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Abstract

The spareg package for R builds ensembles of predictive generalized linear models for
high-dimensional data. It employs an algorithm that combines variable screening and
random projection techniques in each model of the ensemble to address the computa-
tional challenges of large predictor sets. By implementing this modeling approach in an
accessible framework, spareg enables users to apply methods that have shown competi-
tive predictive performance against state-of-the-art alternatives, while at the same time
keeping computational costs low.

Designed with extensibility in mind, spareg implements the screening and random
projection techniques, as well as the generalized linear models employed in the ensemble
as S3 classes with user-friendly constructor functions. This modular design allows users
to seamlessly integrate and develop new procedures, making the package a versatile tool
for high-dimensional applications.
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1. Introduction

The spareg package for R (R Core Team 2025) offers functionality for estimating generalized
linear models (GLMs) in high-dimensional settings, where the number of predictors p can
significantly exceed the number of observations n, i.e., p > n or even p ≫ n. To address
the challenges of high dimensionality, the package implements a general algorithm which
integrates variable screening methods with random projection techniques to effectively reduce
the predictor space.

More specifically, spareg builds an ensemble of GLMs where, in each model of the ensemble,
i) variables are first screened based on a measure of the utility of each predictor for the
response, ii) the selected variables are then projected to a lower dimensional space (smaller
than n) using a random projection matrix, iii) a GLM is estimated using the projected
predictors. Finally, additional sparsity in the coefficients of the original variables can be
introduced through a thresholding parameter, which, together with the number of models in
the ensemble, can be chosen using a validation set or via cross-validation. The final coefficients
are then obtained by averaging over the marginal models in the ensemble.

The motivation of such an algorithm, which performs what we call a sparse projected averaged
regression (SPAR) for both discrete and continuous data in the GLM framework, lies in its
computational efficiency. Random projection is a computationally-efficient method which
linearly maps a set of points in high dimensions into a much lower-dimensional space and
random projection matrices have been traditionally generated from suitable distributions in
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a data-agnostic fashion. By projecting the original predictors to a dimension lower than n,
estimation of the models on the reduced predictors can be done using standard methods.

However, random projection can suffer from noise accumulation for very large p, as too many
irrelevant predictors are being considered for prediction purposes (Mukhopadhyay and Dun-
son 2020). Therefore, the screening step is advisable in order to eliminate the influence of
irrelevant variables before performing the random projection, while also reducing computa-
tional costs.

The ensemble approach is motivated by the fact that, although combining variable screening
with random projection effectively reduces the predictor set and computational costs, the
variability introduced by random sampling can be mitigated by averaging the results from
multiple iterations (Thanei, Heinze, and Meinshausen 2017).

Different variants of the algorithm have been shown to perform well in terms of prediction
power on a variety of data sets. For example, Mukhopadhyay and Dunson (2020) employ
the algorithm with the data-agnostic, sparse random projection of Achlioptas (2003) com-
bined with probabilistic marginal correlation screening. Furthermore, Parzer, Filzmoser, and
Vana-Gür (2024) show that, when paired with a carefully constructed data-driven random
projection, the algorithm performs superiorly in terms of predictions and variable ranking in
settings with different degrees of sparsity in the coefficients and with correlated predictors.

Given the variety of screening and random projection matrices to be possibly employed in
the algorithm – each with distinct advantages across different data settings – package spareg

(Vana-Gür, Parzer, and Filzmoser 2025) offers a diverse selection of screening coefficients
and multiple procedures for constructing random projection matrices and is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=

spareg. Designed for flexibility, the package provides a versatile framework that allows users
to extend its screening and projection techniques, as well as the GLM models employed in the
ensemble with custom procedures. This is achieved through R’s S3 classes and user-friendly
constructor functions

The package provides methods such as plot, predict, coef, print, which allow users to
more easily interact with the model output and analyze the results. The GLM framework,
especially when combined with random projections which preserve information on the original
coefficients (such as the one in Parzer et al. 2024), facilitates interpretability of the model
output, allowing users to understand variable effects.

While, to the best of our knowledge, spareg offers the first implementation of the described
algorithm and no other package offers the same functionality for GLMs, few other R pack-
ages focus on building ensembles where the dimensionality of the predictors is reduced. Most
notably, package RPEnsemble (Cannings and Samworth 2021) implements the procedure in
Cannings and Samworth (2017), where “carefully-selected” random projections are used for
projecting the predictors before they are employed in a classifier such as k nearest neighbor,
linear or quadratic discriminant analysis. On the other hand, package RaSEn (Tian and Feng
2021) implements an algorithm for ensemble classification and regression problems, where
random subspaces are generated and the optimal one is chosen to train a weak learner on
the basis of some criterion. Similarly, package randomGLM (Song and Langfelder 2022) im-
plements an ensemble predictor based on bootstrap aggregation (bagging) of GLMs whose
covariates are first randomly selected and then further reduced using forward regression ac-
cording to AIC criterion. For Python (Van Rossum et al. 2011), a similar workflow could be set
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up by building ensembles using the package pycobra (Guedj and Desikan 2018) by integrat-
ing scikit-learn models (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg et al. 2011). Random projection tools are implemented in
sklearn.random_projection while GLM estimation on the projected predictors (both classical
and penalized) can be done using sklearn.linear_model module. Alternatively, ensembles can
be built by using native stacking. Since the recent integration of the H2O machine learn-
ing models (H2O.ai 2016) in Stata (StataCorp 2025), it is also possible to build ensembles
of machine learning models (including GLMs) via stacking, boosting or bagging, but ran-
dom subspace methods or similar approaches to dimensionality reduction in GLMs are not
implemented at the time of writing.

The rest of the paper is organized as follows: Section 2 provides an overview of the methods
and the methodological details of the implemented algorithm. The package is described in
Section 3 while Section 4 exemplifies how a new screening coefficient, a new random projection
and a new marginal model can be integrated in the package. Section 5 concludes.

2. Methods

Throughout the section we assume to observe high-dimensional data {(xi, yi)}n
i=1

, where
xi ∈ R

p is a predictor vector and yi ∈ R is the response, with p ≫ n. The predictor vectors
are collected in the rows of the predictor matrix X ∈ R

n×p.

2.1. Variable screening

In high-dimensional modeling, the goal of variable screening is to reduce the predictor set
by selecting a small subset of variables with a strong utility to the response variable. This
initial selection enables more efficient downstream analyses by discarding less relevant pre-
dictors early in the modeling process, thus reducing computational costs and potential noise
accumulation stemming from irrelevant variables (see e.g., Mukhopadhyay and Dunson 2020).

The field of variable screening is an active area of research, with numerous methods devel-
oped to address different data settings. While a comprehensive review is beyond the scope
of this paper, this section provides a concise and selective overview of key approaches for
variable screening in high-dimensional settings. A classic approach is sure independence
screening (SIS), proposed by Fan and Lv (2007), which uses the vector of marginal empir-
ical correlations ω̂ = (ω̂1, . . . , ω̂p)⊤ ∈ R

p, ω̂j = Cor(Xj ,y), where y is the (n × 1) vector
of responses and Xj is the j-th column of the matrix of predictors, to screen predictors in
a linear regression setting by selecting the variable set Aδ which contains all variables for
which |ω̂j | > δ, where δ is a suitable threshold. Under certain technical conditions, this
screening coefficient has the sure screening property, i.e., that the set of truly active variables
is included in Aδn

with probability converging to one as n → ∞. Extensions to SIS include
modifications for GLMs (Fan and Song 2010), where screening is performed based on the
log-likelihood ℓ(.) or the slope coefficient of the GLM containing only Xj as a predictor:
ω̂j =: argminβj∈Rminβ0∈R

∑n
i=1

−ℓ(βj , β0; yi, xij), where xij is the j-th entry of the vector xi.

However, both mentioned approaches face limitations related to the required technical con-
ditions which can rule out practically possible scenarios where an important variable is
marginally uncorrelated to the response due to their multicollinearity. To tackle these issues,
Fan, Samworth, and Wu (2009) propose to use an iterative procedure where SIS is applied
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subsequently on the residuals of the model estimated in a previous step. Additionally, in a lin-
ear regression setting, Cho and Fryzlewicz (2012) propose using the tilted correlation, i.e., the
correlation of a tilted version of Xj with y where the effect of other variables is reduced. Wang
and Leng (2016) propose to take into account the correlation among the predictors by em-
ploying the high-dimensional ordinary least squares projection (HOLP) ŵ = X⊤(XX⊤)−1y,
which is a ridge estimator where the penalty term converges to zero. For GLMs, joint feature
screening via a sparsity-restricted maximum likelihood estimator – under an ℓ0 norm – has
been proposed in Xu and Chen (2014).

