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adjlg Simulated data set for testing sparse-precision code

Description

This is used in tests/test-adjacency-long.R

Usage

data("adjlg")
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Format

Includes an adjacency matrix adjlgMat. and a data frame adjlg with 5474 observations on the
following 8 variables.

ID a factor with levels 1 to 1000

months a numeric vector

GENDER a character vector

AGE a numeric vector

X1 a numeric vector

X2 a numeric vector

month a numeric vector

BUY a numeric vector

Source

The simulation code shown below is derived from an example produced by Jeroen van den Ochtend.
Following a change incorporated in spaMM version 3.8.0, that implied stricter checks of the input
matrix, it appeared that the precision matrix generated by this example had inappropriate (repeated)
dimnames. This example was then updated to reproduce past fitting results with a correctly format-
ted matrix. Note that changing the names of an adjacency matrix (as below) is generally unwise
as it generally changes the statistical model because these names are matched whenever possible to
levels of the grouping factor in the data.

The code was also modified to compensate for changes in R’s default random number generator.

Examples

data(adjlg)
## See further usage in tests/test-adjacency-long.R
## Not run:
# as produced by:

library(data.table) ## Included data produced using version 1.10.4.3
library(igraph) ## Included data produced using version 1.2.1

rsample <- function(N=100, ## size of implied adjacency matrix
month_max=10,seed) {

if (is.integer(seed)) set.seed(seed)
dt <- data.table(ID=factor(1:N))
dt$months <- sample(1:month_max,N,replace=T) ## # of liens for each level of ID
dt$GENDER <- sample(c("MALE","FEMALE"),N,replace=TRUE)
dt$AGE <- sample(18:99,N,replace=T)
dt$X1 <- sample(1000:9900,N,replace=T)
dt$X2 <- runif(N)

dt <- dt[, c(.SD, month=data.table(seq(from=1, to=months, by = 1))), by = ID]
dt[,BUY := 0]
dt[month.V1==months,BUY := sample(c(0,1),1),by=ID]
setnames(dt,"month.V1","month")
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#### create adjacency matrix
Network <- data.table(OUT=sample(dt$ID,N*month_max*4/10))
Network$IN <- sample(dt$ID,N*month_max*4/10)
Network <- Network[IN != OUT]
Network <- unique(Network)
g <- graph.data.frame(Network,directed=F)
g <- add_vertices(g,sum(!unique(dt$ID) %in% V(g)),

name=unique(dt[!dt$ID %in% V(g),list(ID)])) # => improper names
Network <- as_adjacency_matrix(g,sparse = TRUE,type="both")
colnames(Network) <- rownames(Network) <- seq(nrow(Network)) # post-v3.8.0 names
return(list(data=dt,adjMatrix=Network))

}

RNGkind("Mersenne-Twister", "Inversion", "Rounding" )
set.seed(123)
adjlg_sam <- rsample(N=1000,seed=NULL)
RNGkind("Mersenne-Twister", "Inversion", "Rejection" )
#
adjlg <- as.data.frame(adjlg_sam$data)
adjlgMat <- adjlg_sam$adjMatrix

## End(Not run)

AIC Extractors for information criteria such as AIC

Description

get_any_IC computes model selection/information criteria such as AIC. See Details for more in-
formation about these criteria. The other extractors AIC and extractAIC are methods for HLfit
objects of generic functions defined in other packages: AIC is equivalent to get_any_IC (for a sin-
gle fitted-model object), and extractAIC returns the marginal AIC and the number of degrees of
freedom for the fixed effects.

Usage

get_any_IC(object, nsim=0L, ..., verbose=interactive(),
also_cAIC=TRUE, short.names=NULL)

## S3 method for class 'HLfit'
AIC(object, ..., nsim=0L, k, verbose=interactive(),

also_cAIC=TRUE, short.names=NULL)
## S3 method for class 'HLfit'
extractAIC(fit, scale, k, ..., verbose=FALSE)

Arguments

object, fit A object of class HLfit, as returned by the fitting functions in spaMM.

scale, k Currently ignored, but are required in the definitions for consistency with the
generic.
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verbose Whether to print the model selection criteria or not.

also_cAIC Whether to include the plug-in estimate of conditional AIC in the result (its
computation may be slow).

nsim Controls whether to include the bootstrap estimate of conditional AIC (see De-
tails) in the result. If positive, nsim gives the number of bootstrap replicates.

short.names NULL, or boolean; controls whether the return value uses short names (mAIC,
etc., as shown by screen output if verbose is TRUE), or the descriptive names
(" marginal AIC:", etc.) also shown in the screen output. Short names are
more appropriate for programming but descriptive names may be needed for
back-compatibility. The default (NULL) ensures back-compatibility by using
descriptive names unless the bootstrap estimate of conditional AIC is reported.

... For AIC.HLfit: may include more fitted-model objects, consistently with the
generic. For this and the other functions: other arguments that may be needed by
some method. For example, if nsim is positive, a seed argument may be passed
to simulate, and the other “. . . ” may be used to control the optional parallel
execution of the bootstrap computations (by providing arguments to dopar).

Details

The AIC is a measure (by Kullback-Leibler directed distance, up to an additive constant) of quality
of prediction of new data by a fitted model. Comparing information criteria may be viewed as a
fast alternative to a comparison of the predictive accuracy of different models by cross-validation.
Further procedures for model choice may also be useful (e.g. Williams, 1970; Lewis et al. 2010).

The conditional AIC (Vaida and Blanchard 2005) applies the AIC concept to new realizations of
a mixed model, conditional on the realized values of the random effects. Lee et al. (2006) and Ha
et al (2007) defined a corrected AIC [i.e., AIC(D*) in their eq. 7] which is here interpreted as the
conditional AIC.

Such Kullback-Leibler relative distances cannot generally be evaluated exactly and various esti-
mates have been discussed. get_any_IC computes, optionally prints, and returns invisibly one or
more of the following quantities:
* Akaike’s classical AIC (marginal AIC, mAIC, i.e., minus twice the marginal log-likelihood plus
twice the number of fitted parameters);
* a plug-in estimate (cAIC) and/or a bootstrap estimate (b_cAIC) of the conditional AIC;
* a focussed AIC for dispersion parameters (dispersion AIC, dAIC).

For the conditional AIC, Vaida and Blanchard’s plug-in estimator involves the conditional likeli-
hood, and degrees of freedom for (i) estimated residual error parameters and (ii) the overall linear
predictor characterized by the Effective degrees of freedom already discussed by previous authors
including Lee and Nelder (1996), which gave a plug-in estimator (pD) for it in HGLMs. By default,
the plug-in estimate of both the conditional AIC and of n− pD (GoFdf, where n is the length of the
response vector) are returned by get_any_IC. But these are biased estimates of conditional AIC and
effective df, and an alternative procedure is available for GLM response families if a non-default
positive nsim value is used. In that case, the conditional AIC is estimated by a bootstrap version
of Saefken et al. (2014)’s equation 2.5; this involves refitting the model to each bootstrap samples,
so it may take time, and a full cross-validation procedure might as well be considered for model
selection.
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The dispersion AIC has been defined from restricted likelihood by Ha et al (2007; eq.10). The
present implementation will use restricted likelihood only if made available by an REML fit, other-
wise marginal likelihood is used.

Value

get_any_IC, a numeric vector whose possible elements are described in the Details, and whose
names are controlled by the short.names argument. Note that the bootstrap computation actually
makes sense and works also for fixed-effect models (although it is not clear how useful it is in that
case). The return value will still refer to its results as conditional AIC.

For AIC, If just one fit object is provided, the same return value as for get_any_IC. If multiple
objects are provided, a data.frame built from such vectors, with rows corresponding to the objects.

For extractAIC, a numeric vector of length 2, with first and second elements giving

* edf the degree of freedom of the fixed-effect terms of the model for the fitted model
fit.

* AIC the (marginal) Akaike Information Criterion for fit.

Likelihood is broadly defined up to a constant, which opens the way for inconsistency between
different likelihood and AIC computations. In spaMM, likelihood is nothing else than the proba-
bility or probability density of the data as function of model parameters. No constant is ever added,
in contrast to stats::extractAIC output, so there are discrepancies with the latter function (see
Examples).

References

Ha, I. D., Lee, Y. and MacKenzie, G. (2007) Model selection for multi-component frailty models.
Statistics in Medicine 26: 4790-4807.

Lee Y. and Nelder. J. A. 1996. Hierarchical generalized linear models (with discussion). J. R.
Statist. Soc. B, 58: 619-678.

Lewis, F., Butler, A. and Gilbert, L. (2011), A unified approach to model selection using the likeli-
hood ratio test. Methods in Ecology and Evolution, 2: 155-162. doi:10.1111/j.2041210X.2010.00063.x

Saefken B., Kneib T., van Waveren C.-S., Greven S. (2014) A unifying approach to the estimation
of the conditional Akaike information in generalized linear mixed models. Electron. J. Statist. 8,
201-225.

Vaida, F., and Blanchard, S. (2005) Conditional Akaike information for mixed-effects models.
Biometrika 92, 351-370.

Williams D.A. (1970) Discrimination between regression models to determine the pattern of en-
zyme synthesis in synchronous cell cultures. Biometrics 26: 23-32.

See Also

DoF, the extractor for the number of fitted parameters of a model.

https://doi.org/10.1111/j.2041-210X.2010.00063.x
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Examples

data("wafers")
m1 <- fitme(y ~ X1+X2+X3+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers,

family=Gamma(log))

get_any_IC(m1)
# => The plug-in estimate is stored in the 'm1' object
# as a result of the previous computation, and is now returned even by:
get_any_IC(m1, also_cAIC=FALSE)

if (spaMM.getOption("example_maxtime")>4) {
get_any_IC(m1, nsim=100L, seed=123) # provides bootstrap estimate of cAIC.
# (parallelisation options could be used, e.g. nb_cores=detectCores(logical=FALSE)-1L)

}

extractAIC(m1)

## Not run:
# Checking (in)consistency with glm example from help("stats::extractAIC"):
utils::example(glm) # => provides 'glm.D93' fit object
logLik(glm.D93) # logL= -23.38066 (df=5)
dataf <- data.frame(counts=counts,outcome=outcome, treatment=treatment)
extractAIC(fitme(counts ~ outcome + treatment, family = poisson(), data=dataf))
# => 56.76132 = -2 logL + 2* df
extractAIC(glm.D93) # 56.76132 too
#
# But for LM:
lm.D93 <- lm(counts ~ outcome + treatment, data=dataf)
logLik(lm.D93) # logL=-22.78576 (df=6)
extractAIC(fitme(counts ~ outcome + treatment, data=dataf)) # 57.5715 = -2 logL + 2* df
extractAIC(lm.D93) # 30.03062

### Inconsistency also apparent in drop1 output for :
# Toy data from McCullagh & Nelder (1989, pp. 300-2), as in 'glm' doc:
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

#
drop1( fitme(lot1 ~ log(u), data = clotting), test = "F") # agains reports marginal AIC
# => this may differ strongly from those returned by drop1( < glm() fit > ),
# but the latter are not even consistent with those from drop1( < lm() fit > )
# for linear models. Compare
drop1( lm(lot1 ~ log(u), data = clotting), test = "F") # consistent with drop1.HLfit()
drop1( glm(lot1 ~ log(u), data = clotting), test = "F") # inconsistent

## Discrepancies in drop1 output with Gamma() family:

gglm <- glm(lot1 ~ 1, data = clotting, family=Gamma())
logLik(gglm) # -40.34633 (df=2)

spgglm <- fitme(lot1 ~ 1, data = clotting, family=Gamma())
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logLik(spgglm) # -40.33777 (slight difference:
# see help("method") for difference in estimation method between glm() and fitme()).
# Yet this does not explain the following:

drop1( fitme(lot1 ~ log(u), data = clotting, family=Gamma()), test = "F")
# => second AIC is 84.676 as expected from above logLik(spgglm).
drop1( glm(lot1 ~ log(u), data = clotting, family=Gamma()), test = "F")
# => second AIC is 1465.27, quite different from -2*logLik(gglm) + 2*df

## End(Not run)

algebra Control of matrix-algebraic methods

Description

Autocorrelated gaussian random effects can be specified in terms of their covariance matrix, or in
terms of the precision matrix (i.e. inverse covariance matrix). In a pre-processing step, spaMM
may assess whether such precision matrices are sparse but the correlation matrix is dense, and if
so, it may use “sparse-precision” algorithms efficient for this case. If the precision matrix does not
appear sufficiently sparser than the correlation matrix, correlation matrices are used, and they can
themselves be sparse or dense, with distinct algebraic methods used in each case.

For example, when the model includes a corrMatrix term specified by a covariance matrix, the
precision matrix may be computed to assess its sparseness. The Example below illustrates a case
where detecting sparsity of the precision matrix allows a faster fit. However, such a comparison
of correlation and precision matrices takes time and is not performed for all types of random-
effect structures. Instead, some fast heuristics may be used (see Details). The default selection
of methods may not always be optimal, and may be overcome by using the control.HLfit argu-
ment of the fitting function (or by spaMM.options(), see Details). In particular one can use either
control.HLfit=list(sparse_precision= <TRUE|FALSE>) or control.HLfit=list(algebra=
<"spprec"|"spcorr"|"decorr">) with the obvious expected effects.

Such control may be useful when you already know that the precision matrix is sparse (as spaMM
may even kindly remind you of, see Example below). In that case, it is also efficient to specify the
precision matrix directly (see Example in Gryphon), as spaMM then assumes that sparse-precision
methods are better without checking the correlation matrix.

Such control may also be useful when the correlation matrix is nearly singular so that computation
of its inverse fails. This may occur if the model is poorly specified, but also occurs sometimes
for valid correlation models because inversion of large matrices though Cholesky methods is not
numerically accurate enough. In the latter case, you may be directed to this documentation by an
error message, and specifying sparse_precision= FALSE may be useful.

Details

Currently the sparse-precision methods are selected by default in two cases (with possible excep-
tions indicated by specific messages): (1) for models including IMRF random effects; and (2) when



aliases 11

the corrMatrix (or covStruct) syntax is used to provide a fixed precision matrix. Further, for
models including autoregressive terms other than IMRF (i.e., adjacency, AR1), sparse-precision
methods may or may not be selected on a simple heuristic based on the likely structure of the
correlation matrix.

Algebraic methods can be controlled globally over all further fits by using
spaMM.options(sparse_precision= <TRUE|FALSE>)
and, among the correlation-based methods,
spaMM.options(QRmethod= <"sparse"|"dense">)
to select "spcorr" vs. "decorr" methods. Fit-specific controls (by control.HLfit) override these
global ones.

See Also

pedigree

Examples

if (spaMM.getOption("example_maxtime")>6) {
data("Gryphon")

gry_df <- fitme(BWT ~ 1 + corrMatrix(1|ID), corrMatrix = Gryphon_A,
data = Gryphon_df, method = "REML")

how(gry_df)

# => Note the message about 'Choosing matrix methods...'.
# Using control.HLfit=list(algebra="spprec") would indeed
# save the time used to select this method.

# Conversely, using a correlation-based method would be a waste of time:

gry_dn <- fitme(BWT ~ 1 + corrMatrix(1|ID), corrMatrix = Gryphon_A,
data = Gryphon_df, method = "REML",
control.HLfit=list(sparse_precision=FALSE))

how(gry_dn) # forced dense-correlation methods, which is slower here.
}

aliases Variable aliases for multivariate-response fits

Description

Consider the toy_iris dataset defined in the Examples, noting in particular

u <- rnorm(10,sd=1)
id_y <- gl(10,5)
id_b <- rep(seq(10),5)
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an the subsequent use of u[id_y] and u[id_b] in the expectations of Poisson draws. Suppose
that we try to a multivariate-response model with two Poisson responses to it (yes, it is an artificial
example, as a multivariate fit may not be necessary here, but if you know what pois4mlogit does,
then a less artificial example can be defined from a similar dataset with binomial samples instead of
Poisson ones). A fit by

fitmv(submodels = list(
list(yellow ~ 1+(1|id_y), family = poisson()),
list(blue ~ 1+(1|id_b), family = poisson())),
data = toy_iris)

does not match the data-generating algorithm, because the fit of the (1|id_y) and (1|id_b) ran-
dom effects does not take into account that the latent values of these random effects are sampled
from a single vector u of 10 latent values. A matching fit should fit a single random-effect variance
and produce a single predicted vector for u, rather than two distinct vectors of predicted values.

Conversely, a fit such as

fitmv(submodels = list(
list(yellow ~ 1+(1|id_y), family = poisson()),
list(blue ~ 1+(1|id_y), family = poisson())),
data = toy_iris)

would fit a single random-effect variance and produce a single predicted vector, but the factor in-
dices are incorrect in the second submodel.

We need a syntax such that a single variance and a single vector are fitted (as when the random-
effect terms are identical in the two formulas), but where the factor indices are effectively id_y and
id_b in the two submodels. The syntax of the proper fit in the Examples achieves this effect. The
random effect is specified as (1|id) where id is *not* an actual factor in the data but is an alias for
the variable id_y in the first formula and id_b in the second one. This interpretation of the (1|id)
term is specified by the argument aliases=list(id=c("id_y","id_b")).

Examples

# Toy data
set.seed(123)
ssize <- 50L
u <- rnorm(10,sd=1)
id_y <- gl(10,5)
id_b <- rep(seq(10),5)
yellow <- rpois(ssize, lambda=exp(1+u[id_y]))
blue <- rpois(ssize, lambda=exp(1+u[id_b]))
toy_iris <- data.frame(

id_y=id_y, id_b=id_b, yellow=yellow, blue=blue
)

# Fit
proper <- fitmv(submodels = list(

list(yellow ~ 1+(1|id), family = poisson()),
list(blue ~ 1+(1|id), family = poisson())),
data = toy_iris, aliases=list(id=c("id_y","id_b")))
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ranef(proper) # single vector of 10 values

# Rows 1-50 and 51-100 of Z matrix show
# the distinct design of the two submodels:
get_matrix(proper,"ZA")

arabidopsis Arabidopsis genetic and climatic data

Description

For 948 “accessions” from European Arabidopsis thaliana populations, this data set merges the
genotypic information at four single nucleotide polymorphisms (SNP) putatively involved in adap-
tation to climate (Fournier-Level et al, 2011, Table 1), with 13 climatic variables from Hancock et
al. (2011).

Usage

data("arabidopsis")

Format

The data frame includes 948 observations on the following variables:

pos1046738, pos5510910, pos6235221, pos8132698 Genotypes at four SNP loci

LAT latitude

LONG longitude

seasonal, tempWarmest, tempColdest, preciWettest, preciDriest, preciCV, PAR_SPRING,

growingL, conseqCold, conseqFrFree, RelHumidSp, dayLSp, aridity Thirteen climatic variables.
See Hancock et al. (2011) for details about these variables.

Details

The response is binary so method="PQL/L" seems warranted (see Rousset and Ferdy, 2014).

Source

The data were retrieved from http://bergelson.uchicago.edu/regmap-data/climate-genome-scan
on 22 February 2013 (they may no longer be available from there).
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References

Fournier-Level A, Korte A., Cooper M. D., Nordborg M., Schmitt J., Wilczek AM (2011). A map
of local adaptation in Arabidopsis thaliana. Science 334: 86-89.

Hancock, A. M., Brachi, B., Faure, N., Horton, M. W., Jarymowycz, L. B., Sperone, F. G., Tooma-
jian, C., Roux, F., and Bergelson, J. 2011. Adaptation to climate across the Arabidopsis thaliana
genome, Science 334: 83-86.

Rousset F., Ferdy, J.-B. (2014) Testing environmental and genetic effects in the presence of spatial
autocorrelation. Ecography, 37: 781-790. doi:10.1111/ecog.00566

Examples

data("arabidopsis")
if (spaMM.getOption("example_maxtime")>2.5) {

fitme(cbind(pos1046738,1-pos1046738)~seasonal+Matern(1|LAT+LONG),
fixed=list(rho=0.119278,nu=0.236990,lambda=8.599),
family=binomial(),method="PQL/L",data=arabidopsis)

}
## The above 'fixed' values are deduced from the following fit:
if (spaMM.getOption("example_maxtime")>46) {

SNPfit <- fitme(cbind(pos1046738,1-pos1046738)~seasonal+Matern(1|LAT+LONG),
verbose=c(TRACE=TRUE),
family=binomial(),method="PQL/L",data=arabidopsis)

summary(SNPfit) # p_v=-125.0392
}

ARp Random effect with AR(p) (autoregressive of order p) or ARMA(p,q)
structure.

Description

These times-series correlation models can be declared as correlation models for random effect. The
AR(p) model is here parametrized by the partial correlation coefficients of the levels of the ran-
dom effect, {U_t}, corr(U_s,U_t|U_(s+1),...,U_(t-1)), with valid values in the hypercube ]-1„1[^p
(Barndorff-Nielsen and Schou, 1973). In the autoregressive-moving average ARMA(p,q) model,
the AR part is parametrized in the same way. AR parameters are named "p1", "p2"..., and MA
parameters are named "q1", "q2"... .

Implementation of the AR(p) model uses the sparsity of the inverse covariance matrix. In the
ARMA(p,q) model, neither the covariance nor its inverse are sparse, so fits are expected to be more
time- and memory-consuming.

Usage

# corrFamily constructors:
ARp(p=1L, fixed=NULL, corr=TRUE, tpar=1/(1+seq(p)))
ARMA(p=1L, q=1L, fixed=NULL, tpar=c(1/(1+seq_len(p)),1/(1+seq_len(q))))

https://doi.org/10.1111/ecog.00566
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Arguments

p Integer: order of the autoregressive process.

q Integer: order of the moving-average process.

tpar Numeric vector: template values of the partial coefficient coefficients of the
autoregressive process, and the traditional coefficients of the moving-average
processe, in this order. The tpar vector must always have full length, even
when some parameters are fixed.

fixed NULL or numeric vector, to fix the parameters of this model.

corr For development purposes, better ignored in normal use.

Value

The ARp and ARMA functions return a corrFamily descriptor, hence a list including element Cf,
a function returning, for given ARMA or AR parameters, the correlation matrix for ARMA, or its
inverse for ARp.

The fitted correlation matrix can be extracted from a fit object, as for any autocorrelated random
effect, by Corr(<fit object>)[[<random-effect index>]].

References

Barndorff-Nielsen 0. and Schou G., 1973 On the parametrization of autoregressive models by
partial autocorrelations. J. Multivariate Analysis 3: 408-419. doi:10.1016/0047259X(73)900304

Examples

if (spaMM.getOption("example_maxtime")>2) {
ts <- data.frame(lh=lh,time=seq(48)) ## using 'lh' data from 'stats' package

## Default 'tpar' => AR1 model
#
(ARpfit <- fitme(lh ~ 1 + ARp(1|time), data=ts, method="REML"))
#
## which is equivalent to
#
(AR1fit <- fitme(lh ~ 1 +AR1(1|time), data=ts, method="REML"))

## AR(3) model
#
(AR3fit <- fitme(lh ~ 1 + ARp(1|time, p=3), data=ts, method="REML"))

## Same but with fixed 2-lag partial autocorrelation
#
(AR3fix <- fitme(lh ~ 1 + ARp(1|time, p=3, fixed=c(p2=0)), data=ts, method="REML"))
#
# The fit should be statistically equivalent to
#
(AR3_fix <- fitme(lh ~ 1 + ARp(1|time, p=3), data=ts, method="REML",

fixed=list(corrPars=list("1"=c(p2=0)))))
#

https://doi.org/10.1016/0047-259X%2873%2990030-4
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# with subtle differences in the structure of the fit objects:
#
get_ranPars(AR3fix)$corrPars # p2 was not a parameter of the model
get_ranPars(AR3_fix)$corrPars # p2 was a fixed parameter of the model
#
# get_fittefPars() expectedly ignores 'p2' whichever way it was fixed.

## Same as 'AR3fix' but with an additional MA(1) component
#
(ARMAfit <- fitme(lh ~ 1 + ARMA(1|time, p=3, q=1, fixed=c(p2=0)),

data=ts, method="REML"))
}

as_LMLT Conversion to input for procedures from lmerTest package

Description

The lmerTest::contest function, drop1 and anova methods implement a number of tests for
linear mixed models, e.g. using effective degrees of freeedom based on (a generalization of) Sat-
terthwaite’s method. These tests can be performed using spaMM fits through the conversion of the
fit object, by the as_LMLT function, to an ad-hoc format acceptable as input to lmerTest’s inter-
nal procedures. The separately documented drop1.HLfit and (optionally) anova.HLfit methods,
when called on a single LMM fit object, perform the conversion by as_LMLT and call drop1 or
anova methods defined by lmerTest.

Only the tests using lmerTest’s default method ddf="Satterthwaite" are formally supported, as
the converted object do not have the required format for the other methods. Only LMMs are handled
by lmerTest, and residual-dispersion models are not yet handled by the conversion. However, the
conversion extends lmerTest’s functionality by handling all random-effect parameters handled by
numInfo, therefore including (e.g.) spatial-correlation parameters not handled by lme4.

Usage

as_LMLT(fitobject, nuisance=NULL, verbose=TRUE, transf=TRUE, check_deriv=NULL, ...)

Arguments

fitobject Object of class HLfit resulting from the fit of a linear mixed model (LMM).

nuisance A list of fitted values of parameters that affect the distribution of the test of fixed
effects, in the format of the fixed argument of the fitme function. If NULL
(default), then the list is constructed from the fitted values of the random-effect
parameters and of phi (residual dispersion parameter). The nuisance argument
is better ingored unless the extractor he construct the default value fails in some
way.
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verbose boolean: controls printing of the message that shows the unlisted value of the
nuisance list.

transf boolean: whether to evaluate numerical derivatives on a transformed parameter
scale, or not (may affect numerical precision).

check_deriv See same-named argument of numInfo

... Other arguments that may be needed by some method (currently ignored).

Value

The value is returned invisibly. It is an S4 object of class "LMLT" with slots matching those required
in objects of S4 class "lmerModLmerTest" when used by package lmerTest with ddf="Satterthwaite"
(many additional slots of a formal "lmerModLmerTest" object are missing). The additional nuisance
slot contains the nuisance list.

References

Alexandra Kuznetsova, Per B. Brockhoff and Rune H. B. Christensen (2017) lmerTest Package:
Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. doi:10.18637/jss.v082.i13

Examples

## Reproducing an example from the doc of lmerTest::contest.lmerModLmerTest,
# using a spaMM fit as input.
## Not run:

data("sleepstudy", package="lme4")

## The fit:
spfit <- fitme(Reaction ~ Days + I(Days^2) + (1|Subject) + (0+Days|Subject),

sleepstudy, method="REML")

## Conversion:
spfit_lmlt <- as_LMLT(spfit)

## Functions from package lmerTest can then be called on this object:
lmerTest::contest(spfit_lmlt, L=diag(3)[2:3, ]) # Test of 'Days + I(Days^2)'.
#
anova(spfit_lmlt, type="1") # : using lmerTest:::anova.lmerModLmerTest()
drop1(spfit_lmlt) # : using lmerTest:::drop1.lmerModLmerTest()

## End(Not run)

autoregressive Fitting autoregressive models
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Description

Diverse autoregressive (AR) models are implemented in spaMM. This documentation describe the
adjacency model (a conditional AR, i.e., CAR), and the AR1 model for time series. Other documen-
tation deals with more or less distantly related models: ARp for more general AR(p) and ARMA(p,q)
models for time series, and IMRF and MaternIMRFa for mesh-based approximations of geostatistical
models.

An AR1 random effect is specified as AR1(1|<grouping factor>). It describes correlations be-
tween realizations of the random effect for (typically) successive time-steps by a correlation ϕ,
denoted ARphi in function calls. Nested AR1 effects can be specified by a nested grouping factor,
as in AR1(1|<time index> %in% <nesting factor>).

A CAR random effect is specified as adjacency(1|<grouping factor>). The correlations among
levels of the random effect form a matrix (I−ρ adjMatrix)−1, in terms of an adjMatrix matrix
which must be provided, and of the scalar ρ, denoted rho in function calls. The rows and columns
of adjMatrix must have names matching those of levels of the random effect or else are assumed
to match a sequence, from 1 to the number of columns, of values of the geographic location index
specifying the spatial random effect. For example, if the model formula is
y ~ adjacency(1|geo.loc) and <data>$geo.loc is 2,4,3,1,... the first row/column of the matrix
refers to geo.loc=1, i.e. to the fourth row of the data.

Details

Efficient algorithms for CAR models have been widely discussed in particular in the econometric
literature (e.g., LeSage and Pace 2009), but these models are not necessarily recommended for
irregular lattices (see Wall, 2004 and Martellosio, 2012 for some insights on the implications of
autoregressive models).

In CAR models, the covariance matrix of random effects u can be described as λ(I−ρ W)−1 where
W is the (symmetric) adjacency matrix. HLCor uses the spectral decomposition of the adjacency
matrix, written as W=VDV’ where D is a diagonal matrix of eigenvalues di. The covariance of
V’u is λ(I−ρ D)−1, which is a diagonal matrix with elements λi=λ/(1−ρdi). Hence 1/λi is in the
linear predictor form α+βdi This can be used to fit λ and ρ efficiently. A call to corrHLfit with
the additional argument init.HLfit=list(rho=0) should be equivalent in speed and result to the
HLCor call.

This is fast for small datasets (as in the example below) but more generic maximization algorithms
may be preferable for large ones. It is suggested to use fitme generally unless one has a large
number of small data sets to analyze. A call to fitme or corrHLfit without that initial value
does not use the spectral decomposition. It performs numerical maximization of the likelihood (or
restricted likelihood) as function of the correlation parameter ρ. The choice of fitting function may
slightly impact the results. The ML fits by corrHLfit and HLCor should be practically equivalent.
The REML fits should slightly differ from each other, due to the fact that the REML approximation
for GLMMs does not maximize a single likelihood function.

If HLCor is used, the results are reported as the coefficients α ((Intercept)) and β (adjd) of the
predictor for 1/λi, in addition to the resulting values of ρ and of the common λ factor.

Different fits may also differ in using or not algorithms that exploit the sparsity of the precision
matrix of the autoregressive random effect. By default, spaMM tends to select sparse-precision
algorithms for large datasets and large (i.e. many-level) random effects (details are complex). How-
ever, for AR1 models, the dimension of the implied precision matrix is determined by the extreme
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values of grouping factor (typically interpreted as a time index), as all intermediate values must be
considered. Then, the correlation-based algorithms may be more efficient if only a few levels are
present in the data, as only a small correlation matrix is required in that case.

References

LeSage, J., Pace, R.K. (2009) Introduction to Spatial Econometrics. Chapman & Hall/CRC.

Martellosio, F. (2012) The correlation structure of spatial autoregressions, Econometric Theory 28,
1373-1391.

Wall M.M. (2004) A close look at the spatial structure implied by the CAR and SAR models:
Journal of Statistical Planning and Inference 121: 311-324.

Examples

##### AR1 random effect:
ts <- data.frame(lh=lh,time=seq(48)) ## using 'lh' data from stats package
fitme(lh ~ 1 +AR1(1|time), data=ts, method="REML")
# With fixed parameters:
# HLCor(lh ~ 1 +AR1(1|time), data=ts, ranPars=list(ARphi=0.5,lambda=0.25,phi=0.001))

##### CAR random effect:
data("scotlip")
# CAR by Laplace with 'outer' estimation of rho
if (spaMM.getOption("example_maxtime")>0.8) {

fitme(cases ~ I(prop.ag/10)+adjacency(1|gridcode)+offset(log(expec)),
adjMatrix=Nmatrix, family=poisson(), data=scotlip)

}

# CAR by Laplace with 'inner' estimation of rho
HLCor(cases ~ I(prop.ag/10)+adjacency(1|gridcode)+offset(log(expec)),

adjMatrix=Nmatrix, family=poisson(), data=scotlip, method="ML")

betabin Beta-binomial family object

Description

Returns a family object for beta-binomial models. The model described by such a family is charac-
terized by a linear predictor, a link function, and the beta-binomial distribution for residual variation.

The precision parameter prec of this family is a positive value such that the variance of the beta-
distributed latent variable given its mean µ is µ(1− µ)/(1+prec). prec is thus the same precision
parameter as for the beta family (see beta_resp. The variance of the beta-binomial sample of size
n is response is µ(1− µ)n(n+prec)/(1+prec).

A fixed-effect residual-dispersion model can be fitted, using the resid.model argument, which
is used to specify the form of the logarithm of the precision parameter (see Examples). Thus the
variance of the latent beta-distributed variable becomes µ(1 − µ)/(1+exp(<specified linear
expression>)).
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Usage

betabin(prec = stop("betabin's 'prec' must be specified"), link = "logit")

Arguments

prec Scalar (or left unspecified): precision parameter of the beta distribution.
link logit, probit, cloglog or cauchit link, specified by any of the available ways for

GLM links (name, character string, one-element character vector, or object of
class link-glm as returned by make.link).

Details

Prior weights are meaningful for this family and handled as a factor of the precision parameter of the
latent beta-distributed variable: the variance of the latent variable become µ(1−µ)/(1+prec*<prior
weights>). However, this feature is experimental and may be removed in the future. The fitting
function’s resid.model argument may be preferred to obtain the same effect, by specifying an
offset(log(<prior weights>)) in its formula (given the log link used in that model). As usual
in spaMM, the offset(.) argument should be a vector and any variable necessary for evaluating it
should be in the data.

Value

A list, formally of class c("LLF", "family"). See LL-family for details about the structure and
usage of such objects.

Examples

if (requireNamespace("agridat", quietly = TRUE)) {
data("crowder.seeds", package = "agridat")
fitme(cbind(germ,n-germ) ~ gen+extract+(1|plate), data=crowder.seeds, family=betabin())

} else {
data(clinics)
fitme(cbind(npos,nneg)~1+(1|clinic), family=betabin(), data=clinics)

}

beta_resp Beta-distribution family object

Description

Returns a family object for beta-response models. The model described by such a family is char-
acterized by a linear predictor, a link function, and the beta density for the residual variation.

The precision parameter prec of this family is a positive value such that the variance of the response
given its mean µ is µ(1−µ)/(1+prec). prec is thus the precision parameter ϕ of Ferrari & Cribari-
Neto (2004) and of the betareg package (Cribari-Neto & Zeileis 2010).

A fixed-effect residual-dispersion model can be fitted, using the resid.model argument, which
is used to specify the form of the logarithm of the precision parameter (see Examples). Thus the
variance of the response become µ(1− µ)/(1+exp(<specified linear expression>)).
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Usage

beta_resp(prec = stop("beta_resp's 'prec' must be specified"), link = "logit")

Arguments

prec Scalar (or left unspecified): precision parameter of the beta distribution.

link logit, probit, cloglog or cauchit link, specified by any of the available ways for
GLM links (name, character string, one-element character vector, or object of
class link-glm as returned by make.link).

Details

Prior weights are meaningful for this family and handled as a factor of the precision parameter (as
for GLM families) hence here not as a divisor of the variance (in contrast to GLM families): the
variance of the response become µ(1 − µ)/(1+prec*<prior weights>). However, this feature is
experimental and may be removed in the future. The fitting function’s resid.model argument may
be preferred to obtain the same effect, by specifying an offset(log(<prior weights>)) in its
formula (given the log link used in that model). As usual in spaMM, the offset(.) argument should
be a vector and any variable necessary for evaluating it should be in the data.

Value

A list, formally of class c("LLF", "family"). See LL-family for details about the structure and
usage of such objects.

References

Cribari-Neto, F., & Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2),
1-24. doi:10.18637/jss.v034.i02

Ferrari SLP, Cribari-Neto F (2004). “Beta Regression for Modelling Rates and Proportions.” Journal
of Applied Statistics, 31(7), 799-815.

See Also

Further examples in LL-family.

Examples

set.seed(123)
beta_dat <- data.frame(y=runif(100),grp=sample(2,100,replace = TRUE), x_het=runif(100))

fitme(y ~1+(1|grp), family=beta_resp(), data= beta_dat)
## same logL, halved 'prec' when prior weights=2 are used:
# fitme(y ~1+(1|grp), family=beta_resp(), data= beta_dat, prior.weights=rep(2,100))

## With model for residual dispersion:
# fitme(y ~1+(1|grp), family=beta_resp(), data= beta_dat, resid.model= ~ x_het)

https://doi.org/10.18637/jss.v034.i02
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blackcap Genetic polymorphism in relation to migration in the blackcap

Description

This data set is extracted from a study of genetic polymorphisms potentially associated to migration
behaviour in the blackcap (Sylvia atricapilla). Across different populations in Europe and Africa,
the average migration behaviour was found to correlate with average allele size (dependent on the
number of repeats of a small DNA motif) at the locus ADCYAP1, encoding a neuropeptide. This
data set is quite small and ill-suited for separating random-effect variance from residual variance.
The likelihood surface for the Matérn model actually has local maxima.

Usage

data("blackcap")

Format

The data frame includes 14 observations on the following variables:

latitude latitude, indeed.

longitude longitude, indeed.

migStatus migration status as determined by Mueller et al, from 0 (resident populations) to 2.5
(long-distance migratory populations)

means Mean allele sizes in each population

pos Numerical index for the populations

Details

Migration status was coded as : pure resident populations as ’0’, resident populations with some
migratory restlessness as ’0.5’, partial migratory populations as ’1’, completely migratory popu-
lations migrating short-distances as ’1.5’, intermediate-distance migratory populations as ’2’ and
distinct long-distance migratory populations as ’2.5’.

Source

Data from Mueller et al. (2011), including supplementary material now available from doi:10.1098/
rspb.2010.2567.

References

Mueller, J. C., Pulido, F., and Kempenaers, B. 2011. Identification of a gene associated with avian
migratory behaviour, Proc. Roy. Soc. (Lond.) B 278, 2848-2856.

Examples

## see 'fitme', 'corrHLfit' and 'fixedLRT' for examples involving these data

https://doi.org/10.1098/rspb.2010.2567
https://doi.org/10.1098/rspb.2010.2567
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CauchyCorr Cauchy correlation function and Cauchy formula term

Description

The Cauchy family of correlation functions is useful to describe spatial processes with power-
law decrease of correlation at long distance. It is valid for Euclidean distances in spaces of any
dimension, and for great-circle distances on spheres of any dimension. It has a scale parameter
(rho, as in the Matérn correlation function), a shape (or “smoothness”, Gneiting 2013) parameter,
and a long-memory dependence (or, more abstractly, “shape”; Gneiting 2013) parameter (Gneiting
and Schlater 2004). The present implementation also accepts a Nugget parameter. The family can
be invoked in two ways. First, the CauchyCorr function evaluates correlations, using distances
as input. Second, a term of the form Cauchy(1|<...>) in a formula specifies a random effect
with Cauchy correlation function, using coordinates found in a data frame as input. In the latter
case, the correlations between realizations of the random effect for any two observations in the
data will be the value of the Cauchy function at the scaled distance between coordinates specified
in <...>, using “+” as separator (e.g., Cauchy(1|longitude+latitude)). A syntax of the form
Cauchy(1|longitude+latitude %in% grp) can be used to specify a Cauchy random effect with
independent realizations for each level of the grouping variable grp.

Usage

## Default S3 method:
CauchyCorr(d, rho=1, shape, longdep, Nugget=NULL)
# Cauchy(1|...)

Arguments

d Euclidean or great-circle distance

rho The scaling factor for distance, a real >0.

shape The shape (smoothness) parameter, a real 0<.<=2 for Euclidean distances and
0<.<=1 for great-circle distances. Smoothness increases, and fractal dimension
decreases, with increasing shape (the fractal dimension of realizations in spaces
of dimension d being d+1-shape/2).

longdep The long-memory dependence parameter, a real >0. It gives the exponent of the
asymptotic decrease of correlation with distance: the smaller longdep is, the
longer the dependence.

Nugget (Following the jargon of Kriging) a parameter describing a discontinuous de-
crease in correlation at zero distance. Correlation will always be 1 at d = 0, and
from which it immediately drops to (1-Nugget). Defaults to zero.

... Names of coordinates, using “+” as separator (e.g., Matern(1|longitude+latitude).
The coordinates are numeric values found in the data data frame provided to the
fitting function. No additional declaration of groups, factors, or other specific
formatting is required.
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Details

The correlation at distance d > 0 is

(1− Nugget)(1 + (ρd)shape)( − longdep/shape)

Value

Scalar/vector/matrix depending on input.

References

Gneiting, T. and Schlater M. (2004) Stochastic models that separate fractal dimension and the Hurst
effect. SIAM Rev. 46: 269–282.

Gneiting T. (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19:
1327-1349.

Examples

data("blackcap")
fitme(migStatus ~ means+ Cauchy(1|longitude+latitude),

data=blackcap,
# fixed=list(longdep=0.5,shape=0.5,rho=0.05)
)

## The Cauchy family can be used in Euclidean spaces of any dimension:
set.seed(123)
randpts <- matrix(rnorm(20),nrow=5)
distMatrix <- as.matrix(proxy::dist(randpts))
CauchyCorr(distMatrix,rho=0.1,shape=1,longdep=10)

# See ?MaternCorr for examples of syntaxes for group-specific random effects,
# also handled by Cauchy().

clinics Toy dataset for binomial response

Description

A small data set used by Booth & Hobert (1998).

Usage

data("clinics")
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Format

A data frame with 16 observations on the following 4 variables.

npos a numeric vector

nneg a numeric vector

treatment a numeric vector

clinic a numeric vector

References

Booth, J.G., Hobert, J.P. (1998) Standard errors of prediction in generalized linear mixed models.
J. Am. Stat. Assoc. 93: 262-272.

Examples

data(clinics)
## Not run:
# The dataset was built as follows
npos <- c(11,16,14,2,6,1,1,4,10,22,7,1,0,0,1,6)
ntot <- c(36,20,19,16,17,11,5,6,37,32,19,17,12,10,9,7)
treatment <- c(rep(1,8),rep(0,8))
clinic <-c(seq(8),seq(8))
clinics <- data.frame(npos=npos,nneg=ntot-npos,treatment=treatment,clinic=clinic)

## End(Not run)

COMPoisson Conway-Maxwell-Poisson (COM-Poisson) GLM family

Description

The COM-Poisson family is a generalization of the Poisson family which can describe over-dispersed
as well as under-dispersed count data. It is indexed by a parameter nu that quantifies such disper-
sion. For nu>1, the distribution is under-dispersed relative to the Poisson distribution with same
mean. It includes the Poisson, geometric and Bernoulli as special (or limit) cases (see Details).
The COM-Poisson family is here implemented as a family object, so that it can be fitted by glm,
and further used to model conditional responses in mixed models fitted by this package’s functions
(see Examples). nu is distinct from the dispersion parameter ν = 1/ϕ considered elsewhere in this
package and in the GLM literature, as ν affects in a more specific way the log-likelihood.

Several links are now allowed for this family, corresponding to different versions of the COMPois-
son described in the literature (e.g., Sellers & Shmueli 2010; Huang 2017).

Usage

COMPoisson(nu = stop("COMPoisson's 'nu' must be specified"),
link = "loglambda")
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Arguments

link GLM link function. The default is the canonical link "loglambda" (see Details),
but other links are allowed (currently log, sqrt or identity links as commonly
handled for the Poisson family).

nu Under-dispersion parameter. The fitme and corrHLfit functions called with
family=COMPoisson() (no given nu value) will estimate this parameter. In
other usage of this family, nu must be specified. COMPoisson(nu=1) is the Pois-
son family.

