
JSS Journal of Statistical Software
November 2012, Volume 51, Issue 7. doi: 10.18637/jss.v000.i00

spacetime: Spatio-Temporal Data in R

ifgi

Institute for Geoinformatics
University of Münster

Edzer Pebesma

Abstract

This document describes classes and methods designed to deal with different types
of spatio-temporal data in R implemented in the R package spacetime, and provides
examples for analyzing them. It builds upon the classes and methods for spatial data from
package sp, and for time series data from package xts. The goal is to cover a number of
useful representations for spatio-temporal sensor data, and results from predicting (spatial
and/or temporal interpolation or smoothing), aggregating, or subsetting them, and to
represent trajectories. The goals of this paper are to explore how spatio-temporal data
can be sensibly represented in classes, and to find out which analysis and visualisation
methods are useful and feasible. We discuss the time series convention of representing
time intervals by their starting time only. This vignette is the main reference for the R

package spacetime; it has been published as Pebesma (2012), but is kept up-to-date with
the software.

Keywords: Time series analysis, spatial data, spatio-temporal statistics, Geographic Informa-
tion Systems.

1. Introduction

Spatio-temporal data are abundant, and easily obtained. Examples are satellite images of
parts of the earth, temperature readings for a number of nearby stations, election results
for voting districts and a number of consecutive elections, trajectories for people or animals
possibly with additional sensor readings, disease outbreaks or volcano eruptions.

Schabenberger and Gotway (2004) argue that analysis of spatio-temporal data often happens
conditionally, meaning that either first the spatial aspect is analysed, after which the temporal
aspects are analysed, or reversed, but not in a joint, integral modelling approach, where space
and time are not separated. As a possible reason they mention the lack of good software,

https://doi.org/10.18637/jss.v000.i00

2 spacetime: Spatio-Temporal Data in R

data classes and methods to handle, import, export, display and analyse such data. This R

(R Development Core Team 2011) package is a start to fill this gap.

Spatio-temporal data are often relatively abundant in either space, or time, but not in both.
Satellite imagery is typically very abundant in space, giving lots of detail in high spatial
resolution for large areas, but relatively sparse in time. Analysis of repeated images over time
may further be hindered by difference in light conditions, errors in georeferencing resulting
in spatial mismatch, and changes in obscured areas due to changed cloud coverage. On the
other side, data from fixed sensors give often very detailed signals over time, allowing for
elaborate modelling, but relatively little detail in space because a very limited number of
sensors is available. The cost of an in situ sensor network typically depends primarily on its
spatial density; the choice of the temporal resolution with which the sensors register signals
may have little effect on total cost.

Although for example Botts, Percivall, Reed, and Davidson (2007) describe a number of
open standards that allow the interaction with sensor data (describing sensor characteristics,
requesting observed values, planning sensors, and processing raw sensed data to predefined
events), the available statistical or geographic information system (GIS) software for this
is in an early stage, and scattered. This paper describes an attempt to combine available
infrastructure in the R statistical environment with ideas from statistical literature (Cressie
and Wikle 2011) and data base literature (Güting and Schneider 2005) to a set of useful classes
and methods for manipulating, plotting and analysing spatio-temporal data. A number of
case studies from different application areas will illustrate its use.

The paper is structured as follows. Section 2 describes how spatio-temporal data are usually
recorded in tables. Section 3 describes a number of useful spatio-temporal layouts. Section 4
introduces classes and methods for data, based on these layouts. Section 5 presents a number
of useful graphs for spatio-temporal data, and implementations for these. Section 6 discusses
the spatial and temporal footprint, or support, of data, and how time intervals are dealt with
in practice. Section 7 presents a number of worked examples, some of which include statistical
analysis on the spatio-temporal data. Section 8 points to further material, including further
vignettes in package spacetime on spatio-temporal overlay and aggregation, and on using
proxy data sets to PostgreSQL tables when data are too large for R. Section 9 finishes with
a discussion.

This paper is also found as a vignette in package spacetime, which implements the classes
and methods for spatio-temporal data described here. The vignette is kept up-to-date with
the software.

2. How spatio-temporal data are recorded in tables

For reasons of simplicity, spatio-temporal data often come in the form of single tables. If this
is the case, they come in one of three forms:

time-wide where different columns reflect different moments in time,

space-wide where different columns reflect different measurement locations or areas, or

long formats where each record reflects a single time and space combination.

https://cran.r-project.org/package=spacetime

Journal of Statistical Software 3

Alternatively, they may be stored in different, related tables, which is more typical for rela-
tional data bases, or in tree structures which is typical for xml files. We will now illustrate
the different single-table formats with simple examples.

2.1. Time-wide format

Spatio-temporal data for which each location has data for each time can be provided in two
so-called wide formats. An example where a single column refers to a single moment or
period in time is found in the North Carolina Sudden Infant Death Syndrome (sids) data set
(?) available from package sf, which is in the time-wide format:

R> if (require(foreign, quietly = TRUE) && require(sf, quietly = TRUE))

+ read.dbf(system.file("shape/nc.dbf", package="sf"))[1:5,c(5,9:14)]

NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79

1 Ashe 1091 1 10 1364 0 19

2 Alleghany 487 0 10 542 3 12

3 Surry 3188 5 208 3616 6 260

4 Currituck 508 1 123 830 2 145

5 Northampton 1421 9 1066 1606 3 1197

where columns refer to a particular time: SID74 contains to the infant death syndrome
cases for each county at a particular time period (1974-1984).

2.2. Space-wide format

The Irish wind data (Haslett and Raftery 1989) available from package gstat (Pebesma 2004),
for which the first six records and 9 of the stations (abbreviated by RPT, VAL, ...) are shown
by

R> if (require(gstat, quietly = TRUE)) {

+ data("wind", package = "gstat")

+ wind[1:6,1:12]

+ }

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50

4 61 1 4 10.58 6.63 11.75 4.58 4.54 2.88 8.63 1.79 5.83

5 61 1 5 13.33 13.25 11.42 6.17 10.71 8.21 11.92 6.54 10.92

6 61 1 6 13.21 8.12 9.96 6.67 5.37 4.50 10.67 4.42 7.17

are in space-wide format: each column refers to another wind measurement location, and
the rows reflect a single time period; wind was reported as daily average wind speed in knots
(1 knot = 0.5418 m/s).

4 spacetime: Spatio-Temporal Data in R

2.3. Long format

Finally, panel data are shown in long form, where the full spatio-temporal information is
held in a single column, and other columns denote location and time. In the Produc data
set (Baltagi 2001), a panel of 48 observations from 1970 to 1986 available from package plm

(Croissant and Millo 2008), the first five records and nine columns are

R> if (require(plm, quietly = TRUE)) {

+ data("Produc", package = "plm")

+ Produc[1:5,1:9]

+ }

state year region pcap hwy water util pc gsp

1 ALABAMA 1970 6 15032.67 7325.80 1655.68 6051.20 35793.80 28418

2 ALABAMA 1971 6 15501.94 7525.94 1721.02 6254.98 37299.91 29375

3 ALABAMA 1972 6 15972.41 7765.42 1764.75 6442.23 38670.30 31303

4 ALABAMA 1973 6 16406.26 7907.66 1742.41 6756.19 40084.01 33430

5 ALABAMA 1974 6 16762.67 8025.52 1734.85 7002.29 42057.31 33749

where the first two columns denote space and time (the default assumption for package plm),
and e.g., pcap reflects private capital stock.

