters are related
by 0 = 1/p and @ = —log(\. The stats: :dweibull routine is parameterized in terms of shape
and scale parameters which correspond to p and 1/ in the K and P notation. Combining these we
see that shape = 1 /0 and scale = exp alpha.

Value

density (dsurvreg), probability (psurvreg), quantile (qsurvreg), or for the requested distribution
with mean and scale parameters mean and sd.

References

Kalbfleisch, J. D. and Prentice, R. L. (1970). The Statistical Analysis of Failure Time Data Wiley,
New York.

References

Kalbfleisch, J. D. and Prentice, R. L., The statistical analysis of failure time data, Wiley, 2002.

See Also

survreg, Normal

Examples

List of distributions available
names(survreg.distributions)

Not run:
[1] "extreme” "logistic” "gaussian” "weibull” "exponential”
[6] "rayleigh” "loggaussian” "lognormal” "loglogistic” "t"

End(Not run)

finegray 51

Compare results
all.equal(dsurvreg(1:10, 2, 5, dist='lognormal'), dlnorm(1:10, 2, 5))

Hazard function for a Weibull distribution

x <- seq(.1, 3, length=30)

haz <- dsurvreg(x, 2, 3)/ (1-psurvreg(x, 2, 3))

Not run:

plot(x, haz, log='xy', ylab="Hazard") #line with slope (1/scale -1)

End(Not run)

Estimated CDF of a simple Weibull

fit <- survreg(Surv(time, status) ~ 1, data=lung)

pp <- 1:99/100

gl <- gsurvreg(pp, coef(fit), fit$scale)

g2 <- qweibull(pp, shape= 1/fit$scale, scale= exp(coef(fit)))
all.equal(ql, q2)

Not run:

plot(ql, pp, type='l', xlab="Months", ylab="CDF")

End(Not run)
per the help page for dweibull, the mean is scale x gamma(1 + 1/shape)
c(mean = exp(coef(fit))* gamma(1l + fit$scale))

finegray Create data for a Fine-Gray model

Description
The Fine-Gray model can be fit by first creating a special data set, and then fitting a weighted Cox
model to the result. This routine creates the data set.

Usage

finegray(formula, data, weights, subset, na.action= na.pass, etype,
prefix="fg", count, id, timefix=TRUE)

Arguments

formula a standard model formula, with survival on the left and covariates on the right.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model.

weights optional vector of observation weights

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The

default is set by the na.action setting of options.

52 finegray
etype the event type for which a data set will be generated. The default is to use
whichever is listed first in the multi-state survival object.
prefix the routine will add 4 variables to the data set: a start and end time for each
interval, status, and a weight for the interval. The default names of these are
"fgstart", "fgstop”, "fgstatus", and "fgwt"; the prefix argument determines the
initial portion of the new names.
count a variable name in the output data set for an optional variable that will contain
the the replication count for each row of the input data. If a row is expanded into
multiple lines it will contain 1, 2, etc.
id optional, the variable name in the data set which identifies subjects.
timefix process times through the aeqSurv function to eliminate potential roundoff is-
sues.
Details

The function expects a multi-state survival expression or variable as the left hand side of the for-
mula, e.g. Surv(atime, astat) where astat is a factor whose first level represents censoring and
remaining levels are states. The output data set will contain simple survival data (status = 0 or 1)
for a single endpoint of interest. For exposition call this endpoint A and lump all others as endpoint
B. In the output data set subjects who experience endpoint B become censored observations whose
times are artificially extended to the right, with a decreasing case weight from interval to interval.
The output data set will normally contain many more rows than the input.

The algorithm allows for delayed entry, and only a limited form of time-dependent covariates. That
is, when subjects with endpoint B are extended, those future covariate values stay constant; so there
is an implicit assumption that no more changes would have occurred if the event had not intervened
and follow-up had been longer. For predictable time-dependent covariates the final data set could be
further processed to fix this, but this is not included in the function. Geskus for example considers
an example with different calendar epochs, corresponding to a change in standard medical practice
for the disese, as a covariate. dependent covariates. If there are time dependent covariates or
delayed entry, e.g.., the input data set had Surv(entry, exit, stat) as the left hand side, then an
id statement is required. The program does data checks in this case, and needs to know which rows
belong to each subject.

The output data set will often have gaps. Say that there were events at time 50 and 100 (and none
between) and censoring at 60, 70, and 80. Formally, a non event subjects at risk from 50 to 100
will have different weights in each of the 3 intervals 50-60, 60-70, and 80-100, but because the
middle interval does not span any event times the subsequent Cox model will never use that row.
The finegray output omits such rows.

See the competing risks vignette for more details.

Value

a data frame

Author(s)

Terry Therneau

flchain 53

References

Fine JP and Gray RJ (1999) A proportional hazards model for the subdistribution of a competing
risk. JASA 94:496-509.

Geskus RB (2011). Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model
Under Both Left Truncation and Right Censoring. Biometrics 67, 39-49.

See Also

coxph, aeqSurv

Examples

Treat time to death and plasma cell malignancy as competing risks
etime <- with(mgus2, ifelse(pstat==0, futime, ptime))

event <- with(mgus2, ifelse(pstat==0, 2*death, 1))

event <- factor(event, 0:2, labels=c("censor”, "pcm”, "death"))

FG model for PCM

pdata <- finegray(Surv(etime, event) ~ ., data=mgus2)

fgfit <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex,
weight=fgwt, data=pdata)

Compute the weights separately by sex
adata <- finegray(Surv(etime, event) ~ . + strata(sex),
data=mgus2, na.action=na.pass)

flchain Assay of serum free light chain for 7874 subjects.

Description

This is a stratified random sample containing 1/2 of the subjects from a study of the relationship
between serum free light chain (FLC) and mortality. The original sample contains samples on
approximately 2/3 of the residents of Olmsted County aged 50 or greater.

Usage
flchain
data(flchain, package="survival")
Format
A data frame with 7874 persons containing the following variables.

age age in years
sex F=female, M=male

sample.yr the calendar year in which a blood sample was obtained

54

fichain

kappa serum free light chain, kappa portion

lambda serum free light chain, lambda portion

flc.grp the FLC group for the subject, as used in the original analysis
creatinine serum creatinine

mgus 1 if the subject had been diagnosed with monoclonal gammapothy (MGUS)

futime days from enrollment until death. Note that there are 3 subjects whose sample was obtained
on their death date.

death O=alive at last contact date, 1=dead

chapter for those who died, a grouping of their primary cause of death by chapter headings of the
International Code of Diseases ICD-9

Details

In 1995 Dr. Robert Kyle embarked on a study to determine the prevalence of monoclonal gam-
mopathy of undetermined significance (MGUS) in Olmsted County, Minnesota, a condition which
is normally only found by chance from a test (serum electrophoresis) which is ordered for other
causes. Later work suggested that one component of immunoglobulin production, the serum free
light chain, might be a possible marker for immune disregulation. In 2010 Dr. Angela Dispenzieri
and colleagues assayed FLC levels on those samples from the original study for which they had
patient permission and from which sufficient material remained for further testing. They found that
elevated FLC levels were indeed associated with higher death rates.

Patients were recruited when they came to the clinic for other appointments, with a final random
sample of those who had not yet had a visit since the study began. An interesting side question is
whether there are differences between early, mid, and late recruits.

This data set contains an age and sex stratified random sample that includes 7874 of the original
15759 subjects. The original subject identifiers and dates have been removed to protect patient
identity. Subsampling was done to further protect this information.

Source

The primary investigator (A Dispenzieri) and statistician (T Therneau) for the study.

References

A Dispenzieri, J Katzmann, R Kyle, D Larson, T Therneau, C Colby, R Clark, G Mead, S Kumar,
LJ Melton III and SV Rajkumar (2012). Use of monclonal serum immunoglobulin free light chains
to predict overall survival in the general population, Mayo Clinic Proceedings 87:512-523.

R Kyle, T Therneau, SV Rajkumar, D Larson, M Plevak, J Offord, A Dispenzieri, J Katzmann, and
LJ Melton, III, 2006, Prevalence of monoclonal gammopathy of undetermined significance, New
England J Medicine 354:1362-1369.

Examples

data(flchain)
age.grp <- cut(flchain$age, c(49,54, 59,64, 69,74,79, 89, 110),
labels= paste(c(50,55,60,65,70,75,80,90),
c(54,59,64,69,74,79,89,109), sep='-"))
table(flchain$sex, age.grp)

frailty

55

frailty

Random effects terms

Description

The frailty function allows one to add a simple random effects term to a Cox model.

Usage
frailty(x, distribution="gamma", ...)
frailty.gamma(x, sparse = (nclass > 5), theta, df, eps = 1e-05,
method = c("em","aic"”, "df", "fixed"), ...)
frailty.gaussian(x, sparse = (nclass > 5), theta, df,
method =c("reml”,"aic”, "df", "fixed"), ...)
frailty.t(x, sparse = (nclass > 5), theta, df, eps = 1e-05, tdf =5,
method = c("aic”, "df", "fixed"), ...)
Arguments
X the variable to be entered as a random effect. It is always treated as a factor.
distribution either the gamma, gaussian or t distribution may be specified. The routines
frailty.gamma, frailty.gaussian and frailty.t do the actual work.
Arguments for specific distribution, including (but not limited to)
sparse cutoff for using a sparse coding of the data matrix. If the total number of levels
of x is larger than this value, then a sparse matrix approximation is used. The
correct cutoff is still a matter of exploration: if the number of levels is very large
(thousands) then the non-sparse calculation may not be feasible in terms of both
memory and compute time. Likewise, the accuracy of the sparse approximation
appears to be related to the maximum proportion of subjects in any one class,
being best when no one class has a large membership.
theta if specified, this fixes the variance of the random effect. If not, the variance is a
parameter, and a best solution is sought. Specifying this implies method="fixed".
df if specified, this fixes the degrees of freedom for the random effect. Specifying
this implies method="df". Only one of theta or df should be specified.
method the method used to select a solution for theta, the variance of the random effect.
The fixed corresponds to a user-specified value, and no iteration is done. The
df selects the variance such that the degrees of freedom for the random effect
matches a user specified value. The aic method seeks to maximize Akaike’s
information criteria 2*(partial likelihood - df). The em and reml methods are
specific to Cox models with gamma and gaussian random effects, respectively.
Please see further discussion below.
tdf the degrees of freedom for the t-distribution.
eps convergence criteria for the iteration on theta.

56 frailty

Details

The frailty plugs into the general penalized modeling framework provided by the coxph and
survreg routines. This framework deals with likelihood, penalties, and degrees of freedom; these
aspects work well with either parent routine.

Therneau, Grambsch, and Pankratz show how maximum likelihood estimation for the Cox model
with a gamma frailty can be accomplished using a general penalized routine, and Ripatti and Palm-
gren work through a similar argument for the Cox model with a gaussian frailty. Both of these are
specific to the Cox model. Use of gamma/ml or gaussian/reml with survreg does not lead to valid
results.

The extensible structure of the penalized methods is such that the penalty function, such as frailty
or pspine, is completely separate from the modeling routine. The strength of this is that a user can
plug in any penalization routine they choose. A weakness is that it is very difficult for the modeling
routine to know whether a sensible penalty routine has been supplied.

Note that use of a frailty term implies a mixed effects model and use of a cluster term implies a
GEE approach; these cannot be mixed.

The coxme package has superseded this method. It is faster, more stable, and more flexible.

Value

this function is used in the model statement of either coxph or survreg. It’s results are used inter-
nally.

References

S Ripatti and J Palmgren, Estimation of multivariate frailty models using penalized partial likeli-
hood, Biometrics, 56:1016-1022, 2000.

T Therneau, P Grambsch and VS Pankratz, Penalized survival models and frailty, J] Computational
and Graphical Statistics, 12:156-175, 2003.

See Also

coxph, survreg

Examples

Random institutional effect
coxph(Surv(time, status) ~ age + frailty(inst, df=4), lung)

Litter effects for the rats data

rfit2a <- coxph(Surv(time, status) ~ rx +
frailty.gaussian(litter, df=13, sparse=FALSE), rats,
subset= (sex=='f"))

rfit2b <- coxph(Surv(time, status) ~ rx +
frailty.gaussian(litter, df=13, sparse=TRUE), rats,
subset= (sex=='f"))

gbsg 57

ghsg Breast cancer data sets used in Royston and Altman (2013)

Description

The gbsg data set contains patient records from a 1984-1989 trial conducted by the German Breast
Cancer Study Group (GBSG) of 720 patients with node positive breast cancer; it retains the 686
patients with complete data for the prognostic variables.

Usage

gbsg
data(cancer, package="survival")

Format
A data set with 686 observations and 11 variables.

pid patient identifier

age age, years

meno menopausal status (0= premenopausal, 1= postmenopausal)

size tumor size, mm

grade tumor grade

nodes number of positive lymph nodes

pgr progesterone receptors (fmol/l)

er estrogen receptors (fmol/l)

hormon hormonal therapy, 0= no, 1= yes

rfstime recurrence free survival time; days to first of reccurence, death or last follow-up

status O= alive without recurrence, 1= recurrence or death

Details

These data sets are used in the paper by Royston and Altman. The Rotterdam data is used to create
a fitted model, and the GBSG data for validation of the model. The paper gives references for the
data source.

References

Patrick Royston and Douglas Altman, External validation of a Cox prognostic model: principles
and methods. BMC Medical Research Methodology 2013, 13:33

See Also

rotterdam

58

heart

heart

Stanford Heart Transplant data

Description

Survival of patients on the waiting list for the Stanford heart transplant program.

Usage

heart

data(heart, package="survival")

Format

jasa: original data

birth.dt:
accept.dt:
tx.date:
fu.date:
fustat:
surgery:
age:
futime:
wait.time:

transplant:
mismatch:

hla.a2:
mscore:
reject:

jasal, heart: processed data

start, stop, event:

birth date

acceptance into program
transplant date

end of followup

dead or alive

prior bypass surgery

age (in years)

followup time

time before transplant
transplant indicator
mismatch score
particular type of mismatch
another mismatch score
rejection occurred

Entry and exit time and status for this interval of time

age: age-48 years

year:
surgery:
transplant:

Source

year of acceptance (in years after 1 Nov 1967)
prior bypass surgery 1=yes

received transplant 1=yes

id: patient id

J Crowley and M Hu (1977), Covariance analysis of heart transplant survival data. Journal of the
American Statistical Association, 72, 27-36.

hoel 59

See Also

stanford2

hoel Mouse cancer data

Description

Days until occurence of cancer for male mice

Usage

data("cancer”)

Format
A data frame with 181 observations on the following 4 variables.
trt treatment assignment: Control or Germ-free
days days until death

outcome outcome: censor, thymic lymphoma, reticulum cell sarcoma other causes

id mouse id

Details

Two groups of male mice were given 300 rads of radiation and followed for cancer incidence.
One group was maintained in a germ free environment. The data set is used as an example of
competing risks in Kalbfleisch and Prentice. The germ-free environment has little effect on the rate
of occurence of thymic lymphoma, but significantly delays the other causes of death.

Note

The Ontology Search website defines reticulm cell sarcoma as "An antiquated term that refers to a
non-Hodgkin lymphoma composed of diffuse infiltrates of large, often anaplastic lymphocytes".

Source

The data can be found in appendix I of Kalbfleisch and Prentice.

References

Hoel, D.G. (1972), A representation of mortality data by competing risks. Biometrics 33, 1-30.
Kalbfleisch, J.D. and Prentice, R.L. (1980). The statistical analysis of failure time data.

60 is.ratetable

Examples

hsurv <- survfit(Surv(days, outcome) ~ trt, data = hoel, id= id)
plot(hsurv, 1ty=1:2, col=rep(1:3, each=2), lwd=2, xscale=30.5,
xlab="Months", ylab= "Death")
legend("topleft”, c("Lymphoma control”, "Lymphoma germ free”,
"Sarcoma control”, "Sarcoma germ free”,
"Other control”, "Other germ free"),
col=rep(1:3, each=2), 1lty=1:2, 1lwd=2, bty='n'")
hfit <- coxph(Surv(days, outcome) ~ trt, data= hoel, id = id)

is.ratetable Verify that an object is of class ratetable.

Description

The function verifies not only the class attribute, but the structure of the object.

Usage

is.ratetable(x, verbose=FALSE)

Arguments
X the object to be verified.
verbose if TRUE and the object is not a ratetable, then return a character string describing
the way(s) in which x fails to be a proper ratetable object.
Details

Rate tables are used by the pyears and survexp functions, and normally contain death rates for
some population, categorized by age, sex, or other variables. They have a fairly rigid structure, and
the verbose option can help in creating a new rate table.

Value

returns TRUE if x is a ratetable, and FALSE or a description if it is not.

See Also

pyears, survexp.

Examples

is.ratetable(survexp.us) # True
is.ratetable(lung) # False

kidney 61

kidney Kidney catheter data

Description

Data on the recurrence times to infection, at the point of insertion of the catheter, for kidney patients
using portable dialysis equipment. Catheters may be removed for reasons other than infection, in
which case the observation is censored. Each patient has exactly 2 observations.

This data has often been used to illustrate the use of random effects (frailty) in a survival model.
However, one of the males (id 21) is a large outlier, with much longer survival than his peers. If this
observation is removed no evidence remains for a random subject effect.

Usage

kidney
or
data(cancer, package="survival")

Format
patient: id
time: time
status: event status
age: in years
sex: 1=male, 2=female
disease: disease type (0=GN, 1=AN, 2=PKD, 3=0Other)
frail: frailty estimate from original paper
Note

The original paper ignored the issue of tied times and so is not exactly reproduced by the survival
package.

Source
CA McGilchrist, CW Aisbett (1991), Regression with frailty in survival analysis. Biometrics 47,
461-66.

Examples

kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney)
kfit@ <- coxph(Surv(time, status)~ age + sex + disease, kidney)

kfitml <- coxph(Surv(time,status) ~ age + sex + disease +

frailty(id, dist='gauss'), kidney)

62 lines.survfit

levels.Surv Return the states of a multi-state Surv object

Description

For a multi-state Surv object, this will return the names of the states.

Usage

S3 method for class 'Surv'
levels(x)

Arguments

X a Surv object

Value

for a multi-state Surv object, the vector of state names (excluding censoring); or NULL for an
ordinary Surv object

Examples

y1 <= Surv(c(1,5, 9, 17,21, 30),
factor(c(o, 1, 2,1,0,2), 0:2, c("censored”, "progression”, "death")))
levels(y1)

y2 <= Surv(1:6, rep(@:1, 3))
y2
levels(y2)

lines.survfit Add Lines or Points to a Survival Plot

Description

Often used to add the expected survival curve(s) to a Kaplan-Meier plot generated with plot.survfit.

Usage

S3 method for class 'survfit'
lines(x, type="s", pch=3, col=1, 1ty=1,
lwd=1, cex=1, mark.time=FALSE, xmax,
fun, conf.int=FALSE,
conf.times, conf.cap=.005, conf.offset=.012,
conf.type = c("log", "log-log", "plain”, "logit", "arcsin"),

lines.survfit

63

mark, noplot="(s@)", cumhaz= FALSE, cumprob= FALSE, ...)
S3 method for class 'survexp'
lines(x, type="1", ...)

S3 method for class 'survfit'
points(x, fun, censor=FALSE, col=1, pch,
noplot="(s0@)", cumhaz=FALSE, ...)

Arguments
X

type

col, 1ty, 1wd, cex

pch

mark
censor

mark.time

Xmax

fun

conf.int

conf.times

conf.cap

conf.offset

conf.type

a survival object, generated from the survfit or survexp functions.

the line type, as described in 1lines. The default is a step function for survfit
objects, and a connected line for survexp objects. All other arguments for
lines. survexp are identical to those for 1ines.survfit.

vectors giving the mark symbol, color, line type, line width and character size
for the added curves. Of this set only color is applicable to points.

plotting characters for points, in the style of matplot, i.e., either a single string
of characters of which the first will be used for the first curve, etc; or a vector of
characters or integers, one element per curve.

a historical alias for pch
should censoring times be displayed for the points function?

controls the labeling of the curves. If FALSE, no labeling is done. If TRUE, then
curves are marked at each censoring time. If mark.time is a numeric vector,
then curves are marked at the specified time points.

optional cutoff for the right hand of the curves.

an arbitrary function defining a transformation of the survival curve. For ex-
ample fun=log is an alternative way to draw a log-survival curve (but with the
axis labeled with log(S) values). Four often used transformations can be spec-
ified with a character argument instead: "log" is the same as using the log=T
option, "event" plots cumulative events (f(y) = 1-y), "cumhaz" plots the cumu-
lative hazard function (f(y) = -log(y)) and "cloglog" creates a complimentary
log-log survival plot (f(y) = log(-log(y))) along with log scale for the x-axis.

if TRUE, confidence bands for the curves are also plotted. If set to "only"”, then
only the CI bands are plotted, and the curve itself is left off. This can be useful
for fine control over the colors or line types of a plot.

optional vector of times at which to place a confidence bar on the curve(s). If
present, these will be used instead of confidence bands.

width of the horizontal cap on top of the confidence bars; only used if conf.times
is used. A value of 1 is the width of the plot region.

the offset for confidence bars, when there are multiple curves on the plot. A
value of 1 is the width of the plot region. If this is a single number then each
curve’s bars are offset by this amount from the prior curve’s bars, if it is a vector
the values are used directly.

One of "plain”, "log"” (the default), "log-log"”, "logit"”, or "none”. Only
enough of the string to uniquely identify it is necessary. The first option causes

64

noplot

cumhaz

cumprob

Details

lines.survfit

confidence intervals not to be generated. The second causes the standard inter-
vals curve +- k *se(curve), where k is determined from conf.int. The log
option calculates intervals based on the cumulative hazard or log(survival). The
log-log option bases the intervals on the log hazard or log(-log(survival)), and
the logit option on log(survival/(1-survival)).

for multi-state models, curves with this label will not be plotted. The default
corresponds to an unspecified state.

plot the cumulative hazard, rather than the survival or probability in state.

for a multi-state curve, plot the probabilities in state 1, (statel + state2), (statel
+ state2 + state3), If cumprob is an integer vector the totals will be in the
order indicated.

other graphical parameters

When the survfit function creates a multi-state survival curve the resulting object has class ‘surv-
fitms’. The only difference in the plots is that that it defaults to a curve that goes from lower left to
upper right (starting at 0), where survival curves default to starting at 1 and going down. All other
options are identical.

If the user set an explicit range in an earlier plot.survfit call, e.g. via xlim or xmax, sub-
sequent calls to this function remember the right hand cutoff. This memory can be erased by
options(plot.survfit) <- NULL.

Value

a list with components x and y, containing the coordinates of the last point on each of the curves
(but not of the confidence limits). This may be useful for labeling. If cumprob=TRUE then y will be
a matrix with one row per curve and x will be all the time points. This may be useful for adding

shading.

Side Effects

one or more curves are added to the current plot.

See Also

lines, par, plot.survfit, survfit, survexp.

Examples

fit <- survfit(Surv(time, status==2) ~ sex, pbc,subset=1:312)
plot(fit, mark.time=FALSE, xscale=365.25,

xlab="'Years', ylab='Survival')

lines(fit[1], lwd=2) #darken the first curve and add marks

Add expected survival curves for the two groups,
based on the US census data
The data set does not have entry date, use the midpoint of the study

logan

efit <- survexp(~sex, data=pbc, times= (0:24)*182, ratetable=survexp.us,
rmap=list(sex=sex, age=age*365.35, year=as.Date('1979/01/01")))

temp <- lines(efit, lty=2, lwd=2:1)

text(temp, c("Male”, "Female"), adj= -.1) #labels just past the ends

title(main="Primary Biliary Cirrhosis, Observed and Expected")

65

logan Data from the 1972-78 GSS data used by Logan

Description

Intergenerational occupational mobility data with covariates.

Usage

logan
data(logan, package="survival")

Format

A data frame with 838 observations on the following 4 variables.

occupation subject’s occupation, a factor with levels farm, operatives, craftsmen, sales, and

professional
focc father’s occupation
education total years of schooling, O to 20

race levels of non-black and black

Source

General Social Survey data, see the web site for detailed information on the variables. https:

//gss.norc.org/.

References

Logan, John A. (1983). A Multivariate Model for Mobility Tables. American Journal of Sociology

89: 324-349.

https://gss.norc.org/
https://gss.norc.org/

66 logLik.coxph

loglLik.coxph logLik method for a Cox model

Description

The logLik function for survival models

Usage
S3 method for class 'coxph'
logLik(object, ...)
S3 method for class 'survreg'
logLik(object, ...)

Arguments
object the result of a coxph or survreg fit

optional arguments for other instances of the method

Details

The logLik function is used by summary functions in R such as AIC. For a Cox model, this method
returns the partial likelihood. The number of degrees of freedom (df) used by the fit and the effective
number of observations (nobs) are added as attributes. Per Raftery and others, the effective number
of observations is the taken to be the number of events in the data set.

For a survreg model the proper value for the effective number of observations is still an open
question (at least to this author). For right censored data the approach of loglLik.coxph is the
possible the most sensible, but for interval censored observations the result is unclear. The code
currently does not add a nobs attribute.

Value

an object of class loglLik

Author(s)

Terry Therneau

References

Robert E. Kass and Adrian E. Raftery (1995). "Bayes Factors". J. American Statistical Assoc. 90
(430): 791.

Raftery A.E. (1995), "Bayesian Model Selection in Social Research", Sociological methodology,
111-196.

See Also
loglik

lung 67

lung NCCTG Lung Cancer Data

Description
Survival in patients with advanced lung cancer from the North Central Cancer Treatment Group.
Performance scores rate how well the patient can perform usual daily activities.

Usage

lung
data(cancer, package="survival")

Format
inst: Institution code
time: Survival time in days
status: censoring status 1=censored, 2=dead
age: Age in years
sex: Male=1 Female=2
ph.ecog: ECOG performance score as rated by the physician. O=asymptomatic, 1= symptomatic but completely ambulator

ph.karno: Karnofsky performance score (bad=0-good=100) rated by physician
pat.karno: Karnofsky performance score as rated by patient

meal.cal: Calories consumed at meals

wt.loss: Weight loss in last six months (pounds)

Note

The use of 1/2 for alive/dead instead of the usual 0/1 is a historical footnote. For data contained on
punch cards, IBM 360 Fortran treated blank as a zero, which led to a policy within the section of
Biostatistics to never use "0" as a data value since one could not distinguish it from a missing value.
The policy became a habit, as is often the case; and the 1/2 coding endured long beyond the demise
of punch cards and Fortran.

Source

Terry Therneau

References

Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman
M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed ques-
tionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7,
1994.

68 mgus

mgus Monoclonal gammopathy data

Description

Natural history of 241 subjects with monoclonal gammopathy of undetermined significance (MGUS).

Usage
mgus
mgus1
data(cancer, package="survival")

Format

mgus: A data frame with 241 observations on the following 12 variables.

id: subject id

age: age in years at the detection of MGUS

sex: male or female

dxyr: year of diagnosis

pedx: for subjects who progress to a plasma cell malignancy

the subtype of malignancy: multiple myeloma (MM) is the
most common, followed by amyloidosis (AM), macroglobulinemia (MA),
and other lymphprolifative disorders (LP)

pctime: days from MGUS until diagnosis of a plasma cell malignancy

futime: days from diagnosis to last follow-up

death: 1= follow-up is until death

alb: albumin level at MGUS diagnosis
creat: creatinine at MGUS diagnosis
hgb: hemoglobin at MGUS diagnosis

mspike: size of the monoclonal protein spike at diagnosis

mgusl: The same data set in start,stop format. Contains the id, age, sex, and laboratory variable
described above along with

start, stop: sequential intervals of time for each subject

status: =1 if the interval ends in an event
event: a factor containing the event type: censor, death, or plasma cell malignancy
enum: event number for each subject: 1 or 2

Details

Plasma cells are responsible for manufacturing immunoglobulins, an important part of the immune
defense. At any given time there are estimated to be about 10° different immunoglobulins in the
circulation at any one time. When a patient has a plasma cell malignancy the distribution will

mgus2 69

become dominated by a single isotype, the product of the malignant clone, visible as a spike on a
serum protein electrophoresis. Monoclonal gammopathy of undertermined significance (MGUS)
is the presence of such a spike, but in a patient with no evidence of overt malignancy. This data
set of 241 sequential subjects at Mayo Clinic was the groundbreaking study defining the natural
history of such subjects. Due to the diligence of the principle investigator O subjects have been lost
to follow-up.

Three subjects had MGUS detected on the day of death. In data set mgus1 these subjects have the
time to MGUS coded as .5 day before the death in order to avoid tied times.

These data sets were updated in Jan 2015 to correct some small errors.

Source

Mayo Clinic data courtesy of Dr. Robert Kyle.

References

R Kyle, Benign monoclonal gammopathy — after 20 to 35 years of follow-up, Mayo Clinic Proc
1993; 68:26-36.

Examples

Create the competing risk curves for time to first of death or PCM

sfit <- survfit(Surv(start, stop, event) ~ sex, mgusl, id=id,
subset=(enum==1))

print(sfit) # the order of printout is the order in which they plot

plot(sfit, xscale=365.25, lty=c(2,2,1,1), col=c(1,2,1,2),
xlab="Years after MGUS detection”, ylab="Proportion")
legend(@, .8, c("Death/male”, "Death/female"”, "PCM/male"”, "PCM/female"),
1ty=c(1,1,2,2), col=c(2,1,2,1), bty='n")

title("Curves for the first of plasma cell malignancy or death")
The plot shows that males have a higher death rate than females (no
surprise) but their rates of conversion to PCM are essentially the same.

mgus?2 Monoclonal gammopathy data

Description
Natural history of 1341 sequential patients with monoclonal gammopathy of undetermined signifi-
cance (MGUS). This is a superset of the mgus data, at a later point in the accrual process

Usage

mgus?2
data(cancer, package="survival")

70 model.frame.coxph

Format

A data frame with 1384 observations on the following 10 variables.

id subject identifier

age age at diagnosis, in years

sex a factor with levels F M

dxyr year of diagnosis

hgb hemoglobin

creat creatinine

mspike size of the monoclonal serum splike

ptime time until progression to a plasma cell malignancy (PCM) or last contact, in months
pstat occurrence of PCM: O=no, 1=yes

futime time until death or last contact, in months

death occurrence of death: O=no, 1=yes

Details

This is an extension of the study found in the mgus data set, containing enrollment through 1994
and follow-up through 1999.

Source

Mayo Clinic data courtesy of Dr. Robert Kyle. All patient identifiers have been removed, age
rounded to the nearest year, and follow-up times rounded to the nearest month.

References

R. Kyle, T. Therneau, V. Rajkumar, J. Offord, D. Larson, M. Plevak, and L. J. Melton III, A long-
terms study of prognosis in monoclonal gammopathy of undertermined significance. New Engl J
Med, 346:564-569 (2002).

model. frame.coxph Model.frame method for coxph objects

Description

Recreate the model frame of a coxph fit.

Usage

S3 method for class 'coxph'
model.frame(formula, ...)

model.matrix.coxph 71

Arguments
formula the result of a coxph fit
other arguments to model . frame
Details

For details, see the manual page for the generic function. This function would rarely be called by a
user, it is mostly used inside functions like residual that need to recreate the data set from a model
in order to do further calculations.

Value

the model frame used in the original fit, or a parallel one for new data.

Author(s)

Terry Therneau

See Also

model . frame

model.matrix.coxph Model.matrix method for coxph models

Description

Reconstruct the model matrix for a cox model.