Details

The ith term of the distribution can be written qi/Z where qi = λi/(i!)ν and Z =
∑∞

(i=0) qi, for
λ = λ(µ) implied by its inverse relationship, the expectation formula µ = µ(λ) =

∑∞
(i=0) iqi(λ)/Z.

The case nu=0 is the geometric distribution with parameter λ; nu=1 is the Poisson distribution with
mean λ; and the limit as nu -> ∞ is the Bernoulli distribution with expectation λ/(1 + λ).

From this definition, this is an exponential family model with canonical parameters log(λ) and ν.
When the linear predictor η specifies log(λ(µ)), the canonical link is used (e.g., Sellers & Shmueli
2010). This link is here nicknamed "loglambda" and does not have a known expression in terms
of elementary functions. To obtain µ as the link inverse of the linear predictor η, one then first
computes λ = eη and then µ(λ) by the expectation formula. For other links (Huang 2017), one
directly computes µ by the link inverse (e.g., µ = eη for link "log"), and then one may solve for
λ = λ(µ) to obtain other features of the distribution.

The relationships between λ and µ or other moments of the distribution involve infinite summations.
These sums can be easily approximated by a finite number of terms for large nu but not when nu
approaches zero. For this reason, the code may fail to fit distributions with nu approaching 0 (strong
residual over-dispersion). The case nu=0 (the geometric distribution) is fitted by an ad hoc algorithm
devoid of such problems. Otherwise, spaMM truncates the sum, and uses numerical integrals to
approximate missing terms (which slows down the fitting operation). In addition, it applies an ad
hoc continuity correction to ensure continuity of the result in nu=1 (Poisson case). These corrections
affect numerical results for the case of residual overdispersion but are negligible for the case of
residual underdispersion. Alternatively, spaMM uses Gaunt et al.’s (2017) approximations when the
condition defined by spaMM.getOption("CMP_asympto_cond") is satisfied. All approximations
reduces the accuracy of computations, in a way that can impede the extended Levenberg-Marquardt
algorithm sometimes needed by spaMM.

The name COMP_nu should be used to set initial values or bounds on nu in control arguments of
the fitting functions (e.g., fitme(.,init=list(COMP_nu=1))). Fixed values should be set by the
family argument (COMPoisson(nu=.)).

Value

A family object.

References

Gaunt, Robert E. and Iyengar, Satish and Olde Daalhuis, Adri B. and Simsek, Burcin. (2017) An
asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution.
Ann Inst Stat Math doi:10.1007/s1046301706296.

https://doi.org/10.1007/s10463-017-0629-6
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Huang, Alan (2017) Mean-parametrized Conway-Maxwell-Poisson regression models for dispersed
counts. Stat. Modelling doi:10.1177/1471082X17697749

G. Shmueli, T. P. Minka, J. B. Kadane, S. Borle and P. Boatwright (2005) A useful distribution
for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution. Appl. Statist. 54:
127-142.

Sellers KF, Shmueli G (2010) A Flexible Regression Model for Count Data. Ann. Appl. Stat. 4:
943–961

Examples

if (spaMM.getOption("example_maxtime")>0.9) {
# Fitting COMPoisson model with estimated nu parameter:
#
data("freight") ## example from Sellers & Shmueli, Ann. Appl. Stat. 4: 943–961 (2010)
fitme(broken ~ transfers, data=freight, family = COMPoisson())
fitme(broken ~ transfers, data=freight, family = COMPoisson(link="log"))

# glm(), HLCor() and HLfit() handle spaMM::COMPoisson() with fixed overdispersion:
#
glm(broken ~ transfers, data=freight, family = COMPoisson(nu=10))
HLfit(broken ~ transfers+(1|id), data=freight, family = COMPoisson(nu=10),method="ML")

# Equivalence of poisson() and COMPoisson(nu=1):
#
COMPglm <- glm(broken ~ transfers, data=freight, family = poisson())
coef(COMPglm)
logLik(COMPglm)
COMPglm <- glm(broken ~ transfers, data=freight, family = COMPoisson(nu=1))
coef(COMPglm)
logLik(COMPglm)
HLfit(broken ~ transfers, data=freight, family = COMPoisson(nu=1))

}

composite-ranef Composite random effects

Description

An example of a composite random effect is corrMatrix(sex|pair). It combines features of a
random-coefficient model (sex|pair) and of an autocorrelated random effect corrMatrix(.|.).
The random-coefficient model is characterized by a 2 ∗ 2 covariance matrix C for the random ef-
fects u1,pair and u2,pair both affecting each of the two sexes for each pair, and the corrMatrix
random effect assumes that elements of each of the two vectors ui = (ui,pair) for pair=1,...,P are
correlated according to a given P ∗ P correlation matrix A. Then the composite random effect is
defined as the one with 2P∗2P covariance matrix kronecker(C,A).

The definition of composite random effects through the kronecker product may be motivated and
understood in light of a quantitative-genetics application (see help("Gryphon") for an example). In

https://doi.org/10.1177/1471082X17697749
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this context the two response variables are typically two individual traits. Each trait is affected by
two sets of genes, the effect of each set being represented by a gaussian random effect (u_1 or u_2).
The effect of genetic relatedness on the correlation of random effects u_i,ID among individuals
ID within each set i of genes is described by the corrMatrix A. The effects on the two traits for
each individual are interpreted as different linear combinations of these two random effects (the
coefficients of these linear combinations determining the C matrix). Under these assumptions the
correlation matrix of the responses (in order (trait, individual)=(1,1)...(1,ID)... (2,1)...(2,ID)...) is
indeed kronecker(C,A).

Composite random effects are not restricted to corrMatrix terms, and can also be fitted for multivariate-
response models. For example, Matern(mv(1,2)|longitude+latitude) terms can be fitted, in
which case the correlation model is still defined through the Kronecker product, where A will be
a (fitted) Matérn correlation matrix, and C will be the correlation matrix of the fitted random-
coefficient model for the mv virtual factor for multivariate response.

Implementation and tests of composite random effects is work in progress, with the following ones
having been tested: corrMatrix, Matern, Cauchy, adjacency, IMRF, AR1, and to a lesser extent
MaternIMRFa. Fits of other composite terms may fail. Even if they succeed, not all post-fit proce-
dures may be operational: in particular, prediction (and then, simulation) with newdata may not yet
work. Further, as for random-coefficient terms in univariate-response models, some components of
the computed prediction variance depend on a poorly characterized approximation, yielding differ-
ent results for different fitting algorithms (see Details in predVar).

The summary of the model provides fitted parameters for A if this matrix derives from a para-
metric correlation model (e.g., Matern), and a description of the C matrix where it is viewed as
a covariance matrix, parametrized by its variances and its correlation coefficient(s). In a standard
random-coefficient model these variances would be those of the correlated random effects (see
summary.HLfit). In the composite random-effect model this is not necessarily so as the variance
of the correlated random effects also depend on the variances implied by the A matrix, which are
not necessarily 1 if A is a covariance matrix rather than simply a correlation matrix.

A <prefix>(<LHS>|<RHS>) term is *not* a composite random effect when the LHS in boolean,
a factor from boolean, or “0+numeric”. See the Matérn examples, and the corrMatrix “<LHS> is
0+numeric” example, below.

Examples

if (spaMM.getOption("example_maxtime")>1.8) {

########################
#### corrMatrix examples
########################

## Toy data preparation

data("blackcap")
toy <- blackcap
toy$ID <- gl(7,2)
grp <- rep(1:2,7)
toy$migStatus <- toy$migStatus +(grp==2)
toy$loc <- rownames(toy) # to use as levels matching the corrMatrix dimnames

toy$grp <- factor(grp)
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toy$bool <- toy$grp==1L
toy$boolfac <- factor(toy$bool)
toy$num <- seq(from=1, to=2, length.out=14)

## Build a toy corrMatrix as perturbation of identity matrix:
n_rhs <- 14L
eps <- 0.1
set.seed(123)
rcov <- ((1-eps)*diag(n_rhs)+eps*rWishart(1,n_rhs,diag(n_rhs)/n_rhs)[,,1])
# eigen(rcov)$values
colnames(rcov) <- rownames(rcov) <- toy$loc # DON'T FORGET NAMES

##### Illustrating the different LHS types

### <LHS> is logical (TRUE/FALSE) => No induced random-coefficient C matrix;
# corrMatrix affects only responses for which <LHS> is TRUE:
#
(fit1 <- fitme(migStatus ~ bool + corrMatrix(bool|loc), data=toy, corrMatrix=rcov))
#
# Matrix::image(get_ZALMatrix(fit1))

### <RHS> is a factor built from a logical => same a 'logical' case above:
#
(fit2 <- fitme(migStatus ~ boolfac + corrMatrix(boolfac|loc), data=toy, corrMatrix=rcov))
#
# Matrix::image(get_ZALMatrix(fit2))

### <RHS> is a factor not built from a logical:
# (grp|.) and (0+grp|.) lead to equivalent fits of the same composite model,
# but contrasts are not used in the second case and the C matrices differ,
# as for standard random-coefficient models.
#
(fit1 <- fitme(migStatus ~ grp + corrMatrix(grp|loc), data=toy, corrMatrix=rcov))
(fit2 <- fitme(migStatus ~ grp + corrMatrix(0+grp|loc), data=toy, corrMatrix=rcov))
#
# => same fits, but different internal structures:
Matrix::image(fit1$ZAlist[[1]]) # (contrasts used)
Matrix::image(fit2$ZAlist[[1]]) # (contrasts not used)
# Also compare ranef(fit1) versus ranef(fit2)
#
#
## One can fix the C matrix, as for standard random-coefficient terms
#
(fit1 <- fitme(migStatus ~ grp + corrMatrix(0+grp|loc),data=toy, corrMatrix=rcov,

fixed=list(ranCoefs=list("1"=c(1,0.5,1)))))
#
# same result without contrasts hence different 'ranCoefs':
#
(fit2 <- fitme(migStatus ~ grp + corrMatrix(grp|loc), data=toy, corrMatrix=rcov,

fixed=list(ranCoefs=list("1"=c(1,-0.5,1)))))
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### <LHS> is numeric (but not '0+numeric'):
# composite model with C being 2*2 for Intercept and numeric variable
#
(fitme(migStatus ~ num + corrMatrix(num|loc), data=toy, corrMatrix=rcov))

### <LHS> is 0+numeric: no random-coefficient C matrix
# as the Intercept is removed, but the correlated random effects
# arising from the corrMatrix are multiplied by sqrt(<numeric variable>)
#
(fitme(migStatus ~ num + corrMatrix(0+num|loc), data=toy, corrMatrix=rcov))

### <LHS> for multivariate response (see help("Gryphon") for more typical example)
## More toy data preparation for multivariate response
ch <- chol(rcov)
set.seed(123)
v1 <- tcrossprod(ch,t(rnorm(14,sd=1)))
v2 <- tcrossprod(ch,t(rnorm(14,sd=1)))
toy$status <- 2*v1+v2
toy$status2 <- 2*v1-v2

## Fit:
fitmv(submodels=list(mod1=list(status ~ 1+ corrMatrix(0+mv(1,2)|loc)),

mod2=list(status2 ~ 1+ corrMatrix(0+mv(1,2)|loc))),
data=toy, corrMatrix=rcov)

##################################################
#### Matern examples: sex-dependent random effects
##################################################

if (spaMM.getOption("example_maxtime")>2) {
data(Leuca)
subLeuca <- Leuca[c(1:10,79:88),] # subset for faster examples

# The random effects in the following examples are composite because 'sex' is not
# boolean nor factor from boolean. If 'Matern(factor(female)|x+y)' were used, the effect
# would be the same 'Matern(female|x)', fitting

fitme(fec_div ~ 1 + Matern(sex|x+y),data=subLeuca) # => builds a random effect
# correlated across sexes, from 2 independent realizations u_1 and u_2 of 20 values
# (for the 20 locations in the data). In a (sex|x) term the 20 values would be
# independent from each other within each u_i. In the Matern(sex|x+y) such 20 values
# are autocorrelated within each u_i.

# For pedagogic purposes, one can also fit
fitme(fec_div ~ 1 + Matern(sex|x + y %in% sex),data=subLeuca)

# which again builds a random effect from 2 independent realizations
# u_1 and u_2, but each u_i now contains two realizations u_i1 and u_i2 of 10 values,
# autocorrelated within each u_ij following the Matern model,
# but independent between u_i1 and u_i2. As a result, the overall random effect in each sex,
# v_m or v_f, is a weighted sum of two sex-specific Matern random effect,
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# so that v_m and v_f are independent from each other.
}

}

confint.HLfit Confidence intervals

Description

This function interfaces two procedures: a profile confidence interval procedure implemented for
fixed-effects coefficients only; and a parametric bootstrap procedure that can be used to provide
confidence interval for any parameter, whether a canonical parameter of the model or any function
of one or several such parameters. The bootstrap is performed if the parm argument is a function
or a quoted expression or if the boot_args argument is a list. The profile confidence interval is
computed if neither of these conditions is true. In that case parm must be the name(s) of some fixed-
effect coefficient, and the (p_v approximation of the) profile likelihood ratio for the given parameter
is used to define the interval, where the profiling is over all other fitted parameters, including other
fixed-effects coefficients, as well as variances of random effects and spatial correlations if these
were fitted.

Of related interest, see numInfo which evaluates numerically the information matrix for given sets
of canonical model parameters, from which asymptotic confidence intervals can be deduced.

Usage

## S3 method for class 'HLfit'
confint(object, parm, level=0.95, verbose=TRUE,

boot_args=NULL, format="default", ...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

parm character vector, integer vector, or function, or a quoted expression. If char-
acter, the name(s) of parameter(s) to be fitted; if integer, their position in the
fixef(object) vector. Valid names are those of this vector. If a function, it
must return a (vector of) parameter estimate(s) from a fit object. If a quoted
expression, it must likewise extract parameter estimate(s) from a fit object; this
expression must refer to the fitted object as ‘hlfit’ (see Examples).

level The coverage of the interval.

verbose whether to print the interval or not. As the function returns its more extensive
results invisibly, this printing is the only visible output.

boot_args NULL or a list of arguments passed to functions spaMM_boot and boot.ci. It
must contain element nsim (for spaMM_boot). The type argument of boot.ci
can only be given as element ci_type, to avoid conflict with the type argument
of spaMM_boot.
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format Only effective non-default value is "stats" to return results in the format of the
stats::confint result (see Value).

... Additional arguments (maybe not used, but conforming to the generic definition
of confint).

Value

The format of the value varies, but in all cases distinguished below, one or more tables are in-
cluded, as a table attribute, in the format of the stats::confint result, to facilitate consistent
extraction of results. By default confint returns invisibly the full values described below, but if
format="stats", only the table attribute is returned.

If a profile CI has been computed for a single parameter, a list is returned including the confidence
interval as shown by verbose=TRUE, and the fits lowerfit and upperfit giving the profile fits
at the confidence bounds. This list bears the table attribute.

If a profile CI has been computed for several parameters, a structured list, named according to the
parameter names, of such single-parameter results is returned, and a single table attribute for all
parameters is attached to the upper level of the list.

If a bootstrap was performed, for a single parameter the result of the boot.ci call is returned,
to which a table attribute is added. This table is now a list of tables for the different boot-
strap CI types (default being normal, percent, and basic), each such table in the format of the
stats::confint results. For several parameters, a named list of boot.ci results is returned, its
names being the parameter names, and the table attribute is attached to the upper level of the list.

The boot.ci return value for each parameter includes the call to boot.ci. This call is typically
shown including a long t vector, which makes a bulky display. spaMM hacks the printing to abbre-
viate long ts.

See Also

numInfo for information matrix.

Examples

data("wafers")
wfit <- HLfit(y ~X1+(1|batch), family=Gamma(log), data=wafers, method="ML")
confint(wfit,"X1") # profile CI
if (spaMM.getOption("example_maxtime")>30) {

# bootstrap CI induced by 'boot_args':
confint(wfit,names(fixef(wfit)), boot_args=list(nsim=99, seed=123))

# bootstrap CI induced by 'parm' being a function:
confint(wfit,parm=function(v) fixef(v),

boot_args=list(nb_cores=10, nsim=199, seed=123))

# Same effect if 'parm' is a quoted expression in terms of 'hlfit':
confint(wfit,parm=quote(fixef(hlfit)),

boot_args=list(nb_cores=10, nsim=199, seed=123))

# CI for the variance of the random effect:
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ci <- confint(wfit,parm=function(fit){get_ranPars(fit)$lambda[1]},
boot_args=list(nb_cores=10, nsim=199, seed=123))

# The distribution of bootstrap replicates:
plot(ecdf(ci$call$t))
# We may be far from ideal condition for accuracy of bootstrap intervals;
# for variances, a log transformation may sometimes help, but not here.

# Passing arguments to child processes, as documented in help("spaMM_boot"):
set.seed(123)
rvar <- runif(nrow(wafers))
wrfit <- fitme(y ~X1+(1|batch), family=Gamma(log), data=wafers, fixed=list(phi=rvar))
confint(wrfit, parm = "(Intercept)", boot_args = list(nsim = 100, nb_cores = 2,

fit_env = list(rvar=rvar)))

}

control.HLfit Control parameters of the HLfit fitting algorithm

Description

A list of parameters controlling the HLfit fitting algorithm (potentially called by all fitting functions
in spaMM), which should mostly be ignored in routine use. Possible controls are:

algebra, sparse_precision: see algebra;

conv.threshold and spaMM_tol: spaMM_tol is a list of tolerance values, with elements Xtol_rel
and Xtol_abs that define thresholds for relative and absolute changes in parameter values in it-
erative algorithms (used in tests of the form “d(param)< Xtol_rel * param + Xtol_abs”, so that
Xtol_abs is operative only for small parameter values). conv.threshold is the older way to con-
trol Xtol_rel. Default values are given by spaMM.getOption("spaMM_tol");

break_conv_logL: a boolean specifying whether the iterative algorithm should terminate when
log-likelihood appears to have converged (roughly, when its relative variation over on iteration is
lower than 1e-8). Default is FALSE (convergence is then assessed on the parameter estimates rather
than on log-likelihood).

iter.mean.dispFix: the number of iterations of the iterative algorithm for coefficients of the
linear predictor, if no dispersion parameters are estimated by the iterative algorithm. Defaults to
200 except for Gamma(log)-family models;

iter.mean.dispVar: the number of iterations of the iterative algorithm for coefficients of the
linear predictor, if some dispersion parameter(s) is estimated by the iterative algorithm. Defaults to
50 except for Gamma(log)-family models;

max.iter: the number of iterations of the iterative algorithm for joint estimation of dispersion
parameters and of coefficients of the linear predictor. Defaults to 200. This is typically much more
than necessary, unless there is little information to separately estimate λ and ϕ parameters;

resid.family: was a previously documented control (before version 2.6.40), and will still operate
as previously documented, but should not be used in new code.
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Usage

# <fitting function>(., control.HLfit=list(...))

convergence Assessing convergence for fitted models

Description

spaMM fits can produce various convergence warnings or messages.

Messages referring to convergence issues in initialization can generally be ignored but may help to
diagnose other apparent problems, if any.

Warnings referring to .calc_dispGammaGLM (for residual-dispersion fits) can generally be ignored
when they show a small criterion (say <1e-5) but may otherwise suggest that the final fit did not
optimize its objective.

Messages pointing to slow convergence and drawing users to this doscumentation do not necessarily
mean the fit is incorrect. Rather, they suggest that another fitting strategy could be tried. Keep in
mind that several parameters (notably the dispersion parameters: the variance of random effects
and the residual variance parameter, if any) can be estimated either by the iterative algorithms, or
by generic optimization methods. In my experience, slow convergence happens in certain cases
where a large random-effect variance is considered by the algorithm used.

How to know which algorithm has been selected for each parameter? fitme(., verbose=c(TRACE=TRUE))
shows successive values of the variables estimated by optimization (See Examples; if no value ap-
pears, then all are estimated by iterative methods). The first lines of the summary of a fit object
should tell which variances are estimated by the “outer” method.

If the iterative algorithm is being used, then it is worth trying to use the generic optimization meth-
ods. In particular, if you used HLfit, try using fitme; if you already use fitme, try to enforce
generic optimization of the random-effect variance(s) (see inits). Conversely, if generic optimiza-
tion is being used, the maximum lambda value could be controlled (say, upper=list(lambda=c(10,NA))),
or the iterative algorithm can be called (see inits again).

For the largest datasets, it may be worth comparing the speed of the "spcorr" and "spprec"
choices of the algebra control, in case spaMM has not selected the most appropriate by default.
However, this will not be useful for geostatistical models with many spatial locations.

Examples

# See help("inits") for examples of control by initial values.
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corMatern Matern Correlation Structure as a corSpatial object

Description

This implements the Matérn correlation structure (see Matern) for use with lme or glmmPQL. Usage
is as for others corSpatial objects such as corGaus or corExp, except that the Matérn family has
an additional parameter. This function was defined for comparing results obtained with corrHLfit
to those produced by lme and glmmmPQL. There are problems in fitting (G)LMMs in the latter way,
so it is not a recommended practice.

Usage

corMatern(value = c(1, 0.5), form = ~1, nugget = FALSE, nuScaled = FALSE,
metric = c("euclidean", "maximum", "manhattan"), fixed = FALSE)

Arguments

value An optional vector of parameter values, with serves as initial values or as fixed
values depending on the fixed argument. It has either two or three elements,
depending on the nugget argument.
If nugget is FALSE, value should have two elements, corresponding to the
"range" and the "smoothness" ν of the Matérn correlation structure. If value
has zero length, the default is a range of 90% of the minimum distance and
a smoothness of 0.5 (exponential correlation). Warning: the range parame-
ter used in corSpatial objects is the inverse of the scale parameter used in
MaternCorr and thus they have opposite meaning despite both being denoted ρ
elsewhere in this package or in nlme literature.
If nugget is TRUE, meaning that a nugget effect is present, value can contain two
or three elements, the first two as above, the third being the "nugget effect" (one
minus the correlation between two observations taken arbitrarily close together).
If value has length zero or two, the nugget defaults to 0.1. The range and
smoothness must be greater than zero and the nugget must be between zero and
one.

form (Pasted from corSpatial) a one sided formula of the form ~ S1+...+Sp, or ~
S1+...+Sp | g, specifying spatial covariates S1 through Sp and, optionally, a
grouping factor g. When a grouping factor is present in form, the correlation
structure is assumed to apply only to observations within the same grouping
level; observations with different grouping levels are assumed to be uncorre-
lated. Defaults to ~ 1, which corresponds to using the order of the observations
in the data as a covariate, and no groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

nuScaled If nuScaled is set to TRUE the "range" parameter ρ is divided by 2
√
ν. With

this option and for large values of ν, corMatern reproduces the calculation of
corGaus. Defaults to FALSE, in which case the function compares to corGaus
with range parameter 2(

√
ν)ρ when ν is large.
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metric (Pasted from corSpatial) an optional character string specifying the distance
metric to be used. The currently available options are "euclidean" for the
root sum-of-squares of distances; "maximum" for the maximum difference; and
"manhattan" for the sum of the absolute differences. Partial matching of argu-
ments is used, so only the first three characters need to be provided. Defaults to
"euclidean".

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Details

This function is a constructor for the corMatern class, representing a Matérn spatial correlation
structure. See MaternCorr for details on the Matérn family.

Value

an object of class corMatern, also inheriting from class corSpatial, representing a Matérn spatial
correlation structure.

Note

The R and C code for the methods for corMatern objects builds on code for corSpatial objects,
by D.M. Bates, J.C. Pinheiro and S. DebRoy, in a circa-2012 version of nlme.

References

Mixed-Effects Models in S and S-PLUS, José C. Pinheiro and Douglas M. Bates, Statistics and
Computing Series, Springer-Verlag, New York, NY, 2000.

See Also

glmmPQL, lme

Examples

## LMM
data("blackcap")
blackcapD <- cbind(blackcap,dummy=1) ## obscure, isn't it?
## With method= 'ML' in lme, The correlated random effect is described
## as a correlated residual error and no extra residual variance is fitted:
nlme::lme(fixed = migStatus ~ means, data = blackcapD, random = ~ 1 | dummy,

correlation = corMatern(form = ~ longitude+latitude | dummy),
method = "ML", control=nlme::lmeControl(sing.tol=1e-20))

## Binomial GLMM
if (spaMM.getOption("example_maxtime")>32) {
data("Loaloa")
LoaloaD <- cbind(Loaloa,dummy=1)
MASS::glmmPQL(fixed =cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI,

data = LoaloaD, random = ~ 1 | dummy,family=binomial,
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correlation = corMatern(form = ~ longitude+latitude | dummy))
}

corrFamily Using corrFamily constructors and descriptors.

Description

One can declare and fit correlated random effects belonging to a user-defined correlation (or co-
variance) model (i.e., a parametric family of correlation matrices, although degenerate case with no
parameter are also possible). This documentation is a first introduction to this feature. It is exper-
imental in the sense that its design has been formalized only from a limited number of corrFamily
examples, and that the documentation is not mature. Implementing prediction for random-effects
defined in this way may be tricky. A distinct documentation corrFamily-design provides more
information for the efficient design of new correlation models to be fitted in this way.

A simple example of random-effect model implemented in this way is the autoregressive model of
order p (AR(p) in the literature; specifically documented elsewhere, see ARp). It can be used as a
formula term like other autocorrelated random-effects predefined in spaMM, to be fitted by fitme
or fitmv:

fitme(lh ~ 1 + ARp(1|time, p=3), # <= declaration of random effect
< data and other possible arguments >)

User-defined correlation models should be registered for this simple syntax to work (see Details for
an alternative syntax):

myARp <- ARp # 'myARP' is thus a user-defined model
register_cF("myARp") # Register it so that the next call works
fitme(lh ~ 1 + myARp(1|time, p=3),
< data and other possible arguments >)

The ARp object here copied in myARp is a function (the corrFamily constructor) which returns a
list (the corrFamily descriptor) which contains the necessary information to fit a random effect
with an AR(p) correlation. The p argument in the myARp(1|time, p=3) term enforces evaluation
of myARp(p=3), producing the descriptor for the AR(3) model. The structure of this descriptor is

List of 5
$ Cf :function (parvec)
..- < with some attribute >
$ tpar : num [1:3] 0.5 0.333 0.25
$ type : chr "precision"
$ initialize :function (Zmatrix, ...)
..- < with some attribute >
$ fixed : NULL
$ calc_moreargs:function (corrfamily, ...)
..- < with some attribute >
$ levels_type : chr "time_series"
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$ calc_corr_from_dist:function (ranFix, char_rd, distmat, ...)
..- < with some attribute >
< and possibly other elements >

The meaning of these elements and some additional ones is explained below.
Only Cf and tpar are necessary elements of a corrFamily object. If one designs a new descriptor
where some other elements are absent, spaMM will try to provide plausible defaults for these
elements. Further, if the descriptor does not provide parameter names (as the names of tpar, or in
some more cryptic way), default names "p1", "p2"... will be provided.

Usage

## corrFamily descriptor provided as a list of the form
#
# list(Cf=<.>, tpar=<.>, ...)

## corrFamily constructor: any function that returns
# a valid corrFamily descriptor
#
# function(tpar=<.>, fixed=<.>, ...) # typical but not mandatory arguments

## There is a distinct documentation page for 'register_cF'.

Arguments

Elements of the corrFamily descriptor:

Cf (required): function returning the correlation matrix (or covariance matrix, or
their inverse), given its first argument, a parameter vector.

tpar (required): a feasible argument of Cf. tpar is not an initial nor a fixed value.
type optional, but required if the return value of Cf is an inverse correlation matrix

rather than a correlation matrix, in which case one should specify type="precision".
fixed optional: fixed values for some correlation parameters, provided as a named

vector with names consistent with those to be used for tpar. This is conceived
to achieve the same statistical fit as by using the fixed argument of fitme,
although the structure of the result of the fit differs in some subtle ways whether
parameters are fixed through the descriptor or through the fitting function (see
Examples in ARp).

calc_moreargs optional: a function returning a list with possible elements init, lower and
upper for control of estimation (and possibly other elements for other purposes).
If the descriptor does not provide this function, a default calc_moreargs will
be provided, implementing unbounded optimization.

initialize optional: a function evaluating variables that may be needed repeatedly by Cf or
Af.

Af This function should be defined if the correlation model requires an A matrix
(the middle term in the case the design matrix of a random effect term is de-
scribed by a triple matrix product ZAL as described in random-effects). Ex-
amples can be found in the descriptors returned by the ranGCA and MaternIMRFa
constructors.
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levels_type In the above example its value "time_series" informs spaMM that levels of
the random effect should be considered for all integer values within the range
of the time variable, not only for levels present in the data. If this element is
not provided by the constructor, spaMM will internally assume a levels_type
suitable for geostatistical models. Further level types may be defined in the
future.

calc_corr_from_dist, make_new_corr_lists
Functions possibly needed for prediction (see Details).

need_Cnn optional: a boolean; default is TRUE. Controls prediction computations (see
Details).

public An environment where some variables can be saved, typically by the initialize
expression, for inspection at user level and for re-use. See diallel for an ex-
ample.

fitting-function arguments:

lower, upper, init and fixed optimization controls can be used to control optimization of con-
tinuous parameters as for other random-effect parameters. They are specified as numeric vectors,
themselves being element of the corrPars list (see Examples in corrFamily-design). Parameter
names (consistent with those to be used for the tpar argument) may be required to disambiguate
incomplete vectors (e.g., to specify only its second element). Apart from fixed ones, any of the
values not specified through the fitting-function arguments will be sought in the return value of the
calc_moreargs function, if provided in the descriptor. If the lower or upper information is miss-
ing there, it must be provided throught the fitting-function call. If the init information is missing,
a default value will be deduced from the bounds. The init specification is thus always optional
while the bounds specification is optional only if the descriptor provides default values.

Arguments of the corrFamily constructor

These may be ad libitum, as design rules are defined only for the returned descriptor. However,
arguments tpar, fixed, and public of predefined constructors, such as ARp, are designed to match
the above respective elements of the descriptor.

Details

* Constructor elements for prediction:

For prediction of autocorrelated random effects, one must first assess whether levels of the random
effect not represented in the fit are possible in new data (corresponding to new spatial locations
in geostatistical models, or new time steps in time series). In that case need_Cnn must be TRUE
(Interpolated MRFs do not require this as all required random-effect levels are determined by the
IMRF mesh argument rather than by the fitted data or new data).

Next, for autocorrelated random effects where need_Cnn is TRUE, a make_new_corr_lists func-
tion must be provided, except when a calc_corr_from_dist function is instead provided (which
may be sufficient for models that construct the correlation from a spatial distance matrix). When
need_Cnn is FALSE, a make_new_corr_lists function may still be needed.

The Examples section provides a simple example of such design, and the source code of the ARp or
ARMA constructors provide further examples. They show that the make_new_corr_lists function
may assign matrices or vectors as elements of several lists contained in a newLv_env environment.
A matrix is assigned in the cov_newLv_oldv_list, specifying correlations between “new” levels
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of the random effect (implied by the new data) and “old” levels (those already included in the design
matrix of the random effect for the fit). If need_Cnn is TRUE, a second matrix may be assigned
in the cov_newLv_newLv_list, specifying correlation between “new” levels, and the diagonal of
this matrix is assigned in the diag_cov_newLv_newLv_list. The overall structure of the code (the
conditions where these assignments are performed, and the list indices), should be conserved.

When calling simulate(., newdata=<non-NULL>, type="marginal", a fourth matrix may be
useful, assigned into a L_newLv_newLv_list, specifying the matrix root (as a tcrossprod factor)
of the correlation matrix stored in cov_newLv_newLv_list. The relevant spaMM procedure will
however try to compute it on the fly when it has not been provided by the make_new_corr_lists
function.

* Fitting a corrFamily without a constructor:
It is possible to use an unregistered corrFamily, as follows:

AR3 <- ARp(p=3) # Generate descriptor of AR model of order 3

fitme(lh ~ 1 + corrFamily(1|time), # <= declaration of random effect
covStruct=list(
corrFamily= AR3 # <= declaration of its correlation structure

),
< data and other possible arguments >)

Here the fit only uses a descriptor list, not a constructor function. This descriptor is here provided
to the fitting function as an element of the covStruct argument (using the general syntax of this
argument), and in the model formula the corresponding random effect is declared as a term of the
form
corrFamily(1|<grouping factor>).

This syntax is more complex than the one using a registered constructor, but it might be useful for
development purposes (one only has to code the descriptor, not the constructor function). However,
it is not general; in particular, using registered constructors may be required to obtain correct results
when fitting multivariate-response models by fitmv.

See Also

See ARp, diallel, and MaternIMRFa for basic examples of using a predefined corrFamily descrip-
tor, and corrFamily-design for more geeky stuff including examples of implementing simple new
correlation families.

Examples

## Not run:
### Minimal (with many features missing) reimplementation
# of corrMatrix() terms as a corrFamily

corrMatrix_cF <- function(corrMatrix) {

force(corrMatrix) # Makes it available in the environment of the functions next defined.
oldZlevels <- NULL
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initialize <- function(Zmatrix, ...) {
oldZlevels <<- colnames(Zmatrix) # Pass info about levels of the random effect in the data.
}

Cf <- function(newlevels=oldZlevels ) {
if (length(newlevels)) {

corrMatrix[newlevels,newlevels]
} else corrMatrix[oldZlevels,oldZlevels] # for Cf(tpar=numeric(0L))

}

calc_moreargs <- function(corrfamily, ...) {
list(init=c(),lower=c(),upper=c())

}

make_new_corr_lists <- function(newLv_env, which_mats, newZAlist, new_rd, ...) {
newlevels <- colnames(newZAlist[[new_rd]])

newLv_env$cov_newLv_oldv_list[[new_rd]] <- corrMatrix[newlevels,oldZlevels, drop=FALSE]
if (which_mats$nn[new_rd]) {
newLv_env$cov_newLv_newLv_list[[new_rd]] <- corrMatrix[newlevels,newlevels, drop=FALSE]
} else {

newLv_env$diag_cov_newLv_newLv_list[[new_rd]] <- rep(1,length(newlevels))
}

}

list(Cf=Cf, tpar=numeric(0L), initialize=initialize, calc_moreargs=calc_moreargs,
make_new_corr_lists=make_new_corr_lists,
tag="corrMatrix_cF")

}

register_cF("corrMatrix_cF")

# usage:

data("blackcap")
MLcorMat <- MaternCorr(proxy::dist(blackcap[,c("latitude","longitude")]),

nu=0.6285603,rho=0.0544659)
corrmat <- proxy::as.matrix(MLcorMat, diag=1)

fitme(migStatus ~ means+ corrMatrix_cF(1|name, corrMatrix=corrmat),data=blackcap,
corrMatrix=MLcorMat,method="ML")

unregister_cF("corrMatrix_cF") # Tidy things before leaving.

## End(Not run)

corrFamily-definition corrFamily definition
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Description

Tentative formal rules for definition of corrFamily descriptors (work in progress). This is likely to
repeat and extend information partially given in corrFamily and corrFamily-design documenta-
tions.

User-level rules (not relevant fo corrFamily descriptors internally modified during a fit):

tpar Should always be present. For trivial parameterless cases (e.g. ranGCA), it should be numeric(0L),
not NULL.

Cf function; should always be present. For trivial uncorrelated random effects (e.g. ranGCA, where
only the Af function carries the information for the model), it should return an identity matrix,
not NULL, with row names to be matched to the column names of the Z matrix for the random
effect.

calc_moreargs optional function. If present, it should have formal arguments including at least
corrfamily and . . . .

Af function; optional. If present, it should have row names to be matched to the column names of
the Z matrix for the random effect, and also needs column names if it is to be matched with
the row names of a correlation matrix (or its inverse).

initialize Optional function. If present, should have formal arguments including at least Zmatrix
and . . . .
In predefined corrFamily constructors, variables created by initialize for use by Cf or Af
should be declared (typically as NULL) in the body of the constructor, so that R CMD check
does not complain.

public An environment. initialize may write into it. It might also read into it, for example read
the result of a long previous computation by initialize during a previous fit, though this
opens the door to various errors.

corrFamily-design Designing new corrFamily descriptors for parametric correlation fam-
ilies

Description

This documentation describe additional design features to be taken into account when defining a
new corrFamily descriptor for a correlation model. Using such a descriptor will be more efficient
than the equally general method, of maximizing an objective function of the correlation parame-
ters that calls (say) fitme() on a model including a corrMatrix itself function of the correlation
parameters. But this may still be inefficient if a few issues are ignored.

For elements of the corrFamily descriptor for basic cases:

Cf The function value should (1) be of constant class for all parameter values. For families of
mathematically sparse matrices, the CsparseMatrix class is recommended (and more specif-
ically the dsCMatrix class since the matrix is symmetric); (2) have row names that match the
levels of the grouping factor (the nested random effect Example shows the code needed when
this nested effect is defined from two variables).
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tpar In order to favor the automatic selection of suitable algorithms, tpar should be chosen so
that Cf(tpar) is least sparse (i.e., has the minimal number of elements equal to zero) in the
correlation family, in terms of its sparsity and of the sparsity of its inverse. A tpar yielding
an identity matrix is often a *bad* template as least sparse correlation matrices and their in-
verses are denser for most families except diagonal ones. For degerate corrFamily objects that
describe a constant correlation model rather than a parametric family, use tpar=numeric(0).

type Do not forget type="precision" it if the return value of Cf is an inverse correlation matrix
rather than a correlation matrix, in which case one should specify .

calc_moreargs should have formal arguments including at least corrfamily and .... The source
code of ARp, ARMA or diallel shows the expected structure of its return value.
For advanced features of the corrFamily descriptor:

Af Af has (minimally) three formal arguments (newdata, term, ...). spaMM will call Af with
distinct values of the newdata argument for the fit, and for predictions for new data. For the
curious: the term argument that will be provided by spaMM to Af is the formula term for the
random effect – an object of class call, as obtained e.g. by
( ~ 1+ corrFamily(1 | longitude + latitude))[[2]][[3]] –, which will provide the names
of the variables that need to be taken from the newdata to construct the matrix returned by Af.

Details

• spaMM will regularize invalid or nearly-singular correlation or covariance matrices inter-
nally if the correlation function has not done so already, but it it better to control this in the
correlation function. The regularize convenience function is available for that purpose,
but parametrizations that avoid the need for regularization are even better, since fitting models
with nearly-singular correlation matrices is prone to various difficulties (The Toeplitz example
below is good to illustrate potential problems but is otherwise poor as it produces non-positive
definite matrices; the ARp constructor illustrates a parametrization that avoids that problem).

• Users should make sure that any regularized matrix still belongs to the intended parametric
family of matrices, and they should keep in mind that the spaMM output will show the input
parameters of the unregularized matrix, not the parameters of the regularized one (e.g., in the
Toeplitz example below, the fitted matrix is a regularized Toepliz matrix with slightly different
coefficients than the input parameters).
And for efficiency,

• Let us repeat that the correlation function should return matrices of constant class, and in
sparse format when the matrices are indeed mathematically sparse. For mathematically dense
matrices (as in the Toeplitz example below), the dsyMatrix class may be suitable.

• Let us repeat that in order to favor the automatic selection of suitable algorithms, tpar should
be chosen so that Cf(tpar) is least sparse in the correlation family. For matrices of CsparseMatrix,
a check is implemented to catch wrong choices of tpar.

• For challenging problems (large data, many parameters...) it may pay to optimize a bit the
correlation function. The Example of nested effects with heterogenous variance below il-
lustrates a possible trick. In the same cases, It may also pay to try the alternative algebraic
methods, by first comparing speed of the different methods (control.HLfit=list(algebra=
<"spprec"|"spcorr"|"decorr">)) for given correlation parameter values, rather than to as-
sume that spaMM will find the best method (even if it often does so).
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• The corrFamily descriptor may optionally contain booleans possiblyDenseCorr and sparsePrec
to help spaMM select the most appropriate matrix algebraic methods. sparsePrec should be
set to TRUE if sparse-precision methods are expected to be efficient for fitting the random
effect. possiblyDenseCorr should be set to FALSE if the correlation matrix is expected to
be sparse, which means here that less than 15% of its elements are non-zero.

Examples

if (spaMM.getOption("example_maxtime")>2 &&
requireNamespace("agridat", quietly = TRUE)) {

data("onofri.winterwheat", package="agridat")

##### Fitting a Toeplitz correlation model for temporal correlations #####

# A Toeplitz correlation matrix of dimension d*d has d-1 parameters
# (by symmetry, and with 1s on the main diagonal). These d-1 parameters
# can be fitted as follows:

Toepfn <- function(v) {
toepmat <- Matrix::forceSymmetric(toeplitz(c(1,v))) # dsyMatrix
# Many of the matrices in this family are not valid correlation matrices;
# the regularize() function is handy here:
toepmat <- regularize(toepmat, maxcondnum=1e12)
# And don't forget the rownames!
rownames(toepmat) <- unique(onofri.winterwheat$year)
toepmat

}

(Toepfit <- spaMM::fitme(
yield ~ gen + corrFamily(1|year), data=onofri.winterwheat, method="REML",
covStruct=list(corrFamily=list(Cf=Toepfn, tpar=rep(1e-4,6))),

# (Note the gentle warning if one instead uses tpar=rep(0,6) here)
lower=list(corrPars=list("1"=rep(-0.999,6))),
upper=list(corrPars=list("1"=rep(0.999,6)))))

# The fitted matrix is (nearly) singular, and was regularized:

eigen(Corr(Toepfit)[[1]])$values

# which means that the returned likelihood may be inaccurate,
# and also that the actual matrix elements differ from input parameters:

Corr(Toepfit)[[1]][1,-1]

### The usual rules for specifying covStruct, 'lower', 'upper' and 'init' apply
# here when the corrFamily term is the second random-effect:

(Toep2 <- spaMM::fitme(
yield ~ 1 + (1|gen) + corrFamily(1|year), data=onofri.winterwheat, method="REML",
covStruct=list("1"=NULL, corrFamily=list(Cf=Toepfn, tpar=rep(1e-4,6))),
, init=list(corrPars=list("2"=rep(0.1,6))),
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lower=list(corrPars=list("2"=rep(-0.999,6))),
upper=list(corrPars=list("2"=rep(0.999,6)))))

##### Fitting one variance among years per each of 8 genotypes. #####

# First, note that this can be *more efficiently* fitted by another syntax:

### Fit as a constrained random-coefficient model:

# Diagonal matrix of NA's, represented as vector for its lower triangle:
ranCoefs_for_diag <- function(nlevels) {

vec <- rep(0,nlevels*(nlevels+1L)/2L)
vec[cumsum(c(1L,rev(seq(nlevels-1L)+1L)))] <- NA
vec

}

(by_rC <- spaMM::fitme(yield ~ 1 + (0+gen|year), data=onofri.winterwheat, method="REML",
fixed=list(ranCoefs=list("1"=ranCoefs_for_diag(8)))))

### Fit as a corrFamily model:

gy_levels <- paste0(gl(8,1,length =56,labels=levels(onofri.winterwheat$gen)),":",
gl(7,8,labels=unique(onofri.winterwheat$year)))

# A log scale is often suitable for variances, hence is used below;

# a correct but crude implementation of the model is
diagf <- function(logvar) {

corr_map <- kronecker(Matrix::.symDiagonal(n=7),diag(x=exp(logvar)))
rownames(corr_map) <- gy_levels
corr_map

}

# but we can minimize matrix operations as follows:

corr_map <- Matrix::.symDiagonal(n=8,x=seq(8))
rownames(corr_map) <- unique(onofri.winterwheat$gen)

diagf <- function(logvar) {
corr_map@x <- exp(logvar)[corr_map@x]
corr_map

} # (and this returns a dsCMatrix)

(by_cF <- spaMM::fitme(
yield ~ 1 + corrFamily(1|gen %in% year), data=onofri.winterwheat, method="REML",
covStruct=list(corrFamily = list(Cf=diagf, tpar=rep(1,8))),
fixed=list(lambda=1), # Don't forget to fix this redundant parameter!
# init=list(corrPars=list("1"=rep(log(O.1),8))), # 'init' optional
lower=list(corrPars=list("1"=rep(log(1e-6),8))), # 'lower' and 'upper' required
upper=list(corrPars=list("1"=rep(log(1e6),8)))))

# => The 'gen' effect is nested in the 'year' effect and this must be specified in the
# right-hand side of corrFamily(1|gen %in% year) so that the design matrix 'Z' for the
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# random effects to have the correct structure. And then, as for other correlation
# structures (say Matern) it should be necessary to specify only the correlation matrix
# for a given year, as done above. Should this fail, it is also possible to specify the
# correlation matrix over years, as done below. spaMM will automatically detect, from
# its size matching the number of columns of Z, that it must be the matrix over years.

corr_map <- Matrix::forceSymmetric(kronecker(Matrix::.symDiagonal(n=7),diag(x=seq(8))))
rownames(corr_map) <- gy_levels

diagf <- function(logvar) {
corr_map@x <- exp(logvar)[corr_map@x]
corr_map

} # (and this returns a dsCMatrix)

(by_cF <- spaMM::fitme(
yield ~ 1 + corrFamily(1|gen %in% year), data=onofri.winterwheat, method="REML",
covStruct=list(corrFamily = list(Cf=diagf, tpar=rep(1,8))),
fixed=list(lambda=1), # Don't forget to fix this redundant parameter!
# init=list(corrPars=list("1"=rep(log(O.1),8))), # 'init' optional
lower=list(corrPars=list("1"=rep(log(1e-6),8))), # 'lower' and 'upper' required
upper=list(corrPars=list("1"=rep(log(1e6),8)))))

exp(get_ranPars(by_cF)$corrPars[[1]]) # fitted variances

}

corrHLfit Fits a mixed model, typically a spatial GLMM.