None of these examples has strongly referenced spatial or temporal information: it is from
the data alone not clear that the number 1970 refers to a year, or that ALABAMA refers to a
state, and where this state is. Section 7 shows for each of these three cases how the data can
be converted into classes with strongly referenced space and time information.

3. Space-time layouts

In the following we will use the word spatial feature (Herring 2011) to denote a spatial entity.
This can be a particular spatial point (location), a line or set of lines, a polygon or set of
polygons, or a pixel (grid or raster cell). For a particular feature, one or more measurements
are registered at particular moments in time.

Four layouts of space-time data will be discussed next. Two of them reflect lattice layouts,
one that is efficient when a particular spatial feature has data values for more than one time
point, and one that is most efficient when all spatial feature have data values at each time
point. Two others reflect irregular layouts, one of which specializes to trajectories (moving
objects).

3.1. Spatio-temporal full grids

A full space-time grid of observations for spatial features (points, lines, polygons, grid cells)1

si, i = 1, ..., n and observation time tj , j = 1, ..., m is obtained when the full set of n × m set
of observations zk is stored, with k = 1, ..., nm. We choose to cycle spatial features first, so
observation k corresponds to feature si, i = ((k − 1) % n) + 1 and with time moment tj ,

1note that neither spatial features nor time points need to follow a regular layout

Journal of Statistical Software 5

Time points

S
pa

tia
l f

ea
tu

re
s

1st 3rd 4th

1s
t

2n
d

3r
d

1

2

3

4

5

6

7

8

9

10

11

12

STF: full grid layout

Time points

S
pa

tia
l f

ea
tu

re
s

1st 2nd 4th
1s

t
2n

d
3r

d

1[1,1]

2[2,1]

3[3,1]

4[2,2]

5[3,2]

6[1,3]

7[2,4]

STS: sparse grid layout

Time points

S
pa

tia
l f

ea
tu

re
s

1st 2nd 4th

1s
t,4

th
3r

d
5t

h

1

2

3

4

5

STI: irregular layout

Time points

S
pa

tia
l f

ea
tu

re
s

STT: trajectory

Figure 1: Four space-time layouts: (i) the top-left: full grid (STF) layout stores all space-time
combinations; (ii) top-right: the sparse grid (STS) layout stores only the non-missing space-
time combinations on a lattice; (iii) bottom-left: the irregular (STI) layout: each observation
has its spatial feature and time stamp stored, in this example, spatial feature 1 is stored twice
– the fact that observations 1 and 4 have the same feature is not registered; (iv) bottom right:
simple trajectories (STT), plotted against a common time axis. It should be noted that in
both gridded layouts the grid is in space-time, meaning that spatial features can be gridded,
but can also be any other non-gridded type (lines, points, polygons).

6 spacetime: Spatio-Temporal Data in R

j = ((k − 1)/n) + 1, with / integer division and % integer division remainder (modulo). The
tj are assumed to be in time order.

In this data class (top left in Figure 1), for each spatial feature, the same temporal sequence
of data is sampled. Alternatively one could say that for each moment in time, the same set of
spatial entities is sampled. Unsampled combinations of (space, time) are stored in this class,
but are assigned a missing value NA.

It should be stressed that for this class (and the next) the word grid in spatio-temporal
grid refers to the layout in space-time, not in space. Examples of phenomena that could
well be represented by this class are regular (e.g., hourly) measurements of air quality at a
spatially irregular set of points (measurement stations), or yearly disease counts for a set of
administrative regions. An example where space is gridded as well could be a sequence of
rainfall images (e.g., monthly sums), interpolated to a spatially regular grid.

3.2. Spatio-temporal sparse grids

A sparse grid has the same general layout, with measurements laid out on a space time
grid (top right in Figure 1), but instead of storing the full grid, only non-missing valued
observations zk are stored. For each k, an index [i, j] is stored that refers which spatial
feature i and time point j the value belongs to.

Storing data this way may be efficient

• If full space-time lattices have many missing or trivial values (e.g., when one want to
store features or grid cells where fires were registered, discarding those that did not),

• If a limited set of spatial features each have different time instances (e.g., to record the
times of crime cases for a set of administrative regions), or,

• If for a limited set of times the set of spatial features varies (e.g., locations of crimes
registered per year, or spatially misaligned remote sensing images).

3.3. Spatio-temporal irregular data

Space-time irregular data cover the case where time and space points of measured values
have no apparent organisation: for each measured value the spatial feature and time point
is stored, as in the long format. This is equivalent to the (maximally) sparse grid where the
index for observation k is [k, k], and hence can be dropped. For these objects, n = m equals
the number of records. Spatial features and time points need not be unique, but are replicated
in case they are not.

Any of the gridded types can be represented by this layout, in principle, but this would have
the disadvantages that

• Spatial features and time points need to be stored for each data value, and would be
redundant,

• The regular layout is lost, and needs be retrieved indirectly,

• Spatial and temporal selection would be inefficient, as the grid structure forms an index.

Journal of Statistical Software 7

Examples of phenomena that are best served by this layout could be spatio-temporal point
processes, such as crime or disease cases or forest fires. Other phenomena could be measure-
ments from mobile sensors (in case the trajectory sequence is of no importance).

3.4. Interval time, moving objects, trajectories

In their book “moving objects databases”, Güting and Schneider (2005) distinguish 10 differ-
ent data types in space-time. In particular, they define for point features2.

a Sets of events without temporal duration (time is an instant), e.g., accidents, lightning,
birth, death;

b Sets of events with a temporal duration but no movement, e.g., a tree, a (point in the)
capital of a country, people’s home address;

c (Sets of) moving points, e.g., the trajectories of one or more persons, or birds.

To accomodate this typology we distinguish three cases, shown in figure 2:

(i) Time is instant and the feature is not moving (it may only exist at a time instant),

(ii) Time is interval, objects do not move during this interval,

(iii) Time is instant and features move (objects exist between time instants and may move)
along a trajectory.

When time reflects intervals, it means that the spatial feature (spatial location or extent of the
observation) or its associated data values does not change during this interval, but reflects the
value or state during this interval. An examples is the yearly mean temperature of a country
or of a set of locations, or the existence (duration) of a nation with a particular layout of its
boundaries.

Time instants can reflect the moments of change (e.g., the start of the meteorological summer),
or events with a zero or negligible duration (e.g., an earthquake, a lightning).

Movement reflects the fact that moving objects exist and may change location during a time
interval. For moving object data, time instants reflect the location at a particular moment,
and movement occurs between registered (time, feature) pairs, and must be continuous.

Trajectories cover the case where sets of (irregular) space-time points form sequences, and
depict a trajectory. Their grouping may be simple (e.g., the trajectories of two persons on
different days), nested (for several objects, a set of trajectories representing different trips) or
more complex (e.g., with objects that split, merge, or disappear).

Examples of trajectories can be human trajectories, mobile sensor measurements (where the
sequence is kept, e.g., to derive the speed and direction of the sensor), or trajectories of
tornados where the tornado extent of each time stamp can be reflected by a different polygon.