In order to tackle potential model misspecification, a rich stream of literature focuses on
developing semi- or non-parametric alternatives to SIS. For linear regression, approaches
include using the ranked correlation (Zhu, Li, Li, and Zhu 2011), (conditional) distance
correlation (Li, Zhong, and Zhu 2012; Wang, Pan, Hu, Tian, and Zhang 2015) or quantile
correlation (Ma and Zhang 2016). For GLMs, Fan, Feng, and Song (2011) extend Fan and
Song (2010) by fitting a generalized additive model with B-splines. Further extensions for
discrete (or categorical) outcomes include the fused Kolmogorov filter (Mai and Zou 2013),
the mean conditional variance, i.e., the expectation in Xj of the variance in the response
of the empirical distribution function of each predictor conditional on the response (Cui,
Li, and Zhong 2015). Ke (2023) propose a model free method where the contribution of
each individual predictor is quantified marginally and conditionally in the presence of the
control variables as well as the other candidates by reproducing-kernel-based R2 and partial
R2 statistics.

The R landscape for variable screening techniques is very rich. An overview of some notable
packages on the Comprehensive R Archive Network (CRAN) includes the following packages.
Package SIS (Saldana and Feng 2018), which implements the (iterative) sure independence
screening procedure and its extensions, as detailed in Fan and Lv (2007); Fan and Song
(2010); Fan, Feng, and Wu (2010). This package also provides functionality for estimating a
penalized generalized linear model or a cox regression model for the variables selected by the
screening procedure. Package VariableScreening (Li, Huang, and Dziak 2022) offers screening
methods for independent and identically distributed (iid) data, varying-coefficient models, and
longitudinal data and includes techniques such as sure independent ranking and screening
(SIRS), which ranks the predictors by their correlation with the rank-ordered response, or
distance correlation sure independence screening (DC-SIS), a non-parametric extension of the
correlation coefficient. Package MFSIS (Cheng, Wang, Zhu, Zhong, and Zhou 2024) provides
a collection of model-free screening techniques including SIRS, DC-SIS, the fused Kolmogorov
filter (Mai and Zou 2015) the projection correlation method using knock-off features (Liu, Liu,
Ke, and Li 2022), among others. Additional packages implement specific procedures but their
review is beyond the scope of the current paper.

Package spareg allows the integration of such (advanced) screening techniques using a flexible
framework, which in turn enables users to apply various screening methods tailored to their
data characteristics in the algorithm generating the ensemble. This flexibility allows users
to evaluate different strategies, ensuring that the most effective approach is chosen for the
specific application at hand. Moreover, it incorporates probabilistic screening strategies,
which can be particularly useful in ensembles, as they enhance the diversity of predictors
across ensemble models. Instead of relying on a fixed threshold δ, predictors are sampled
with probabilities proportional to their screening coefficient (see Mukhopadhyay and Dunson
2020; Parzer et al. 2024). Note that this is different than the random subspace sampling
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employed in, e.g., random forests.

2.2. Random projection tools

Package spareg has been designed to allow the incorporation of various random projection
techniques, enabling users to tailor the procedure to their specific data needs. Below, we
provide background information on different random projection techniques and an overview
of existing software implementing random projections.

The random projection method relies on the Johnson-Lindenstrauss (JL) lemma (Johnson and
Lindenstrauss 1984), which asserts that for each set of points in p dimensional Euclidean space
collected in the rows of X ∈ R

n×p there exists a linear map Φ ∈ R
m×p such that all pairwise

distances are approximately preserved within a factor of (1 ± ϵ) for m ≥ ml = O(ϵ−2 log(n)).
Computationally, an attractive feature of the method for high-dimensional settings is that
the bound does not depend on p.

The goal is to choose a random map Φ that satisfies the JL lemma with high probability
given that it fulfills certain technical conditions. The literature focuses on constructing such
matrices either by sampling them from some “appropriate” distribution, by inducing sparsity
in the matrix and/or by employing specific fast constructs which lead to efficient matrix-
vector multiplications. It turns out that the conditions are generally satisfied by nearly
all sub-Gaussian distributions (Matoušek 2008). A common choice is the standard normal

distribution Φij
iid∼ N(0, 1) (Frankl and Maehara 1988) or a sparser version where Φij

iid∼
N(0, 1/

√
ψ) with probability ψ and 0 otherwise (Matoušek 2008). Another computationally

simpler option is the Rademacher distribution where Φij = ±1/
√
ψ with probability ψ/2 and

zero otherwise for 0 < ψ ≤ 1, where Achlioptas (2003) shows results for ψ = 1 and ψ = 1/3
while Li, Hastie, and Church (2006) recommend using ψ = 1/

√
p to obtain very sparse

matrices. Further approaches include using the Haar measure to generate random orthogonal
matrices (Cannings and Samworth 2017) or a non-sub-Gaussian distribution like the standard
Cauchy, proposed by Li et al. (2006) for preserving approximate ℓ1 distances in settings where
the data is high-dimensional, non-sparse, and heavy-tailed. Structured matrices, which allow
for more efficient multiplication, have also been proposed (see e.g., Ailon and Chazelle 2009;
Clarkson and Woodruff 2013).

The conventional random projections mentioned above are data-agnostic. However, recent
work has proposed incorporating information from the data either to select the “best” data-
agnostic random projection or to directly inform the random projection procedure. Cannings
and Samworth (2017) rely on the former approach and build an ensemble classifier where
the random projection matrix is chosen by selecting the one that minimizes the test error of
the classification problem among a set of data-agnostic random projections. Another data-
driven approach to random projection for regression has been proposed by Ryder, Karnin,
and Liberty (2019), who introduced a data-informed random projection using an asymmetric
transformation of the predictor matrix without using information of the response.

On the other hand, Parzer et al. (2024) propose to use a random projection matrix for GLMs
which directly incorporates information about the relationship between the predictors and the
response, rather than a projection matrix which satisfies the JL lemma. In the linear regression
case Parzer, Filzmoser, and Vana-Gür (2025) provide a theoretical bound on the expected
gain in prediction error when using a projection which incorporates information about the
true regression coefficients compared to a conventional random projection. In particular,
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they rely on the sparse embedding matrix of Clarkson and Woodruff (2013), constructed as
Φ = BD ∈ R

m×p, where B is a (p × p) binary matrix, where for each column j an index
is uniformly sampled from {1, . . . ,m} and the corresponding entry is set to one, and D is
a (p × p) diagonal matrix, with entries dj ∼ Unif({−1, 1}), and provide theoretical results
when replacing the diagonal entries of D with the true regression coefficients. Motivated by
this result, they propose to construct such a projection matrix where the random diagonal
elements are replaced in practice by HOLP, i.e., the ridge coefficient with a penalty converging
to zero. The constructed random projection has the advantage of approximately capturing
the true regression coefficients in the span of the random projection, i.e., it ensures that the
true regression coefficients can be recovered approximately after the projection. In Parzer
et al. (2024), the authors extend this idea to the GLM framework by investigating how a
similar ridge coefficient can be used to construct a suitable data-informed projection matrix.
Through simulations, they demonstrate that for non-Gaussian families, allowing the penalty
to converge to zero is not always optimal. Instead, they propose selecting the smallest penalty
value such that the deviance ratio—the proportion of the null deviance explained—remains
below a specified threshold. Specifically, they suggest using a threshold of 0.8 for non-Gaussian
families and 0.99 for Gaussian families.

Several packages in R provide functionality for random projections. For instance, package
RandPro (Aghila and Siddharth 2020; Siddharth and Aghila 2020) allows a Gaussian random
matrix (i.e, where entries are simulated from a standard normal), a sparse matrix (Achlioptas
2003; Li et al. 2006) or a matrix generated using the equal probability distribution with the
elements {−1, 1}, to be applied to the predictor matrix before employing one of k nearest
neighbors, support vector machine or naive Bayes classifier on the projected features. Pack-
age SPCAvRP (Gataric, Wang, and Samworth 2019) implements sparse principal component
analysis, based on the aggregation of eigenvector information from “carefully-selected” axis-
aligned random projections of the sample covariance matrix. Additionally, package RPEnsem-

bleR (Cannings and Samworth 2021) implements a similar idea when building the ensemble
of classifiers: for each classifier in the ensemble, a collection of (Gaussian, axis-aligned pro-
jections, or Haar) random projection matrices is generated, and the one that minimizes a risk
measure for classification on a test set is selected. For Python (Van Rossum et al. 2011) the
sklearn.random_projection module (Pedregosa et al. 2011) implements two types of unstruc-
tured random matrices, namely Gaussian random matrix and sparse random matrix.