Description

This was the first function for fitting all spatial models in spaMM, and is still fully functional, but
it is recommended to use fitme which has different defaults and generally selects more efficient
fitting methods, and will handle all classes of models that spaMM can fit, including non-spatial
ones. corrHLfit performs the joint estimation of correlation parameters, fixed effect and dispersion
parameters.

Usage

corrHLfit(formula, data, init.corrHLfit = list(), init.HLfit = list(),
ranFix, fixed=list(), lower = list(), upper = list(),
objective = NULL, resid.model = ~1,
control.dist = list(), control.corrHLfit = list(),
processed = NULL, family = gaussian(), method="REML",
nb_cores = NULL, weights.form = NULL, ...)
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Arguments

formula Either a linear model formula (as handled by various fitting functions) or a
predictor, i.e. a formula with attributes (see Predictor and examples below).
See Details in spaMM for allowed terms in the formula.

data A data frame containing the variables in the response and the model formula.

init.corrHLfit An optional list of initial values for correlation and/or dispersion parameters,
e.g. list(rho=1,nu=1,lambda=1,phi=1) where rho and nu are parameters of
the Matérn family (see Matern), and lambda and phi are dispersion parameters
(see Details in spaMM for the meaning of these parameters). All are optional, but
giving values for a dispersion parameter changes the ways it is estimated (see
Details). rho may be a vector (see make_scaled_dist) and, in that case, it is
possible that some or all of its elements are NA, for which corrHLfit substitutes
automatically determined values.

init.HLfit See identically named HLfit argument.

fixed, ranFix A list similar to init.corrHLfit, but specifying fixed values of the parameters
not estimated. ranFix is the old argument, maintained for back compatibil-
ity; fixed is the new argument, uniform across spaMM fitting functions. See
ranFix for further information.

lower An optional (sub)list of values of the parameters specified through init.corrHLfit,
in the same format as init.corrHLfit, used as lower values in calls to optim.
See Details for default values.

upper Same as lower, but for upper values.

objective For development purpose, not documented (this had a distinct use in the first
version of spaMM, but has been deprecated as such).

resid.model See identically named HLfit argument.

control.dist See control.dist in HLCor
control.corrHLfit

This may be used control the optimizer. See spaMM.options

for default values.

processed For programming purposes, not documented.

family Either a family or a multi value.

method Character: the fitting method to be used, such as "ML", "REML" or "PQL/L".
"REML" is the default. Other possible values of HLfit’s method argument are
handled.

weights.form Specification of prior weights by a one-sided formula: use weights.form = ~
pw instead of prior.weights = pw. The effect will be the same except that such
an argument, known to evaluate to an object of class "formula", is suitable to
enforce safe programming practices (see good-practice).

nb_cores Not yet operative, only for development purposes. Number of cores to use for
parallel computations.

... Optional arguments passed to HLCor, HLfit or mat_sqrt, for example the distMatrix
argument of HLCor, or the verbose argument of HLfit. Arguments that do not
fit within these functions are detected and a warning is issued. In a corrHLfit
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call, the verbose vector of booleans may include a TRACE=TRUE element, in
which case information is displayed for each set of correlation and dispersion
parameter values considered by the optimiser (see verbose for further informa-
tion, mostly useless except for development purposes).

Details

For approximations of likelihood, see method. For the possible structures of random effects, see
random-effects,

By default corrHLfit will estimate correlation parameters by maximizing the objective value
returned by HLCor calls wherein the dispersion parameters are estimated jointly with fixed effects
for given correlation parameters. If dispersion parameters are specified in init.corrHLfit, they
will also be estimated by maximizing the objective value, and HLCor calls will not estimate them
jointly with fixed effects. This means that in general the fixed effect estimates may vary depending
on init.corrHLfit when any form of REML correction is applied.

Correctly using corrHLfit for likelihood ratio tests of fixed effects may then be tricky. It is safe
to perform full ML fits of all parameters (using method="ML") for such tests (see Examples). The
higher level function fixedLRT is a safe interface for likelihood ratio tests using some form of
REML estimation in corrHLfit.

attr(<fitted object>,"optimInfo")$lower and ...$upper gives the lower and upper bounds
for optimization of correlation parameters. These are the default values if the user did not provide
explicit values. For the adjacency model, the default values are the inverse of the maximum and
minimum eigenvalues of the adjMatrix. For the Matérn model, the default values are not so easily
summarized: they are intended to cover the range of values for which there is statistical information
to distinguish among them.

Value

The return value of an HLCor call, with additional attributes. The HLCor call is evaluated at the esti-
mated correlation parameter values. These values are included in the return object as its $corrPars
member. The attributes added by corrHLfit include the original call of the function (which
can be retrived by getCall(<fitted object>), and information about the optimization call within
corrHLfit.

See Also

See more examples on data set Loaloa, to compare fit times by corrHLfit and fitme. See
fixedLRT for likelihood ratio tests.

Examples

# Example with an adjacency matrix (autoregressive model):
if (spaMM.getOption("example_maxtime")>0.7) {

corrHLfit(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)),
adjMatrix=Nmatrix,family=poisson(),data=scotlip,method="ML")

}

#### Examples with Matern correlations
## A likelihood ratio test based on the ML fits of a full and of a null model.
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if (spaMM.getOption("example_maxtime")>1.4) {
data("blackcap")
(fullfit <- corrHLfit(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

method="ML") )
(nullfit <- corrHLfit(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

method="ML",init.corrHLfit=list(phi=1e-6)))
## p-value:
1-pchisq(2*(logLik(fullfit)-logLik(nullfit)),df=1)

}

corrMatrix Using a corrMatrix argument

Description

corrMatrix is an argument of HLCor, of class dist or matrix, with can be used if the model
formula contains a term of the form corrMatrix(1|<...>). It describes a correlation matrix,
possibly as a dist object. A covariance matrix can actually be passed through this argument, but
then it must be a full matrix, not a dist object. The way the rows and columns of the matrix are
matched to the rows of the data depends on the nature of the grouping term <...>.

The covStruct argument can be used for the same purpose and is much more general, in particular
allowing to specify several correlation matrices.

Details

The simplest case is illustrated in the first two examples below: the grouping term is identical to a
single variable which is present in the data, whose levels match the rownames of the corrMatrix.
As illustrated by the second example, the order of the data does not matter in that case, because the
factor levels are used to match the data rows to the appropriate row and columns of the corrMatrix.
The corrMatrix may even contain rows (and columns) in excess of the levels of the grouping term,
in which case these rows are ignored.

These convenient properties no longer hold when the grouping term is not a single variable from
the data (third example below), or when its levels do not correspond to row names of the matrix.
In these cases, (1) no attempt is made to match the data rows to the row and column names of the
corrMatrix. Such attempt could succeed only if the user had given names to the matrix matching
those that the called function could create from the information in the data, in which case the
user should find easier to specify a single variable that can be matched; (2) the order of data and
corrMatrix matter; Internally, a single factor variable is constructed from all levels of the variables
in the grouping term (i.e., from all levels of latitude and longitude, in the third example), with
levels 1,2,3... that are matched to rows 1,2,3... of the corrMatrix. Thus the first row of the data is
always associated to the first row of the matrix; (3) further, the dimension of the matrix must match
the number of levels implied by the grouping term. For example, one might consider the case of 14
response values but of correlations between only 7 levels of a random effect, with two responses for
each level. Then the matrix must be of dimension 7x7.



50 corr_family

Examples

data("blackcap")
## Here we manually reconstruct the correlation matrix
## of the ML fit produced by corrHLfit:
MLcorMat <- MaternCorr(proxy::dist(blackcap[,c("longitude","latitude")]),

nu=0.6285603,rho=0.0544659)
blackcap$name <- as.factor(rownames(blackcap))
#

## (1) Single variable present in the data
#
HLCor(migStatus ~ means+ corrMatrix(1|name),data=blackcap,

corrMatrix=MLcorMat,method="ML")

## (2) Same, permuted: still gives correct result
#
perm <- sample(14)
# Permuted matrix (with permuted names) as 'dist' object
pmat <- as.matrix(MLcorMat)[perm,perm]
HLCor(migStatus ~ means+ corrMatrix(1|name),data=blackcap,

corrMatrix=as.dist(pmat),method="ML")
#
# Permuted matrix (with permuted names) as correlation matrix
pcorr <- proxy::as.matrix(MLcorMat, diag=1)[perm,perm]
HLCor(migStatus ~ means+ corrMatrix(1|name),data=blackcap,

corrMatrix=pcorr,method="ML")
#

## (3) Other grouping terms (note the messages):
#
HLCor(migStatus ~ means+ corrMatrix(1|longitude+latitude),data=blackcap,

corrMatrix=MLcorMat,method="ML")

corr_family corr_family objects

Description

corr_family objects provide a convenient way to implement correlation models handled by spaMM,
analogous to family objects. These objects are undocumented (but there are documentation pages
for each of the models implemented).

Usage

# Matern(...) # see help(Matern)
# Cauchy(...) # see help(Cauchy)
# corrMatrix(...) # see help(corrMatrix)
# AR1(...) # see help(AR1)
# adjacency(...) # see help(adjacency)
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# IMRF(...) # see help(IMRF)
## S3 method for class 'corr_family'
print(x,...)

Arguments

x corr_family object.

... arguments that may be needed by some corr_family object or some print
method.

covStruct Specifying correlation structures

Description

covStruct is a formal argument of HLCor, also handled by fitme and corrHLfit, that allows one
to specify the correlation structure for different types of random effects, It is an alternative to other
ad hoc formal arguments such as corrMatrix or adjMatrix. It replaces the deprecated function
Predictor(...) which has served as an interface for specifying the design matrices for random
effects in early versions of spaMM.

The main use of covStruct is to specify the correlation matrix of levels of a given random effect
term, or its inverse (a precision matrix). Assuming that the design matrix of each random effect term
follows the structure ZAL described in random-effects, it is thus an indirect way of specifying the
“square root” L of the correlation matrix. The optional A factor can also be given by the optional
"AMatrices" attribute of covStruct.

covStruct is a list of matrices with names specifying the type of matrix considered:
covStruct=list(corrMatrix=<some matrix>) or covStruct=list(adjMatrix=<some matrix>),
where the “corrMatrix” or “adjMatrix” labels are used to specify the type of information provided
(accordingly, the names can be repeated: covStruct=list(corrMatrix=<.>,corrMatrix=<.>)).
NULL list members may be necessary, e.g.
covStruct=list(corrMatrix=<.>,"2"=NULL,corrMatrix=<.>))
when correlations matrices are required only for the first and third random effect.

The covariance structure of a corrMatrix(1|<grouping factor>) formula term can be specified
in two ways (see Examples): either by a correlation matrix factor (covStruct=list(corrMatrix=<some
matrix>)), or by a precision matrix factor Q such that the covariance factor is λQ−1, using the type
name "precision": covStruct=list(precision=<some matrix>). The function as_precision
can be used to perform the conversion from correlation information to precision factor (using a crude
solve() that may not always be efficient), but fitting functions may also perform such conversions
automatically.

"AMatrices" is a list of matrices. The names of elements of the list does not matter, but the ith A
matrix, and its row names, should match the ith Z matrix, and its column names. This implies that
NULL list members may be necessary, as for the covStruct list.

Usage

as_precision(corrMatrix, condnum=1e12)
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Arguments

corrMatrix Correlation matrix, specified as matrix or as dist object

condnum Numeric: when a standard Cholesky factorization fails, the matrix is regularized
so that the regularized matrix has this condition number (in version 3.10.0 this
correction has been implemented more exactly than in previous versions).

Details

covStruct can also be specified as a list with an optional "types" attribute, e.g.
structure(list(<some matrix>,types="corrMatrix")).

Value

as_precision returns a list with additional class precision and with single element a symmetric
matrix of class dsCMatrix.

See Also

Gryphon and pedigree for a type of applications where declaring a precision matrix is useful.

Examples

## Not run:
data("blackcap")
# a 'dist' object can be used to specify a corrMatrix:
MLdistMat <- MaternCorr(proxy::dist(blackcap[,c("latitude","longitude")]),

nu=0.6285603,rho=0.0544659) # a 'dist' object!
blackcap$name <- as.factor(rownames(blackcap))
fitme(migStatus ~ means + corrMatrix(1|name), data=blackcap,

corrMatrix=MLdistMat)

#### Same result by different input and algorithm:
fitme(migStatus ~ means + corrMatrix(1|name), data=blackcap,

covStruct=list(precision=as_precision(MLdistMat)))

# Manual version of the same:
as_mat <- proxy::as.matrix(MLdistMat, diag=1)
prec_mat <- solve(as_mat) ## precision factor matrix
fitme(migStatus ~ means + corrMatrix(1|name), data=blackcap,

covStruct=list(precision=prec_mat))

# Since no correlation parameter is estimated,
# HLcor(., method="ML") is here equivalent to fitme()

## End(Not run)
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diallel Random-effect structures for symmetric or antisymmetric dyadic inter-
actions

Description

ranGCA and diallel are random-effect structures designed to represent the effet of symmetric in-
teractions between pairs of individuals (order of individuals in the pair does not matter), while
antisym represents anti-symmetric interactions (the effect of reciprocal ordered pairs on the out-
come are opposite, as in the so-called Bradley-Terry models). These random-effect structures all
account for multiple membership, i.e., the fact that the same individual may act as the first or the
second individual among different pairs, or even within one pair if this makes sense).

More formally, the outcome of an interaction between a pair i, j of agents is subject to a symmetric
overall random effect vij when the effect “on” individual i (or viewed from the perspective of
individual i) equals the effect on j: vij = vji. This may result from the additive effect of individual
random effects vi and vj : vij = vi + vj , but also from non-additive effects vij = vi + vj + aij
if the interaction term aij is itself symmetric (aij = aji). ranGCA and diallel effects represent
such symmetric effects, additive or non-additive respectively, in a model formula (see Details for
the semantic origin of these names and how they can be changed). Conversely, antisymmetry is
characterized by vij = vi − vj = −vji and is represented by the antisym formula term.

If individual-level random effects of the form (1|ID1)+ (1|ID2) were included in the model formula
instead of ranGCA(1|ID1+ID2) for symmetric additive interactions, this would result in different
variances being fitted for each random effect (breaking the assumption of symmetry), and the value
of the random effect would differ for an individual whether it appears as a level of the first random
effect or of the second (which is also inconsistent with the idea that the random effect represents a
property of the individual).

When ranGCA or antisym random effects are fitted, the individual effects are inferred. By contrast,
when a diallel random effect is fitted, an autocorrelated random effect vij is inferred for each
unordered pair (no individual effect is inferred), with correlation ρ between levels for pairs sharing
one individual. This correlation parameter is fitted and is constrained by ρ < 0.5 (see Details).
ranGCA is equivalent to the case ρ = 0.5. diallel fits can be slow for large data if the correlation
matrix is large, as this matrix can have a fair proportion of nonzero elements. There may also be
identifiability issues for variance parameters: in a LMM as shown in the examples, there will be
three parameters for the random variation (phi, lambda and rho) but only two can be estimated if
only one observation is made for each dyad.

Usage

## formula terms:

# ranGCA(1| <.> + <.>)
# antisym(1| <.> + <.>)
# diallel(1| <.> + <.>, tpar, fixed = NULL, public = NULL)

## where the <.> are two factor identifiers, ** whose levels
## must be identical when representing the same individual **
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## corrFamily constructors:
ranGCA() # no argument
antisym() # no argument
diallel(tpar, fixed = NULL, public = NULL)

Arguments

tpar Numeric: template value of the correlation coefficient for pairs sharing one in-
dividual.

fixed NULL or fixed value of the correlation coefficient.

public NULL, or an environment. When an empty environment is provided, a template
CorNA for the correlation matrix (with NA’s in place of ρ) will be copied therein,
for inspection at user level.

Details

Although the symmetric random-effect structures may be used in many different contexts (includ-
ing social network analysis, or “round robin” experiments in psychology; another possibly relevant
literature keyword here is “multi membership”), their present names refer to the semantics estab-
lished for diallel experiments (e.g., Lynch & Walsh, 1998, p. 611), because it is not easy to find
a more general yet intuitive semantics. If the names ranGCA and diallel sound inappropriate for
your context of application, you can declare and use an alternative name for them, taking advantage
of the fact that they are random-effect structures defined through corrFamily constructors, which
are functions named as the formula term. For example, symAdd(1|ID1+ID2) can be used in a model
formula after the following two steps:

# Define the 'symAdd' corrFamily constructor (a function) by copy:
symAdd <- ranGCA
# Associate the 'symAdd' function to 'symAdd' formula terms:
register_cF("symAdd")

In diallel experiments, one analyzes the phenotypes of offspring from multiple crosses among which
the mother in a cross can be the father in another, so this is an example of multiple-membership. The
additive genetic effects of each parent’s genotypes are described as “general combining abilities”
(GCA). In case of non-additive effect, the half-sib covariance is not half the full-sib covariance and
this is represented by the interaction aij described as “specific combining abilities” (SCA). The sum
of GCA and SCA defines a synthetic random effect “received” by the offspring, with distinct levels
for each unordered parental pair, and with correlation ρ between effects received by half-sibs (one
shared parent). ρ corresponds to var(GCA)/[2*var(GCA)+var(SCA)] and is necessarily ≤ 0.5.

See the X.GCA documentation for similar constructs for fixed effects.

Value

The functions return corrFamily descriptors whose general format is described in corrFamily. The
ones produced by ranGCA and antisym are atypical in that only their Af element is non-trivial.
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References

Lynch, M., Walsh, B. (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass.

See Also

mmfn for asymmetric multi-membership models.

Examples

#### Simulate dyadic data

set.seed(123)
nind <- 10 # Beware data grow as O(nind^2)
x <- runif(nind^2)
id12 <- expand.grid(id1=seq(nind),id2=seq(nind))
id1 <- id12$id1
id2 <- id12$id2
u <- rnorm(nind,mean = 0, sd=0.5)

## additive individual effects:
y <- 0.1 + 1*x + u[id1] + u[id2] + rnorm(nind^2,sd=0.2)

## Same with non-additive individual effects:
dist.u <- abs(u[id1] - u[id2])
z <- 0.1 + 1*x + dist.u + rnorm(nind^2,sd=0.2)

## anti-smmetric individual effects:
t <- 0.1 + 1*x + u[id1] - u[id2] + rnorm(nind^2,sd=0.2)

dyaddf <- data.frame(x=x, y=y, z=z, t=t, id1=id1,id2=id2)
# : note that this contains two rows per dyad, which avoids identifiability issues.

# Enforce that interactions are between distinct individuals (not essential for the fit):
dyaddf <- dyaddf[- seq.int(1L,nind^2,nind+1L),]

# Fits:

(addfit <- fitme(y ~x +ranGCA(1|id1+id2), data=dyaddf))
#
# practically equivalent to:
#
(fitme(y ~x +diallel(1|id1+id2, fixed=0.49999), data=dyaddf))

(antifit <- fitme(t ~x +antisym(1|id1+id2), data=dyaddf))

(distfit <- fitme(z ~x +diallel(1|id1+id2), data=dyaddf))
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div_info Information about numerical problems

Description

This experimental function displays information about parameter values for which some numerical
problems have occurred. Some warnings suggest its use.

Numerical problems may occur if the information matrix (for the augmented linear model used in
the iteratively reweighted least-squares algorithm) is nearly singular. spaMM may try to check
whether such singularity occurs when this algorithm has not converged. But itself may be slow so it
is not performed systematically for large matrices. spaMM.options(diagnose_conv=<integer>)
may be used to control the maximum size of matrices for which the check is performed.

When “outer” generic optimization is performed, information is reported about the range of pa-
rameter values for which problems occurred, (see Value). The fit object divinfo element may
also contain more informative tables of parameter values. This information is currently missing for
“inner”-optimized parameters.

Usage

div_info(object, ...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

... Currently not used

Value

Used mainly for the side effects (printed output) but returns invisibly either a single parameter
vector (if a single numerical problem occurred) or a matrix of parameter ranges, or NULL if there
is no problem to report.

Examples

# Tragically ;-), no simple example of numerical problems
# that can be diagnosed by div_info() is currently available.
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DoF Degrees of freedom extractor

Description

This extracts the number of degrees of freedom for a model, in the usual sense for likelihood-ratio
tests: a count of number of fitted parameters, distinguishing different classes of parameters (see
Value).

Usage

DoF(object)

Arguments

object A fitted-model object, of class "HLfit".

Details

The output distinguishes counts of random-effect vs residual-dispersion parameters, following the
conceptual distinction between effects that induce correlations between different levels of the resonse
vs. observation-level effects. However, a residual-dispersion component can be declared as a ran-
dom effect, so that the counts for logically equivalent models may differ according to the way a
model was declared. For example if residual dispersion for an LLM is declared as an observation-
level random effect while phi is fixed, the p_lambda component will include 1 df for what would
otherwise be accounted by the p_rdisp component. A more involved case where the same con-
trast happens is when a negative-binomial model (with a residual-dispersion shape parameter) is
declared as a Poisson-gamma mixture model (with a varaince parameter for the Gamma-distributed
individual-level random effect).

Value

A vector with possible elements p_fixef, p_lambda, p_corrPars and p_rdisp for, respectively,
the number of fixed-effect coefficients of the main-response model, the number of random-effect
variance parameters, the number of random-effect correlation parameters, and the number of resid-
ual dispersion parameters (the latter being itself, for a mixed-effect residual-dispersion model, the
sum of such components).

See Also

df.residual.HLfit; get_any_IC for extracting effective degrees of freedom considered in the
model-selection literature; as_LMLT for access to the effective degrees of freedom considered in
Satterthwaite’s test and its extentions.
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dofuture Interface for parallel computations

Description

interface to apply some function fn in parallel on columns of a matrix. It is not logically restricted to
mixed-effect applications, hence it can be used more widely. Depending on the nb_cores argument,
parallel or serial computation is performed, calling the future.apply::future_apply function.
A socket cluster is used by default for parallel computations, but a fork cluster can be requested on
linux and alike operating systems by using argument cluster_args=list(type="FORK").

Usage

dofuture(newresp, fn, nb_cores=NULL, fit_env, control=list(),
cluster_args=NULL, debug.=FALSE, iseed=NULL,
showpbar="ignored", pretest_cores="ignored",
... )

Arguments

newresp A matrix on whose columns fn will be applied (e.g., as used internally in spaMM,
the return value of a simulate.HLfit() call); or an integer, then converted to a
trivial matrix matrix(seq(newresp),ncol=newresp,nrow=1).

fn Function whose first argument is named y. The function will be applied for y
taken to be each column of newresp.

nb_cores Integer. Number of cores to use for parallel computations. If >1, a cluster of
nb_cores nodes is used. Otherwise, no parallel computation is performed.

fit_env (for socket clusters only:) An environment, or a list, containing variables to be
exported on the nodes of the cluster (by parallel::clusterExport).

control A list. The only effective control is .combine="rbind" (mimicking the foreach
syntax used in the alternative interface dopar).

cluster_args A list of arguments passed to parallel::makeCluster or parallel::makeForkCluster.
E.g., outfile="log.txt" may be useful to collect output from the nodes, and
type="FORK" to force a fork cluster on linux(-alikes).

debug. (for socket clusters only:) For debugging purposes. Effect, if any, is to be defined
by the fn as provided by the user.

iseed Integer, or NULL. If an integer, it is used to initialize "L'Ecuyer-CMRG" random-
number generator (iseed argument of clusterSetRNGStream), with identical
effect across different models of parallelisation. If iseed is NULL, the seed is not
controlled.

showpbar, pretest_cores
Currently ignored; for consistency with dopar formal arguments.

... Further arguments to be passed (unevaluated) to future.apply (and then pos-
sibly to fn).
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Value

The result of calling future.apply. If the progressr package is loaded, a side-effect of dofuture
is to show a progress bar with character ’S’ or ’P’ or ’F’ depending on parallelisation status (se-
rial/socket/fork).

See Also

dopar for an alternative implementation of (essentially) the same functionalities, and wrap_parallel
for its differences from dofuture.

Examples

## Not run:
if (requireNamespace("future.apply", quietly = TRUE)) {

# Useless function, but requiring some argument beyond the first
foo <- function(y, somearg, ...) {
if ( is.null(somearg) || TRUE ) length(y)

}

# Whether FORK can be used depends on OS and whether Rstudio is used:
dofuture(matrix(1,ncol=4,nrow=3), foo, fit_env=list(), somearg=NULL,

nb_cores=2, cluster_args=list(type="FORK"))
}

## End(Not run)

dopar Interface for parallel computations

Description

dopar and combinepar are interfaces primarily designed to apply some function fn in parallel
on columns of a matrix, although other uses are possible. Depending on the nb_cores argument,
parallel or serial computation is performed. A socket cluster is used by default for parallel compu-
tations, but a fork cluster can be requested on linux and alike operating systems by using argument
cluster_args=list(type="FORK").

dopar has been designed to provide by default a progress bar in all evaluations contexts. A draw-
back is that different procedures are called depending e.g. on the type of cluster, with different
possible controls. In particular, foreach is called in some cases but not others, so non-trivial values
of its .combine control are not always enforced. The alternative interface combinepar will always
use foreach, and will still try to provide by default a progress bar but may fail to do so in some
cases (see Details).
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Usage

dopar(newresp, fn, nb_cores = NULL, fit_env,
control = list(),
cluster_args = NULL, debug. = FALSE, iseed = NULL,
showpbar = eval(spaMM.getOption("barstyle")),
pretest_cores =NULL, ...)

combinepar(newresp, fn, nb_cores = NULL, cluster=NULL, fit_env,
control = list(),
cluster_args = NULL, debug. = FALSE, iseed = NULL,
showpbar = eval(spaMM.getOption("barstyle")),
pretest_cores =NULL, ...)

Arguments

newresp A matrix on whose columns fn will be applied (e.g., as used internally in spaMM,
the return value of a simulate.HLfit() call); or an integer, then converted to a
trivial matrix matrix(seq(newresp),ncol=newresp,nrow=1).

fn Function whose first argument is named y. The function will be applied for y
taken to be each column of newresp.

nb_cores Integer. Number of cores to use for parallel computations. If >1 (and no cluster
is provided by the cluster argument), a cluster of nb_cores nodes is created,
used, and stopped on completion of the computation. Otherwise, no parallel
computation is performed.

cluster (for combinepar only): a cluster object (as returned by parallel::makeCluster
or parallel::makeForkCluster). If this is used, the nb_cores and cluster_args
arguments are ignored. The cluster is not stopped on completion of the compu-
tation

fit_env (for socket clusters only:) An environment, or a list, containing variables to
be exported on the nodes of the cluster (by parallel::clusterExport); e.g.,
list(bar=bar) to pass object bar to each node. The argument control(.errorhandling
= "pass"), below, is useful to find out missing variables.

control A list following the foreach control syntax, even if foreach is not used. There
are limitations when dopar (but not combinepar) is used, in all but the first case
below:

1. for socket clusters, with doSNOW attached, foreach is called with default ar-
guments including i = 1:ncol(newresp), .inorder = TRUE, .errorhandling
= "remove", .packages = "spaMM", and further arguments taken from the
present function’s control argument, which may also be used to override
the defaults. For example, .errorhandling = "pass" is useful to get error
messages from the nodes, and therefore strongly recommended when first
experimenting with this function.

2. for socket clusters, with doSNOW not attached, dopar calls pbapply instead
of foreach but control$.packages is still handled. The result is still in
the format returned in the first case, i.e. by foreach, taking the control
argument into account. pbapply arguments may be passed through the
. . . argument.
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3. if a fork cluster is used, dopar calls mclapply instead of foreach. control$mc.silent
can be used to control the mc.silent argument of mclapply.

4. (if nb_cores=1 dopar calls mclapply).

cluster_args A list of arguments passed to parallel::makeCluster. E.g., outfile="log.txt"
may be useful to collect output from the nodes, and type="FORK" to force a fork
cluster on linux(-alikes).

debug. (for socket clusters only:) For debugging purposes. Effect, if any, is to be defined
by the fn as provided by the user.

iseed (all parallel contexts:) Integer, or NULL. If an integer, it is used as the iseed
argument of clusterSetRNGStream to initialize "L'Ecuyer-CMRG" random-
number generator (see Details). If iseed is NULL, the default generator is se-
lected on each node, where its seed is not controlled.

showpbar (for socket clusters only:) Controls display of progress bar. See barstyle option
for details.

pretest_cores (for socket clusters only:) A function to run on the cores before running fn.
It may be used to check that all arguments of the fn can be evaluated in the
cores’ environments (the internal function .pretest_fn_on_cores provides an
example).

... Further arguments to be passed (unevaluated) to fn, if not caught on the way
by pbapply (which means that different results may in principle be obtained
depending on the mode of parallelisation, which is the kind of design issues that
combinepar aims to resolve by always calling foreach).

Details

Control of random numbers through the "L'Ecuyer-CMRG" generator and the iseed argument is
not sufficient for consistent results when the doSNOW parallel backend is used, so if you really need
such control in a fn using random numbers, do not use doSNOW. Yet, it is fine to use doSNOW for
bootstrap procedures in spaMM, because the fitting functions do not use random numbers: only
sample simulation uses them, and it is not performed in parallel.

combinepar calls foreach::%dopar% which assumes that a cluster has been declared using a suit-
able backend such as doSNOW, doFuture or doParallel. If only the latter is available, no progress
bar is displayed. A method to render a bar when doParallel is used can be found on the Web, but
that bar is not a valid progress bar as it is displayed only after all the processes have been run.

Value

The result of calling the foreach, pbapply or mclapply interface, dependent on the control argu-
ment and possibly on the parallelisation backend used. Ideally, the default format should be same
whatever the interface and backend used, and the default when foreach is used is essentially as
defined by calling
foreach(.final=if( ! is.list(v[[1]])) {do.call(cbind,v)} else v)
when a list v of results (one result for each child process) is given to .final. Then, if each child
process itself returns a list, cbind is applied.

A side-effect of dopar is to show a progress bar whose character informs about the type of paralleli-
sation performed: a "F" or default "=" character for fork clusters, a "P" for parallel computation via
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foreach and doSNOW, a "p" for parallel computation via foreach and doFuture or via pbapply,
and "s" for serial computation foreach and doParallel or via pbapply.

See Also

dofuture is yet another interface with (essentially) the same functionalities as dopar. See the
documentation of the wrap_parallel option for its differences from dopar.

See spaMM_boot and spaMM2boot for more specialized interfaces for parametric bootstrap compu-
tations.

Examples

## See source code of spaMM_boot()

## Not run:
# Useless function, but requiring some argument beyond the first
foo <- function(y, somearg, ...) {

if ( is.null(somearg) || TRUE ) length(y)
}

# Whether FORK can be used depends on OS and whether Rstudio is used:
dopar(matrix(1,ncol=4,nrow=3), foo, fit_env=list(), somearg=NULL,

nb_cores=2, cluster_args=list(type="FORK"))

## End(Not run)

drop1.HLfit Drop all possible single fixed-effect terms from a model

Description

Drop single terms from the model. The drop1 method for spaMM fit objects is conceived to
replicate the functionality, output format and details of pre-existing methods for similar models.
Results for LMs and GLMs should replicate base R drop1 results, with some exceptions:
* somewhat stricter default check of non-default scope argument;
* Because the dispersion estimates for Gamma GLMs differ between stats::glm and spaMM fits
(see Details in method), some tests may differ too; results from spaMM REML fits being closer
than ML fits to those from glm() fits;
* AIC values reported in tables are always the marginal AIC as computed by AIC.HLfit, while
drop1.glm may report confusing (to me, at least) values (see AIC.HLfit) for reasons that seem to
go beyond differences in dispersion estimates.

For LMMs, ANOVA tables are provided by interfacing lmerTest::anova (with non-default type).

For other classes of models, a table of likelihood ratio tests is returned, each test resulting from a
call to LRT.
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Usage

## S3 method for class 'HLfit'
drop1(object, scope, method="", check_marg=NULL, check_time=60, ...)

Arguments

object Fit object returned by a spaMM fitting function.

scope Default “scope” (terms to be tested, specified as a formula, see Examples) is
determined by applying stats::drop.scope on fixed-effect terms. Non-default
scope can be specified a formula giving the terms to be considered for dropping.
It is also possible to specify them as a character vector, but then one has to make
sure that the elements are consistent with term labels produced by terms, as
inconsistent elements will be ignored.

method Only non-default value is "LRT" which forces evaluation of a likelihood ratio
tests by LRT, instead of specific methods for specific classes of models.

check_marg NULL or boolean: whether effects should be checked for marginality. By de-
fault, this check is performed when a non-default scope is specified, and then
no test is reported for terms that do not satisfy the marginality condition. If
check_marg=FALSE, marginality is not checked and tests are always performed.

check_time numeric: whether to output some information when the execution time of drop1
may be of the order of the time specified by check_time, or more. This is
checked only when random effect are present. Such output can thus be sup-
pressed by check_time=Inf.

... Further arguments passed from or to methods, or to LRT.

Details

As for the ANOVA-table functionality, it has been included here mainly to provide access to F
tests (including, for LMMs, the “Satterthwaite method”, using pre-existing procedures as template
or backend for expediency and familiarity. The procedures for specific classes of models have
various limitations, e.g., none of them handle models with variable dispersion parameter. For classes
of models not well handled by these procedures (by design or due to the experimental nature of
the recent implementation), method="LRT" can still be applied (and will be applied by default for
GLMMs).

Value

The return format is that of the function called (lmerTest::drop1 for LMMs), or emulated (base
drop1 methods for LMs or GLMs), or is a data frame whose rows are each the result of calling LRT.

See Also

as_LMLT for the interface to lmerTest::drop1.
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Examples

data("wafers")
#### GLM

wfit <- fitme(y ~ X1+X2+X1*X3+X2*X3+I(X2^2), family=Gamma(log), data=wafers)
drop1(wfit, test = "F")
drop1(wfit, test = "F", scope= ~ X1 + X1 * X3 ) # note the message!

#### LMM
if(requireNamespace("lmerTest", quietly=TRUE)) {

lmmfit <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch),data=wafers)
drop1(lmmfit) # => Satterthwaite method here giving p-values quite close to

# traditional t-tests given by:
summary(lmmfit, details=list(p_value=TRUE))

}

#### GLMM
wfit <- fitme(y ~ X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), family=Gamma(log),

rand.family=inverse.Gamma(log), resid.model = ~ X3+I(X3^2) , data=wafers)
drop1(wfit)
drop1(wfit, scope= ~ X1 + X1 * X3 ) # note the message!

dyad Correlated random effects in dyadic interactions

Description

mmfn is a function to be used for specifying random effects in asymmetric multi-membership inter-
actions. This feature is experimental and has only been tested for some dyadic interactions.

The simplest case is that of dyadic interactions between one focal individual and its partner in each
dyad. The models declared in this way include correlation parameter(s) for the correlation of effects
expressed by a given individual in different possible roles (such as focal vs. partner).

At the same time, correlation of effects expressed among individuals in the same role can also be
specified. For example, the random effects may represent genetic influences on focal and partner
effects. The correlation between effects expressed in the focal role may depend on the relatedness
between individuals, and likewise for effects expressed in the partner role. This can be specified by
a random-effect term corrMatrix( <LHS> | <RHS> ) where:

* the LHS expression includes an expression of the form mm(<id1>, <id2>), <id1> and <id2>
being two factors in the data; and the RHS expression is of the form mmfn(<id1>, <id2>). A
dummy variable can be used instead of the mm(<id1>, <id2>) expression (see Examples), the fac-
tors to be used being determined from the RHS expression;

* The LHS expression is interpreted as a random-coefficient specification, meaning that distinct
random effects u<id1>(i),v<id2>(i),... affect the ith response, and that correlations between the effects
are fitted by default, as for other random-coefficient terms. The elements u<id1>(i),v<id2>(j),... are
correlated when <id1>(i) and <id2>(j) are identical, rather than when i = j. This is illustrated in
the Examples, where the two factors represents roles of individuals as focal individuals and as their
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mothers, so distinct but correlated random effects uk,vk, affecting different levels of the response
(i ̸= j), are assigned to a same individual k in these two roles;

* a corrMatrix specifies the correlations of random effects among individuals in either role (cor-
relations as focal, or correlations as partner). The whole corrMatrix( <LHS> | <RHS> ) expression
thus describes a composite-ranef controlled by two correlation models, one for within-role cor-
relations, the other for among-role correlations.

If the LHS is a more complex expression than only the mm(...) term (as in the Example with
interaction with sex), different random effects vectors are assigned to each term implied by the LHS
(as for random-coefficient terms specified by other syntaxes), and the corrMatrix specifies the
correlations between the effects within each vector;

* the RHS of the form mmfn(...) specifies the factors containing the levels to be matched to rows
and columns of the corrMatrix, in the same way as other forms of RHS serve to identify rows and
columns of the correlation matrix of correlated random effects.

PAIRfn is an alias for mmfn (its name suggests that it handles only dyadic interactions, but the mmfn
aims to be more general).

The syntax using a dummy variable assumes that this variable is present in the input data, as the
numeric constant 1 (see Examples). By default, this dummy variable is named PAIR, though this
can be changed by the VAR argument of mmfn or PAIRfn.

Usage

mmfn(..., VAR = "PAIR", only.vars=TRUE)
PAIRfn(..., VAR = "PAIR", only.vars=TRUE)

## formula term:
# corrMatrix( < LHS using mm(<.>, <.>) >| PAIRfn(<.>, <.>) )
# corrMatrix( < LHS using dummy variable >| PAIRfn(<.>, <.>) )

Arguments

... factors present in the data provided for the fit, identifying the individuals in
the dyadic or multi-membership interaction.

VAR character: name of dummy variable possibly used in LHS of random-effect term.

only.vars For programming purposes, not documented.

See Also

diallel for (anti-)symmetric dyadic interactions.

Examples

if (spaMM.getOption("example_maxtime")>1) {

data("Gryphon")
fitme(BWT ~ 1+ corrMatrix(mm(ID,mother) | PAIRfn(ID,mother)),

data=Gryphon_df, corrMatrix=Gryphon_A)

# : same as using a PAIR dummy variable as follows:
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#
# Gryphon_df$PAIR <- 1 # Do not try other values.
# fitme(BWT ~ 1+ corrMatrix(PAIR | PAIRfn(ID,mother)),
# data=Gryphon_df, corrMatrix=Gryphon_A)

if (spaMM.getOption("example_maxtime")>15) {
# Distinct random effects for each role, and each sex of the focal:
#
fitme(BWT ~ 1+ corrMatrix(mm(ID,mother)*sex | PAIRfn(ID,mother)),

data=Gryphon_df, corrMatrix=Gryphon_A)
#
# This is controlled as other rancom-coefficient terms. E.g.,
# fixed=list(ranCoefs=list("1"=c(NA,0,0,0,NA,0,0,NA,0,NA)))
# could be used to fit only the variances.

}
}

eval_replicate Evaluating bootstrap replicates

Description

eval_replicate is the default simuland function applied to simulated bootstrap samples by likelihood-
ratio testing functions (fixedLRT, LRT, anove.HLfit). This documentation presents the require-
ments and possible features of this function and of possible user-defined alternatives.

An alternative function spaMM:::.eval_replicate2 is also provided. It is slower, as it refits the
models compared with different initial values for random-effect parameters, which is useful in some
difficult cases where initial values matter. The eval_replicate function may also refit the “full”
models with different initial values when the logLik of the refitted full model is substantially lower
than that of the refitted null model. “Substantially” means that a tolerance of 1e-04 is applied to
account for inaccuracies of numerical maximization.

Usage

eval_replicate(y)

Arguments

y a response vector on which a previously fitted model may be refitted.

Details

likelihood-ratio testing functions have a debug. argument whose effect depends on the simuland
function. The default behaviour is thus defined by eval_replicate, as: if debug.=TRUE, upon
error in the fitting procedures, dump.frames will be called, in which case a dump file will be
written on disk; and a list with debugging information will be returned (so that, say, pbapply will
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not return a matrix). This behaviour may change in later versions, so non-default debug. values
should not be used in reproducible code. In serial computation, debug.=2 may induce a stop; this
should not happen in parallel computation because the calling functions check against debug.==2.

Essential information such as the originally fitted models is passed to the function not as arguments
but through its environment, which is controlled by the calling functions (see the eval_replicate
source code to know which are these arguments). Users should thus not assume that they can control
their own simuland function’s environment as this environment will be altered.

Advanced users can define their own simuland function. The eval_replicate source code pro-
vides a template showing how to use the function’s environment. The Example below illustrates
another approach augmenting eval_replicate. A further example is provided in the file
tests/testthat/test-LRT-boot.R, using . . . to pass additional arguments beyond response val-
ues.

Value

A vector of the form c(full=logLik(<refitted full model>),null=logLik(<refitted null model>);
or possibly in debugging contexts, a list with the same elements each with some additional infor-
mation provided as attribute.

See Also

Calling functions fixedLRT, LRT.

Examples

## Not run:
# Simple wrapper enhancing the default 'simuland'
# with a call to some obscure option, and dealing with
# the need to pass the environment assigned to 'simuland'
eval_with_opt <- function(y) {

spaMM.options(some_obscure_option="some_obscure_value")
eval_rep <- spaMM:::.eval_replicate
environment(eval_rep) <- parent.env(environment()) # passing the environment
eval_rep(y)

}

## End(Not run)

extractors Functions to extract various components of a fit.