4. Classes and methods for spatio-temporal data

2They obtain 10 types by adding the singular/atomic form of a and b, and doubling this set of 5 by
distinguishing area from point features.

8 spacetime: Spatio-Temporal Data in R

s3

s2

s1

t1 t2 t3 t4

time: instance

s1

s2

s3

t1 t2 t3 t4

time: instance, moving objects

s1

s2

s3

t1 t2 t3 t4

time: consecutive intervals

s1

s2

s3

t1 t2 t3 t4

time: arbitrary intervals

Figure 2: Time instant (top left), object movement (top right), time interval with consecutive
(bottom left) or arbitrary (bottom right) intervals. s1 refers to the first feature/location,
t1 to the first time instance or interval, thick lines indicate time intervals, arrows indicate
movement. Filled circles denote start time, empty circles end times, intervals are right-closed.

The different layouts, or types, of spatio-temporal data discussed in Section 3 have been
implemented in the spacetime R package, along with methods for import, export, coercion,
selection, and visualisation.

4.1. Classes

The classes for the different layouts are shown in Figure 3. Similar to the classes of package sp

(Pebesma and Bivand 2005; Bivand, Pebesma, and Gomez-Rubio 2008), the classes all derive
from a base class ST which is not meant to represent actual data. The first order derived classes
specify particular spatio-temporal geometries (i.e., only the spatial and temporal information),
the second order derived classes augment each of these with actual data, in the form of a
data.frame.

To store temporal information, we chose to use objects of class xts in package xts (Ryan and
Ulrich 2011) for time, because

• It extends the functionality of package zoo (Zeileis and Grothendieck 2005),

• It supports several basic types to represent time or date: Date, POSIXt, timeDate,
yearmon, and yearqtr,

• It has good tools for aggregation over time using arbitrary aggregation functions, essen-
tially deriving this from package zoo (Zeileis and Grothendieck 2005),

• It has a flexible syntax to select time periods that adheres to ISO 86013.

3http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601

Journal of Statistical Software 9

STF

STS

STI

STT

index: matrix

STFDF

STSDF

STIDF

data: data.frame

data: data.frame

data: data.frame

STTDF

irregular

data: data.frametraj: list

full lattice

sparse lat.

with data valuesgeometries

ST

sp: Spatial

time: xts

endTime: POSIXct

trajectory

Figure 3: Classes for spatio-temporal data in package spacetime. Arrows denote inheritance,
lower side of boxes list slot name and type, green lines indicate supported coercions (both
ways).

An overview of the different time classes in R is found in Ripley and Hornik (2001). Further
advice on which classes to use is found in Grothendieck and Petzoldt (2004), or in the CRAN
task view on time series analysis.

For spatial interpolation, we used the classes deriving from Spatial in package sp (Pebesma
and Bivand 2005; Bivand et al. 2008) because

• They are the dominant set of classes in R for dealing with spatial data,

• They are interfaced to key external libraries, and,

• They provide a single interface to dealing with points, lines, polygons and grids.

We do not use xts or Spatial objects to store spatio-temporal data values, but we use
data.frame to store data values. For purely temporal information the xts objects can be
used, and for purely spatial information the sp objects can be used. These will be recycled
appropriately when coercing to a long format data.frame.

The spatial features supported by package sp are two-dimensional for lines and polygons, but
may be higher (three-) dimensional for spatial points, pixels and grids.

4.2. Methods

The main methods for spatio-temporal data implemented in packages spacetime are listed in
table 1. Their usage is illustrated in examples that follow.

https://cran.r-project.org/web/views/TimeSeries.html
https://cran.r-project.org/web/views/TimeSeries.html

10 spacetime: Spatio-Temporal Data in R

method what it does

stConstruct Creates STFDF or STIDF objects from single or multiple
tables

[[, $, $<- Select or replace data values
[Select spatial and/or temporal subsets, and/or data vari-

ables
as coerce to other spatio-temporal objects, xts, Spatial,

matrix, or data.frame

stplot create spatio-temporal plots, see Section 5
over overlay: retrieve index or data values of one object at the

locations and times of another
aggregate aggregate data values over particular spatial, temporal, or

spatio-temporal domains

Table 1: Methods for spatio-temporal data in package spacetime.

4.3. Creation

Construction of spatio-temporal objects essentially needs specification of the spatial, the
temporal, and the data values. The documentation of stConstruct contains examples of
how this can be done from long, space-wide, and time-wide tables, or from shapefiles. A
simple toy example for a full grid layout with three spatial points and four time instances is
given below. First, the spatial object is created:

R> sp = cbind(x = c(0,0,1), y = c(0,1,1))

R> row.names(sp) = paste("point", 1:nrow(sp), sep="")

R> library(sp)

R> sp = SpatialPoints(sp)

Then, the time points are defined as four time stamps, one hour apart, starting Aug 5 2010,
10:00 GMT.

R> time = as.POSIXct("2010-08-05", tz = "GMT")+3600*(10:13)

Next, a data.frame with the data values is created:

R> m = c(10,20,30) # means for each of the 3 point locations

R> values = rnorm(length(sp)*length(time), mean = rep(m, 4))

R> IDs = paste("ID",1:length(values), sep = "_")

R> mydata = data.frame(values = signif(values, 3), ID=IDs)

And finally, the STFDF object can be created by:

R> library(spacetime)

R> stfdf = STFDF(sp, time, data = mydata)

In this case, as no endTime is specified, it is assumed that time reflects time instances.
Altnatively, one could specify endTime, as in

Journal of Statistical Software 11

R> stfdf = STFDF(sp, time, mydata, time+60)

where the time intervals (Section 6.1) are one minute.

When given a long table, stConstruct creates an STFDF object if all space and time combi-
nations occur only once, or else an object of class STIDF, which might be coerced into other
representations.

4.4. Overlay and aggregation

Aggregation of data values to a coarser spatial or temporal form (e.g., to a coarser grid, aggre-
gating points over administrative regions, aggregating daily data to monthly data, or aggre-
gation along an irregular set of space-time points) can be done using the method aggregate.
To obtain the required aggregation predicate, i.e., the grouping of observations in space-time,
the method over is implemented for objects deriving from ST. Grouping can be done based
on spatial, temporal, or spatio-temporal predicates. It takes care of the case whether time
reflects time instances or time intervals (see section 6.1). These methods effectively provide a
spatio-temporal equivalent to what is known in geographic information science as the spatial
overlay.

4.5. Space and time selection with [

The idea behind the [method for classes in sp was that objects would behave as much as
possible similar to matrix or data.frame objects. For a data.frame, the expression a[i,j]

selects row(s) i and column(s) j. For objects deriving from Spatial, rows were taken as the
spatial features (points, lines, polygons, pixels) and columns as the data variables4.

For the spatio-temporal data classes described here, a[i,j,k] selects spatial features i, tem-
poral instances j, and data variable(s) k. Unless drop=FALSE is added to such a call, selecting
a single time or single feature results in an object that is no longer spatio-temporal, but either
snapshot of a particular moment, or history at a particular feature (Galton 2004).