2.3. Generalized linear models

After we perform an initial screening step followed by a projection step in each marginal
model, we assume that the reduced and projected set of predictors zi = Φxi ∈ R

m together
with the response arise from a GLM with the response having conditional density from a
(reproductive) exponential dispersion family of the form

f(yi|θi, ϕ) = exp
{yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
, g(E[yi|zi]) = γ0 + (Φxi)

⊤γ =: ηi,

where θi is the natural parameter, a(.) > 0 and c(.) are specific real-valued functions deter-
mining different families, ϕ is a dispersion parameter, and b(.) is the log-partition function
normalizing the density to integrate to one. If ϕ is known, we obtain densities in the natural
exponential family for our responses. The responses are related to the m dimensional reduced
and projected predictors through the conditional mean, i.e., the conditional mean of yi given
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zi depends on a linear combination of the predictors through a (invertible) link function g(.),
where γ0 ∈ R is the intercept and γ ∈ R

m is a vector of regression coefficients for the m
projected predictors. We can see that the original coefficients of the predictors xi can be
obtained as: β = Φ⊤γ.

Estimates for γ0 ∈ R and γ ∈ R
m can be obtained by directly maximizing the log-likelihood

below, as generally one chooses m < n:

ℓ(β0,β) =
n∑

i=1

yiθi(β0,β,xi) − b(θi(β0,β,xi))

a(ϕ)
+ c(yi, ϕ),

where θi(β0,β,xi) = (b′)−1(g−1(ηi)). However, even if m < n it might still be desirable to add
a (e.g., small ℓ2) penalty to the likelihood of the marginal models – for the binomial family this
can alleviate problems related to separation while keeping the bias low. Moreover, if outlier
influence should be reduced, M - or trimmed estimators could be employed for obtaining
robust estimates of the regression coefficients (see e.g., Cantoni and Ronchetti 2001).

2.4. SPAR algorithm

We present the general algorithm for sparse projected averaged regression (SPAR) imple-
mented in package spareg.

1. Choose family with corresponding log-likelihood ℓ(.) and link g(.).

2. Standardize the (n×p) matrix of predictors X for all families and the vector of responses
y for the Gaussian family by subtracting the sample mean and dividing by the sample
standard deviation of each variable.

3. Calculate screening coefficients ω̂.

4. For k = 1, . . . ,M models:

(a) If p > p0, where p0 is the number of variables to be screened, screen p0 predictors
based on the screening coefficient ω̂, which yields for model k the screening index
set Ik = {jk

1
, . . . , jk

p0
} ⊂ {1, . . . , p}; if probabilistic screening should be employed,

draw the predictors sequentially without replacement using an initial vector of
probabilities pj ∝ |ω̂j |. Otherwise, select the p0 variables with the highest |ω̂j |. If
p < p0, perform no screening and set Ik = {1, . . . , p}.

(b) Project the screened variables to a randomly drawn dimensionmk ∼ Unif{ml, . . . ,mu}
using projection matrix Φk to obtain Zk = X·Ik

Φ⊤
k ∈ R

n×mk , where X·Ik
contains

the columns in X having a column index in Ik.

(c) Fit a GLM -type model of y on Zk to obtain estimated coefficients γ̂k ∈ R
mk and

β̂
k

Ik
= Φ⊤

k γ̂k, β̂
k

Īk
= 0.

5. For a given threshold ν ≥ 0, set all β̂k
j with |β̂k

j | ≤ ν to 0 for all j, k.

6. Choose M and ν via a validation set or cross-validation evaluating a two-dimensional
grid of values. For each training fold, repeat Steps 2 to 6 using fixed index sets Ik and
projections Φk and assess the performance on the test fold by a loss function K(M,ν):

(Mbest, νbest) = argminM,νK(M,ν).
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7. Combine models of the ensembles either via the coefficients by using a simple average of

the regression coefficients β̂ =
∑M

k=1
β̂

k
/M (this results in averaging of the models on the

link level) or via the fitted values by taking a simple average of ŷ =
∑M

k=1
g−1(x⊤

i β̂
k
)/M

(here we omit the intercept for the sake of notational simplicity).

8. Output the averaged estimated coefficients and predictions for the chosen M and ν.

The proposed algorithm is flexible, allowing for various choices of screening coefficients ŵ,
random projection matrices Φ and marginal models. Several variants have been introduced
in the literature. For example, Mukhopadhyay and Dunson (2020) proposes a version that
uses probabilistic marginal correlation screening along with the sparse random projection
method from Achlioptas (2003), without applying thresholding. More recent work by Parzer
et al. (2025, 2024) extends this approach by employing data-informed random projection
that leverages information from the ridge coefficients. In their method, the ridge penalty is
chosen as the smallest value such that the deviance ratio (the proportion of null deviance
explained) remains below a family-specific threshold. They complement the projection step
with probabilistic screening based on the same ridge regression coefficients (see details in
Section 2.2).

In order to choose default values for p0, ml, mu as well as the maximal number of considered
models M , we rely on previous literature. Parzer et al. (2025) find that, when using their
proposed data-driven random projection and HOLP screening coefficient in a linear regression
setting, the gain in predictive performance when using more than M = 20 models is marginal.
We use therefore M = 20 as a default value in the algorithm. Regarding the number of
screened variables, Parzer et al. (2025) propose choosing p0 = c · n as a multiple of n (thus
independent of p) and find that the best results are achieved for 2 ≤ c ≤ 4. We thus set in
the algorithm p0 = 2n as a default value.

The dimension mk is random for the purpose of introducing more variability in the ensemble
and reducing the reliance on a fixed (possibly arbitrarily chosen) goal dimension. Mukhopad-
hyay and Dunson (2020) propose using ml = 2 log(p) and mu = 3n/4 while Parzer et al.
(2024) use slightly smaller goal dimensions (ml = log(p), mu = n/2), to reduce the dimension
of the marginal models to be estimated. On the other hand, for random projection matrices
satisfying the JL lemma, ml can be derived from the theoretical bounds for preserving the
distances between all pairs of points approximately. We employ as default values the ones
proposed in Parzer et al. (2025).

A further modification of the algorithm above is to employ part of the data for estimating
the screening coefficients (Step 3) and the remaining data to estimate the ensemble models
(Step 4). Such a strategy could avoid issues related to overfitting. Even though Parzer et al.
(2025) find that in the linear regression case such a splitting approach does not improve
performance, the implementation in spareg allows for data splitting.

Finally, when choosing the optimal ν andM in Step 6 given a grid of values for each parameter,
one can pick the combination delivering the lowest loss function or the combination delivering
the sparsest model with a loss within one standard deviation of the minimum (this corresponds
to the commonly employed “one-standard-error (1se)” rule in penalized regression). We note
that the cross-validation on the grid of number of models is not computationally intensive as
we only need to train the maximum number of models considered in the grid on each training
fold and evaluate performance by aggregating the first M1, then the first M2, and so on.
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3. Software

Package spareg can be installed from CRAN:

R> install.packages("spareg")

and loaded by

R> library("spareg")

In this section, we rely for illustration purposes on a simulated example data set which contains
n = 200 observations of a continuous response y and p = 2000 predictors x which can be used
as a training data set and n = 100 observations to be used as a test set.

R> set.seed(1234)

R> example_data <- simulate_spareg_data(n = 200, p = 2000, ntest = 100)

R> str(example_data)

List of 7

$ x : num [1:200, 1:2000] 1.8302 -0.4251 -1.3893 -0.0947 0.4304 ...

$ y : num [1:200] -5.64 -23.63 -17.09 13.18 20.91 ...

$ xtest : num [1:100, 1:2000] -0.166 -0.3729 0.0379 0.6774 0.2174 ...

$ ytest : num [1:100] 10.61 -34.1 29.3 35.53 8.67 ...

$ mu : num 1

$ beta : num [1:2000] 1 -2 3 2 1 -3 2 3 1 -2 ...

$ sigma2: num 83

The function simulate_spareg_data() simulates data from a linear regression model. Us-
ing the default values, data is generated using σ2 = 83, an intercept µ = 1 and β coef-
ficients with 100 non-zero entries, where the non-zero entries are uniformly sampled from
{−3,−2,−1, 1, 2, 3}.

3.1. Main functions and their arguments

The two main functions for fitting the SPAR algorithm are:

spar(x, y, family = gaussian("identity"), model = NULL, rp = NULL,

screencoef = NULL, xval = NULL, yval = NULL, nnu = 20, nus = NULL,

nummods = c(20), measure = c("deviance", "mse", "mae", "class", "1-auc"),

avg_type = c("link", "response"), parallel = FALSE, inds = NULL, RPMs = NULL,

seed = NULL, ...)

which implements the algorithm in Section 2.4 without cross-validation and returns an object
of class ‘spar’, and

spar.cv(x, y, family = gaussian("identity"), model = NULL,

rp = NULL, screencoef = NULL, nfolds = 10, nnu = 20, nus = NULL,

nummods = c(20), measure = c("deviance", "mse", "mae", "class", "1-auc"),

avg_type = c("link", "response"), parallel = FALSE, seed = NULL, ...)
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which implements the cross-validated procedure and returns an object of class ‘spar.cv’.
Additionally, the aliases spareg() and spareg.cv() are available.