Description

Most extractors are methods of generic functions defined in base R (see Usage), for which the base
documentation may be useful.

formula extracts the model formula.
family extracts the assumed distribution family for the response variable.
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terms extracts the formula, with attributes describing the fixed-effect terms.
nobs returns the length of the response vector.
logLik extracts the log-likelihood (exact or approximated).
dev_resids returns a vector of squared (unscaled) deviance residuals. For GLM families, this
refers to the summands defined for GLMs in McCullagh and Nelder 1989, p. 34 for other response
families. For other response families, see Details of LL-family.
deviance returns the sum of squares of these deviance residuals, possibly weighted by prior weights
(consistently with stats::deviance. See residuals.HLfit for details and comparison with re-
lated extractors.
fitted extracts fitted values.
response extracts the response (as a vector).
fixef extracts the fixed effects coefficients, β.
coef may not do anything useful yet.
ranef extracts the predicted random effects, Lv (default since version 1.12.0), or optionally u (see
random-effects for definitions). print.ranef controls their printing.
getDistMat returns a distance matrix for a geostatistical (Matérn etc.) random effect.
df.residual extracts residual degrees-of-freedom for fitted models (here number of observations
minus number of parameters of the model except residual dispersion parameters). wweights ex-
tracts prior weights (as defined by the fitting functions’s prior.weights argument).

Usage

## S3 method for class 'HLfit'
formula(x, which="hyper", ...)
## S3 method for class 'HLfit'
family(object, submodel=NULL, ...)
## S3 method for class 'HLfit'
terms(x, ...)
## S3 method for class 'HLfit'
nobs(object, ...)
## S3 method for class 'HLfit'
logLik(object, which, ...)
## S3 method for class 'HLfit'
fitted(object, ...)
## S3 method for class 'HLfit'
coef(object, ...)
## S3 method for class 'HLfit'
fixef(object, na.rm=NULL, ...)
## S3 method for class 'HLfit'
ranef(object, type = "correlated", ...)
## S3 method for class 'ranef'
print(x, max.print = 40L, ...)
## S3 method for class 'HLfit'
deviance(object, ...)
## S3 method for class 'HLfit'
df.residual(object, ...)
## S3 method for class 'HLfit'
weights(object, type, ...)
##
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getDistMat(object, scaled=FALSE, which = 1L)
response(object,...)
dev_resids(object,...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

type For ranef, use type="correlated" (default) to display the correlated ran-
dom effects (Lv), whether in a spatial model, or a random- coefficient model.
Use type="uncorrelated" to pretty-print the elements of the <object>$ranef
vector (u).
For weights, either "prior" or "working", with the same meaning as for
weights.glm: respectively the prior weights, or the weights used in the final
iteration of the IRLS algorithm.

which * For logLik, the name of the element of the APHLs list to return (see Details for
any further possibility). The default depends on the fitting method. In particular,
if it was REML or one of its variants, the default is to return the log restricted
likelihood (exact or approximated).
* For getDistMat, an integer, to select a random effect from several for which
a distance matrix may be constructed.
* For formula, by default the model formula with non-expanded multIMRF
random-effect terms is returned, while for which="" a formula with multIMRF
terms expanded as IMRF terms is returned.

na.rm Whether to include NA values for missing coefficients of rank-deficient model
matrices. Default is to exclude them for mixed models and to include them for
other ones. See Details for the underlying reason.

scaled If FALSE, the function ignores the scale parameter ρ and returns unscaled dis-
tance.

x For print.ranef: the return value of ranef.HLfit.

max.print Controls options("max.print") locally.

submodel Integer: to extract the family for a given submodel in a multivariate-response fit.

... Other arguments that may be needed by some method.

Details

For rank-deficient model matrices, base R procedures lm and glm estimate coefficients for a rank-
trimmed matrix and coefficient() returns a full-length vector completed with NA values for
coefficients not estimated, while the lme4 fixef method returns a trimmed vector. spaMM has
long followed the base R convention for all models but this may impede use of some post-fit pro-
cedures initially conceived for lme4 objects (such as lmerTest procedures for LMMs). So now
fixef.HLfit trims the vector by default for mixed-effect models only. The default is thus to maxi-
mize consistency/compatibility with preexisting procedures despite their inconsistencies with each
other.
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Value

formula returns a formula, except a list of them from fitmv() output.

terms returns an object of class c("terms", "formula") which contains the terms representation
of a symbolic model. See terms.object for its structure. terms(<fitmv() result>) returns a list
of such terms.

Other return values are numeric (for logLik), vectors (most cases), matrices or dist objects (for
getDistMat), or a family object (for family). ranef returns a list of vectors or matrices (the latter
for random-coefficient terms).

References

McCullagh, P. and Nelder J. A. (1989) Generalized linear models. Second ed. Chapman & Hall:
London.

See Also

See summary.HLfit whose return value include the tables of fixed-effects coefficients and random-
effect variances displayed by the summary, residuals.HLfit to extract various residuals, residVar
to extract residual variances or information about residual variance models, hatvalues to extract
leverages, get_matrix to extract the model matrix and derived matrices, and vcov.HLfit to ex-
tract covariances matrices from a fit, get_RLRsim_args to extract arguments for (notably) tests of
random effects in LMMs.

Examples

data("wafers")
m1 <- fitme(y ~ X1+X2+(1|batch), data=wafers)
fixef(m1)
ranef(m1)

data("blackcap")
fitobject <- fitme(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

fixed=list(nu=4,rho=0.4,phi=0.05))
getDistMat(fitobject)

extreme_eig Utilities for regularization of a matrix

Description

regularize can be used to regularize (nearly-)singular correlation matrices. It may also be used
to regularize covariance matrices but will not keep their diagonal constant. Use on other types of
matrices may give nonsense. The regularization corrects the diagonal of matrices with high condi-
tion number so that the condition number of a corrected matrix is the maximum value specified by
maxcondnum. For that purpose, it needs the extreme eigenvalues of the matrix, by default provided
by the function extreme_eig. Calls functions from RSpectra if available, and falls back on base
functions otherwise.
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Usage

extreme_eig(M, symmetric, required = TRUE)
regularize(A, EEV=extreme_eig(A,symmetric=TRUE), maxcondnum=1e12)

Arguments

M Square matrix. Sparse matrices of class d[s|g]CMatrix (and some others too)
are handled (some vagueness, as if it fails for some matrix types, an alternative
function shoudl be easy to define based on this one as template.

A Square matrix as M, assumed symmetric.

symmetric Whether the matrix is symmetric. Helpful to select efficient methods for this
case if the matrix class does not implies its symmetry.

required Whether the computation should be attempted independently of the size of the
matrix.

EEV Two extreme eigenvalue in the return format of extreme_eig

maxcondnum Target condition number when regularization is performed

Value

extreme_eig returns a vector of length 2, the largest and the smallest eigenvalues in this order.
regularize returns a matrix, possibly in sparse format.

Examples

H10 <- Matrix::Hilbert(10)
extreme_eig(H10,symmetric=TRUE) # ratio > 1e13
rH10 <- regularize(H10)
extreme_eig(rH10,symmetric=TRUE) # ratio = 1e12

fitme Fitting function for fixed- and mixed-effect models with GLM response.

Description

This is a common interface for fitting most models that spaMM can fit, from linear models to mixed
models with non-gaussian random effects, therefore substituting to corrHLfit, HLCor and HLfit.
By default, it uses ML rather than REML (differing in this respect from the other fitting functions).
It may use “outer optimization”, i.e., generic optimization methods for estimating all dispersion
parameters, rather than the iterative methods implemented in HLfit. The results of REML fits
of non-gaussian mixed models by these different methods may (generally slightly) differ. Outer
optimization should generally be faster than the alternative algorithms for large data sets when the
residual variance model is a single constant term (no structured dispersion). For mixed models,
fitme by default tries to select the fastest method when both can be applied, but precise decision
criteria are subject to change in the future. corrHLfit (with non-default arguments to control the
optimization method most suitable to a particular problem) may be used to ensure better consistency
over successive versions of spaMM.
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Usage

fitme(formula, data, family = gaussian(), init = list(), fixed = list(),
lower = list(), upper = list(), resid.model = ~1, init.HLfit = list(),
control = list(), control.dist = list(), method = "ML",
HLmethod = method, processed = NULL, nb_cores = NULL, objective = NULL,
weights.form = NULL, ...)

Arguments

formula Either a linear model formula (as handled by various fitting functions) or a
predictor, i.e. a formula with attributes (see Predictor and examples below).
See Details in spaMM for allowed terms in the formula.

data A data frame containing the variables in the response and the model formula.

family Either a response family or a multi value.

init An optional list of initial values for correlation and/or dispersion parameters for
distribution family, e.g. list(rho=1,nu=1,lambda=1,phi=1) where rho and
nu are parameters of the Matérn family (see Matern), and lambda and phi are
dispersion parameters (see Details in spaMM for the meaning of these param-
eters). All are optional, but giving values for a dispersion parameter changes
the ways it is estimated (see Details and Examples). rho may be a vector (see
make_scaled_dist) and, in that case, it is possible that some or all of its ele-
ments are NA, for which fitme substitutes automatically determined values.

fixed A list similar to init, but specifying fixed values of the parameters not esti-
mated. See fixed for further information; and keep in mind that fixed fixed-
effect coefficients can be passed as the etaFix argument as part of the ‘. . . ’.

lower An optional (sub)list of values of the parameters specified through init, in the
same format as init, used as lower values in calls to optim. See Details for
default values.

upper Same as lower, but for upper values.

resid.model See identically named HLfit argument.

init.HLfit See identically named HLfit argument.

control.dist See control.dist in HLCor

method, HLmethod
Character: the fitting method to be used, such as "ML", "REML" or "PQL/L". "ML"
is the default, in contrast to "REML" for HLfit, HLCor and corrHLfit. Other
possible values of HLfit’s method argument are handled. method=c(<"ML" or
"REML">,"exp") can be distinctly useful for slow fits of models with Gamma(log)
family (see method).

weights.form Specification of prior weights by a one-sided formula: use weights.form = ~
pw instead of prior.weights = pw. The effect will be the same except that such
an argument, known to evaluate to an object of class "formula", is suitable to
enforce safe programming practices (see good-practice).

control A list of (rarely needed) control parameters, with possible elements:
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• refit, a boolean, or a list of booleans with possible elements phi, lambda
and ranCoefs. If either element is set to TRUE, then the corresponding pa-
rameters are refitted by the internal HLfit methods (see Details), unless
these methods were already selected for such parameters in the main fitting
step. If refit is a single boolean, it affects all parameters. By default no
parameter is refitted.

• optimizer, the numerical optimizer, specified as a string and whose de-
fault is controlled by the global spaMM option "optimizer". Possible
values are "nloptr", "bobyqa", "L-BFGS-B" and ".safe_opt", whose
meanings are detailed in the documentation for the optimizer argument
of spaMM.options. Better left unchanged unless suspect fits are obtained.

• nloptr, itself a list of control parameters to be copied in the opts argument
of nloptr. Default value is given by spaMM.getOption('nloptr') and
possibly other global spaMM options. Better left unchanged unless you
are ready to inspect source code.

• bobyqa, optim, lists of controls similar to nloptr but for methods "bobyqa"
and "L-BFGS-B", respectively.

nb_cores For development purpose, not documented.

processed For programming purpose, not documented.

objective For development purpose, not documented.

... Optional arguments passed to (or operating as if passed to) HLCor, HLfit or
mat_sqrt, for example rand.family, control.HLfit , verbose or the distMatrix
argument of HLCor (so that estimation of Matern or Cauchy parameters can be
combined with use of an ad hoc distance matrix). In a fitme call, the verbose
vector of booleans may include a TRACE=TRUE element, in which case infor-
mation is displayed for each set of correlation and dispersion parameter values
considered by the optimiser (see verbose for further information, mostly use-
less except for development purposes).

Details

For approximations of likelihood, see method. For the possible structures of random effects, see
random-effects,

For phi, lambda, and ranCoefs, fitme may or may not use the internal fitting methods of HLfit.
The latter methods are well suited for structured dispersion models, but require computations which
can be slow for large datasets. Therefore, fitme tends to outer-optimize by default for large datasets,
unless there is a non-trivial resid.model. The precise criteria for selection of default method by
fitme are liable to future changes.

Further, the internal fitting methods of HLfit also provide some more information such as the “cond.
SE” (about which see warning in Details of HLfit). To force the evaluation of such information
after an outer-optimization by a fitme call, use the control$refit argument (see Example). Al-
ternatively (and possibly of limited use), one can force inner-optimization of lambda for a given
random effect, or of phi, by setting it to NaN in init (see Example using ‘blackcap’ data). The
same syntax may be tried for phi.
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Value

The return value of an HLCor or an HLfit call, with additional attributes. The HLCor call is evaluated
at the estimated correlation parameter values. These values are included in the return object as its
$corrPars member. The attributes added by fitme include the original call of the function (which
can be retrived by getCall(<fitted object>), and information about the optimization call within
fitme.

Examples

## Examples with Matern correlations
## A likelihood ratio test based on the ML fits of a full and of a null model.
data("blackcap")
(fullfit <- fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap) )
(nullfit <- fitme(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap))
## p-value:
1-pchisq(2*(logLik(fullfit)-logLik(nullfit)),df=1)

## See ?spaMM for examples of conditional autoregressive model and of non-spatial models.

## Contrasting different optimization methods:
# We simulate Gamma deviates with mean mu=3 and variance=2,
# ie. phi= var/mu^2= 2/9 in the (mu, phi) parametrization of a Gamma
# GLM; and shape=9/2, scale=2/3 in the parametrisation of rgamma().
# Note that phi is not equivalent to scale:
# shape = 1/phi and scale = mu*phi.
set.seed(123)
gr <- data.frame(y=rgamma(100,shape=9/2,scale=2/3))
# Here fitme uses HLfit methods which provide cond. SE for phi by default:
fitme(y~1,data=gr,family=Gamma(log))
# To force outer optimization of phi, use the init argument:
fitme(y~1,data=gr,family=Gamma(log),init=list(phi=1))
# To obtain cond. SE for phi after outer optimization, use the 'refit' control:
fitme(y~1,data=gr,family=Gamma(log),,init=list(phi=1),

control=list(refit=list(phi=TRUE))) ## or ...refit=TRUE...

## Outer-optimization is not necessarily the best way to find a global maximum,
# particularly when there is little statistical information in the data:
if (spaMM.getOption("example_maxtime")>1.6) {

data("blackcap")
fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap) # poor
# Compare with the following two ways of avoiding outer-optimization of lambda:
corrHLfit(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

method="ML")
fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

init=list(lambda=NaN))
}

## see help("COMPoisson"), help("negbin"), help("Loaloa"), etc., for further examples.
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fitmv Fitting multivariate responses

Description

This function extends the fitme function to fit a joint model for different responses (following
possibly different response families) sharing some random-effects, including a new type of random
effect defined to exhibit correlations across different responses (see mv). It is also possible to declare
shared fixed-effect coefficients among different submodels, using the X2X argument. Only a few
features available for analysis of univariate response may not yet work (see Details).

Usage

fitmv(submodels, data, fixed=NULL, init=list(), lower=list(), upper=list(),
control=list(), control.dist = list(), method="ML", init.HLfit=list(),
X2X=NULL, aliases=NULL, ...)

Arguments

submodels A list of sublists each specifying a model for each univariate response. The
names given to each submodel in the main list are currently ignored. The names
and syntax of elements within each sublist are those of a fitme call. In most
cases, each sublist should not contain arguments whose names are those of for-
mal arguments of fitmv itself (with the possible exception for fixed).
prior.weights (or better, weights.form), if any, should be specified as part of
a submodel.

data A data frame containing the variables in the response and the model formulas.

fixed A list of fixed values of the parameters controlling random effects. The syntax is
that of the same argument in fitme (the optional fixed argument in each sublist
of submodels may also be used but this feature may be confusing). Fixed phi
values must be specified as a list, e.g., fixed=list(phi=list("2"=0.1)) to
set the value for the second submodel.

init, lower, upper
Lists of initial values or bounds. The syntax is that of the same arguments in
fitme. In these lists, random effects should be indexed according to their order
of appearance in the total model (see Details). Any init, lower, or upper in a
sublist of submodels will be ignored.

control A list of control parameters, with possible elements as described for fitme

control.dist See control.dist in HLCor

method Character: the fitting method to be used, such as "ML", "REML" or "PQL/L".
"ML" is the default, as for fitme and in contrast to "REML" for the other fitting
functions. Other possible values of HLfit’s method argument are handled.

init.HLfit See identically named HLfit argument.
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X2X NULL, or a matrix M by which one can specify, as β =Mβ∗, fixed effects β
with some coefficients shared between submodels, e.g. as shown in the “Shared
fixed effect” Example, where β∗ has three distinct elements, and β has four
elements including identical Intercept coefficients among the two submodels.
The fixed-effect term Xβ of the linear predictor thus takes the form XMβ∗,
meaning that the default design matrix of the model X is replaced by XM. M
must have column names, labeling the β∗ coefficients.

aliases A list; experimental feature whose usage is explained in a dedicated aliases
documentation.

... Optional arguments passed to (or operating as if passed to) HLCor, HLfit or
mat_sqrt, for example control.HLfit or the covStruct, distMatrix, corrMatrix
or adjMatrix arguments of HLCor.

Details

Matching random effects across submodels, and referring to them;
Random effects are recognized as identical across submodels by matching the formula terms. As
shown in the Examples, if the two models formulas share the (1|clinic) term, this term is rec-
ognized as a single random effect shared between the two responses. But the (1|clinic) and
(+1|clinic) terms are recognized as distinct random effects. In that case, the init argument
init=list(lambda=c('1'=1,'2'=0.5)) is shown to refer to these by names 1,2... where the or-
der is defined as the order of first appearance of the terms across the model formulas in the order of
the submodels list. Alternatively, the syntax fixed=list(lambda=c('clinic.1'=0.5,'clinic'=1))
works: this syntax makes order of input irrelevant but assumes that the user guesses names correctly
(these are typically the names that appear in the summary of lambda values from the fit object or,
more programmatically,
names(<fit object>$lambda.object$print_namesTerms)). Finally, fixed values of parameters
can also be specified through each sub-model, with indices referring to the order of random effects
with each model.

The matching of random-effect terms occurs after expansion of multIMRF terms, if any. This may
have subtle consequences if two multIMRF terms differ only by their number of levels, as some of
the expanded IMRF terms are then shared.

Capacities and limitations:
Practically all features of models that can be fitted by fitme should be available: this includes all
combinations of GLM response families, residual dispersion models, and all types of random-effect
terms, whether autocorrelated or not. Among the arguments handled through the . . . , covStruct,
distMatrix, corrMatrix should be effective; control.HLfit$LevenbergM and verbose=c(TRACE=TRUE)
will work but some other controls available in fitme may not. Usage of the REMLformula argument
is restricted as it cannot be used to specify a non-standard REML correction (but the more useful
keepInREML attribute for fixed fixed-effect coefficients is handled).

The multi family-like syntax for multinomial models should not be used, but fitmv could provide
other means to model multinomial responses.

Most post-fit functions work, at least with default arguments. This includes point prediction and
prediction variances calculations sensu lato, including with newdata; but also simulate, spaMM_boot,
confint, anova, update_resp, and update. The re.form argument now works for predict and
simulate. Bootstrap computation may require special care for models where simulation of one re-
sponse variable may depend on draws of another one (see Hurdle model example in the “Gentle in-
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trodution” to spaMM, https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/
master/vignettePlus/spaMMintro.pdf).

Prediction functions try to handle most forms of missing information in newdata (including infor-
mation missing for a residual-dispersion model when predcitiosn fro mit are needed: see Examples).
As information may be missing for some submodels but not others, different numbers of predictions
are then returned for different submodels. As for univariate-response models, predict will return
point predictions as a single 1-column matrix, here concatenating the prediction results of the dif-
ferent submodels. The nobs attribute specifies how may values pertain to each submodel.

Some plotting functions may fail. update.formula fails (see update_formulas for details). terms
returns a list, which is not usable by other base R functions. stats::step is a good example of
resulting limitations, as it is currently unable to perform any sensible operation on fitmv output.
spaMM::MSFDR which calls stats::step likewise fails. multcomp::glht fails.

A perhaps not entirely satisfying feature is that simulate by default stacks the results of simulating
each submodel in a single vector. Some non-trivial reformatting may then be required to include
such simulation results in a suitable newdata data frame with (say) sufficient information for pre-
diction of all responses. The syntax
update_resp(<fit>, newresp = simulate(<fit>, ...), evaluate = FALSE)$data
may be particularly useful to reformat simulation results in this perspective.

Which arguments belong to submodels?:
Overall, arguments specifying individual submodels should go into submodels, while other argu-
ments of fitmv should be those potentially affecting several submodels (notably, random-effect
structures, lower, and upper) and fitting controls (such as init and init.HLfit). One rarely-used
exception is REMLformula which controls the fitting method but should be specified through the
submodels.

The function proceeds by first preprocessing all submodels independently, before merging the re-
sulting information by matching random effects across submodels. The merging operation includes
some checks of consistency across submodels, implying that redundant arguments may be needed
across submodels (e.g. specifying twice a non-default rand.family for a random effect shared by
two submodels).

Value

A (single) list of class HLfit, as returned by other fitting functions in spaMM. The main difference
is that it contains a families element describing the response families, instead of the family
elements of fitted objects for univariate response.

See Also

See further examples in mv (modelling correlated random effects over the different submodels), and
residVar.

Examples

### Data preparation
data(clinics)
climv <- clinics
(fitClinics <- HLfit(cbind(npos,nneg)~treatment+(1|clinic),

family=binomial(),data=clinics))

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/spaMMintro.pdf
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/spaMMintro.pdf


78 fitmv

set.seed(123)
climv$np2 <- simulate(fitClinics, type="residual")
#
### fits

#### Shared random effect
(mvfit <- fitmv(
submodels=list(mod1=list(formula=cbind(npos,nneg)~treatment+(1|clinic),family=binomial()),

mod2=list(formula=np2~treatment+(1|clinic),
family=poisson(), fixed=list(lambda=c("1"=1)))),

data=climv))

# Two univariate-response independent fits because random effect terms are distinct
# (note how two lambda values are set; same syntax for 'init' values):
(mvfitind <- fitmv(
submodels=list(mod1=list(formula=cbind(npos,nneg)~treatment+(1|clinic),family=binomial()),

mod2=list(formula=np2~treatment+(+1|clinic),family=poisson())),
data=climv, fixed=list(lambda=c('1'=1,'2'=0.5)))) # '1': (1|clinic); '2': (+1|clinic)

#### Specifying fixed (but not init) values in submodels is also possible (maybe not a good idea)
# (mvfitfix <- fitmv(
# submodels=list(mod1=list(formula=cbind(npos,nneg)~treatment+(1|clinic),
# family=binomial(),fixed=list(lambda=c('1'=1))), # '1': (1|clinic)
# mod2=list(formula=np2~treatment+(+1|clinic),family=poisson(),
# fixed=list(lambda=c('1'=0.5)))), # '2': (+1|clinic)
# data=climv))

#### Shared fixed effect
# Suppose we want to fit the same intercept for the two submodels
# (there may be cases where this is meaningful, even if not here).
# The original fit has four coefficients corresponding to four columns
# of fixed-effect design matrix:

head(design_X <- model.matrix(mvfit))
# (Intercept)_1 treatment_1 (Intercept)_2 treatment_2
# [1,] 1 1 0 0
# ...

# The three coefficients of the intended model are (say)
# "(Intercept)" "treatment_1" "treatment_2"
# We build a matrix that relates the original 4 coefficients to these 3 ones:

X_4to3 <-
matrix(c(1,0,0,

0,1,0,
1,0,0,
0,0,1), nrow=4, ncol=3, byrow=TRUE,

dimnames=list(NULL, c("(Intercept)","treatment_1","treatment_2")))

# defined such that design_X %*% X_4to3 will be the design matrix for the intended model,
# and the single "(Intercept)" coefficient of the three-parameter model will operate as
# a shared estimate of the "(Intercept)_1" and "(Intercept)_2" coefficients
# of the original 4-coefficients model, as intended.
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# To define such matrices, it is *strongly advised* to fit the unconstrained model first,
# and to examine the structure of its model matrix (as shown above).

# The new fit is obtained by providing the matrix as the 'X2X' argument:

(mvfit3 <- fitmv(
submodels=list(mod1=list(formula=cbind(npos,nneg)~treatment+(1|clinic),family=binomial()),

mod2=list(formula=np2~treatment+(1|clinic),
family=poisson(), fixed=list(lambda=c("1"=1)))),

X2X = X_4to3,
data=climv))

# => the column names of 'X_4to3' are the fixed-effect names in all output.

#### Prediction with a residual-dispersion model
set.seed(123)
beta_dat <- data.frame(y=runif(100),grp=sample(2,100,replace = TRUE), x_het=runif(100),

y2=runif(100))
(mvfit <- fitmv(list(list(y ~1+(1|grp), family=beta_resp(), resid.model = ~x_het),

list(y2 ~1+(1|grp), family=beta_resp())),
data= beta_dat))

misspred <- beta_dat[1:3,]
misspred$x_het[1] <- NA # missing info for residual variance of first submodel

## => prediction missing when this info is needed:
#
length(predict(mvfit, newdata=misspred)) # 6 values: missing info not needed for point predictions
length(get_residVar(mvfit, newdata=misspred)) # 5 values
length(get_respVar(mvfit, newdata=misspred)) # 5 values
# Missing info not needed for predVar (**as opposed to respVar**)
length(get_predVar(mvfit, newdata=misspred)) # 6 values
#
# Same logic for interval computations:
#
dim(attr(predict(mvfit, newdata=misspred, intervals="respVar"),"intervals")) # 5,2
dim(attr(predict(mvfit, newdata=misspred, intervals="predVar"),"intervals")) # 6,2
#
# Same logic for simulate():
#
length(simulate(mvfit, newdata=misspred)) # 5 as simulation requires residVar

fixed Fixing some parameters
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Description

The fitting functions allow all parameters to be fixed rather than estimated:
* Fixed-effect coefficients can be set by way of the etaFix argument (linear predictor coefficients)
for all fitting functions.
* Random-effect parameters and the phi parameter of the gaussian and Gamma response families
can be set for all fitting function by the fixed argument, or for some fitting functions by an al-
ternative argument with the same effect (see Details for this confusing feature, but using fixed
uniformly is simpler).
* The ad-hoc dispersion parameter of some response families (COMPoisson, negbin1, negbin2,
beta_resp, betabin and possibly future ones) can be fixed using the ad-hoc argument of such
families rather than by fixed.

Details

etaFix is a list with single documented element beta, which should be a vector of (a subset of) the
coefficients (β) of the fixed effects, with names as shown in a fit without such given values. If REML
is used to fit random effect parameters, then etaFix affects by default the REML correction for es-
timation of dispersion parameters, which depends only on which β coefficients are estimated rather
than given. This default behaviour will be overridden whenever a non-null REMLformula is pro-
vided to the fitting functions (see Example). Alternatively, with a non-NULL etaFix$beta, REML
can also be performed as if all β coefficients were estimated, by adding attribute keepInREML=TRUE
to etaFix$beta; in that case the REML computation is by default that implied by the fixed effects
in the full model formula, unless a non-default REMLformula is also used.

The older equivalent for the fixed argument is ranFix for HLfit and corrHLfit, and ranPars for
HLCor. Do not use both one such argument and fixed in a call. This older diversity of names was
confusing, but its logic was that ranFix allows one to fix parameters that HLfit and corrHLfit
would otherwise estimate, while ranPars can be used to set correlation parameters that HLCor does
not estimate but nevertheless requires (e.g., Matérn parameters).

Theses arguments for fixing random-effect parameters all have a common syntax. They is a list,
with the following possible elements, whose nature is further detailed below:
* phi (variance of residual error, for gaussian and Gamma HGLMs),
* lambda (random-effect variances, except for random-coefficient terms),
* ranCoefs (random-coefficient parameters),
* corrPars (correlation parameters, when handled by the fitting function).
* Individual correlation parameters such as rho, nu, Nugget, ARphi... are also possible top-level
elements of the list when there is no ambiguity as to which random effect these correlation parame-
ters apply. This syntax was conceived when spaMM handled a single spatial random effect, and it is
still convenient when applicable, but it should not be mixed with corrPars element usage.

phi may be a single value or a vector of the same length as the response vector (the number of rows
in the data, once non-informative rows are removed).

lambda may be a single value (if there is a single random effect, or a vector allowing to specify un-
ambiguously variance values for some random effect(s). It can thus take the form lambda=c(NA,1)
or lambda=c("2"=1) (note the name) to assign a value only to the variance of the second of two
random effects.

ranCoefs is a list of numeric vectors, each numeric vector specifying the variance and correlation
parameters for a random-coefficient term. As for lambda, it may be incomplete, using names to
specify the random effect to which the parameters apply. For example, to assign variances values
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3 and 7, and correlation value -0.05, to the second random effect in a model formula, one can use
ranCoefs=list("2"=c(3,-0.05,7)) (note the name). The elements of each vector are variances
and correlations, matching those of the printed summary of a fit. The order of these elements must
be the order of the lower.tri of a covariance matrix, as shown e.g. by
m2 <- matrix(NA, ncol=2,nrow=2); m2[lower.tri(m2,diag=TRUE)] <- seq(3); m2.
fitme accepts partially fixed parameters for a random coefficient term, e.g.,
ranCoefs=list("2"=c(NA,-0.05,NA)), although this may not mix well with some obscure op-
tions, such as
control=list(refit=list(ranCoefs=TRUE)) which will ignore the fixed values. Several exam-
ples in the package documentation illustrate the use of the convenience function ranCoefs_for_diag
to fit only the variances. GxE further shows how to use partially-fixed ranCoefs to fit different vari-
ances for different levels of a factor.

corrPars is a list, and it may also be incomplete, using names to specify the affected random effect
as shown for lambda and ranCoefs. For example, ranFix=list(corrPars=list("1"=list(nu=0.5)))
makes explicit that nu=0.5 applies to the first ("1") random effect in the model formula. Its ele-
ments may be the correlation parameters of the given random effect. For the Matérn model, these
are the correlation parameters rho (scale parameter(s)), nu (smoothness parameter), and (optionally)
Nugget (see Matern). The rho parameter can itself be a vector with different values for different ge-
ographic coordinates. For the adjacency model, the only correlation parameter is a scalar rho (see
adjacency). For the AR1 model, the only correlation parameter is a scalar ARphi (see AR1). Consult
the documentation for other types of random effects, such as Cauchy or IMRF, for any information
missing here.

See Also

Convenience functions for specifying constraints on random-coefficient terms: ranCoefs_for_diag,
lev2bool.

Examples

## Not run:
data("wafers")
# Fixing random-coefficient parameters:
fitme(y~X1+(X2|batch), data=wafers, fixed=list(ranCoefs=list("1"=c(2760, -0.1, 1844))))
## HLfit syntax for the same effect (except that REML is used here)
# HLfit(y~X1+(X2|batch), data=wafers, ranFix=list(ranCoefs=list("1"=c(2760, -0.1, 1844))))

### Fixing coefficients of the linear predictor:
#
## ML fit
#
fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log),

etaFix=list(beta=c("(Intercept)"=5.61208)))
#
## REML fit
# Evaluation of restricted likelihood depends on which fixed effects are estimated,
# so simply fixing the coefficients to their REML estimates will not yield
# the same REML fits, as see by comparing the next two fits:
#
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unconstr <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers,
family=Gamma(log), method="REML")

#
# Second fit is different from 'unconstr' despite the same fixed-effects:
naive <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log),

method="REML", etaFix=list(beta=fixef(unconstr)))
#
# Using REMLformula to obtain the same REML fit as the unconstrained one:
fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log),

method="REML", etaFix=list(beta=fixef(unconstr)),
REMLformula=y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch))

data("Loaloa")
# Fixing some Matern correlation parameters, in fitme():
fitme(cbind(npos,ntot-npos) ~ elev1 +Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),fixed=list(nu=0.5,Nugget=2/7))
# Fixing all mandatory Matern correlation parameters, in HLCor():
HLCor(cbind(npos,ntot-npos) ~ elev1 + Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),ranPars=list(nu=0.5,rho=0.7))

## End(Not run)

fixedLRT Likelihood ratio test of fixed effects.

Description

fixedLRT performs a likelihood ratio (LR) test between two models, the “full” and the “null” mod-
els, currently differing only in their fixed effects. Parametric bootstrap p-values can be computed,
either using the raw bootstrap distribution of the likelihood ratio, or a bootstrap estimate of the
Bartlett correction of the LR statistic. This function differs from LRT in its arguments (model fits
for LRT, versus all arguments required to fit the models for fixedLRT), and in the format of its return
value.

Usage

fixedLRT(null.formula, formula, data, method, HLmethod = method,
REMLformula = NULL, boot.repl=0, control="DEPRECATED",
control.boot="DEPRECATED", fittingFunction, seed=NULL,
resp_testfn = NULL, weights.form = NULL, ...)

Arguments

null.formula Either a formula (as in glm) or a predictor (see Predictor) for the null model.

formula Either a formula or a predictor for the full model.

data A data frame containing the variables in the model.
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method A method to fit the full and null models. See method information about such
methods. The two most meaningful values of method in fixedLRT calls are:
'ML' for an LRT based on ML fits (generally recommended); and 'PQL/L' for
an LRT based on PQL/L fits (recommended for spatial binary data).
Also feasible, but more tricky, and not really recommended (see Rousset and
Ferdy, 2014), is 'REML'. This will perform an LRT based on two REML fits of
the data, *both* of which use the same conditional (or “restricted”) likelihood
of residuals for estimating dispersion parameters λ and ϕ (see REMLformula
argument). Further, REML will not be effective on a given dispersion parameter
if a non-trivial init.corrHLfit value is provided for this parameter.

HLmethod Kept for back-compatibility. Same as method, but may work only for
fittingFunction=corrHLfit.

REMLformula a formula specifying the fixed effects which design matrix is used in the REML
correction for the estimation of dispersion parameters, if these are estimated by
REML. This formula is by default that for the *full* model.

weights.form Specification of prior weights by a one-sided formula: use weights.form = ~
pw instead of prior.weights = pw. The effect will be the same except that such
an argument, known to evaluate to an object of class "formula", is suitable to
enforce safe programming practices (see good-practice).

boot.repl the number of bootstrap replicates.

control Deprecated.

control.boot Deprecated.
fittingFunction

Character string giving the function used to fit each model: either "corrHLfit"
or "fitme". Default is "corrHLfit" for small data sets (fewer than 300 obser-
vations), and "fitme" otherwise, but this may change in future versions.

seed Passed to simulate.HLfit

resp_testfn See argument resp_testfn of spaMM_boot

... Further arguments passed to or from other methods; presently, additional argu-
ments passed to fitting functions.

Details

Comparison of REML fits is a priori not suitable for performing likelihood ratio tests. Nevertheless,
it is possible to contrive them for testing purposes (Welham & Thompson 1997). This function
generalizes some of Wehlam & Thompson’s methods to GLMMs.

See Details in LRT for details of the bootstrap procedures.

Value

An object of class fixedLRT, actually a list with as-yet unstable format, but here with typical ele-
ments (depending on the options)

fullfit the HLfit object for the full model;

nullfit the HLfit object for the null model;
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LRTori A likelihood ratio chi-square statistic

LRTprof Another likelihood ratio chi-square statistic, after a profiling step, if any.

df the number of degrees of freedom of the test.

trace.info Information on various steps of the computation.

and, if a bootstrap was performed, the additional elements described in LRT.

References

Rousset F., Ferdy, J.-B. (2014) Testing environmental and genetic effects in the presence of spatial
autocorrelation. Ecography, 37: 781-790. doi:10.1111/ecog.00566

Welham, S. J., and Thompson, R. (1997) Likelihood ratio tests for fixed model terms using residual
maximum likelihood, J. R. Stat. Soc. B 59, 701-714.

See Also

See LRT for simular tests with a different interface, and perhaps as_LMLT for access to a different
testing approach for LMMs, implemented in lmerTest::contest.

Examples

if (spaMM.getOption("example_maxtime")>1.9) {
data("blackcap")
## result comparable to the corrHLfit examples based on blackcap
fixedLRT(null.formula=migStatus ~ 1 + Matern(1|longitude+latitude),

formula=migStatus ~ means + Matern(1|longitude+latitude),
method='ML',data=blackcap)

}
if (spaMM.getOption("example_maxtime")>156) {
## longer version with bootstrap
fixedLRT(null.formula=migStatus ~ 1 + Matern(1|longitude+latitude),

formula=migStatus ~ means + Matern(1|longitude+latitude),
method='ML',data=blackcap, boot.repl=100, seed=123)

}

fix_predVar Prediction from models with nearly-singular covariance matrices

Description

This explains how to handle a warning occurring in computation of prediction variance, where the
user is directed here.

For Matern or Cauchy correlation models with vanishing scale factor for distances, a warn-
ing may be produced when predict.HLfit (or get_predVar, etc.) is called with non-NULL
newdata, because a nearly-singular correlation matrix of the random effect is met. To decide what
to do in that case, users should compare the values of get_predVar(.) and get_predVar(.,
newdata=myfit$data) (see Example below). In the absence of numerical inaccuracies, The two

https://doi.org/10.1111/ecog.00566


fix_predVar 85

values should be identical, and in the presence of such inaccuracies, the more reliable value is
the first one. In really poor cases, the second syntax may yield negative prediction variances. If
users deem the inaccuracies too large, they should use control=list(fix_predVar=TRUE) in the
next call to predict.HLfit (or get_predVar, etc.) as shown in the Example. The drawback of
this control is that the computation may be slower, and might even exceed memory capacity for
large problems (some matrix operations being performed with exact rational arithmetic, which is
memory-consuming for large matrices). it is also still experimental, in the sense that I fear that bugs
(stop) may occur. If the user instead chooses control=list(fix_predVar=FALSE), the default
standard floating-point arithmetic is used, but no warning is issued.

For fix_predVar left NULL (the default), standard floating-point arithmetic is also used. But in
addition (with exceptions: see Details), the warning keeps being issued, and the (possibly costly)
computation of the inverse of the correlation matrix is not stored in the fitted model object, hence
is repeated for each new prediction variance computation. This is useful to remind users that some-
thing needs to be done, but for programming purposes where repeated warnings may be a nui-
sance, one can use control=list(fix_predVar=NA) which will issue a warning then perform as
control=list(fix_predVar=FALSE), i.e. store an approximate inverse so the warning is not is-
sued again. Finally, control=list(fix_predVar=NaN) will remove the inverse of the correlation
matrix from the fitted model object, and start afresh as if the control was NULL.

Details

Nearly-singular correlation matrices of random effects occur in several contexts. For random-slope
models, it commonly occurs that the fitted correlation between the random effects for Intercept and
slope is 1 or -1, in which case the correlation matrix between these random effects is singular. This
led to quite inaccurate computations of prediction variances in spaMM prior to version 3.1.0, but
this problem has been fixed.

control=list(fix_predVar=NaN) may be more appropriate than control=list(fix_predVar=NULL)
when predict.HLfit is called through code that one cannot control. For this reason, spaMM pro-
vides another mode of control of the default. It will convert control=list(fix_predVar=NULL)
to other values when the call stack has call names matching the patterns given by
spaMM.getOption("fix_predVar") (as understood by grep). Thus if spaMM.getOption("fix_predVar")$"NA"=="MSL|bboptim",
the default behaviour is that defined by control=list(fix_predVar=NA) when predict.HLfit is
called through Infusion::MSL or blackbox::bboptim. FALSE or TRUE are handled in a similar
way.

Examples

data("blackcap")
fitobject <- corrHLfit(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

ranFix=list(nu=10,rho=0.001)) ## numerically singular C
get_predVar(fitobject,newdata=blackcap[6,])
## => warning => let us apply the recommended procedure:
get_predVar(fitobject)
get_predVar(fitobject,newdata=fitobject$data)
# Negative values again in the second case => easy decision:
get_predVar(fitobject,newdata=blackcap[1:6,],

control=list(fix_predVar=TRUE)) # now it's accurate
# and the accuracy control is stored in the object:

get_predVar(fitobject,newdata=blackcap[1:6,])
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# Clean and start afresh:
get_predVar(fitobject,newdata=blackcap[1:6,],

control=list(fix_predVar=NaN))

freight Freight dataset

Description

A set of data on airfreight breakage. Data are given on 10 air shipments, each carrying 1000 ampules
of some substance. For each shipment, the number of ampules found broken upon arrival, and the
number of times the shipments were transferred from one aircraft to another, are recorded.

Usage

data("freight")

Format

The data frame includes 10 observations on the following variables:

broken number of ampules found broken upon arrival.

transfers number of times the shipments were transferred from one aircraft to another.

id Shipment identifier.

Source

The data set is reported by Kutner et al. (2003) and used by Sellers & Shmueli (2010) to illustrate
COMPoisson analyses.

References

Kutner MH, Nachtsheim CJ, Neter J, Li W (2005, p. 35). Applied Linear Regression Models,
Fourth Edition. McGraw-Hill.

Sellers KF, Shmueli G (2010) A Flexible Regression Model for Count Data. Ann. Appl. Stat. 4:
943–961

Examples

## see ?COMPoisson for examples
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get_cPredVar Estimation of prediction variance with bootstrap correction

Description

This function is similar to get_predVar except that is uses a bootstrap procedure to correct for bias
in the evaluation of the prediction variance.

Usage

get_cPredVar(pred_object, newdata, nsim, seed, type = "residual",
variances=NULL, nb_cores = NULL, fit_env = NULL,
sim_object=pred_object)

Arguments

pred_object an object of class HLfit, as returned by the fitting functions in spaMM.

newdata passed to predict.HLfit (it thus represents a prediction design, not to be con-
fused with the bootstrap samples)

nsim passed to simulate.HLfit

seed passed to simulate.HLfit

type passed to simulate.HLfit

variances NULL or list; variances["cov"] will be passed to predict.HLfit to control
whether a covariance matrix is computed or not. Other elements are currently
ignored.

nb_cores integer: number of cores to use for parallel computation of bootstrap. The de-
fault is spaMM.getOption("nb_cores"), and 1 if the latter is NULL. nb_cores=1
prevents the use of parallelisation procedures.

fit_env For parallel computations: an environment containing objects to be passed to
the cores. They should have the same name in fit_env as in the environment
they are passed from.

sim_object an object of class HLfit, passed to simulate.HLfit as its object argument.
Simulating from this object must produce response values that can be used as
replacement to those of the original fitted pred_object. In standard usage,
sim_object=pred_object (the default).

Details

The result provided by get_cPredVar is similar to the CMSEP (Conditional Mean Standard Error
of Prediction) introduced by Booth and Hobert (1998; “B&H”). This paper is known for pointing
the importance of using conditional variances when they differ from unconditional ones. This is
hard to miss in spatial models, where the relevant prediction variance typically depends on the
variance of random effects conditional on the data. Thus, the alternative function get_predVar
already accounts for this and returns a prediction variance that depends on a joint covariance of
fixed-effect estimates and of random effects given the data.
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B&H also used a conditional bootstrap procedure to correct for some bias. get_cPredVar imple-
ments a similar procedure, in contrast to get_predVar. Their conditional bootstrap procedure is
not applicable for autocorrelated random effects, and parametric bootstrapping of the residuals of
the fitted model (as implied by the default value of argument type) is used instead here. Apart from
this difference, the returned value includes exactly the same terms as those discussed by B&H: their
“naive estimate” νi and its bootstrap correction bi, their correction β for uncertainty in fixed-effect
coefficients, and their correction σ2 for uncertainty in dispersion parameters.