Usage

S3 method for class 'coxph'
model.matrix(object, data=NULL, contrast.arg =

object$contrasts, ...)
Arguments
object the result of a coxph model
data optional, a data frame from which to obtain the data

contrast.arg optional, a contrasts object describing how factors should be coded
other possible argument to model. frame

Details
When there is a data argument this function differs from most of the other model.matrix methods
in that the response variable for the original formula is not required to be in the data.

If the data frame contains a terms attribute then it is assumed to be the result of a call to model . frame,
otherwise a call to model. frame is applied with the data as an argument.

72 myeloid

Value

The model matrix for the fit

Author(s)

Terry Therneau

See Also

model.matrix

Examples

fit1 <- coxph(Surv(time, status) ~ age + factor(ph.ecog), data=lung)
xfit <- model.matrix(fit1)

fit2 <- coxph(Surv(time, status) ~ age + factor(ph.ecog), data=lung,
x=TRUE)
all.equal(model.matrix(fit1), fit2$x)

myeloid Acute myeloid leukemia

Description

This simulated data set is based on a trial in acute myeloid leukemia.

Usage

myeloid
data(cancer, package="survival")

Format
A data frame with 646 observations on the following 9 variables.

id subject identifier, 1-646

trt treatment arm A or B

sex f=female, m=male

f1t3 mutations of the FLT3 gene, a factor with levels of A, B, C
futime time to death or last follow-up

death 1if futime is a death, O for censoring

txtime time to hematropetic stem cell transplant

crtime time to complete response

rltime time to relapse of disease

myeloma 73

Details

This data set is used to illustrate multi-state survival curves. It is based on the actual study in the
reference below. A subset of subjects was de-identifed, reordered, and then all of the time values
randomly perturbed.

Mutations in the FLT3 domain occur in about 1/3 of AML patients, the additional agent in treatment
arm B was presumed to target this anomaly. All subjects had a FLT mutation, either internal tandem
duplications (ITD) (divided into low vs high) +- mutations in the TKD domain, or TKD mutations
only. This was a stratification factor for treatment assignment in the study. The levels of A, B, C
correspond to increasing severity of the mutation burden.

References

Le-Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar SJ. Applica-
tion of multi-state models in cancer clinical trials. Clin Trials. 2018 Oct; 15 (5):489-498

Examples

coxph(Surv(futime, death) ~ trt + flt3, data=myeloid)
See the mstate vignette for a more complete analysis

myeloma Survival times of patients with multiple myeloma

Description

Survival times of 3882 subjects with multiple myeloma, seen at Mayo Clinic from 1947-1996.

Usage

myeloma

data("cancer”, package="survival")
Format

A data frame with 3882 observations on the following 5 variables.

id subject identifier

year year of entry into the study

entry time from diagnosis of MM until entry (days)
futime follow up time (days)

death status at last follow-up: 0 = alive, 1 = death

Details

Subjects who were diagnosed at Mayo will have entry =0, those who were diagnosed elsewhere
and later referred will have positive values.

74 nafld

References

R. Kyle, Long term survival in multiple myeloma. New Eng J Medicine, 1997

Examples

Incorrect survival curve, which ignores left truncation
fitl <- survfit(Surv(futime, death) ~ 1, myeloma)

Correct curve

fit2 <- survfit(Surv(entry, futime, death) ~1, myeloma)

nafld Non-alcoholic fatty liver disease

Description

Data sets containing the data from a population study of non-alcoholic fatty liver disease (NAFLD).
Subjects with the condition and a set of matched control subjects were followed forward for metabolic
conditions, cardiac endpoints, and death.

Usage

nafldi
nafld2
nafld3
data(nafld, package="survival")

Format
nafld1 is a data frame with 17549 observations on the following 10 variables.

id subject identifier

age age at entry to the study

male O=female, 1=male

weight weight in kg

height heightin cm

bmi body mass index

case.id the id of the NAFLD case to whom this subject is matched
futime time to death or last follow-up

status O= alive at last follow-up, 1=dead
nafld2 is a data frame with 400123 observations and 4 variables containing laboratory data

id subject identifier
days days since index date

test the type of value recorded

nafld 75
value the numeric value
nafld3 is a data frame with 34340 observations and 3 variables containing outcomes

id subject identifier
days days since index date

event the endpoint that occurred

Details

The primary reference for this study is Allen (2018). Nonalcoholic fatty liver disease (NAFLD) was
renamed metabolic dysfunction-associated steatotic liver disease (MASLD) in June 2023. The new
name is intended to better reflect the disease’s underlying causes, identify subgroups of patients,
and avoid stigmatizing words.

The incidence of MASLD has been rising rapidly in the last decade and it is now one of the main
drivers of hepatology practice Tapper2018. It is essentially the presence of excess fat in the liver,
and parallels the ongoing obesity epidemic. Approximately 20-25% of MASLD patients will de-
velop the inflammatory state of metabolic dysfunction associated steatohepatitis (MASH), leading
to fibrosis and eventual end-stage liver disease. MASLD can be accurately diagnosed by MRI
methods, but MASH diagnosis currently requires a biopsy.

The current study constructed a population cohort of all adult MASLD subjects from 1997 to 2014
along with 4 potential controls for each case. To protect patient confidentiality all time intervals
are in days since the index date; none of the dates from the original data were retained. Subject
age is their integer age at the index date, and the subject identifier is an arbitrary integer. As a final
protection, we include only a 90% random sample of the data. As a consequence analyses results
will not exactly match the original paper.

There are 3 data sets: nafld1 contains baseline data and has one observation per subject, nafld2
has one observation for each (time dependent) continuous measurement, and nafld3 has one ob-
servation for each yes/no outcome that occured.

Source

Data obtained from the author.

References

AM Allen, TM Therneau, JJ Larson, A Coward, VK Somers and PS Kamath, Nonalcoholic Fatty
Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year Community Study,
Hepatology 67:1726-1736, 2018.

76 neardate

neardate Find the index of the closest value in data set 2, for each entry in data
set one.

Description

A common task in medical work is to find the closest lab value to some index date, for each subject.

Usage

neardate(idl, id2, y1, y2, best = c("after”, "prior"),
nomatch = NA_integer_)

Arguments
id1 vector of subject identifiers for the index group
id2 vector of identifiers for the reference group
y1 normally a vector of dates for the index group, but any orderable data type is
allowed
y2 reference set of dates
best if best="prior' find the index of the first y2 value less than or equal to the
target y1 value, for each subject. If best="after"' find the first y2 value which
is greater than or equal to the target y1 value, for each subject.
nomatch the value to return for items without a match
Details

This routine is closely related to match and to findInterval, the first of which finds exact matches
and the second closest matches. This finds the closest matching date within sets of exactly matching
identifiers. Closest date matching is often needed in clinical studies. For example data set 1 might
contain the subject identifier and the date of some procedure and data set set 2 has the dates and
values for laboratory tests, and the query is to find the first test value after the intervention but no
closer than 7 days.

The id1 and id2 arguments are similar to match in that we are searching for instances of id1 that
will be found in id2, and the result is the same length as id1. However, instead of returning the
first match with id2 this routine returns the one that best matches with respect to y1.

The y1 and y2 arguments need not be dates, the function works for any data type such that the ex-
pression c(y1, y2) gives a sensible, sortable result. Be careful about matching Date and DateTime
values and the impact of time zones, however, see as.P0OSIXct. If y1 and y2 are not of the same
class the user is on their own. Since there exist pairs of unmatched data types where the result could
be sensible, the routine will in this case proceed under the assumption that "the user knows what
they are doing". Caveat emptor.

nsk 77

Value

the index of the matching observations in the second data set, or the nomatch value for no successful
match

Author(s)

Terry Therneau

See Also

match, findInterval

Examples

datal <- data.frame(id = 1:10,
entry.dt = as.Date(paste(”2011", 1:10, "5", sep='-")))
templ <- c¢(1,4,5,1,3,6,9, 2,7,8,12,4,6,7,10,12,3)
data2 <- data.frame(id = c¢(1,1,1,2,2,4,4,5,5,5,6,8,8,9,10,10,12),
lab.dt = as.Date(paste(”2011", templ, "1", sep='-')),
chol = round(runif (17, 130, 280)))

#first cholesterol on or after enrollment
indx1 <- neardate(datal$id, data2$id, datal$entry.dt, data2$lab.dt)
data2[indx1, "chol”]

Closest one, either before or after.

#

indx2 <- neardate(datal$id, data2%$id, datal$entry.dt, data2$lab.dt,

best="prior")

ifelse(is.na(indx1), indx2, # none after, take before
ifelse(is.na(indx2), indx1, #none before
ifelse(abs(data2$lab.dt[indx2]- datal$entry.dt) <

abs(data2$lab.dt[indx1]- datal$entry.dt), indx2, indx1)))

closest date before or after, but no more than 21 days prior to index
indx2 <- ifelse((datal$entry.dt - data2$lab.dt[indx2]) >21, NA, indx2)
ifelse(is.na(indx1), indx2, # none after, take before
ifelse(is.na(indx2), indx1, #none before
ifelse(abs(data2$lab.dt[indx2]- datal$entry.dt) <
abs(data2$lab.dt[indx1]- datal$entry.dt), indx2, indx1)))

nsk Natural splines with knot heights as the basis.

Description

Create the design matrix for a natural spline, such that the coefficient of the resulting fit are the
values of the function at the knots.

78

Usage

nsk

nsk(x, df = NULL, knots = NULL, intercept = FALSE, b = 0.05,
Boundary.knots = quantile(x, c(b, 1 - b), na.rm = TRUE))

Arguments

X

df

knots

intercept
b

Boundary.knots

Details

the predictor variable. Missing values are allowed.

degrees of freedom. One can supply df rather than knots; ns() then chooses df - 1
- intercept knots at suitably chosen quantiles of x (which will ignore missing val-
ues). The default, df = NULL, sets the number of inner knots as length(knots).

breakpoints that define the spline. The default is no knots; together with the
natural boundary conditions this results in a basis for linear regression on x.
Typical values are the mean or median for one knot, quantiles for more knots.
See also Boundary.knots.

if TRUE, an intercept is included in the basis; default is FALSE

default placement of the boundary knots. A value of bs=0 will replicate the
default behavior of ns.

boundary points at which to impose the natural boundary conditions and anchor
the B-spline basis. Beyond these points the function is assumed to be linear. If
both knots and Boundary.knots are supplied, the basis parameters do not depend
on x. Data can extend beyond Boundary.knots

The nsk function behaves identically to the ns function, with two exceptions. The primary one is
that the returned basis is such that coefficients correspond to the value of the fitted function at the
knot points. If intercept = FALSE, there will be k-1 coefficients corresponding to the k knots, and
they will be the difference in predicted value between knots 2-k and knot 1. The primary advantage
to the basis is that the coefficients are directly interpretable. A second is that tests for the linear and
non-linear components are simple contrasts.

The second differnce with ns is one of opinion with respect to the default position for the boundary
knots. The default here is closer to that found in the rms: : rcs function.

This function is a trial if a new idea, it’s future inclusion in the package is not yet guarranteed.

Value

A matrix of dimension length(x) * df where either df was supplied or, if knots were supplied, df =
length(knots) + 1 + intercept. Attributes are returned that correspond to the arguments to kns, and
explicitly give the knots, Boundary.knots etc for use by predict.kns().

Note

A thin flexible metal or wooden strip is called a spline, and is the traditional method for laying out
a smooth curve, e.g., for a ship’s hull or an airplane wing. Pins are put into a board and the strip is
passed through them, each pin is a "knot’.

nsk 79

A mathematical spline is a piecewise function between each knot. A linear spline will be a set of
connected line segments, a quadratic spline is a set of connected local quadratic functions, con-
strained to have a continuous first derivative, a cubic spline is cubic between each knot, constrained
to have continuous first and second derivatives, and etc. Mathematical splines are not an exact rep-
resentation of natural splines: being a physical object the wood or metal strip will have continuous
derivatives of all orders. Cubic splines are commonly used because they are sufficiently smooth to
look natural to the human eye.

If the mathematical spline is further constrained to be linear beyond the end knots, this is often
called a ’natural spline’, due to the fact that a wooden or metal spline will also be linear beyond the
last knots. Another name for the same object is a ’restricted cubic spline’, since it is achieved in
code by adding further constraints. Given a vector of data points and a set of knots, it is possible to
create a basis matrix X with one column per knot, such that ordinary regression of X on y will fit
the cubic spline function, hence these are also called 'regression splines’. (One of these three labels
is no better or worse than another, in our opinion).

Given a basis matrix X with k columns, the matrix Z= XT for any k by k nonsingular matrix T is is
also a basis matrix, and will result in identical predicted values, but a new set of coefficients gamma
= (T-inverse) beta in place of beta. One can choose the basis functions so that X is easy to construct,
to make the regression numerically stable, to make tests easier, or based on other considerations.
It seems as though every spline library returns a different basis set, which unfortunately makes
fits difficult to compare between packages. This is yet one more basis set, chosen to make the
coefficients more interpretable.

See Also

ns

Examples

make some dummy data

tdata <- data.frame(x= lung$age, y = 10*log(lung$age-35) + rnorm(228, @, 2))
fitl <= Im(y ~ -1 + nsk(x, df=4, intercept=TRUE) , data=tdata)

fit2 <- Im(y ~ nsk(x, df=3), data=tdata)

the knots (same for both fits)

knots <- unlist(attributes(fiti$model[[2]])[c('Boundary.knots', 'knots')])
sort(unname(knots))

unname(coef (fit1)) # predictions at the knot points

unname (coef (fit1)[-1] - coef(fit1)[1]) # differences: yhat[2:4] - yhat[1]
unname (coef (fit2))[-1] # ditto

Not run:

plot(y ~ x, data=tdata)

points(sort(knots), coef(fitl1), col=2, pch=19)
coef (fit)[1] + c(0@, coef(fit)[-11)

End(Not run)

80 nwtco

nwtco Data from the National Wilm’s Tumor Study

Description

Measurement error example. Tumor histology predicts survival, but prediction is stronger with
central lab histology than with the local institution determination.

Usage

nwtco
data(nwtco, package="survival")

Format

A data frame with 4028 observations on the following 9 variables.

segno id number

instit Histology from local institution
histol Histology from central lab
stage Disease stage

study study

rel indicator for relapse

edrel time to relapse

age age in months

in.subcohort Included in the subcohort for the example in the paper

References

NE Breslow and N Chatterjee (1999), Design and analysis of two-phase studies with binary outcome
applied to Wilms tumour prognosis. Applied Statistics 48, 457-68.

Examples

with(nwtco, table(instit,histol))
anova(coxph(Surv(edrel,rel)~histol+instit,data=nwtco))
anova(coxph(Surv(edrel,rel)~instit+histol,data=nwtco))

ovarian

81

ovarian Ovarian Cancer Survival Data

Description

Survival in a randomised trial comparing two treatments for ovarian cancer

Usage

ovarian
data(cancer, package="survival")

Format

futime: survival or censoring time
fustat: censoring status
age: in years
resid.ds: residual disease present (1=no,2=yes)
IrXx: treatment group
ecog.ps: ECOG performance status (1 is better, see reference)

Source

Terry Therneau
References

Edmunson, J.H., Fleming, T.R., Decker, D.G., Malkasian, G.D., Jefferies, J.A., Webb, M.J., and
Kvols, L.K., Different Chemotherapeutic Sensitivities and Host Factors Affecting Prognosis in Ad-

vanced Ovarian Carcinoma vs. Minimal Residual Disease. Cancer Treatment Reports, 63:241-47,
1979.

pbc Mayo Clinic Primary Biliary Cholangitis Data

82 pbc

Description

Primary biliary cholangitis is an autoimmune disease leading to destruction of the small bile ducts
in the liver. Progression is slow but inexhortable, eventually leading to cirrhosis and liver decom-
pensation. The condition has been recognised since at least 1851 and was named "primary biliary
cirrhosis" in 1949. Because cirrhosis is a feature only of advanced disease, a change of its name to
"primary biliary cholangitis" was proposed by patient advocacy groups in 2014.

This data is from the Mayo Clinic trial in PBC conducted between 1974 and 1984. A total of 424
PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the
randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the data set
participated in the randomized trial and contain largely complete data. The additional 112 cases did
not participate in the clinical trial, but consented to have basic measurements recorded and to be
followed for survival. Six of those cases were lost to follow-up shortly after diagnosis, so the data
here are on an additional 106 cases as well as the 312 randomized participants.

A nearly identical data set found in appendix D of Fleming and Harrington; this version has fewer
missing values.

Usage
pbc

data(pbc, package="survival")

Format

age: in years
albumin: serum albumin (g/dl)
alk.phos: alkaline phosphotase (U/liter)

ascites: presence of ascites
ast: aspartate aminotransferase, once called SGOT (U/ml)
bili: serum bilirunbin (mg/dl)
chol: serum cholesterol (mg/dl)
copper: urine copper (ug/day)
edema: 0 no edema, 0.5 untreated or successfully treated
1 edema despite diuretic therapy
hepato: presence of hepatomegaly or enlarged liver
id: case number

platelet: platelet count
protime: standardised blood clotting time

sex: m/f

spiders: blood vessel malformations in the skin

stage: histologic stage of disease (needs biopsy)

status: status at endpoint, 0/1/2 for censored, transplant, dead

time: number of days between registration and the earlier of death,
transplantion, or study analysis in July, 1986

trt: 1/2/NA for D-penicillmain, placebo, not randomised

trig: triglycerides (mg/dl)

pbcseq 83

Source

T Therneau and P Grambsch (2000), Modeling Survival Data: Extending the Cox Model, Springer-
Verlag, New York. ISBN: 0-387-98784-3.

See Also

pbcseq

pbcseq Mayo Clinic Primary Biliary Cirrhosis, sequential data

Description

This data is a continuation of the PBC data set, and contains the follow-up laboratory data for each
study patient. An analysis based on the data can be found in Murtagh, et. al.

The primary PBC data set contains only baseline measurements of the laboratory parameters. This
data set contains multiple laboratory results, but only on the 312 randomized patients. Some base-
line data values in this file differ from the original PBC file, for instance, the data errors in prothrom-
bin time and age which were discovered after the original analysis (see Fleming and Harrington,
figure 4.6.7). It also contains further follow-up.

One feature of the data deserves special comment. The last observation before death or liver trans-
plant often has many more missing covariates than other data rows. The original clinical protocol
for these patients specified visits at 6 months, 1 year, and annually thereafter. At these protocol
visits lab values were obtained for a pre-specified battery of tests. "Extra" visits, often undertaken
because of worsening medical condition, did not necessarily have all this lab work. The missing
values are thus potentially informative.

Usage

pbcseq
data(pbc, package="survival")

Format
id: case number
age: in years
sex: m/f
trt: 1/2/NA for D-penicillmain, placebo, not randomised
time: number of days between registration and the earlier of death,
transplantion, or study analysis in July, 1986
status: status at endpoint, 0/1/2 for censored, transplant, dead
day: number of days between enrollment and this visit date

all measurements below refer to this date
albumin: serum albumin (mg/dl)
alk.phos: alkaline phosphotase (U/liter)

84 pbcseq

ascites: presence of ascites
ast: aspartate aminotransferase, once called SGOT (U/ml)
bili: serum bilirunbin (mg/dl)
chol: serum cholesterol (mg/dl)
copper: urine copper (ug/day)
edema: 0 no edema, 0.5 untreated or successfully treated
1 edema despite diuretic therapy
hepato: presence of hepatomegaly or enlarged liver

platelet: platelet count
protime: standardised blood clotting time

spiders: blood vessel malformations in the skin
stage: histologic stage of disease (needs biopsy)
trig: triglycerides (mg/dl)

Source

T Therneau and P Grambsch, "Modeling Survival Data: Extending the Cox Model", Springer-
Verlag, New York, 2000. ISBN: 0-387-98784-3.

References

Murtaugh PA. Dickson ER. Van Dam GM. Malinchoc M. Grambsch PM. Langworthy AL. Gips
CH. "Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits."
Hepatology. 20(1.1):126-34, 1994.

Fleming T and Harrington D., "Counting Processes and Survival Analysis", Wiley, New York, 1991.

See Also

pbc

Examples

Create the start-stop-event triplet needed for coxph
first <- with(pbcseq, c(TRUE, diff(id) !=0)) #first id for each subject
last <- c(first[-1], TRUE) #last id

timel <- with(pbcseq, ifelse(first, 0, day))
time2 <- with(pbcseq, ifelse(last, futime, c(day[-1], 0)))
event <- with(pbcseq, ifelse(last, status, 0))

fitl <- coxph(Surv(timel, time2, event) ~ age + sex + log(bili), pbcseq)

plot.aareg 85

plot.aareg Plot an aareg object.

Description

Plot the estimated coefficient function(s) from a fit of Aalen’s additive regression model.

Usage
S3 method for class 'aareg'
plot(x, se=TRUE, maxtime, type='s', ...)
Arguments
X the result of a call to the aareg function
se if TRUE, standard error bands are included on the plot
maxtime upper limit for the x-axis.
type graphical parameter for the type of line, default is "steps".

other graphical parameters such as line type, color, or axis labels.

Side Effects

A plot is produced on the current graphical device.

References

Aalen, O.0. (1989). A linear regression model for the analysis of life times. Statistics in Medicine,
8:907-925.

See Also

aareg

plot.cox.zph Graphical Test of Proportional Hazards

Description

Displays a graph of the scaled Schoenfeld residuals, along with a smooth curve.

Usage

S3 method for class 'cox.zph'
plot(x, resid=TRUE, se=TRUE, df=4, nsmo=40, var,
xlab="Time", ylab, 1ty=1:2, col=1, lwd=1, pch=1, cex=1,
hr=FALSE, plot=TRUE, ...)

plot.cox.zph

Arguments

X result of the cox. zph function.

resid a logical value, if TRUE the residuals are included on the plot, as well as the
smooth fit.

se a logical value, if TRUE, confidence bands at two standard errors will be added.

df the degrees of freedom for the fitted natural spline, df=2 leads to a linear fit.

nsmo number of points to use for the lines

var the set of variables for which plots are desired. By default, plots are produced
in turn for each variable of a model. Selection of a single variable allows other
features to be added to the plot, e.g., a horizontal line at zero or a main title.
This has been superseded by a subscripting method; see the example below.

hr if TRUE, label the y-axis using the estimated hazard ratio rather than the esti-
mated coefficient. (The plot does not change, only the axis label.)

xlab label for the x-axis of the plot

ylab optional label for the y-axis of the plot. If missing a default label is provided.
This can be a vector of labels.

1ty, col, 1wd line type, color, and line width for the overlaid curve. Each of these can be
vector of length 2, in which case the second element is used for the confidence
interval.

plot if FALSE, return a list containing the x and y values of the curve, instead of
drawing a plot

pch used for points on the plot, see points

cex used for points on the plot, see points
additional graphical arguments passed to the plot function.

Side Effects

a plot is produced on the current graphics device.

See Also

coxph, cox.zph.

Examples

vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) +
karno + age, data=veteran, x=TRUE)
temp <- cox.zph(vfit)
plot(temp, var=3) # Look at Karnofsy score, old way of doing plot
plot(temp[3]) # New way with subscripting
abline(0, 0, 1ty=3)
Add the linear fit as well
abline(Im(temp$y[,3] ~ temp$x)$coefficients, 1lty=4, col=3)
title(main="VA Lung Study")

plot.survfit 87

plot.survfit Plot method for survfit objects

Description

A plot of survival curves is produced, one curve for each strata. The 1log=T option does extra work
to avoid log(0), and to try to create a pleasing result. If there are zeros, they are plotted by default
at 0.8 times the smallest non-zero value on the curve(s).

Curves are plotted in the same order as they are listed by print (which gives a 1 line summary of
each). This will be the order in which col, 1ty, etc are used.

Usage

S3 method for class 'survfit'
plot(x, conf.int=, mark.time=FALSE,
pch=3, col=1, 1ty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1,
xlim, ylim, xmax, fun,
xlab="", ylab="", xaxs="r", conf.times, conf.cap=.005,
conf.offset=.012,
conf.type = c("log"”, "log-log", "plain"”, "logit"”, "arcsin”),
mark, noplot="(s®@)", cumhaz=FALSE,

firstx, ymin, cumprob=FALSE, ...)
Arguments
X an object of class survfit, usually returned by the survfit function.
conf.int determines whether pointwise confidence intervals will be plotted. The default

is to do so if there is only 1 curve, i.e., no strata, using 95% confidence intervals
Alternatively, this can be a numeric value giving the desired confidence level.

mark.time controls the labeling of the curves. If set to FALSE, no labeling is done. If TRUE,
then curves are marked at each censoring time. If mark is a numeric vector then
curves are marked at the specified time points.

pch vector of characters which will be used to label the curves. The points help
file contains examples of the possible marks. A single string such as "abcd" is
treated as a vector c("a", "b", "c", "d"). The vector is reused cyclically if it
is shorter than the number of curves. If it is present this implies mark.time =

TRUE.
col a vector of integers specifying colors for each curve. The default value is 1.
1ty a vector of integers specifying line types for each curve. The default value is 1.
lwd a vector of numeric values for line widths. The default value is 1.
cex a numeric value specifying the size of the marks. This is not treated as a vector;

all marks have the same size.

log a logical value, if TRUE the y axis wll be on a log scale. Alternately, one of the

standard character strings "x", "y", or "xy" can be given to specific logarithmic
horizontal and/or vertical axes.

88

xscale

yscale

xlim, ylim

Xmax

fun

xlab
ylab

Xaxs

conf.times

conf.cap

conf.offset

conf. type

plot.survfit

a numeric value used like yscale for labels on the x axis. A value of 365.25
will give labels in years instead of the original days.

a numeric value used to multiply the labels on the y axis. A value of 100, for
instance, would be used to give a percent scale. Only the labels are changed, not
the actual plot coordinates, so that adding a curve with "lines(surv.exp(...))",
say, will perform as it did without the yscale argument.

optional limits for the plotting region.

the maximum horizontal plot coordinate. This can be used to shrink the range
of a plot. It shortens the curve before plotting it, so that unlike using the x1im
graphical parameter, warning messages about out of bounds points are not gen-
erated.

an arbitrary function defining a transformation of the survival (or probability
in state, or cumulative hazard) curves. For example fun=1og is an alternative
way to draw a log-survival curve (but with the axis labeled with log(S) values),
and fun=sqrt would generate a curve on square root scale. Four often used
transformations can be specified with a character argument instead: "S" gives
the usual survival curve, "log" is the same as using the 1og=T option, "event”
or "F" plots the empirical CDF F'(t) = 1 — S(t) (f(y) = 1-y), and "cloglog"”
creates a complimentary log-log survival plot (f(y) = log(-log(y)) along with
log scale for the x-axis). The terms "identity"” and "surv” are allowed as
synonyms for type="S". The argument "cumhaz"” causes the cumulative hazard
function to be plotted.

label given to the x-axis.

label given to the y-axis.

nn

either "S" for a survival curve or a standard x axis style as listed in par; "r
(regular) is the R default. Survival curves have historically been displayed with
the curve touching the y-axis, but not touching the bounding box of the plot on
the other 3 sides, Type "S" accomplishes this by manipulating the plot range
and then using the "i" style internally. The "S" style is becoming increasingly
less common, however.

optional vector of times at which to place a confidence bar on the curve(s). If
present, these will be used instead of confidence bands.

width of the horizontal cap on top of the confidence bars; only used if conf.times
is used. A value of 1 is the width of the plot region.

the offset for confidence bars, when there are multiple curves on the plot. A
value of 1 is the width of the plot region. If this is a single number then each
curve’s bars are offset by this amount from the prior curve’s bars, if it is a vector
the values are used directly.

One of "none”, "plain”, "log" (the default), "log-log"” or "logit"”. Only
enough of the string to uniquely identify it is necessary. The first option causes
confidence intervals not to be generated. The second causes the intervals curve
+- k *se(curve), where k is determined from conf.int. The log option cal-
culates intervals based on the cumulative hazard or log(survival). The log-log
option bases the intervals on the log hazard or log(-log(survival)), and the logit
option on log(survival/(1-survival)) The default is "plain" for a plot of the cu-
mulative hazard.

plot.survfit 89

mark a historical alias for pch

noplot for multi-state models, curves with this label will not be plotted. (Also see the
istate@ argument in survcheck.)

cumhaz plot the cumulative hazard rather than the probability in state or survival. Op-
tionally, this can be a numeric vector specifying which columns of the cumhaz
component to plot.

ymin this will normally be given as part of the ylim argument

firstx this will normally be given as part of the x1im argument.

cumprob for a multi-state curve, plot the probabilities in state 1, (statel + state2), (statel
+ state2 + state3), If cumprob is an integer vector the totals will be in the

order indicated.

other arguments that will be passed forward to the underlying plot method, such
as xlab or ylab.

Details

If the object contains a cumulative hazard curve, then fun="'cumhaz"' will plot that curve, otherwise
it will plot -log(S) as an approximation. Theoretically, S = exp(—A) where S is the survival and
A is the cumulative hazard. The same relationship holds for estimates of S and A only in special
cases, but the approximation is often close.

When the survfit function creates a multi-state survival curve the resulting object also has class
‘survfitms’. Competing risk curves are a common case. In this situation the fun argument is ig-
nored.

When the conf.times argument is used, the confidence bars are offset by conf.offset units to
avoid overlap. The bar on each curve are the confidence interval for the time point at which the bar
is drawn, i.e., different time points for each curve. If curves are steep at that point, the visual impact
can sometimes substantially differ for positive and negative values of conf.offset.

Value

a list with components x and y, containing the coordinates of the last point on each of the curves
(but not the confidence limits). This may be useful for labeling. If cumprob=TRUE then y will be
a matrix with one row per curve and x will be all the time points. This may be useful for adding
shading.

Note

In prior versions the behavior of xscale and yscale differed: the first changed the scale both for
the plot and for all subsequent actions such as adding a legend, whereas yscale affected only the
axis label. This was normalized in version 2-36.4, and both parameters now only affect the labeling.

In versions prior to approximately 2.36 a survfit object did not contain the cumulative hazard
as a separate result, and the use of fun="cumhaz" would plot the approximation -log(surv) to the
cumulative hazard. When cumulative hazards were added to the object, the cumhaz=TRUE argument
to the plotting function was added. In version 2.3-8 the use of fun="cumhaz" became a synonym
for cumhaz=TRUE.