The common arguments of these functions are:

• x an n× p numeric matrix of predictor variables,

• y numeric response vector of length n,

• family object from stats::family(); defaults to gaussian();

• model an object of class ‘sparmodel’ which specifies the model employed for each ele-
ment of the ensemble. Defaults to spar_glm() for Gaussian family with identity link
and to spar_glmnet() for all other family-link combinations. The latter uses the glmnet

package to penalize the marginal models with a small ridge penalty in order to increase
stability in the coefficients. Class ‘sparmodel’ will further be described in Section 3.4.

• rp an object of class ‘randomprojection’. Defaults to NULL, in which case rp_cw(data

= TRUE) is used. Class ‘randomprojection’ will further be described in Section 3.3.

• screencoef an object of class ‘screencoef’. Defaults to NULL, in which case no screening
is employed. Class ‘screencoef’ will further be described in Section 3.2.

• nnu is the number of threshold values ν which should be considered for thresholding;
defaults to 20;

• nus is an optional vector of ν values to be considered for thresholding. If it is not
provided, is defaults to a grid of nnu values. This grid is generated by including zero
and nnu−1 quantiles of the absolute values of the estimated non-zero coefficients from
the marginal models, chosen to be equally spaced on the probability scale.

• nummods is the number of models to be considered in the ensemble; defaults to 20. If a
vector is provided, all combinations of nus and nummods are considered when choosing
the optimal νbest and Mbest.

• measure specifies the measure K(ν,M) based on which the thresholding value νbest

and the number of models Mbest should be chosen on the validation set (for spar())
or in each of the folds (in spar.cv()). The default value for measure is "deviance",
which is available for all families. Other options are mean squared error "mse" or
mean absolute error "mae" (between responses and predicted conditional means, for
all families), "class" (misclassification error) and "1-auc" (one minus area under the
ROC curve) both just for binomial family.

• avg_type specifies the averaging type for computing the validation measure K(ν,M).
It can be either on "link" or "response" level.

• parallel assuming a parallel backend is loaded and available, a logical indicating
whether the function should use it for parallelizing the estimation of the marginal mod-
els. Defaults to FALSE.

Furthermore, spar() has the specific arguments:
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• xval and yval which are used as validation sets for choosing νbest and Mbest. If not
provided, x and y will be employed.

• inds is an optional list of length max(nummods) containing column index-vectors Ik

corresponding to variables that should be kept after screening for each marginal model;
dimensions need to fit those of the dimensions of the provided matrices in RPM.

• RPM is an optional list of length max(nummods) which contains projection matrices to be
used in each marginal model.

Function spar.cv() has the specific argument nfolds which is the number of folds to be
used for cross-validation. It relies on a lightweight version of spar() as a workhorse, which
is called for each fold. The random projections for each model are held fixed throughout the
cross-validation to reduce the computational burden. This is achieved by calling spar() on
the whole data set once before starting the cross-validation. The random projections and the
screening indicators generated by this function call are held then fixed throughout the cross-
validation procedure. If data-driven random projections are employed, only the data to be
used in the random projection will be updated in each fold iteration with the corresponding
training data. More details will be provided in Section 4.

3.2. Screening coefficients

The objects for creating screening coefficients are implemented as S3 classes ‘screencoef’.
These objects are created by several implemented screen_*() functions,

screen_*(..., control = list())

which take as arguments ... (to be saved as attributes of the object) and control (a list of
controls to be used in the main function for computing the screening coefficients).

The following screening coefficients are implemented in spareg:

• screen_marglik() – computes the screening coefficients by the coefficient of Xj for
j = 1, . . . , p in a univariate GLM using the stats::glm() function.

ω̂j =: argminβj∈Rminβ0∈R

n∑

i=1

−ℓ(β0, βj ; yi, xij)

It allows to pass a list of controls through the control argument to stats::glm() –
such as weights, family, offset – e.g., screen_marglik(control = list(family =

binomial(probit))). Note that if family is not provided in control, the family used
in spar() or spar.cv() will be used.

• screen_cor() – computes the screening coefficients by the correlation between y and
Xj using the function stats::cor(). It allows to pass a list of controls through the
control argument to stats::cor() – e.g., screen_cor(control = list(method =

"spearman")).

• screen_glmnet() – computes by default a ridge coefficient with a small penalty:

ω̂ =: argminβ∈Rpminβ0∈R

n∑

i=1

−ℓ(β; yi,xi) +
ε

2

p∑

j=1

β2

j , ε > 0
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The function relies on glmnet::glmnet(). It uses by default α = 0 and a small
lambda.min.ratio. The optimal penalty is chosen using the recommendations in Parzer
et al. (2024), namely choosing the smallest penalty for which the deviance ratio (the
fraction of null deviance explained) is less than 0.99 for the Gaussian family and 0.8 for
other families. It, however, allows to pass a list of controls through the control argu-
ment to glmnet::glmnet() – e.g., screen_glmnet(control = list(alpha = 0.5)).

As mentioned above, arguments related to the screening procedure can be passed to the
screen_*() function through ..., and will be saved as attributes of the ‘screencoef’ object.
More specifically, the following attributes are relevant for function spar():

• nscreen integer giving the number of variables to be retained after screening; if not
specified, defaults to 2n. If 2n > p, no screening is performed.

• split_data_prop, double between 0 and 1 which indicates the proportion of the data
that should be used for computing the screening coefficient. The remaining data will
be used for estimating the marginal models in the SPAR algorithm; if not specified, the
whole data will be used for estimating both the screening coefficient and the marginal
models.

• type character – either "prob" (indicating that probabilistic screening should be em-
ployed) or "fixed" (indicating that a fixed set of nscreen variables should be employed
across the ensemble); defaults to type = "prob".

• reuse_in_rp logical – indicates whether the screening coefficient should be reused at a
later stage in the construction of the random projection. Defaults to FALSE.

All implemented screen_*() functions return an object of class ‘screencoef’ which in turn
is a list with three elements:

• a character name,

• generate_fun() – an R function for generating the screening coefficient. This function
should have the following arguments: x – the matrix of standardized predictors – and y –
the vector of (standardized in the Gaussian case) responses, and the argument object,
which is a ‘screencoef’ object itself. It returns a vector of screening coefficients of
length p.

• control, which is the control list passed by the user in screen_*(). These controls
are arguments which are needed in generate_fun() in order to generate the desired
screening coefficients.

For illustration purposes, consider the object created by calling screen_marglik():

R> obj <- screen_marglik()

A user-friendly print of the ‘screencoef’ object is provided:

R> obj
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Name: screen_marglik

Main attributes:

* proportion of data used for screening: 1

* number of screened variables: not provided, will default to 2n

* type: probabilistic screening

* screening coefficients: not (yet) computed from the data.

The structure of the object is the following:

R> unclass(obj)

$name

[1] "screen_marglik"

$generate_fun

function (y, x, object)

{

control <- object$control

if (is.null(control$family)) {

control$family <- eval(parse(text = attr(object, "family_string")))

}

coefs <- apply(x, 2, function(xj) {

glm_res <- do.call(function(...) glm(y ~ xj, ...), control)

glm_res$coefficients[2]

})

coefs

}

<environment: namespace:spareg>

$control

list()

attr(,"type")

[1] "prob"

attr(,"reuse_in_rp")

[1] FALSE

Function generate_fun() defines the generation of the screening coefficient. Note that it
considers the controls in object$control when calling the stats::glm() function (unless
it is provided, the family argument in stats::glm() will be set to the “global” family of
the SPAR algorithm which is assigned inside the spar() function as an attribute for the
‘screencoef’ object).

For convenience, a constructor function constructor_screencoef() is provided, which can
be used to create new screen_* functions. An example is presented in Section 4.1.

3.3. Random projections
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Similar to the screening procedure, the objects for creating random projections are imple-
mented as S3 classes ‘randomprojection’ and are created by functions which take ... and
a list of controls control as arguments:

rp_*(..., control = list())

The following random projections are implemented in spareg:

• rp_gaussian() – random projection object where the generated matrix will have iid
entries from a normal distribution (defaults to standard normal entries).

• rp_sparse() – random projection object where the generated matrix will be the one
in Achlioptas (2003). The value of ψ can be passed through the control argument
e.g., rp_sparse(control = list(psi = 1/3)). Defaults to psi = 1.