This use of the bootstrap does not account for uncertainty in correlation parameters “outer-optimized”
by fitme or corrHLfit, because the correlation parameters are fixed when the model is refitted on
the bootstrap replicates. Even if it the correlation parameters were refitted, the full computation
would not be sufficient to account for uncertainty in them. To account for uncertainty in correla-
tion parameters, one should rather perform a parametric bootstrap of the full model (typically using
spaMM_boot(., type="residual")), which may take much more time.

The “naive estimate” νi is not generally an estimate of anything uniquely defined by the model pa-
rameters: for correlated random effects, it depends on the “root” of the correlation matrix of the ran-
dom effects, which is not unique. Thus νi is not unique, and may differ for example for equivalent
fits by sparse-precision methods vs. other methods. Nevertheless, attr(cpredvar,"info")$naive
does recover published values in the Examples below, as they involve no correlation matrix.

Value

A vector of prediction variances, with an attribute info which is an environment containing vari-
ables:

SEs the standard errors of the estimates (which are those of the bootstrap replicates)

bias the bias term

maive B&H’s “naive” νi

References

Booth, J.G., Hobert, J.P. (1998) Standard errors of prediction in generalized linear mixed models.
J. Am. Stat. Assoc. 93: 262-272.

Examples

## Not run:
if(requireNamespace("rsae", quietly = TRUE)) {

# LMM example from Booth & Hobert 1998 JASA
data("landsat", package = "rsae")
fitCorn <- fitme(HACorn ~ PixelsCorn + PixelsSoybeans + (1|CountyName),data=landsat[-33,])
newXandZ <- unique(data.frame(PixelsCorn=landsat$MeanPixelsCorn,

PixelsSoybeans=landsat$MeanPixelsSoybeans,
CountyName=landsat$CountyName))

(cpredvar <- get_cPredVar(fitCorn, newdata=newXandZ, nsim=200L, seed=123)) # serial computation
(cpredvar <- get_cPredVar(fitCorn, newdata=newXandZ, nsim=200L, seed=123,

nb_cores=parallel::detectCores(logical=FALSE)-1L,
fit_env=list2env(list(newXandZ=newXandZ))))

}
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# GLMM example from Booth & Hobert 1998 JASA
data(clinics)
fitClinics <- HLfit(cbind(npos,nneg)~treatment+(1|clinic),family=binomial(),data=clinics)
#
(get_cPredVar(fitClinics, newdata=clinics[1:8,], nsim=200L, seed=123)) # serial computation
(get_cPredVar(fitClinics, newdata=clinics[1:8,], nsim=200L, seed=123,

nb_cores=parallel::detectCores(logical=FALSE)-1L,
fit_env=list2env(list(clinics=clinics))))

## End(Not run)

get_inits_from_fit Initiate a fit from another fit

Description

get_inits_from_fit is an extractor of some fitted values from a fit in a convenient format to
initiate a next fit.

Usage

get_inits_from_fit(from, template = NULL, to_fn = NULL, inner_lambdas=FALSE)

Arguments

from Fit object (inheriting from class "HLfit") from which fitted values are taken.

template Another fit object. Usage with a template fit object is suitable for refitting this
object using fitted values from the from object as starting values.

to_fn NULL or character: the name of the function to be used the next fit. If NULL,
taken from template (if available), else from from. It is meaningful to provide
a to_fn distinct from the function used to fit a template.

inner_lambdas Boolean; Whether the output should include estimates of the dispersion param-
eters estimated by the iterative methods implemented in HLfit.

Value

A list with elements

init, init.corrHLfit
(depending on the fitting function) giving initial values for outer-optimization;

init.HLfit giving initial values for the iterative algorithms in HLfit. It is itself a list with
possible elements:

fixef for the coefficients of the linear predictor, adjusted to the format of the
coefficients of the linear predictor of the template object, if available;

ranCoefs random-coefficients parameters (if not outer-optimized).
Undocumented attributes may be attached, and some of the parameters may
be transformed.
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See Also

get_ranPars and VarCorr.

Examples

## Not run:
data("blackcap")
(corrhlfit <- corrHLfit(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

method="ML"))
inits <- get_inits_from_fit(corrhlfit, to_fn = "fitme")
(fitfit <- fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

init=inits[["init"]]))
inits <- get_inits_from_fit(corrhlfit, template = fitfit)
fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

init=inits[["init"]])
# In these examples, inits$init.HLfit is useless
# as it is ignored when LMMs are fitted by fitme().

## End(Not run)

get_matrix Extract matrices from a fit

Description

get_matrix is a first attempt at a unified extractor of various matrices from a fit. All augmented
matrices follow (Henderson’s) block order (upper blocks: X,Z; lower blocks: 0,I). get_ZALMatrix
returns the design matrix for the random effects v.

Usage

get_matrix(object, which="model.matrix", augmented=TRUE, ...)
get_ZALMatrix(object, force_bind=TRUE)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

augmented Boolean; whether to return a matrix for all model coefficients (augmented ma-
trix for fixed-effects coefficients and random-effect predictions) or a matrix
only for fixed effects. Not operative for all which values (currently only for
which="left_ginv").

which Which element to extract. For "model.matrix", the design matrix for fixed
effects (similarly to stats::model.matrix); for "ZAL", the design matrix for
random effects (same as get_ZALMatrix()), while "ZA" and "L" may return
these two factors (detailed in random-effects); for "AugX", the (unweighted)
augmented design matrix of the least-square problem; for "hat_matrix", the
projection matrix that gives model predictions from the (augmented) response
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vector; for "left_ginv", the pseudo-inverse that gives the model coefficients
from the (augmented) response vector. See Details for further definitions and
options for functions of the augmented design matrix.

force_bind Boolean; with the non-default value FALSE, the function may return an object of
class ZAXlist, which is poorly documented and for development purposes only.

... Other arguments that may be needed in some future versions of spaMM.

Details

(Given the pain that it is to write maths in R documentation files, readers are gently asked to be
tolerant about any imperfections of the following).

Model coefficients estimates of a (weighted) linear model can be written as (X’WX)−1X’Wy where
X is the design matrix for fixed effects, W a diagonal weight matrix, and y the response vector. In a
linear mixed model, the same expression holds in terms of Henderson’s augmented design matrix,
of an augmented (still diagonal) weight matrix, and of an augmented response vector. For GLMMs
and hierarchical GLMs generally, the solution of each step of the iteratively reweighted least squares
algorithm again has the same expression in terms of appropriately defined augmented matrices and
vectors.

get_matrix returns, for given values of the which argument, the following matrices from the model
fit:
"AugX": X;
"wei_AugX": WX;
"wAugX": √(W)X;
"left_ginv": (X’WX)−1X’W (the name stems from the fact that it is generalized inverse, denoted
X−, since XX−X=X, and it is a left one, since X−X is an identity matrix when X has full rank);
"hat_matrix": XX−=X (X’WX)−1X’W;
"fixef_left_ginv": same as "left_ginv" but for the fixed-effect design matrix only (not to be
confused with the corresponding block of "left_ginv");
"beta_v_cov": joint covariance matrix of estimates/predictions of fixed-effect coefficients and
random effects (the v in random-effects). "v_condcov": covariance matrix of predictions of
random effects (the v in random-effects) given fixed-effect coefficients.

Value

A matrix, possibly in sparseMatrix format.

See Also

vcov for the variance-covariance matrix of the fixed-effects coefficients, and Corr for correlation
matrices of random effects.
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get_ranPars Operations on lists of parameters

Description

get_fittedPars returns estimated parameters.

get_ranPars returns various subsets of random-effect parameters (correlation or variance param-
eters), as controlled by its which argument. It is one of several extractors for fixed or estimated
parameters of different classes of parameters, for which a quick guide is

get_ranPars: for random-effect parameters, excluding residual dispersion (with a subtlety for
corrFamily models: see Details);
VarCorr: alternative extractor for random-effect (co)variance and optionally residual variance, in a
data frame format;
residVar: for residual variance parameters, family dispersion parameters, or information about
residual variance models;
get_residVar: alternative extractor of residual variances with different features inherited from
get_predVar;
get_inits_from_fit: extracts estimated parameters from a fit, in a different format from get_fittedPars.

remove_from_parlist removes elements from a list of parameters, and from its type attribute.

Usage

get_fittedPars(object, partial_rC="rm", phiPars=TRUE)
get_ranPars(object, which=NULL, verbose=TRUE,

lambda_names = "Group.Term", ...)
remove_from_parlist(parlist, removand=NULL, rm_names=names(unlist(removand)))

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

partial_rC Controls handling of partially-fixed random coefficients. The default as set by
"rm" is to remove the fixed values as for other parameters. But alternative option
"keep" will keep the fixed value, and NA will replace it by a NA.

phiPars Boolean: whether to include the parameters of any residual-dispersion model
for phi (se phi-resid.model) in the rdisPars element of the returned list.

which NULL or character string. Use which="corrPars" to get the correlation pa-
rameters. Use which="lambda" to get variances. see Details for the meaning of
this for heteroscedastic models, and Value for other possible which values.

... Other arguments that may be needed by some method.

verbose Boolean: Whether to print some notes.

parlist A list of parameters. see Details.

removand Optional. A list of parameters to be removed from parlist.
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rm_names Names of parameters to be removed from parlist. Mandatory if removand is
not given.

lambda_names By default the names of the lambda vector are built from the Group (RHS of
random effect term of the for (LHS|RHS)) and Term (variable from LHS). By
setting a non-default value of lambda_names the names will be integer indices of
the random-effect term in the model formula (currently, for which="ranef_var"
or NULL.

Details

For heteroscedastic random effects, such as conditional autoregressive models, the variance param-
eter “lambda” refers to a common scaling coefficient. For other random-effect models, “lambda”
typically refers to the single variance parameter.

remove_from_parlist is designed to manipulate structured lists of parameters, such as a list with
elements phi, lambda, and corrPars, the latter being itself a list structured as the return value of
get_ranPars(.,which="corrPars"). parlist may have an attribute type, also with elements
phi, lambda, and corrPars... If given, removand must have the same structure (but typically not
all the elements of parlist); otherwise, rm_names must have elements which match names of
unlist(names(parlist)).

If a corrFamily parameter is fixed through the formula term, as in ARp(1|time, p=3, fixed=c(p2=0)),
the fixed parameter is not considered a model parameter and get_ranPars will not extract it from
the object. However, the parameter will be extracted if it has been fixed through fitme’s fixed
argument rather than through the formula term (see example in ARp).

Value

get_fittedPars returns a list of model parameters, with possible elements: beta (fixed-effect co-
efficients); lambda, phi, ranCoefs and corrPars (same meaning as in fixed parameters); hyper,
for multIMRF models; the residual-dispersion parameters beta_prec, NB_shape and COMP_nu when
they are single scalars; and rdisPars for more complex residual-dispersion parameters. See the
specific resid.model and phi-resid.model documentations for the rdisPars format, dependent
on the nature of the residual-dispersion parameter being modelized. Use residVar(., which="fam_parm")
to extract the vector of fitted values of the dispersion parameter.

get_ranPars(.,which="corrPars") returns a (possibly nested) list of correlation parameters (or
NULL if there is no such parameter). Top-level elements correspond to the different random effects.
The list has a "type" attribute having the same nested-list structure and describing whether and how
the parameters where fitted: "fix" means they where fixed, not fitted; "var" means they were fitted
by HLfit’s specific algorithms; "outer" means they were fitted by a generic optimization method.

get_ranPars(.,which="lambda") returns a vector of variance values, one per random effect, in-
cluding both fixed, “outer”- and “inner”-optimized ones. The variances of random-coefficients
terms with correlation parameters are not included.

get_ranPars(.,which="outer_lambda") returns only “outer”-optimized variance parameters,
ignoring those fitted by HLfit’s specific algorithms.

get_ranPars(.,which=NULL) (the default) is not fully defined. It returns a list including the results
of which="lambda" and which="corrPars", but possibly other elements too.
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get_ranPars(.,which="fitted") is designed to provide fitted parameters with respect to which
an information matrix is to be calculated (using numDeriv. It excludes fixed values, and has no
type attribute.

get_ranPars(. which="ranef_var") (experimental) returns a list with elements

Var same as get_ranPars(.,which="lambda")

lembda_est A vector of variance values, one for each level of each random effect

outer A vector or outer-optimized variance values, as returned by get_ranPars(.,which="outer_lambda")

. . . Other elements, subject to change in later versions.

remove_from_parlist returns a list of model parameters with given elements removed, and like-
wise for its (optional) type attribute. See Details for context of application.

See Also

See get_fittedPars, VarCorr, residVar, get_residVar, or get_inits_from_fit as described
in the quick guide above.

Examples

data("wafers")
m1 <- HLfit(y ~X1+X2+(1|batch), resid.model = ~ 1, data=wafers, method="ML")
get_ranPars(m1,which="corrPars") # NULL since no correlated random effect

parlist1 <- list(lambda=1,phi=2,corrPars=list("1"=list(rho=3,nu=4),"2"=list(rho=5)))
parlist2 <- list(lambda=NA,corrPars=list("1"=list(rho=NA))) # values of elements do not matter
remove_from_parlist(parlist1,parlist2) ## same result as:
remove_from_parlist(parlist1,rm_names = names(unlist(parlist2)))

get_RLRsim_args Extractors of arguments for functions from package RLRsim

Description

get_RLRsim_args extracts a list of arguments suitable for a call to RLRsim::RLRTSim() or RLRsim::LRTSim().
These functions use an efficient simulation procedure to compute restricted or marginal likelihood
ratio tests, respectively, comparing a fixed-effect model and a mixed-effect model with one random
effect. They are notably used to test for the presence of one random effect, although the models
compared by marginal likelihood (LRTSim()) may differ both in their random and in their fixed
effects (as shown in the Example). The tests are exact for small samples (up to simulation error) for
LMMs with no free parameters in the random effect (beyond the variance being tested), so not for
time-series or spatial models with estimated correlation parameters. Heteroscedasticity of the resid-
uals or of the random effect variance are also not taken into account by the simulation procedure
(see Value field below for an hint why this is so).

get_RLRTSim_args is the older extractor, originally for RLRsim::RLRTSim() only, now handling
also ML fits with a warning (though the possible absence of the nullfit argument will result in an
error).
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Usage

get_RLRsim_args(fullfit, nullfit, verbose=TRUE, REML=NA, ...)
get_RLRTSim_args(object, verbose=TRUE, ...)

Arguments

object, fullfit An object of class HLfit, as returned by the fitting functions in spaMM, for the
more complete model to be compared.

nullfit Same for the less complete model; required only for (marginal) LR test, as op-
posed to restricted LR test.

verbose NA or boolean; Whether to display some message or not.

REML For programming purposes, not documented.

... Additional arguments (currently not used).

Details

If the models compared do not differ in their fixed effects, under the null hypothesis there is a
probability mass P for a zero likelihood ratio, and the distribution of p-values can be uniform only
on the range (0,1-P). If the fixed effects differ (as handled by RLRsim::LRTSim()), this does not
occur.

Value

A list of arguments for a call to RLRsim::RLRTSim() or RLRsim::LRTSim(). The main arguments
are the design matrix for the fixed effects, and the ZA matrix and L detailed in random-effects
(here represented by the Z and sqrt.Sigma elements). The models handled by the testing procedure
are the ones that are sufficiently characterized by these two matrices. LRTSim additionally requires
q, the difference in number of parameters of fixed effects between the models.

Note

The inconsistent capitalisation of ’s’ in the function names is consistent with the inconsistencies in
the RLRsim package.

References

Crainiceanu, C. and Ruppert, D. (2004) Likelihood ratio tests in linear mixed models with one
variance component, Journal of the Royal Statistical Society: Series B,66,165–185.

See Also

The bootstrap procedure in LRT is more general but slower. It appears to provide results quite similar
to those of RLRsim when both are applicable.
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Examples

## Not run:
## Derived from example in RLRsim::LRTSim
set.seed(123)
dat <- data.frame(g = rep(1:10, e = 10), x = (x<-rnorm(100)),

y = 0.1 * x + rnorm(100))
m <- fitme(y ~ x + (1|g), data=dat)
m0 <- fitme(y ~ 1, data=dat)
(obs.LRT <- 2*(logLik(m)-logLik(m0)))
args <- get_RLRsim_args(m,m0)
sim.LRT <- do.call(RLRsim::LRTSim, args )
(RLRpval <- (sum(sim.LRT >= obs.LRT) + 1) / (length(sim.LRT) + 1))
## comparable test using LRT():
# (bootpval <- LRT(m,m0, boot.repl = 199L)$rawBootLRT$p_value)

## End(Not run)

gof Goodness of fit test

Description

Performs a test of goodness of fit. The only method implemented so far is based on randomized
quantile residuals (Dunn & Smyth, 1996).

Usage

gof(object, method = "RQR", ...)

Arguments

object A fit object inheriting from class "HLfit", as returned by spaMM’s main fitting
functions.

method Character string; a method of test of goodness of fit.

... Further arguments possibly passed to internal methods.

Value

Returns the value of a call to shapiro.test (“a list with class "htest"”) with added element RQR,
itself a list including the randomized residuals.

References

Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5, 1-10.
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Examples

data("Orthodont", package = "nlme")
sp1 <- fitme(distance ~ age * Sex + (1 | Subject), data = Orthodont)
gof(sp1) # classic toy example, but poor fit.

good-practice Clear and trustworthy formulas and prior weights

Description

Base fitting functions in R will seek variables in the environment where the formula was defined
(i.e., typically in the global environment), if they are not in the data. This increases the memory
size of fit objects (as the formula and attached environment are part of such objects). This also
easily leads to errors (see example in the discussion of update.HLfit). Indeed Chambers (2008,
p.221), after describing how the environment is defined, comments that “Where clear and trustwor-
thy software is a priority, I would personally avoid such tricks. Ideally, all the variables in the model
frame should come from an explicit, verifiable data source...”. Fitting functions in spaMM try to
adhere to such a principle, as they assume by default that all variables from the formula should be
in the data argument (and then, one never needs to specify “data$” in the formula.. spaMM im-
plements this by default by stripping the formula environment from any variable. It is also possible
to assign a given environment to the formula, through the control control.HLfit$formula_env:
see Examples.

The variables defining the prior.weights should also be in the data. However, the implementation
of the prior.weights argument has limitations that can be overcome by using the more recently
introduced weights.formula argument of spaMM fitting functions (see Examples, where this is
also compared with stats::lm’s handling of its weights argument).

However, variables used in other arguments such as ranFix are looked up neither in the data nor in
the formula environment, but in the calling environment as usual.

References

Chambers J.M. (2008) Software for data analysis: Programming with R. Springer-Verlag New York

Examples

####### Controlling the formula environment

set.seed(123)
d2 <- data.frame(y = seq(10)/2+rnorm(5)[gl(5,2)], x1 = sample(10), grp=gl(5,2), seq10=seq(10))
# Using only variables in the data: basic usage
# HLfit(y ~ x1 + seq10+(1|grp), data = d2)
# is practically equivalent to
HLfit(y ~ x1 + seq10+(1|grp), data = d2,

control.HLfit = list(formula_env=list2env(list(data=d2))))
#
# The 'formula_env' avoids the need for the 'seq10' variable:
HLfit(y ~ x1 + I(seq_len(nrow(data)))+(1|grp), data = d2,
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control.HLfit = list(formula_env=list2env(list(data=d2))))
#
# Internal implementation allows formula_env to be
# in 'control' if 'control.HLfit' is absent:
fitme(y ~ x1 + I(seq_len(nrow(data)))+(1|grp), data = d2,

control = list(formula_env=list2env(list(data=d2))))

####### Prior-weights misery

data("hills", package="MASS")

(fit <- lm(time ~ dist + climb, data = hills, weights=1/dist^2))
# same as
(fit <- fitme(time ~ dist + climb, data = hills, prior.weights=1/dist^2, method="REML"))

# possible calls:
(fit <- fitme(time ~ dist + climb, data = hills, prior.weights=quote(1/dist^2)))
(fit <- fitme(time ~ dist + climb, data = hills, prior.weights= 1/hills$dist^2))
(fit <- fitme(time ~ dist + climb, data = hills, weights.form= ~ 1/dist^2))
(fit <- fitme(time ~ dist + climb, data = hills, weights.form= ~ I(1/dist^2)))

# Also syntactically correct since 'dist' is found in the data:
(fit <- fitme(time ~ dist + climb, data = hills, weights.form= ~ rep(2,length(dist))))

#### Programming with prior weights:

## Different ways of passing prior weights to fitme() from another function:

wrap_as_form <- function(weights.form) {
fitme(time ~ dist + climb, data = hills, weights.form=weights.form)

}

wrap_as_pw <- function(prior.weights) {
fitme(time ~ dist + climb, data = hills, prior.weights=prior.weights)

}

wrap_as_dots <- function(...) {
fitme(time ~ dist + climb, data = hills,...)

}

## Similarly for lm:

wrap_lm_as_dots <- function(...) {
lm(time ~ dist + climb, data = hills, ...)

}

wrap_lm_as_arg <- function(weights) {
lm(time ~ dist + climb, data = hills,weights=weights)

}

## Programming errors with stats::lm():
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pw <- rep(1e-6,35) # or even NULL

(fit <- wrap_lm_as_arg(weights=pw)) # catches weights from global envir!
(fit <- lm(time ~ dist + climb, data = hills, weights=pw)) # idem!

(fit <- lm(time ~ dist + climb, data = hills,
weights=hills$pw)) # fails silently - no $pw in 'hills'

(fit <- wrap_lm_as_dots(weights=hills$pw)) # idem!
(fit <- wrap_lm_as_arg(weights=hills$pw)) # idem!

## Safer spaMM results:

try(fit <- wrap_as_pw(prior.weights= pw)) # correctly catches problem
try(fit <- wrap_as_dots(prior.weights=hills$pw)) # correctly catches problem
(fit <- wrap_as_dots(prior.weights=1/dist^2)) # correct
(fit <- wrap_as_dots(prior.weights=quote(1/dist^2))) # correct

## But 'prior.weights' limitations:

try(fit <- wrap_as_pw(prior.weights= 1/hills$dist^2)) # fails (stop)
try(fit <- wrap_as_pw(prior.weights= 1/dist^2)) # fails (stop)
try(fit <- wrap_as_pw(prior.weights= quote(1/dist^2))) # fails (stop)

## Problems all solved by using 'weights.form':

try(fit <- wrap_as_form(weights.form= ~ pw)) # correctly catches problem
(fit <- wrap_as_form(weights.form= ~1/dist^2)) # correct
(fit <- wrap_as_form(weights.form= ~1/hills$dist^2)) # correct
(fit <- wrap_as_dots(weights.form= ~ 1/dist^2)) # correct

rm("pw")

Gryphon Gryphon data

Description

Loading these data loads three objects describing a mythical ’Gryphon’ population used by Wilson
et al. to illustrate mixed-effect modelling in quantitative genetics. These objects are a data frame
Gryphon_df containing the model variables, a genetic relatedness matrix Gryphon_A, and another
data frame Gryphon_pedigree containing pedigree information (which can be used by some pack-
ages to reconstruct the relatedness matrix).

Usage

data("Gryphon")
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Format

Gryphon_df is

'data.frame': 1084 obs. of 6 variables:
$ ID : int 1029 1299 ...: individual identifier
$ sex : Factor w/ 2 levels "1","2": sex, indeed
$ year : Factor w/ 34 levels "968","970", ...: birth year
$ mother: Factor w/ 429 levels "1","2",..: individual's mother identifier
$ BWT : num 10.77 9.3 ...: birth weight
$ TARSUS: num 24.8 22.5 12 ...: tarsus length

Gryphon_A is a genetic relatedness matrix, in sparse matrix format, for 1309 individuals.

Gryphon_pedigree is

'data.frame': 1309 obs. of 3 variables:
$ ID : int 1306 1304 ...: individual identifier
$ Dam : int NA NA ...: individual's mother
$ Sire: int NA NA ...: individual's father

References

Wilson AJ, et al. (2010) An ecologist’s guide to the animal model. Journal of Animal Ecology
79(1): 13-26. doi:10.1111/j.13652656.2009.01639.x

Examples

#### Bivariate-response model used as example in Wilson et al. (2010):
# joint modelling of birth weight (BWT) and tarsus length (TARSUS).

# The relatedness matrix is specified as a 'corrMatrix'. The random
# effect 'corrMatrix(0+mv(1,2)|ID)' then represents genetic effects
# correlated over traits and individuals (see help("composite-ranef")).
# The ...(0+...) syntax avoids contrasts being used in the design
# matrix of the random effects, as it would not does make much sense
# to represent TARSUS as a contrast to BWT.

# The relatedness matrix will be specified through its inverse,
# using as_precision(), so that spaMM does not have to find out and
# inform the user that using the inverse is better (as is typically
# the case for relatedness matrices). But using as_precision() is
# not required. See help("algebra") for Details.

# The second random effect '(0+mv(1,2)|ID)' represents correlated
# environmental effects. Since measurements are not repeated within
# individuals, this effect also absorbs all residual variation. The
# residual variances 'phi' must then be fixed to some negligible values
# in order to avoid non-identifiability.

if (spaMM.getOption("example_maxtime")>7) {
data("Gryphon")

https://doi.org/10.1111/j.1365-2656.2009.01639.x
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gry_prec <- as_precision(Gryphon_A)
gry_GE <- fitmv(

submodels=list(BWT ~ 1 + corrMatrix(0+mv(1,2)|ID)+(0+mv(1,2)|ID),
TARSUS ~ 1 + corrMatrix(0+mv(1,2)|ID)+(0+mv(1,2)|ID)),

fixed=list(phi=c(1e-6,1e-6)),
corrMatrix = gry_prec,
data = Gryphon_df, method = "REML")

# Estimates are practically identical to those reported for package
# 'asreml' (https://www.vsni.co.uk/software/asreml-r)
# according to Supplementary File 3 of Wilson et al., p.7:

lambda_table <- summary(gry_GE, digits=5,verbose=FALSE)$lambda_table
by_spaMM <- na.omit(unlist(lambda_table[,c("Var.","Corr.")]))[1:6]
by_asreml <- c(3.368449,12.346304,3.849875,17.646017,0.381463,0.401968)
by_spaMM/by_asreml-1 # relative differences ~ O(1e-4)

}

hatvalues.HLfit Leverage extractor for HLfit objects

Description

This gets “leverages” or “hat values” from an object. However, there is hidden complexity in what
this may mean, so care must be used in selecting proper arguments for a given use (see Details). To
get the full hat matrix, see get_matrix(., which="hat_matrix").

Usage

## S3 method for class 'HLfit'
hatvalues(model, type = "projection", which = "resid", force=FALSE, ...)

Arguments

model An object of class HLfit, as returned by the fitting functions in spaMM.

type Character: "projection", "std", or more cryptic values not documented here.
See Details.

which Character: "resid" for the traditional leverages of the observations, "ranef"
for random-effect leverages, or "both" for both.

force Boolean: to force recomputation of the leverages even if they are available in
the object, for checking purposes.

... For consistency with the generic.
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Details

Leverages may have distinct meaning depending on context. The textbook version for linear models
is that leverages (qi) are the diagonal elements of a projection matrix (“hat matrix”), and that they
may be used to standardize (“studentize”) residuals as follows. If the residual variance ϕ is known,
then the variance of each fitted residual êi is ϕ(1− qi). Standardized residuals, all with variance 1,
are then êi/

√
(ϕ(1− qi)). This standardization of variance no longer holds exactly with estimated

ϕ, but if one uses here an unbiased (REML) estimator of ϕ, the studentized residuals may still
practically have a unit expected variance.

When a simple linear model is fitted by ML, the variance of the fitted residuals is less than ϕ, but ϕ̂
is downward biased so that residuals standardized only by √

(ϕ), without any leverage correction,
more closely have expected unit variance than if corrected by the previous leverages. The ML and
REML computations can be seen as both using “standardizing” leverages, defined so that they are
zero in the ML case and are equal to the “projection” leverages (the above ones, derived from a
projection matrix) in the REML case.

These “standardizing” leverages can themselves been seen as special cases of those that appear in
expressions for derivatives, with respect to the dispersion parameters, of the log-determinant of the
information matrices considered in the Laplace approximation for marginal or restricted likelihood
(Lee et al. 2006). This provides a basis to generalize the concept of standardizing leverages for
ML and REML in mixed-effect models. In particular, in an ML fit, one considers leverages (q∗i)
that are no longer the diagonal elements of the projection matrix for the mixed model [and, as
hinted above, for a simple linear model the ML (q∗i) are zero]. The generalized standardizing
leverages may include corrections for non-Gaussian response, for non-Gaussian random effects,
and for taking into account the variation of the GLM weights in the logdet(info.mat) derivatives.
Which corrections are included depend on the precise method used to fit the model (e.g., EQL vs
PQL vs REML). Standardizing leverages are also defined for the random effects.

These distinctions suggest breaking the usual synonymy between “leverages” or “hat values”: the
term “hat values” better stands for the diagonal elements of a projection matrix, while “leverages”
better stands for the standardizing values. hatvalues(.,type="std") returns the standardizing
leverages. By contrast, hatvalues(.,type="projection") will always return hat values from the
fitted projection matrix. Note that these values typically differ between ML and REML fit because
the fitted projection matrix differs between them.

Value

A list with separate components resid (leverages of the observations) and ranef if which="both",
and a vector otherwise.

References

Lee, Y., Nelder, J. A. and Pawitan, Y. (2006) Generalized linear models with random effects: unified
analysis via h-likelihood. Chapman & Hall: London.

Examples

if (spaMM.getOption("example_maxtime")>0.8) {
data("Orthodont",package = "nlme")
rnge <- (107:108)
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# all different:
#
hatvalues(rlfit <- fitme(distance ~ age+(age|Subject),

data = Orthodont, method="REML"))[rnge]
hatvalues(mlfit <- fitme(distance ~ age+(age|Subject),

data = Orthodont))[rnge]
hatvalues(mlfit,type="std")[rnge]
}

HLCor Fits a (spatially) correlated mixed model, for given correlation param-
eters

Description

A fitting function acting as a convenient interface for HLfit, constructing the correlation matrix
of random effects from the arguments, then estimating fixed effects and dispersion parameters us-
ing HLfit. Various arguments are available to constrain the correlation structure, covStruct and
distMatrix being the more general ones (for any number of random effects), and adjMatrix and
corrMatrix being alternatives to covStruct for a single correlated random effect. uniqueGeo is
deprecated.

Usage

HLCor(formula, data, family = gaussian(), fixed=NULL, ranPars, distMatrix,
adjMatrix, corrMatrix, covStruct=NULL,
method = "REML", verbose = c(inner=FALSE),
control.dist = list(), weights.form = NULL, ...)

Arguments

formula A predictor, i.e. a formula with attributes (see Predictor), or possibly simply
a simple formula if an offset is not required.

fixed, ranPars A list of given values for correlation parameters (some of which are manda-
tory), and possibly also dispersion parameters (optional, but passed to HLfit if
present). ranPars is the old argument, maintained for back compatibility; fixed
is the new argument, uniform across spaMM fitting functions. See ranPars for
further information.

data The data frame to be analyzed.

family A family object describing the distribution of the response variable. See HLfit
for further information.

distMatrix Either a distance matrix between geographic locations, forwarded to MaternCorr
or CauchyCorr. It overrides the (by default, Euclidean) distance matrix that
would otherwise be deduced from the variables in a Matern(.)) or Cauchy(.)
term;
or a list of such matrices. The list format is useful when there are several
Matern/Cauchy terms, to avoid that all of them are affected by the same distMatrix.
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NULL list elements may be necessary, e.g.
distMatrix=list("1"=NULL,"2"=<.>)) when a matrix is specified only for
the second random effect.

adjMatrix An single adjacency matrix, used if a random effect of the form
y ~ adjacency(1|<location index>) is present. See adjacency for further
details. If adjacency matrices are needed for several random effects, use covStruct.

corrMatrix A matrix C used if a random effect term of the form corrMatrix(1|<stuff>)
is present. This allows to analyze non-spatial model by giving for example a
matrix of genetic correlations. Each row corresponds to levels of a variable
<stuff>. The covariance matrix of the random effects for each level is then
λC, where as usual λ denotes a variance factor for the random effects (if C
is a correlation matrix, then λ is the variance, but other cases are possible).
See corrMatrix for further details. If matrices are needed for several random
effects, use covStruct.

covStruct An interface for specifying correlation structures for different types of random
effect (corrMatrix or adjacency). See covStruct for details.

method Character: the fitting method to be used, such as "ML", "REML" or "PQL/L".
"REML" is the default. Other possible values of HLfit’s method argument are
handled.

weights.form Specification of prior weights by a one-sided formula: use weights.form = ~
pw instead of prior.weights = pw. The effect will be the same except that such
an argument, known to evaluate to an object of class "formula", is suitable to
enforce safe programming practices (see good-practice).

verbose A vector of booleans. inner controls various diagnostic (possibly messy) mes-
sages about the iterations. This should be distinguished from the TRACE element,
meaningful in fitme or corrHLfit calls.

control.dist A list of arguments that control the computation of the distance argument of the
correlation functions. Possible elements are

rho.mapping a set of indices controlling which elements of the rho scale vector
scales which dimension(s) of the space in which (spatial) correlation matri-
ces of random effects are computed. See same argument in make_scaled_dist
for details and examples.

dist.method method argument of proxy::dist function (by default, "Euclidean",
but see make_scaled_dist for other distances such as spherical ones.)

... Further arguments passed to HLfit or to mat_sqrt.

Details

For approximations of likelihood, see method. For the possible structures of random effects, see
random-effects, but note that HLCor cannot adjust parameters of correlation models (with the ex-
ception of conditional autoregressive ones). Any such parameter must be specified by the ranPars
argument. More generally, the correlation matrix for random effects can be specified by various
combinations of formula terms and other arguments (see Examples):

Basic Matérn model Matern(1|<...>), using the spatial coordinates in <...>. This will con-
struct a correlation matrix according to the Matérn correlation function (see MaternCorr);
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Basic Cauchy model Cauchy(1|<...>), as for Matern (see CauchyCorr);

Same models with given distance matrix as provided by distMatrix (see Examples);

Given correlation matrix corrMatrix(1|<...>) with corrMatrix argument. See corrMatrix
for further details.

CAR model with given adjacency matrix adjacency(1|<...>) with adjMatrix. See adjacency
for further details;

AR1 model AR1(1|<...>) See AR1 for further details.

Value

The return value of an HLfit call, with the following additional attributes:

HLCorcall the HLCor call

info.uniqueGeo Unique geographic locations.

See Also

autoregressive for additional examples, MaternCorr, HLfit, and corrHLfit

Examples

# Example with an adjacency matrix (autoregressive model):
# see 'adjacency' documentation page

#### Matern correlation using only the Matern() syntax
data("blackcap")
(fitM <- HLCor(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

method="ML", ranPars=list(nu=0.6285603,rho=0.0544659)))

#### Using the 'distMatrix' argument
data("blackcap")
#
# Build distance matrix (here equivalent to the default one for a Matern() term)
MLdistMat <- as.matrix(proxy::dist(blackcap[,c("latitude","longitude")]))
#
(fitD <- HLCor(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

distMatrix=MLdistMat, method="ML", ranPars=list(nu=0.6285603,rho=0.0544659)))
# : result here must be equivalent to the one without the distMatrix.
diff(c(logLik(fitM),logLik(fitD)))

HLfit Fit mixed models with given correlation matrix
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Description

This function fits GL(M)Ms as well as some hierarchical generalized linear models (HGLM; Lee
and Nelder 2001). It may be called on its own but is now better seen as a backend for the main
fitting function fitme (or fitmv for multivariate-response models). This documentation completes
the documentation of the latter functions with respect to some arguments they pass to HLfit and
with respect to the structure of the objects they return.

On its own, HLfit fits both fixed effects parameters, and dispersion parameters i.e. the variance of
the random effects (full covariance for random-coefficient models), and the variance of the residual
error. The linear predictor is of the standard form offset+ X beta + Z b, where X is the design
matrix of fixed effects and Z is a design matrix of random effects (typically an incidence matrix with
0s and 1s, but not necessarily). Models are fitted by an iterative algorithm alternating estimation
of fixed effects and of dispersion parameters. The residual dispersion may follow a “structured-
dispersion model” modeling heteroscedasticity. Estimation of the latter parameters is performed
by a form of fit of debiased residuals, which allows fitting a structured-dispersion model (Smyth
et al. 2001). However, evaluation of the debiased residuals can be slow in particular for large
datasets. For models without structured dispersion, it is then worth using the fitme function. Ths
function (as well as corrHLfit) can optimize the likelihood of HLfit fits for different given values
of the dispersion parameters (“outer optimization”), thereby avoiding the need to estimate debiased
residuals.

Usage

HLfit(formula, data, family = gaussian(), rand.family = gaussian(),
resid.model = ~1, REMLformula = NULL, verbose = c(inner = FALSE),
HLmethod = "HL(1,1)", method="REML", control.HLfit = list(),
control.glm = list(), init.HLfit = list(), fixed=list(), ranFix,
etaFix = list(), prior.weights = NULL, weights.form = NULL,
processed = NULL)

## see 'rand.family' argument for inverse.Gamma

Arguments

formula A formula; or a predictor, i.e. a formula with attributes created by Predictor,
if design matrices for random effects have to be provided. See Details in spaMM
for allowed terms in the formula (except spatial ones).

data A data frame containing the variables named in the model formula.

family A family object describing the distribution of the response variable. See Details
in spaMM for handled families.

rand.family A family object describing the distribution of the random effect, or a list of
family objects for different random effects (see Examples). Possible options
are gaussian(), Gamma(log), Gamma(identity) (see Details), Beta(logit),
inverse.Gamma(-1/mu), and inverse.Gamma(log). For discussion of these
alternatives see Lee and Nelder 2001 or Lee et al. 2006, p. 178-. Here the family
gives the distribution of a random effect u and the link gives v as function of u
(see Details). If there are several random effects and only one family is given,
this family holds for all random effects.



HLfit 107

resid.model Used to specify a model for the dispersion parameter of the mean-response dis-
tribution family. See the resid.model documentation, and the more specific
phi-resid.model one for the phi parameter of gaussian and Gamma response
families.

REMLformula A model formula that controls the estimation of dispersion parameters and the
computation of restricted likelihood (p_bv), where the conditioning inherent in
REML is defined by a model different from the predictor formula. A simple
example (useless in practice) of its effect is to replicate an ML fit by specifying
method="REML" and an REMLformula with no fixed effect. The latter implies
that no conditioning is performed and that p_bv equals the marginal likelihood
(or its approximation), p_v. One of the examples in update.HLfit shows how
REMLformula can be useful, but otherwise this argument may never be needed
for standard REML or ML fits. For non-standard likelihood ratio tests using
REMLformula, see fixedLRT.

verbose A vector of booleans or integers. The inner element controls various diag-
nostic messages (possibly messy) about the iterations. This should be distin-
guished from the TRACE element, meaningful in fitme or corrHLfit calls, and
much more useful. The phifit element controls messages about the progress
of phi-resid.model fits (see the latter documentation).

method Character: the fitting method. allowed values include "REML", "ML", "EQL-"
and "EQL+" for all models, and "PQL" (="REPQL") and "PQL/L" for GLMMs
only. method=c(<"ML" or "REML">,"exp") can be distinctly useful for slow
fits of models with Gamma(log) family. See (see method) for details, and further
possible values for those curious to experiment. The default is REML (standard
REML for LMMs, an extended definition for other models). REML can be
viewed as a form of conditional inference, and non-standard conditionings can
be called by using a non-standard REMLformula.

HLmethod Same as method. It is useless to specify HLmethod when method is specified.
The default value "HL(1,1)" means the same as method="REML", but more ac-
curately relates to definitions of approximations of likelihood in the h-likelihood
literature.

control.HLfit A list of parameters controlling the fitting algorithms, which should mostly be
ignored in routine use. See control.HLfit for possible controls.

control.glm List of parameters controlling calls to glm-“like” fits, passed to glm.control;
e.g.
control.glm=list(maxit=100). See glm.control for further details. glm-
“like” fits may be performed as part of mixed-effect model fitting procedures,
in particular to provide initial values (possibly using llm.fit for non-GLM
families), and for “inner” estimation of dispersion parameters.

init.HLfit A list of initial values for the iterative algorithm, with possible elements of the
list are fixef for fixed effect estimates (beta), v_h for random effects vector
v in the linear predictor, lambda for the parameter determining the variance of
random effects u as drawn from the rand.family distribution, and phi for the
residual variance. However, this argument can be ignored in routine use.

fixed, ranFix A list of fixed values of random effect parameters. ranFix is the old argument,
maintained for back compatibility; fixed is the new argument, uniform across
spaMM fitting functions. See ranFix for further information.
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etaFix A list of given values of the coefficients of the linear predictor. See etaFix for
further information.

prior.weights An optional vector of prior weights as in glm. This fits the data to a probability
model with residual variance parameter given as phi/prior.weights instead of
the canonical parameter phi of the distribution family for the response variable,
and all further outputs are defined to be consistent with this (see section IV in
Details).

weights.form Specification of prior weights by a one-sided formula: use weights.form = ~
pw instead of prior.weights = pw. The effect will be the same except that such
an argument, known to evaluate to an object of class "formula", is suitable to
enforce safe programming practices (see good-practice).

processed A list of preprocessed arguments, for programming purposes only.

Details

I. Approximations of likelihood: see method.

II. Possible structure of Random effects: see random-effects, but note that HLfit does not fit
models with autocorrelated random effects.

III. The standard errors reported may sometimes be misleading. For each set of parameters
among β, λ, and ϕ parameters these are computed assuming that the other parameters are known
without error. This is why they are labelled Cond. SE (conditional standard error). This is most
uninformative in the unusual case where λ and ϕ are not separately estimable parameters. Further,
the SEs for λ and ϕ are rough approximations as discussed in particular by Smyth et al. (2001; V1

method).

IV. prior weights. This controls the likelihood analysis of heteroscedastic models. In particular,
changing the weights by a constant factor f should, and will, yield a fit with unchanged likelihood
and (Intercept) estimates of phi also increased by f (except if a non-trivial resid.formula with log
link is used). This is consistent with what glm does, but other packages may not follow this logic
(whatever their documentation may say: check by yourself by changing the weights by a constant
factor). Further, post-fit functions (in particular those extracting various forms of residuals) may be
inconsistent in their handling of prior weights.

Value

An object of class HLfit, which is a list with many elements, not all of which are documented.

Various extractor functions are available (see extractors, vcov, get_fittedPars, get_matrix,
and so on). They should be used as far as possible as they should be backward-compatible from
version 2.0.0 onwards, while the structure of the return object may still evolve. The following
information may be useful for extracting further elements of the object.

Elements include descriptors of the fit:

eta Fitted values on the linear scale (including the predicted random effects). predict(.,type="link")
can be used as a formal extractor;

fv Fitted values (µ =<inverse-link>(η)) of the response variable. fitted(.) or
predict(.) can be used as formal extractors;

fixef The fixed effects coefficients, β (returned by the fixef function);
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v_h The random effects on the linear scale, v, with atttribute the random effects u
(returned by ranef(*,type="uncorrelated");

phi The residual variance ϕ. See residVar for one extractor;

phi.object A possibly more complex object describing ϕ (see residVar again);

lambda The random-effect (u) variance(s) λ in compact form;

lambda.object A possibly more complex object describing λ (see get_ranPars(.,which="lambda"))
and VarCorr extractors);

ranef_info environment where information about the structure of random effects is stored
(see Corr);

corrPars Agglomerates information on correlation parameters, either fixed, or estimated
((see get_ranPars(.,which="corrPars")));

APHLs A list whose elements are various likelihood components, including conditional
likelihood, h-likelihood, and the Laplace approximations: the (approximate)
marginal likelihood p_v and the (approximate) restricted likelihood p_bv (the
latter two available through the logLik function). See the extractor function
get_any_IC for information criteria (“AIC”) and effective degrees of freedom;

The covariance matrix of β estimates is not included as such, but can be extracted by vcov.