90 predict.coxph

See Also

points.survfit, lines.survfit, par, survfit

Examples

leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml)
plot(leukemia.surv, 1ty = 2:3)

legend(100, .9, c("Maintenance”, "No Maintenance"), 1ty = 2:3)
title("Kaplan-Meier Curves\nfor AML Maintenance Study")

lsurv2 <- survfit(Surv(time, status) ~ x, aml, type='fleming')
plot(lsurv2, 1lty=2:3, fun="cumhaz",

xlab="Months", ylab="Cumulative Hazard")

predict.coxph Predictions for a Cox model

Description

Compute fitted values and regression terms for a model fitted by coxph

Usage

S3 method for class 'coxph'
predict(object, newdata,

type=c("1lp"”, "risk", "expected”, "terms", "survival”),
se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse,
reference=c("strata”, "sample”, "zero"), ...)
Arguments
object the results of a coxph fit.
newdata Optional new data at which to do predictions. If absent predictions are for the

data frame used in the original fit. When coxph has been called with a formula
argument created in another context, i.e., coxph has been called within another
function and the formula was passed as an argument to that function, there can
be problems finding the data set. See the note below.

type the type of predicted value. Choices are the linear predictor ("1p”), the risk
score exp(Ip) ("risk"), the expected number of events given the covariates and
follow-up time ("expected"”), and the terms of the linear predictor ("terms"”).
The survival probability for a subject is equal to exp(-expected).

se.fit if TRUE, pointwise standard errors are produced for the predictions.

na.action applies only when the newdata argument is present, and defines the missing
value action for the new data. The default is to include all observations. When
there is no newdata, then the behavior of missing is dictated by the na.action
option of the original fit.

predict.coxph 91

terms if type="terms", this argument can be used to specify which terms should be
included; the default is all.

collapse optional vector of subject identifiers. If specified, the output will contain one
entry per subject rather than one entry per observation.

reference reference for centering predictions, see details below

For future methods

Details

The Cox model is a relative risk model; predictions of type "linear predictor”, "risk", and "terms"
are all relative to the sample from which they came. By default, the reference value for each of
these is the mean covariate within strata. The underlying reason is both statistical and practial.
First, a Cox model only predicts relative risks between pairs of subjects within the same strata, and
hence the addition of a constant to any covariate, either overall or only within a particular stra-
tum, has no effect on the fitted results. Second, downstream calculations depend on the risk score
exp(linear predictor), which will fall prey to numeric overflow for a linear predictor greater than
.Machine\$double.max.exp. The coxph routines try to approximately center the predictors out of
self protection. Using the reference="strata" option is the safest centering, since strata occas-
sionally have different means. When the results of predict are used in further calculations it may
be desirable to use a single reference level for all observations. Use of reference="sample"” will
use object$means, which agrees with the linear.predictors component of the coxph object.
Predictions of type="terms" are almost invariably passed forward to further calculation, so for
these we default to using the sample as the reference. A reference of "zero” causes no centering to
be done.

Predictions of type "expected" or "survival" incorporate the baseline hazard and are thus absolute
instead of relative; the reference option has no effect on these. These values depend on the follow-
up time for the subjects as well as covariates so the newdata argument needs to include both the
right and /left hand side variables from the formula. (The status variable will not be used, but is
required since the underlying code needs to reconstruct the entire formula.)

Models that contain a frailty term are a special case: due to the technical difficulty, when there is
a newdata argument the predictions will always be for a random effect of zero.

For predictions of type expected a user will normally want to use A(¢;), i.e., the cumulative hazard
at the individual follow-up time ¢;of each individual subject. This is E in the martingale residual
O-E and plays a natural role in assessments of model validation (Crowson 2016). For predictions
of type survival, on the other hand, a user will normally want S(tau), where tau is a single pre-
specified time point which is the same for all subjects, e.g., predicted 5 year survival. The newdata
data set should contain actual survival time(s) for each subject for the first case, as the survival time
variable(s), and the target time tau in the second case; (0, tau) for (timel, time2) data.

For counting process data with (timel, time2) form, residuals of type expected estimate the incre-
ment in hazard over said interval, and those of type survival the probability of an event at time2
given that the observation is still alive at timel. The estimated hazards over two intervals (t1, t2) and
(t2, t3) add to the total hazard over the interval (t1, t3), and the variances also add: the formulas treat
these as independent increments, given the covariates. Estimated survivals multiply, but variances
do not add.

92 predict.survreg

Value

a vector or matrix of predictions, or a list containing the predictions (element "fit") and their standard
errors (element "se.fit") if the se.fit option is TRUE.

Note

Some predictions can be obtained directly from the coxph object, and for others it is necessary for
the routine to have the entirety of the original data set, e.g., for type = terms or if standard errors
are requested. This extra information is saved in the coxph object if mode1=TRUE, if not the original
data is reconstructed. If it is known that such residuals will be required overall execution will be
slightly faster if the model information is saved.

In some cases the reconstruction can fail. The most common is when coxph has been called inside
another function and the formula was passed as one of the arguments to that enclosing function.
Another is when the data set has changed between the original call and the time of the prediction
call. In each of these the simple solution is to add model=TRUE to the original coxph call.

References

C Crowson, E Atkinson and T Therneau, Assessing calibration of prognostic risk scores, Stat Meth-
ods Med Res, 2016.

See Also

predict,coxph,termplot

Examples

options(na.action=na.exclude) # retain NA in predictions

fit <- coxph(Surv(time, status) ~ age + ph.ecog + strata(inst), lung)

#lung data set has status coded as 1/2

mresid <- (lung$status-1) - predict(fit, type='expected') #Martingale resid
predict(fit,type="1p")

predict(fit, type="expected")

predict(fit,type="risk",se.fit=TRUE)

predict(fit, type="terms", se.fit=TRUE)

For someone who demands reference='zero'
pzero <- function(fit)
predict(fit, reference="sample"”) + sum(coef(fit) * fit$means, na.rm=TRUE)

predict.survreg Predicted Values for a ‘survreg’ Object

Description

Predicted values for a survreg object

predict.survreg

Usage

93

S3 method for class 'survreg'
predict(object, newdata,

type=c("response”, "link"”, "lp"”, "linear”, "terms"”, "quantile”,
"uquantile”),
se.fit=FALSE, terms=NULL, p=c(@.1, 0.9), na.action=na.pass, ...)
Arguments

object result of a model fit using the survreg function.

newdata data for prediction. If absent predictions are for the subjects used in the original
fit.

type the type of predicted value. This can be on the original scale of the data (re-
sponse), the linear predictor ("1inear”, with "1p" as an allowed abbreviation),
a predicted quantile on the original scale of the data ("quantile"), a quantile
on the linear predictor scale ("uquantile”), or the matrix of terms for the lin-
ear predictor ("terms"”). At this time "1ink” and linear predictor ("1p") are
identical.

se.fit if TRUE, include the standard errors of the prediction in the result.

terms subset of terms. The default for residual type "terms” is a matrix with one
column for every term (excluding the intercept) in the model.

p vector of percentiles. This is used only for quantile predictions.

na.action applies only when the newdata argument is present, and defines the missing
value action for the new data. The default is to include all observations.
for future methods

Value

a vector or matrix of predicted values.

References

Escobar and Meeker (1992). Assessing influence in regression analysis with censored data. Bio-
metrics, 48, 507-528.

See Also

survreg, residuals.survreg

Examples

Draw figure 1 from Escobar and Meeker, 1992.
fit <- survreg(Surv(time,status) ~ age + I(age”2), data=stanford2,

dist="'lognormal')

with(stanford2, plot(age, time, xlab='Age', ylab='Days',
x1lim=c(@,65), ylim=c(.1, 10%5), log='y', type='n"))
with(stanford2, points(age, time, pch=c(2,4)[status+1], cex=.7))

94

print.aareg

pred <- predict(fit, newdata=list(age=1:65), type='quantile',
p=c(.1, .5, .9))
matlines(1:65, pred, 1lty=c(2,1,2), col=1)

Predicted Weibull survival curve for a lung cancer subject with
ECOG score of 2
1fit <- survreg(Surv(time, status) ~ ph.ecog, data=lung)
pct <- 1:98/100 # The 100th percentile of predicted survival is at +infinity
ptime <- predict(lfit, newdata=data.frame(ph.ecog=2), type='quantile',
p=pct, se=TRUE)
matplot(cbind(ptime$fit, ptime$fit + 2xptime$se.fit,
ptime$fit - 2*ptime$se.fit)/30.5, 1-pct,
xlab="Months", ylab="Survival”, type='l', 1lty=c(1,2,2), col=1)

print.aareg Print an aareg object

Description

Print out a fit of Aalen’s additive regression model

Usage
S3 method for class 'aareg'
print(x, maxtime, test=c(”aalen”, "nrisk"),scale=1,...)
Arguments
X the result of a call to the aareg function
maxtime the upper time point to be used in the test for non-zero slope
test the weighting to be used in the test for non-zero slope. The default weights are

based on the variance of each coefficient, as a function of time. The alternative
weight is proportional to the number of subjects still at risk at each time point.

scale scales the coefficients. For some data sets, the coefficients of the Aalen model
will be very small (10-4); this simply multiplies the printed values by a constant,
say le6, to make the printout easier to read.

for future methods

Details

The estimated increments in the coefficient estimates can become quite unstable near the end of
follow-up, due to the small number of observations still at risk in a data set. Thus, the test for slope
will sometimes be more powerful if this last ‘tail’ is excluded.

Value

the calling argument is returned.

print.summary.coxph 95

Side Effects

the results of the fit are displayed.

References

Aalen, 0.0. (1989). A linear regression model for the analysis of life times. Statistics in Medicine,
8:907-925.

See Also

aareg

print.summary.coxph Print method for summary.coxph objects

Description

Produces a printed summary of a fitted coxph model

Usage

S3 method for class 'summary.coxph'
print(x, digits=max(getOption("digits"”) - 3, 3),

signif.stars = getOption("show.signif.stars"”), expand=FALSE, ...)
Arguments
X the result of a call to summary. coxph
digits significant digits to print

signif.stars Show stars to highlight small p-values

expand if the summary is for a multi-state coxph fit, print the results in an expanded
format.

For future methods

96 print.summary.survfit

print.summary.survexp Print Survexp Summary

Description

Prints the results of summary . survexp

Usage

S3 method for class 'summary.survexp'

print(x, digits = max(options()$digits - 4, 3), ...)
Arguments

X an object of class summary . survexp.

digits the number of digits to use in printing the result.

for future methods

Value

x, with the invisible flag set to prevent further printing.

Author(s)

Terry Therneau

See Also

link{summary.survexp}, survexp

print.summary.survfit Print Survfit Summary

Description

Prints the result of summary.survfit.

Usage

S3 method for class 'summary.survfit'
print(x, digits = max(options() $digits-4, 3), ...)

print.survfit 97

Arguments
X an object of class "summary.survfit"”, which is the result of the summary.survfit
function.
digits the number of digits to use in printing the numbers.
for future methods
Value

x, with the invisible flag set to prevent printing.

Side Effects

prints the summary created by summary.survfit.

See Also

options, print, summary.survfit.

print.survfit Print a Short Summary of a Survival Curve

Description

Print number of observations, number of events, the restricted mean survival and its standard error,
and the median survival with confidence limits for the median.

Usage

S3 method for class 'survfit'
print(x, scale=1, digits = max(options()$digits - 4,3),
print.rmean=getOption("survfit.print.rmean”),

rmean = getOption('survfit.rmean'),...)
Arguments
X the result of a call to the survfit function.
scale a numeric value to rescale the survival time, e.g., if the input data to survfit were

in days, scale=365 would scale the printout to years.

digits Number of digits to print

print.rmean, rmean
Options for computation and display of the restricted mean.

for future results

98 print.survfit

Details

The mean and its variance are based on a truncated estimator. That is, if the last observation(s) is
not a death, then the survival curve estimate does not go to zero and the mean is undefined. There
are four possible approaches to resolve this, which are selected by the rmean option. The first is
to set the upper limit to a constant, e.g.,rmean=365. In this case the reported mean would be the
expected number of days, out of the first 365, that would be experienced by each group. This is
useful if interest focuses on a fixed period. Other options are "none” (no estimate), "common”
and "individual”. The "common” option uses the maximum time for all curves in the object as a
common upper limit for the auc calculation. For the "individual”options the mean is computed as
the area under each curve, over the range from 0 to the maximum observed time for that curve. Since
the end point is random, values for different curves are not comparable and the printed standard
errors are an underestimate as they do not take into account this random variation. This option is
provided mainly for backwards compatability, as this estimate was the default (only) one in earlier
releases of the code. Note that SAS (as of version 9.3) uses the integral up to the last event time of
each individual curve; we consider this the worst of the choices and do not provide an option for
that calculation.

The median and its confidence interval are defined by drawing a horizontal line at 0.5 on the plot
of the survival curve and its confidence bands. If that line does not intersect the curve, then the
median is undefined. The intersection of the line with the lower CI band defines the lower limit for
the median’s interval, and similarly for the upper band. If any of the intersections is not a point then
we use the center of the intersection interval, e.g., if the survival curve were exactly equal to 0.5
over an interval. When data is uncensored this agrees with the usual definition of a median.

Value

x, with the invisible flag set to prevent printing. (The default for all print functions in R is to return
the object passed to them; print.survfit complies with this pattern. If you want to capture these
printed results for further processing, see the table component of summary.survfit.)

Side Effects

The number of observations, the number of events, the median survival with its confidence interval,
and optionally the restricted mean survival (rmean) and its standard error, are printed. If there are
multiple curves, there is one line of output for each.

References

Miller, Rupert G., Jr. (1981). Survival Analysis. New York:Wiley, p 71.

See Also

summary.survfit, quantile.survfit

pseudo 99

pseudo Pseudo values for survival.

Description

Produce pseudo values from a survival curve.

Usage
pseudo(fit, times, type, collapse= TRUE, data.frame=FALSE, ...)
Arguments
fit a survfit object, or one that inherits that class.
times a vector of time points, at which to evaluate the pseudo values.
type the type of value, either the probabilty in state pstate, the cumulative hazard
cumhaz or the expected sojourn time in the state sojourn.
collapse if the original survfit call had an id variable, return one residual per unique id
data.frame if TRUE, return the data in "long" form as a data.frame with id, state (or transi-
tion), curve, time, residual and pseudo as variables.
other arguments to the residuals.survfit function, which does the majority
of the work, e.g., weighted.
Details

This function computes pseudo values based on a first order Taylor series, also known as the "in-
finitesimal jackknife" (IJ) or "dfbeta" residuals. To be completely correct the results of this function
could perhaps be called ‘IJ pseudo values’ or even pseudo psuedo-values to distinguish them from
Andersen and Pohar-Perme. For moderate to large data, however, the result will be almost identical,
numerically, to the ordinary jackknife psuedovalues.

A primary advantage of this approach is computational speed. Two other features, neither good nor
bad, are that they will agree with robust standard errors of other survival package estimates, which
are based on the 1J, and that the mean of the estimates, over subjects, is exactly the underlying
survival estimate.

For the type variable, surv is an acceptable synonym for pstate, chaz for cumhaz, and rmst,rmts
and auc are equivalent to sojourn. All of these are case insensitive.

If the orginal survfit call produced multiple curves, the internal computations are done separately
for each curve. The result from this routine is the 1J (as computed by resid.survfit) scaled by n and
then recentered. If the the survfit call included an id option, n is the number of unique id values,
otherwise the number of rows in the data set. If the original survfit call used case weights, those
weights are part of the 1J residuals, but are not used to compute the rescaling factor n.

1J values are well defined for all variants of the Aalen-Johansen estimate; indeed, they are the basis
for standard errors of the result. However, understanding properties of the pseudovalues is still
evolving. Validity has been verified for the probability in state and sojourn times whenever all

100 pseudo

subjects start in the same state; this includes for instance the usual Kaplan-Meier and competing
risks cases. On the other hand, regression results based on pseudovalues from left-truncated data
will be biased (Parner); and pseudo-values for the cumulative hazard have not been widely explored.
When a given subject is spread across multiple (timel, time2) windows, e.g., a data set with a time-
dependent covariate, the 1J values from a simple survival (without TD variables) will sum to the
overall 1J for that subject; however, whether and how these partial pseudovalues can be directly
used in a model is still uncertain. As understanding evolves, treat this routine’s results as a reseach
tool, not production, for these more complex cases.

Value

A vector, matrix, or array. The first dimension is always the number of observations in the data
object, in the same order as the original data set (less any missing values that were removed when
creating the survfit object); the second dimension, if applicable, corresponds to fit$states, e.g.,
multi-state survival, and the last dimension to the selected time points. (If there are multiple rows
for a given id and collapse=TRUE, there is only one row per unique id.)

For the data.frame option, a data frame containing values for id, time, and pseudo. If the original
survfit call contained an id statement, then the values in the id column will be taken from that
variable. If the id statement has a simple form, e.g., id = patno, then the name of the id column
will be ‘patno’, otherwise it will be named ‘(id)’.

Note

The code will be slightly faster if the mode1=TRUE option is used in the survfit call. It may be
essential if the survfit/pseudo pair is used inside another function.

References

PK Andersen and M Pohar-Perme, Pseudo-observations in surivival analysis, Stat Methods Medical
Res, 2010; 19:71-99

ET Parner, PK Andersen and M Overgaard, Regression models for censored time-to-event data
using infinitesimal jack-knife pseudo-observations, with applications to left-truncation, Lifetime
Data Analysis, 2023, 29:654-671

See Also

residuals.survfit

Examples

fit1 <- survfit(Surv(time, status) ~ 1, data=lung)
yhat <- pseudo(fitl, times=c(365, 730))

dim(yhat)

1fit <- Im(yhat[,1] ~ ph.ecog + age + sex, data=lung)

Restricted Mean Time in State (RMST)

rms <- pseudo(fitl, times= 730, type='RMST') # 2 years

rfit <- Im(rms ~ ph.ecog + sex, data=lung)

rhat <- predict(rfit, newdata=expand.grid(ph.ecog=0:3, sex=1:2), se.fit=TRUE)
print it out nicely

pspline

101

templ <- cbind(matrix(rhat$fit, 4,2))

temp2 <- cbind(matrix(rhat$se.fit, 4, 2))

temp3 <- cbind(temp1[,1], temp2[,1], templ1[,2], temp2[,21)
dimnames(temp3) <- list(paste("ph.ecog"”, 0:3),

round(temp3, 1)

c("Male RMST", "(se)", "Female RMST", "(se)"))

compare this to the fully non-parametric estimate

fit2 <- survfit(Surv(time, status) ~ ph.ecog, data=lung)

print(fit2, rmean=730)

the estimate for ph.ecog=3 is very unstable (n=1), pseudovalues smooth it.

#

In all the above we should be using the robust variance, e.g., svyglm, but
a recommended package can't depend on external libraries.
See the vignette for a more complete exposition.

pspline

Smoothing splines using a pspline basis

Description

Specifies a penalised spline basis for the predictor. This is done by fitting a comparatively small
set of splines and penalising the integrated second derivative. Traditional smoothing splines use
one basis per observation, but several authors have pointed out that the final results of the fit are
indistinguishable for any number of basis functions greater than about 2-3 times the degrees of
freedom. FEilers and Marx point out that if the basis functions are evenly spaced, this leads to
significant computational simplification, they refer to the result as a p-spline.

Usage
pspline(x, df=4, theta, nterm=2.5 x df, degree=3, eps=0.1, method,
Boundary.knots=range(x), intercept=FALSE, penalty=TRUE, combine, ...)
psplineinverse(x)
Arguments
X for psline: a covariate vector. The function does not apply to factor variables.
For psplineinverse x will be the result of a pspline call.
df the desired degrees of freedom. One of the arguments df or theta’ must be
given, but not both. If df=0, then the AIC = (loglik -df) is used to choose an
"optimal" degrees of freedom. If AIC is chosen, then an optional argument
‘caic=T" can be used to specify the corrected AIC of Hurvich et. al.
theta roughness penalty for the fit. It is a monotone function of the degrees of freedom,
with theta=1 corresponding to a linear fit and theta=0 to an unconstrained fit of
nterm degrees of freedom.
nterm number of splines in the basis

102

degree
eps

method

Boundary.knots

intercept

penalty

combine

Value

pspline

degree of splines
accuracy for df

the method for choosing the tuning parameter theta. If theta is given, then
“fixed’ is assumed. If the degrees of freedom is given, then ’df’ is assumed. If
method="aic’ then the degrees of freedom is chosen automatically using Akaike’s
information criterion.

optional arguments to the control function

the spline is linear beyond the boundary knots. These default to the range of the
data.

if TRUE, the basis functions include the intercept.

if FALSE a large number of attributes having to do with penalized fits are ex-
cluded. This is useful to create a pspline basis matrix for other uses.

an optional vector of increasing integers. If two adjacent values of combine are
equal, then the corresponding coefficients of the fit are forced to be equal. This
is useful for monotone fits, see the vignette for more details.

Object of class pspline, coxph.penalty containing the spline basis, with the appropriate at-
tributes to be recognized as a penalized term by the coxph or survreg functions.

For psplineinverse the original x vector is reconstructed.

References

Eilers, Paul H. and Marx, Brian D. (1996). Flexible smoothing with B-splines and penalties. Sta-
tistical Science, 11, 89-121.

Hurvich, C.M. and Simonoff, J.S. and Tsai, Chih-Ling (1998). Smoothing parameter selection
in nonparametric regression using an improved Akaike information criterion, JRSSB, volume 60,

271-293.

See Also

coxph,survreg,ridge, frailty

Examples

1fit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung)
plot(lung$age, predict(1lfit6), xlab='Age', ylab="Spline prediction”)
title("Cancer Data")

fit@ <- coxph(Surv(time, status) ~ ph.ecog + age, lung)

fitl <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung)
fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung)

fito
fitl
fit3

pyears

103

pyears

Person Years

Description

This function computes the person-years of follow-up time contributed by a cohort of subjects,
stratified into subgroups. It also computes the number of subjects who contribute to each cell of the
output table, and optionally the number of events and/or expected number of events in each cell.

Usage

pyears(formula, data, weights, subset, na.action, rmap,
ratetable, scale=365.25, expect=c('event', 'pyears'),
model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE)

Arguments

formula

data

weights

subset

na.action

rmap

ratetable

scale

expect

data.frame

model, x, y

a formula object. The response variable will be a vector of follow-up times
for each subject, or a Surv object containing the survival time and an event
indicator. The predictors consist of optional grouping variables separated by +
operators (exactly as in survfit), time-dependent grouping variables such as
age (specified with tcut), and optionally a ratetable term. This latter matches
each subject to his/her expected cohort.

a data frame in which to interpret the variables named in the formula, or in the
subset and the weights argument.

case weights.

expression saying that only a subset of the rows of the data should be used in the
fit.

a missing-data filter function, applied to the model.frame, after any subset ar-
gument has been used. Default is options()$na.action.

an optional list that maps data set names to the ratetable names. See the details
section below.

a table of event rates, such as survexp.uswhite.

a scaling for the results. As most rate tables are in units/day, the default value of
365.25 causes the output to be reported in years.

should the output table include the expected number of events, or the expected
number of person-years of observation. This is only valid with a rate table.

return a data frame rather than a set of arrays.

If any of these is true, then the model frame, the model matrix, and/or the vector
of response times will be returned as components of the final result.

104 pyears

Details

Because pyears may have several time variables, it is necessary that all of them be in the same
units. For instance, in the call

py <- pyears(futime ~ rx, rmap=list(age=age, sex=sex, year=entry.dt),
ratetable=survexp.us)

the natural unit of the ratetable is hazard per day, it is important that futime, age and entry.dt all
be in days. Given the wide range of possible inputs, it is difficult for the routine to do sanity checks
of this aspect.

The ratetable being used may have different variable names than the user’s data set, this is dealt
with by the rmap argument. The rate table for the above calculation was survexp.us, a call to
summary{survexp.us} reveals that it expects to have variables age = age in days, sex, and year =
the date of study entry, we create them in the rmap line. The sex variable is not mapped, therefore
the code assumes that it exists in mydata in the correct format. (Note: for factors such as sex, the
program will match on any unique abbreviation, ignoring case.)

A special function tcut is needed to specify time-dependent cutpoints. For instance, assume that
age is in years, and that the desired final arrays have as one of their margins the age groups O-
2, 2-10, 10-25, and 25+. A subject who enters the study at age 4 and remains under observa-
tion for 10 years will contribute follow-up time to both the 2-10 and 10-25 subsets. If cut(age,
c(0,2,10,25,100)) were used in the formula, the subject would be classified according to his
starting age only. The tcut function has the same arguments as cut, but produces a different output
object which allows the pyears function to correctly track the subject.

The results of pyears are normally used as input to further calculations. The print routine, there-
fore, is designed to give only a summary of the table.

Value

a list with components:

pyears an array containing the person-years of exposure. (Or other units, depending
on the rate table and the scale). The dimension and dimnames of the array
correspond to the variables on the right hand side of the model equation.

n an array containing the number of subjects who contribute time to each cell of
the pyears array.

event an array containing the observed number of events. This will be present only if
the response variable is a Surv object.

expected an array containing the expected number of events (or person years if expect
="pyears"). This will be present only if there was a ratetable term.

data if the data. frame option was set, a data frame containing the variables n, event,
pyears and event that supplants the four arrays listed above, along with vari-
ables corresponding to each dimension. There will be one row for each cell in
the arrays.

offtable the number of person-years of exposure in the cohort that was not part of any
cell in the pyears array. This is often useful as an error check; if there is a
mismatch of units between two variables, nearly all the person years may be off
table.

pyears 105

tcut whether the call included any time-dependent cutpoints.
summary a summary of the rate-table matching. This is also useful as an error check.
call an image of the call to the function.

observations the number of observations in the input data set, after any missings were re-
moved.

na.action the na. action attribute contributed by an na.action routine, if any.

See Also

ratetable, survexp, Surv.

Examples

Look at progression rates jointly by calendar date and age
#
temp.yr <- tcut(mgus$dxyr, 55:92, labels=as.character(55:91))
temp.age <- tcut(mgus$age, 34:101, labels=as.character(34:100))
ptime <- ifelse(is.na(mgus$pctime), mgus$futime, mgus$pctime)
pstat <- ifelse(is.na(mgus$pctime), 0, 1)
pfit <- pyears(Surv(ptime/365.25, pstat) ~ temp.yr + temp.age + sex, mgus,
data.frame=TRUE)
Turn the factor back into numerics for regression
tdata <- pfit$data
tdata$age <- as.numeric(as.character(tdata$temp.age))
tdata$year<- as.numeric(as.character(tdata$temp.yr))
fit1l <- glm(event ~ year + age+ sex +offset(log(pyears)),
data=tdata, family=poisson)
Not run:
fit a gam model
gfit.m <- gam(y ~ s(age) + s(year) + offset(log(time)),
family = poisson, data = tdata)

End(Not run)

Example #2 Create the hearta data frame:
hearta <- by(heart, heart$id,
function(x)x[x$stop == max(x$stop),])

hearta <- do.call("rbind”, hearta)

Produce pyears table of death rates on the surgical arm

The first is by age at randomization, the second by current age

fitl <- pyears(Surv(stop/365.25, event) ~ cut(age + 48, c(0,50,60,70,100)) +
surgery, data = hearta, scale = 1)

fit2 <- pyears(Surv(stop/365.25, event) ~ tcut(age + 48, c(0,50,60,70,100)) +
surgery, data = hearta, scale = 1)

fit1$event/fit1$pyears #death rates on the surgery and non-surg arm

fit2$event/fit2$pyears #death rates on the surgery and non-surg arm

106 quantile.survfit

quantile.survfit Quantiles from a survfit object

Description

Retrieve quantiles and confidence intervals for them from a survfit or Surv object.

Usage

S3 method for class 'survfit'

quantile(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE,
scale, tolerance= sqrt(.Machine$double.eps), ...)

S3 method for class 'survfitms'

quantile(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE,

scale, tolerance= sqgrt(.Machine$double.eps), ...)
S3 method for class 'survfit'
median(x, ...)
Arguments
X a result of the survfit function
probs numeric vector of probabilities with values in [0,1]
conf.int should lower and upper confidence limits be returned?
scale optional scale factor, e.g., scale=365.25 would return results in years if the fit

object were in days.
tolerance tolerance for checking that the survival curve exactly equals one of the quantiles

optional arguments for other methods

Details

The kth quantile for a survival curve S(t) is the location at which a horizontal line at height p=
1-k intersects the plot of S(t). Since S(t) is a step function, it is possible for the curve to have a
horizontal segment at exactly 1-k, in which case the midpoint of the horizontal segment is returned.
This mirrors the standard behavior of the median when data is uncensored. If the survival curve
does not fall to 1-k, then that quantile is undefined.

In order to be consistent with other quantile functions, the argument prob of this function applies
to the cumulative distribution function F(t) = 1-S(t).

Confidence limits for the values are based on the intersection of the horizontal line at 1-k with the
upper and lower limits for the survival curve. Hence confidence limits use the same p-value as
was in effect when the curve was created, and will differ depending on the conf. type option of
survfit. If the survival curves have no confidence bands, confidence limits for the quantiles are
not available.

When a horizontal segment of the survival curve exactly matches one of the requested quantiles the
returned value will be the midpoint of the horizontal segment; this agrees with the usual definition
of a median for uncensored data. Since the survival curve is computed as a series of products,

ratetable 107

however, there may be round off error. Assume for instance a sample of size 20 with no tied times
and no censoring. The survival curve after the 10th death is (19/20)(18/19)(17/18) ... (10/11) =
10/20, but the computed result will not be exactly 0.5. Any horizontal segment whose absolute
difference with a requested percentile is less than tolerance is considered to be an exact match.

Value

The quantiles will be a vector if the survfit object contains only a single curve, otherwise it will
be a matrix or array. In this case the last dimension will index the quantiles.

If confidence limits are requested, then result will be a list with components quantile, lower, and
upper, otherwise it is the vector or matrix of quantiles.

Author(s)

Terry Therneau

See Also

survfit, print.survfit, qsurvreg

Examples

fit <- survfit(Surv(time, status) ~ ph.ecog, data=lung)
quantile(fit)

cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), data=lung)
csurv<- survfit(cfit, newdata=data.frame(age=c(40, 60, 80)),

conf.type ="none")
temp <- quantile(csurv, 1:5/10)
temp[2,3,] # quantiles for second level of ph.ecog, age=80
quantile(csurv[2,3], 1:5/10) # quantiles of a single curve, same result

ratetable Allow ratetable() terms in a model

Description

This function supports ratetable() terms in a model statement, within survexp and pyears.

Usage

ratetable(...)

Arguments

the named dimensions of a rate table

108 ratetableDate

Details

This way of mapping a rate table’s variable names to a user data frame has been superseded, instead
use the rmap argument of the survexp, pyears, or survdiff routines. The function remains only to
allow older code to be run.

Author(s)

Terry Therneau

ratetableDate Convert date objects to ratetable form

Description

This method converts dates from various forms into the internal form used in ratetable objects.

Usage
ratetableDate(x)
Arguments
X a date. The function currently has methods for Date, date, POSIXt, timeDate,
and chron objects.
Details

This function is useful for those who create new ratetables, but is normally invisible to users. It
is used internally by the survexp and pyears functions to map the various date formats; if a new
method is added then those routines will automatically be adapted to the new date type.

Value

a numeric vector, the number of days since 1/1/1960.

Author(s)

Terry Therneau

See Also

pyears, survexp

ratetables 109

ratetables Census Data Sets for the Expected Survival and Person Years Func-
tions

Description

Census data sets for the expected survival and person years functions.

Usage

data(survexp, package="survival")

Details

survexp.us total United States population, by age and sex, 1940 to 2012.

survexp.usr United States population, by age, sex and race, 1940 to 2014. Race is white or black.
For 1960 and 1970 the black population values were not reported separately, so the nonwhite
values were used. (Over the years, the reported tables have differed wrt reporting non-white
and/or black.)

survexp.mn total Minnesota population, by age and sex, 1970 to 2013.

Each of these tables contains the daily hazard rate for a matched subject from the population, defined
as —log(1 — ¢)/365.25 where ¢ is the 1 year probability of death as reported in the original tables
from the US Census. For age 25 in 1970, for instance, p = 1 — ¢ is is the probability that a subject
who becomes 25 years of age in 1970 will achieve his/her 26th birthday. The tables are recast in
terms of hazard per day for computational convenience.

Each table is stored as an array, with additional attributes, and can be subset and manipulated as
standard R arrays. See the help page for ratetable for details.

All numeric dimensions of a rate table must be in the same units. The survexp.us rate table
contains daily hazard rates, the age cutpoints are in days, and the calendar year cutpoints are a Date.

See Also

ratetable, survexp, pyears

Examples

survexp.uswhite <- survexp.usr[,,"white"”,]

110 rats

rats Rat treatment data from Mantel et al

Description

Rat treatment data from Mantel et al. Three rats were chosen from each of 100 litters, one of which
was treated with a drug, and then all followed for tumor incidence.