• rp_cw() – sparse embedding random projection in Clarkson and Woodruff (2013). This
matrix is constructed as Φ = BD ∈ R

m×p, where B is a (p × p) binary matrix, where
for each column j an index is uniformly sampled from {1, . . . ,m} and the corresponding
entry is set to one, and D is a (p× p) diagonal matrix, with entries dj ∼ Unif({−1, 1}).
If specified as rp_cw(data = TRUE), the random elements on the diagonal of D are
replaced by the ridge coefficients with a small penalty, as introduced in Parzer et al.
(2024).

Arguments related to the random projection can be passed through ..., which will then
be saved as attributes of the ‘randomprojection’ object. More specifically, the following
attributes are relevant in the SPAR algorithm and are present in all ‘randomprojection’
objects:

• mslow: integer giving the minimum dimension to which the predictors should be pro-
jected; defaults to log(p).

• msup: integer giving the maximum dimension to which the predictors should be pro-
jected; defaults to n/2 except in the case that the user provides a predictor matrix
where the number of variables p < n/2, in which case it is set to p.

Note that for random projection matrices which satisfy the JL lemma, mslow can be deter-
mined by employing existing results which give a lower bound on the goal dimension in order
to preserve the distances between all pairs of points within a factor (1 ± ϵ). For example,
Achlioptas (2003) show m0 = logn(4 + 2τ)/(ϵ2/2 − ϵ3/3) for probability 1 − n−τ .

The rp_*() functions return an object of class ‘randomprojection’ which is a list of five
elements. The most important three elements are:

• a character name,

• generate_fun() function for generating the random projection matrix. This function
should have arguments

– rp, which is itself a ‘randomprojection’ object;

– m, the target dimension;
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– a vector of indices included_vector which indicates the column index of the
original variables in the x matrix to be projected using the random projection.
This is needed due to the fact that screening can be employed pre-projection.

– x the vector of standardized predictors–can be NULL if the random projection to
be generated is data-agnostic;

– y the vector of (standardized) responses–can be NULL if the random projection to
be generated is data-agnostic.

It returns a matrix or a sparse matrix of class ‘dgCMatrix’ of the Matrix package (Bates,
Maechler, and Jagan 2024) with m rows and length(included_vector) columns.

• control, which is the control list in rp_*(). These controls are arguments needed in
generate_fun() in order to generate the desired random projection.

For the case where the random projection should incorporate some information related to the
data, two more elements can be potentially relevant.

• Function update_fun() updates the ‘randomprojection’ object with relevant informa-
tion from the arguments of the spar() or spar.cv() function call. If it is not pro-
vided, it defaults to updating the ‘randomprojection’ object with a further attribute
family_string which is character version of the family argument (e.g., in the default
case it will be "gaussian(identity)"). In certain constructions, such as the one in
Parzer et al. (2024), certain data dependent quantities need to be computed only once,
not every time a random projection is generated. For example, in Parzer et al. (2024),
the ridge coefficients are estimated once at the beginning of the algorithm and reused
in each projection. In such cases, function update_fun() can be employed to add data
information as attributes of the ‘randomprojection’ object to be subsequently used in
the generate_fun() function. If specified by the user, this function should take only
... as an argument. Internally in the spar() function, all arguments of spar() are
passed to this function. It should return a ‘randomprojection’ object.

• In the case where a list of predefined RPMs is provided in spar(), for the data driven
random projections we allow the user to specify whether some parts of the given RPMs

should be updated with the provided data. This is possible through another optional
function update_rpm_w_data(). This is particularly relevant for the cross-validation
procedure, which employs the random projection matrices generated by calling the
spar() function on the whole data set before starting the cross-validation exercise.
For example, in our implementation of the data-driven rp_cw(data = TRUE), in each
fold, we only update the list of RPMs by adjusting the diagonal elements to the vector
of screening coefficients computed on the training data for the current fold, but do
not modify the random elements of the projection matrices in each fold, to reduce the
computational burden. Defaults to NULL. If not provided, the values of the provided
RPMs do not change.

For illustration purposes, consider the implemented function rp_gaussian(), which generates
a random projection with entries drawn from the normal distribution. The print method
returns key information about the random projection procedure.
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R> obj <- rp_gaussian()

R> obj

Name: rp_gaussian

Main attributes:

* Lower bound on goal dimension m: not provided, will default to log(p).

* Upper bound on goal dimension m: not provided, will default to n/2.

We turn to looking at the structure of the object:

R> unclass(obj)

$name

[1] "rp_gaussian"

$generate_fun

function (rp, m, included_vector, x = NULL, y = NULL)

{

p <- length(included_vector)

control_rnorm <- c(rp$control[names(rp$control) %in% names(formals(rnorm))],

attributes(rp)[names(attributes(rp)) %in% names(formals(rnorm))])

control_rnorm <- control_rnorm[!duplicated(names(control_rnorm))]

vals <- do.call(function(...) rnorm(m * p, ...), control_rnorm)

RM <- matrix(vals, nrow = m, ncol = p)

return(RM)

}

<environment: namespace:spareg>

$update_fun

function (...)

{

args <- list2(...)

if (is.null(attr(args$rp, "family"))) {

family_string <- paste0(args$family$family, "(", args$family$link,

")")

attr(args$rp, "family_string") <- family_string

}

args$rp

}

<environment: namespace:spareg>

$update_rpm_w_data

NULL

$control

list()
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The generate_fun() function returns a matrix with m rows and length(included_vector)

columns. Note that included_vector gives the indices of the variables which have been
selected by the screening procedure. In this case, the random projection does not use any
data information and we are only interested in the length of this vector.

The function update_fun() only converts the ‘family’ object to a string and adds it as an
attribute. Function update_rpm_w_data() is NULL as this random projection is data-agnostic.

An example for implementing a new ‘randomprojection’ is presented in Section 4.2.

3.4. Marginal models

The package provides a class ‘sparmodel’ for the marginal model to be fitted for each element
of the ensemble. The framework assumes that the model employs a linear predictor, i.e., a
linear combination of the projected variables.

Similar to the objects for random projection and screening coefficients, the functions which
create these objects have arguments ... (to be saved as attributes) and control (to be used
in the main function for building the model).

The two functions implemented are spar_glmnet(), which estimates as marginal models
regularized GLMs using function glmnet::glmnet() (where the default is to estimate a ridge
regression with the small penalty value1), and spar_glm() which estimates unregularized
GLMs using stats::glm().

An object of class ‘sparmodel’ is a list with elements:

• a character name,

• model_fun() – a function which takes y (the vector of standardized responses), z

(the matrix of reduced predictors) and a further argument which is the object of class
‘sparmodel’ itself. It returns a list of two elements: gammas which contains the vector
of coefficients and the value of the intercept.

• update_fun() – an optional function which can add further attributes to the ‘sparmodel’
object which is called at the beginning of the SPAR algorithm. This function returns
the ‘sparmodel’ object after modifying it. In the case of function spar_glmnet() this
function manipulates the ‘family’ object in a way which is convenient for function
glmnet::glmnet().2

The default is to use spar_glm() for Gaussian family with identity link and spar_glmnet()

for the other families. An example for implementing a new marginal model class is presented
in Section 4.3

1In particular, we use by default the penalty value λmin = λmax/100 where λmax is the smallest value
that shrinks all coefficients to zero, given by λmax = 1

nα
maxj |⟨zj , y⟩|(g−1)′(g(ȳ)) 1

Vary(µ)|µ=ȳ

with zj denoting

predictors standardized by the square root of their variance (using n in the denominator), and Vary(µ) the
variance function of the GLM family evaluated at the mean response. For ridge regression α = 0 and λmax = ∞
but for computational purposes α = 0.001 is used.

2In the case of families Gaussian, binomial and Poisson with canonical link, the family object is replaced by
a string containing the name of the family. This leads to glmnet using the faster specialized algorithms rather
than the general algorithm implemented for all ‘family’ objects.
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3.5. Methods

Methods print, plot, coef, predict are available for both ‘spar’ and ‘spar.cv’ classes.

print

The print method returns information on νbest Mbest, the number of active predictors
(i.e., predictors which have at least a non-zero coefficient across the marginal models) and
a summary of the non-zero non-standardized coefficients. We estimate the SPAR algorithm
with no screening and rp_cw(data = TRUE) (default).

R> set.seed(12)

R> spar_res <- spar(example_data$x, example_data$y,

+ xval = example_data$xtest, yval = example_data$ytest,

+ nummods = c(5, 10, 15, 20, 25, 30))

R> spar_res

spar object:

Smallest validation measure (deviance) of 3.00e+04 reached for nummod=5,

nu=4.05e-03 leading to 1017 / 2000 active predictors.

Summary of those non-zero coefficients:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.56404 -0.18048 0.10464 0.02842 0.20629 0.60673

For ‘spar.cv’ it also provides the same information for the (ν,M) combination chosen by the
one-standard-error rule.