Information about the input is contained in output elements named as arguments of the fit-
ting function calls (data,family,resid.family,ranFix,prior.weights), with the following
notable exceptions or modifications:

predictor The formula, possibly reformatted (returned by the formula extractor);
resid.predictor

Analogous to predictor, for the residual variance (see residVar(., which="formula"));

rand.families corresponding to the rand.family input;

Further miscellaneous diagnostics and descriptors of model structure:

X.pv The design matrix for fixed effects (returned by the model.matrix extractor);
ZAlist, strucList

Two lists of matrices, respectively the design matrices “Z”, and the “L” matrices,
for the different random-effect terms. The extractor get_ZALMatrix can be used
to reconstruct a single “ZL” matrix for all terms.

BinomialDen (binomial data only) the binomial denominators;

y the response vector; for binomial data, the frequency response.

models Additional information on model structure for η, λ and ϕ;

HL A set of indices that characterize the approximations used for likelihood;
leve_phi, lev_lambda

Leverages (see hatvalues extractor);

dfs list (possibly structured): some information about degrees of freedom for differ-
ent components of the model. But its details may be difficult to interpret and the
DoF extractor should be used;

how A list containing the information properly extracted by the how function;
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warnings A list of warnings for events that may have occurred during the fit.

Finally, the object includes programming tools: call, spaMM.version, fit_time and an environ-
ment envir that may contain whatever may be needed in some post-fit operations..

References

Lee, Y., Nelder, J. A. (2001) Hierarchical generalised linear models: A synthesis of generalised
linear models, random-effect models and structured dispersions. Biometrika 88, 987-1006.

Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalized linear models with random effects:
unified analysis via h-likelihood. Chapman & Hall: London.

Smyth GK, Huele AF, Verbyla AP (2001). Exact and approximate REML for heteroscedastic re-
gression. Statistical Modelling 1, 161-175.

See Also

HLCor for estimation with given spatial correlation parameters; corrHLfit for joint estimation with
spatial correlation parameters; fitme as an alternative to all these functions.

Examples

data("wafers")
## Gamma GLMM with log link
HLfit(y ~ X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), family=Gamma(log),

resid.model = ~ X3+I(X3^2) ,data=wafers)
## Gamma - inverseGamma HGLM with log link
HLfit(y ~ X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), family=Gamma(log),

rand.family=inverse.Gamma(log),
resid.model = ~ X3+I(X3^2) , data=wafers)

how Extract information about how an object was obtained

Description

how is defined as a generic with currently only one non-default method, for objects of class HLfit.
This method provide information about how such a fit was obtained.

Usage

how(object, ...)
## S3 method for class 'HLfit'
how(object, devel=FALSE, verbose=TRUE, format=print, ...)
## S3 method for class 'HLfitlist'
how(object, devel=FALSE, verbose=TRUE, format=print, ...)
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Arguments

object Any R object.

devel Boolean; Whether to provide additional cryptic information. For development
purposes, not further documented.

verbose Boolean; Whether to print information about the input object.

format wrapper for printing format. E.g., cat(cli::col_yellow(s),"\n") could be
used instead of the default.

... Other arguments that may be needed by some method.

Value

A list, returned invisibly, whose elements are not further described here, some being slightly cryptic
or subject to future changes However, how(.)$fit_time is a clean way of getting the fit time. If
verbose is TRUE, the function prints a message presenting some of these elements.

Examples

foo <- HLfit(y~x, data=data.frame(x=runif(3), y=runif(3)), method="ML", ranFix=list(phi=1))
how(foo)

inits Controlling optimization strategy through initial values

Description

Several parameters (notably the dispersion parameters: the variance of random effects and the resid-
ual variance parameter, if any) can be estimated either by iterative algorithms, or by generic opti-
mization methods. The development of the fitme function aims to provide full control of the
selection of algorithms. For example, if two random effects are fitted, then
init=list(lambda=c(NA,NaN)) enforces generic optimization for the first variance and iterative
algorithms for the second.
init=list(lambda=c(0.1,NaN)) has the same effect and additionally provides control of the ini-
tial value for optimization (whereas init.HLfit=list(lambda=c(NA,0.1)) will provide control
of the initial value for iterations).

How to know which algorithm has been selected for each parameter? fitme(., verbose=c(TRACE=TRUE))
shows successive values of the variables estimated by optimization (See Examples; if no value ap-
pears, then all are estimated by iterative methods). The first lines of the summary of a fit object
should tell which variances are estimated by the “outer” method.

corrHLfit, which uses inner optimization by default, can be forced to perform outer optimization.
Its control is more limited, as NAs and NaNs are not allowed. Instead, only numeric values as in
init=list(lambda=0.1) are allowed.
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Examples

## Not run:
air <- data.frame(passengers = as.numeric(AirPassengers),

year_z = scale(rep(1949:1960, each = 12)),
month = factor(rep(1:12, 12)))

air$time <- 1:nrow(air)
# Use verbose to find that lambda is estimated by optimization
fitme(passengers ~ month * year_z + AR1(1|time), data = air,

verbose=c(TRACE=TRUE))
# Use init to enforce iterative algorithm for lambda estimation:
fitme(passengers ~ month * year_z + AR1(1|time), data = air,

verbose=c(TRACE=TRUE), init=list(lambda=NaN))
# (but then it may be better to enforce it also for phi: init=list(lambda=NaN, phi=NaN))
#
# Use init to enforce generic optimization for lambda estimation,
# and control initial value:
fitme(passengers ~ month * year_z + AR1(1|time), data = air,

verbose=c(TRACE=TRUE), init=list(lambda=0.1))

# See help("multinomial") for more examples of control by initial values.

## End(Not run)

inverse.Gamma Distribution families for Gamma and inverse Gamma-distributed ran-
dom effects

Description

For dispersion parameter λ, Gamma means that random effects are distributed as u Gamma(shape=1/λ,scale=λ),
so u has mean 1 and variance λ. Both the log (v = log(u)) and identity (v = u) links are possible,
though in the latter case the variance of u is constrained below 1 (otherwise Laplace approximations
fail).

The two-parameter inverse Gamma distribution is the distribution of the reciprocal of a variable
distributed according to the Gamma distribution Gamma with the same shape and scale parame-
ters. inverse.Gamma implements the one-parameter inverse Gamma family with shape=1+1/λ and
rate=1/λ) (rate=1/scale). It is used to model the distribution of random effects. Its mean=1; and
its variance =λ/(1 − λ)) if λ < 1, otherwise infinite. The default link is "-1/mu", in which case
v=-1/u is “-Gamma”-distributed with the same shape and rate, hence with mean −(λ+1) and vari-
ance λ(λ+ 1), which is a different one-parameter Gamma family than the above-described Gamma.
The other possible link is v=log(u) in which case
v − log(X Gamma(1 + 1/λ, 1/λ)), with mean −(log(1/λ)+digamma(1 + 1/λ)) and variance
trigamma(1 + 1/λ).

Usage

inverse.Gamma(link = "-1/mu")
# Gamma(link = "inverse") using stats::Gamma
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Arguments

link For Gamma, allowed links are log and identity (the default link from Gamma,
"inverse", cannot be used for the random effect specification). For inverse.Gamma,
allowed links are "-1/mu" (default) and log.

Examples

# see help("HLfit") for fits using the inverse.Gamma distribution.

is_separated Checking for (quasi-)separation in binomial-response model.

Description

Separation occurs in binomial response models when a combination of the predictor variables
perfectly predict a level of the response. In such a case the estimates of the coefficients for
these variables diverge to (+/-)infinity, and the numerical algorithms typically fail. To antici-
pate such a problem, the fitting functions in spaMM try to check for separation by default. The
check may take much time, and is skipped if the “problem size” exceeds a threshold defined by
spaMM.options(separation_max=<.>), in which case a message will tell users by how much
they should increase separation_max to force the check (its exact meaning and default value are
subject to changes without notice but the default value aims to correspond to a separation check
time of the order of 1s on the author’s computer).

is_separated is a convenient interface to procedures from the ROI package, allowing them to be
called explicitly by the user to check bootstrap samples (see Example in anova). is_separated.formula
is a variant (not yet a formal S3 method) that performs the same check, but using arguments similar
to those of fitme(., family=binomial()).

Usage

is_separated(x, y, verbose = TRUE, solver=spaMM.getOption("sep_solver"))
is_separated.formula(formula, ..., separation_max=spaMM.getOption("separation_max"),

solver=spaMM.getOption("sep_solver"))

Arguments

x Design matrix for fixed effects.

y Numeric response vector

formula A model formula

... data and possibly other arguments of a fitme call. family is ignored if present.

separation_max numeric: non-default value allow for easier local control of this spaMM option.

solver character: name of linear programming solver used to assess separation; passed
to ROI_solve’s solver argument. One can select another solver if the corre-
sponding ROI plugin is installed.

verbose Whether to print some messages (e.g., pointing model terms that cause separa-
tion) or not.
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Value

Returns a boolean; TRUE means there is (quasi-)separation. Screen output may give further infor-
mation, such as pointing model terms that cause separation.

References

The method accessible by solver="glpk" implements algorithms described by

Konis, K. 2007. Linear Programming Algorithms for Detecting Separated Data in Binary Logistic
Regression Models. DPhil Thesis, Univ. Oxford.

See Also

See also the ’safeBinaryRegression’ and ’detectseparation’ package.

Examples

set.seed(123)
d <- data.frame(success = rbinom(10, size = 1, prob = 0.9), x = 1:10)
is_separated.formula(formula= success~x, data=d) # FALSE
is_separated.formula(formula= success~I(success^2), data=d) # TRUE

Leuca Leucadendron data

Description

A data set from Tonnabel et al. (2021) to be fitted by models with sex-specific spatial random
effects. Leucadrendron rubrum is a dioecious shrub from South Africa. Various phenotypes were
recorded on individuals from a small patch of habitat.

Usage

data("Leuca")

Format

Leuca is

'data.frame': 156 obs. of 12 variables:
$ name : Factor w/ 156 levels "f_101","f_102",..: 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 1 1 1 ...
$ area : num 0.857 0.9 0.827 0.654 0.733 ...
$ diam : int 60 30 180 50 70 80 130 90 27 59 ...
$ fec : num 0.013 0.0137 5.1171 0.2905 1.042 ...
$ fec_div: num 0.0128 0.0135 5.037 0.2859 1.0257 ...
$ x : num 42 41 62.5 58.5 42.5 33.5 24 26.5 25 41 ...
$ y : num 23 46 58 63 51 51 55.5 55.5 58.5 63 ...
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$ diamZ : num -0.713 -1.479 2.352 -0.968 -0.457 ...
$ areaZ : num 0.72 0.92 0.586 -0.2 0.158 ...
$ male : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ female : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

Source

Tonnabel, J., Klein, E.K., Ronce, O., Oddou-Muratorio, S., Rousset, F., Olivieri, I., Courtiol, A. and
Mignot, A. (2021), Sex-specific spatial variation in fitness in the highly dimorphic Leucadendron
rubrum. Mol Ecol, 30: 1721-1735. doi:10.1111/mec.15833

See Also

MaternCorr and composite-ranef for examples using these data.

Examples

data(Leuca)

lev2bool Conversion of factor to 0/1 variable

Description

It may be straightforward to add columns of indicator variables for each level of a factor to the data,
by
<data> <- cbind(<data>, model.matrix( ~ <factor> - 1, data = <data>)). Alternatively, in-
dicator variables can be created on the fly for given levels, using the lev2bool function.

Usage

lev2bool(fac, lev)

Arguments

fac An object coercible to factor.

lev The level of fac to be converted to 1.

Value

A one-column matrix.

See Also

Example in GxE for alternative to using lev2bool in specification of random effects with het-
eroscedasticity, useful when the latter is controlled by a factor with many levels.

https://doi.org/10.1111/mec.15833
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Examples

## Elementary bivariate-response model

# Data preparation
#
fam <- rep(c(1,2),rep(6,2)) # define two biological 'families'
ID <- gl(6,2) # define 6 'individuals'
resp <- as.factor(rep(c("x","y"),6)) # distinguishes two responses per individual
set.seed(123)
toymv <- data.frame(

fam = factor(fam), ID = ID, resp = resp,
y = 1 + (resp=="x") + rnorm(4)[2*(resp=="x")+fam] + rnorm(12)[6*(resp=="x")+as.integer(ID)]

)
toymv <- cbind(toymv, model.matrix( ~ resp - 1, data = toymv))

# fit response-specific variances of random effect and residuals:
#
(fitme(y ~ resp+ (0+respx|fam)+ (0+respy|fam),

resid.model = ~ 0+resp ,data=toymv))

# Same result by different syntaxes:

# * by the lev2bool() specifier:
(fitme(y ~ resp+ (0+lev2bool(resp,"x")|fam)+ (0+lev2bool(resp,"y")|fam),

resid.model = ~ 0+resp ,data=toymv))

# * or by random-coefficient model using 'resp' factor:
(fitme(y ~ resp+ (0+resp|fam), resid.model = ~ 0+resp ,data=toymv,

fixed=list(ranCoefs=list("1"=c(NA,0,NA)))))
#
# For factors with more levels, the following function may be useful to specify
# through partially fixed ranCoefs that covariances are fixed to zero:
ranCoefs_for_diag <- function(nlevels) {

vec <- rep(0,nlevels*(nlevels+1L)/2L)
vec[cumsum(c(1L,rev(seq(nlevels-1L)+1L)))] <- NA
vec

}
# see application in help("GxE").

# * or by the dummy() specifier from lme4:
# (fitme(y ~ resp+ (0+dummy(resp,"x")|fam)+ (0+dummy(resp,"y")|fam),
# resid.model = ~ 0+resp ,data=toymv))

llm.fit Link-linear regression models (LLMs)

Description

Some “family” objects in spaMM describe models with non-GLM distribution families, such as the
negbin1 or beta_resp families already widely considered in previous works and other packages.
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These models are characterized by a linear predictor, a link function, and a distribution for residual
variation that does not belong to the exponential family from which GLMs are defined.

These family objects are conceived for use with spaMM’s fitting functions. They cannot generally
be used as argument to the glm function, except when this function is highjacked by use of the
method="llm.fit" argument, where llm stands for Link-Linear (as in “log-linear”, say) regression
Model.

Mixed-effect models fitted by such methods cannot use expected-Hessian approximations, in con-
trast to GLM distribution families. negbin2 is a family object for a GLM distribution family (strictly
speaking, only for fixed shape and untruncated version) but implemented as an LL-family, in par-
ticular using only the observed Hessian matrix.

Usage

# glm(..., method="llm.fit")
## See also 'beta_resp', 'negbin1', 'betabin', and possibly later additions.

Details

These family objects are lists, formally of class c("LLF", "family"). Compared to a family
object, they have additional elements, not documented here.

As stats:: GLM family objects do, they provide deviance residuals through the dev.resids
member function. There are various definitions of deviance residuals for non-GLM families in
the literature. Here they are defined as “2*(saturated_logLik - logLik)”, where the likelihood for
the saturated model is the likelihood maximized wrt to the mean parameter µ for each observation
y independently. The maximizing µ is not equal to the observation, in contrast to the standard result
for GLMs.

Examples

data(scotlip)

### negbin1 response:

# Fixed-effect model
#
(var_shape <- fitme(cases~I(prop.ag/10)+offset(log(expec)),family=negbin1(),

data=scotlip))

# Highjacking glm(): the family parameter must be given
#
fitted_shape <- residVar(var_shape,which="fam_parm")
glm(cases~I(prop.ag/10)+offset(log(expec)),family=negbin1(shape=fitted_shape),

method="llm.fit", data=scotlip)

### Similar exercice with Beta family:

set.seed(123)
beta_dat <- data.frame(y=runif(100),grp=sample(2,100,replace = TRUE))

# Fixed-effect model
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(var_prec <- fitme(y ~1, family=beta_resp(), data= beta_dat))

# Highjacking glm():
fitted_prec <- residVar(var_prec,which="fam_parm")
glm(y ~1, family=beta_resp(prec=fitted_prec), data= beta_dat, method="llm.fit")

Loaloa Loa loa prevalence in North Cameroon, 1991-2001

Description

This data set describes prevalence of infection by the nematode Loa loa in North Cameroon, 1991-
2001. This is a superset of the data discussed by Diggle and Ribeiro (2007) and Diggle et al. (2007).
The study investigated the relationship between altitude, vegetation indices, and prevalence of the
parasite.

Usage

data("Loaloa")

Format

The data frame includes 197 observations on the following variables:

latitude latitude, in degrees.

longitude longitude, in degrees.

ntot sample size per location

npos number of infected individuals per location

maxNDVI maximum normalised-difference vegetation index (NDVI) from repeated satellite scans

seNDVI standard error of NDVI

elev1 altitude, in m.

elev2,elev3,elev4 Additional altitude variables derived from the previous one, provided for con-
venience: respectively, positive values of altitude-650, positive values of altitude-1000, and
positive values of altitude-1300

maxNDVI1 a copy of maxNDVI modified as maxNDVI1[maxNDVI1>0.8] <- 0.8

Source

The data were last retrieved on March 1, 2013 from P.J. Ribeiro’s web resources at
www.leg.ufpr.br/doku.php/pessoais:paulojus:mbgbook:datasets. A current (2022-06-18)
source is https://www.lancaster.ac.uk/staff/diggle/moredata/Loaloa.txt).

https://www.lancaster.ac.uk/staff/diggle/moredata/Loaloa.txt
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References

Diggle, P., and Ribeiro, P. 2007. Model-based geostatistics, Springer series in statistics, Springer,
New York.

Diggle, P. J., Thomson, M. C., Christensen, O. F., Rowlingson, B., Obsomer, V., Gardon, J., Wanji,
S., Takougang, I., Enyong, P., Kamgno, J., Remme, J. H., Boussinesq, M., and Molyneux, D. H.
2007. Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty,
Ann. Trop. Med. Parasitol. 101, 499-509.

Examples

data("Loaloa")
if (spaMM.getOption("example_maxtime")>5) {

fitme(cbind(npos,ntot-npos)~1 +Matern(1|longitude+latitude),
data=Loaloa, family=binomial())

}

### Variations on the model fit by Diggle et al.
### on a subset of the Loaloa data
### In each case this shows the slight differences in syntax,
### and the difference in 'typical' computation times,
### when fit using corrHLfit() or fitme().

if (spaMM.getOption("example_maxtime")>4) {
corrHLfit(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI

+Matern(1|longitude+latitude),method="HL(0,1)",
data=Loaloa,family=binomial(),ranFix=list(nu=0.5))

}
if (spaMM.getOption("example_maxtime")>1.6) {

fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),method="HL(0,1)",

data=Loaloa,family=binomial(),fixed=list(nu=0.5))
}

if (spaMM.getOption("example_maxtime")>5.8) {
corrHLfit(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI

+Matern(1|longitude+latitude),
data=Loaloa,family=binomial(),ranFix=list(nu=0.5))

}
if (spaMM.getOption("example_maxtime")>2.5) {

fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),fixed=list(nu=0.5),method="REML")
}

## Diggle and Ribeiro (2007) assumed (in this package notation) Nugget=2/7:
if (spaMM.getOption("example_maxtime")>7) {

corrHLfit(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),ranFix=list(nu=0.5,Nugget=2/7))
}
if (spaMM.getOption("example_maxtime")>1.3) {
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fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),method="REML",

data=Loaloa,family=binomial(),fixed=list(nu=0.5,Nugget=2/7))
}

## with nugget estimation:
if (spaMM.getOption("example_maxtime")>17) {

corrHLfit(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),
init.corrHLfit=list(Nugget=0.1),ranFix=list(nu=0.5))

}
if (spaMM.getOption("example_maxtime")>5.5) {

fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI
+Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),method="REML",
init=list(Nugget=0.1),fixed=list(nu=0.5))

}

LRT ANOVA tables, and likelihood ratio tests of fixed and random effects.

Description

The anova method for fit objects from spaMM has two uses: if a single fit object is provided,
ANOVA tables may be returned, with specific procedures for univariate-response LMs, GLMs and
LMMs (see Details). Alternatively, if a second fit object is provided (object2 argument), anova
performs as an alias for LRT.

LRT performs a likelihood ratio (LR) test between two model fits. It differs from another function
with the same effect, fixedLRT, by its arguments (model fits for LRT, but all arguments required to
fit the models for fixedLRT), and by the format of its return value. LRT determines which model
is the more complete one by comparing model components including the fixed-effect, random-
effect, residual-dispersion model specifications, and response families (offsets are ignored). Then,
a standard test based on the asymptotic chi-square distribution is performed. In addition, parametric
bootstrap p-values can be computed, either using the raw bootstrap distribution of the likelihood
ratio, or a bootstrap estimate of the Bartlett correction of the LR statistic.

These different tests perform diffferently depending on the differences between the two models:

* If the models differ only by their fixed effects, the asymptotic LRT may be anticonservative,
but the Bartlett-corrected one is generally well-calibrated.

* If the two models differ by their random effects, tests based on the chi-square distribution (in-
cluding their Bartlett-corrected version) may be poorly behaved, as such tests assume unbounded
parameters, as contrasted to, e.g., necessarily positive variances.
In such cases the raw boostrap test may be the only reliable test. The procedure aims to detect
and report such issues, but may not report all problems: users remain responsible for applying the
tests in valid conditions (see Caveats in Details section). In simple cases (such as comparing a
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fixed-effect to a mixed-effect model with the same fixed-effect term), the chi-square tests may not
be reported. In other cases (see Examples) they may otherwise be reported, with a warning when
the procedure detects some cases of estimates at the boundary for the full model, or detects cases
where the LR statistic of bootstrap replicates is often zero (also suggesting that estimates are at the
boundary in such replicates).

* If the fits differ by the fixed effects terms of their residual-dispersion models (but not by any
random effect specification), tests based on the chi-square distribution are reported. A bootstrap
can be performed as in other cases.
* Tests for some cases of nested response families (e.g., the Poisson versus its extensions) are ten-
tatively allowed.
* In some cases the full and the null models cannot be identified and the basic LRT based on the
chi-square distribution will not be returned, but a bootstrap test may still be performed.
* The case where residual-dispersion models of either fit include random effects is problematic as,
for such fits, the fitting procedure does not maximize the reported likelihood. The basic LRT is
not returned when the two fits differ by their random effects, but is still performed otherwise (see
Examples); and a bootstrap test may still be performed in both cases.

Usage

## S3 method for class 'HLfit'
anova(object, object2, type = "2", method="", ...)
#
LRT(object, object2, boot.repl = 0L, resp_testfn = NULL,

simuland = eval_replicate,
# many further arguments can be passed to spaMM_boot via the '...'
# These include arguments for parallel computations, such as
# nb_cores, fit_env,
# as well as other named arguments and spaMM_boot's own '...'
...)

Arguments

object Fit object returned by a spaMM fitting function.

object2 Optional second model fit to be compared to the first (their order does not matter,
except in non-standard cases where the second model is taken as teh null one and
a message is issued).

type ANOVA type for LMMs, as interpreted by lmerTest. Note that the default
(single-term deletion ANOVA) differs from that of lmerTest.

boot.repl the number of bootstrap replicates.

resp_testfn See argument resp_testfn of spaMM_boot.

simuland a function, passed to spaMM_boot. See argument eval_replicate for default
value and requirements.

method Only non-default value is "t.Chisq" which forces evaluation of a table of chi-
squared tests for each fixed-effect term, using the classical “Wald” test (see
Details). Further methods are available through the . . . for specific classes of
models.
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... Further arguments, passed to spaMM_boot (e.g., for parallelization) in the case
of LRTs. For ANOVA tables, arguments of functions anova.lm anova.glm,
and as_LMLT, respectively for LMs, GLMs and LMMs, may be handled (e.g.
the test argument for anova.glm).

Details

* The ANOVA-table functionality has been included here mainly to provide access to F tests (in-
cluding, for LMMs, the “Satterthwaite method” as developed by Fai and Cornelius, 1996), using
pre-existing procedures as template or backend for expediency and familiarity:

1. ANOVA tables for LMs and GLMs have been conceived to replicate the functionality, output
format and details of base R anova, and therefore replicate some of their limitations, e.g., they
only perform sequential analysis (“type 1”) in the same way as anova.lm and anova.glm.
However, a difference occurs for Gamma GLMs, because the dispersion estimates for Gamma
GLMs differ between stats::glm and spaMM fits (see Details in method). Therefore, F
tests and Mallows’ Cp differ too; results from spaMM REML fits being closer than ML fits
to those from glm() fits;

2. For LMMs, ANOVA tables are provided by interfacing lmerTest::anova (with non-default
type). This procedure should handle all types of LMMs that can be fitted by spaMM; yet, the
displayed information should be inspected to check that some fitted random-effect parameters
are not ignored when computing information for the Satterthwaite method.

3. For fitted models that do not lay within previous categories, such as GLMMs, models with a
residual-dispersion submodel, and multivariate-response models, a table of tests for single-
term deletions using the classical “Wald” chi-squared test based on coefficient values and
their conditional standard error estimates will be returned. LRTs (moreover, with bootstrap
correction) are more reliable than such tests and, as calling them requires a second model to
be explicitly specified, they may also help users thinking about the hypothesis they are testing.

* Bootstrap LRTs: A raw bootstrap p-value can be computed from the simulated distribution
as (1+sum(t >= t0))/(N+1) where t0 is the original likelihood ratio, t the vector of bootstrap
replicates and N its length. See Davison & Hinkley (1997, p. 141) for discussion of the adjustments
in this formula. However, a computationally more economical use of the bootstrap is to provide a
Bartlett correction for the likelihood ratio test in small samples. According to this correction, the
mean value m of the likelihood ratio statistic under the null hypothesis is computed (here estimated
by a parametric bootstrap) and the original LR statistic is multiplied by n/m where n is the number
of degrees of freedom of the test.

When models differ by their random-effect specifications, distinguishing the full from the null
model is not easy. In particular, equivalent models can be specified by diverse syntaxes, so a sim-
ple textual comparison of the random-effect terms may not be enough, and model specifications
that hinder such a comparison should be avoided. When differences in random effects are tested,
the null distribution of the LR may include a probability mass in 1: the discussion in Details of
get_RLRsim_args applies.

* Caveats: (1) An evaluated log-likelihood ratio can be slightly negative, e.g. when a fixed-effect
model is compared to a mixed one, or a spatial random effect to a block effect, if parameters of
the more complete model are estimated within bounds (e.g., variance>1e-06, or Matern smooth-
ness>0.005) designed to avoid numerical singularities, while the less complete model corresponds
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to a boundary case (e.g., variance=0, or smoothness=0). The bootstrap procedure tries to identify
these cases and then corrects slightly negative logL ratios to 0. (2) The Bartlett correction is appli-
cable when the true distribution of the LRT departs smoothly from the chi-square distribution, but
not in cases where it has a probability mass in zero (at typically occurs in the same boundary cases).

Value

LRT returns an object of class fixedLRT, actually a list with typical elements (depending on the
options)

fullfit the HLfit object for the full model;

nullfit the HLfit object for the null model;

basicLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the p-value;

and, if a bootstrap was performed:

rawBootLRT A data frame including values of the likelihood ratio chi2 statistic, its degrees of
freedom, and the raw bootstrap p-value;

BartBootLRT A data frame including values of the Bartlett-corrected likelihood ratio chi2
statistic, its degrees of freedom, and its p-value;

bootInfo a list with the following elements:

bootreps A table of fitted likelihoods for bootstrap replicates;
meanbootLRT The mean likelihood ratio chi-square statistic for bootstrap repli-

cates;

When ANOVA tables are computed, the return format is that of the function called (lmerTest::anova
for LMMs) or emulated (for LMs or GLMs). For GLMs, by default no test is reported, as has been
the default for anova.glm before R 4.4.0.
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See Also

See also fixedLRT for a different interface to LRTs,
get_RLRsim_args for efficient simulation-based implementation of exact likelihood ratio tests for
testing the presence of variance components,
as_LMLT for the interface to lmerTest::anova,
and summary.HLfit(.,details=list(<true|"Wald">)) for reporting the p-value for each t-
statistic in the summary table for fixed effects, either by Student’s t distribution, or by the ap-
proximation of t^2 distribution by the Chi-squared distribution (“Wald’s test”).

https://doi.org/10.1080/00949659608811740


124 LRT

Examples

data("wafers")
## Gamma GLMM with log link
m1 <- HLfit(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log),

resid.model = ~ X3+I(X3^2) ,data=wafers,method="ML")
m2 <- update(m1,formula.= ~ . -I(X2^2))
#
anova(m1,m2) # LRT

## 'anova' (Wald chi-squared tests...) for GLMM or model with a 'resid.model'
anova(m1)

## ANOVA table for GLM
# Gamma example, from McCullagh & Nelder (1989, pp. 300-2), as in 'glm' doc:
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

spglm <- fitme(lot1 ~ log(u), data = clotting, family = Gamma, method="REML")
anova(spglm, test = "F")
anova(spglm, test = "Cp")
anova(spglm, test = "Chisq")
anova(spglm, test = "Rao")

## ANOVA table for LMM
if(requireNamespace("lmerTest", quietly=TRUE)) {

lmmfit <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch),data=wafers)
print(anova(lmmfit)) # => Satterthwaite method, here giving p-values

# quite close to traditional t-tests given by:
summary(lmmfit, details=list(p_value=TRUE))

}

## Using resp_testfn argument for bootstrap LRT:
## Not run:
set.seed(1L)
d <- data.frame(success = rbinom(10, size = 1, prob = 0.9), x = 1:10)
xx <- cbind(1,d$x)
table(d$success)
m_x <- fitme(success ~ x, data = d, family = binomial())
m_0 <- fitme(success ~ 1, data = d, family = binomial())
#
# Bootstrap LRTs:
anova(m_x, m_0, boot.repl = 100,

resp_testfn=function(y) {! is_separated(xx,as.numeric(y),verbose=FALSE)})

## End(Not run)

#### Various cases were asymptotic tests may be unreliable:

set.seed(123)
dat <- data.frame(g = rep(1:10, e = 10), x = (x<-rnorm(100)),

y = 0.1 * x + rnorm(100))
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m0 <- fitme(y ~ 1, data=dat)

## (1) Models differing both by fixed and random effects:
#
# (note the warning for variance at boundary):
#
if (spaMM.getOption("example_maxtime")>11) {

m <- fitme(y ~ x + (1|g), data=dat)
LRT(m,m0, boot.repl = 199L)

}
## See help("get_RLRsim_args") for a fast and accurate test procedure

## (2) Models differing also by residual-dispersion models:
#
if (spaMM.getOption("example_maxtime")>25) {

m <- fitme(y ~ x + (1|g), data=dat, resid.model= ~x)
LRT(m,m0, boot.repl = 99L)

}

## (3) Models differing (also) by their random-effects in resid.model:
#
m <- fitme(y ~ x, data=dat, resid.model= ~1+(1|g))
LRT(m,m0) # no test performed

make_scaled_dist Scaled distances between unique locations

Description

This function computes scaled distances from whichever relevant argument it can use (see De-
tails). The result can directly by used as input for computation of the Matérn correlation ma-
trix. It is usually called internally by HLCor, so that users may ignore it, except if they wish to
control the distance used through control.dist$method, or the parametrization of the scaling
through control.dist$rho.mapping. control.dist$method provide access to the distances im-
plemented in the proxy package, as well as to "EarthChord" and "Earth" methods defined in
spaMM (see Details).

Usage

make_scaled_dist(uniqueGeo, uniqueGeo2=NULL, distMatrix, rho,
rho.mapping=seq_len(length(rho)),
dist.method="Euclidean",
return_matrix=FALSE)

Arguments

uniqueGeo A matrix of geographical coordinates (e.g. 2 columns for latitude and longitude),
without replicates of the same location.
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uniqueGeo2 NULL, or a second matrix of geographical coordinates, without replicates of the
same location. If NULL, scaled distances among uniqueGeo locations are com-
puted. Otherwise, scaled distances between locations in the two input matrices
are computed.

distMatrix A distance matrix.

rho A scalar or vector of positive values. Scaled distance is computed as <distances
in each coordinate> * rho, unless a non-trivial rho.mapping is used.

rho.mapping A set of indices controlling which elements of the rho scale vector scales which
dimension(s) of the space in which (spatial) correlation matrices of random
effects are computed. Scaled distance is generally computed as <distances
in each coordinate> * rho[rho.mapping]. As shown in the Example, if one
wishes to combine isotropic geographical distance and some environmental dis-
tance, the coordinates being latitude, longitude and one environmental variable,
the scaled distance may be computed as (say) (lat,long,env) *rho[c(1,1,2)]
so that the same scaling rho[1] applies for both geographical coordinates. In
this case, rho should have length 2 and rho.mapping should be c(1,1,2).

dist.method method argument of proxy::dist function (by default, "Euclidean", but other
distances are possible (see Details).

return_matrix Whether to return a matrix rather than a proxy::dist or proxy::crossdist
object.

Details

The function uses the distMatrix argument if provided, in which case rho must be a scalar. Vec-
torial rho (i.e., different scaling of different dimensions) is feasible only by providing uniqueGeo.

The dist.method argument gives access to distances implemented in the proxy package, or to user-
defined ones that are made accessible to proxy through its database. Of special interest for spatial
analyses are distances computed from longitude and latitude (proxy implements "Geodesic" and
"Chord" distances but they do not use such coordinates: instead, they use Euclidean distance for 2D
computations, i.e. Euclidean distance between points on a circle rather than on a sphere). spaMM
implements two such distances: "Earth" and "EarthChord", using longitude and latitude inputs
in that order (see Examples). The "EarthChord" distance is the 3D Euclidean distance “through
Earth”. The "Earth" distance is also known as the orthodromic or great-circle distance, on the
Earth surface. Both distances return values in km and are based on approximating the Earth by a
sphere of radius 6371.009 km.

Value

A matrix or dist object. If there are two input matrices, rows of the return value correspond to
rows of the first matrix.

Examples

data("blackcap")
## a biologically not very meaningful, but syntactically correct example of rho.mapping
fitme(migStatus ~ 1 + Matern(1|longitude+latitude+means),

data=blackcap, fixed=list(nu=0.5,phi=1e-6),
init=list(rho=c(1,1)), control.dist=list(rho.mapping=c(1,1,2)))
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## Using orthodromic distances:
# order of variables in Matern(.|longitude+latitude) matters;
# Matern(1|latitude+longitude) should cause a warning
fitme(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

method="ML", fixed=list(nu=0.5,phi=1e-6),
control.dist=list(dist.method="Earth"))

mapMM Colorful plots of predictions in two-dimensional space.

Description

These functions provide either a map of predicted response in analyzed locations, or a predicted
surface. mapMM is a straightforward representation of the analysis of the data, while filled.mapMM
uses interpolation to cope with the fact that all predictor variables may not be known in all locations
on a fine spatial grid. map_ranef maps a single spatial random effect. These three functions takes
an HLfit object as input. mapMM calls spaMMplot2D, which is similar but takes a more conventional
(x,y,z) input.

Using filled.mapMM may involve questionable choices. Plotting a filled contour generally requires
prediction in non-observed locations, where predictor variables used in the original data analysis
may be missing. In that case, the original model formula cannot be used and an alternative model
(controlled by the map.formula argument) must be used to interpolate (not smooth) the predicted
values in observed locations (these predictions still resulting from the original analysis based on
predictor variables). filled.mapMM always performs such interpolation (it does not allow one to
provide values for the predictor variables). As a result (1) filled.mapMM will be slower than a
mere plotting function, since it involves the analysis of spatial data; (2) the results may have little
useful meaning if the effect of the original predictor variables is not correctly represented by this
interpolation step. For example, prediction by interpolation may be biased in a way analogous to
prediction of temperature in non-observed locations while ignoring effect of variation in altitude
in such locations. Likewise, the variance argument of filled.mapMM allows one only to plot the
prediction variance of its own interpolator, rather than that of the input object.

map_ranef is free of the limitations of filled.mapMM.

Usage

spaMMplot2D(x, y, z, xrange=range(x, finite = TRUE),
yrange=range(y, finite = TRUE), margin=1/20, add.map= FALSE,
nlevels = 20, color.palette = spaMM.colors, map.asp=NULL,
col = (color.palette)(n = nlevels), plot.title=NULL, plot.axes=NULL,
decorations=NULL, key.title=NULL, key.axes=NULL, xaxs = "i",
yaxs = "i", las = 1, axes = TRUE, frame.plot = axes, ...)

mapMM(fitobject,Ztransf=NULL,coordinates,
add.points,decorations=NULL,plot.title=NULL,plot.axes=NULL,envir=-3, ...)

filled.mapMM(
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fitobject, Ztransf = NULL, coordinates, xrange = NULL, yrange = NULL,
margin = 1/20, map.formula, phi = 1e-05, gridSteps = 41,
decorations = quote(points(pred[, coordinates], cex = 1, lwd = 2)),
add.map = FALSE, axes = TRUE, plot.title = NULL, plot.axes = NULL,
map.asp = NULL, variance = NULL, var.contour.args = list(),
smoothObject = NULL, return.="smoothObject", ...)

map_ranef(fitobject, re.form, Ztransf=NULL, xrange = NULL, yrange = NULL,
margin = 1/20, gridSteps = 41,
decorations = quote(points(fitobject$data[, coordinates], cex = 1, lwd = 2)),
add.map = FALSE, axes = TRUE, plot.title=NULL, plot.axes=NULL,
map.asp = NULL, mv_it=NULL, ...)

Arguments

fitobject The return object of a corrHLfit or fitme call.

x, y, z Three vectors of coordinates, with z being expectedly the response.

re.form A model formula giving the single random effect term to plot, needed only if
there are several spatial random effects in the fitted model. In that case, it must
be formatted as . ~ <term>, as for the re.form argument of predict.HLfit.

Ztransf A transformation of the predicted response, given as a function whose only re-
quired argument can be a one-column matrix. The name of this argument must
be Z (not x), as is appropriate for use in do.call(Ztransf,list(Z=Zvalues)).

coordinates The geographical coordinates. By default they are deduced from the model for-
mula. For example if this formula is resp ~ 1 + Matern(1| x + y ) the default
coordinates are c("x","y"). If this formula is resp ~ 1 + Matern(1| x + y + z ),
the user must choose two of the three coordinates.

xrange The x range of the plot (a vector of length 2); by default defined to cover all
analyzed points.

yrange The y range of the plot (a vector of length 2); by default defined to cover all
analyzed points.

margin This controls how far (in relative terms) the plot extends beyond the x and y
ranges of the analyzed points, and is overriden by explicit xrange and yrange
arguments.

map.formula NULL, or a formula whose left-hand side is ignored. Provides the formula used
for interpolation. If NULL, a default formula with the same spatial effect(s) as
in the input fitobject is used.

phi This controls the phi value assumed in the interpolation step. Ideally phi would
be zero, but problems with numerically singular matrices may arise when phi is
too small.

gridSteps The number of levels of the grid of x and y values

variance Either NULL, or the name of a component of variance of prediction by the in-
terpolator to be plotted. Must name one of the components that can be returned
by predict.HLfit. variance="predVar" is suitable for uncertainty in point
prediction.
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var.contour.args

A list of control parameters for rendering of prediction variances. See contour
for possible arguments (except x, y, z and add).

add.map Either a boolean or an explicit expression, enclosed in quote (see Examples).
If TRUE, the map function from the maps package (which much therefore the
loaded) is used to add a map from its default world database. xrange and
yrange are used to select the area, so it is most convenient if the coordinates
are longitude and latitude (in this order and in standard units). An explicit ex-
pression can also be used for further control.

nlevels if levels is not specified, the range of z, values is divided into *approximately*
this many levels (a call to pretty determines the actual number of levels).

color.palette a color palette function to be used to assign colors in the plot.
map.asp the y/x aspect ratio of the 2D plot area (not of the full figure including the scale).

By default, the scales for x and y are identical unless the x and y ranges are too
different. Namely, the scales are identical if (plotted y range)/(plotted x range)
is 1/4 < . < 4, and map.asp is 1 otherwise.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification. There should be one less color than levels

plot.title statements which add titles to the main plot. See Details for differences between
functions.

plot.axes statements which draw axes (and a box) on the main plot. See Details for differ-
ences between functions.

decorations Either NULL or Additional graphic statements (points, polygon, etc.), en-
closed in quote (the default value illustrates the latter syntax). .

add.points Obsolete, use decorations instead.
envir Controls the environment in which plot.title, plot.axes, and decorations

are evaluated. mapMM calls spaMM2Dplot from where these graphic arguments
are evaluated, and the default value -3 means that they are evaluated within the
environment from where mapMM was called.

key.title statements which add titles for the plot key.
key.axes statements which draw axes on the plot key.
xaxs the x axis style. The default is to use internal labeling.
yaxs the y axis style. The default is to use internal labeling.
las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as in plot.default.
smoothObject Either NULL, or an object inheriting from class HLfit (hence, an object on

which predict.HLfit can be called), predicting the response surface in any
coordinates. See Details for typical usages.

return. character string: see Value
mv_it NULL or integer: for multivariate-response fits, specify a submodel.
... further arguments passed to or from other methods. For mapMM, all such argu-

ments are passed to spaMMplot2D; for spaMMplot2D, currently only additional
graphical parameters passed to title() (see Details). For filled.mapMM and
map_ranef, these parameters are those that can be passed to spaMM.filled.contour.



130 mapMM

Details

The smoothObject argument may be used to redraw a figure faster by recycling the predictor of the
response surface returned invisibly by a previous call to filled.mapMM.

For smoothObject=NULL (the default), filled.mapMM interpolates the predicted response, with
sometimes unpleasant effects. For example, if one interpolates probabilities, the result may not
be within [0,1], and then (say) a logarithmic Ztransf may generate NaN values that would other-
wise not occur. The smoothObject argument may be used to overcome the default behaviour, by
providing an alternative predictor.

If you have values for all predictor variables in all locations of a fine spatial grid, filled.mapMM
may not be a good choice, since it will ignore that information (see map.formula argument). Rather,
one should use predict(<fitobject>,newdata= <all predictor variables >) to generate all
predictions, and then either spaMM.filled.contour or some other raster functions.

The different functions are (currently) inconsistent among themselves in the way they handle the
plot.title and plot.axes argument:

spaMM.filled.contour behaves like graphics::filled.contour, which (1) handles arguments
which are calls such as title(.) or {axis(1);axis(2)}; (2) ignores ... arguments if plot.title
is missing; and (3) draws axes by default when plot.axes is missing, given axes = TRUE.

By contrast, filled.mapMM handles arguments which are language expressions such as produced
by quote(.) or substitute(.) (see Examples).

mapMM can handles language expressions, but also accepts at least some calls.

Value

filled.mapMM by default returns invisibly the fit object predicting the interpolated response surface;
however, for any non-default return. argument (return.="raster" would be recommended to
ensure future back-compatibility), it will return a raster of values as a list with elements x, y and z.
map_ranef returns invisibly a 3-column matrix containing the spatial coordinates, and the predicted
effect z on the linear predictor scale (which is also the scale of the plot, unless a Ztransf is used).
mapMM returns invisibly a list with elements x, y and z. Plots are produced as side-effects.