Usage

rats
data(cancer, package="survival")

Format
litter: litter number from 1 to 100
Irx: treatment,(1=drug, O=control)
time: time to tumor or last follow-up
status: event status, 1=tumor and O=censored
sex: male or female
Note

Since only 2/150 of the male rats have a tumor, most analyses use only females (odd numbered
litters), e.g. Lee et al.

Source

N. Mantel, N. R. Bohidar and J. L. Ciminera. Mantel-Haenszel analyses of litter-matched time to
response data, with modifications for recovery of interlitter information. Cancer Research, 37:3863-
3868, 1977.

References

E. W. Lee, L. J. Wei, and D. Amato, Cox-type regression analysis for large number of small groups
of correlated failure time observations, in "Survival Analysis, State of the Art", Kluwer, 1992.

rats2 111

rats2 Rat data from Gail et al.

Description

48 rats were injected with a carcinogen, and then randomized to either drug or placebo. The number
of tumors ranges from 0 to 13; all rats were censored at 6 months after randomization.

Usage

rats2
data(cancer, package="survival")

Format

rat: id

trt: treatment,(1=drug, O=control)

observation: within rat

start: entry time

stop: exit time

status: event status, 1=tumor, O=censored
Source

MH Gail, TJ Santner, and CC Brown (1980), An analysis of comparative carcinogenesis experi-
ments based on multiple times to tumor. Biometrics 36, 255-266.

reliability Reliability data sets

Description

A set of data for simple reliablility analyses, taken from the book by Meeker and Escobar.

Usage

data(reliability, package="survival")

112

Details

reliability

* braking: Locomotive age at the time of replacement of braking grids, 1-4 replacements for

each locomotive. The grids are part of two manufacturing batches.

capacitor: Data from a factorial experiment on the life of glass capacitors as a function of
voltage and operating temperature. There were 8 capacitors at each combination of tempera-
ture and voltage. Testing at each combination was terminated after the fourth failure.

temperature: temperature in degrees celcius

voltage: applied voltage
time: time to failure

status: 1=failed, O=censored

cracks: Data on the time until the development of cracks in a set of 167 identical turbine
parts. The parts were inspected at 8 selected times.

— day: time of inspection

— fail: number of fans found to have cracks, at this inspection
Data set genfan: Time to failure of 70 diesel engine fans.

— hours: hours of service

— status: 1=failure, O=censored
Data set ifluid: A data frame with two variables describing the time to electrical breakdown
of an insulating fluid.

— time: hours to breakdown

— voltage: test voltage in kV

Data set imotor: Breakdown of motor insulation as a function of temperature.

— temp: temperature of the test

— time: time to failure or censoring

— status: O=censored, 1=failed
Data set turbine: Each of 432 turbine wheels was inspected once to determine whether a
crack had developed in the wheel or not.

— hours: time of inspection (100s of hours)

— inspected: number that were inspected

— failed: number that failed
Data set valveSeat: Time to replacement of valve seats for 41 diesel engines. More than one
seat may be replaced at a particular service, leading to duplicate times in the data set. The
final inspection time for each engine will have status=0.

— id: engine identifier

— time: time of the inspection, in days

— status: 1=replacement occured, O= not

References

Meeker and Escobar, Statistical Methods for Reliability Data, 1998.

residuals.coxph 113

Examples

survreg(Surv(time, status) ~ temperature + voltage, capacitor)

Figure 16.7 of Meeker, cumulative replacement of locomotive braking

grids

gfit <- survfit(Surv(dayl, day2, status) ~ batch, braking, id= locomotive)

plot(gfit, cumhaz=TRUE, col=1:2, xscale=30.5, conf.time= c(6,12,18)%30.5,
xlab="Locomotive Age in Months", ylab="Mean cumulative number replacements"”)

Replacement of valve seats. In this case the cumulative hazard is the

natural target, an estimate of the number of replacements by a given time
(known as the cumulative mean function = CMF in relability).

When two valve seats failed at the same inspection, we need to jitter one
of the times, to avoid a (timel, time2) interval of length 0

ties <- which(with(valveSeat, diff(id)==0 & diff(time)==0)) #first of a tie
temp <- valveSeat$time

temp[ties] <- temp[ties] - .1 # jittered time

vdata <- valveSeat

vdata$timel <- ifelse(!duplicated(vdata$id), @, c(@, temp[-length(temp)l))
vdata$time2 <- temp

fit2 <- survfit(Surv(timel, time2, status) ~1, vdata, id=id)

Not run:
plot(fit2, cumhaz= TRUE, xscale= 365.25,
xlab="Years in service", ylab = "Expected number of repairs")

End(Not run)

residuals.coxph Calculate Residuals for a ‘coxph’ Fit

Description

Calculates martingale, deviance, score or Schoenfeld residuals for a Cox proportional hazards

model.
Usage

S3 method for class 'coxph'

residuals(object,
type=c("martingale”, "deviance"”, "score"”, "schoenfeld”,
"dfbeta”, "dfbetas”, "scaledsch”,"partial”),
collapse=FALSE, weighted= (type %in% c("dfbeta”, "dfbetas")), ...)

S3 method for class 'coxphms'

residuals(object,
type=c("martingale”, "score”, "schoenfeld”,
"dfbeta”, "dfbetas”, "scaledsch"”),
collapse=FALSE, weighted= FALSE, ...)

S3 method for class 'coxph.null'

114 residuals.coxph

residuals(object,
type=c("martingale”, "deviance”,"score"”,"schoenfeld”),
collapse=FALSE, weighted= FALSE, ...)
Arguments
object an object inheriting from class coxph, representing a fitted Cox regression model.

Typically this is the output from the coxph function.

type character string indicating the type of residual desired. Possible values are
"martingale”, "deviance”, "score”, "schoenfeld”, "dfbeta"’, "dfbetas”,
"scaledsch” and "partial”. Only enough of the string to determine a unique
match is required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,
2, 3,3, 4,4,4,4) could be used to obtain per subject rather than per observa-
tion residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

other unused arguments

Value

For martingale and deviance residuals, the returned object is a vector with one element for each
subject (without collapse). For score residuals it is a matrix with one row per subject and one
column per variable. The row order will match the input data for the original fit. For Schoenfeld
residuals, the returned object is a matrix with one row for each event and one column per variable.
The rows are ordered by time within strata, and an attribute strata is attached that contains the
number of observations in each strata. The scaled Schoenfeld residuals are used in the cox.zph
function.

The score residuals are each individual’s contribution to the score vector. Two transformations
of this are often more useful: dfbeta is the approximate change in the coefficient vector if that
observation were dropped, and dfbetas is the approximate change in the coefficients, scaled by the
standard error for the coefficients.

NOTE
For deviance residuals, the status variable may need to be reconstructed. For score and Schoenfeld
residuals, the X matrix will need to be reconstructed.

References
T. Therneau, P. Grambsch, and T. Fleming. "Martingale based residuals for survival models",
Biometrika, March 1990.

See Also

coxph

residuals.survfit 115

Examples

fit <- coxph(Surv(start, stop, event) ~ (age + surgery)* transplant,
data=heart)
mresid <- resid(fit, collapse=heart$id)

residuals.survfit 1J residuals from a survfit object.

Description

Return infinitesimal jackknife residuals from a survfit object, for the survival, camulative hazard,
or restricted mean time in state (RMTS).

Usage

S3 method for class 'survfit'
residuals(object, times,
type="pstate”, collapse=FALSE, weighted= collapse, data.frame=FALSE,

extra = FALSE, ...)
Arguments
object a survfit object
times a vector of times at which the residuals are desired
type the type of residual, see below
collapse add the residuals for all subjects in a cluster
weighted weight the residuals by each observation’s weight
data.frame if FALSE return a matrix or array
extra return extra information when data.frame=FALSE. (This is used internally by

the psuedo function.)

arguments for other methods

Details

This function is designed to efficiently compute the per-observation residuals for a Kaplan-Meier
or Aalen-Johansen curve, also known as infinitesimal jackknife (IJ) values, at a small number of
time points. Common usages are the creation of psuedo-values (via the pseudo function) and 1J
estimates of variance. The residuals matrix has a value for each observation and time point pair.
For a multi-state model the state will be a third dimension.

The residuals are the impact of each observation or cluster on the resulting probability in state
curves at the given time points, the cumulative hazard curve at those time points, or the expected
sojourn time in each state up to the given time points. For a simple Kaplan-Meier the survfit
object contains only the probability in the "initial" state, i.e., the survival fraction. In this case the
sojourn time, the expected amount of time spent in the initial state, up to the specified endpoint, is
commonly known as the restricted mean survival time (RMST). For a multistate model this same

116 residuals.survreg

quantity is more often referred to as the restricted mean time in state (RMTS). It can be computed
as the area under the respective probability in state curve.

The program allows any of pstate, surv, cumhaz, chaz, sojourn, rmst, rmts or auc for the type
argument, ignoring upper/lowercase, so users can choose whichever abbreviation they like best.

When collapse=TRUE the result has the cluster identifier (which defaults to the id variable) as the
dimname for the first dimension. If the fit object contains more than one curve, and the same
identifier is reused in two different curves this approach does not work and the routine will stop
with an error. In principle this is not necessary, e.g., the result could contain two rows with the
same label, showing the separate effect on each curve, but this was deemed too confusing.

Value

A matrix or array with one row per observation or cluster, and one column for each value in times.
For a multi-state model the three dimensions are observation, state, and time. For cumulative hazard,
the second dimension is the set of transitions. (A competing risks model for instance has 3 states
and 2 transitions.)

Note

The first column of the data frame identifies the origin of the row. If there was an id variable
in the survfit call it will contain the values of that variable and be labeled with the variable
name, or "(id)" if there was an expression rather than a name. (For example, survfit(.... id=
abc$def[z])). If there was no id variable the label will be "(row)", and the column will contain
the row number of the survfit data. For a matrix result the first component of dimnames has similar
structure.

See Also

survfit, survfit.formula

Examples

fit <- survfit(Surv(time, status) ~ x, aml)
resid(fit, times=c(24, 48), type="RMTS")

residuals.survreg Compute Residuals for ‘survreg’ Objects

Description

This is a method for the function residuals for objects inheriting from class survreg.

Usage

S3 method for class 'survreg'
residuals(object, type=c("response”, "deviance”,"dfbeta”,"dfbetas”,

"working"”,"ldcase","ldresp”,"ldshape”, "matrix”), rsigma=TRUE,
collapse=FALSE, weighted=FALSE, ...)

residuals.survreg 117

Arguments
object an object inheriting from class survreg.
type type of residuals, with choices of "response”, "deviance”, "dfbeta”, "dfbetas”,
"working"”, "ldcase"”, "1sresp”, "ldshape”, and "matrix”.
rsigma include the scale parameters in the variance matrix, when doing computations.
(I can think of no good reason not to).
collapse optional vector of subject groups. If given, this must be of the same length as
the residuals, and causes the result to be per group residuals.
weighted give weighted residuals? Normally residuals are unweighted.
other unused arguments
Value

A vector or matrix of residuals is returned. Response residuals are on the scale of the original
data, working residuals are on the scale of the linear predictor, and deviance residuals are on log-
likelihood scale. The dfbeta residuals are a matrix, where the ith row gives the approximate change
in the coefficients due to the addition of subject i. The dfbetas matrix contains the dfbeta residuals,
with each column scaled by the standard deviation of that coefficient.

The matrix type produces a matrix based on derivatives of the log-likelihood function. Let L be the
log-likelihood, p be the linear predictor X 3, and s be log(c). Then the 6 columns of the matrix
are L, dL/dp,0*L/0p?, dL/ds, 0*L/ds* and 8> L/9pds. Diagnostics based on these quantities
are discussed in the book and article by Escobar and Meeker. The main ones are the likelihood
displacement residuals for perturbation of a case weight (1ldcase), the response value (1dresp),
and the shape.

For a transformed distribution such as the log-normal or Weibull, matrix residuals are based on
the log-likelihood of the transformed data log(y). For a monotone function f the density of f(X) is
the density of X divided by the derivative of f (the Jacobian), so subtract log(derivative) from each
uncensored observation’s loglik value in order to match the loglik component of the result. The
other colums of the matrix residual are unchanged by the transformation.

References

Escobar, L. A. and Meeker, W. Q. (1992). Assessing influence in regression analysis with censored
data. Biometrics 48, 507-528.

Escobar, L. A. and Meeker, W. Q. (1998). Statistical Methods for Reliablilty Data. Wiley.

See Also

predict.survreg

Examples

fit <- survreg(Surv(futime, death) ~ age + sex, mgus2)
summary(fit) # age and sex are both important

rr <- residuals(fit, type='matrix')
sum(rr[,1]1) - with(mgus2, sum(log(futime[death==1]))) # loglik

118 retinopathy

plot(mgus2$age, rr[,2], col= (1+mgus2$death)) # ldresp

retinopathy Diabetic Retinopathy

Description

A trial of laser coagulation as a treatment to delay diabetic retinopathy.

Usage

retinopathy
data(retinopathy, package="survival")

Format
A data frame with 394 observations on the following 9 variables.

id numeric subject id

laser type of laser used: xenon argon

eye which eye was treated: right left

age age at diagnosis of diabetes

type type of diabetes: juvenile adult, (diagnosis before age 20)
trt 0= control eye, 1 = treated eye

futime time to loss of vision or last follow-up

status 0= censored, 1 = loss of vision in this eye

risk arisk score for the eye. This high risk subset is defined as a score of 6 or greater in at least
one eye.

Details

The 197 patients in this dataset were a 50% random sample of the patients with "high-risk" dia-
betic retinopathy as defined by the Diabetic Retinopathy Study (DRS). Each patient had one eye
randomized to laser treatment and the other eye received no treatment, and has two observations in
the data set. For each eye, the event of interest was the time from initiation of treatment to the time
when visual acuity dropped below 5/200 two visits in a row. Thus there is a built-in lag time of
approximately 6 months (visits were every 3 months). Survival times in this dataset are the actual
time to vision loss in months, minus the minimum possible time to event (6.5 months). Censoring
was caused by death, dropout, or end of the study.

References

W. J. Huster, R. Brookmeyer and S. G. Self (1989). Modelling paired survival data with covariates,
Biometrics 45:145-156.

A. L. Blair, D. R. Hadden, J. A. Weaver, D. B. Archer, P. B. Johnston and C. J. Maguire (1976).
The 5-year prognosis for vision in diabetes, American Journal of Ophthalmology, 81:383-396.

rhDNase 119

Examples

coxph(Surv(futime, status) ~ type + trt, cluster= id, retinopathy)

rhDNase rhDNASE data set

Description

Results of a randomized trial of rhDNase for the treatment of cystic fibrosis.

Usage

rhDNase
data(rhDNase, package="survival")

Format
A data frame with 767 observations on the following 8 variables.

id subjectid

inst enrolling institution

trt treatment arm: O=placebo, 1= rhDNase

entry.dt date of entry into the study

end.dt date of last follow-up

fev forced expriatory volume at enrollment, a measure of lung capacity
ivstart days from enrollment to the start of IV antibiotics

ivstop days from enrollment to the cessation of IV antibiotics

Details

In patients with cystic fibrosis, extracellular DNA is released by leukocytes that accumulate in the
airways in response to chronic bacterial infection. This excess DNA thickens the mucus, which then
cannot be cleared from the lung by the cilia. The accumulation leads to exacerbations of respiratory
symptoms and progressive deterioration of lung function. At the time of this study more than 90%
of cystic fibrosis patients eventually died of lung disease.

Deoxyribonuclease I (DNase I) is a human enzyme normally present in the mucus of human lungs
that digests extracellular DNA. Genentech, Inc. cloned a highly purified recombinant DNase I (rthD-
Nase or Pulmozyme) which when delivered to the lungs in an aerosolized form cuts extracellular
DNA, reducing the viscoelasticity of airway secretions and improving clearance. In 1992 the com-
pany conducted a randomized double-blind trial comparing rhDNase to placebo. Patients were then
monitored for pulmonary exacerbations, along with measures of lung volume and flow. The primary
endpoint was the time until first pulmonary exacerbation; however, data on all exacerbations were
collected for 169 days.

The definition of an exacerbation was an infection that required the use of intravenous (I'V) antibi-
otics. Subjects had 0-5 such episodes during the trial, those with more than one have multiple rows

120 ridge

in the data set, those with none have NA for the IV start and end times. A few subjects were infected
at the time of enrollment, subject 173 for instance has a first infection interval of -21 to 7. We do
not count this first infection as an "event", and the subject first enters the risk set at day 7. Subjects
who have an event are not considered to be at risk for another event during the course of antibiotics,
nor for an additional 6 days after they end. (If the symptoms reappear immediately after cessation
then from a medical standpoint this would not be a new infection.)

This data set reproduces the data in Therneau and Grambsch, it does not exactly reproduce those in
Therneau and Hamilton due to data set updates.

References

T. M. Therneau and P. M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer,
2000.

T. M. Therneau and S.A. Hamilton, rhDNase as an example of recurrent event analysis, Statistics
in Medicine, 16:2029-2047, 1997.

Examples

Build the start-stop data set for analysis, and

replicate line 2 of table 8.13 in the book

first <- subset(rhDNase, !duplicated(id)) #first row for each subject
dnase <- tmerge(first, first, id=id, tstop=as.numeric(end.dt -entry.dt))

Subjects whose fu ended during the 6 day window are the reason for
this next line
temp.end <- with(rhDNase, pmin(ivstop+6, end.dt-entry.dt))
dnase <- tmerge(dnase, rhDNase, id=id,

infect=event(ivstart),

end= event(temp.end))
toss out the non-at-risk intervals, and extra variables
3 subjects had an event on their last day of fu, infect=1 and end=1
dnase <- subset(dnase, (infect==1 | end==0), c(id:trt, fev:infect))
agfit <- coxph(Surv(tstart, tstop, infect) ~ trt + fev, cluster=id,

data=dnase)

ridge Ridge regression

Description

When used in a coxph or survreg model formula, specifies a ridge regression term. The likelihood
is penalised by theta/2 time the sum of squared coefficients. If scale=T the penalty is calculated
for coefficients based on rescaling the predictors to have unit variance. If df is specified then theta
is chosen based on an approximate degrees of freedom.

Usage

ridge(..., theta, df=nvar/2, eps=0.1, scale=TRUE)

ridge 121

Arguments
predictors to be ridged
theta penalty is theta/2 time sum of squared coefficients
df Approximate degrees of freedom
eps Accuracy required for df
scale Scale variables before applying penalty?
Value

An object of class coxph.penalty containing the data and control functions.

Note

If the expression ridge(x1, x2, x3, ...) is too many characters long then the internal terms()
function will add newlines to the variable name and then the coxph routine simply gets lost. (Some
labels will have the newline and some won’t.) One solution is to bundle all of the variables into a
single matrix and use that matrix as the argument to ridge so as to shorten the call, e.g. mdata$many
<- as.matrix(mydatal,5:53]).

References

Gray (1992) "Flexible methods of analysing survival data using splines, with applications to breast
cancer prognosis" JASA 87:942-951

See Also

coxph,survreg,pspline,frailty

Examples

coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=1),
ovarian)

1fit@ <- survreg(Surv(time, status) ~1, lung)

1fit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung)
1fit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung)
1fit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung)

122 rotterdam

rotterdam Breast cancer data set used in Royston and Altman (2013)

Description

The rotterdam data set includes 2982 primary breast cancers patients whose records were included
in the Rotterdam tumor bank.

Usage

rotterdam
data(cancer, package="survival")

Format
A data frame with 2982 observations on the following 15 variables.

pid patient identifier

year year of surgery

age age at surgery

meno menopausal status (0= premenopausal, 1= postmenopausal)
size tumor size, a factor with levels <=20 20-50 >50
grade differentiation grade

nodes number of positive lymph nodes

pgr progesterone receptors (fmol/l)

er estrogen receptors (fmol/1)

hormon hormonal treatment (0O=no, 1=yes)

chemo chemotherapy

rtime days to relapse or last follow-up

recur O=no relapse, 1= relapse

dtime days to death or last follow-up

death 0= alive, 1=dead

Details

These data sets are used in the paper by Royston and Altman that is referenced below. The Rotter-
dam data is used to create a fitted model, and the GBSG data for validation of the model. The paper
gives references for the data source.

There are 43 subjects who have died without recurrence, but whose death time is greater than the
censoring time for recurrence. A common way that this happens is that a death date is updated in
the health record sometime after the research study ended, and said value is then picked up when a
study data set is created. Vital status information can come from many sources: a patient visit for
another condition, correspondence, financial transactions, or social media. But this raises serious

royston 123

questions about censoring. For instance subject 40 is censored for recurrence at 4.2 years and died
at 6.6 years; when creating the endpoint of recurrence free survival (earlier of recurrence or death),
treating them as a death at 6.6 years implicitly assumes that they were recurrence free just before
death. For this to be true we would have to assume that if they had progressed in the 2.4 year
interval before death (while off study), that this information would also have been noted in their
general medical record, and would also be captured in the study data set. However, that may be
unlikely. Death information is often in a centralized location in electronic health records, easily
accessed by a programmer and merged with the study data, while recurrence may require manual
review. How best to address this is an open issue.

References

Patrick Royston and Douglas Altman, External validation of a Cox prognostic model: principles
and methods. BMC Medical Research Methodology 2013, 13:33

See Also

gbsg

Examples

liberal definition of rfs (count later deaths)

rfs <- pmax(rotterdam$recur, rotterdam$death)

rfstime <- with(rotterdam, ifelse(recur==1, rtime, dtime))

fit1 <- coxph(Surv(rfstime, rfs) ~ pspline(age) + meno + size +
pspline(nodes) + er, data = rotterdam)

conservative (no deaths after last fu for recurrence)

ignore <- with(rotterdam, recur ==0 & death==1 & rtime < dtime)

table(ignore)

rfs2 <- with(rotterdam, ifelse(recur==1 | ignore, recur, death))

rfstime2 <- with(rotterdam, ifelse(recur==1 | ignore, rtime, dtime))

fit2 <- coxph(Surv(rfstime2, rfs2) ~ pspline(age) + meno + size +
pspline(nodes) + er, data = rotterdam)

Note: Both age and nodes show non-linear effects.
Royston and Altman used fractional polynomials for the nonlinear terms

royston Compute Royston’s D for a Cox model

Description
Compute the D statistic proposed by Royston and Sauerbrei along with several synthetic R square
values.

Usage
royston(fit, newdata, ties = TRUE, adjust = FALSE)

124 royston

Arguments
fit a coxph fit
newdata optional validation data set
ties make a correction for ties in the risk score
adjust adjust for possible overfitting
Details

We refer to these estimates of association as synthetic values, since they involve only the linear
predictor, and not the outcome. They exploit mathematical associations which hold for certain
models, e.g. between R-squared and a certain chiquare test of association in the linear model, and
assume that the same holds in a Cox model where said test is readily available but not a simple
R-square computation.

R.D is the value that corresponsds the Royston and Sauerbrei D statistic. R.KO is the value proposed
by Kent and O’Quigley, R.N is the value proposed by Nagelkerke, and C.GH corresponds to Goen
and Heller’s concordance measure.

An adjustment for D is based on the ratio r= (number of events)/(number of coefficients). For
models which have sufficient sample size (r>20) the adjustment will be small.

The Nagelkerke value is the Cox-Snell R-squared divided by a scaling constant. The two separate
values are present in the result of summary.coxph as a 2 element vector rsq, and were listed as
"Rsquare" and "max possible" in older versions of the print routine. (Since superseded in the default
printout by the concordance.) The Nagelkerke estimate is not returned when newdata is present.

Value

a vector containing the value of D, the estimated standard error of D, and three or four synthetic
values.

References

M. Goen and G. Heller, Concordance probability and discriminatory power in proportional hazards
regression. Biometrika 92:965-970, 2005.

N. Nagelkerke, J. Oosting, J. and A. Hart, A simple test for goodness of fit of Cox’s proportional
hazards model. Biometrics 40:483-486, 1984.

P. Royston and W. Sauerbrei, A new measure of prognostic separation in survival data. Statistics in
Medicine 23:723-748, 2004.

Examples

An example used in Royston and Sauerbrei

pbc2 <- na.omit(pbc) # no missing values

cfit <- coxph(Surv(time, status==2) ~ age + log(bili) + edema + albumin +
stage + copper, data=pbc2, ties="breslow")

royston(cfit)

rttright

125

rttright

Compute redistribute-to-the-right weights

Description

For many survival estimands, one approach is to redistribute each censored observation’s weight
to those other observations with a longer survival time (think of distributing an estate to the heirs).
Then compute on the remaining, uncensored data.

Usage

rttright(formula, data, weights, subset, na.action, times, id, timefix = TRUE,

Arguments

formula

data

weights

subset

na.action

times

id

timefix

renorm

Details

renorm= TRUE)

a formula object, which must have a Surv object as the response on the left of
the ~ operator and, if desired, terms separated by + operators on the right. Each
unique combination of predictors will define a separate strata.

a data frame in which to interpret the variables named in the formula, subset
and weights arguments.

The weights must be nonnegative and it is strongly recommended that they
be strictly positive, since zero weights are ambiguous, compared to use of the
subset argument.

expression saying that only a subset of the rows of the data should be used in the
fit.

a missing-data filter function, applied to the model frame, after any subset ar-
gument has been used. Default is options()$na.action.

a vector of time points, for which to return updated weights. If missing, a time
after the largest time in the data is assumed.

optional: if the data set has multiple rows per subject, a a variable containing
the subect identifier of each row.

correct for possible round-off error

the resulting weights sum to 1 within each group

The formula argument is treated exactly the same as in the survfit function.

Redistribution is recursive: redistribute the weight of the first censored observation to all those with
longer time, which may include other censored observations. Then redistribute the next smallest
and etc. up to the specified time value. After re-distributing the weight for a censored observation
to other observations that are not censored, ordinary non-censored methods can often be applied.
For example, redistribution of the weights, followed by computation of the weighted cumulative
distribution function, reprises the Kaplan-Meier estimator.

126 solder

A primary use of this routine is illustration of methods or exploration of new methods. Methods
that use RTTR directly, such as the Brier score, will often do these compuations internally.

A covariate on the right hand side of the formula causes redistribution to occur within group; a
censoring in group 1 redistributes weights to others in group 1, etc. This is appropriate when the
censoring pattern depends upon group.

Value

a vector or matrix of weights, with one column for each requested time

See Also

survfit

Examples

afit <- survfit(Surv(time, status) ~1, data=aml)
rwt <- rttright(Surv(time, status) ~1, data=aml)

Reproduce a Kaplan-Meier

index <- order(aml$time)

cdf <- cumsum(rwt[index]) # weighted CDF

cdf <- cdf[!duplicated(aml$time[index], fromLast=TRUE)] # remove duplicate times
chbind(time=afit$time, KM= afit$surv, RTTR= 1-cdf)

Hormonal patients have a diffent censoring pattern
wt2 <- rttright(Surv(dtime, death) ~ hormon, rotterdam, times= 365xc(3, 5))
dim(wt2)

solder Data from a soldering experiment

Description

In 1988 an experiment was designed and implemented at one of AT&T’s factories to investigate al-
ternatives in the "wave soldering" procedure for mounting electronic componentes to printed circuit
boards. The experiment varied a number of factors relevant to the process. The response, measured
by eye, is the number of visible solder skips.

Usage

solder
data(solder, package="survival")

stanford2 127

Format

A data frame with 900 observations on the following 6 variables.

Opening the amount of clearance around the mounting pad (3 levels)

Solder the amount of solder (Thick or Thin)

Mask type and thickness of the material used for the solder mask (A1.5, A3, A6, B3, B6)
PadType the geometry and size of the mounting pad (10 levels)

Panel each board was divided into 3 panels

skips the number of skips

Details

After the first 1/2 of the experiment the A6 mask, which was doing the worst, was abandoned and
the freed up space used for further replicates of A3. This leads to an unbalanced experiment with
some missing A6 combinations.

This data set is used as a detailed example in chapter 1 of Chambers and Hastie. However, they
chose to use only a subset of the data, i.e., observations 1-360 and 541-900 form a balanced design
of 3*2%10%*3= 180 observations for each of four mask types (Al.5, A3, B3, B6).

References

J Chambers and T Hastie, Statistical models in S. Chapman and Hall, 1993.

Examples

fitl <- glm(skips ~ Opening * Solder, poisson, solder,
subset= (Mask != "A6"))
anova(fit1) # The interaction is important
dummy <- expand.grid(Opening= c("S", "M", "L"), Solder=c("Thin”, "Thick"))
yhat <- matrix(predict(fitl, newdata=dummy), ncol=2,
dimnames=1list(Opening= c("S", "M", "L"), Solder=c("Thin", "Thick")))
yhat <- cbind(yhat, difference= yhat[,1]- yhat[,2])
round(yhat, 1) # thin and thick have different patterns

The balanced subset used by Chambers and Hastie
contains the first 180 of each mask and deletes mask A6.
index <- 1 + (1:nrow(solder)) - match(solder$Mask, solder$Mask)

solder.balance <- droplevels(subset(solder, Mask != "A6" & index <= 180))
stanford?2 More Stanford Heart Transplant data
Description

This contains the Stanford Heart Transplant data in a different format. The main data set is in heart.

128 statefig

Usage
stanford2
Format
id: ID number
time: survival or censoring time
status: censoring status
age: in years
t5: T5 mismatch score
Source

LA Escobar and WQ Meeker Jr (1992), Assessing influence in regression analysis with censored
data. Biometrics 48, 507-528. Page 519.

See Also

predict.survreg, heart

statefig Draw a state space figure.

Description

For multi-state survival models it is useful to have a figure that shows the states and the possible
transitions between them. This function creates a simple "box and arrows" figure. It’s goal was
simplicity.

Usage

statefig(layout, connect, margin = 0.03, box = TRUE, cex = 1, col =1,
lwd=1, 1ty=1, bcol=col, acol=col, alwd=lwd, alty=1lty, offset=0)

Arguments
layout describes the layout of the boxes on the page. See the detailed description below.
connect a square matrix with one row for each state. If connect[i, j] !=0 then an arrow
is drawn from state i to state j. The row names of the matrix are used as the labels
for the states.
margin the fraction of white space between the label and the surrounding box, and be-

tween the box and the arrows, as a function of the plot region size.

statefig 129

box should boxes be drawn? TRUE or FALSE.

cex, col, 1ty, 1wd
default graphical parameters used for the text and boxes. The last 3 can be a
vector of values.

bcol color for the box, if it differs from that used for the text.
acol, alwd, alty color, line type and line width for the arrows.

offset used to slight offset the arrows between two boxes x and y if there is a transition
in both directions. The default of O leads to a double headed arrow in this case
— to arrows are drawn but they coincide. A positive value causes each arrow to
shift to the left, from the view of someone standing at the foot of a arrow and
looking towards the arrowhead, a negative offset shifts to the right. A value of 1
corresponds to the size of the plotting region.

Details

The arguments for color, line type and line width can all be vectors, in which case they are recycled
as needed. Boxes and text are drawn in the order of the rownames of connect, and arrows are
drawn in the usual R matrix order.

The layout argument is normally a vector of integers, e.g., the vector (1, 3, 2) describes a layout
with 3 columns. The first has a single state, the second column has 3 states and the third has 2. The
coordinates of the plotting region are 0 to 1 for both x and y. Within a column the centers of the
boxes are evenly spaced, with 1/2 a space between the boxes and the margin, e.g., 4 boxes would be
at 1/8, 3/8, 5/8 and 7/8. If layout were a 1 column matrix with values of (1, 3, 2) then the layout
will have three rows with 1, 3, and 2 boxes per row, respectively. Alternatively, the user can supply
a 2 column matrix that directly gives the centers.