Similar to selection on spatial objects in sp and time series objects in xts, space and time
indices can be defined by index or boolean vectors, but by specifying spatial areas and time
periods. For instance, the selection

R> air_quality[2:3, 1:10, "PM10"]

yields air quality data for the second and third spatial features, and the first 10 time instances.
The expressions

R> air_quality[Germany, "2008::2009", "PM10"]

with Germany a Spatial object (e.g., a SpatialPolygons) defining Germany, selects the PM10

measurements for the years 2008-9, lying in Germany.

For trajectory objects of class STT or STTDF, selection is slightly different: it is assumed
that trajectories are being as complete. An expression obj[1:3] will select the first three

4a convention that was partially broken for class SpatialGridDataFrame, where a[i,j,k] could select the
k-th data variable of the spatial grid selection with spatial grid row(s) i and column(s) j, unless the length of
i equals the number of grid cells.

12 spacetime: Spatio-Temporal Data in R

full trajectories, obj[Germany, "2008::2009", "Temp"] selects the temperature attribute
for all trajectories that intersect with Germany and fall at least partly in 2008-9.

4.6. Coercion to long and wide tables

Spatio-temporal data objects can be coerced to the corresponding purely spatial objects.
Objects of class STFDF will be represented in time-wide form, where only the first (selected)
data variable is retained:

R> xs1 = as(stfdf, "Spatial")

R> class(xs1)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

R> xs1

coordinates X2010.08.05.10.00.00 X2010.08.05.11.00.00

point1 (0, 0) 9.66 9.64

point2 (0, 1) 21.20 19.50

point3 (1, 1) 29.90 32.10

X2010.08.05.12.00.00 X2010.08.05.13.00.00

point1 8.98 11.4

point2 19.60 19.8

point3 30.20 29.8

as time values are difficult to retrieve from these column names, this object gets the proper
time values as an attribute:

R> attr(xs1, "time")

[1] "2010-08-05 10:00:00 GMT" "2010-08-05 11:00:00 GMT"

[3] "2010-08-05 12:00:00 GMT" "2010-08-05 13:00:00 GMT"

Objects of class STSDF or STIDF will be represented in long form, where time is added as
additional column:

R> x = as(stfdf, "STIDF")

R> xs2 = as(x, "Spatial")

R> class(xs2)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

R> xs2[1:4,]

Journal of Statistical Software 13

coordinates values ID time

1 (0, 0) 9.66 ID_1 2010-08-05 10:00:00

2 (0, 1) 21.20 ID_2 2010-08-05 10:00:00

3 (1, 1) 29.90 ID_3 2010-08-05 10:00:00

4 (0, 0) 9.64 ID_4 2010-08-05 11:00:00

5. Graphs of spatio-temporal data

5.1. stplot: panels, space-time plots, animation

The stplot method can create a few specialized plot types for the classes in the spacetime

package. They are:

multi-panel plots In this form, for each time step (selected) a map is plotted in a separate
panel, and the strip above the panel indicates what the panel is about. The panels
share x- and y-axis, no space needs to be lost by separating white space, and a common
legend is used. Three types are implemented for STFDF data:

• The x and y axis denote space, an example for gridded data is shown in Figure 4,
for polygon data in Figure 9. The stplot is a wrapper around spplot in package
sp, and inherits most of its options,

• The x and y axis denote time and value; one panel for each spatial feature, colors
may indicate different variables (mode="tp"); see Figure 5 (left),

• The x and y axis denote time and value; one panel for each variable, colors may
denote different features (mode="ts"); see Figure 5 (right).

For both cases with time is on the y-axis (Figure 5), values over time for different
variables or features are connected with lines, as is usual with time series plots. This
can be changed to symbols by specifying type=’p’.

space-time plots Space-time plots show data in a space-time cross-section, with e.g., space
on the x-axis and time on the y-axis. (See also Figure 1.)

Hovmöller diagrams (Hovmöller 1949) are an example of these for full space-time lat-
tices, i.e., objects of class STFDF. To obtain such a plot, the arguments mode and scaleX

should be considered; some special care is needed when only the x- or y-axis needs to
be plotted instead of the spatial index (1...n); details are found in the stplot documen-
tation. An example of a Hovmöller-style plot with station index along the x-axis and
time along the y-axis is obtained by

R> scales=list(x=list(rot = 45))

R> stplot(wind.data, mode = "xt", scales = scales, xlab = NULL)

and shown in Figure 6. Note that the y-axis direction is opposite to that of regular
Hovmöller plots.

14 spacetime: Spatio-Temporal Data in R

sqrt_speed
1961−04−01 12:00:00 1961−04−04 17:20:00 1961−04−07 22:40:00 1961−04−11 04:00:00 1961−04−14 09:20:00

1961−04−17 14:40:00 1961−04−20 20:00:00 1961−04−24 01:20:00 1961−04−27 06:40:00 1961−04−30 12:00:00

−1.0

−0.5

0.0

0.5

Figure 4: Space-time interpolations of wind (square root transformed, detrended) over
Ireland using a separable product covariance model, for 10 time points regularly distributed
over the month for which daily data was considered (April, 1961).

animated plots Animation is another way of displaying change over time; a sequence of
spplots, one for each time step, is looped over when the parameter animate is set to a
positive value (indicating the time in seconds to pause between subsequent plots).

Time series plots Time series plots are a fairly common type of plot in R. Package xts

has a plot method that allows univariate time series to be plotted. Many (if not most)
plot routines in R support time to be along the x- or y-axis. The plot in Figure 7
was generated by using package lattice (Sarkar 2008), and uses a colour palette from
package RColorBrewer (Neuwirth 2011).

6. Spatial footprint or support, time intervals, moving objects

6.1. Time periods or time instances

Most data structures for time series data in R have, explicitly or implicitly, for each record
a time stamp, not a time interval. The implicit assumption seems to be (i) the time stamp
is a moment, (ii) this indicates either the real moment of measurement / registration, or the
start of the interval over which something is aggregated (summed, averaged, maximized).
For financial “Open, high, low, close” data, the “Open” and “Close” refer to the values at
the moment the stock exchange opens and closes, meaning time instances, whereas “high”
and “low” are aggregated values – the minimum and maximum price over the time interval
between opening and closing times.

Journal of Statistical Software 15

time

va
lu

es

0

50000

100000

alabama

1970 1975 1980 1985

arizona

1970 1975 1980 1985

arkansas

0

50000

100000

california

hwy
pcap
util
water

●

●

●

●

time

va
lu

es

0

50000

100000

hwy

1970 1975 1980 1985

pcap

1970 1975 1980 1985

util

0

50000

100000

water

alabama
arizona
arkansas
california

●

●

●

●

Figure 5: Time series for four variables and four features plotted with stplot, with
mode="tp" (left) and mode="ts" (right); see also Section 7.2.

Package lubridate (Grolemund and Wickham 2011) allows one to explicitly define and com-
pute with time intervals (e.g., Allen (1983)). It does not provide structures to attach these
intervals to time series data. As xts does not support these times as index, spacetime does
also not support it.