See Also

seaMask for masking areas in a filled map; https://gitlab.mbb.univ-montp2.fr/francois/
spamm-ref/-/blob/master/vignettePlus/example_raster.html for more elaborate plot pro-
cedures.

Examples

data("blackcap")
bfit <- fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

fixed=list(lambda=0.5537,phi=1.376e-05,rho=0.0544740,nu=0.6286311))
mapMM(bfit,color.palette = function(n){spaMM.colors(n,redshift=1/2)},add.map=TRUE)
map_ranef(bfit) # providing argument re.form= . ~ Matern(1|longitude+latitude)

if (spaMM.getOption("example_maxtime")>1) {
## filled.mapMM takes a bit longer
# showing 'add.map', 'nlevels', and contour lines for 'variance'

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
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filled.mapMM(bfit, nlevels=30, add.map=TRUE, plot.axes=quote({axis(1);axis(2)}),
variance="respVar",
plot.title=title(main="Inferred migration propensity of blackcaps",

xlab="longitude",ylab="latitude"))

## Similar plots by ggplot2:
## Not run:
library(rnaturalearth) # provides sea mask through 'ne_download' function
library(ggplot2)
library(sp)

# sea mask
sea <- ne_download(scale = 10, type = 'ocean', category = "physical", returnclass = "sf")

# Generation of data.frame for ggplot:
rastr <- filled.mapMM(bfit, return.="raster")

spdf <- data.frame(Long=rep(rastr$x, nc), Lat=rastr$y[gl(nr,nc)], z = as.vector(rastr$z))

ggplot(spdf) +
geom_contour_filled(aes(Long,Lat,z=z), bins = 20) +
guides(fill = "none") +
geom_sf(data = sea, fill = "black") +
coord_sf(ylim = range(rastr$y), xlim = range(rastr$x), expand = FALSE)

## End(Not run)

}

if (spaMM.getOption("example_maxtime")>3) {
data("Loaloa")
lfit <- fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI

+Matern(1|longitude+latitude), method="PQL", data=Loaloa,
family=binomial(), fixed=list(nu=0.5,rho=2.255197,lambda=1.075))

## longer computation requiring interpolation of 197 points
## Also illustrating effect of 'return.' argument
res <- filled.mapMM(lfit,add.map=TRUE,plot.axes=quote({axis(1);axis(2)}),

decorations=quote(points(pred[,coordinates],pch=15,cex=0.3)),
return.="raster", # so that 'res' is a list representing a raster.
plot.title=title(main="Inferred prevalence, North Cameroon",

xlab="longitude",ylab="latitude"))
}

MaternCorr Matern correlation function and Matern formula term.

Description

The Matérn correlation function describes realizations of Gaussian spatial processes with differ-
ent smoothnesses (i.e. either smooth or rugged surfaces, controlled by the ν parameter). It also
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includes a ρ scaling parameter and an optional ’nugget’ parameter. A random effect specified in
a model formula as Matern(1|<...>) has pairwise correlations given by the Matérn function at
the scaled Euclidean distance between coordinates specified in <...>, using “+” as separator (e.g.,
Matern(1|longitude+latitude)). The Matern family can be used in Euclidean spaces of any
dimension; and also for correlations on a sphere (with maximum smoothness nu=0.5).

A syntax of the form Matern(1|longitude+latitude %in% grp) can be used to specify a Matern
random effect with independent realizations (but identical correlation parameters) for each level
of the grouping variable grp. Alternatively, the Matern(<T/F factor>|longitude+latitude)
may be used to specify Matern effects specific to individuals identified by the <T/F factor> (see
Example with females and males). In that case distinct correlation parameters are fitted for each
such Matern term.

When group-specific autocorrelated random effects are fitted, it may be wise to allow for different
means for each group in the Intercept (a message will point this out if the fit results for Matern or
Cauchy terms suggest so).

By default, fitme and corrHLfit performs optimization over the ρ and ν parameters. It is possible
to estimate different scaling parameters for the different Euclidean dimensions: see examples in
make_scaled_dist.

The MaternCorr function may be used to vizualise these correlations, using distances as input.

Usage

## Default S3 method:
MaternCorr(d, rho = 1, smoothness, nu = smoothness, Nugget = NULL)
# Matern(1|...)

Arguments

d A distance or a distance matrix.
rho A scaling factor for distance. The ’range’ considered in some formulations is

the reciprocal of this scaling factor
smoothness The smoothness parameter, >0. ν = 0.5 corresponds to the exponential correla-

tion function, and the limit function when ν goes to ∞ is the squared exponential
function (as in a Gaussian).

nu Same as smoothness
Nugget (Following the jargon of Kriging) a parameter describing a discontinuous de-

crease in correlation at zero distance. Correlation will always be 1 at d = 0, and
from which it immediately drops to (1-Nugget)

... Names of coordinates, using “+” as separator (e.g., Matern(1|longitude+latitude).
The coordinates are numeric values found in the data data frame provided to the
fitting function. No additional declaration of groups, factors, or other specific
formatting is required.

Details

The correlation at distance d > 0 is

(1− Nugget)
(ρd)νKν(ρd)

2(ν−1)Γ(ν)
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where Kν is the besselK function of order ν.

By default the Nugget is set to 0. See one of the examples on data set Loaloa for a fit including the
estimation of the Nugget.

Value

Scalar/vector/matrix depending on input.

References

Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer,
New York.

See Also

See corMatern for an implementation of this correlation function as a corSpatial object for use
with lme or glmmPQL.

Examples

## See examples in help("HLCor"), help("Loaloa"), help("make_scaled_dist"), etc.
## Matern correlations in 4-dimensional space:
set.seed(123)
randpts <- matrix(rnorm(20),nrow=5)
distMatrix <- as.matrix(proxy::dist(randpts))
MaternCorr(distMatrix,nu=2)

## Group-specific random effects:
if (spaMM.getOption("example_maxtime")>1.6) {

data(Leuca)
subLeuca <- Leuca[c(1:10,79:88),] # subset of 10 females and 10 males, for faster examples.

# Independent Matern random effect with different covariance parameters for each sex:
fitme(fec_div ~ sex + Matern(female|x + y) + Matern(male|x + y), data = subLeuca)

# Independent Matern random effect with the same covariance parameters for each sex:
fitme(fec_div ~ sex + Matern(1|x+y %in% sex),data=subLeuca)

# Matern models with random-effects distinct but correlated across sexes
# can also be fitted: see Matern examples in help("composite-ranef").

}

MaternIMRFa corrFamily constructor for Interpolated Markov Random Field
(IMRF) covariance structure approximating a 2D Matern correlation
model.
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Description

Reimplements the IMRF correlation model approximating a Matern correlation function, through a
corrFamily constructor. This allows the efficient joint estimation of the alpha parameter of the
approximating Markov random field (in principle related to the smoothness parameter of the Matern
correlation function) together with its kappa parameter. By contrast, random effects terms specified
as IMRF(1| . , model = <INLA::inla.spde2.matern result>) assume a fixed alpha.

Using this feature requires that the not-on-CRAN package INLA (https://www.r-inla.org) is
installed so that INLA::inla.spde2.matern can be called for each alpha value.

Usage

# corrFamily constructor:
MaternIMRFa(mesh, tpar = c(alpha = 1.25, kappa = 0.1), fixed = NULL, norm=FALSE)

Arguments

mesh An inla.mesh object as produced by INLA::inla.mesh.2d.

and consistently with the general format of corrFamily constructors:

tpar Named numeric vector: template values of the parameters of the model. Better
not modified unless you know what you are doing.

fixed NULL or numeric vector, to fix the parameters of this model.

norm Boolean: whether to apply a normalization so that the random effect is ho-
moscedastic (see IMRF) for details.

Value

A list suitable as input in the covStruct argument, with the following elements:

f function returning a precision matrix for the random effect in mesh vertices;

tpar template parameter vector (see general requirements of a corrFamily descrip-
tor);

Af function returning a matrix that implements the prediction of random effect val-
ues in data locations by interpolation of values in mesh locations (similarly to
INLA::inla.spde.make.A);

type specifies that the matrix returned by Cf is a precision matrix rather than a corre-
lation matrix;

and possibly other elements which should not be considered as stable features of the return value.

References

Lindgren F., Rue H., Lindström J. (2011) An explicit link between Gaussian fields and Gaus-
sian Markov random fields: the stochastic partial differential equation approach Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 73: 423-498. doi:10.1111/j.1467-
9868.2011.00777.x

https://www.r-inla.org
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
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Examples

## Not run:

if(requireNamespace("INLA", quietly = TRUE)) {

data("Loaloa")

mesh <- fmesher::fm_mesh_2d_inla(loc = Loaloa[, c("longitude", "latitude")],
max.edge = c(3, 20))

### Fit with fixed alpha

(fit_MaternIMRF <- fitme(
cbind(npos,ntot-npos) ~ elev1 + elev2 + elev3 + elev4 + maxNDVI1 +

seNDVI + MaternIMRFa(1|longitude+latitude, mesh=mesh, fixed=c(alpha=1.05)),
family=binomial(),
data=Loaloa, verbose=c(TRACE=interactive())) )

# For data sets with a small number of locations (as here), fitting
# the Matern model as follows is faster than fitting its MaternIMRFa approximation.
# Here this appears more than twofold faster

fit_Matern <- fitme(
cbind(npos,ntot-npos) ~ elev1 + elev2 + elev3 + elev4 + maxNDVI1 +

seNDVI + Matern(1|longitude+latitude),
fixed=list(nu=0.05), # in principle similar to alpha=0.05
data=Loaloa,family=binomial())

### Same with variable alpha

(fit_MaternIMRF <- fitme(
cbind(npos,ntot-npos) ~ elev1 + elev2 + elev3 + elev4 + maxNDVI1 +

seNDVI + MaternIMRFa(1|longitude+latitude, mesh),
family=binomial(),
data=Loaloa, verbose=c(TRACE=interactive())) )

# Comparable Matern fit:
fit_Matern <- fitme(

cbind(npos,ntot-npos) ~ elev1 + elev2 + elev3 + elev4 + maxNDVI1 +
seNDVI + Matern(1|longitude+latitude),

init=list(nu=0.25), lower=list(nu=0), upper=list(nu=1),
data=Loaloa,family=binomial())

# Note that the fitted nu and alpha parameters do not quite match each other,
# and that the IMRF likelihood does not really approximate the Matern likelihood.
# Mesh design would also be seen to matter.

} else print("INLA must be installed to run this example.")
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## End(Not run)

mat_sqrt Computation of “square root” of symmetric positive definite matrix

Description

mat_sqrt is not usually directly called by users, but arguments may be passed to it through higher-
level calls (see Examples). For given matrix C, it computes a factor L such that C = L * t(L),
handling issues with nearly-singular matrices. The default behavior is to try Cholesky factorization,
and use eigen if it fails. Matrix roots are not unique (for example, they are lower triangular for
t(chol(.)), and symmetric for svd(.). As matrix roots are used to simulate samples under the
fitted model (in particular in the parametric bootstrap implemented in fixedLRT), this implies that
for given seed of random numbers, these samples will differ with these different methods (although
their distribution should be identical).

Usage

mat_sqrt(m = NULL, symSVD = NULL, try.chol = TRUE, condnum=1e12)

Arguments

m The matrix whose ’root’ is to be computed. This argument is ignored if symSVD
is provided.

symSVD A list representing the symmetric singular value decomposition of the matrix
which ’root’ is to be computed. Must have elements $u, a matrix of eigenvectors,
and $d, a vector of eigenvalues.

try.chol If try.chol=TRUE, the Cholesky factorization will be tried.

condnum (large) numeric value. In the case chol() was tried and failed, the matrix is
regularized so that its (matrix 2-norm) condition number is reduced to condnum
(in version 3.10.0 this correction has been implemented more exactly than in
previous versions).

Value

For non-NULL m, its matrix root, with rows and columns labelled according to the columns of
the original matrix. If eigen was used, the symmetric singular value decomposition (a list with
members u (matrix of eigenvectors) and d (vector of eigenvalues)) is given as attribute.

Examples

## Not run:
## try.chol argument passed to mat_sqrt
## through the '...' argument of higher-level functions
## such as HLCor, corrHLfit, fixedLRT:
data("scotlip")
HLCor(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)),



method 137

ranPars=list(rho=0.174),adjMatrix=Nmatrix,family=poisson(),
data=scotlip,try.chol=FALSE)

## End(Not run)

method Fitting methods (objective functions maximized)

Description

The method argument of the fitting functions, with possible values "ML", "REML","PQL", "PQL/L",
and so on, controls whether restricted likelihood techniques are used to estimate residual variance
and random-effect parameters, and the way likelihood functions are approximated.

By default, Laplace approximations are used, as selected by "ML" and "REML" methods. The Laplace
approximation to (log-)marginal likelihood can be expressed in terms of the joint log-likelihood of
the data and the random effects (or the h-likelihood in works of Lee and Nelder). The Laplace
approximation is the joint likelihood minus half the log-determinant of the matrix of second deriva-
tives (Hessian matrix) of the negative joint likelihood with respect to the random effects (observed
information matrix). The Laplace approximation to restricted likelihood (for REML estimation) is
similarly defined from the Hessian matrix with respect to random effects and fixed effects (for the
adventurous, spaMM allows some non-standard specification of the fixed effects included in the
definition of he Hessian).

Various additional approximations have been considered. Penalized quasi-likelihood (PQL), as
originally defined for GLMMs by Breslow and Clayton (1993), uses a Laplace approximation of
restricted likelihood to estimate dispersion parameters, and estimates fixed effects by maximizing
the joint likelihood (h-likelihood). Although PQL has been criticized as an approximation of like-
lihood (and actual implementations may diverge from the original version), it has some interesting
inferential properties. spaMM allows one to use an ML variant of PQL, named PQL/L.

Further approximations defined by Lee, Nelder and collaborators (e.g., Noh and Lee, 2007, for
some overview) may mostly be seen as laying between PQL and the full Laplace method in terms
of approximation of the likelihood, and as extending them to models with non-gaussian random
effects (“HGLMs”). In practice the ML, REML, PQL and PQL/L methods should cover most (all?)
needs for GLMMs, and EQL extends the PQL concept to HGLMs. method="EQL+" stands for the
EQL method of Lee and Nelder (2001). The ’+’ signals that it includes the d v/ d tau correction
described p. 997 of that paper, while method="EQL-" ignores it. "PQL" is equivalent to EQL- for
GLMMs. "PQL/L" is PQL without the leverage corrections that characterize REML estimation of
random-effect parameters.

spaMM uses the observed information matrix by default since version 4.0.0. By contrast, in
Laplace approximations of likelihood described in the work of Lee & Nelder, i.e. for mixed-effect
models with GLM response families, the information matrix is written in terms of the GLM weights
(e.g., Lee & Nelder 2001, p.1004), and is thus effectively the expected information matrix, which
differs from the observed information matrix in the case of GLM families with non-canonical link
(McCullagh & Nelder 1989, p.42). Therefore, the likelihood approximation based on the expected
information matrix differs from the one based on the observed information matrix in the same
conditions.
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For non-GLM distribution families (currently, the negbin1, beta_resp and betabin), only ob-
served information is available (expected information would at best be quite difficult to evaluate,
with no benefits). For GLM families, use of expected information matrix can be required at a global
level by setting spaMM.options(obsInfo=FALSE) or in a specific fit by adding "exp" as a second
specifier in the method (e.g., method=c("ML","exp")). This can be distinctly useful (in terms of
speed) for fitting models with Gamma(log) family. Conversely, the "obs" specifier will enforce use
of observed information matrix when the alternative is set at a global level.

Details

The method (or HLmethod) argument of fitting functions also accepts values of the form "HL(<...>)",
"ML(<...>)" and "RE(<...>)", e.g. method="RE(1,1)", which allow one to experiment with fur-
ther combinations of approximations. HL and RE are equivalent (both imply an REML correction).
The first ’1’ means that a Laplace approximation to the likelihood is used to estimate fixed effects
(a ’0’ would instead mean that the h likelihood is used as the objective function). The second ’1’
means that a Laplace approximation to the likelihood or restricted likelihood is used to estimate
dispersion parameters, this approximation including the dv/d tau term specifically discussed by Lee
& Nelder 2001, p. 997 (a ’0’ would instead mean that these terms are ignored). It is possible
to enforce the EQL approximation for estimation of dispersion parameter (i.e., Lee and Nelder’s
(2001) method) by adding a third index with value 0. "EQL+" is thus "HL(0,1,0)", while "EQL-"
is "HL(0,0,0)". "PQL" is EQL- for GLMMs. "REML" is "HL(1,1)". "ML" is "ML(1,1)".

Some of these distinctions make sense for GLMs, and may help in understanding idiosyncrasies of
stats::glm for Gamma GLMs. In particular (as stated in the stats::logLik documentation) the
logLik of a Gamma GLM fit by glm differs from the exact likelihood. An "ML(0,0,0)" approx-
imation of true ML provides the same log likelihood as stats::logLik. Further, the dispersion
estimate returned by summary.glm differs from the one implied by logLik, because summary.glm
uses Pearson residuals instead of deviance residuals. This may be confusing, and no method in
spaMM tries to reproduce simultaneously these distinct features (however, spaMM_glm may do so).
The dispersion estimate returned by an "HL(.,.,0)" fit matches what can be computed from resid-
ual deviance and residual degrees of freedom of a glm fit, but this is not the estimate displayed by
summary.glm. The fixed effect estimates are not affected by these tinkerings.

References

Breslow, NE, Clayton, DG. (1993). Approximate Inference in Generalized Linear Mixed Models.
Journal of the American Statistical Association 88, 9-25.

Lee, Y., Nelder, J. A. (2001) Hierarchical generalised linear models: A synthesis of generalised
linear models, random-effect models and structured dispersions. Biometrika 88, 987-1006.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd edition. London: Chapman
& Hall.

Noh, M., and Lee, Y. (2007). REML estimation for binary data in GLMMs, J. Multivariate Anal.
98, 896-915.
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MSFDR Multiple-Stage False Discovery Rate procedure

Description

This implements the procedure described by Benjamini and Gavrilov (2009) for model-selection of
fixed-effect terms based on False Discovery Rate (FDR) concepts. It uses forward selection based
on penalized likelihoods. The penalization for the number of parameters is distinct from that in
Akaike’s Information Criterion, and variable across iterations of the algorithm (but functions from
the stats package for AIC-based model-selection are still called, so that some screen messages
refer to AIC).

Usage

MSFDR(nullfit, fullfit, q = 0.05, verbose = TRUE)

Arguments

nullfit An ML fit to the minimal model to start the forward selection from; an object of
class HLfit.

fullfit An ML fit to the maximal model; an object of class HLfit.

q Nominal error rate of the underlying FDR procedure (expected proportion of
incorrectly rejected null out of the rejected). Benjamini and Gavrilov (2009)
recommend q=0.05 on the basis of minimizing mean-squared prediction error
in various simulation conditions considering only linear models.

verbose Whether to print information about the progress of the procedure.

Value

The fit of the final selected model; an object of class HLfit.

References

A simple forward selection procedure based on false discovery rate control. Ann. Appl. Stat, 3,
179-198 (2009).

Examples

if (spaMM.getOption("example_maxtime")>1.4) {
data("wafers")
nullfit <- fitme(y~1+(1|batch), data=wafers,family=Gamma(log))
fullfit <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch), data=wafers, family=Gamma(log))
MSFDR(nullfit=nullfit,fullfit=fullfit)
}
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multIMRF Interpolated Markov Random Field models

Description

spaMM can fit random-effect terms of the forms considered by Lindgren et al. (2011) or Nychka
et al. (2015, 2018). The random effects considered here all involve a multivariate Gaussian random
effect over a lattice, from which the random-effect value in any spatial position is determined by
interpolation of values on the lattice. IMRF stands for Interpolated Markov Random Field because
the specific process considered on the lattice is currently known as a Gaussian Markov Random
Field (see the Details for further information). Lindgren et al. considered irregular lattices designed
to approximate of the Matern correlation model with fixed smoothness <= 2, while Nychka et al.
considered regular grids.

The correlation model of Lindgren et al. (2011) can be fitted by spaMM by declaring an IMRF ran-
dom effect term in the model formula, with a model argument in the right-hand side whose value
is the result of INLA::inla.spde2.matern (or INLA::inla.spde2.pcmatern) for given smooth-
ness. The spaMM functions for such a fit do not call INLA functions. Alternatively, the same
model with variable smoothness can be fitted by declaring a corrFamily term whose structure is
described through the MaternIMRFa function, whose respective documentations should be consid-
ered for more details. In the latter case INLA::inla.spde2.matern is called internally by spaMM.
The correlation models thus defined are fitted by the same methods as other models in spaMM.

Regular lattices can also be declared as an IMRF term (with arguments distinct from model). The
multIMRF syntax implements the multiresolution model of Nychka et al. Any multIMRF term in a
formula is immediately converted to IMRF terms for regular grids wih different step sizes. This has
distinct implications for controlling the parameters of these or other random effects in the model by
init or fixed values: see Details if you need such control.

Usage

# IMRF( 1 | <coordinates>, model, nd, m, no, ce, ...)
# multIMRF( 1 | <coordinates>, levels, margin, coarse=10L,
# norm=TRUE, centered=TRUE )

Arguments

model An inla.spde2 object as produced by INLA::inla.spde2.matern or
INLA::inla.spde2.pcmatern (see Examples below, and https://www.r-inla.
org for further information).

levels integer; Number of levels in the hierarchy, i.e. number of component IMRFs.

margin, m integer; width of the margin, as a number of additional grid points on each side
(applies to all levels of the hierarchy).

coarse integer; number of grid points (excluding the margins) per dimension for the
coarsest IMRF. The number of grids steps nearly doubles with each level of the
hierarchy (see Details).

https://www.r-inla.org
https://www.r-inla.org
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nd integer; number of grid steps (excluding the margins) per dimension for the
given IMRF.

norm, no Boolean; whether to apply normalization (see Details), or not.

centered, ce Boolean; whether to center the grid in all dimensions, or not.

... Not documented, for programming purposes

Details

Formulation of the covariance models:
Gaussian Markov Random Field (MRF) and conditional autoregressive models are essentially the
same thing, apart from details of specification. adjacency and AR1 random effects can be seen
as specific MRFs. The common idea is the Markov-like property that the distribution of each
element bi of the random-effect b, given values of a few specific elements (the “neighbours” of i),
is independent of other elements (i.e., of non-neighbours). The non-zero non-diagonal elements of
a precision matrix characterize the neighbours.

Given the inferred vector b of values of the MRF on the lattice, the interpolation of the MRF in any
focal point is of the form Ab where each row of A weights the values of b according to the position
of the focal point relative to the vertices of the lattice. Following the original publications,
* for grids given by model=<inla.spde2 object>, the non-zero weights are the barycentric coor-
dinates of the focal point in the enclosing triangle from the mesh triangulation (points from outside
the mesh would have zero weights, so the predicted effect Ab=0);
* for regular grids (NULL model), the weights are computed as <Wendland function>(<scaled
Euclidean distances between focal point and vertices>).

The IMRF model defines both a lattice in space, the precision matrix for a Gaussian MRF over
this lattice, and the A matrix of weights. The full specification of the MRF on irregular lat-
tices is complex. The κ (kappa) parameter considered by spaMM is the κ scale parameter con-
sidered by Lindgren et al and comparable to the ρ scale factor of the Matérn model. The α ar-
gument of the INLA::inla.spde2.matern controls the smoothness of the approximated Matern
model, as α = ν + d/2) where d is the dimension of the space. Correlation models created
by INLA::inla.spde2.pcmatern are handled so as to give the same correlation values as when
INLA::inla.spde2.matern is used with the same mesh and alpha argument (thus, the extra func-
tionalities of “pc”matern are ignored).

Not all options of the INLA functions may be compatible or meaningful when used with spaMM
(only the effects of alpha and cutoff have been checked).

Normalization:

For the MRFs on default regular grids (missing model argument), the precision matrix is defined
(up to a variance parameter) as M’M where the diagonal elements mii of M are 4+κ2 and the mij

for the four nearest neighbours are -1 (note that M’M involves more than these four neighbours).
The precision matrix defined in this way is the inverse of an heteroscedastic covariance matrix C,
but (following Nychka et al.) by default a normalization is applied so that the random effect in
each data position is homoscedastic (the precision matrix for the latent effect in grid positions is not
modified, but it is the A matrix of weights which is is modified). As for other random effects, the
variance is further controlled by a multiplicative factor λ.

Without normalization, the covariance matrix of the random effect in data locations is λALL’A’ (A
being the above-described weight matrix, and L is a “square root” of C), and AL is the original
“design matrix” of the random effect. λ may then be quite different from the marginal variance of
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the random effect, and is difficult to describe in a simple way. For normalization, A is modified as
WA where W is a diagonal matrix such that WAL is a correlation matrix (WALL’A’W’ has unit
diagonal); then, λ is the marginal variance of the random effect.

For irregular grids specified using the model argument, the precision matrix described by this ob-
ject is also the inverse of an heteroscedastic covariance matrix, but here (again following original
publicatiosn such as Lindgren at al. 2011) the normalization is not applied by default (and was not
even an option before version 4.3.23). But for ease of presentation and interpretation, if for no other
reason, the normalized model may be preferable.

Details for rectangular grids:

By default (meaning in particular that model is not used to specify a lattice defined by the INLA
procedures), the IMRF lattice is rectangular (currently the only option) and is made of a core lattice,
to which margins of margin steps are added on each side. The core lattice is defined as follows: in
each of the two spatial dimensions, the range of axial coordinates is determined. The largest range
is divided in nd-1 steps, determining nd values and step length L. The other range is divided in
steps of the same length L. If it extends over (say) 2.5L, a grid of 2 steps and 3 values is defined,
and by default centered on the range (the extreme points therefore typically extend slightly beyond
the grid, within the first of the additional steps defined by the margin; if not centered, the grid start
from the lower coordinate of the range).

multIMRF implements multilevel IMRFs. It defines a sequence of IMRFs, with progressively finer
lattices, a common κ value hy_kap for these IMRFs, and a single variance parameter hy_lam that
determines λ values decreasing by a factor of 4 for successive IMRF terms. By default, each
component IMRF is normalized independently as described above (as in Nychka et al. 2019), and
hy_lam is the sum of the variances of these terms (e.g., if there are three levels and hy_lam=1,
the successive variances are (1,1/4,1/16)/(21/16) ). The nd of the first IMRF is set to the coarse
value, and its lattice is defined accordingly. If coarse=4 and margin=5, a grid of 14 coordinates
is therefore defined over the largest range. In the second IMRF, the grid spacing is halved, so that
new steps are defined halfway between the previous ones (yielding a grid of 27 step in the widest
range). The third IMRF proceeds from the second in the same way, and so on.

To control initial or fixed values of multIMRF κ and variance parameters, which are hyper-parameter
controlling several IMRF terms, the hyper syntax shown in the Examples should be used. hyper is a
nested list whose possible elements are named "1", "2", ... referring to successive multIMRF terms
in the input formula, not to successive random effect in the expanded formula with distinct IMRF
terms (see Examples). But the different IMRF terms should be counted as distinct random effects
when controlling other parameters (e.g., for fixing the variances of other random effects).

References

D. Nychka, S. Bandyopadhyay, D. Hammerling, F. Lindgren, S. Sain (2015) A multiresolution
gaussian process model for the analysis of large spatial datasets. Journal of Computational and
Graphical Statistics 24 (2), 579-599. doi:10.1080/10618600.2014.914946

D. Nychka, D. Hammerling, Mitchel. Krock, A. Wiens (2018) Modeling and emulation of nonsta-
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Lindgren F., Rue H., Lindström J. (2011) An explicit link between Gaussian fields and Gaus-
sian Markov random fields: the stochastic partial differential equation approach Journal of the
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9868.2011.00777.x
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Examples

if (spaMM.getOption("example_maxtime")>6) {

data("blackcap") ## toy examples; but IMRF may be useful only for much larger datasets
## and when using the 'cutoff' argument
## of fmesher::fm_mesh_2d_inla() / INLA::inla.mesh.2d()

########################## Irregular lattice specified by 'model':
#
data("small_spde") ## load object of class 'inla.spde2', created and saved by :

# spd <- sp::SpatialPointsDataFrame(coords = blackcap[, c("longitude", "latitude")],
# data = blackcap)
# small_mesh <- INLA::inla.mesh.2d(loc = INLA::inla.mesh.map(sp::coordinates(spd)),
# max.n=100, # only for demonstration purposes
# max.edge = c(3, 20))
# small_spde <- INLA::inla.spde2.matern(small_mesh)
# save(small_spde, file="small_spde.RData", version=2)

#
fit_SPDE <- fitme(migStatus ~ means + IMRF(1|longitude+latitude, model=small_spde),

data=blackcap)

########################## Regular lattices:
#
#Using 'hyper' to control fixed hyper-parameters
#
(mrf <- fitme(migStatus ~ 1 + (1|pos) +

multIMRF(1|longitude+latitude,margin=5,levels=2),
data=blackcap, fixed=list(phi=1,lambda=c("1"=0.5),
hyper=list("1"=list(hy_kap=0.1,hy_lam=1)))) )

# Using 'hyper' to control initial hyper-parameters
#
(mrf <- fitme(migStatus ~ 1 + multIMRF(1|longitude+latitude,margin=5,levels=2),

data=blackcap, method="ML", fixed =list(phi=1),
init=list(hyper=list("1"=list(hy_kap=0.1,hy_lam=1)))) )

# *Independent* IMRF terms with default rectangular lattice (often giving dubious results)
#
(mrf <- fitme(migStatus ~ 1 + IMRF(1|longitude+latitude,margin=5, nd=4L)

+ IMRF(1|longitude+latitude,margin=5, nd=7L),
data=blackcap,
fixed=list(phi=1,lambda=c(1/4,1/16),

corrPars=list("1"=list(kappa=0.1),"2"=list(kappa=0.1)))))

}

multinomial Analyzing multinomial data
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Description

The features described here were implemented to facilitate the analysis of multinomial data, before
fitmv was developed, as a series of nested binomial data. fitmv should now be considered, as well
as its wrapper pois4mlogit which allows one to fit models known as multinomial logit.

The main interface described here is the multi “family”, to be used in the family argument of the
fitting functions. Fits using it call binomialize, which can be called directly to check how the
data are converted to nested binomial data, and to use these data directly. The fitted.HLfitlist
method of the fitted generic function returns a matrix of fitted multinomial probabilities. The
logLik.HLfitlist method of the logLik generic function returns a log-likelihood for the joint
fits.

Usage

multi(binResponse=c("npos","nneg"),binfamily=binomial(),input="types",...)
binomialize(data,responses,sortedTypes=NULL,binResponse=c("npos","nneg"),

depth=Inf,input="types")
## S3 method for class 'HLfitlist'
fitted(object, version=2L, ...)
## S3 method for class 'HLfitlist'
logLik(object,which,...)

Arguments

data The data frame to be analyzed.

object A list of binomial fits returned by a multinomial analysis

responses column names of the data, such that <data>[,<responses>] contain the multi-
nomial response data, as levels of factor variables.

sortedTypes Names of multinomial types, i.e. levels of the multinomial response factors.
Their order determines which types are taken first to define the nested binomial
samples. By default, the most common types are considered first.

binResponse The names to be given to the number of “success” and “failures” in the binomial
response.

depth The maximum number of nested binomial responses to be generated from the
multinomial data.

binfamily The family applied to each binomial response.

input If input="types", then the responses columns must contain factor levels of
the binomial response. If input="counts", then the responses columns must
contain counts of different factor levels, and the column names are the types.

which Which element of the APHLs list to return. The default depends on the fitting
method.In particular, if it was REML or one of its variants, the function returns
the log restricted likelihood (exact or approximated).

version Integer, for fitted.HLfitlist (i.e. for multinomial fits using multi); 1 will
provide the result of past versions up to 3.5.0 (See Value).

... Other arguments passed from or to other functions.
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Details

A multinomial response, say counts 17, 13, 25, 8, 3, 1 for types type1 to type6, can be represented
as a series of nested binomials e.g. type1 against others (17 vs 50) then among these 50 others,
type2 versus others (13 vs 37), etc. The binomialize function generates such a representation. By
default the representation considers types in decreasing order of the number of positives, i.e. first
type3 against others (25 vs 42), then type1 against others within these 42, etc. It stops if it has
reached depth nested binomial responses. This can be modified by the sortedTypes argument, e.g.
sortedTypes=c("type6","type4","type2"). binomialize returns a list of data frames which
can be directly provided as a data argument for the fitting functions, with binomial response.

Alternatively, one can provide the multinomial response data frame, which will be internally con-
verted to nested binomial data if the family argument is a call to multinomial (see Examples).

For mixed models, the multinomial data can be fitted to a model with the same correlation parame-
ters, and either the same or different variances of random effects, for all binomial responses. Which
analysis is performed depends on whether the variances are fitted by “outer optimization” or by
HLfit’s “inner iterative” algorithm, as controlled by the init or init.corrHLfit arguments (see
Examples). These initial values therefore affect the definition of the model being fitted. corrHLfit
will fit different variances by default. Adding an init.corrHLfit will force estimation of a single
variance across models. fitme’s default optimization strategy is more complex, and has changed
and still change over versions. This creates a back-compatibility issue where the model to be fitted
may change over versions of spaMM. To avoid that, it is strongly advised to use an explicit initial
value when fitting a multi model by fitme.

Value

binomialize returns a list of data frames appropriate for analysis as binomial response. Each data
frame contains the original one plus two columns named according to binResponse.

The main fitting functions, when called on a model with family=multi(.), return an object of
class HLfitlist, which is a list with attributes. The list elements are fits of the nested binomial
models (objects of class HLfit). The attributes provide additional information about the overall
multinomial model, such as global log-likelihood values and other information properly extracted
by the how() function.

multi is a function that returns a list, but users may never need to manipulate this output.

fitted.HLfitlist returns a matrix. The current default version=2L provides meaningful fitted
values (predicted multinomial frequencies for each response type) even for data rows where the
nested binomial fit for a type had no response information remaining. By contrast, the first version
provided a matrix with 0s for these row*fit combinations, except for the last column; in many cases
this may be confusing.

Examples

## Adding colour to the famous 'iris' dataset:
iriscol <- iris
set.seed(123) # Simulate colours, then fit colour frequencies:
iriscol$col <- sample(c("yellow", "purple", "blue"),replace = TRUE,

size = nrow(iriscol), prob=c(0.5,0.3,0.2))
colfit <- fitme(cbind(npos,nneg) ~ 1+(1|Species), family=multi(responses="col"),

data=iriscol, init=list(lambda=NA)) # note warning if no 'init'...
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head(fitted(colfit))

# To only generate the binomial datasets:
binomialize(iriscol,responses="col")

## An example considering pseudo-data at one diploid locus for 50 individuals
set.seed(123)
genecopy1 <- sample(4,size=50,prob=c(1/2,1/4,1/8,1/8),replace=TRUE)
genecopy2 <- sample(4,size=50,prob=c(1/2,1/4,1/8,1/8),replace=TRUE)
alleles <- c("122","124","126","128")
genotypes <- data.frame(type1=alleles[genecopy1],type2=alleles[genecopy2])
## Columns "type1","type2" each contains an allele type => input is "types" (the default)
datalist <- binomialize(genotypes,responses=c("type1","type2"))

## two equivalent fits:
f1 <- HLfit(cbind(npos,nneg)~1,data=datalist, family=binomial())
f2 <- HLfit(cbind(npos,nneg)~1,data=genotypes, family=multi(responses=c("type1","type2")))
fitted(f2)

if (spaMM.getOption("example_maxtime")>1.7) {

##### Control of lambda estimation over different binomial submodels

genoInSpace <- data.frame(type1=alleles[genecopy1],type2=alleles[genecopy2],
x=runif(50),y=runif(50))

method <- "PQL" # for faster exampple

## Fitting distinct variances for all binomial responses:

multifit <- corrHLfit(cbind(npos,nneg)~1+Matern(1|x+y),data=genoInSpace,
family=multi(responses=c("type1","type2")),
ranFix=list(rho=1,nu=0.5), method=method)

length(unique(unlist(lapply(multifit, get_ranPars, which="lambda")))) # 3

multifit <- fitme(cbind(npos,nneg)~1+Matern(1|x+y),data=genoInSpace,
family=multi(responses=c("type1","type2")),
init=list(lambda=NaN), # forcing 'inner' estimation for fitme
fixed=list(rho=1,nu=0.5), method=method)

length(unique(unlist(lapply(multifit, get_ranPars, which="lambda")))) # 3

## Fitting the same variance for all binomial responses:

multifit <- fitme(cbind(npos,nneg)~1+Matern(1|x+y),data=genoInSpace,
family=multi(responses=c("type1","type2")),
init=list(lambda=NA), # forcing 'outer' estimation for fitme
fixed=list(rho=1,nu=0.5), method=method)

length(unique(unlist(lapply(multifit, get_ranPars, which="lambda")))) # 1

multifit <-
corrHLfit(cbind(npos,nneg)~1+Matern(1|x+y),data=genoInSpace,

family=multi(responses=c("type1","type2")),
init.corrHLfit=list(lambda=1), # forcing 'outer' estimation for corrHLfit
ranFix=list(rho=1,nu=0.5), method=method)
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length(unique(unlist(lapply(multifit, get_ranPars, which="lambda")))) # 1
}

mv Virtual factor for multivariate responses

Description

Motivation: In a multivariate-response model fitted by fitmv, one may wish to fit a random-
coefficient term appearing in s submodels, that is a random effect with realized values for each of
these submodels and each group, with values possibly correlated among submodels within groups.
Hence one might wish to specify it as a term of the form (<submodel>|group), where <submodel>
would represent a factor for the s submodels. But the data are not expected to contain a factor for
these submodels, so such a syntax would not work without substantial data reshaping. Instead, this
effect can be stated as mv(...) where the ... are the indices of the submodels here the random
effect appears. For example if submodels 2 and 3 include this random-coefficient term, the term can
be specified as (mv(2,3)|group).

Composite random effects, as defined in composite-ranef and illustrated by a bivariate-response
quantitative-genetic model (Examples in Gryphon), combine correlations among response variables
of different submodels as specified by mv(), and correlations within each response variable(as spec-
ified by a relatedness matrix in the same example).

The mv(...) expression is treated as a factor for all purposes, meaning or example that (0+mv(2,3)|group)
can also be used, leading (as for any factor) to an alternative parametrization of the same random-
coefficient model (see Examples). The parametrization through (0+mv...) is generally recom-
mended as its results are easier to interpret. The random-effect term is treated as a random-
coefficient term for all purposes, meaning for example that fixed values can be specified for its
parameters using the ranCoefs syntax (see Examples).

Usage

# mv(...)

Arguments

... Indices of all the submodels (possibly more than two) where the random effect
involving this virtual factor appears. *No* “argument name” should be attached
to the indices, as each named element will be ignored.

Value

Not a function, hence no return value. In the summary of the fit, levels for the different submodels
s within each group are labelled .mvs.

See Also

Gryphon for example of composite random effects.

The X2X argument of fitmv for fixed effects shared across sub-models.
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Examples

if (spaMM.getOption("example_maxtime")>1.1) {
## data preparation
data("wafers")
me <- fitme(y ~ 1+(1|batch), family=Gamma(log), data=wafers, fixed=list(lambda=0.2))

set.seed(123)
wafers$y1 <- simulate(me, type="marginal")
wafers$y2 <- simulate(me, type="marginal")

## fits
(fitmv1 <- fitmv(

submodels=list(mod1=list(formula=y1~X1+(mv(1,2)|batch), family=Gamma(log)),
mod2=list(formula=y2~X1+(mv(1,2)|batch), family=Gamma(log))),

data=wafers))
# alternative '0+' parametrization of the same model:
(fitmv2 <- fitmv(

submodels=list(mod1=list(formula=y1~X1+(0+mv(1,2)|batch), family=Gamma(log)),
mod2=list(formula=y2~X1+(0+mv(1,2)|batch), family=Gamma(log))),

data=wafers))
# relationship between the *correlated* effects of the two fits
ranef(fitmv2)[[1]][,2]-rowSums(ranef(fitmv1)[[1]]) # ~ 0

# fit with given correlation parameter:
update(fitmv2, fixed=list(ranCoefs=list("1"=c(NA,-0.5,NA))))
}

negbin Family function for negative binomial “2” response (including trun-
cated variant).

Description

Returns a GLM family object for negative-binomial model with variance quadratically related to
the mean µ: variance=µ + µ2/shape, where the shape parameter need or need not be specified,
depending on usage. The zero-truncated variant can be specified as negbin2(., trunc = 0L). See
negbin1 for the alternative negative-binomial model with variance “linearly” related to the mean.

A fixed-effect residual-dispersion model can be fitted, using the resid.model argument, which is
used to specify the form of the logarithm of the shape parameter. Thus the variance of the response
become µ+ µ2/exp(<specified linear expression>).

negbin(.) is an alias for negbin2(.) (truncated or not), and Tnegbin(.) is an alias for negbin2(.,
trunc = 0L).

Usage

# (the shape parameter is actually not requested unless this is used in a glm() call)
#
negbin2(shape = stop("negbin2's 'shape' must be specified"), link = "log", trunc = -1L,
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LLgeneric = TRUE)

# For use with glm(), both negbin2's 'shape' and glm's method="llm.fit" are needed.

# alias with distinct arguments:
Tnegbin(shape = stop("Tnegbin's 'shape' must be specified"), link = "log")

Arguments

shape Shape parameter of the underlying Gamma distribution: the present negative bi-
nomial distribution can be represented as a Poisson-Gamma mixture, where the
conditional Poisson mean is µ times a Gamma random variable with mean 1 and
variance 1/shape (as produced by rgamma(., shape=shape,scale=1/shape)).

link log, sqrt or identity link, specified by any of the available ways for GLM links
(name, character string, one-element character vector, or object of class link-glm
as returned by make.link).

trunc Either 0L for zero-truncated distribution, or -1L for default untruncated distri-
bution.

LLgeneric For development purposes, not documented.

Details

shape is the k parameter of McCullagh and Nelder (1989, p.373) and the theta parameter of
Venables and Ripley (2002, section 7.4). The latent Gamma variable has mean 1 and variance
1/shape.

The name NB_shape should be used to set values of shape in optimization control arguments of the
fitting functions (e.g., fitme(.,init=list(NB_shape=1))); but fixed values are set by the shape
argument.

The returned family object is formally suitable for usage with glm if the shape argument is specified,
but such usage is not recommended as it will lead to incorrect results for the zero-truncated case.

Value

A family object with structure similar to stats:: family object but with additional member func-
tions for usage with spaMM fitting functions.

References

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd edition. London: Chapman
& Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Fourth Edition.
Springer.

Examples

## Fitting negative binomial model with estimated scale parameter:
data("scotlip")
fitme(cases~I(prop.ag/10)+offset(log(expec)),family=negbin(), data=scotlip)
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negfit <- fitme(I(1+cases)~I(prop.ag/10)+offset(log(expec)),family=Tnegbin(), data=scotlip)
simulate(negfit,nsim=3)

negbin1 Alternative negative-binomial family

Description

Returns a family object suitable as a fitme argument for fitting negative-binomial models with
variance linearly (affinely) related to the mean µ: variance=µ+µ/shape, where the shape parameter
need or need not be specified, depending on usage. The model described by such a family is
characterized by a linear predictor, a link function, and such a negative-binomial model for the
residual variation. The zero-truncated variant of this family is also handled.