The values of the connect matrix should be O for pairs of states that do not have a transition and
values between O and 2 for those that do. States are connected by an arc that passes through the
centers of the two boxes and a third point that is between them. Specifically, consider a line segment
joining the two centers and erect a second segment at right angles to the midpoint of length d times
the distance from center to midpoint. The arc passes through this point. A value of d=0 gives a
straight line, d=1 a right hand half circle centered on the midpoint and d= -1 a left hand half circle.
The connect matrix contains values of d+1 with -1 <d < 1.

The connecting arrow are drawn from (center of box 1 + offset) to (center of box 2 + offset), where
the the amount of offset (white space) is determined by the box and margin parameters. If a pair of
states are too close together this can result in an arrow that points the wrong way.

Value

a matrix containing the centers of the boxes, with the invisible attribute set.

Note

The goal of this function is to make “good enough” figures as simply as possible, and thereby to
encourage users to draw them. The layout argument was inspired by the diagram package, which
can draw more complex and well decorated figures, e.g., many different shapes, shading, multiple
types of connecting lines, etc., but at the price of greater complexity.

Because curved lines are drawn as a set of short line segments, line types have almost no effect for
that case.

130 strata

Author(s)

Terry Therneau

Examples

Draw a simple competing risks figure

states <- c("Entry”, "Complete response”, "Relapse"”, "Death")
connect <- matrix(@, 4, 4, dimnames=list(states, states))
connect[1, -1] <- ¢(1.1, 1, 0.9)

statefig(c(1, 3), connect)

strata Identify Stratification Variables

Description

This is a special function used in the context of the Cox survival model. It identifies stratification
variables when they appear on the right hand side of a formula.

Usage
strata(..., na.group=FALSE, shortlabel, sep=', ')
Arguments
any number of variables. All must be the same length.
na.group a logical variable, if TRUE, then missing values are treated as a distinct level of
each variable.
shortlabel if TRUE omit variable names from resulting factor labels. The default action is to
omit the names if all of the arguments are factors, and none of them was named.
sep the character used to separate groups, in the created label
Details

When used outside of a coxph formula the result of the function is essentially identical to the
interaction function, though the labels from strata are often more verbose.

Value

a new factor, whose levels are all possible combinations of the factors supplied as arguments.

See Also

coxph, interaction

summary.aareg 131

Examples

a <- factor(rep(1:3,4), labels=c("low”, "medium”, "high"))
b <- factor(rep(1:4,3))

levels(strata(b))

levels(strata(a,b, shortlabel=TRUE))

coxph(Surv(futime, fustat) ~ age + strata(rx), data=ovarian)

summary.aareg Summarize an aareg fit

Description

Creates the overall test statistics for an Aalen additive regression model

Usage
S3 method for class 'aareg'
summary(object, maxtime, test=c("aalen”, "nrisk"), scale=1,...)
Arguments
object the result of a call to the aareg function
maxtime truncate the input to the model at time "maxtime"
test the relative time weights that will be used to compute the test
scale scales the coefficients. For some data sets, the coefficients of the Aalen model

will be very small (10-4); this simply multiplies the printed values by a constant,
say le6, to make the printout easier to read.

for future methods

Details

It is not uncommon for the very right-hand tail of the plot to have large outlying values, particularly
for the standard error. The maxtime parameter can then be used to truncate the range so as to avoid
these. This gives an updated value for the test statistics, without refitting the model.

The slope is based on a weighted linear regression to the cumulative coefficient plot, and may be a
useful measure of the overall size of the effect. For instance when two models include a common
variable, "age" for instance, this may help to assess how much the fit changed due to the other
variables, in leiu of overlaying the two plots. (Of course the plots are often highly non-linear, so
it is only a rough substitute). The slope is not directly related to the test statistic, as the latter is
invariant to any monotone transformation of time.

132 summary.aareg

Value

a list is returned with the following components

table a matrix with rows for the intercept and each covariate, and columns giving a
slope estimate, the test statistic, it’s standard error, the z-score and a p-value

test the time weighting used for computing the test statistics

test.statistic the vector of test statistics

test.var the model based variance matrix for the test statistic

test.var2 optionally, a robust variance matrix for the test statistic

chisq the overall test (ignoring the intercept term) for significance of any variable

n a vector containing the number of observations, the number of unique death

times used in the computation, and the total number of unique death times

See Also

aareg, plot.aareg

Examples

afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung,
dfbeta=TRUE)

summary (afit)
Not run:
slope test se(test) robust se z p
Intercept 5.05e-03 1.9 1.54 1.55 1.23 0.219000
age 4.01e-05 108.0 109.00 106.00 1.02 0.307000
sex -3.16e-03 -19.5 5.90 5.95 -3.28 0.001030
ph.ecog 3.01e-03 33.2 9.18 9.17 3.62 0.000299

Chisq=22.84 on 3 df, p=4.4e-05; test weights=aalen
End(Not run)

summary (afit, maxtime=600)

Not run:
slope test se(test) robust se z p
Intercept 4.16e-03 2.13 1.48 1.47 1.450 0.146000
age 2.82e-05 85.80 106.00 100.00 ©.857 0.392000
sex -2.54e-03 -20.60 5.61 5.63 -3.660 0.000256
ph.ecog 2.47e-03 31.60 8.91 8.67 3.640 0.000271

Chisq=27.08 on 3 df, p=5.7e-06; test weights=aalen

End(Not run)

summary.coxph

133

summary . coxph

Summary method for Cox models

Description

Produces a summary of a fitted coxph model

Usage
S3 method for class 'coxph'
summary(object, conf.int=0.95, scale=1,...)
Arguments
object the result of a coxph fit
conf.int level for computation of the confidence intervals. If set to FALSE no confidence
intervals are printed
scale vector of scale factors for the coefficients, defaults to 1. The printed coefficients,
se, and confidence intervals will be associated with one scale unit.
for future methods
Value

An object of class summary . coxph, with components:

n, nevent
loglik
coefficients

conf.int

number of observations and number of events, respectively, in the fit

the log partial likelihood at the initial and final values

a matrix with one row for each coefficient, and columns containing the coeffi-
cient, the hazard ratio exp(coef), standard error, Wald statistic, and P value.

a matrix with one row for each coefficient, containing the confidence limits for
exp(coef)

logtest, sctest, waldtest

concordance
used.robust
rsq

fail

call
na.action

Note

the overall likelihood ratio, score, and Wald test statistics for the model
the concordance statistic and its standard error

whether an asymptotic or robust variance was used

an approximate R"2 based on Nagelkerke (Biometrika 1991).

a message, if the underlying coxph call failed

a copy of the call

information on missing values

The pseudo r-squared of Nagelkerke is attractive because it is simple, but further work has shown
that it has poor properties and it is now deprecated. The value is no longer printed by default,
and will eventually be removed from the object. The royston function now includes it along with
several other measures of association.

134 summary.pyears

See Also

coxph, print.coxph

Examples
fit <- coxph(Surv(time, status) ~ age + sex, lung)
summary (fit)
summary.pyears Summary function for pyears objecs
Description

Create a printable table of a person-years result.

Usage

S3 method for class 'pyears'

summary(object, header = TRUE, call = header, n = TRUE,

event = TRUE, pyears = TRUE, expected = TRUE, rate = FALSE, rr =expected,
ci.r = FALSE, ci.rr = FALSE, totals=FALSE, legend = TRUE, vline = FALSE,

vertical= TRUE, nastring=".", conf.level = 0.95,
scale = 1,
Arguments
object a pyears object
header print out a header giving the total number of observations, events, person-years,
and total time (if any) omitted from the table
call print out a copy of the call

n, event, pyears, expected

rate,ci.r

rr,ci.rr

totals
legend
vline

vertical

nastring

conf.level

logical arguments: should these elements be printed in the table?

logical arguments: should the incidence rate and/or its confidence interval be
given in the table?

logical arguments: should the hazard ratio and/or its confidence interval be given
in the table?

should row and column totals be added?
should a legend be included in the printout?
should vertical lines be included in the printed tables?

when there is only a single predictor, should the table be printed with the pre-
dictor on the left (vertical=TRUE) or across the top (vertical=FALSE)?

what to use for missing values in the table. Some of these are structural, e.g.,
risk ratios for a cell with no follow-up time.

confidence level for any confidence intervals

summary.survexp 135

scale a scaling factor for printed rates

optional arguments which will be passed to the format function; common choices
would be digits=2 or nsmall=1.

Details

The pyears function is often used to create initial descriptions of a survival or time-to-event vari-
able; the type of material that is often found in “table 1” of a paper. The summary routine prints
this information out using one of pandoc table styles. A primary reason for choosing this style is
that Rstudio is then able to automatically render the results in multiple formats: html, rtf, latex, etc.

If the pyears call has only a single covariate then the table will have that covariate as one margin
and the statistics of interest as the other. If the pyears call has two predictors then those two
predictors are used as margins of the table, while each cell of the table contains the statistics of
interest as multiple rows within the cell. If there are more than two predictors then multiple tables
are produced, in the same order as the standard R printout for an array.

The "N" entry of a pyears object is the number of observations which contributed to a particular cell.
When the original call includes tcut objects then a single observation may contribute to multiple
cells.

Value

a copy of the object

Notes

The pandoc system has four table types: with or without vertical bars, and with single or multiple
rows of data in each cell. This routine produces all 4 styles depending on options, but currently not
all of them are recognized by the Rstudio-pandoc pipeline. (And we don’t yet see why.)

Author(s)

Terry Therneau and Elizabeth Atkinson

See Also

cipoisson, pyears, format

summary . survexp Summary function for a survexp object

Description

Returns a list containing the values of the survival at specified times.

Usage

S3 method for class 'survexp'
summary(object, times, scale =1, ...)

136 summary.survfit

Arguments
object the result of a call to the survexp function
times vector of times; the returned matrix will contain 1 row for each time. Missing
values are not allowed.
scale numeric value to rescale the survival time, e.g., if the input data to survfit were
in days, scale = 365. 25 would scale the output to years.
For future methods
Details

A primary use of this function is to retrieve survival at fixed time points, which will be properly
interpolated by the function.

Value

a list with the following components:

surv the estimate of survival at time t.
time the timepoints on the curve.
n.risk In expected survival each subject from the data set is matched to a hypothetical

person from the parent population, matched on the characteristics of the parent
population. The number at risk is the number of those hypothetical subject who
are still part of the calculation.

Author(s)

Terry Therneau

See Also

survexp

summary.survfit Summary of a Survival Curve

Description

Returns a list containing the survival curve, confidence limits for the curve, and other information.

Usage

S3 method for class 'survfit'
summary (object, times, censored=FALSE, scale=1,
extend=FALSE, rmean=getOption('survfit.rmean'), data.frame=FALSE, dosum, ...)
S3 method for class 'survfitms'
summary(object, times, censored=FALSE, scale=1,
extend=FALSE, rmean=getOption('survfit.rmean'), data.frame=FALSE, ...)

summary.survfit 137

Arguments
object the result of a call to the survfit function.
times vector of times; the returned matrix will contain 1 row for each time. The
vector will be sorted into increasing order; missing values are not allowed. If
censored=T, the default times vector contains all the unique times in fit, oth-
erwise the default times vector uses only the event (death) times.
censored logical value: should the censoring times be included in the output? This is
ignored if the times argument is present.
scale numeric value to rescale the survival time, e.g., if the input data to survfit were
in days, scale = 365. 25 would scale the output to years.
extend logical value: if TRUE, prints information for all specified times, even if there
are no subjects left at the end of the specified times. This is only used if the
times argument is present.
rmean Show restricted mean: see print.survfit for details
data.frame if TRUE, return the results as a data frame, rather than a summary.survfit object
dosum only applicable if times is present, see details below
for future methods
Value

if data.frame = TRUE, a data frame with columns of time, n.risk, n.event, n.censor, surv, cumhaz,
strata (if present) and data (the row of newdata for survfit.coxph). Also std.err, std.chaz, upper and
lower if the curve had se.fit=TRUE.

if data.frame = FALSE, a list with the following components:

surv the estimate of survival at time t+0.
time the timepoints on the curve.
n.risk the number of subjects at risk at time t-0 (but see the comments on weights in

the survfit help file).

n.event if the times argument is missing, then this column is the number of events that
occurred at time t. Otherwise, it is the cumulative number of events that have
occurred since the last time listed until time t+0.

n.entered This is present only for counting process survival data. If the times argument is
missing, this column is the number of subjects that entered at time t. Otherwise,
it is the cumulative number of subjects that have entered since the last time listed
until time t.

n.exit.censored
if the times argument is missing, this column is the number of subjects that left
without an event at time t. Otherwise, it is the cumulative number of subjects
that have left without an event since the last time listed until time t+0. This is
only present for counting process survival data.

std.err the standard error of the survival value.

conf.int level of confidence for the confidence intervals of survival.

138 summary.survfit

lower lower confidence limits for the curve.
upper upper confidence limits for the curve.
strata indicates stratification of curve estimation. If strata is not NULL, there are mul-

tiple curves in the result and the surv, time, n.risk, etc. vectors will contain
multiple curves, pasted end to end. The levels of strata (a factor) are the labels
for the curves.

call the statement used to create the fit object.
na.action same as for fit, if present.
table table of information that is returned from print.survfit function.
type type of data censoring. Passed through from the fit object.
Details

This routine has two uses: printing out a survival curve at specified time points (often yearly), or
extracting the values at specified time points for further processing. In the first case we normally
want extend=FALSE, i.e., don’t print out data past the end of the curve. If the times option only
contains values beyond the last point in the curve then there is nothing to print and an error message
will result. For the second usage we often want extend=TRUE, so that the results will have a pre-
dictable length. If data.frame = TRUE then either might be desired. Be aware, however, that these
extended values will often be badly biased; we are essentialy treating the final censored subjects as
immortal.

The underlying survival object will have a row for each unique event or censoring time. When
the times argument contains values not in the data, the routine can only use a best guess for the
number at risk, i.e., the number at risk at the next event/censoring time. When the routine is called
with counting process data many users are confused by counts that appear too large. For exam-
ple, Surv(c(0,0, 1, 5), c(2, 3, 8, 10), c(1, @, 1, @)), which prints as (0,2] (@, 3+] (1, 8]
(5,10+]. Do survfit followed by summary with a request for the values at time 0. The survfit
object has entries only at times 2, 3, 8, and 10; there are 3 subjects at risk at time 2, so that is what
will be printed for time 0.

For a printout at fixed times, for example yearly values for a curve, the printed number of events
will by default be the total number of events that have occured since the prior line of printout, and
likewise for number of censored and number at entry, dosum = TRUE. Alternately, the routine can
return the number of events/censors/entry at that time, dosum=FALSE. This feature was added at
the request of a user who essentially wanted to use the times argument as a subscript to pick off
selected rows of the output, e.g., to select survival values corresponding to the last follow-up times
of a new set of observations. The default for dosum is TRUE if the times vector is strictly increasing
and FALSE otherwise.

For a survfitms object replace the surv component with pstate. Also, a data frame will not include
the cumulative hazard since it has a different multiplicity: one column per transition rather than one
per state.

See Also

survfit, print.summary.survfit

Surv

Examples

139

summary (survfit(Surv(futime, fustat)~1, data=ovarian))
summary (survfit(Surv(futime, fustat)~rx, data=ovarian))

Surv

Create a Survival Object

Description

Create a survival object, usually used as a response variable in a model formula. Argument matching
is special for this function, see Details below.

Usage
Surv(time, time2, event,
type=c('right', 'left', 'interval', 'counting', 'interval2', 'mstate'),
origin=0)
is.Surv(x)
Arguments

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

event The status indicator, normally O=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indicator
is O=right censored, 1=event at time, 2=left censored, 3=interval censored. For
multiple endpoint data the event variable will be a factor, whose first level is
treated as censoring. Although unusual, the event indicator can be omitted, in
which case all subjects are assumed to have an event.

time2 ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right”,
"left"”, "counting”, "interval”, "interval2"” or "mstate”.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

X any R object.

140 Surv

Details
When the type argument is missing the code assumes a type based on the following rules:

o If there are two unnamed arguments, they will match time and event in that order. If there
are three unnamed arguments they match time, time2 and event.

« If the event variable is a factor then type mstate is assumed. Otherwise type right if there is
no time2 argument, and type counting if there is.

As a consequence the type argument will normally be omitted.

When the survival type is "mstate” then the status variable will be treated as a factor. The first level
of the factor is taken to represent censoring and remaining ones a transition to the given state. (If
the status variable is a factor then mstate is assumed.)

Interval censored data can be represented in two ways. For the first use type = "interval” and
the codes shown above. In that usage the value of the time2 argument is ignored unless event=3.
The second approach is to think of each observation as a time interval with (-infinity, t2) for left
censored, (t1, infinity) for right censored, (t,t) for exact and (t1, t2) for an interval. This is the
approach used for type = interval2. Infinite values can be represented either by actual infinity (Inf)
or NA. The second form has proven to be the more useful one.

Presently, the only methods allowing interval censored data are the parametric models computed by
survreg and survival curves computed by survfit; for both of these, the distinction between open
and closed intervals is unimportant. The distinction is important for counting process data and the
Cox model.

The function tries to distinguish between the use of 0/1 and 1/2 coding for censored data via the con-
dition if (max(status)==2). If 1/2 coding is used and all the subjects are censored, it will guess
wrong. In any questionable case it is safer to use logical coding, e.g., Surv(time, status==3)
would indicate that *3’ is the code for an event. For multi-state survival the status variable will be a
factor, whose first level is assumed to correspond to censoring.

Surv objects can be subscripted either as a vector, e.g. x[1:3] using a single subscript, in which
case the drop argument is ignored and the result will be a survival object; or as a matrix by using two
subscripts. If the second subscript is missing and drop=F (the default), the result of the subscripting
will be a Surv object, e.g., x[1:3,,drop=F], otherwise the result will be a matrix (or vector), in
accordance with the default behavior for subscripting matrices.

Value

An object of class Surv. There are methods for print, is.na, and subscripting survival objects.
Surv objects are implemented as a matrix of 2 or 3 columns that has further attributes. These
include the type (left censored, right censored, counting process, etc.) and labels for the states for
multi-state objects. Any attributes of the input arguments are also preserved in inputAttributes.
This may be useful for other packages that have attached further information to data items such as
labels; none of the routines in the survival package make use of these values, however.

In the case of is.Surv, a logical value TRUE if x inherits from class "Surv”, otherwise an FALSE.

Note

The use of 1/2 coding for status is an interesting historical artifact. For data contained on punch
cards, IBM 360 Fortran treated blank as a zero, which led to a policy within the Mayo Clinic section

Surv-methods 141

of Biostatistics to never use "0" as a data value since one could not distinguish it from a missing
value. Policy became habit, as is often the case, and the use of 1/2 coding for alive/dead endured
long after the demise of the punch cards that had sired the practice. At the time Surv was written
many Mayo data sets still used this obsolete convention, e.g., the lung data set found in the package.

See Also

coxph, survfit, survreg, lung.

Examples

with(aml, Surv(time, status))
survfit(Surv(time, status) ~ ph.ecog, data=lung)
Surv(heart$start, heart$stop, heart$event)

Surv-methods Methods for Surv objects

Description

The list of methods that apply to Surv objects

Usage

S3 method for class 'Surv'
anyDuplicated(x, ...)

S3 method for class 'Surv'
as.character(x, ...)

S3 method for class 'Surv'
as.data.frame(x, ...)

S3 method for class 'Surv'
as.matrix(x, ...)

S3 method for class 'Surv'
c(...)

S3 method for class 'Surv'
duplicated(x, ...)

S3 method for class 'Surv'
format(x, ...)

S3 method for class 'Surv'
head(x, ...)

S3 method for class 'Surv'
is.na(x)

S3 method for class 'Surv'
length(x)

S3 method for class 'Surv'
mean(x, ...)

S3 method for class 'Surv'
median(x, na.rm=FALSE, ...)

142 Surv-methods

S3 method for class 'Surv'
names (x)

S3 replacement method for class 'Surv'
names(x) <- value

S3 method for class 'Surv'

quantile(x, probs, na.rm=FALSE, ...)

S3 method for class 'Surv'
plot(x, ...)

S3 method for class 'Surv'
rep(x, ...)

S3 method for class 'Surv'
rep.int(x, ...)

S3 method for class 'Surv'
rep_len(x, ...)

S3 method for class 'Surv'
rev(x)

S3 method for class 'Surv'
t(x)

S3 method for class 'Surv'
tail(x, ...)

S3 method for class 'Surv'
unique(x, ...)

Arguments

X a Surv object
probs a vector of probabilities
na.rm remove missing values from the calculation
value a character vector of up to the same length as x, or NULL

other arguments to the method

Details

These functions extend the standard methods to Surv objects. (There is no central index of R
methods, so there may well be useful candidates that the author has missed.) The arguments and
results from these are mostly as expected, with the following further details:

* The as.character function uses "5+" for right censored at time 5, "5-" for left censored at
time 5, "[2,7]" for an observation that was interval censored between 2 and 7, "(1,6]" for a
counting process data denoting an observation which was at risk from time 1 to 6, with an
event at time 6, and "(1,6+]" for an observation over the same interval but not ending with and
event. For a multi-state survival object the type of event is appended to the event time using
":type".

e The print and format methods make use of as.character.

* The length of a Surv object is the number of survival times it contains, not the number of
items required to encode it, e.g., x <- Surv(1:4, 5:8, ¢(1,0,1,0)); length(x) has a value
of 4. Likewise names(x) will be NULL or a vector of length 4. (For technical reasons, any
names are actually stored in the rownames attribute of the object.)

Surv2 143

* For a multi-state survival object levels returns the names of the endpoints, otherwise it is
NULL.

* The median, quantile and plot methods first construct a survival curve using survfit, then
apply the appropriate method to that curve.

* The xtfrm method, which underlies sort and order, sorts by time, with censored after uncen-
sored within a tied time. For an interval censored observation the midpoint is used. For (timel,
time2) counting process data, sorting is by time2, censoring, and then timel.

¢ The unique method treats censored and uncensored observations at the same time as distinct,
it returns a Surv object.

* The concatonation method c () is asymmetric, its first argument determines the execution path.
For instance c(Surv(1:4), Surv(5:6)) will return a Surv object of length 6, c(Surv(1:4),
5:6) will give an error, and c(5:6, Surv(1:4)) isequivalenttoc(5:6, as.vector(Surv(1:4)))
which is a numeric of length 10.

See Also

Surv

Surv?2 Create a survival object

Description
Create a survival object from a timeline style data set. This will almost always be the response
variable in a formula.

Usage

Surv2(time, event, repeated=FALSE)

Arguments
time a timeline variable, such as age, time from enrollment, date, etc.
event the outcome at that time. This can be a 0/1 variable, TRUE/FALSE, or a factor.
If the latter, the first level of the factor corresponds to ‘no event was observed at
this time’.
repeated if the same level of the outcome repeats, without an intervening event of another
type, should this be treated as a new event?
Details

This function is still experimental.

When used in a coxph or survfit model, Surv2 acts as a trigger to internally convert a timeline
style data set into counting process style data, which is then acted on by the routine.

The repeated argument controls how repeated instances of the same event code are treated. If
TRUE, they are treated as new events, an example where this might be desired is repeated infections
in a subject. If FALSE, then repeats are not a new event. An example would be a data set where we
wanted to use diabetes, say, as an endpoint, but this is repeated at each medical visit.

144 Surv2data

Value

An object of class Surv2. There are methods for print, is.na and subscripting.

See Also

Surv2data, coxph, survfit

Surv2data Convert data from timecourse to (timel,time2) style

Description

The multi-state survival functions coxph and survfit allow for two forms of input data. This
routine converts between them. The function is normally called behind the scenes when Surv?2 is
as the response.

Usage

Surv2data(formula, data, subset, id)

Arguments
formula a model formula
data a data frame
subset optional, selects rows of the data to be retained
id a variable that identified multiple rows for the same subject, normally found in
the referenced data set
Details

For timeline style data, each row is uniquely identified by an (identifier, time) pair. The time could
be a date, time from entry to a study, age, etc, (there may often be more than one time variable). The
identifier and time cannot be missing. The remaining covariates represent values that were observed
at that time point. Often, a given covariate is observed at only a subset of times and is missing at
others. At the time of death, in particular, often only the identifier, time, and status indicator are
known.

In the resulting data set missing covariates are replaced by their last known value, and the response
y will be a Surv(timel, time2, endpoint) object.

Value
a list with elements

mf an updated model frame (fewer rows, unchanged columns)
S2.y the constructed response variable

S2.state the current state for each of the rows

survcheck

145

survcheck

Checks of a survival data set

Description

Perform a set of consistency checks on survival data

Usage

survcheck(formula, data, subset, na.action, id, istate, istate0="(s0)",
timefix=TRUE,...)

Arguments

formula
data

subset
na.action
id

istate

istate®

timefix

Details

a model formula with a Surv object as the response
data frame in which to find the id, istate and formula variables

expression indicating which subset of the rows of data should be used in the fit.
All observations are included by default.

a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is options()\$na.action.

an identifier that labels unique subjects
an optional vector giving the current state at the start of each interval

default label for the initial state of each subject (at their first interval) when
istate is missing

process times through the aeqSurv function to eliminate potential roundoff is-
sues.

other arguments, which are ignored (but won’t give an error if someone added
weights for instance)

This routine will examine a multi-state data set for consistency of the data. The basic rules are
that if a subject is at risk they have to be somewhere, can not be two places at once, and should
make sensible transitions from state to state. It reports the number of instances of the following

conditions:

overlap two observations for the same subject that overlap in time, e.g. intervals of (0, 100) and
(90, 120). If y is simple (time, status) survival then intervals implicitly start at 0, so in that
case any duplicate identifiers will generate an overlap.

gap one or more gaps in a subject’s timeline; where they are in the same state at their return as
when they left.

jump a hole in a subject’s timeline, where they are in one state at the end of the prior interval, but
a new state in the at the start subsequent interval.

146 survcheck

teleport two adjacent intervals for a subject, with the first interval ending in one state and the
subsequent interval starting in another. They have instantaneously changed states in O units of
time.

duplicate not currently used

The total number of occurences of each is present in the flags vector. Optional components give
the location and identifiers of the flagged observations. The Surv function has already flagged any
0 length intervals as errors.

One important caveat is that survcheck does not deal with reuse of an id value. For instance, a
multi-institutional data set where the same subject identifier happens to have been used for two
different subjects in two different institutions. The routine is likely generate a "false positive" error
in this case, but this is simply unavoidable. Since the routine is used internally by survfit, coxph,
etc. the same errors will appear in other routines in the survival package.

Value

a list with components

states the vector of possible states, a union of what appears in the Surv object and
istate, with initial states first

transitions a matrix giving the count of transitions from one state to another

statecount table of the number of visits per state, e.g., 18 subjects had 2 visits to the "infec-
tion" state

flags a vector giving the counts of each check

istate a constructed istate that best satisfies all the checks

overlap a list with the row number and id of overlaps (not present if there are no overlaps)

gaps a list with the row number and id of gaps (not present if there are no gaps)

teleport a list with the row number and id of inconsistent rows (not present if there are
none)

jumps a list with the row number and id of jumps (not present if there are no jumps)

Note

For data sets with time-dependent covariates, a given subject will often have intermediate rows with
a status of ‘no event at this time’, coded as the first level of the factor variable in the Surv() call.
For instance a subject who started in state ’a’ at time 0, transitioned to state ’b’ at time 10, had a
covariate x change from 135 to 156 at time 20, and a final transition to state ’c’ at time 30. The
response would be Surv(c(@, 10, a), c(10, 20, censor), c(20,0,c)) where the state variable
is a factor with levels of censor, a, b, c. The state variable records changes in state, and there was
no change at time 20. The istate variable would be (a, b, b); it contains the current state, and the
value is unchanged when status = censored. (It behaves like a tdc variable from tmerge).

The intermediate time above is not actually censoring, i.e., a point at which follow-up for the ob-
servation ceases. The ’censor’ label is traditional, but 'none’ may be a more accurate choice.

When there are intermediate observations istate is not simply a lagged version of the state, and
may be more challenging to create. One approach is to let survcheck do the work: call it with an
istate argument that is correct for the first row of each subject, or no istate argument at all, and
then insert the returned value into a data frame.

survcondense

147

survcondense

Shorten a (timel, time2) survival dataset

Description

Counting process data sets can sometimes grow to an uweildy size, this can be used to reduce the

number of rows.

Usage

survcondense(formula, data, subset, weights, na.action= na.pass, id,

Arguments

formula

data

subset
weights
na.action
id

start

end

event

Details

start = "tstart”, end = "tstop”, event = "event")

a formula object, with the response on the left of a ~ operator, and the terms
on the right. The response must be a survival object as returned by the Surv
function.

a data.frame in which to interpret the variables named in the formula and the
id argument argument.

optional subset expression to apply to the data set

optional variable name for case weights

optional removal of missing values

variable name that identifies subjects

optional character string, giving the name of the start time variable in the result
optional character string, giving the name of the stop time variable in the result

optional character string, giving the name of the event variable in the result

Through the use of the survSplit and tmerge functions, a counting process data set will gain
more and more rows of data. Occassionally it is useful to collapse this surplus back down, e.g.,
when interest is to be focused on only a few covariates, or for debugging. The right hand side of
formula will often have only a few variables in this use case.

If a row of data is censored, and represents the same covariates and identifier as the row below it,
then the two rows can be merged together using a single (timel, time2) interval. The compression
can sometimes be large.

The start, stop and end options are only used when the left hand side of the formula has expres-
sions that are not a simple name, e.g. Surv(timel, time2, death | progression) would be a
case where event is used to set the outcome variable’s name.

Value

a data frame

148

Author(s)

Terry Therneau

See Also

survSplit,tmerge

survdiff

Examples
dim(aml)
testl <- survSplit(Surv(time, status) ~ ., data=aml,
cut=c(10, 20, 30), id="newid")
dim(test1)

remove the added rows
test2 <- survcondense(Surv(tstart, time, status) ~ x, testl, id=newid)

dim(test2)

survdiff

Test Survival Curve Differences

Description

Tests if there is a difference between two or more survival curves using the G family of tests, or
for a single curve against a known alternative.

Usage

survdiff(formula, data, subset, na.action, rho=0, timefix=TRUE)

Arguments

formula

data

subset

a formula expression as for other survival models, of the form Surv(time,
status) ~ predictors. For a one-sample test, the predictors must consist of
a single of fset(sp) term, where sp is a vector giving the survival probability
of each subject. For a k-sample test, each unique combination of predictors de-
fines a subgroup. A strata term may be used to produce a stratified test. To
cause missing values in the predictors to be treated as a separate group, rather
than being omitted, use the strata function with its na. group=T argument.

an optional data frame in which to interpret the variables occurring in the for-
mula.

expression indicating which subset of the rows of data should be used in the fit.
This can be a logical vector (which is replicated to have length equal to the num-
ber of observations), a numeric vector indicating which observation numbers are
to be included (or excluded if negative), or a character vector of row names to
be included. All observations are included by default.

survdiff 149

na.action a missing-data filter function. This is applied to the model.frame after any
subset argument has been used. Default is options()$na.action.
rho a scalar parameter that controls the type of test.
timefix process times through the aeqSurv function to eliminate potential roundoff is-
sues.
Value

a list with components:

n the number of subjects in each group.

obs the weighted observed number of events in each group. If there are strata, this
will be a matrix with one column per stratum.

exp the weighted expected number of events in each group. If there are strata, this
will be a matrix with one column per stratum.

chisq the chisquare statistic for a test of equality.

var the variance matrix of the test.

strata optionally, the number of subjects contained in each stratum.

pvalue the p-value corresponding to the Chisquare statistic

Description

This function implements the G-rho family of Harrington and Fleming (1982), with weights on
each death of S(t)”, where S(t) is the Kaplan-Meier estimate of survival. With rho = @ this is the
log-rank or Mantel-Haenszel test, and with rho = 1 it is equivalent to the Peto & Peto modification
of the Gehan-Wilcoxon test.