R> set.seed(12)

R> spar_cv <- spar.cv(example_data$x, example_data$y,

+ nummods = c(5, 10, 15, 20, 25, 30))

R> spar_cv

spar.cv object:

Smallest CV measure (deviance) 5472.4 reached for nummod=25, nu=7.94e-04 leading

to 1853 / 2000 active predictors.

Summary of those non-zero coefficients:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.55515 -0.09917 0.03621 0.01823 0.13345 0.59362

Sparsest coefficient within one standard error of best CV measure (deviance)

reached for nummod=5, nu=4.92e-03 leading to 889 / 2000 active predictors

with CV measure (deviance) 6291.4.

Summary of those non-zero coefficients:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.56231 -0.17577 0.06431 0.02831 0.21168 0.60606

coef

Method coef takes as inputs a ‘spar’ or ‘spar.cv’ object, together with further arguments:
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• nummod – number of models used to compute the averaged coefficients; value of nummod

with minimal measure is used if not provided.

• nu – threshold level used to compute the averaged coefficients; value with minimal
measure is used if not provided.

• aggregate – one of c("mean", "median", "none"). If set to "none", the coefficients
are not aggregated over the nummod marginal models , otherwise the coefficients are ag-
gregated over the nummod marginal models using the specified method (mean or median).
Defaults to mean aggregation.

Additionally for ‘spar.cv’, the coef method also has argument opt_par which is one of
c("best", "1se") and chooses whether to select the best pair of nus and nummods according
to the cross-validation measure, or the solution yielding the sparsest vector of coefficients
within one standard deviation of that optimal cross-validation measure. This argument is
ignored when nummod and nu are given.

It returns an object of class ‘coefspar’, which is a list with the following elements: intercept
(numeric – if aggregate is set to "mean" or "median" – or a vector of length nummod if
aggregate = "none"), beta – a vector of length p or a matrix of dimension p×nummod of
beta coefficients, together with the nummod and nu employed in the calculation. For class
‘coefspar’ user-friendly print and summary methods are provided:

R> coef(spar_res)

Coefficients from spar object:

Based on the *best rule* (min error) selection

Aggregation method over models: mean

Selected combination: 5 models, threshold = 0.004054289

Coefficients:

(Intercept) V1 V2 V3 V4

2.9438 0.0000 0.0000 0.4620 0.0000

V5

0.0000

... (1995 coefficients not shown)

Number of active variables: 1017/2000

R> coef(spar_res, aggregate = "none")

Coefficients from spar object:

Based on the *best rule* (min error) selection
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Aggregation method over models: none

Selected combination: 5 models, threshold = 0.004054289

Coefficients:

Model_1 Model_2 Model_3 Model_4 Model_5

(Intercept) 2.9552 2.9807 2.8923 2.9580 2.9326

V1 0.0000 0.0000 0.0000 0.0000 0.0000

V2 0.0000 0.0000 0.0000 0.0000 0.0000

V3 0.4721 0.4661 0.4596 0.4620 0.4505

V4 0.0000 0.0000 0.0000 0.0000 0.0000

V5 0.0000 0.0000 0.0000 0.0000 0.0000

... (1995 rows not shown)

Number of active variables:

Model_1 Model_2 Model_3 Model_4 Model_5

958/2000 949/2000 948/2000 956/2000 938/2000

R> summary(coef(spar_res, aggregate = "median"))

Summary of coefficients from spar object:

Based on the *best rule* (min error) selection

Aggregation method over models: median

Selected combination: 5 models, threshold = 0.004054289

Number of active coefficients: 953/2000

(Intercept)

2.9704

Coefficient summary (beta):

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.57410 0.00000 0.00000 0.01434 0.12920 0.60480

as well as extractor functions get_intercept and get_coef which return the values of the
intercept and coefficients, respectively:

R> get_intercept(coef(spar_res, nummod = 10, aggregate = "none"))

Model_1 Model_2 Model_3 Model_4 Model_5 Model_6 Model_7

2.766969 2.846775 2.812821 2.816830 2.796249 2.715157 2.808944

Model_8 Model_9 Model_10

2.857150 2.818515 2.735729
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predict

Functionality for computing predictions is provided through the method predict which takes
a ‘spar’ or ‘spar.cv’ object, together with

• xnew – matrix of new predictor variables; must have same number of columns as x.
Defaults to NULL

• type – the type of required predictions; either on "response" level (default) or on
"link" level.

• avg_type – type of averaging used across the marginal models; either on "link" (de-
fault) or on "response" level.

• nummod – number of models used to compute the averaged coefficients; value of nummod

with minimal measure is used if not provided.

• nu – threshold level used to compute the averaged coefficients; value with minimal
measure is used if not provided.

• aggregate – one of c("mean", "median") to be used in aggregating over the nummod

marginal models. Defaults to mean aggregation.

Additionally, for class ‘spar.cv’, argument opt_par is available and used in the computation
of the coefficients to be used for prediction (see above description of method coef).

R> pred <- predict(spar_res, xnew = example_data$xtest)

R> pred_cv <- predict(spar_cv, xnew = example_data$xtest, opt_par = "1se")

plot

Plotting functionality is provided through the plot method, which takes a ‘spar’ or ‘spar.cv’
object, together with further arguments:

• plot_type – one of:

– "val_measure" plots the (cross-)validation measure for either a grid of nu values
for a fixed number of models nummod or viceversa.

– "val_numactive" plots the number of active variables for either a grid of nu values
for a fixed number of models nummod or viceversa.

– "res_vs_fitted" produces a residuals-vs-fitted plot. The residuals are computed
as ri = yi − ŷi, where ŷi is the prediction computed on response level.

– "coefs" produces a plot of the value of the standardized coefficients for each
predictor in each marginal model (before thresholding). For each predictor, the
values of the coefficients are sorted from largest to smallest across the marginal
models and their value is represented in the plot using a color scale.
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• plot_along – one of c("nu","nummod"); for plot_type = "val_measure" as well
as for plot_type = "val_numactive" it indicates whether the values of the cross-
validation measure or number of active variables, respectively, should be shown for a
grid of ν values while keeping the number of models nummod fixed or viceversa. This
argument is ignored when plot_type = "res_vs_fitted" or plot_type = "coefs".

• nummod – fixed value for number of models when plot_along = "nu" for plot_type =

"val_measure" or "val_numactive"; if plot_type = "res_vs_fitted", it is used in
the predict method, as described above.

• nu – fixed value for ν when plot_along = "nummod" for plot_type = "val_measure"

or "val_numactive"; if plot_type = "res_vs_fitted", it is used in the predict

method, as described above.

• xfit – if plot_type = "res_vs_fitted", it is the matrix of predictors used in com-
puting the fitted values. This argument must be provided for the plot of residuals and
fitted values, as the ‘spar’ or ‘spar.cv’ objects do not store the original data.

• yfit – if plot_type = "res_vs_fitted", vector of responses used in computing the
residuals. This argument must be provided for the plot of residuals and fitted values,
as the ‘spar’ or ‘spar.cv’ objects do not store the original data.

• prange – optional vector of length 2 in case plot_type = "coefs" which gives the
limits of the predictors’ plot range; defaults to c(1, p).

• coef_order – optional index vector of length p in case plot_type = "coefs" to give
the order of the predictors; defaults to seq_len(p).

The four plots for the ‘spar’ object are produced with the code below and shown in Figure 1.

R> plot(spar_res)

R> plot(spar_res, plot_type = "val_numactive")

R> plot(spar_res, plot_type = "coefs")

R> plot(spar_res, plot_type = "res_vs_fitted", xfit = example_data$xtest,

+ yfit = example_data$ytest)

For class ‘spar.cv’ there is the extra argument opt_par = c("best", "1se") which is only
used for plot_type = "res_vs_fitted" and indicates whether the predictions should be
based on coefficients using the best (ν,M) combination or using the combination which deliv-
ers the sparsest β having validation measure within one standard deviation from the minimum.
Moreover, the plot method for object ‘spar.cv’ with plot_type = "coefs" will display the
coefficients obtained from first running spar() on the whole data set, before cross-validation
is performed.

The plot methods return objects of class ‘ggplot’ (Wickham 2016).