According to ISO 8601:2004, a time stamp like 2010-05 refers to the full month of May, 2010,
and so reflects a time interval. As a selection criterion, xts will include everything inside the
following interval:

R> library(xts)

R> .parseISO8601('2010-05')

$first.time

[1] "2010-05-01 CEST"

$last.time

[1] "2010-05-31 23:59:59 CEST"

and this syntax lets one define, unambiguously, yearly, monthly, daily, hourly or minute
intervals, but not e.g.1̃0- or 30-minute intervals. For a particular interval, the full specification
is needed:

R> .parseISO8601('2010-05-01T13:30/2010-05-01T13:39')

$first.time

[1] "2010-05-01 13:30:00 CEST"

http://en.wikipedia.org/wiki/ISO_8601

16 spacetime: Spatio-Temporal Data in R

tim
e

Apr 03

Apr 10

Apr 17

Apr 24

Roc
he

's
Poin

t

Vale
nt

ia

Ros
lar

e

Kilk
en

ny

Sha
nn

on Birr

Dub
lin

Clar
em

or
ris

M
ull

ing
ar

Clon
es

Belm
ull

et

M
ali

n
Hea

d

−1.5

−1.0

−0.5

0.0

0.5

1.0

Figure 6: Space-time (Hovmöller) plot of wind station data.

$last.time

[1] "2010-05-01 13:39:59 CEST"

When matching two sequences of time (Figure 8) in order to overlay or aggregate, it matters
whether each of the sequences reflect instances, one of them reflects time intervals and the
other instances, or both reflect time intervals. All of these cases are accommodated for.

Objects in spacetime register both (start) time and end time. By default, objects with gridded
space-time layout (Figure 1) of class or deriving from STF or STS assume interval time, and
STI and STT objects assume instance time.

When no end times are supplied by creation and time intervals are assumed, the assumption
is that time intervals are consecutive (Figure 2), and the last interval (for which no end time
is present) has a length identical to the second last interval (Figures 2 and 8).

Journal of Statistical Software 17

values

1961

sp
ee

d

−1.5

−1.0

−0.5

0.0

0.5

1.0

Apr 03 Apr 10 Apr 17 Apr 24 May 01

1
2
3
4
5
6
7
8
9
10
11
12

Figure 7: Time series plot of daily wind speed at 12 stations, used for interpolation in Figure 4.

1 32 4

y

x

time

o
b
je

c
t

Figure 8: Matching two time sequences, assuming x reflects time intervals, and y reflects time
instances. Note that the last interval extends the last time instance of x.

6.2. Spatial support

All examples above work with spatial points, i.e., data having a point support. The assump-
tion of data having points support is implicit for SpatialPoints features. For polygons, the
assumption will be that values reflect aggregates (e.g., sums, or averages) over the polygon.
For gridded data, it is ambiguous whether the value at the grid cell centre is meant (e.g.,
for DEM data) or an aggregate over the grid cell (typical for remote sensing imagery). The
Spatial* objects of package sp have no explicit information about the spatial support.

7. Worked examples

This section shows how existing data in various formats can be converted into ST classes,
and how they can be analysed and/or visualised.

7.1. North Carolina SIDS

18 spacetime: Spatio-Temporal Data in R

As an example, the North Carolina Sudden Infant Death Syndrome (sids) data will be used.
These data were first analysed by Symons, Grimson, and Yuan (1983), and first published
and analysed in a spatial setting by Cressie and Chan (1989).

The data are sparse in time (aggregated to 2 periods of unequal length, according to the
documentation in package spdep), but have polygons in space. First, we will prepare the
spatial data:

R> if (require(sf, quietly = TRUE)) {

+ fname = system.file("gpkg/nc.gpkg", package = "sf")[1]

+ nc = as(sf::st_read(fname), "Spatial")

+ }

Reading layer `nc.gpkg' from data source

`/home/edzer/R/x86_64-pc-linux-gnu-library/4.4/sf/gpkg/nc.gpkg'

using driver `GPKG'

Simple feature collection with 100 features and 14 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965

Geodetic CRS: NAD27

then, we construct the time sequence:

R> time = as.POSIXct(c("1974-07-01", "1979-07-01"), tz = "GMT")

R> endTime = as.POSIXct(c("1978-06-30", "1984-06-30"), tz = "GMT")

and we construct the data values table, in long form, by

R> data = data.frame(

+ BIR = c(nc$BIR74, nc$BIR79),

+ NWBIR = c(nc$NWBIR74, nc$NWBIR79),

+ SID = c(nc$SID74, nc$SID79))

These three components are put together by function STFDF:

R> nct = STFDF(sp = as(nc, "SpatialPolygons"), time, data, endTime)

7.2. Panel data

The panel data discussed in Section 2 are imported as a full spatio-temporal data.frame

(STFDF), and linked to the proper state polygons of maps. We can obtain the states polygons
from package map (Brownrigg and Minka 2011) by:

R> if (require(maps, quietly = TRUE)) {

+ states.m <- map('state', plot=FALSE, fill=TRUE)

+ IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])

+ }

R> if (require(sf, quietly = TRUE))

+ states <- as(st_geometry(st_as_sf(states.m, IDs=IDs)), "Spatial")

Journal of Statistical Software 19

we obtain the time points by:

R> yrs = 1970:1986

R> time = as.POSIXct(paste(yrs, "-01-01", sep=""), tz = "GMT")

We obtain the data table (already in long format) by

R> if (require(plm, quietly = TRUE)) {

+ data("Produc")

+ }

When combining all this information, we do not need to reorder states because states and
Produc order states alphabetically. We need to de-select District of Columbia, which is not
present in Produc table (record 8):

R> if (require(plm, quietly = TRUE))

+ # deselect District of Columbia, polygon 8, which is not present in Produc:

+ Produc.st <- STFDF(states[-8], time, Produc[order(Produc[,2], Produc[,1]),])

R> if (require(plm, quietly = TRUE) && require(RColorBrewer, quietly = TRUE))

+ stplot(Produc.st[,,"unemp"], yrs, col.regions = brewer.pal(9, "YlOrRd"),cuts=9)

produces the plot shown in Figure 9.

Time and state were not removed from the data table on construction; printing these data
after coercion to data.frame can then be used to verify that time and state were matched
correctly.

The routines in package plm can be used on the data, when back transformed to a data.frame,
when index is used to specify which variables represent space and time (the first two columns
from the data.frame no longer contain state and year). For instance, to fit a panel linear
model for gross state products (gsp) to private capital stock (pcap), public capital (pc), labor
input (emp) and unemployment rate (unemp), we get

R> if (require(plm, quietly = TRUE))

+ zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = as.data.frame(Produc.st), index = c("state", "year"))

where the output of summary(zz) is left out for brevity. More details are found in Croissant
and Millo (2008) and Millo and Piras (2012).

7.3. Interpolating Irish wind

This worked example is a modified version of the analysis presented in demo(wind) of package
gstat (Pebesma 2004). This demo is rather lengthy and reproduces much of the original
analysis in Haslett and Raftery (1989). Here, we will reduce the material and focus on the
use of spatio-temporal classes.

First, we will load the wind data from package gstat. It has two tables, station locations
in a data.frame, called wind.loc, and daily mean wind speed in data.frame wind. We
now convert character representation (such as 51d56’N) to proper numerical coordinates, and
convert the station locations to a SpatialPointsDataFrame object. A plot of these data is
shown in Figure 10.

20 spacetime: Spatio-Temporal Data in R

Figure 9: Unemployment rate per state, over the years 1970-1986.