Peto and Peto show that the Gehan-Wilcoxon test can be badly biased if the two groups have dif-
ferent censoring patterns, and proposed an alternative. Prentice and Marek later showed an actual
example where this issue occurs. For most data sets the Gehan-Wilcoxon and Peto-Peto-Prentice
variant will hardly differ, however.

If the right hand side of the formula consists only of an offset term, then a one sample test is done.
To cause missing values in the predictors to be treated as a separate group, rather than being omitted,
use the factor function with its exclude argument to recode the righ-hand-side covariate.

Note that the ordinary log-rank test is equivalent to the score test from a Cox model, using the
Breslow approximation for ties. Use the Cox model form for more complex models, e.g., time-
dependent covariates.

References

Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored survival
data. Biometrika, 553-566.

Peto R. Peto and Peto, J. (1972) Asymptotically efficient rank invariant test procedures (with dis-
cussion), JRSSA, 185-206.

Prentice, R. and Marek, P. (1979) A qualitative discrepancy between censored data rank tests,
Biometics, 861-867.

150 survexp

Examples

Two-sample test

survdiff(Surv(futime, fustat) ~ rx,data=ovarian)

check <- coxph(Surv(futime, fustat) ~ rx, data=ovarian, ties="breslow")
round(summary (check)$sctest, 3)

Stratified 8-sample test (7 df)

survdiff(Surv(time, status) ~ pat.karno + strata(inst), data=lung)

check <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), lung)
round(summary (check)$sctest, 3)

Expected survival for heart transplant patients based on

US mortality tables

expect <- survexp(futime ~ 1, data=jasa, cohort=FALSE,
rmap= list(age=(accept.dt - birth.dt), sex=1, year=accept.dt),
ratetable=survexp.us)

actual survival is much worse (no surprise)

survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect))

The free light chain data set is close to the population.
e2 <- survexp(futime ~ 1, data=flchain, cohort=FALSE,
rmap= list(age= age*365.25, sex=sex,
year=as.Date(paste@(sample.yr, "-07-01"))),
ratetable= survexp.mn)
survdiff(Surv(futime, death) ~ offset(e2), flchain)

survexp Compute Expected Survival

Description

Returns either the expected survival of a cohort of subjects, or the individual expected survival for
each subject.

Usage

survexp(formula, data, weights, subset, na.action, rmap, times,
method=c("”ederer”, "hakulinen”, "conditional”, "individual.h”,
"individual.s"),
cohort=TRUE, conditional=FALSE,
ratetable=survival: :survexp.us, scale=1,
se.fit, model=FALSE, x=FALSE, y=FALSE)

Arguments

formula formula object. The response variable is a vector of follow-up times and is
optional. The predictors consist of optional grouping variables separated by the
+ operator (as in survfit), and is often ~1, i.e., expected survival for the entire

group.

survexp 151

data data frame in which to interpret the variables named in the formula, subset
and weights arguments.

weights case weights. This is most useful when conditional survival for a known popula-
tion is desired, e.g., the data set would contain all unique age/sex combinations
and the weights would be the proportion of each.

subset expression indicating a subset of the rows of data to be used in the fit.

na.action function to filter missing data. This is applied to the model frame after subset
has been applied. Default is options()$na.action.

rmap an optional list that maps data set names to the ratetable names. See the details
section below.

times vector of follow-up times at which the resulting survival curve is evaluated. If
absent, the result will be reported for each unique value of the vector of times
supplied in the response value of the formula.

method computational method for the creating the survival curves. The individual op-
tion does not create a curve, rather it retrieves the predicted survival individual.s
or cumulative hazard individual.h for each subject. The default is to use
method="ederer"' if the formula has no response, and method="hakulinen'’
otherwise.

cohort logical value. This argument has been superseded by the method argument. To
maintain backwards compatability, if is present and FALSE, it implies method="'individual.s'.

conditional logical value. This argument has been superseded by the method argument. To
maintain backwards compatability, if it is present and TRUE it implies method="'conditional’.

ratetable a table of event rates, such as survexp.mn, or a fitted Cox model. Note the
survival:: prefix in the default argument is present to avoid the (rare) case of
a user who expects the default table but just happens to have an object named
"survexp.us" in their own directory.

scale numeric value to scale the results. If ratetable is in units/day, scale = 365.25
causes the output to be reported in years.

se.fit compute the standard error of the predicted survival. This argument is currently
ignored. Standard errors are not a defined concept for population rate tables
(they are treated as coming from a complete census), and for Cox models the
calculation is hard. Despite good intentions standard errors for this latter case
have not been coded and validated.

model, x, y flags to control what is returned. If any of these is true, then the model frame,
the model matrix, and/or the vector of response times will be returned as com-
ponents of the final result, with the same names as the flag arguments.

Details

Individual expected survival is usually used in models or testing, to ‘correct’ for the age and sex
composition of a group of subjects. For instance, assume that birth date, entry date into the study,
sex and actual survival time are all known for a group of subjects. The survexp.us population
tables contain expected death rates based on calendar year, sex and age. Then

haz <- survexp(fu.time ~ 1, data=mydata,
rmap = list(year=entry.dt, age=(birth.dt-entry.dt)),
method="individual.h"))

152 survexp

gives for each subject the total hazard experienced up to their observed death time or last follow-up
time (variable fu.time) This probability can be used as a rescaled time value in models:

glm(status ~ 1 + offset(log(haz)), family=poisson)
glm(status ~ x + offset(log(haz)), family=poisson)

In the first model, a test for intercept=0 is the one sample log-rank test of whether the observed
group of subjects has equivalent survival to the baseline population. The second model tests for an
effect of variable x after adjustment for age and sex.

The ratetable being used may have different variable names than the user’s data set, this is dealt
with by the rmap argument. The rate table for the above calculation was survexp.us, a call to
summary{survexp.us} reveals that it expects to have variables age = age in days, sex, and year =
the date of study entry, we create them in the rmap line. The sex variable was not mapped, therefore
the function assumes that it exists in mydata in the correct format. (Note: for factors such as sex,
the program will match on any unique abbreviation, ignoring case.)

Cohort survival is used to produce an overall survival curve. This is then added to the Kaplan-Meier
plot of the study group for visual comparison between these subjects and the population at large.
There are three common methods of computing cohort survival. In the "exact method" of Ederer
the cohort is not censored, for this case no response variable is required in the formula. Hakulinen
recommends censoring the cohort at the anticipated censoring time of each patient, and Verheul
recommends censoring the cohort at the actual observation time of each patient. The last of these
is the conditional method. These are obtained by using the respective time values as the follow-up
time or response in the formula.

Value

if cohort=TRUE an object of class survexp, otherwise a vector of per-subject expected survival
values. The former contains the number of subjects at risk and the expected survival for the cohort
at each requested time. The cohort survival is the hypothetical survival for a cohort of subjects
enrolled from the population at large, but matching the data set on the factors found in the rate
table.

References

Berry, G. (1983). The analysis of mortality by the subject-years method. Biometrics, 39:173-84.

Ederer, F., Axtell, L. and Cutler, S. (1961). The relative survival rate: a statistical methodology.
Natl Cancer Inst Monogr, 6:101-21.

Hakulinen, T. (1982). Cancer survival corrected for heterogeneity in patient withdrawal. Biomet-
rics, 38:933-942.

Therneau, T. and Grambsch, P. (2000). Modeling survival data: Extending the Cox model. Springer.
Chapter 10.

Verheul, H., Dekker, E., Bossuyt, P., Moulijn, A. and Dunning, A. (1993). Background mortality in
clinical survival studies. Lancet, 341: 872-875.

See Also

survfit, pyears, survexp.us, ratetable, survexp.fit.

survexp.fit 153

Examples

#

Stanford heart transplant data

We don't have sex in the data set, but know it to be nearly all males.

Estimate of conditional survival

fitl <- survexp(futime ~ 1, rmap=list(sex="male", year=accept.dt,
age=(accept.dt-birth.dt)), method='conditional', data=jasa)

summary(fit1, times=1:10%182.5, scale=365) #expected survival by 1/2 years

Estimate of expected survival stratified by prior surgery

survexp(~ surgery, rmap= list(sex="male", year=accept.dt,

age=(accept.dt-birth.dt)), method='ederer', data=jasa,
times=1:10 * 182.5)

Compare the survival curves for the Mayo PBC data to Cox model fit

#H#

pfit <-coxph(Surv(time,status>0) ~ trt + log(bili) + log(protime) + age +
platelet, data=pbc)

plot(survfit(Surv(time, status>@) ~ trt, data=pbc), mark.time=FALSE)

lines(survexp(~ trt, ratetable=pfit, data=pbc), col='purple')

survexp.fit Compute Expected Survival

Description

Compute expected survival times.

Usage

survexp.fit(group, x, y, times, death, ratetable)

Arguments

group if there are multiple survival curves this identifies the group, otherwise it is a
constant. Must be an integer.

X A matrix whose columns match the dimensions of the ratetable, in the correct
order.

y the follow up time for each subject.

times the vector of times at which a result will be computed.

death a logical value, if TRUE the conditional survival is computed, if FALSE the cohort

survival is computed. See survexp for more details.

ratetable a rate table, such as survexp.uswhite.

154 survexp.object

Details

For conditional survival y must be the time of last follow-up or death for each subject. For cohort
survival it must be the potential censoring time for each subject, ignoring death.

For an exact estimate times should be a superset of y, so that each subject at risk is at risk for the
entire sub-interval of time. For a large data set, however, this can use an inordinate amount of stor-
age and/or compute time. If the times spacing is more coarse than this, an actuarial approximation
is used which should, however, be extremely accurate as long as all of the returned values are > .99.

For a subgroup of size 1 and times >y, the conditional method reduces to exp(-h) where h is the
expected cumulative hazard for the subject over his/her observation time. This is used to compute
individual expected survival.

Value
A list containing the number of subjects and the expected survival(s) at each time point. If there are
multiple groups, these will be matrices with one column per group.

Warning
Most users will call the higher level routine survexp. Consequently, this function has very few
error checks on its input arguments.

See Also

survexp, survexp.us.

survexp.object Expected Survival Curve Object

Description
This class of objects is returned by the survexp class of functions to represent a fitted survival
curve.

Objects of this class have methods for summary, and inherit the print, plot, points and lines
methods from survfit.

Arguments
surv the estimate of survival at time t+0. This may be a vector or a matrix.
n.risk the number of subjects who contribute at this time.
time the time points at which the curve has a step.
std.err the standard error of the cumulative hazard or -log(survival).
strata if there are multiple curves, this component gives the number of elements of the

time etc. vectors corresponding to the first curve, the second curve, and so on.
The names of the elements are labels for the curves.

method the estimation method used. One of "Ederer", "Hakulinen", or "conditional".

survfit 155

na.action the returned value from the na.action function, if any. It will be used in the
printout of the curve, e.g., the number of observations deleted due to missing
values.
call an image of the call that produced the object.
Structure

The following components must be included in a legitimate survfit object.

Subscripts
Survexp objects that contain multiple survival curves can be subscripted. This is most often used to
plot a subset of the curves.

Details

In expected survival each subject from the data set is matched to a hypothetical person from the
parent population, matched on the characteristics of the parent population. The number at risk
printed here is the number of those hypothetical subject who are still part of the calculation. In
particular, for the Ederer method all hypotheticals are retained for all time, so n.risk will be a
constant.

See Also

plot.survfit, summary.survexp, print.survfit, survexp.

survfit Create survival curves

Description

This function creates survival curves from either a formula (e.g. the Kaplan-Meier), a previously
fitted Cox model, or a previously fitted accelerated failure time model.

Usage
survfit(formula, ...)
Arguments
formula either a formula or a previously fitted model

other arguments to the specific method

156 survfit.coxph

Details

A survival curve is based on a tabulation of the number at risk and number of events at each unique
death time. When time is a floating point number the definition of "unique" is subject to interpre-
tation. The code uses factor() to define the set. For further details see the documentation for the
appropriate method, i.e., ?survfit. formula or ?survfit. coxph.

A survfit object may contain a single curve, a set of curves (vector), a matrix of curves, or even a
3 way array: dim(fit) will reveal the dimensions. Predicted curves from a coxph model have one
row for each stratum in the Cox model fit and one column for each specified covariate set. Curves
from a multi-state model have one row for each stratum and a column for each state, the strata
correspond to predictors on the right hand side of the equation. The default printing and plotting
order for curves is by column, as with other matrices.

Value

An object of class survfit containing one or more survival curves.

Note

Older releases of the code also allowed the specification for a single curve to omit the right hand
of the formula, i.e., survfit(Surv(time, status)), in which case the formula argument is not
actually a formula. Handling this case required some non-standard and fairly fragile manipulations,
and this case is no longer supported.

Author(s)

Terry Therneau

See Also

survfit.formula, survfit.coxph, survfit.object, print.survfit, plot.survfit, quantile.survfit,
residuals.survfit, summary.survfit

survfit.coxph Compute a Survival Curve from a Cox model

Description

Computes the predicted survivor function for a Cox proportional hazards model.

Usage

S3 method for class 'coxph'

survfit(formula, newdata,
se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype,
conf.type=c("log","log-log","plain”,"none”, "logit", "arcsin"),
censor=TRUE, start.time, id, influence=FALSE,
na.action=na.pass, type, time@=FALSE, ...)

survfit.coxph

157

S3 method for class 'coxphms'
survfit(formula, newdata,
se.fit=FALSE, conf.int=.95, individual=FALSE, stype=2, ctype,

non n on n on

conf.type=c("log","log-log","plain”,"none”", "logit”, "arcsin"),
censor=TRUE, start.time, id, influence=FALSE,
na.action=na.pass, type, p@=NULL, time@= FALSE, ...)

Arguments

formula

newdata

se.fit

conf.int

individual

stype

ctype

conf.type

censor

id

start.time

influence
na.action
type

po

A coxph object.

a data frame with the same variable names as those that appear in the coxph
formula. One curve is produced per row. The curve(s) produced will be repre-
sentative of a cohort whose covariates correspond to the values in newdata.

a logical value indicating whether standard errors should be computed. Default
is TRUE for standard models, FALSE for multi-state (code not yet present for that
case.)

the level for a two-sided confidence interval on the survival curve(s). Default is
0.95.

deprecated argument, replaced by the general id

computation of the survival curve, 1=direct, 2= exponenial of the cumulative
hazard.

whether the cumulative hazard computation should have a correction for ties,
1=no, 2=yes.

One of "none”, "plain”, "log" (the default), "log-log"” or "logit"”. Only
enough of the string to uniquely identify it is necessary. The first option causes
confidence intervals not to be generated. The second causes the standard inter-
vals curve +- k *xse(curve), where k is determined from conf.int. The log
option calculates intervals based on the cumulative hazard or log(survival). The

log-log option uses the log hazard or log(-log(survival)), and the logit log(survival/(1-

survival)).

if FALSE time points at which there are no events (only censoring) are not in-
cluded in the result.

optional variable name of subject identifiers. If this is present, it will be search
for in the newdata data frame. Each group of rows in newdata with the same
subject id represents the covariate path through time of a single subject, and the
result will contain one curve per subject. If the coxph fit had strata then that
must also be specified in newdata. If newid is not present, then each individual
row of newdata is presumed to represent a distinct subject.

optional starting time, a single numeric value. If present the returned curve
contains survival after start. time conditional on surviving to start. time.

option to return the influence values
the na.action to be used on the newdata argument
older argument that encompassed stype and ctype, now deprecated

optional, a vector of probabilities. The returned curve will be for a cohort with
this mixture of starting states. Most often a single state is chosen

158 survfit.coxph

time@ include the starting time for the curve in the output

for future methods

Details

This routine produces Pr(state) curves based on a coxph model fit. For single state models it pro-
duces the single curve for S(t) = Pr(remain in initial state at time t), known as the survival curve;
for multi-state models a matrix giving probabilities for all states. The stype argument states the
type of estimate, and defaults to the exponential of the cumulative hazard, better known as the
Breslow estimate. For a multi-state Cox model this involves the exponential of a matrix. The argu-
ment stype=1 uses a non-exponential or ‘direct’ estimate. For a single endpoint coxph model the
code evaluates the Kalbfleich-Prentice estimate, and for a multi-state model it uses an analog of the
Aalen-Johansen estimator. The latter approach is the default in the mstate package.

The ctype option affects the estimated cumulative hazard, and if stype=2 the estimated P(state)
curves as well. If not present it is chosen so as to be concordant with the ties option in the coxph
call. (For multistate coxphms objects, only ctype=1 is currently implemented.) Likewise the choice
between a model based and robust variance estimate for the curve will mirror the choice made in
the coxph call, any clustering is also inherited from the parent model.

If the newdata argument is missing, then a curve is produced for a single "pseudo” subject with co-
variate values equal to the means component of the fit. The resulting curve(s) rarely make scientific
sense, but the default remains due to an unwarranted belief by many that it represents an "average"
curve, and it’s use as a default in other packages. For coxph, the means component will contain
the value O for any 0/1 or TRUE/FALSE variables, and the mean value in the data for others. Its
primary reason for this default is to increase numerical accuracy in internal computations of the
routine via recentering the X matrix; there is no reason to assume this represents an ‘interesting’
hypothetical subject for prediction of their survival curve. Users are strongly advised to use the
newdata argument; predictions from a multistate coxph model require the newdata argument.

If the coxph model contained an offset term, then the data set in the newdata argument should also
contain that variable.

When the original model contains time-dependent covariates, then the path of that covariate through
time needs to be specified in order to obtain a predicted curve. This requires newdata to contain
multiple lines for each hypothetical subject which gives the covariate values, time interval, and
strata for each line (a subject can change strata), along with an id variable which demarks which
rows belong to each subject. The time interval must have the same (start, stop, status) variables as
the original model: although the status variable is not used and thus can be set to a dummy value of
0 or 1, it is necessary for the response to be recognized as a Surv object. Last, although predictions
with a time-dependent covariate path can be useful, it is very easy to create a prediction that is
senseless. Users are encouraged to seek out a text that discusses the issue in detail.

When a model contains strata but no time-dependent covariates the user of this routine has a choice.
If newdata argument does not contain strata variables then the returned object will be a matrix of
survival curves with one row for each strata in the model and one column for each row in newdata.
(This is the historical behavior of the routine.) If newdata does contain strata variables, then the
result will contain one curve per row of newdata, based on the indicated stratum of the original
model. In the rare case of a model with strata by covariate interactions the strata variable must be
included in newdata, the routine does not allow it to be omitted (predictions become too confusing).
(Note that the model Surv(time, status) ~ age*strata(sex) expands internally to strata(sex) + age:sex;
the sex variable is needed for the second term of the model.)

survfit.formula 159

See survfit for more details about the counts (number of events, number at risk, etc.)

Value

an object of class "survfit”. See survfit.object for details. Methods defined for survfit objects
are print, plot, lines, and points.

Notes

If the following pair of lines is used inside of another function then the model1=TRUE argument must
be added to the coxph call: fit <-coxph(...); survfit(fit). This is a consequence of the
non-standard evaluation process used by the model . frame function when a formula is involved.

Let log[S(¢; z)] be the log of the survival curve for a fixed covariate vector z, then log[S(t; z)] =
e(®=2)8 1og[S(t; 2)] is the log of the curve for any new covariate vector . There is an unfortunate
tendency to refer to the reference curve with z = 0 as ‘THE’ baseline hazard. However, any z can
be used as the reference point, and more importantly, if x — z is large the compuation can suffer
severe roundoff error. It is always safest to provide the desired = values directly via newdata.

References

Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution
in censored data. Comm. in Statistics 13, 2469-86.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New
York:Wiley.

Link, C. L. (1984). Confidence intervals for the survival function using Cox’s proportional hazards
model with covariates. Biometrics 40, 601-610.

Therneau T and Grambsch P (2000), Modeling Survival Data: Extending the Cox Model, Springer-
Verlag.

Tsiatis, A. (1981). A large sample study of the estimate for the integrated hazard function in Cox’s
regression model for survival data. Annals of Statistics 9, 93-108.

See Also

print.survfit, plot.survfit, lines.survfit, coxph, Surv, strata.

survfit.formula Compute a Survival Curve for Censored Data

Description

Computes an estimate of a survival curve for censored data using the Aalen-Johansen estimator. For
ordinary (single event) survival this reduces to the Kaplan-Meier estimate.

160 survfit.formula

Usage

S3 method for class 'formula’

survfit(formula, data, weights, subset, na.action,
stype=1, ctype=1, id, cluster, robust, istate, timefix=TRUE,
etype, model=FALSE, error, entry=FALSE, time@=FALSE, ...)

Arguments

formula a formula object, which must have a Surv object as the response on the left of
the ~ operator and, if desired, terms separated by + operators on the right. One
of the terms may be a strata object. For a single survival curve the right hand
side should be ~ 1.

data a data frame in which to interpret the variables named in the formula, subset
and weights arguments.

weights The weights must be nonnegative and it is strongly recommended that they
be strictly positive, since zero weights are ambiguous, compared to use of the
subset argument.

subset expression saying that only a subset of the rows of the data should be used in the
fit.

na.action a missing-data filter function, applied to the model frame, after any subset ar-
gument has been used. Default is options()$na.action.

stype the method to be used estimation of the survival curve: 1 =direct, 2 = exp(cumulative
hazard).

ctype the method to be used for estimation of the cumulative hazard: 1 = Nelson-Aalen
formula, 2 = Fleming-Harrington correction for tied events.

id identifies individual subjects, when a given person can have multiple lines of
data.

cluster used to group observations for the infinitesimal jackknife variance estimate, de-

faults to the value of id.

robust logical, should the function compute a robust variance. For multi-state survival
curves or interval censored data this is true by default. For single state data see
details, below.

istate for multi-state models, identifies the initial state of each subject or observation.
This also forces time@ =TRUE.

timefix process times through the aeqSurv function to eliminate potential roundoff is-
sues.

etype a variable giving the type of event. This has been superseded by multi-state Surv
objects and is deprecated; see example below.

model include a copy of the model frame in the output

error this argument is no longer used

entry if TRUE, the output will contain n.enter which is the number of observations

entering the risk set at any time; extra rows of output are created, if needed, for
each unique entry time. Only applicable if there is an id statement.

survfit.formula 161

time@ if TRUE, the output will include estimates at the starting point of the curve or
‘time 0’. See discussion below.

The following additional arguments are passed to internal functions called by
survfit.

sefit a logical value indicating whether standard errors should be computed.
Default is TRUE. For a multistate model, where the infinitesimal jackknife
(robust) standar error is used, the compute time for the standard error is
O(ndp) where n = number of observations, d = number of events and p =
number of states, while that for all other portions of the output (pstate,
cumhaz and counts) is O((n+d)p). For a moderate to large data set the
compute time difference between nd and n+d can be huge; using se.fit =
FALSE may be a wise choice.

conf.type One of "none"”, "plain”, "log" (the default), "log-log", "logit”
or "arcsin”. Only enough of the string to uniquely identify it is necessary.
The first option causes confidence intervals not to be generated. The sec-
ond causes the standard intervals curve +- k xse(curve), where k is de-
termined from conf.int. The log option calculates intervals based on the
cumulative hazard or log(survival). The log-log option bases the intervals
on the log hazard or log(-log(survival)), the logit option on log(survival/(1-
survival)) and arcsin on arcsin(survival).

conf.lower a character string to specify modified lower limits to the curve, the
upper limit remains unchanged. Possible values are "usual” (unmodified),
"peto”, and "modified"”. The modified lower limit is based on an "effec-
tive n" argument. The confidence bands will agree with the usual calcula-
tion at each death time, but unlike the usual bands the confidence interval
becomes wider at each censored observation. The extra width is obtained
by multiplying the usual variance by a factor m/n, where n is the number
currently at risk and m is the number at risk at the last death time. (The
bands thus agree with the un-modified bands at each death time.) This is
especially useful for survival curves with a long flat tail.
The Peto lower limit is based on the same "effective n" argument as the
modified limit, but also replaces the usual Greenwood variance term with a
simple approximation. It is known to be conservative.

start.time numeric value specifying a time to start calculating survival infor-
mation. The resulting curve is the survival conditional on surviving to
start.time.

conf.int the level for a two-sided confidence interval on the survival curve(s).
Default is 0.95.

influence alogical value indicating whether to return the infinitesimal jackknife
(influence) values for each subject. See details below.

p0 this applies only to multi-state curves. An optional vector giving the initial
probability across the states. If this is missing, then p0 is estimated using
the frequency of the starting states of all observations atrisk at start. time,
or if that is not specified, at the time of the first event.

entry by default, the survfit routines only return information at the event/censoring
times. If entry=TRUE then also return a n. enter component containing the
number who joined the risk set at each time; if necessary add extra rows to

162 survfit.formula

the output for each unique entry time. This is only applicable for (timel,
time2) survival data, and if there is an id statement. If a single subject had
times of (0,10), (10, 20), (25,30) with an event at 30, then time 10 is not an
entry or censoring time, but 20 counts as censored and 25 as an entry.

type an older argument that combined stype and ctype, now deprecated. Le-
gal values were "kaplan-meier" which is equivalent to stype=1, ctype=1,
"fleming-harrington" which is equivalent to stype=2, ctype=1, and "fh2"
which is equivalent to stype=2, ctype=2.

Details

If there is a data argument, then variables in the formula, weights, subset, id, cluster and
istate arguments will be searched for in that data set.

The routine returns both an estimated probability in state and an estimated cumulative hazard es-
timate. For simple survival the probability in state = probability alive, i.e, the estimated survival.
For multi-state it will be a matrix with one row per time and a column per state, rows sum to 1.
The cumulative hazard estimate is the Nelson-Aalen (NA) estimate or the Fleming-Harrington (FH)
estimate, the latter includes a correction for tied event times. The estimated probability in state can
estimated either using the exponential of the cumulative hazard, or as a direct estimate using the
Aalen-Johansen approach. For single state data the AJ estimate reduces to the Kaplan-Meier and the
probability in state to the survival curve; for competing risks data the AJ reduces to the cumulative
incidence (CI) estimator. For backward compatability the type argument can be used instead.

When the data set includes left censored or interval censored data (or both), then the EM approach
of Turnbull is used to compute the overall curve. Currently this algorithm is very slow, only applies
to simple survival (not multi-state), and defaults to a robust variance. Other R packages are available
which implement the iterative convex minorant (ICM) algorithm for interval censored data, which
is much faster than Turnbull’s method. Based on Sun (2001) the robust variance may be preferred,
as the naive estimate ignores the estimation of the weights. The standard estimate can be obtained
with robust= FALSE.

Without interval or left censored data (the usual case) the underlying algorithm for the routine is the
Aalen-Johansen estimate, of which the Kaplan-Meier (for single outcome data) and the cumulative
incidence (CI) estimate (for competing risks) are each a special case. For multi-state, the estimate
can be written as p(to)H (t1)H (t2) ... where p(to) is the prevalance vector across the states at
starting point £g, t1, %9, ... are the times at which events (transitions between states) occur, and H
are square transtion matrices with a row for each state.

Starting point: When diffent subjects (id) start at different time points, data using age as the time
scale for instance, deciding the default "time 0" can be complex. This value is the starting point for
the restricted mean estimate (area under the curve), the initial prevalence p0, and the first row of
output if time@ = TRUE. The order of the decision is

1. For a 2 column response (simple survival or competing risks) use the minimum of 0 and the
smallest time value (times can be negative).

2. If all subjects start in the same state, start at the same time, or if p@ is specified, use the
minimum observed starting time. If there is no istate argument all observations are assumed
to start in a state "(s0)".

3. Use the minimum observed event time, if the number at risk at that time is >0 for every curve
that will be created.

survfit.formula 163

4. Use the minimum event time for each curve, separately.

The last two above are a failsafe to prevent the routine from basing the initial prevalence of the states
on none or only a handful of observations. That does not mean such curves will be scientfically
sensible: when using age scale the user may wish to specify an explicit starting time. If time@ =
TRUE the first row of output for each curve will be at the starting time, otherwise the first event time
(for each curve separately).

Robust variance: If a robust is TRUE, or for multi-state curves, then the standard errors of the
results will be based on an infinitesimal jackknife (1J) estimate, otherwise the standard model based
estimate will be used. For single state curves, the default for robust will be TRUE if one of: there
is a cluster argument, there are non-integer weights, or there is a id statement and at least one of
the id values has multiple events, and FALSE otherwise. The default represents our best guess about
when one would most often desire a robust variance. When there are non-integer case weights and
(timel, time2) survival data the routine is at an impasse: a robust variance likely is called for, but
requires either id or cluster information to be done correctly; it will default to robust=FALSE if
they are not present.

With the 1J estimate, the leverage values themselves can be returned as an array using the influence
argument. Be forwarned that this array can be huge. Post fit influence using the resid method is
more flexible and would normally be preferred, in particular to get influence at only a select set of
time points. The influence option is currently used mostly in the package’s validity checks.

Let U(t) be the matrix of IJ values at time t, which has one row per observation, one column per
state. The robust variance compuation uses the collapsed weighted matrix rowsum(wU, cluster),
where w is the vector of weights and cluster is the grouping (most often the id). The result for each
curve is an array with dimensions (number of clusters, number of states, number of times), or a
matrix for single state data. When there are multiple curves, the influence is a list with one element
per curve.

Value

an object of class "survfit”. See survfit.object for details. Some of the methods defined for
survfit objects are print, plot, lines, points and residual.

References

Dorey, F. J. and Korn, E. L. (1987). Effective sample sizes for confidence intervals for survival
probabilities. Statistics in Medicine 6, 679-87.

Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution
in censored data. Comm. in Statistics 13, 2469-86.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New
York:Wiley.

Kyle, R. A. (1997). Moncolonal gammopathy of undetermined significance and solitary plasmacy-
toma. Implications for progression to overt multiple myeloma}, Hematology/Oncology Clinics N.
Amer. 11, 71-87.

Link, C. L. (1984). Confidence intervals for the survival function using Cox’s proportional hazards
model with covariates. Biometrics 40, 601-610.

Sun, J. (2001). Variance estimation of a survival function for interval-censored data. Star Med 20,
1949-1957.

164 survfit.formula

Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored
data. J Am Stat Assoc, 69, 169-173.

See Also

survfit.coxph for survival curves from Cox models, survfit.object for a description of the
components of a survfit object, print.survfit, plot.survfit, lines.survfit, residuals.survfit,
coxph, Surv.