3.6. Parallelization

The package supports parallelization in the estimation of the marginal models in the ensemble
via package foreach (Microsoft and Weston 2022). This is possible by setting the parameter
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Figure 1: plot methods for ‘spar’ object. The red dots in the first two figures show the best
ν chosen on the validation set for the optimal number of models M = 5.

parallel = TRUE in spar() or spar.cv(), assuming that a parallel backend for foreach is
registered using the registerDoParallel() function of package doParallel (Microsoft Cor-
poration and Weston 2022). To ensure reproducibility the doRNG (Gaujoux 2025) can be
used. Our experiments suggest that parallelization pays off especially for data sets with a
larger number of observations n. A minimal example with a correlation-based probabilistic
screening and a Gaussian random projection matrix is provided below:

R> example_data4 <- simulate_spareg_data(n = 1000, p = 2000, ntest = 1000,

+ seed = 123)

R> library(doParallel)

R> library(doRNG)

R> cl <- makeCluster(2, type = "PSOCK")

R> registerDoParallel(cl)

R> registerDoRNG(seed = 123)

R> spar_res_par <- spar(example_data4$x, example_data4$y,

+ screencoef = screen_cor(), rp = rp_gaussian(),

+ nummods = 50, parallel = TRUE)

R> stopCluster(cl)

4. Extensibility

4.1. Screening coefficients

We exemplify how screening coefficients implemented in package VariableScreening can easily
be incorporated in the framework of spareg.

We start by defining the function for generating the screening coefficients using function
screenIID() in VariableScreening.

R> generate_scr_sirs <- function(y, x, object) {

+ res_screen <- do.call(function(...)



24 Sparse Projected Averaged Regression in R

+ VariableScreening::screenIID(x, y, ...),

+ object$control)

+ coefs <- res_screen$measurement

+ coefs

+ }

Note that screenIID() also takes method as an argument. To allow for flexibility, we do
not fix the screening method in generate_scr_sirs() but rather allow the user to pass a
method through the control argument in the screen_*() function. This function is created
using the helper constructor_screencoef():

R> screen_sirs <- constructor_screencoef(

+ "screen_sirs",

+ generate_fun = generate_scr_sirs)

We now call spar() with the newly created screening procedure. We consider the method
SIRS of Zhu et al. (2011), which ranks the predictors by their correlation with the rank-
ordered response and we do not perform probabilistic variable screening but employ the top
2n variables in each marginal model. The employed random projection is rp_sparse() where
we set ψ = 1/

√
p, as proposed by Li et al. (2006).

R> set.seed(123)

R> spar_example <- spar(example_data$x, example_data$y,

+ screencoef = screen_sirs(type = "fixed",

+ control = list(method = "SIRS")),

+ rp = rp_sparse(psi = 1/sqrt(ncol(example_data$x))), measure = "mse")

R> spar_example

spar object:

Smallest validation measure (mse) of 1.48e+02 reached for nummod=20,

nu=0.00e+00 leading to 400 / 2000 active predictors.

Summary of those non-zero coefficients:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.68568 -0.08569 0.07681 0.08965 0.24606 0.96782

4.2. Random projections

In the following we exemplify how new random projections can be implemented in the frame-
work of spareg.

We implement the random projection of Cannings and Samworth (2017), who propose using
the Haar measure for generating the random projections. They simulate matrices from the
Haar measure by independently drawing each entry of a matrix Q from a standard normal
distribution, and then take the projection matrix to be the transpose of the matrix of left
singular vectors in the singular value decomposition of Q. The helper function below simulates
matrices of size m× p from the Haar measure:
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R> simulate_haar <- function(m, p) {

+ R0 <- matrix(1/sqrt(p) * rnorm(p * m), nrow = p, ncol = m)

+ RM <- qr.Q(qr(R0), complete = FALSE)

+ t(RM)

+ }

Moreover, Cannings and Samworth (2017) suggest using “good” random projections, in the
sense that they deliver the best out-of-sample prediction. The proposed approach employs
B1 models in an ensemble of classifiers. For each model k, B2 Haar random projections are
generated and the one with the lowest error on a test set is the one chosen to project the
variables in model k. (Note that, while the B2 random projections are data-agnostic, the
whole data is needed in finding the best random projection.) We will generate the random
projections in the following way. For each model k, we use a proportion ξ of the data as a
test set and for b = {1, . . . , B2} we generate a Haar random projection. We then estimate a
ridge regression on the training data and compute the misclassification error for the binomial
family and MSE for all other families on the test set. Finally, the best out of B2 projections
in terms of minimizing the loss on the test set is chosen.

We can start implementing such a random projection in spareg by the following steps. First,
there are no data quantities which are to be used in all possible random projections so we do
not need to specify a function update_fun(). However, we can use update_fun() to update
the ‘randomprojection’ object with further information related to the family. Given that
we will rely again on glmnet::glmnet() in each iteration b, the family object is modified to
a string containing the name of the family for families Gaussian, binomial and Poisson with
canonical link (this will lead to using faster specialized algorithms). This modified family
is added to the list of controls as fit_family. We also set by default B2 = 50, ξ = 0.25
and α = 0 (in the glmnet model to be estimated inside the function generating the random
projection).

R> update_rp_cannings <- function(...) {

+ args <- rlang::list2(...)

+ if (is.null(args$rp$control$family)) {

+ family_string <- paste0(args$family$family,

+ "(", args$family$link, ")")

+ args$rp$control$family_string <- family_string

+ family <- args$family

+ fit_family <- switch(family$family,

+ "gaussian" = if (family$link == "identity") "gaussian" else family,

+ "binomial" = if (family$link == "logit") "binomial" else family,

+ "poisson" = if (family$link == "log") "poisson" else family,

+ family)

+ args$rp$control$fit_family <- fit_family

+ }

+ if (is.null(args$rp$control$alpha)) args$rp$control$alpha <- 1

+ if (is.null(args$rp$control$B2)) args$rp$control$B2 <- 50

+ if (is.null(args$rp$control$xi)) {

+ args$rp$control$xi <- 0.25

+ } else {
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+ stopifnot("xi must be between 0 and 1."=

+ args$rp$control$xi >= 0 & args$rp$control$xi<= 1)

+ }

+ args$rp

+ }

As we can see, values for xi and B2 can be passed by the user through the control argument,
and if they are not specified, they are set to the default values.

Next we specify the function for generating the random projection.

R> generate_cannings <- function(rp, m, included_vector, x, y) {

+ xs <- x[, included_vector]

+ n <- nrow(x); p <- ncol(xs)

+ B2 <- rp$control$B2; xi <- rp$control$xi

+ id_test <- sample(n, size = n * xi)

+ xtrain <- xs[-id_test, ]; xtest <- xs[id_test,]

+ ytrain <- y[-id_test]; ytest <- y[id_test]

+ control_glmnet <-

+ rp$control[names(rp$control) %in% names(formals(glmnet::glmnet))]

+ best_val <- Inf

+ family <- eval(parse(text = rp$control$family_string))

+ for (b in seq_len(B2)) {

+ RM <- simulate_haar(m, p)

+ xrp <- tcrossprod(xtrain, RM)

+ mod <- do.call(function(...)

+ glmnet::glmnet(x = xrp, y = ytrain,

+ family = rp$control$fit_family, ...),

+ control_glmnet)

+ coefs <- coef(mod, s = min(mod$lambda))

+ eta_test <- (cbind(1, tcrossprod(xtest, RM)) %*% coefs)

+ pred <- family$linkinv(as.vector(eta_test))

+ out_perf <- ifelse(family$family == "binomial",

+ mean(((pred > 0.5) + 0) != ytest),

+ mean((pred - ytest)^2))

+ if (out_perf < best_val) {

+ best_val <- out_perf; best_RM <- RM

+ }

+ rm(RM)

+ }

+ return(best_RM)

+ }

For the cross-validation procedure implemented in spar.cv(), we choose to not generate new
matrices for each training fold in order to keep computational costs low, so we do not specify
a function update_rpm_w_data().

Putting it all together, we get:
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R> rp_cannings <- constructor_randomprojection(

+ "rp_cannings",

+ generate_fun = generate_cannings,

+ update_fun = update_rp_cannings

+ )

We can now estimate SPAR for a binomial model, where we transform the response to a
binary variable. We simulate again data from a linear model and then transform the response
to a binary scale:

R> set.seed(1234)

R> example_data2 <- simulate_spareg_data(n = 100, p = 1000, ntest = 100)

R> ystar <- (example_data2$y > 0) + 0

R> ystarval <- (example_data2$ytest > 0) + 0

We use only one value for the number of models M = 50 (which is in line to recommendations
in Cannings and Samworth 2017), and no screening procedure. Moreover, we do not perform
any thresholding:

R> set.seed(12345)

R> spar_example_1 <- spar(x = example_data2$x, y = ystar,

+ family = binomial(),

+ rp = rp_cannings(control = list(lambda.min.ratio = 0.01)),

+ nus = 0, nummods = 50,

+ xval = example_data2$xtest, yval = ystarval,

+ measure = "class")

We can compare with results obtained by using the data-driven rp_cw(data = TRUE):

R> set.seed(12345)

R> spar_example_2 <- spar(x = example_data2$x, y = ystar,

+ family = binomial(), rp = rp_cw(data = TRUE),

+ nus = 0, nummods = 50, xval = example_data2$xtest, yval = ystarval,

+ measure = "class")

Given that we only consider the case of ν = 0 and M = 50, we can now compare the two
approaches by directly looking at the validation measure achieved on the provided validation
set. The extractor function get_measure() can be used to extract the value of the measure
for the ‘spar’ model object:

R> get_measure(spar_example_1)

nu nummod class numactive

1 0 50 0.2 1000

R> get_measure(spar_example_2)

nu nummod class numactive

1 0 50 0.19 1000
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4.3. Marginal models

Finally, we illustrate how to implement a new marginal model in spareg. We consider es-
timating a robust GLM as a marginal model using the package robustbase (Todorov and
Filzmoser 2009).