R> if (require(gstat, quietly = TRUE)) {

+ data("wind")

+ wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))

+ wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))

+ coordinates(wind.loc) = ~x+y

+ proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

+ }

The first thing to do with the wind speed values is to reshape these data. Unlike the North
Carolina SIDS data of section 7.1, for we have few spatial and many time points, and so the
data in data.frame wind come in space-wide form with stations time series in columns:

R> if (require(gstat, quietly = TRUE)) {

+ wind[1:3,]

+ }

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83

Journal of Statistical Software 21

12°W 10°W 8°W 6°W 4°W

51
°N

52
°N

53
°N

54
°N

55
°N

Valentia

Belmullet

Claremorris

Shannon

Roche's Point

Birr

Mullingar

Malin Head

Kilkenny

Clones

Dublin

Roslare

Figure 10: Station locations for Irish wind data.

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50

CLO BEL MAL

1 12.58 18.50 15.04

2 9.67 17.54 13.83

3 7.67 12.75 12.71

We will recode the time columns to an appropriate time data structure,

R> if (require(gstat, quietly = TRUE)) {

+ wind$time = ISOdate(wind$year+1900, wind$month, wind$day)

+ wind$jday = as.numeric(format(wind$time, '%j'))

+ }

and then subtract a smooth time trend of daily means (not exactly equal, but similar to the
trend removal in the original paper):

22 spacetime: Spatio-Temporal Data in R

R> if (require(gstat, quietly = TRUE)) {

+ stations = 4:15

+ windsqrt = sqrt(0.5148 * as.matrix(wind[stations])) # knots -> m/s

+ Jday = 1:366

+ windsqrt = windsqrt - mean(windsqrt)

+ daymeans = sapply(split(windsqrt, wind$jday), mean)

+ meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]

+ velocities = apply(windsqrt, 2, function(x) { x - meanwind })

+ }

Next, we will match the wind data to its location, by connecting station names to location
coordinates, and create a spatial points object:

R> if (require(gstat, quietly = TRUE)) {

+ wind.loc = wind.loc[match(names(wind[4:15]), wind.loc$Code),]

+ pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),])

+ rownames(pts) = wind.loc$Station

+ pts = SpatialPoints(pts, CRS("+proj=longlat +datum=WGS84 +ellps=WGS84"))

+ }

Then, we project the longitude/latitude coordinates and country boundary to UTM zone 29,
using st_transform in package sf for coordinate transformation:

R> utm29 = "+proj=utm +zone=29 +datum=WGS84 +ellps=WGS84"

R> pts.sfc = st_transform(st_as_sfc(pts), utm29)

R> pts = as(pts.sfc, "Spatial") # back to sp

And now we can construct the spatio-temporal object from the space-wide table with veloci-
ties:

R> if (require(gstat, quietly = TRUE)) {

+ wind.data = stConstruct(velocities, space = list(values = 1:ncol(velocities)),

+ time = wind$time, SpatialObj = pts, interval = TRUE)

+ class(wind.data)

+ }

[1] "STFDF"

attr(,"package")

[1] "spacetime"

For plotting purposes, we can obtain country boundaries from package maps:

R> if (require(sf, quietly = TRUE) && require(mapdata, quietly = TRUE)) {

+ m.sf = st_as_sf(map("worldHires", xlim = c(-11.5,-6.0), ylim = c(51.3,55.0), plot=FALSE),

+ m.sf = st_transform(m.sf, utm29)

+ m = as(m.sf, "Spatial")

+ }

Journal of Statistical Software 23

For interpolation, we can define a grid over the area:

R> if (require(gstat, quietly = TRUE))

+ grd = SpatialPixels(SpatialPoints(makegrid(m, n = 300)),

+ proj4string = proj4string(m))

Next, we (arbitrarily) restrict observations to those of April 1961:

R> if (require(gstat, quietly = TRUE))

+ wind.data = wind.data[, "1961-04"]

and choose 10 time points from that period to form the spatio-temporal prediction grid:

R> if (require(gstat, quietly = TRUE)) {

+ n = 10

+ library(xts)

+ tgrd = seq(min(index(wind.data)), max(index(wind.data)), length=n)

+ pred.grd = STF(grd, tgrd)

+ }

We will interpolate with a separable exponential covariance model, with ranges 750 km and
1.5 days:

R> if (require(gstat, quietly = TRUE)) {

+ v = vgmST("separable", space = vgm(1, "Exp", 750000), time = vgm(1, "Exp", 1.5 * 3600 *

+ sill=0.6)

+ wind.ST = krigeST(values ~ 1, wind.data, pred.grd, v)

+ colnames(wind.ST@data) <- "sqrt_speed"

+ }

then creates the STFDF object with interpolated values, the results of which are shown in
Figure 4, created by

R> if (require(gstat, quietly = TRUE)) {

+ layout = list(list("sp.lines", m, col='grey'),

+ list("sp.points", pts, first=F, cex=.5))

+ stplot(wind.ST, col.regions=brewer.pal(11, "RdBu")[-c(10,11)],

+ at=seq(-1.375,1,by=.25),

+ par.strip.text = list(cex=.7), sp.layout = layout)

+ }

pdf

2

pdf

2

24 spacetime: Spatio-Temporal Data in R

7.4. Calculation of EOFs

Empirical orthogonal functions from STFDF objects can be computed in spatial form (default),
e.g., from data values

R> if (require(gstat, quietly = TRUE))

+ eof.data = eof(wind.data)

or alternatively from modelled, or interpolated values:

R> if (require(gstat, quietly = TRUE))

+ eof.int = eof(wind.ST)

By default, spatial EOFs are competed; alternatively they can be obtained in temporal form:

R> if (require(gstat, quietly = TRUE))

+ eof.xts = eof(wind.ST, "temporal")

the resulting object is of the appropriate subclass of Spatial in the spatial form, or of class
xts in the temporal form. Figure 11 shows the 10 spatial EOFs obtained from the interpolated
wind data of Figure 4.

EOF1 EOF2 EOF3 EOF4

−0.15

−0.10

−0.05

0.00

0.05

0.10

Figure 11: EOFs of space-time interpolations of wind over Ireland (for spatial reference, see
Figure 4), for the 10 time points at which daily data was chosen above (April, 1961).

7.5. Trajectory data: ltraj in package adehabitatLT

Trajectory objects of class ltraj in package adehabitatLT (Calenge, Dray, and Royer-Carenzi

Journal of Statistical Software 25

2008) are lists of bursts, sets of sequential, connected space-time points at which an object is
registered. An example ltraj data set is obtained by5:

R> if (require(adehabitatLT, quietly = TRUE)) {

+ data("puechabonsp")

+ locs = puechabonsp$relocs

+ xy = coordinates(locs)

+ da = as.character(locs$Date)

+ da = as.POSIXct(strptime(as.character(locs$Date),"%y%m%d", tz = "GMT"))

+ ltr = as.ltraj(xy, da, id = locs$Name)

+ foo = function(dt) dt > 100*3600*24

+ l2 = cutltraj(ltr, "foo(dt)", nextr = TRUE)

+ l2

+ }

*********** List of class ltraj ***********

Type of the traject: Type II (time recorded)

* Time zone: GMT *

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end

1 Brock Brock.1 30 0 1993-07-01 1993-08-31

2 Calou Calou.1 19 0 1993-07-03 1993-08-31

3 Chou Chou.1 16 0 1992-07-29 1992-08-28

4 Chou Chou.2 24 0 1993-07-02 1993-08-30

5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:

[1] "pkey"

and these data, converted to STTDF can be plotted, as panels by time and id by

R> sttdf = as(l2, "STTDF")

R> stplot(sttdf, by="time*id")

which is shown in Figure 12.