Examples

#fit a Kaplan-Meier and plot it

fit <- survfit(Surv(time, status) ~ x, data = aml)

plot(fit, 1ty = 2:3)

legend(100, .8, c("Maintained”, "Nonmaintained”), lty = 2:3)

#fit a Cox proportional hazards model and plot the

#predicted survival for a 60 year old

fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)

plot(survfit(fit, newdata=data.frame(age=60)),
xscale=365.25, xlab = "Years”, ylab="Survival")

Here is the data set from Turnbull
There are no interval censored subjects, only left-censored (status=3),
right-censored (status @) and observed events (status 1)

#

Time

1 2 3 4
Type of observation

death 12 6 2 3
losses 3 2 o0 3
late entry 2 4 2 5
#

tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4),
status=rep(c(1,0,2),4),
n =c(12,3,2,6,2,4,2,0,2,3,3,5))
fit <- survfit(Surv(time, time, status, type='interval') ~1,
data=tdata, weight=n)

#
Three curves for patients with monoclonal gammopathy.
1. KM of time to PCM, ignoring death (statistically incorrect)
2. Competing risk curves (also known as "cumulative incidence")
3. Multi-state, showing Pr(in each state, at time t)
#
fitkKM <- survfit(Surv(stop, event=='pcm') ~1, data=mgusil,
subset=(start==0))
fitCR <- survfit(Surv(stop, event) ~1,
data=mgus1, subset=(start==0))
fitMS <- survfit(Surv(start, stop, event) ~ 1, id=id, data=mgusi)
Not run:
CR curves show the competing risks

survfit.matrix 165

plot(fitCR, xscale=365.25, xmax=7300, mark.time=FALSE,
col=2:3, xlab="Years post diagnhosis of MGUS",
ylab="P(state)")

lines(fitkM, fun='event', xmax=7300, mark.time=FALSE,
conf.int=FALSE)

text (3652, .4, "Competing risk: death”, col=3)

text (5840, .15,"Competing risk: progression”, col=2)

text (5480, .30,"KM:prog")

End(Not run)

survfit.matrix Create Aalen-Johansen estimates of multi-state survival from a matrix
of hazards.

Description

This allows one to create the Aalen-Johansen estimate of P, a matrix with one column per state and
one row per time, starting with the individual hazard estimates. Each row of P will sum to 1. Note
that this routine has been superseded by the use of multi-state Cox models, and will eventually be

removed.
Usage
S3 method for class 'matrix'’
survfit(formula, p@, method = c("discrete”, "matexp"”),
start.time, ...)
Arguments
formula a matrix of lists, each element of which is either NULL or a survival curve
object.
po the initial state vector. The names of this vector are used as the names of the

states in the output object. If there are multiple curves then p@ can be a matrix
with one row per curve.

method use a product of discrete hazards, or a product of matrix exponentials. See details
below.
start.time optional; start the calculations at a given starting point

further arguments used by other survfit methods

Details

On input the matrix should contain a set of predicted curves for each possible transition, and NULL
in other positions. Each of the predictions will have been obtained from the relevant Cox model.
This approach for multistate curves is easy to use but has some caveats. First, the input curves must
be consistent. The routine checks as best it can, but can easy be fooled. For instance, if one were
to fit two Cox models, obtain predictions for males and females from one, and for treatment A and

166 survfit.matrix

B from the other, this routine will create two curves but they are not meaningful. A second issue is
that standard errors are not produced.

The names of the resulting states are taken from the names of the vector of initial state probabilities.
If they are missing, then the dimnames of the input matrix are used, and lacking that the labels *1°,
’2’, etc. are used.

For the usual Aalen-Johansen estimator the multiplier at each event time is the matrix of hazards
H (also written as I + dA). When using predicted survival curves from a Cox model, however, it is
possible to get predicted hazards that are greater than 1, which leads to probabilities less than 0. If
the method argument is not supplied and the input curves are derived from a Cox model this routine
instead uses the approximation expm(H-I) as the multiplier, which always gives valid probabilities.
(This is also the standard approach for ordinary survival curves from a Cox model.)

Value

a survfitms object

Note

The R syntax for creating a matrix of lists is very fussy.

Author(s)

Terry Therneau

See Also

survfit

Examples

etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
event <- with(mgus2, ifelse(pstat==0, 2xdeath, 1))
event <- factor(event, 0:2, labels=c("censor”, "pcm”, "death"))

cfitl <- coxph(Surv(etime, event=="pcm") ~ age + sex, mgus2)
cfit2 <- coxph(Surv(etime, event=="death") ~ age + sex, mgus2)

predicted competing risk curves for a 72 year old with mspike of 1.2
(median values), male and female.

The survfit call is a bit faster without standard errors.

newdata <- expand.grid(sex=c("F", "M"), age=72, mspike=1.2)

AJmat <- matrix(list(), 3,3)

AJmat[1,2] <- list(survfit(cfitl, newdata, std.err=FALSE))
AJmat[1,3] <- list(survfit(cfit2, newdata, std.err=FALSE))
csurv <- survfit(AJmat, p@ =c(entry=1, PCM=0, death=0))

survfit.object

167

survfit.object

Survival Curve Object

Description

This class of objects is returned by the survfit class of functions to represent a fitted survival
curve. For a multi-state model the object has class c('survfitms', 'survfit').

Objects of this class have methods for the functions print, summary, plot, points and lines.
The print.survfit method does more computation than is typical for a print method and is doc-
umented on a separate page.

Arguments

n

time
n.risk
n.event

n.enter

n.censor

surv

pstate

std.err

cumhaz

counts

strata

upper

total number of observations in each curve.
the time points at which the curve has a step.
the number of subjects at risk at t.

the number of events that occur at time t.

for counting process data only, and only if there was an id argument, the num-
ber of subjects that enter the risk set during the current interval. If there are
event/censoring times at 1, 3, 5 for instance, someone who enters at time 1 is
counted in the (1, 3] interval, i.e., appears in the row for time 3.

for counting process data only, the number of subjects who exit the risk set, with-
out an event, at time t. (For right censored data, this number can be computed
from the successive values of the number at risk).

the estimate of survival at time t+0. This may be a vector or a matrix. The
latter occurs when a set of survival curves is created from a single Cox model,
in which case there is one column for each covariate set.

a multi-state survival will have the pstate component instead of surv. It will
be a matrix containing the estimated probability of each state at each time, one
column per state.

for a survival curve this contains standard error of the cumulative hazard or -
log(survival), for a multi-state curve it contains the standard error of prev. This
difference is a reflection of the fact that each is the natural calculation for that
case.

optional. Contains the cumulative hazard for each possible transition.

optional. If weights were used, the n. risk etc elements contain weighted sums;
the counts matrix will contain unweighted values. Weighted values are nor-
mally more useful for further computation, unweighted may be preferred for
labeling or printout.

if there are multiple curves, this component gives the number of elements of the
time vector corresponding to the first curve, the second curve, and so on. The
names of the elements are labels for the curves.

optional upper confidence limit for the survival curve or pstate

168 survfit.object

lower options lower confidence limit for the survival curve or pstate
to optional, the starting time for the curve
p9, spo for a multistate object, the distribution of starting states. If the curve has a strata

dimension, this will be a matrix one row per stratum. The sp@ element has the
standard error of p0, if pO was estimated.

newdata for survival curves from a fitted model, this contains the covariate values for the
curves

n.id the total number of unique id values that contributed to the curve. This is only
available if the original call used the id option.

conf.type the approximation used to compute the confidence limits.

conf.int the level of the confidence limits, e.g. 90 or 95%.

transitions for multi-state data, the total number of transitions of each type.

na.action the returned value from the na.action function, if any. It will be used in the
printout of the curve, e.g., the number of observations deleted due to missing
values.

call an image of the call that produced the object.

type type of survival censoring.

influence.p, influence.c
optional influence matrices for the pstate (or surv) and for the cumhaz esti-
mates. A list with one element per stratum, each element of the list is an array
indexed by subject, time, state.

version the version of the object. Will be missing, 2, or 3

Structure

The following components must be included in a legitimate survfit or survfitms object.

Subscripts

Survfit objects can be subscripted. This is often used to plot a subset of the curves, for instance.
From the user’s point of view the survfit object appears to be a vector, matrix, or array of curves.
The first dimension is always the underlying number of curves or “strata”; for multi-state models the
state is always the last dimension. Predicted curves from a Cox model can have a second dimension
which is the number of different covariate prediction vectors.

Details

The survfit object has evolved over time: when first created there was no thought of multi-state
models for instance. This evolution has almost entirely been accomplished by the addition of new
elements.

For both plots of the curves and computation of the restricted mean time in state (RMTS) we need
the concept of a starting point t0 and starting prevalence of the states pO for each curve. (Sojourn
time, area under the curve and restricted mean survival time are other labels for the RMTS). Time
0 is not, by default, included as part of the standard tableau of results, i.e., time, number at risk,
number of events, etc. For simple survival with a 0/1 status variable, the starting state pO0 is the

survfitO 169

obvious default of "everyone alive", and t0 is formally not discernable from the data and so was left
out. (A design decision made in 1986, and now far too late to change.) However, for plots t0 is
assumed to be the minimum of 0 and all observed times. Negative survival times are unusual but
not invalid. Multi-state survival curves include t@ and p@ as a part of the returned object. The first
is a single value for all curves, the second is per curve.

The survfit@ routine can be used to add these values to the main curve data, this is done by the
default print, plot, and summary methods for survfit objects. The methods vignette has discussion
of the rationale of how t0 and pO are chosen in the multi-state case. Notice that if there is an event
at time t0, e.g., a death on day O for competing risks, then p0 will contain the prevalence just before
that event occured.

See Also

plot.survfit, summary.survfit, print.survfit, survfit, survfito

survfit@ Convert the format of a survfit object.

Description

Add the point for a starting time ("time 0") to a survfit object’s elements. This is useful for plotting.

Usage
survfito(x, ...)
Arguments
X a survfit object
any other arguments are ignored
Details

Survival curves are traditionally plotted forward from time 0, but since the true starting time is not
known as a part of the data, the survfit routine does not include a time O value in the resulting
object. Someone might look at cumulative mortgage defaults versus calendar year, for instance,
with the ‘time’ value a Date object. The plotted curve probably should not start at 0 = 1970-01-01.
Due to this uncertainty, it was decided not to include a "time 0" as part of a survfit object. Whether
that (1989) decision was wise or foolish, it is now far too late to change it. (We tried it once as a
trial, resulting in over 20 errors in the survival test suite. We extrapolated that it might break 1/3 of
the other CRAN packages that depend on survival, if made a default.) Many curves do include a
value t0 for "time 0", which is where the survfit routine has surmised that the curve would start.

One problem with this choice is that some functions must choose a starting point, plots and compu-
tation of the restricted mean survival time are two primary examples. This utility function is used
by plot.survfit and summary.survfit to fill in that gap.

The value used for this first time point is the first one below

170 survfitcoxph.fit

1. a t@ value found in the in the object.
2. for single state survival

¢ min(0, time) for Surv(time, status) data
¢ min(timel) for Surv(timel, time2, status) data

3. for multi state survival
* min(0, time) for Surv(time, event) data, e.g., competing risks
* min(timel) for Surv(timel, time2, event) data, if everyone starts in the same state

(Remember that negative times are allowed in Surv objects.)

This function will add a new time point at the front of each curve, but only if said time point is
less than existing points in the curve. If there were a death on day 0, for instance, it will not add a
(time=0, survival=1) point. (The question of whether the plotted curve in this case should or should
not start with a vertical segment can be debated ad nauseum. It has no effect on the area under the
curve (RMST), and the summary for time O should report the smaller value.)

The resulting object is not currently guarranteed to work with functions that further manipulate a
survfit object such as subscripting, aggregation, pseudovalues, etc. (remember the 20 errors).
Rather it is intended as a penultimate step, most often when creating a plot or summary of the
curve(s).

Value

a reformulated version of the object with an initial data point added. The time, surv, pstate,
cumhaz, std.err, std.cumhaz and other components will all be aligned, so as to make plots and
summaries easier to produce.

survfitcoxph.fit A direct interface to the ‘computational engine’ of survfit.coxph

Description

This program is mainly supplied to allow other packages to invoke the survfit.coxph function at a
‘data’ level rather than a ‘user’ level. It does no checks on the input data that is provided, which can
lead to unexpected errors if that data is wrong.

Usage

survfitcoxph.fit(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype,
vartype, varmat, id, y2, strata2, unlist=TRUE)

Arguments

y the response variable used in the Cox model. (Missing values removed of
course.)

X covariate matrix used in the Cox model

survfitcoxph.fit

wt

X2

risk

newrisk
strata
se.fit

survtype

vartype
varmat

id

y2

strata2

unlist

Value

171

weight vector for the Cox model. If the model was unweighted use a vector of
Is.

matrix describing the hypothetical subjects for which a curve is desired. Must
have the same number of columns as x.

the risk score exp(X beta) from the fitted Cox model. If the model had an offset,
include it in the argument to exp.

risk scores for the hypothetical subjects
strata variable used in the Cox model. This will be a factor.
if TRUE the standard errors of the curve(s) are returned

1=Kalbfleisch-Prentice, 2=Nelson-Aalen, 3=Efron. It is usual to match this to
the approximation for ties used in the coxph model: KP for ‘exact’, N-A for
‘breslow’ and Efron for ‘efron’.

1=Greenwood, 2=Aalen, 3=Efron
the variance matrix of the coefficients

optional; if present and not NULL this should be a vector of identifiers of length
nrow(x2). A mon-null value signifies that x2 contains time dependent covari-
ates, in which case this identifies which rows of x2 go with each subject.

survival times, for time dependent prediction. It gives the time range (timel,time2]
for each row of x2. Note: this must be a Surv object and thus contains a status
indicator, which is never used in the routine, however.

vector of strata indicators for x2. This must be a factor.

if FALSE the result will be a list with one element for each strata. Otherwise the
strata are “unpacked” into the form found in a survfit object.

a list containing nearly all the components of a survfit object. All that is missing is to add the
confidence intervals, the type of the original model’s response (as in a coxph object), and the class.

Note

The source code for for both this function and survfit.coxph is written using noweb. For complete
documentation see the inst/sourcecode. pdf file.

Author(s)

Terry Therneau

See Also

survfit.coxph

172 survobrien

survival-deprecated Deprecated functions in package survival

Description

These functions are temporarily retained for compatability with older programs, and may transition
to defunct status.

Usage
survConcordance(formula, data, weights, subset, na.action) # use concordance
survConcordance.fit(y, x, strata, weight) # use concordancefit
Arguments
formula a formula object, with the response on the left of a ~ operator, and the terms
on the right. The response must be a survival object as returned by the Surv
function.
data a data frame

weights, subset, na.action
as for coxph

X, Y, strata, weight
predictor, response, strata, and weight vectors for the direct call

See Also

Deprecated

survobrien O’Brien’s Test for Association of a Single Variable with Survival

Description

Peter O’Brien’s test for association of a single variable with survival This test is proposed in Bio-
metrics, June 1978.

Usage

survobrien(formula, data, subset, na.action, transform)

survobrien 173

Arguments
formula a valid formula for a cox model.
data a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument.
subset expression indicating which subset of the rows of data should be used in the fit.
All observations are included by default.
na.action a missing-data filter function. This is applied to the model.frame after any subset
argument has been used. Default is options()\$na.action.
transform the transformation function to be applied at each time point. The default is
O’Brien’s suggestion logit(tr) where tr = (rank(x)- 1/2)/ length(x) is the rank
shifted to the range 0-1 and logit(x) = log(x/(1-x)) is the logit transform.
Value

a new data frame. The response variables will be column names returned by the Surv function,
i.e., "time" and "status" for simple survival data, or "start", "stop", "status" for counting process
data. Each individual event time is identified by the value of the variable . strata.. Other variables
retain their original names. If a predictor variable is a factor or is protected with I(), it is retained

as is. Other predictor variables have been replaced with time-dependent logit scores.

The new data frame will have many more rows that the original data, approximately the original
number of rows * number of deaths/2.

Method

A time-dependent cox model can now be fit to the new data. The univariate statistic, as originally
proposed, is equivalent to single variable score tests from the time-dependent model. This equiva-
lence is the rationale for using the time dependent model as a multivariate extension of the original

paper.
In O’Brien’s method, the x variables are re-ranked at each death time. A simpler method, proposed
by Prentice, ranks the data only once at the start. The results are usually similar.

Note

A prior version of the routine returned new time variables rather than a strata. Unfortunately, that
strategy does not work if the original formula has a strata statement. This new data set will be the
same size, but the coxph routine will process it slightly faster.

References

O’Brien, Peter, "A Nonparametric Test for Association with Censored Data", Biometrics 34: 243-
250, 1978.

See Also

survdiff

174 survreg

Examples

xx <- survobrien(Surv(futime, fustat) ~ age + factor(rx) + I(ecog.ps),
data=ovarian)
coxph(Surv(time, status) ~ age + strata(.strata.), data=xx)

survreg Regression for a Parametric Survival Model

Description

Fit a parametric survival regression model. These are location-scale models for an arbitrary trans-
form of the time variable; the most common cases use a log transformation, leading to accelerated
failure time models.

Usage

survreg(formula, data, weights, subset,
na.action, dist="weibull”, init=NULL, scale=0,
control,parms=NULL,model=FALSE, x=FALSE,

y=TRUE, robust=FALSE, cluster, score=FALSE, ...)
Arguments

formula a formula expression as for other regression models. The response is usually
a survival object as returned by the Surv function. See the documentation for
Surv, 1m and formula for details.

data a data frame in which to interpret the variables named in the formula, weights
or the subset arguments.

weights optional vector of case weights

subset subset of the observations to be used in the fit

na.action a missing-data filter function, applied to the model.frame, after any subset ar-
gument has been used. Default is options()\$na.action.

dist assumed distribution for y variable. If the argument is a character string, then
itis assumed to name an element from survreg.distributions. These include
"weibull”, "exponential”, "gaussian”, "logistic"”,"lognormal” and "loglogistic".
Otherwise, it is assumed to be a user defined list conforming to the format de-
scribed in survreg.distributions.

parms a list of fixed parameters. For the t-distribution for instance this is the degrees
of freedom; most of the distributions have no parameters.

init optional vector of initial values for the parameters.

scale optional fixed value for the scale. If set to <=0 then the scale is estimated.

control a list of control values, in the format produced by survreg.control. The de-

fault value is survreg.control()

survreg

model, x, y

score

robust

cluster

Details

175

flags to control what is returned. If any of these is true, then the model frame,
the model matrix, and/or the vector of response times will be returned as com-
ponents of the final result, with the same names as the flag arguments.

return the score vector. (This is expected to be zero upon successful conver-
gence.)

Use robust sandwich error instead of the asymptotic formula. Defaults to TRUE
if there is a cluster argument.

Optional variable that identifies groups of subjects, used in computing the robust
variance. Like model variables, this is searched for in the dataset pointed to by
the data argument.

other arguments which will be passed to survreg.control.

All the distributions are cast into a location-scale framework, based on chapter 2.2 of Kalbfleisch
and Prentice. The resulting parameterization of the distributions is sometimes (e.g. gaussian) iden-
tical to the usual form found in statistics textbooks, but other times (e.g. Weibull) it is not. See the
book for detailed formulas.

When using weights be aware of the difference between replication weights and sampling weights.
In the former, a weight of 2’ means that there are two identical observations, which have been
combined into a single row of data. With sampling weights there is a single observed value, with a
weight used to achieve balance with respect to some population. To get proper variance with repli-
cation weights use the default variance, for sampling weights use the robust variance. Replication
weights were once common (when computer memory was much smaller) but are now rare.

Value

an object of class survreg is returned.

References

Kalbfleisch, J. D. and Prentice, R. L., The statistical analysis of failure time data, Wiley, 2002.

See Also

survreg.object, survreg.distributions, pspline, frailty, ridge

Examples

Fit an exponential model: the two fits are the same
survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull',

scale=1)

survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
dist="exponential”)

#

A model with different baseline survival shapes for two groups, i.e.,
two different scale parameters
survreg(Surv(time, status) ~ ph.ecog + age + strata(sex), lung)

176 survreg.control

There are multiple ways to parameterize a Weibull distribution. The survreg
function embeds it in a general location-scale family, which is a

different parameterization than the rweibull function, and often leads

to confusion.

survreg's scale = 1/(rweibull shape)

survreg's intercept = log(rweibull scale)

For the log-likelihood all parameterizations lead to the same value.

y <- rweibull(1000, shape=2, scale=5)

survreg(Surv(y)~1, dist="weibull")

Economists fit a model called “tobit regression', which is a standard

linear regression with Gaussian errors, and left censored data.

tobinfit <- survreg(Surv(durable, durable>0, type='left') ~ age + quant,
data=tobin, dist='gaussian')

survreg.control Package options for survreg and coxph

Description

This functions checks and packages the fitting options for survreg

Usage

survreg.control(maxiter=30, rel.tolerance=1e-09,
toler.chol=1e-10, iter.max, debug=0, outer.max=10)

Arguments

maxiter maximum number of iterations

rel.tolerance relative tolerance to declare convergence

toler.chol Tolerance to declare Cholesky decomposition singular

iter.max same as maxiter

debug print debugging information

outer.max maximum number of outer iterations for choosing penalty parameters
Value

A list with the same elements as the input

See Also

survreg

survreg.distributions 177

survreg.distributions Parametric Survival Distributions

Description
List of distributions for accelerated failure models. These are location-scale families for some
transformation of time. The entry describes the cdf F' and density f of a canonical member of the
family.

Usage

survreg.distributions

Format

There are two basic formats, the first defines a distribution de novo, the second defines a new
distribution in terms of an old one.

name: name of distribution
variance: function(parms) returning the variance (currently unused)
init(x,weights,...): Function returning an initial

estimate of the mean and variance
(used for initial values in the iteration)

density(x,parms): Function returning a matrix with columns F, 1 — F, f, f'/f, and f"/f
quantile(p,parms): Quantile function

scale: Optional fixed value for the scale parameter

parms: Vector of default values and names for any additional parameters

deviance(y,scale,parms): Function returning the deviance for a
saturated model; used only for deviance residuals.

and to define one distribution in terms of another

name: name of distribution
dist: name of parent distribution
trans: transformation (eg log)

dtrans: derivative of transformation
itrans: inverse of transformation
scale: Optional fixed value for scale parameter

Details

There are four basic distributions:extreme, gaussian, logistic and t. The last three are parametrised
in the same way as the distributions already present in R. The extreme value cdf is

F=1—¢"¢.

178 survreg.distributions

When the logarithm of survival time has one of the first three distributions we obtain respectively
weibull, lognormal, and loglogistic. The location-scale parameterization of a Weibull distri-
bution found in survreg is not the same as the parameterization of rweibull.

The other predefined distributions are defined in terms of these. The exponential and rayleigh
distributions are Weibull distributions with fixed scale of 1 and 0.5 respectively, and loggaussian
is a synonym for lognormal.

For speed parts of the three most commonly used distributions are hardcoded in C; for this reason the
elements of survreg.distributions with names of "Extreme value", "Logistic" and "Gaussian"
should not be modified. (The order of these in the list is not important, recognition is by name.)
As an alternative to modifying survreg.distributions a new distribution can be specified as a
separate list. This is the preferred method of addition and is illustrated below.

See Also

survreg, pweibull, pnorm,plogis, pt, survregDtest

Examples

time transformation

survreg(Surv(time, status) ~ ph.ecog + sex, dist='weibull', data=lung)
change the transformation to work in years

intercept changes by log(365), everything else stays the same
my.weibull <- survreg.distributions$weibull

my.weibull$trans <- function(y) log(y/365)

my.weibull$itrans <- function(y) 365*exp(y)

survreg(Surv(time, status) ~ ph.ecog + sex, lung, dist=my.weibull)

Weibull parametrisation

y<-rweibull (1000, shape=2, scale=5)

survreg(Surv(y)~1, dist="weibull")

survreg scale parameter maps to 1/shape, linear predictor to log(scale)

Cauchy fit
mycauchy <- list(name='Cauchy',
init= function(x, weights, ...)
c(median(x), mad(x)),
density= function(x, parms) {
temp <- 1/(1 + x*2)
cbind(.5 + atan(x)/pi, .5+ atan(-x)/pi,
temp/pi, -2 *x*temp, 2*temp*(4*x"2*xtemp -1))
3
quantile= function(p, parms) tan((p-.5)*pi),
deviance= function(...) stop('deviance residuals not defined')
)

survreg(Surv(log(time), status) ~ ph.ecog + sex, lung, dist=mycauchy)

survreg.object 179

survreg.object Parametric Survival Model Object

Description

This class of objects is returned by the survreg function to represent a fitted parametric sur-
vival model. Objects of this class have methods for the functions print, summary, predict, and
residuals.

COMPONENTS

The following components must be included in a legitimate survreg object.

coefficients the coefficients of the linear.predictors, which multiply the columns of the model
matrix. It does not include the estimate of error (sigma). The names of the coefficients are
the names of the single-degree-of-freedom effects (the columns of the model matrix). If the
model is over-determined there will be missing values in the coefficients corresponding to
non-estimable coefficients.

icoef coefficients of the baseline model, which will contain the intercept and log(scale), or multiple
scale factors for a stratified model.

var the variance-covariance matrix for the parameters, including the log(scale) parameter(s).
loglik a vector of length 2, containing the log-likelihood for the baseline and full models.
iter the number of iterations required

linear.predictors the linear predictor for each subject.

df the degrees of freedom for the final model. For a penalized model this will be a vector with one
element per term.

scale the scale factor(s), with length equal to the number of strata.
idf degrees of freedom for the initial model.

means a vector of the column means of the coefficient matrix.
dist the distribution used in the fit.

weights included for a weighted fit.

The object will also have the following components found in other model results (some are op-
tional): linear predictors, weights, x, y, model, call, terms and formula. See 1m.

See Also

survreg, 1m

180 survregDtest

survregDtest Verify a survreg distribution

Description

This routine is called by survreg to verify that a distribution object is valid.

Usage

survregDtest(dlist, verbose = F)

Arguments
dlist the list describing a survival distribution
verbose return a simple TRUE/FALSE from the test for validity (the default), or a ver-
bose description of any flaws.
Details

If the survreg function rejects your user-supplied distribution as invalid, this routine will tell you
why it did so.

Value

TRUE if the distribution object passes the tests, and either FALSE or a vector of character strings if
not.

Author(s)

Terry Therneau

See Also

survreg.distributions, survreg

Examples

n

An invalid distribution (it should have "init =
surveg would give an error message
mycauchy <- list(name='Cauchy',
init<- function(x, weights, ...)
c(median(x), mad(x)),
density= function(x, parms) {
temp <- 1/(1 + x*2)
cbind(.5 + atan(temp)/pi, .5+ atan(-temp)/pi,
temp/pi, -2 *x*temp, 2*temp”2*(4*x*2xtemp -1))

on line 2)

}!
quantile= function(p, parms) tan((p-.5)*pi),
deviance= function(...) stop('deviance residuals not defined')

survSplit 181

)

survregDtest(mycauchy, TRUE)

survSplit Split a survival data set at specified times

Description

Given a survival data set and a set of specified cut times, split each record into multiple subrecords
at each cut time. The new data set will be in ‘counting process’ format, with a start time, stop time,
and event status for each record.

Usage

survSplit(formula, data, subset, na.action=na.pass,
cut, start="tstart"”, id, zero=0, episode,
end="tstop"”, event="event")

Arguments
formula a model formula
data a data frame

subset, na.action
rows of the data to be retained

cut the vector of timepoints to cut at
start character string with the name of a start time variable (will be created if needed)
id character string with the name of new id variable to create (optional). This can
be useful if the data set does not already contain an identifier.
zero If start doesn’t already exist, this is the time that the original records start.
episode character string with the name of new episode variable (optional)
end character string with the name of event time variable
event character string with the name of censoring indicator
Details

Each interval in the original data is cut at the given points; if an original row were (15, 60] with a
cut vector of (10,30, 40) the resulting data set would have intervals of (15,30], (30,40] and (40, 60].

Each row in the final data set will lie completely within one of the cut intervals. Which interval for
each row of the output is shown by the episode variable, where 1= less than the first cutpoint, 2=
between the first and the second, etc. For the example above the values would be 2, 3, and 4.

The routine is called with a formula as the first argument. The right hand side of the formula can
be used to delimit variables that should be retained; normally one will use ~ . as a shorthand to
retain them all. The routine will try to retain variable names, e.g. Surv(adam, joe, fred)~. will

182 survSplit

result in a data set with those same variable names for tstart, end, and event options rather than
the defaults. Any user specified values for these options will be used if they are present, of course.
However, the routine is not sophisticated; it only does this substitution for simple names. A call of
Surv(time, stat==2) for instance will not retain "stat" as the name of the event variable.

Rows of data with a missing time or status are copied across unchanged, unless the na.action argu-
ment is changed from its default value of na. pass. But in the latter case any row that is missing for
any variable will be removed, which is rarely what is desired.

Value

New, longer, data frame.

See Also

Surv, cut, reshape

Examples

fitl <- coxph(Surv(time, status) ~ karno + age + trt, veteran)
plot(cox.zph(fit1)[11)
a cox.zph plot of the data suggests that the effect of Karnofsky score
begins to diminish by 6@ days and has faded away by 120 days.
Fit a model with separate coefficients for the three intervals.
#
vet2 <- survSplit(Surv(time, status) ~., veteran,
cut=c(60, 120), episode ="timegroup")
fit2 <- coxph(Surv(tstart, time, status) ~ karno* strata(timegroup) +
age + trt, data= vet2)

c(overall= coef(fit1)[1],

t0_60 coef (fit2)[1],

t60_120= sum(coef(fit2)[c(1,4)]1),

t120 sum(coef (fit2)[c(1,5)1))

Sometimes we want to split on one scale and analyse on another

Add a "current age"” variable to the mgus2 data set.

templ <- mgus2

templ1$endage <- mgus2$age + mgus2$futime/12 # futime is in months

templ$startage <- templ$age

temp2 <- survSplit(Surv(age, endage, death) ~ ., templ, cut=25:100,
start= "agel”, end= "age2")

restore the time since enrollment scale
temp2$timel <- (temp2$agel - temp2$startage)*12
temp2$time2 <- (temp2$age2 - temp2$startage)*12

In this data set, initial age and current age have similar utility
mfitl <- coxph(Surv(futime, death) ~ age + sex, data=mgus2)
mfit2 <- coxph(Surv(timel, time2, death) ~ agel + sex, data=temp2)

tcut 183

tcut Factors for person-year calculations

Description
Attaches categories for person-year calculations to a variable without losing the underlying contin-
uous representation

Usage

tcut(x, breaks, labels, scale=1)
S3 method for class 'tcut'

levels(x)
Arguments
X numeric/date variable
breaks breaks between categories, which are right-continuous
labels labels for categories
scale Multiply x and breaks by this.
Value

An object of class tcut

See Also

cut, pyears

Examples

For pyears, all time variable need to be on the same scale; but
futime is in months and age is in years

test <- mgus2

test$years <- test$futime/30.5 # follow-up in years

first grouping based on years from starting age (= current age)
second based on years since enrollment (all start at 9)
test$agegrp <- tcut(test$age, c(0,60, 70, 80, 100),
c("<=60", "60-70", "70-80", ">80"))
test$fgrp <- tcut(rep(@, nrow(test)), c(o, 1, 5, 10, 100),
c("o-1yr", "1-5yr", "5-10yr", ">10yr"))
death rates per 1000, by age group
pfitl <- pyears(Surv(years, death) ~ agegrp, scale =1000, data=test)
round(pfiti1$event/ pfiti$pyears)

#death rates per 100, by follow-up year and age

184 timeline

there are excess deaths in the first year, within each age stratum
pfit2 <- pyears(Surv(years, death) ~ fgrp + agegrp, scale =1000, data=test)
round(pfit2$event/ pfit2$pyears)

timeline Convert to/from a timeline data set format

Description
Convert from a ’timeline’ data set format for survival data to the counting process form, and vice
versa.