We start by defining the model_fun() function, where y is the vector of responses, z is the
matrix of reduced predictors and object is a ‘sparmodel’ object. In the case of a linear model,
i.e., Gaussian family with identity link, we rely on the function robustbase::lmrob(), for
other family-links we use robustbase::glmrob().

R> model_glmrob <- function(y, z, object) {

+ requireNamespace("robustbase")

+ fam <- object$control$family

+ if (fam$family == "gaussian" & fam$link == "identity") {

+ glmrob_res <- do.call(function(...)

+ robustbase::lmrob(y ~ as.matrix(z), ...),

+ object$control)

+ } else {

+ glmrob_res <- do.call(function(...)

+ robustbase::glmrob(y ~ as.matrix(z), ...),

+ object$control)

+ }

+ intercept <- coef(glmrob_res)[1]

+ gammas <- coef(glmrob_res)[-1]

+ list(gammas = gammas, intercept = intercept)

+ }

We then construct a spar_glmrob() function, which builds the ‘sparmodel’ object. We can
do this easily by the available constructor function:

R> spar_glmrob <- constructor_sparmodel(name = "glmrob",

+ model_fun = model_glmrob)

For illustration purposes we generate another data set example_data3 and consider a count
version of the response variable y.

R> set.seed(123)

R> example_data3 <- simulate_spareg_data(n = 100, p = 1000,

+ ntest = 100, snr = 10, beta_vals = c(-1, 1)/10)

R> ypois <- round(exp(example_data3$y)) + 1

We further contaminate 25% of the values in the predictor matrix with outliers.

R> perc_cont <- 0.25

R> x <- example_data3$x;

R> np <- ncol(x) * nrow(x)

R> id_outliers_x <- sample(seq_len(np), perc_cont * np)

R> x[id_outliers_x] <- x[id_outliers_x] + 50
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We can now estimate the SPAR algorithm with robust GLMs as marginal models and compare
it to a version with marginal GLMs using the poisson() link. We use no screening and
rp_gaussian(). We set measure = "mae", i.e., we find the threshold ν by choosing the value
which delivers the lowest mean absolute error on the training sample. To improve stability in
the estimates from robustbase::glmrob, we set the upper bound on goal dimension of the
random projection to 25 (default would be n/2 = 50).

R> set.seed(1234)

R> spar_rob_res <- spar(x, ypois, family = poisson(),

+ model = spar_glmrob(), rp = rp_gaussian(msup = 25),

+ measure = "mae")

R> set.seed(1234)

R> spar_res <- spar(x, ypois, family = poisson(),

+ model = spar_glm(), rp = rp_gaussian(msup = 25),

+ measure = "mae")

The extractor function get_model(object, opt_par = c("best", "1se")) can be employed
to extract the best ν for M = 20 (which is the default for the number of models consider).
It extracts the best model for ‘spar’ objects and the best model or the one chosen by the
one-standard-error rule for ‘spar.cv’ objects.

R> best_rob <- get_model(spar_rob_res, opt_par = "best")

R> best_glm <- get_model(spar_res, opt_par = "best")

Then the extractor function get_measure() can be used to extract the value of the measure
for the best model:‘

R> get_measure(best_rob)

nu nummod mae numactive

7 0.004830264 20 4.389492 1000

R> get_measure(best_glm)

nu nummod mae numactive

4 0.002894128 20 4.584595 1000

We observe that the attained mae is indeed lower for the robust version. We also observe
that all predictors are active. Even though the optimal threshold parameter was greater than
zero, it did not happen that the coefficients of one predictor were set to zero in all M = 20
marginal models.

5. Conclusion

Package spareg can be employed for modeling high-dimensional data in a GLM framework,
especially in settings where the number of predictors is much higher than the number of
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observations. The package provides an implementation of a computationally-efficient algo-
rithm for sparse projected and average regression (SPAR), which combines variable screening
and random projection in an ensemble of GLMs to reduce dimensionality of the predic-
tors. Package spareg provides flexible classes for i) specifying the coefficient based on which
screening should be performed (both in a classical fashion, where the predictors with the
highest screening coefficient are selected for subsequent analysis or in a probabilistic fashion,
where variables are sampled for inclusion with probabilities proportional to their screening
coefficient), ii) generating the random projection to be employed in each marginal model,
iii) specifying the marginal models to be used in the ensemble. Screening coefficients based
on marginal correlation between the predictors and the response, marginal coefficients from a
GLM or ridge coefficients are provided in the package. Moreover, several random projections
are implemented: the Gaussian and sparse matrices which are data-agnostic and satisfy the
JL lemma and the data-driven projection proposed in Parzer et al. (2025) for linear regression
and extended to GLMs in Parzer et al. (2024). This data-driven approach, where informa-
tion about the relationship among the responses and the predictors is incorporated in the
random projection by replacing the non-zero elements of the random projection of Clarkson
and Woodruff (2013) with the ridge coefficients obtained with a small penalty, has the ad-
vantage of ensuring that the true regression coefficients can be recovered approximately after
the projection. Methodologically, the SPAR algorithm with ridge screening coefficients and
the data-driven random projection (as proposed in Parzer et al. 2024) has been demonstrated
to perform effectively in terms of predictive power and variable ranking in settings with cor-
related predictors and across different degrees of sparsity of the coefficient vector, making it
a suitable method for high-dimensional settings with correlated predictors where the sparsity
of the problem is unknown. This is the motivation behind setting the screening coefficient
and random projection in Parzer et al. (2024) as default values in spareg.

Moreover, the flexibility and adaptability of the spareg package in dealing with different
types of screening, random projection and types of GLMs, make it an attractive choice for
practitioners and researchers in a wide variety of data settings. It encourages exploration of
new methods for variable screening and random projections or the combination of existing
approaches to tailor solutions to specific data requirements.

Computational details

The results in this paper were obtained using R 4.5.0. R itself and all packages used are
available from CRAN at https://CRAN.R-project.org/.

R> sessionInfo()

R version 4.5.0 (2025-04-11)

Platform: aarch64-apple-darwin20

Running under: macOS Sonoma 14.2.1

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;

https://CRAN.R-project.org/
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locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Vienna

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] spareg_1.1.0 ggplot2_3.5.2

loaded via a namespace (and not attached):

[1] generics_0.1.4 tidyr_1.3.1

[3] robustbase_0.99-4-1 rstatix_0.7.2

[5] shape_1.4.6.1 lattice_0.22-6

[7] magrittr_2.0.3 grid_4.5.0

[9] RColorBrewer_1.1-3 iterators_1.0.14

[11] foreach_1.5.2 glmnet_4.1-9

[13] Matrix_1.7-3 backports_1.5.0

[15] Formula_1.2-5 survival_3.8-3

[17] energy_1.7-12 purrr_1.0.4

[19] scales_1.4.0 codetools_0.2-20

[21] abind_1.4-8 Rdpack_2.6.4

[23] cli_3.6.5 expm_1.0-0

[25] rlang_1.1.6 rbibutils_2.3

[27] cowplot_1.1.3 gsl_2.1-8

[29] splines_4.5.0 withr_3.0.2

[31] VariableScreening_0.2.1 tools_4.5.0

[33] ggsignif_0.6.4 dplyr_1.1.4

[35] ggpubr_0.6.0 boot_1.3-31

[37] ROCR_1.0-11 broom_1.0.8

[39] vctrs_0.6.5 R6_2.6.1

[41] lifecycle_1.0.4 car_3.1-3

[43] MASS_7.3-65 pkgconfig_2.0.3

[45] gee_4.13-29 pillar_1.10.2

[47] gtable_0.3.6 glue_1.8.0

[49] Rcpp_1.0.14 DEoptimR_1.1-3-1

[51] tibble_3.3.0 tidyselect_1.2.1

[53] rstudioapi_0.17.1 farver_2.1.2

[55] carData_3.0-5 labeling_0.4.3

[57] compiler_4.5.0
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