7.6. Country shapes in cshapes

The cshapes (Weidmann, Kuse, and Gleditsch 2010) package contains a GIS dataset of country
boundaries (1946-2008), and includes functions for data extraction and the computation of
distance matrices. The data set consist of a SpatialPolygonsDataFrame, with the following
data variables:

5taken from adehabitatLT, demo(mangltraj)

26 spacetime: Spatio-Temporal Data in R

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

Figure 12: Trajectories, split by id (rows) and by time (columns).

R> if (require(cshapes, quietly = TRUE)) {

+ library(sf)

+ cs = cshp()

+ print(names(cs))

+ }

[1] "gwcode" "country_name" "start" "end"

[5] "status" "owner" "capname" "caplong"

[9] "caplat" "b_def" "fid" "geometry"

where two data bases are used, “COW” (correlates of war project6) and “GW” Gleditsch and
Ward (1999). The variables COWSMONTH and COWEMONTH denote the start month
and end month, respectively, according to the COW data base.

In the following fragment, we create the spatio-temporal object using begin- and end-times:

6Correlates of War Project. 2008. State System Membership List, v2008.1. Online, http://

correlatesofwar.org/

http://correlatesofwar.org/
http://correlatesofwar.org/

Journal of Statistical Software 27

R> if (require(cshapes, quietly = TRUE))

+ st = STIDF(geometry(as(cs, "Spatial")),

+ as.POSIXct(cs$start), as.data.frame(cs), as.POSIXct(cs$end))

A possible query would be which countries are found at 7°East and 52°North,

R> if (require(cshapes, quietly = TRUE)) {

+ pt = SpatialPoints(cbind(7, 52), CRS(proj4string(st)))

+ as.data.frame(st[pt,,1:5])

+ }

V1 V2 sp.ID time endTime timeIndex gwcode

1 12.617005 51.62395 84 1886-01-01 1919-06-27 62 255

2 11.435140 51.35379 85 1919-06-28 1920-02-09 63 255

3 11.455945 51.31940 86 1920-02-10 1938-09-29 64 255

4 11.617184 51.25314 87 1938-09-30 1945-05-07 65 255

5 9.414213 50.57591 89 1949-09-21 1990-10-02 67 260

6 10.380693 51.09047 88 1990-10-03 2019-12-31 66 260

country_name start end status

1 Germany (Prussia) 1886-01-01 1919-06-27 independent

2 Germany (Prussia) 1919-06-28 1920-02-09 independent

3 Germany (Prussia) 1920-02-10 1938-09-29 independent

4 Germany (Prussia) 1938-09-30 1945-05-07 independent

5 German Federal Republic 1949-09-21 1990-10-02 independent

6 German Federal Republic 1990-10-03 2019-12-31 independent

8. Further material

Searching past email discussion threads on the r-sig-geo (R Special Interest Group on using
GEOgraphical data and Mapping) email list may be a good way to look for further material,
before one considers posting questions. Search strings, e.g., on the google search engine may
look like:

spacetime site:stat.ethz.ch

where the search keywords should be made more precise.

The excellent book Statistics for spatio-temporal data (Cressie and Wikle 2011) provides a
large number of methods for the analysis of mainly geostatistical data. A demo script, which
can be run by

R> library(spacetime)

R> demo(CressieWikle)

downloads the data from the book web site, and reproduces a number of graphs shown in the
book. It should be noted that the the book examples only deal with STFDF objects.

Section 7.3 contains an example of a spatial interpolation with a spatio-temporal separable or
product-sum covariance model. The functions for this are found in package gstat, and more
information is found through

https://stat.ethz.ch/mailman/listinfo/r-sig-geo

28 spacetime: Spatio-Temporal Data in R

R> if (require(gstat, quietly = TRUE)) {

+ vignette("st")

+ }

An example where (potentially large) data sets are proxied through R objects is given in a
vignette in the spacetime package, obtained by

R> library(spacetime)

R> vignette("stpg")

A proxy object is an object that contains no data, but only references to tables in a data
base. Selections on this object are translated into SQL statements that return the actually
selected data. This way, the complete data set does not have to be loaded in memory (R),
but can be processed part by part. Selection in the data base uses indexes on the spatial and
temporal references.

Examples of overlay and aggregation methods for spatio-temporal data are further detailed
in a separate vignette, obtained by

R> library(spacetime)

R> vignette("sto")

It illustrates the methods with daily air quality data taken from the European air quality
data base, for 1998-2009. Aggregations are temporal, spatial, or both.

9. Discussion

Handling and analyzing spatio-temporal data is often complicated by the size and complexity
of these data. Also, data may come in many different forms, they may be time-rich, space-rich,
and come as sets of space-time points or as trajectories.

Building on existing infrastructure for spatial and temporal data, we have successfully im-
plemented a coherent set of classes for spatio-temporal data that covers regular space-time
layouts, partially regular (sparse) space-time layouts, irregular space-time layouts and trajec-
tory data. The set is flexible in the sense that several representations of space (points, lines,
polygons, grid) and time (POSIXt, Date, timeDate, yearmon, yearqtr) can be combined.

We have given examples for constructing objects of these classes from various data sources,
coercing them from one to another, exporting them to spatial or temporal representations, as
well as visualising them in various forms. We have also shown how one can go from one form
into another by ways of prediction based on a statistical model, using an example on spatio-
temporal geostatistical interpolation. In addition to spatio-temporally varying information,
objects of the classes can contain data values that are purely spatial or purely temporal.
Selection can be done based on spatial features, time (intervals), or data variables, and follows
a logic similar to that for selection on data tables (data.frames).

Challenges that remain include

• The representation of spatio-temporal polygons in a consistent way, i.e., such that each
point in space-time refers to one and only one space-time feature,

Journal of Statistical Software 29

• Dealing with complex developments, such as merging, splitting, and death and birth of
objects (further examples are found in Galton (2004)),

• Explicitly registering the support, or footprint of spatio-temporal data,

• Annotating objects such that incorrect operations (such as the interpolation of a point
process, or the weighted density estimates on a geostatistical process) can lead to warn-
ing or error messages,

• Making handling of massive data sets easier, and implementing efficient spatio-temporal
indexes for them,

• Integrating package spacetime with other packages dealing with specific spatio-temporal
classes such as raster and surveillance.

The classes and methods presented in this paper are a first attempt to cover a number of
useful cases for spatio-temporal data. In a set of case studies it is demonstrated how they can
be used, and can be useful. As software development is often opportunistic, we admittedly
picked a lot of low hanging fruits, and a number of large challenges remain. We hope that
these first steps will help discovering and identifying these more complex use cases.

Acknowledgements

Members from the spatio-temporal modelling lab of the Institute for Geoinformatics of the
University of Münster (Ben Gräler, Katharina Henneböhl, Daniel Nüst, and Sören Gebbert)
contributed in several useful discussions. Participants to the workshop Handling and analyzing
spatio-temporal data in R, held in Münster on Mar 21-22, 2011, are gratefully acknowledged.
Several anonymous reviewers provided valuable comments.