Usage

totimeline(formula, data, id, istate)
fromtimeline(formula, data, id, istate="istate")

Arguments
formula a model formula with a Surv object on the left
data data set in which to evaluate the formula
id the name of the identifier variable, which will be searched first in the data.
Multiple rows for the same subject will share the same id value.
istate for totimeline the name of the variable in the counting process data set that
contains the initial state. For fromtimeline the variable name to use for the
initial state.
Details

Counting process style data sets are heavily used in the survival package for both time-dependent
covariates and multistate data. Each row of the data will contain a time interval (t1, t2), status or
state at the end of the interval, covariate values that apply over the interval, and an id variable. A
timeline data set will have a single time covariate, an id variable, along with other covariate and
outcome values that were observed at that time point. If some covariates are observed at a particular
time point but others were not, these other values would be missing for that row. (The exception are
covariates that are constant, like birthdate or a genetic marker, which will normally appear across
all rows).

A disadvantage of the counting process form is that it requires special tools for manipulation, e.g.,
tmerge; timeline data sets are much simpler in structure and thus can benefit from a much wider
variety of tools in their creation. They are also more direct wrt ensuring validity: each row should
encode what was actually observed at that time point. Another potential advantage is for variables
such as diabetes, which might be used as an outcome in one model and a predictor in another.
This requires two separate variables in a counting process data set, since covariates change at the
beginning of a time interval and outcomes happen at the end of it.

The conversion from timeline to counting process form uses the same rules with respect to missing
values as tmerge, it is in fact what is used behind the scenes to do the conversion.

tmerge 185

Value

a data set of the proper form

Note

This is at present an experimental feature.

See Also

tmerge, survSplit

tmerge Time based merge for survival data

Description

A common task in survival analysis is the creation of start,stop data sets which have multiple in-
tervals for each subject, along with the covariate values that apply over that interval. This function
aids in the creation of such data sets.

Usage
tmerge(datal, data2, 1id,..., tstart, tstop, options)
Arguments
datail the primary data set, to which new variables and/or observation will be added
data2 second data set in which all the other arguments will be found
id subject identifier
operations that add new variables or intervals, see below
tstart optional variable to define the valid time range for each subject, only used on an
initial call
tstop optional variable to define the valid time range for each subject, only used on an
initial call
options a list of options. Valid ones are idname, tstartname, tstopname, delay, na.rm,
and tdcstart. See the explanation below.
Details

The program is often run in multiple passes, the first of which defines the basic structure, and
subsequent ones that add new variables to that structure. For a more complete explanation of how
this routine works refer to the vignette on time-dependent variables.

There are 4 types of operational arguments: a time dependent covariate (tdc), cumulative count
(cumtdc), event (event) or cumulative event (cumevent). Time dependent covariates change their
values before an event, events are outcomes.

186 tmerge

* newname = tdc(y, X, init): A new time dependent covariate variable will created. The argument
y is assumed to be on the scale of the start and end time, and each instance describes the
occurrence of a "condition" at that time. The second argument x is optional. In the case where
x is missing the count variable starts at 0 for each subject and becomes 1 at the time of the
event. If x is present the value of the time dependent covariate is initialized to value of init, if
present, or the tdcstart option otherwise, and is updated to the value of x at each observation.
If the option na.rm=TRUE missing values of x are first removed, i.e., the update will not create
missing values.

e newname = cumtdc(y,X, init): Similar to tdc, except that the event count is accumulated over
time for each subject. The variable x must be numeric.

* newname = event(y,x): Mark an event at time y. In the usual case that x is missing the new 0/1
variable will be similar to the 0/1 status variable of a survival time.

* newname = cumevent(y,x): Cumulative events.

The function adds three new variables to the output data set: tstart, tstop, and id. The options
argument can be used to change these names. If, in the first call, the id argument is a simple name,
that variable name will be used as the default for the idname option. If datal contains the tstart
variable then that is used as the starting point for the created time intervals, otherwise the initial
interval for each id will begin at O by default. This will lead to an invalid interval and subsequent
error if say a death time were <= 0.

The na.rm option affects creation of time-dependent covariates. Should a data row in data2 that
has a missing value for the variable be ignored or should it generate an observation with a value
of NA? The default of TRUE causes the last non-missing value to be carried forward. The delay
option causes a time-dependent covariate’s new value to be delayed, see the vignette for an example.

Value

a data frame with two extra attributes tm.retain and tcount. The first contains the names of the
key variables, and which names correspond to tdc or event variables. The tcount variable contains
counts of the match types. New time values that occur before the first interval for a subject are
"early", those after the last interval for a subject are "late", and those that fall into a gap are of type
"gap". All these are are considered to be outside the specified time frame for the given subject. An
event of this type will be discarded. An observation in data2 whose identifier matches no rows in
datal is of type "missid" and is also discarded. A time-dependent covariate value will be applied
to later intervals but will not generate a new time point in the output.

The most common type will usually be "within", corresponding to those new times that fall inside
an existing interval and cause it to be split into two. Observations that fall exactly on the edge of
an interval but within the (min, max] time for a subject are counted as being on a "leading" edge,
"trailing" edge or "boundary". The first corresponds for instance to an occurrence at 17 for someone
with an intervals of (0,15] and (17, 35]. A tdc at time 17 will affect this interval but an event at
17 would be ignored. An event occurrence at 15 would count in the (0,15] interval. The last case
is where the main data set has touching intervals for a subject, e.g. (17, 28] and (28,35] and a new
occurrence lands at the join. Events will go to the earlier interval and counts to the latter one. A
last column shows the number of additions where the id and time point were identical. When this
occurs, the tdc and event operators will use the final value in the data (last edit wins), but ignoring
missing, while cumtdc and cumevent operators add up the values.

These extra attributes are ephemeral and will be discarded if the dataframe is modified. This is
intentional, since they will become invalid if for instance a subset were selected.

tobin 187

Author(s)

Terry Therneau

See Also
neardate
Examples
The pbc data set contains baseline data and follow-up status
for a set of subjects with primary biliary cirrhosis, while the
pbcseq data set contains repeated laboratory values for those
subjects.
The first data set contains data on 312 subjects in a clinical trial plus
106 that agreed to be followed off protocol, the second data set has data
only on the trial subjects.

temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline data
pbc2 <- tmerge(temp, temp, id=id, endpt = event(time, status))
pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites),
bili = tdc(day, bili), albumin = tdc(day, albumin),
protime = tdc(day, protime), alk.phos = tdc(day, alk.phos))

fit <- coxph(Surv(tstart, tstop, endpt==2) ~ protime + log(bili), data=pbc2)

tobin Tobin’s Tobit data

Description
Economists fit a parametric censored data model called the ‘tobit’. These data are from Tobin’s
original paper.
Usage
tobin
data(tobin, package="survival")
Format
A data frame with 20 observations on the following 3 variables.

durable Durable goods purchase
age Age in years

quant Liquidity ratio (x 1000)

Source

J Tobin (1958), Estimation of relationships for limited dependent variables. Econometrica 26, 24—
36.

188 transplant

Examples

tfit <- survreg(Surv(durable, durable>0, type='left') ~age + quant,
data=tobin, dist='gaussian')

predict(tfit, type="response")

transplant Liver transplant waiting list

Description

Subjects on a liver transplant waiting list from 1990-1999, and their disposition: received a trans-
plant, died while waiting, withdrew from the list, or censored.

Usage

transplant
data(transplant, package="survival")

Format
A data frame with 815 (transplant) observations on the following 6 variables.

age age at addition to the waiting list

sex mor f

abo blood type: A, B, AB or O

year year in which they entered the waiting list

futime time from entry to final disposition

event final disposition: censored, death, 1tx or withdraw

Details

This represents the transplant experience in a particular region, over a time period in which liver
transplant became much more widely recognized as a viable treatment modality. The number of
liver transplants rises over the period, but the number of subjects added to the liver transplant waiting
list grew much faster. Important questions addressed by the data are the change in waiting time,
who waits, and whether there was an consequent increase in deaths while on the list.

Blood type is an important consideration. Donor livers from subjects with blood type O can be
used by patients with A, B, AB or 0 blood types, whereas an AB liver can only be used by an
AB recipient. Thus type O subjects on the waiting list are at a disadvantage, since the pool of
competitors is larger for type O donor livers.

This data is of historical interest and provides a useful example of competing risks, but it has little
relevance to current practice. Liver allocation policies have evolved and now depend directly on
each individual patient’s risk and need, assessments of which are regularly updated while a patient
is on the waiting list. The overall organ shortage remains acute, however.

The transplant data set was a version used early in the analysis, transplant2 has several addi-
tions and corrections, and was the final data set and matches the paper.

udca 189

References

Kim WR, Therneau TM, Benson JT, Kremers WK, Rosen CB, Gores GJ, Dickson ER. Deaths on the
liver transplant waiting list: An analysis of competing risks. Hepatology 2006 Feb; 43(2):345-51.

Examples

#since event is a factor, survfit creates competing risk curves

pfit <- survfit(Surv(futime, event) ~ abo, transplant)

pfit[,2] #time to liver transplant, by blood type

plot(pfit[,2], mark.time=FALSE, col=1:4, lwd=2, xmax=735,
xscale=30.5, xlab="Months", ylab="Fraction transplanted”,
xaxt = 'n')

temp <- c(0, 6, 12, 18, 24)

axis(1, temp*30.5, temp)

legend(450, .35, levels(transplant$abo), lty=1, col=1:4, lwd=2)

competing risks for type O
plot(pfit[4,], xscale=30.5, xmax=735, col=1:3, 1lwd=2)
legend(450, .4, c("Death”, "Transpant”, "Withdrawal”), col=1:3, lwd=2)

udca Data from a trial of usrodeoxycholic acid

Description

Data from a trial of ursodeoxycholic acid (UDCA) in patients with primary biliary cirrohosis (PBC).

Usage

udca
udca?
data(udca, package="survival")

Format

A data frame with 170 observations on the following 15 variables.

id subject identifier

trt treatment of O=placebo, I=UDCA
entry.dt date of entry into the study
last.dt date of last on-study visit

stage stage of disease

bili bilirubin value at entry

riskscore the Mayo PBC risk score at entry
death.dt date of death

tx.dt date of liver transplant

190 untangle.specials

hprogress.dt date of histologic progression
varices.dt appearance of esphogeal varices
ascites.dt appearance of ascites
enceph.dt appearance of encephalopathy
double.dt doubling of initial bilirubin

worsen.dt worsening of symptoms by two stages

Details

This data set is used in the Therneau and Grambsh. The udcal data set contains the baseline
variables along with the time until the first endpoint (any of death, transplant, ..., worsening). The
udca? data set treats all of the endpoints as parallel events and has a stratum for each.

References

T. M. Therneau and P. M. Grambsch, Modeling survival data: extending the Cox model. Springer,
2000.

K. D. Lindor, E. R. Dickson, W. P Baldus, R.A. Jorgensen, J. Ludwig, P. A. Murtaugh, J. M.
Harrison, R. H. Weisner, M. L. Anderson, S. M. Lange, G. LeSage, S. S. Rossi and A. F. Hofman.
Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology, 106:1284-
1290, 1994.

Examples

values found in table 8.3 of the book

fit1 <- coxph(Surv(futime, status) ~ trt + log(bili) + stage,
cluster =id , data=udcal)

fit2 <- coxph(Surv(futime, status) ~ trt + log(bili) + stage +
strata(endpoint), cluster=id, data=udca2)

untangle.specials Help Process the ‘specials’ Argument of the ‘terms’ Function.

Description

Given a terms structure and a desired special name, this returns an index appropriate for subscript-
ing the terms structure and another appropriate for the data frame.

Usage

untangle.specials(tt, special, order=1)

uspop2 191

Arguments
tt a terms object.
special the name of a special function, presumably used in the terms object.
order the order of the desired terms. If set to 2, interactions with the special function
will be included.
Value

a list with two components:

vars a vector of variable names, as would be found in the data frame, of the specials.

terms a numeric vector, suitable for subscripting the terms structure, that indexes the
terms in the expanded model formula which involve the special.

Examples

formula <- Surv(tt,ss) ~ x + zxstrata(id)
tms <- terms(formula, specials="strata")

the specials attribute

attr(tms, "specials”)

main effects

untangle.specials(tms, "strata”)

and interactions

untangle.specials(tms, "strata”, order=1:2)

uspop2 Projected US Population

Description

US population by age and sex, for 2000 through 2020

Format
The data is a matrix with dimensions age, sex, and calendar year. Age goes from O through 100,
where the value for age 100 is the total for all ages of 100 or greater.

Details

This data is often used as a "standardized" population for epidemiology studies.

Source

NP2008_D1: Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the
United States: July 1, 2000 to July 1, 2050, www.census.gov/population/projections.

192 vcov.coxph

See Also

uspop

Examples

us50 <- uspop2[51:101,, "2000"] #US 2000 population, 50 and over

age <- as.integer(dimnames(us50)[[1]])

smat <- model.matrix(~ factor(floor(age/5)) -1)

ustot <- t(smat) %*% us5@ #totals by 5 year age groups

temp <- c(50,55, 60, 65, 70, 75, 80, 85, 90, 95)

dimnames(ustot) <- list(c(paste(temp, temp+4, sep="-"), "100+"),
c("male”, "female"))

vcov. coxph Variance-covariance matrix

Description

Extract and return the variance-covariance matrix.

Usage
S3 method for class 'coxph'
vcov(object, complete=TRUE, ...)
S3 method for class 'survreg'
vcov(object, complete=TRUE, ...)
Arguments
object a fitted model object
complete logical indicating if the full variance-covariance matrix should be returned. This

has an effect only for an over-determined fit where some of the coefficients are
undefined, and coef (object) contains corresponding NA values. If complete=TRUE
the returned matrix will have row/column for each coefficient, if FALSE it will
contain rows/columns corresponding to the non-missing coefficients. The coef()
function has a simpilar complete argument.

additional arguments for method functions

Details

For the coxph and survreg functions the returned matrix is a particular generalized inverse: the
row and column corresponding to any NA coefficients will be zero. This is a side effect of the
generalized cholesky decomposion used in the unerlying compuatation.

Value

a matrix

veteran 193

veteran Veterans’ Administration Lung Cancer study

Description

Randomised trial of two treatment regimens for lung cancer. This is a standard survival analysis
data set.

Usage

veteran
data(cancer, package="survival")

Format
trt: 1=standard 2=test
celltype: 1=squamous, 2=smallcell, 3=adeno, 4=large
time: survival time
status: censoring status
karno: Karnofsky performance score (100=good)
diagtime: months from diagnosis to randomisation
age: in years
prior: prior therapy O=no, 10=yes

Source

D Kalbfleisch and RL Prentice (1980), The Statistical Analysis of Failure Time Data. Wiley, New
York.

xtfrm.Surv Sorting order for Surv objects

Description

Sort survival objects into a partial order, which is the same one used internally for many of the
calculations.

Usage

S3 method for class 'Surv'
xtfrm(x)

194 yates

Arguments

X a Surv object

Details

This creates a partial ordering of survival objects. The result is sorted in time order, for tied pairs
of times right censored events come after observed events (censor after death), and left censored
events are sorted before observed events. For counting process data (tstart, tstop, status) the
ordering is by stop time, status, and start time, again with censoring last. Interval censored data is
sorted using the midpoint of each interval.

The xtfrmroutine is used internally by order and sort, so these results carry over to those routines.

Value

a vector of integers which will have the same sort order as x.

Author(s)

Terry Therneau

See Also

sort, order

Examples

test <- c(Surv(c(10, 9,9, 8,8,8,7,5,5,4), rep(1:0, 5)), Surv(6.2, NA))
test
sort(test)

yates Population prediction

Description

Compute population marginal means (PMM) from a model fit, for a chosen population and statistic.

Usage
yates(fit, term, population = c("data”, "factorial”, "sas"),
levels, test = c("global”, "trend”, "pairwise"), predict = "linear”,

options, nsim = 200, method = c("direct”, "sgtt"))

yates

Arguments
fit
term

population

levels
test
predict

options

nsim

method

Details

195

amodel fit. Examples using Im, glm, and coxph objects are given in the vignette.

the term from the model whic is to be evaluated. This can be written as a char-
acter string or as a formula.

the population to be used for the adjusting variables. User can supply their
own data frame or select one of the built in choices. The argument also allows
"empirical" and "yates" as aliases for data and factorial, respectively, and ignores
case.

optional, what values for term should be used.
the test for comparing the population predictions.

what to predict. For a glm model this might be the ’link’ or ’response’. For
a coxph model it can be linear, risk, or survival. User written functions are
allowed.

optional arguments for the prediction method.

number of simulations used to compute a variance for the predictions. This is
not needed for the linear predictor.

the computational approach for testing equality of the population predictions.
Either the direct approach or the algorithm used by the SAS glim procedure for
"type 3" tests.

The many options and details of this function are best described in a vignette on population predic-

tion.

Value

an object of class yates with components of

estimate

tests
mvar

summary

Author(s)

Terry Therneau

Examples

a data frame with one row for each level of the term, and columns containing the
level, the mean population predicted value (mppv) and its standard deviation.

a matrix giving the test statistics
the full variance-covariance matrix of the mppv values

optional: any further summary if the values provided by the prediction method.

fit1l <- lm(skips ~ Solder*Opening + Mask, data = solder)
yates(fitl, ~Opening, population = "factorial”)

fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog)*sex + age, lung)
yates(fit2, ~ ph.ecog, predict="risk") # hazard ratio

196 yates_setup

yates_setup Method for adding new models to the yates function.

Description

This is a method which is called by the yates function, in order to setup the code to handle a
particular model type. Methods for glm, coxph, and default are part of the survival package.

Usage
yates_setup(fit, ...)
Arguments
fit a fitted model object
optional arguments for some methods
Details

If the predicted value should be the linear predictor, the function should return NULL. The yates
routine has particularly efficient code for this case. Otherwise it should return a prediction function
or a list of two elements containing the prediction function and a summary function. The prediction
function will be passed the linear predictor as a single argument and should return a vector of
predicted values.

Note

See the vignette on population prediction for more details.

Author(s)

Terry Therneau

See Also

yates

Index

* datasets statefig, 128
aml, 10 * manip
bladder, 14 neardate, 76
cgd, 21 * models
cgdo, 23 anova.coxph, 11
diabetic, 48 attrassign, 12
flchain, 53 clogit, 25
gbsg, 57 yates, 194
heart, 58 yates_setup, 196
hoel, 59 * print
logan, 65 print.summary.survfit, 96
lung, 67 * regression
mgus, 68 anova.coxph, 11
mgus2, 69 survreg.object, 179
myeloid, 72 * smooth
myeloma, 73 nsk, 77
nafld, 74 * survival
nwtco, 80 aareg, 4
ovarian, 81 aeqSurv, 7
pbc, 81 aggregate.survfit, 8
pbcseq, 83 agreg.fit,9
ratetables, 109 anova.coxph, 11
rats, 110 basehaz, 13
rats2, 111 bladder, 14
reliability, 111 blogit, 16
retinopathy, 118 brier, 17
rhDNase, 119 cch, 19
rotterdam, 122 cgd, 21
solder, 126 cgdo, 23
stanford2, 127 clogit, 25
tobin, 187 cluster, 27
transplant, 188 colon, 28
udca, 189 concordance, 29
uspop2, 191 concordancefit, 33
veteran, 193 cox.zph, 34
* distribution coxph, 36
dsurvreg, 49 coxph.control, 41
+ hplot coxph.detail, 42
plot.survfit, 87 coxph.object, 44

197

198

coxph.wtest, 45
coxphms.object, 46
coxsurv.fit, 47
diabetic, 48
finegray, 51
frailty, 55

gbsg, 57

heart, 58
is.ratetable, 60
kidney, 61
levels.Surv, 62
lines.survfit, 62
logLik.coxph, 66
mgus, 68

model. frame.coxph, 70
model.matrix.coxph, 71
ovarian, 81
plot.cox.zph, 85
plot.survfit, 87
predict.coxph, 90
predict.survreg, 92
print.aareg, 94
print.summary.survexp, 96
print.survfit, 97
pseudo, 99
pspline, 101

pyears, 103
quantile.survfit, 106
ratetable, 107
ratetableDate, 108
ratetables, 109

rats, 110

rats2, 111
residuals.coxph, 113
residuals.survreg, 116
ridge, 120
rotterdam, 122
royston, 123
rttright, 125
stanford2, 127
statefig, 128

strata, 130
summary.aareg, 131
summary . coxph, 133
summary.pyears, 134
summary.survexp, 135
summary.survfit, 136
Surv, 139

INDEX

Surv-methods, 141
Surv2, 143
Surv2data, 144
survcheck, 145
survcondense, 147
survdiff, 148
survexp, 150
survexp.fit, 153
survexp.object, 154
survfit, 155
survfit.coxph, 156
survfit.formula, 159
survfit.matrix, 165
survfit.object, 167
survfito, 169
survfitcoxph.fit, 170
survival-deprecated, 172
survobrien, 172
survreg, 174
survreg.control, 176
survreg.distributions, 177
survreg.object, 179
survregDtest, 180
survSplit, 181
tcut, 183
timeline, 184
tmerge, 185
untangle.specials, 190
vcov. coxph, 192
xtfrm.Surv, 193
yates, 194
yates_setup, 196
+ utilities
neardate, 76
survSplit, 181
[.Surv (Surv), 139
[.cox.zph (cox.zph), 34
[.survfit (survfit.formula), 159
[.tcut (tcut), 183

aareg, 4

aeqSurv, 7,53
aggregate.survfit, 8
agreg.fit,9

aml, 10

anova, 12

anova.coxph, 11

anova.coxphlist (anova.coxph), 11
anova.survreg (survreg), 174

INDEX

anova.survreglist (survreg), 174
anyDuplicated.Surv (Surv-methods), 141
as.character.Surv (Surv-methods), 141
as.data.frame.Surv (Surv-methods), 141
as.matrix.Surv (Surv-methods), 141
as.P0OSIXct, 76

attrassign, 12

basehaz, 13

bcloglog (blogit), 16
bladder, 14

bladder1 (bladder), 14
bladder2 (bladder), 14
blog (blogit), 16
blogit, 16

bprobit (blogit), 16
braking (reliability), 111
brier, 17

c.Surv (Surv-methods), 141
cancer (lung), 67

capacitor (reliability), 111
cch, 19

cgd, 21, 23

cgdo, 23

cipoisson, 24, 135
clogit, 25

cluster, 27, 40

colon, 28
concordance, 29, 34
concordancefit, 33
cox.zph, 34, 45, 86

coxph, 10, 12, 26, 27, 32, 35, 36, 42, 43, 45,

47,53, 56, 86, 90, 92, 102, 114, 120,

121,130, 134, 141, 144, 159, 164
coxph.control, 8, 36, 37, 40, 41
coxph.detail, 42, 45
coxph.fit (agreg.fit), 9
coxph.object, 40, 44, 47
coxph.wtest, 45
coxphms.object, 40, 46
coxsurv.fit, 47
cracks (reliability), 111
cut, 182, 183

Deprecated, 172

diabetic, 48

dsurvreg, 49

duplicated.Surv (Surv-methods), 141

199

extractAIC.coxph.penal (coxph.object),
44

findInterval, 77

finegray, 51

flchain, 53

format, 135

format.Surv (Surv-methods), 141
frailty, 40,55, 102, 121, 175
fromtimeline (timeline), 184

ghsg, 57, 123
genfan (reliability), 111
glm, 26

head.Surv (Surv-methods), 141
heart, 58, 127, 128
hoel, 59

ifluid (reliability), 111
imotor (reliability), 111
interaction, /130

is.na.Surv (Surv-methods), 141
is.ratetable, 60

is.Surv (Surv), 139

jasa (heart), 58
jasal (heart), 58

kidney, 61

labels.survreg (survreg), 174
length.Surv (Surv-methods), 141
leukemia (aml), 10

levels.Surv, 62
levels. tcut (tcut), 183

lines, 64

lines.survexp (lines.survfit), 62
lines.survfit, 62, 90, 159, 164

Im, 179

logan, 65

loglLik, 66

loglLik.coxph, 66

loglik.survreg (loglLik.coxph), 66
lung, 67, 141

match, 77

Math.ratetable (is.ratetable), 60
Math.Surv (Surv-methods), 141
mean.Surv (Surv-methods), 141

200 INDEX

median.Surv (Surv-methods), 141 print.cox.zph (cox.zph), 34
median.survfit (quantile.survfit), 106 print.coxph, 134
mgus, 68 print.coxph (coxph.object), 44
mgus1 (mgus), 68 print.coxph.null (coxph), 36
mgus2, 69 print.coxph.penal (coxph), 36
model. frame, 71 print.summary.coxph, 95
model. frame.coxph, 70 print.summary.survexp, 96
model . frame.survreg (survreg), 174 print.summary.survfit, 96, 138
model.matrix, 13, 72 print.summary.survreg (survreg), 174
model.matrix.coxph, 71 print.survdiff (survdiff), 148
myeloid, 72 print.survexp (survexp), 150
myeloma, 73 print.survfit, 97, 107, 137, 155, 156, 159,
164, 167, 169

nafld, 74 print.survreg (survreg.object), 179
nafldl (nafld), 74 print.survreg.penal (survreg), 174
nafld2 (nafld), 74 pseudo, 99
nafld3 (nafld), 74 pspline, 40, 101, 121, 175
names.Surv (Surv-methods), 141 psplineinverse (pspline), 101
names<-.Surv (Surv-methods), 141 psurvreg (dsurvreg), 49
neardate, 76, 187 pt, 178
Normal, 50 pweibull, 178
ns, 79 pyears, 60, 103, 108, 109, 135, 152, 183
nsk, 77
nwtco, 80 gpois, 24

gsurvreg, 107
Ops.ratetable (is.ratetable), 60 gsurvreg (dsurvreg), 49
Ops.Surv (Surv-methods), 141 quantile.Surv (Surv-methods), 141
options, 97 quantile.survfit, 98, 106, 156
order, 194 quantile.survfitms (quantile.survfit),
order.Surv (xtfrm.Surv), 193 106

ovarian, 81
ratetable, 105, 107, 109, 152

par, 64, 90 ratetableDate, 108

pbc, 81, 84 ratetables, 109

pbcseq, 83, 83 rats, 110

plogis, 178 rats2, 111

plot.aareg, 85 reliability, 111

plot.cox.zph, 85 rep.int.Surv (Surv-methods), 141
plot.Surv (Surv-methods), 141 rep.Surv (Surv-methods), 141
plot.survfit, 64, 87, 155, 156, 159, 164, 169 rep_len.Surv (Surv-methods), 141
pnorm, 178 reshape, 182

points.survfit, 90 residuals, 116

points.survfit (lines.survfit), 62 residuals.coxph, 43,45, 113

ppois, 24 residuals.coxphms (residuals.coxph), 113
predict, 92 residuals.survfit, 100, 115, 156, 164
predict.coxph, 90 residuals.survreg, 93,116
predict.survreg, 92,117, 128 retinopathy, 118

print, 97 rev.Surv (Surv-methods), 141

print.aareg, 94 rhDNase, 119

INDEX

ridge, 40, 102, 120, 175
rotterdam, 57, 122
royston, 123

rsurvreg (dsurvreg), 49
rttright, 18, 125
rweibull, /78

solder, 126

sort, 194

sort.Surv (xtfrm.Surv), 193

stanford2, 59, 127

statefig, 128

stats, 17

strata, 26, 40, 130, 159

summary.aareg, 131

summary . coxph, 133

summary . coxph.penal (coxph), 36

summary.pyears, 134

Summary.Surv (Surv-methods), 141

summary.survexp, 135, 155

summary.survfit, 97, 98, 136, 156, 169

summary.survfitms (summary.survfit), 136

summary.survreg (survreg.object), 179

Surv, 19, 35, 40, 105, 139, 143, 159, 164, 182

Surv-methods, 141

Surv2, 143

Surv2data, 144, 144

survcheck, 145

survConcordance (survival-deprecated),
172

survcondense, 147

survdiff, 148, 173

survexp, 60, 64, 96, 105, 108, 109, 136, 150,
153-155

survexp.fit, 152, 153

survexp.mn (ratetables), 109

survexp.object, 154

survexp.us, 152, 154

survexp.us (ratetables), 109

survexp.usr (ratetables), 109

survfit, 8, 9,40, 45, 64, 90, 107, 116, 126,
138, 141, 144, 152, 155, 159, 166,
169

survfit.coxph, 14,48, 156, 156, 164, 171

survfit.coxphms (survfit.coxph), 156

survfit.formula, /16, 156, 159

survfit.matrix, 165

survfit.object, 156, 164, 167

survfite, 169, 169

201

survfitcoxph.fit, 170
survfitms.object (survfit.object), 167
survival-deprecated, 172
survobrien, 172
survReg (survreg), 174
survreg, 27,45, 50, 56, 93, 102, 120, 121
141,174, 176, 178-180
survreg.control, 174, 176
survreg.distributions, 174, 175, 177, 180
survreg.object, 175, 179
survregDtest, 178, 180
survSplit, 748, 181, 185

t.Surv (Surv-methods), 141
tail.Surv (Surv-methods), 141
tecut, 183

termplot, 92

terms, 13

timeline, 184
tmerge, 148, 185, 185
tobin, 187

totimeline (timeline), 184
transplant, 188

turbine (reliability), 111

udca, 189

udcal (udca), 189

udca? (udca), 189

unique.Surv (Surv-methods), 141
untangle.specials, 190

uspop, 192

uspop2, 191

valveSeat (reliability), 111
vcov. coxph, 192

vcov.survreg (vcov.coxph), 192
veteran, 193

xtfrm.Surv, 193

yates, 194, 196
yates_setup, 196

	aareg
	aeqSurv
	aggregate.survfit
	agreg.fit
	aml
	anova.coxph
	attrassign
	basehaz
	bladder
	blogit
	brier
	cch
	cgd
	cgd0
	cipoisson
	clogit
	cluster
	colon
	concordance
	concordancefit
	cox.zph
	coxph
	coxph.control
	coxph.detail
	coxph.object
	coxph.wtest
	coxphms.object
	coxsurv.fit
	diabetic
	dsurvreg
	finegray
	flchain
	frailty
	gbsg
	heart
	hoel
	is.ratetable
	kidney
	levels.Surv
	lines.survfit
	logan
	logLik.coxph
	lung
	mgus
	mgus2
	model.frame.coxph
	model.matrix.coxph
	myeloid
	myeloma
	nafld
	neardate
	nsk
	nwtco
	ovarian
	pbc
	pbcseq
	plot.aareg
	plot.cox.zph
	plot.survfit
	predict.coxph
	predict.survreg
	print.aareg
	print.summary.coxph
	print.summary.survexp
	print.summary.survfit
	print.survfit
	pseudo
	pspline
	pyears
	quantile.survfit
	ratetable
	ratetableDate
	ratetables
	rats
	rats2
	reliability
	residuals.coxph
	residuals.survfit
	residuals.survreg
	retinopathy
	rhDNase
	ridge
	rotterdam
	royston
	rttright
	solder
	stanford2
	statefig
	strata
	summary.aareg
	summary.coxph
	summary.pyears
	summary.survexp
	summary.survfit
	Surv
	Surv-methods
	Surv2
	Surv2data
	survcheck
	survcondense
	survdiff
	survexp
	survexp.fit
	survexp.object
	survfit
	survfit.coxph
	survfit.formula
	survfit.matrix
	survfit.object
	survfit0
	survfitcoxph.fit
	survival-deprecated
	survobrien
	survreg
	survreg.control
	survreg.distributions
	survreg.object
	survregDtest
	survSplit
	tcut
	timeline
	tmerge
	tobin
	transplant
	udca
	untangle.specials
	uspop2
	vcov.coxph
	veteran
	xtfrm.Surv
	yates
	yates_setup
	Index