References

Allen JF (1983). “Maintaining Knowledge about Temporal Intervals.” Commun. ACM, 26,
832–843. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/182.358434. URL http:

//doi.acm.org/10.1145/182.358434.

Baltagi B (2001). Econometric Analysis of Panel Data, 3rd edition. John Wiley & Sons, New
York. URL http://www.wiley.com/legacy/wileychi/baltagi/.

Bivand RS, Pebesma EJ, Gomez-Rubio V (2008). Applied Spatial Data Analysis with R.
Springer-Verlag, New York. URL https://asdar-book.org/.

Botts M, Percivall G, Reed C, Davidson J (2007). “OGC Sensor Web Enablement: Overview
And High Level Architecture.” Technical report, Open Geospatial Consortium. URL http:

//portal.opengeospatial.org/files/?artifact_id=25562.

Brownrigg R, Minka TP (2011). maps: Draw Geographical Maps. R package version 2.1-6,
URL https://CRAN.R-project.org/package=maps.

https://doi.org/http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://www.wiley.com/legacy/wileychi/baltagi/
https://asdar-book.org/
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
https://CRAN.R-project.org/package=maps

30 spacetime: Spatio-Temporal Data in R

Calenge C, Dray S, Royer-Carenzi M (2008). “The Concept of Animals’ Trajectories from a
Data Analysis Perspective.” Ecological informatics, 4, 34–41.

Cressie N, Chan N (1989). “Spatial Modeling of Regional Variables.” Journal of the American
Statistical Association, 84 (406), 393–401.

Cressie N, Wikle C (2011). Statistics for Spatio-temporal Data. John Wiley & Sons, New
York.

Croissant Y, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of
Statistical Software, 27. URL https://www.jstatsoft.org/v27/i02/.

Galton A (2004). “Fields and Objects in Space, Time and Space-time.” Spatial cognition and
computation, 4.

Gleditsch KS, Ward MD (1999). “Interstate System Membership: A Revised List of the
Independent States since 1816.” International Interactions, 25, 393–413. URL http:

//privatewww.essex.ac.uk/~ksg/statelist.html.

Grolemund G, Wickham H (2011). “Dates and Times Made Easy with lubridate.” Journal of
Statistical Software, 40(3), 1–25. URL https://www.jstatsoft.org/v40/i03/.

Grothendieck G, Petzoldt T (2004). “R Help Desk: Date and Time Classes in R.” R News,
4/1, 29–32. URL https://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf.

Güting RH, Schneider M (2005). Moving Objects Databases. Morgan Kaufmann.

Haslett J, Raftery AE (1989). “Space-time Modelling with Long-memory Dependence: As-
sessing Ireland’s Wind Power Resource (with Discussion).” Applied Statistics, 38, 1–50.

Herring J (2011). “OpenGIS Implementation Standard for Geographic information - Simple
feature access - Part 1: Common architecture.” OGC Document 06-103r4. Accessed Mar
3, 2012, URL http://www.opengeospatial.org/standards/sfa.

Hovmöller E (1949). “The Trough-and-Ridge Diagram.” Tellus, 1 (2), 62–66.

Millo G, Piras G (2012). “splm: Spatial Panel Data Models in R.” Journal of Statistical
Software, 47(1), 1–38. URL https://www.jstatsoft.org/v47/i01.

Neuwirth E (2011). RColorBrewer: ColorBrewer palettes. R package version 1.0-5, URL
https://CRAN.R-project.org/package=RColorBrewer.

Pebesma E (2012). “spacetime: Spatio-Temporal Data in R.” Journal of Statistical Software,
51(7), 1–30. URL https://www.jstatsoft.org/v51/i07/.

Pebesma EJ (2004). “Multivariable Geostatistics in S: the gstat Package.” Computers &
Geosciences, 30(7), 683–691.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13. URL https://cran.r-project.org/doc/Rnews/.

R Development Core Team (2011). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

https://www.jstatsoft.org/v27/i02/
http://privatewww.essex.ac.uk/~ksg/statelist.html
http://privatewww.essex.ac.uk/~ksg/statelist.html
https://www.jstatsoft.org/v40/i03/
https://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf
http://www.opengeospatial.org/standards/sfa
https://www.jstatsoft.org/v47/i01
https://CRAN.R-project.org/package=RColorBrewer
https://www.jstatsoft.org/v51/i07/
https://cran.r-project.org/doc/Rnews/
http://www.R-project.org/

Journal of Statistical Software 31

Ripley B, Hornik K (2001). “Date-time Classes.” R News, 1/2, 8–11.

Ryan JA, Ulrich JM (2011). xts: eXtensible Time Series. R package version 0.8-2, URL
https://CRAN.R-project.org/package=xts.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
ISBN 978-0-387-75968-5, URL http://lmdvr.r-forge.r-project.org.

Schabenberger O, Gotway C (2004). Statistical Methods for Spatial Data Analysis. Chapman
and Hall, Boca Raton.

Symons MJ, Grimson RC, Yuan YC (1983). “Clustering of Rare Events.” Biometrics, 39
(1), 193–205.

Weidmann NB, Kuse D, Gleditsch KS (2010). “The Geography of the International System:
The CShapes Dataset.” International Interactions, 36 (1).

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL https://www.jstatsoft.org/

v14/i06/.

Affiliation:

Edzer Pebesma
Institute for Geoinformatics
University of Münster
Weseler Strasse 253
48151 Münster, Germany
E-mail: edzer.pebesma@uni-muenster.de

URL: http://ifgi.uni-muenster.de/

52°North Initiative for Geospatial Open Source Software GmbH
Martin-Luther-King-Weg 24
48155 Muenster, Germany
URL: http://www.52north.org/

Journal of Statistical Software https://www.jstatsoft.org/

published by the Foundation for Open Access Statistics https://www.foastat.org/

November 2012, Volume 51, Issue 7 Submitted: 2011-10-05
doi:10.18637/jss.v000.i00 Accepted: 2012-09-26

https://CRAN.R-project.org/package=xts
http://lmdvr.r-forge.r-project.org
https://www.jstatsoft.org/v14/i06/
https://www.jstatsoft.org/v14/i06/
mailto:edzer.pebesma@uni-muenster.de
http://ifgi.uni-muenster.de/
http://www.52north.org/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	How spatio-temporal data are recorded in tables
	Time-wide format
	Space-wide format
	Long format

	Space-time layouts
	Spatio-temporal full grids
	Spatio-temporal sparse grids
	Spatio-temporal irregular data
	Interval time, moving objects, trajectories

	Classes and methods for spatio-temporal data
	Classes
	Methods
	Creation
	Overlay and aggregation
	Space and time selection
	Coercion to long and wide tables

	Graphs of spatio-temporal data
	stplot: panels, space-time plots, animation

	Spatial footprint or support, time intervals, moving objects
	Time periods or time instances
	Spatial support

	Worked examples
	North Carolina SIDS
	Panel data
	Interpolating Irish wind
	Calculation of EOFs
	Trajectory data: ltraj in adehabitatLT
	Country shapes in cshapes

	Further material
	Discussion