A fixed-effect residual-dispersion model can be fitted, using the resid.model argument, which is
used to specify the form of the logarithm of the shape parameter. Thus the variance of the response
become µ+ µ/exp(<specified linear expression>).

Usage

negbin1(shape = stop("negbin1's 'shape' must be specified"), link = "log", trunc = -1L)

Arguments

shape Parameter controlling the mean-variance relationship of the negbin1 distribu-
tion. This distribution can be represented as a Poisson-Gamma mixture, where
the conditional Poisson mean is µ times a Gamma random variable with mean 1
and variance 1/(shape*µ) as produced by rgamma(., shape=sh,scale=1/sh)
where sh=shape*µ, meaning that the family shape parameter controls, but dif-
fers from, the gamma shape parameter.

link log, sqrt or identity link, specified by any of the available ways for GLM links
(name, character string, one-element character vector, or object of class link-glm
as returned by make.link).

trunc Either 0L for zero-truncated distribution, or -1L for default untruncated distri-
bution.

Details

The name NB_shape should be used to set values of shape in optimization control arguments of the
fitting functions (e.g., fitme(.,init=list(NB_shape=1))); but fixed values are set by the shape
argument.

The family should not be used as a glm argument as the results would not be correct.

Value

A list, formally of class c("LLF", "family"). See LL-family for details about the structure and
usage of such objects.
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See Also

Examples in LL-family. resid.model for an example with a residual-dispersion model.

numInfo Information matrix

Description

Computes by numerical derivation the observed information matrix for (ideally) all parameters for
mean response model, that is, the matrix of second derivatives of negative log likelihood. The de-
fault value of the which argument shows all classes of parameters that should be handled, including
random-effect parameters (lambda, ranCoefs, corrPars, and hyper), residual dispersion parame-
ters (phi, NB_shape for negbin1 and negbin2, and beta_prec for beta_resp and betabin), and
fixed-effect coefficients (beta).

Model fits including a phi-resid.model are not fully handled, in two ways: the information matrix
does not include their parameters; and if the residual dispersion model include random effects,
there is good reason for the numInfo calculation to detect that the fit has not maximized marginal
likelihood with respect to most parameters.

Usage

numInfo(fitobject, transf = FALSE, which = NULL, check_deriv = TRUE,
sing=1e-05, verbose=FALSE, refit_hacks=list(), ...)

Arguments

fitobject Fit object returned by a spaMM fitting function.

transf Whether to perform internal computations on a transformed scale (but computa-
tion on transformed scale may be implemented for fewer classes of models than
default computation).

which NULL, or character vector giving the sets of parameters with respect to which
derivatives are to be computed. The NULL default is equivalent to c("lambda",
"ranCoefs", "corrPars", "hyper", "phi", "NB_shape", "beta_prec", "beta")
for ML fits, and to the same except "beta" (fixed effects) for REML fits.

check_deriv Boolean; whether to perform some checks for possible problems (see Details).

sing numeric value, or FALSE; if it is a nonzero numeric value, eigenvalues of the
matrix are checked and values smaller than sing are highlighted in output (see
Value). This will highlight nearly-singular information matrices, but also those
with large negative eigenvalues.

verbose Boolean: whether to print (as a list) the estimates of the parameters for which
the Hessian will be computed, additional information about possibly ignored
parameters, possible misuse of REML fits, and a (sort of) progress bar if the
procedure is expected to last more than a few seconds.
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refit_hacks list of arguments; its name anticipates that it might allow hazardous manipu-
lations in a later version of spaMM. But currently only the innocuous element
verbose of the list will be taken into account. Notably, refit_hacks=list(verbose=c(TRACE=TRUE))
can be used to give information on parameter values used in the computation of
numerical derivatives.

... Arguments passed to numDeriv::hessian and numDeriv::grad.

Details

The computation of a second derivatives is not necessarily meaningful if a first derivative does not
vanish at the parameter estimates. This may occur in particular when the objective function (say,
marginal likelihood) is maximized at a boundary of the parameter space (say, at zero for lambda
estimates). Further, for such values at a boundary, only one-sided derivatives can be computed,
and this is not handled by numDeriv::hessian. So, some checks may be requested to detect non-
zero gradients and parameters estimated at their boundaries. The boundary checks are currently
performed for lambda and ranCoefs estimates, if check_deriv is set to TRUE or to NULL. Other
parameters are not (yet) checked, so numInfo may sometimes fails when such other parameter
estimates are at a boundary. If check_deriv is set to TRUE, an additional systematic check of the
gradient with respect to all target parameters is performed.

Value

NULL or a matrix.

NULL is returned if no parameter is found with respect to which a numerical information “should”
be computed (where what should be done depends on the which and check_derivs arguments).

Otherwise a matrix is returned, with an eigvals attribute if sing was non-zero. This attribute is a
numeric vector of eigenvalues of the matrix. If some eigenvalue(s) were lower than sing, the vector
has additional class "singeigs" so that its printing is controlled by an ad-hoc print.singeigs
method highlighting the small eigenvalues.

Examples

data("wafers")
lmmfit <- fitme(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch),data=wafers)
numinfo <- numInfo(lmmfit)
(SEs <- sqrt(diag(solve(numinfo))))
#
# => beta SEs here equal to conditional SEs shown by fit summary.
# Other SEs can be compared to the approximate ones
# for log(phi) and log(lambda), given by
#
# update(lmmfit, control=list(refit=TRUE))
#
# => 1118*0.5289 and 10840*0.1024

data("blackcap")
maternfit <- fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap)
numInfo(maternfit)
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options spaMM options settings

Description

Allow the user to set and examine a variety of options which affect operations of the spaMM pack-
age.

Usage

spaMM.options(..., warn = TRUE)

spaMM.getOption(x)

Arguments

x a character string holding an option name.

warn Boolean: whether to warn if a previously undefined options is being defined (a
protection against typos).

... A named value or a list of named values. The following values, with their de-
faults, are used in spaMM:

LevenbergM=NULL: NULL or boolean. Whether to use a Levenberg-Marquardt-
like algorithm (see Details) by default in most computations. But it is ad-
vised to use instead control.HLfit=list(LevenbergM=...) to control
this on a case-by-case basis. The joint default behaviour is that Levenberg-
Marquardt is used by default for binomial response data that takes only
extreme values (in particular, for binary 0/1 response), and that for other
models the fitting algorithm switches to it if divergence is suspected. FALSE
inhibits its use; TRUE forces its use for all iterative least-square fits, except
when ’confint()’ is called.

example_maxtime=0.7: Used in the documentation and tests to control whether
the longer examples should be run. The approximate running time of given
examples on one author’s laptop is compared to this value.

optimizer1D="optimize": Optimizer for one-dimensional optimization. If
you want to control the initial value, you should select another optimizer.

optimizer=".safe_opt": Optimizer for optimization in several dimensions.
Use optimizer="nloptr" to call nloptr with method "NLOPT_LN_BOBYQA";
use optimizer="bobyqa" to call bobyqa; and use optimizer="L-BFGS-B"
to call optim with method "L-BFGS-B". The default ".safe_opt" uses
nloptr except in some cases where it expects or detects problems with it
(the source code should be consulted for details). The optimizer can also
be specified on a fit-by-fit basis as the value of control$optimizer in a
fitme call, or as the value of control.corrHLfit$optimizer.

nloptr: Default control values of nloptr calls.
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bobyqa: Default control values of bobyqa calls.
allow_outer_phiGLM=TRUE: Control of fitting method for some residual-dispersion

models. See phi-resid.model

maxLambda=1e10: The maximum value of lambda: higher fitted lambda values
in HLfit are reduced to this. Since version 3.1.0, a much smaller lambda
bound is deduced from maxLambda for COMPoisson and log-link response
families.

regul_lev_lambda Numeric (default: 1e-8); lambda leverages numerically 1
are replaced by 1- regul_lev_lambda

COMP_maxn: Number of terms for truncation of infinite sums that are evaluated
in the fitting of COMPoisson models.

CMP_asympto_cond: Function returning the condition for applying an approxi-
mation or the COMPoisson family, as detailed in COMPoisson.

Gamma_min_y=1e-10: A minimum response value in Gamma-response models;
used to check data, and in simulate() to correct the simulation results.

QRmethod: A character string, to control whether dense matrix or sparse matrix
methods are used in intensive matrix computations, overcoming the default
choices made by spaMM in this respect. Possible values are "dense" and
"sparse".

matrix_method: A character string, to control the factorization of dense model
matrices. Default value is "def_sXaug_EigenDense_QRP_scaled". The
source code should be consulted for further information.

Matrix_method: A character string, to control the factorization of sparse model
matrices. Default value is "def_sXaug_Matrix_QRP_CHM_scaled". The
source code should be consulted for further information.

stylefns: Default colors of some screen output (notably that of some fitting
functions when called with argument verbose=c(TRACE=TRUE))

barstyle: Integer, or Boolean interpreted as Integer, or quoted expression eval-
uating to such types; controlling the display of some progress bars. If zero,
no progress bar should be displayed; otherwise, a bar should be displayed.
Further, when txtProgressBar is called, barstyle is passed as its style
argument. Default is quote(if(interactive()) {3L} else {0L}) (in a
parallel setting, child processes may display the bar if the parent process is
interactive).

and many other undocumented values for programming or development pur-
poses. Additional options without default values can also be used (e.g., see
algebra).

Details

spaMM.options() provides an interface for changing maximal values of parameters of the Matérn
correlation function. However, it is not recommended to change these values unless a spaMM
message specifically suggests so.

By default spaMM use Iteratively Reweighted Least Squares (IRLS) methods to estimate fixed-
effect parameters (jointly with predictions of random effects). However, a Levenberg-Marquardt
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algorithm, as described by Nocedal & Wright (1999, p. 266), is also implemented. The Levenberg-
Marquardt algorithm is designed to optimize a single objective function with respect to all its pa-
rameters. It is thus well suited to compute a PQL fit, which is based on maximization of a single
function, the h-likelihood. By contrast, in a fit of a mixed model by (RE)ML, one computes jointly
fixed-effect estimates that maximizes marginal likelihood, and random-effect values that maximize
h-likelihood given the fixed-effect estimates. The gradient of marginal likelihood with respect to
fixed-effect coefficients does not generally vanishes at the solution (although it remains close to zero
except in “difficult” cases with typically little information in the data). The Levenberg-Marquardt
algorithm is not directly applicable in this case, as it may produce random-effect values that in-
creases marginal likelihood rather than h-likelihood. The (RE)ML variant of the algorithm imple-
mented in spaMM may therefore use additional nested h-likelihood-maximizing steps for correcting
random-effect values. In version 3.1.0 this variant was revised for improved performance in difficult
cases.

Value

For spaMM.getOption, the current value set for option x, or NULL if the option is unset.

For spaMM.options(), a list of all set options. For spaMM.options(<name>), a list of length one
containing the set value, or NULL if it is unset. For uses setting one or more options, a list with the
previous values of the options changed (returned invisibly).

References

Jorge Nocedal and Stephen J. Wright (1999) Numerical Optimization. Springer-Verlag, New York.

Examples

spaMM.options()
spaMM.getOption("example_maxtime")
## Not run:
spaMM.options(maxLambda=1e06)

## End(Not run)

pedigree Fit mixed-effects models incorporating pedigrees

Description

This example illustrates how to use spaMM for quantitative genetic analyses. spaMM appears
competitive in terms of speed for GLMMs with large data sets, particularly when using the PQL
method, which may be a quite good approximation in such cases. For large pedigrees it may be
useful to compute the inverse of the relationship matrix using some efficient ad hoc algorithm,
then to provide it as argument of the fit using the covStruct(list(precision=...)) syntax. If
the precision matrix is not specified, spaMM will generally evaluate it to assess whether it should
use sparse-precision methods. see sparse_precision for further control of this computation, on
another example from quantitative genetics.
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See Also

sparse_precision

Examples

## Not run:
# if(requireNamespace("pedigreemm", quietly=TRUE)) {

## derived from help("pedigreemm")
# p1 <- new("pedigree",

sire = as.integer(c(NA,NA,1, 1,4,5)),
dam = as.integer(c(NA,NA,2,NA,3,2)),
label = as.character(1:6))

# A <- pedigreemm::getA(p1) ## relationship matrix
# }
## => Manually-built matrix:
A <- matrix(NA, ncol=6,nrow=6)
A[lower.tri(A,diag=TRUE)] <- c(8,0,4,4,4,2, 8,4,0,2,5, 8,2,5,4.5, 8,5,2.5, 9,5.5, 9)/8
A <- Matrix::forceSymmetric(A,uplo = "L")
colnames(A) <- rownames(A) <- 1:6

## data simulation
cholA <- chol(A)
varU <- 0.4; varE <- 0.6; rep <- 20
n <- rep*6
set.seed(108)
bStar <- rnorm(6, sd=sqrt(varU))
b <- crossprod(as.matrix(cholA),bStar)
ID <- rep(1:6, each=rep)
e0 <- rnorm(n, sd=sqrt(varE))
y <- b[ID]+e0
obs <- data.frame(y=y,IDgen=ID,IDenv=ID) ## two copies of ID for readability of GLMM results

## fits
fitme(y ~ 1+ corrMatrix(1|IDgen) , corrMatrix=A,data=obs,method="REML")
obs$y01 <- ifelse(y<1.3,0,1)
fitme(y01 ~ 1+ corrMatrix(1|IDgen)+(1|IDenv), corrMatrix=A,data=obs,

family=binomial(), method="REML")

prec_mat <- solve(A)
colnames(prec_mat) <- rownames(prec_mat) <- rownames(A) # important
fitme(y01 ~ 1+ corrMatrix(1|IDgen)+(1|IDenv) , covStruct=list(precision=prec_mat),

data=obs, family=binomial(), method="REML")

## End(Not run)

phi-resid.model Residual dispersion model for gaussian and Gamma response
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Description

A model can be specified for the residual-dispersion parameter ϕ of gaussian and Gamma response
families. This model may or may not include random effects. The resid.model argument of
all fitting functions is used to specify this model and to control its fit. resid.model is either a
formula (without left-hand side) for the dispersion parameter phi of the residual error (a log link is
assumed); or a list of arguments similar to those of a standard fitme call.

The residual-dispersion model may be fitted by a specific method (see Details) involving estima-
tion of its parameters by the fit of a Gamma-response model to response values computed by the
parent fitting function (i.e., the fitting function called to fit the joint models for main response and
for residual dispersion). For mixed-effect residual-dispersion models, the fitme function is used
internally to fit this Gamma-response model (irrespective of the parent fitting function used, which
may not be fitme).

For fixed-effect residual-dispersion models, this specific method may be slower than a more generic
optimization method. By default, spaMM now uses the latter when it guesses it is faster and safe.
However, this feature is recent and all extractor methods may not have yet been updated to handle
its results. So its use can be prevented by setting spaMM.options(allow_outer_phiGLM=FALSE).

Usage

# 'resid.model' argument of fitting functions (fitme(), HLfit(), etc)

Arguments

If resid.model is a list, it must include a formula element (model formula without left-hand side,
as when resid.model is only a formula). The following additional arguments may be useful:

family The family is always Gamma. The default link is log. The identity link can be
tried but may fail because only the log link ensures that the fitted ϕ is positive.

fixed fixed values of parameters of the residual dispersion model itself. Same usage as
documented in fitme, except that it is better not to try to fix its phi (see Details).

etaFix To fix some of the fixed-effect coefficients, as in the mean response, and with
the same format. Note that the same effect can usually be acheived by an offset
in the formula.

control.dist A list of arguments that control the computation of the distance argument of the
correlation functions. Same usage as documented in HLCor

rand.family A family object or a list of family objects describing the distribution of the
random effect(s). Same usage as documented for HLfit

init, lower, upper, control
with same usage as documented in fitme. These arguments may (partly) be
ignored in some cases.

Other arguments should be ignored (see Details).

Details

The following elements should not be specified in resid.model, for the specified reasons:

method which is constrained to be identical to the method from the parent call;
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control.HLfit, control.glm constrained to be identical to the same-named controls from the parent
call;

resid.model constrained: no resid.model for a resid.model;

the phi of the Gamma family of the residual dispersion model This parameter is by default set
to 1, in agreement with the theory underlying the estimation procedure for the residual model;
it can be set to another value, and a resid.model’s fixed=list(phi=NA) will even force its
estimation, but this is not warranted;

REMLformula constrained to NULL;

data The data of the parent call are used, so they must include all the variables required for the
resid.model;

prior.weights constrained: no prior weights;

verbose constrained: use the verbose argument of the fitting function instead to control a progress
line summarizing the results of the resid.model fit at each iteration of main loop of the parent
call (see the next section of the Details).

init.HLfit if used, this argument may affect the fits. However, it is best ignored in practice: users
would have hard time guessing good initial values, and bad ones might have unwarranted
effects.

Progress reports of the fitting procedure: Fits with a mixed-effect residual-dispersion model
involve repeated “nested” fits of the latter model (each of them itself tipycally involving “double-
nested” fits of a mixed-effect model with fixed random-effect parameters). This can be slow par-
ticularly when the residual-dispersion model involve spatial effects. A specific element phifit of
the verbose vector controls screen information about progress of such fits during the full-model fit:
when set to 0 (or FALSE) there is no report. For higher values a one-line message is output at the
end of each “nested” call, but it may be overwritten by the next one-line message. So the ultimately
visible output depends on control of overwriting. When verbose["phifit"] is set to 1 (or TRUE)
each output overwrites the previous one so the ultimately visible output is from the last “nested”
call; when it is set to 2, the final line of output of each “nested” call remains visible; when set to 3,
a line of output remains visible from each “double-nested” call.

Methods: The present implementation of the Gamma-response procedure used to fit (fixed-effect)
residual dispersion models is based on its exact components as detailed by Smyth et al. 2001.
spaMM also implements an ML version of this REML procedure (where the leverage corrections
used in the REML procedure are set to zero). Smyth et al. discuss more approximate versions of
the components, considered in the early h-likelihood literature and elsewhere.

Lee and Nelder (2006) extend the REML procedure to mixed-effects residual dispersion mod-
els. Again, spaMM also implements ML and REML versions of these procedures (using distinct
“standardizing” leverages as detailed in hatvalues.HLfit), and additionally use by default the
full Laplace approximation (with observed Hessian) for fitting the Gamma-response mixed-effect
model, instead of the approximation using expected Hessian considered in the h-likelihood litera-
ture.

When the residual-dispersion model includes random effects, no single likelihood objective func-
tion appears to be maximized by the joint fit of mean-response and residual dispersion models.
A procedure such as numInfo may then detect that the likelihood gradient does not vanish for all
parameters. Indeed, this limitation is “relatively obvious” in original formulations relying on both
marginal likelihood and restricted likelihood concepts to fit different parameters of the joint model.
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But this limitation is also true in the case where marginal likelihood (actually, its Laplace approxi-
mation, although the issue could persist even if exact Gamma-GLMM likelihood were used) is used
in the residual-dispersion fit.

Value

When such dispersion models are fitted, the resulting fits are embedded in the main fit object. The
get_fittedPars extractor will by default )as controlled by its argument phiPars) include in its
return value the rdisPars element, which is the list of parameters of the residual-dispersion fit,
in the same format as a get_fittedPars value for the mean-response model (rdisPars may also
include fits of other residual-dispersion models described in resid.model). The phi element of the
get_fittedPars value will further contain the residual-dispersion fit itself, as a "glm" or, when it
includes random effects, as a "HLfit" object.

References

Lee, Y. and Nelder, J.A. (2006), Double hierarchical generalized linear models (with discussion).
Journal of the Royal Statistical Society: Series C (Applied Statistics), 55: 139-185. doi:10.1111/
j.14679876.2006.00538.x

Lee, Y., Nelder, J. A. and Pawitan, Y. (2006) Generalized linear models with random effects: unified
analysis via h-likelihood. Chapman & Hall: London.

Smyth, G. K., Huele, F., and Verbyla, A. P. 2001. Exact and approximate REML for heteroscedastic
regression, Stat. Modelling 1, 161–175.

Examples

data("crack") # crack data, Lee et al. 2006 chapter 11 etc
hlfit <- HLfit(y~crack0+(1|specimen), family=Gamma(log),

data=crack, rand.family=inverse.Gamma(log),
resid.model=list(formula=~cycle+(1|specimen)) )

plot.HLfit Model checking plots for mixed models

Description

This function provides diagnostic plots for residual errors from the mean model and for random
effects. Plots for the mean models are similar to those for GLMs. They use standardized deviance
residuals as described by Lee et al. (2006, p.52). This means that plots for residual errors use
the residuals provided by residuals(<fit object>, type="std_dev_res"); and that plots for
random effects likewise consider standardized values.

https://doi.org/10.1111/j.1467-9876.2006.00538.x
https://doi.org/10.1111/j.1467-9876.2006.00538.x
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Usage

## S3 method for class 'HLfit'
plot(x, which = c("mean", "ranef"),

titles = list(
meanmodel=list(outer="Mean model",devres="Deviance residuals",

absdevres="|Deviance residuals|", resq="Residual quantiles",
devreshist="Deviance residuals"),

ranef=list(outer="Random effects and leverages",qq="Random effects Q-Q plot",
levphi=expression(paste("Leverages for ",phi)),

levlambda=expression(paste("Leverages for ",lambda)))
),

control= list(), ask=TRUE, ...)

Arguments

x An object of class HLfit, as returned by the fitting functions in spaMM.

which A vector of keywords for different types of plots. By default, two types of
plots are presented on different devices: diagnostic plots for mean values, and
diagnostic plots for random effects. Either one can be selected using this argu-
ment. Use keyword "predict" for a plot of predicted response against actual
response.

titles A list of the main (inner and outer) titles of the plots. See the default value for
the format.

control A list of default options for the plots. Defaults are pch="+" and pcol="blue"
for points, and lcol="red" for curves.

ask Logical; passed to devAskNewPage which is run when a new device is opened
by code.HLfit.

... Options passed from plot.HLfit to par.

Details

In principle the standardized deviance residuals for the mean model should have a nearly Gaussian
distribution hence form a nearly straight line on a Q-Q plot. However this is (trivially) not so
for well-specified (nearly-)binary response data nor even for well-specified Poisson response data
with moderate expectations. Hence this plot is not so useful. The DHARMa package proposes better-
behaved diagnostic plots, but the p-value that appears on one of these plots may not stand for a valid
goodness-of-fit test; see instead the gof procedure. The current version of DHARMa should handle
spaMM fit objects; otherwise, see https://github.com/florianhartig/DHARMa/issues/95 for
how to run DHARMa procedures on spaMM output.

Value

Returns the input object invisibly.

References

Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalized linear models with random effects:
unified analysis via h-likelihood. Chapman & Hall: London.

https://github.com/florianhartig/DHARMa/issues/95
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Examples

data("blackcap")
fit <- fitme(migStatus ~ 1+ Matern(1|longitude+latitude),data=blackcap,

fixed=list(lambda=1,nu=1,rho=1))
plot(fit)

plot_effects Partial-dependence effects and plots

Description

The function pdep_effects evaluates, and the function plot_effects plots, partial-dependence
effects.

pdep_effects evaluates the effect of a given fixed-effect variable, as (by default, the average of)
predicted values on the response scale, over the empirical distribution of all other fixed-effect vari-
ables in the data, and of inferred random effects. This can be seen as the result of an experiment
where specific treatments (given values of the focal variable) are applied over all conditions defined
by the other fixed effects and by the inferred random effects. Thus, apparent dependencies induced
by associations between focal and non-variables are avoided (see Friedman, 2001, from which the
name “partial dependence plot” is taken; or Hastie et al., 2009, Section 10.13.2). This also avoids
biases of possible alternative ways of plotting effects. In particular, such biases occur if the re-
sponse link is not identity, and if averaging is performed on the linear-predictor scale or when other
variables are set to some conventional value other than its average.

Ignoring dependencies between the focal and non-focal variables, as described above, is not al-
ways appropriate. In particular, when such dependencies are inherent consequences of the data-
generating process, it may make sense to perform predictions that take such dependencies into
account.

pdep_effects also compute intervals of the type defined by its intervals argument (by default,
“prediction intervals”, but see predVar for the diverse interpretations of this concept) and of nomi-
nal coverage defined by the level argument (it may make particular sense to choose a level<0.95
to better visualize effects as a prediction interval can be much larger than a confidence interval for,
say, the fixed-effect terms). By default, it returns a data frame of average values of point predictions
and interval bounds for each value of the focal variable (so the intervals may briefly be described as
mean prediction intervals, for want of better), but it can also return lists of all predictions.

A plot function is available for numeric or factor predictors: plot_effects calls pdep_effects
and produces a simple plot (using only base graphic functions) of its results, including prediction
bands representing the two average one-sided widths of intervals. The last section of the Examples
shows how to obtain more elaborate plots including the same information using ggplot2.

If added to the plot, the raw data may appear to depart from the partial-dependence predictions,
since the data are a priori affected by the associations between variables which the predictions free
themselves from. An adapted plot of fit residuals may be then be more useful, and the Examples
also show how it can be performed.
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Usage

pdep_effects(object, focal_var, newdata = object$data, length.out = 20,
focal_values=NULL, level=0.95, levels = NULL, submodel=NULL,
intervals = "predVar", indiv = FALSE, ...)

plot_effects(object, focal_var, newdata = object$data, focal_values=NULL,
effects = NULL, submodel=NULL, xlab = focal_var, ylab = NULL,
rgb.args = col2rgb("blue"), add = FALSE, ylim=NULL, ...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

focal_var Character string: the name of the predictor variable whose effect is to be repre-
sented. The variable must be numeric for plot_effects but not necessarily so
for pdep_effects.

newdata If non-NULL, a data frame passed to predict.HLfit, whose documentation
should be consulted for further details.

effects If non-NULL, a data frame to substitute to the one produced by default by
pdep_effects.

submodel Integer, required for multivariate-response fits (it should remain NULL other-
wise): the submodel for which predictions are computed.

xlab If non-NULL, a character string: X-axis label for the plot.

ylab If non-NULL, a character string: Y-axis label for the plot.

ylim The plot’s ylim argument. Default is based on the (0.025,0.975) quantiles of
the response.

rgb.args Color control arguments, in the format produced by col2rgb.

add Boolean: whether to add graphic elements of a previous plot produced by plot_effects

length.out Integer: for a numeric predictor variable, this controls the number of values at
which predictions are evaluated. By default, predictions are made at regular
intervals over the range of the predictor variable. If length.out=0, predictions
are made for the actual values of the focal predictor in the data. The default
behaviour is also overriden by using focal_values, in which case predictions
are evaluated at the given focal_values (as if length.out=0), unless a non-
zero length.out is also specified. In the latter case, predictions are evaluated
at regular intervals over the range of focal_values.

intervals, level
Passed to predict.HLfit, whose documentation should be consulted for further
details.

focal_values, levels
focal_values may be used to specify the values of the focal variable at which
predictions are evaluated. For factor variables, levels is an older implementa-
tion of this control, and is now redundant.

indiv Boolean: whether to return all predictions given the values of other predictors
in the newdata, or only their means.

... Further arguments passed by plot_effects to pdep_effects, or by pdep_effects
to predict.HLfit.



plot_effects 163

Value

For pdep_effects, a nested list, or a data frame storing values of the focal_var, average point
predictions pointp and bounds low and up of intervals, depending on the indiv argument. When
indiv is TRUE, each sublist contains vectors for pointp, low and up.

For plot_effects, the same value, returned invisibly.

References

J.H. Friedman (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of
Statistics 29(5):1189-1232.

J. Friedman, T. Hastie and R. Tibshirani (2009) The Elements of Statistical Learning, 2nd ed.
Springer.

Examples

data("scotlip")
hlcor <- HLCor(cases~I(prop.ag/10) +adjacency(1|gridcode)+offset(log(expec)),

adjMatrix=Nmatrix,family=poisson(),data=scotlip)
plot_effects(hlcor,focal_var="prop.ag",ylim=c(0,max(scotlip$cases)))
points(cases~prop.ag, data=scotlip, col="blue",pch=20)

# Impose specific values of a numeric predictor using 'focal_values':
plot_effects(hlcor, focal_var="prop.ag", focal_values=1:5)

### Adding 'partial residuals' [residuals relative to predict(<fit object>),
### but plotted relative to pdep_effects() predictions]:

# One first needs predictions for actual values of the predictor variable,
# provided by pdep_effects(.,length.out=0L):
#
pdep_points <- pdep_effects(hlcor,focal_var="prop.ag",length.out=0L)

# Rename for easy prediction for each observation, and add the residuals
# of the actual fit, using the default residuals() i.e. deviance ones:
#
rownames(pdep_points) <- pdep_points$focal_var
pdep_res <- pdep_points[paste(hlcor$data$prop.ag),"pointp"] +

residuals(hlcor)

points(x = hlcor$data$prop.ag, y = pdep_res, col = "red", pch = 20)

## Not run:

## Plotting pdep-effects for different categories, using ggplot.
library(ggplot2)

data("Gryphon")
tmp <- na.omit(Gryphon_df)
spfit <- spaMM::fitme(TARSUS ~ BWT*sex, data = tmp)

tmp$sex <- "1"
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pdep_1 <- pdep_effects(spfit,"BWT", newdata=tmp, level=qnorm(0.75))
# qnorm(0.75) to get the so-called 'probable error'.
tmp$sex <- "2"
pdep_2 <- pdep_effects(spfit,"BWT", newdata=tmp, level=qnorm(0.75))
pdep_1$sex <- "1" ; pdep_2$sex <- "2"
pdep <- rbind(pdep_1,pdep_2)

ggplot(pdep,aes(y = pointp , x = focal_var ,col = sex, fill=sex)) + geom_point() +
geom_ribbon(aes(ymin = low, ymax = up), alpha = 0.3) + xlab("BWT") +
ylab("TARSUS")

## End(Not run)

pois4mlogit Fit multinomial logit models.

Description

pois4mlogit fits a multinomial logit model by wrapping iterative fitmv fits of a multivariate
poisson(log) surrogate model, according to the following logic. In the (mixed or not) multi-
nomial logit model, the probabilities pic of the different categories (or types) c = 1, ..., C for the
ith multinomial draw (ni1, ..., niC) are of the form

pic =
eηic∑C
c=1 e

ηic

where each ηic is a linear predictor. This model can be fitted using surrogate poisson models
wherein the formula contains a term offset(.dynoffset) in addition to the terms specifying
each type-specific η.c. The procedure will update the .dynoffset iteratively in the appropriate way
to fit the multinomial model.

Since fitmv is called, its various specific features can be used, such as random effects correlated
across the different response types, or fixed-effect coefficients that may well be shared (by its X2X
argument) across response types. Note that a shared Intercept term is not identifiable as implied
by the above expression for the pics, and non-identifiability can also result when shared predictor
values have shared coefficients.

This feature is experimental. The iterative procedure avoids the need for developing specialized
software, although it may be slower than such software would be. Not all post-fit procedures may
run or return meaningful results from objects returned by pois4mlogit. There is a specific predict
method for such objects: this method returns by default the predicted frequencies, summing to 1 for
each multinomial draw (see Examples).

Usage

pois4mlogit(submodels, data, to.long=FALSE, init=list(), control=list(),
..., next_inits=c("ranPars","v_h","fixef"),
types, n_iter = 1000L, tol=1e-5, fac=1, progress = FALSE)
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## S3 method for class 'pois4mlogit'
predict(object, newdata=NULL, ...)

Arguments

submodels Passed to fitmv: see its submodels argument. This must contain as many
poisson(log) submodels as there are response types in the multinomial model.

data Data frame; each line contains a multinomial draw and, as usual, the required
predictor variables. The counts for the different response types must form dif-
ferent columns of the data (this is convenient as, e.g., exactly the same data
format can be used in binomial fits). The data are passed unchanged to fitmv,
unless to.long is set to TRUE. Any .dynoffset variable would be internally
overwritten, so it generally does not make sense to include such a variable (it
would only affect the initial value of the dynamic offset).

init list; Passed to fitmv. Beyond initiating the first fitmv call, it controls which
parameters have explicit initial values in further iterations (though the initial
values themselves are then distinct from those of the first iteration).

next_inits Character vector. Controls initiation of a fit from the result of the result of the
previous iteration iteration. If "ranPars" is included, the previous result is used
to provide initial values for (“outer-optimized”) random-effect parameters. If
"v_h" is included, the previous result is used to provide initial values for the
random effects.. If "fixef" is included, the previous result is used to provide
initial values for the fixed effects.

to.long Boolean; for optional reformatting of the data (see Details and Examples).

control list; passed to fitmv.

object, newdata pois4mlogit fit result, and data frame, respectively; passed to predict.HLfit
(after a local change of its .dynoffset in the data).

... Further arguments passed to fitmv or to predict.HLfit.

types Character vector: type labels, i.e., column names of the counts for the different
mutlinomial response categories in data.

n_iter Integer: maximum number of iteration of iterative algorithm.

tol Numeric: tolerance threshold for determining convergence.

fac Numeric: a control parameter of the iterative algorithm. The default value is
better to avoid convergence issues. Higher values may speed up the fit but may
also increase the chance of non-convergence, particularly those above 1.5.

progress Boolean or numeric: whether to print information about number of iterations,
and (if progress>1L) about each iteration. Negative values suppress conver-
gence warnings.

Details

At convergence, the dynamic offset should not change over iterations, and the poisson model pre-
dictions (offset included) for each multinomial draw should sum to the sample size of the draw.
Two convergence criteria, the Ocrit and the Scrit respectively, assess these properties. Non-
convergence may signal a problem with the fitting procedure (which ca be controlled by its fac
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argument), *but* may also signal that the model is not identifiable, in which case it should be
modified.

Missing data are handled. This includes the detection and correct handling of cases where (i) a
multinomial draw is uninformative because only one type has full information (i.e., response value
and all required predictor variables); and (ii) a multinomial draw is informative about some but not
all types. In that case, the basic form of the model for a multinomial draw still holds for the relative
counts of these types.

When to.long=TRUE, the poisson surrogate model is fitted to data specified in a long form where
each multinomial draw of size si is described as si multinomial draws of size 1 (so that each Poisson
submodel is fitted to a response vector of 0s and 1s). In this long format, counts for the different
response types still form different columns (here containing only 0 or 1) of the data. This format is
not needed (and not memory-efficient) but it may be useful to compare more easily the likelihood
of the surrogate model to the multinomial one (see Examples), and it was used in such a way by
Chen & Kuo (2001). The Examples use the utility function reshape2long to convert the original
data frame to the long format.

Value

A list also inheriting from class HLfit (as the the return value of the fitmv call from which the
present value is derived), and from class pois4mlogit.

References

The use of an iteratively updated offset is inspired from the arguments in Chen & Kuo (2001), who
described related approaches to fit multinomial logit models using poisson(log) surrogate ones.

Chen, Z. and Kuo, L. (2001) A note on the estimation of the multinomial logit model with random
effects. The American Statistician 55, 89-95. https://www.jstor.org/stable/2685993

Examples

#### Fitting a binomial(logit) model by a bivariate poisson(log) surrogate:
## Toy data: Let us say we observe a color polymorphism of irises in 10 populations...
set.seed(123)
ssize <- 10L
shape <- 0.35
toydata <- data.frame(

yellow=rbinom(ssize, 16, prob=rbeta(ssize,shape,shape)),
purple=rbinom(ssize, 16, prob=rbeta(ssize,shape,shape)), # (purple ignored below)
blue=rbinom(ssize, 16, prob=rbeta(ssize,shape,shape)),
phenotype=rnorm(ssize)

)
## Standard binomial fit (purple flowers are ignored here)
(byB <- fitme(cbind(yellow,blue) ~ phenotype, family = binomial(),

data=toydata))

## Surrogate fit
(byP2 <- pois4mlogit(submodels = list(

list(yellow ~ offset(.dynoffset) + phenotype, family = poisson()),
list(blue ~ offset(.dynoffset) + phenotype, family = poisson())),
data = toydata, types=c("yellow","blue")))

https://www.jstor.org/stable/2685993
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#### Recover summaries of the binomial fit from the surrogate fit:

## Coefficients of binomial model recovered as:
fixef(byP2)[1:2]-fixef(byP2)[3:4]

## SEs of coefficients of binomial model recovered as:
{
P2B <- rbind(c(1,0,-1,0),c(0,1,0,-1))
P2B %*% vcov(byP2) %*% t(P2B)

}
# practically equivalent to
vcov(byB)

## Probabilities of each type:
matrix(predict(byP2),ncol=2,

dimnames=list(NULL, c("yellow","blue")))

## logLiks
# The logLiks differ between the binomial and poisson surrogate fits
# because the combinatorial coefficients differ. The relationship
# between these logLiks is simple when the long form of the data is used:

str(long2 <- reshape2long(toydata, c("yellow","blue")))

# Fits on long data:
(byBlong <- fitme(cbind(yellow,blue) ~ phenotype, family = binomial(),

data=long2))
(byPlong <- pois4mlogit(submodels = list(
list(yellow ~ offset(.dynoffset) + phenotype, family = poisson()),
list(blue ~ offset(.dynoffset) + phenotype, family = poisson())),
data = toydata, to.long=TRUE, types=c("yellow","blue")))

# The logLik of the surrogate model is
sum(byPlong$eta*byPlong$y) - sum(exp(byPlong$eta)) # = logLik(byPlong)

# while le logLik of the binomial one can be obtained as
sum(byPlong$eta*byPlong$y) # = logLik(byBlong)

# the difference is 156 __= total multinomial sample size__

# This illustrates that the logLiks of different surrogate models differ
# only by a constant independent of the fitted model.
# Likelihood ratios between surrogate models are then
# identical to likelihood ratios between corresponding binomial models,
# provided a single data format is used throughout the comparisons.

Poisson Family function for GLMs and mixed models with Poisson and zero-
truncated Poisson response.
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Description

Poisson (with a capital P) is a family that specifies the information required to fit a Poisson gen-
eralized linear model. It differs from the base version stats::poisson only in that it handles the
zero-truncated variant, which can be specified either as Tpoisson(<link>) or as Poisson(<link>,
trunc = 0L). The truncated poisson with mean µT is defined from the un-truncated poisson with
mean µU , by restricting its response to strictly positive values. µT = µU/(1 − p0), where
p0 := exp(−µU ) is the probability that the response is 0.

Usage

Poisson(link = "log", trunc = -1L, LLgeneric=TRUE)
Tpoisson(link="log")
# <Poisson object>$linkfun(mu, mu_truncated = FALSE)
# <Poisson object>$linkinv(eta, mu_truncated = FALSE)

Arguments

link log, sqrt or identity link, specified by any of the available ways for GLM links
(name, character string, one-element character vector, or object of class link-glm
as returned by make.link).

trunc Either 0L for zero-truncated distribution, or -1L for default untruncated distri-
bution.

eta, mu Numeric (scalar or array). The linear predictor; and the expectation of response,
truncated or not depending on mu_truncated argument.

mu_truncated Boolean. For linkinv, whether to return the expectation of truncated (µT ) or
un-truncated (µU ) response. For linkfun, whether the mu argument is µT , or is
µU but has µT as attribute (µU without the attribute is not sufficient).

LLgeneric For development purposes, not documented.

Details

Molas & Lesaffre (2010) developed expressions for deviance residuals for the truncated Poisson
distribution, which were the ones implemented in spaMM until version 3.12.0. Later versions
implement the (non-equivalent) definition as “2*(saturated_logLik - logLik)”.

predict, when applied on an object with a truncated-response distribution family, by default returns
µT . The simplest way to predict µU is to get the linear predictor value by predict(.,type="link"),
and deduce µU using linkinv(.) (with default argument mu_truncated=FALSE), since getting µU

from µT is comparatively less straightforward. The mu.eta member function is that of the base
poisson family, hence its mu argument represents µU .

simulate, when applied on an object with a truncated-response distributionfamily, simulates the
truncated family. There is currently no clean way to override this (trying to passtype="link" to
predict will not have the intended effect).

Value

A family object suitable for use with glm, as stats:: family objects.
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References

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd edition. London: Chapman
& Hall.

Molas M. and Lesaffre E. (2010). Hurdle models for multilevel zero-inflated data via h-likelihood.
Statistics in Medicine 29: 3294-3310.

Examples

data("scotlip")
logLik(glm(I(1+cases)~1,family=Tpoisson(),data=scotlip))
logLik(fitme(I(1+cases)~1+(1|id),family=Tpoisson(),fixed=list(lambda=1e-8),data=scotlip))

post-fit Applying post-fit procedures from other packages on spaMM results

Description

Packages implementing post-fit procedures define helper functions which may not handle spaMM’s
fit objects, or which have not always handled them, or which can handle them correctly only with
some non-default arguments. This documentation topic gives further directions to apply some such
post-fit procedures (from packages DHARMa, RLRsim, multcomp and lmerTest) to these fit
objects.

emmeans can be tentatively applied to spaMM’s fit objects but the underlying code is experimental.
It may be safer to use multcomp::glht.

For other procedures not considered here, diagnosing a failure in a debugging session may suggest
a simple solution (as it did for multcomp::glht).

Details

For multiple comparison procedures by multcomp::glht, one has to explicitly give the argument
coef.=fixef.HLfit (see Examples; fixef.HLfit is the spaMM method for the generic function
fixef);

For DHARMa plots, see Details of plot.HLfit;

For using RLRsim::RLRTSim(), see get_RLRTSim_args.

For using lmerTest::contest() or lmerTest::anova(), see as_LMLT.

Examples

if (requireNamespace("multcomp", quietly = TRUE)) {
library(multcomp)
set.seed(123)
irisr <- cbind(iris,id=sample(4,replace=TRUE,size=nrow(iris)))
irisfit <- fitme(Petal.Length~ Species +(1|id), data=irisr, family=Gamma(log))
summary(glht(irisfit,mcp("Species" = "Tukey"), coef.=fixef.HLfit))

}
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predict Prediction from a model fit

Description

The following functions can be used to compute point predictions and/or various measures of un-
certainty associated to such predictions:
* predict can be used for prediction of the response variable by its expected value obtained as
(the inverse link transformation of) the linear predictor (η) and more generally for terms of the form
X_nβ+Z_nLv, for new design matrices X_n and Z_n.
* Various components of prediction variances and predictions intervals can also be computed using
predict. The get_... functions are convenient extractors for such components;
* get_predCov_var_fix extracts a block of a prediction covariance matrix. It was conceived for
the specific purpose of computing the spatial prediction covariances between two “new” sets of ge-
ographic locations, without computing the full covariance matrix for both the new locations and the
original (fitted) locations. When one of the two sets of new locations is fixed while the other varies,
some expensive computations can be performed once for all sets of new locations, and be provided
as the fix_X_ZAC.object argument. The preprocess_fix_corr extractor is designed to compute
this argument.

Usage

## S3 method for class 'HLfit'
predict(object, newdata = newX, newX = NULL, re.form = NULL,

variances=list(), binding = FALSE, intervals = NULL,
level = 0.95, blockSize = 2000L, type = "response",
verbose=c(showpbar=eval(spaMM.getOption("barstyle"))),

control=list(), na.action=na.omit, cluster_args=list(), ...)
get_predCov_var_fix(object, newdata = NULL, fix_X_ZAC.object, fixdata, re.form = NULL,

variances=list(disp=TRUE,residVar=FALSE,cov=FALSE),
control=list(), ...)

preprocess_fix_corr(object, fixdata, re.form = NULL,
variances=list(residVar=FALSE, cov=FALSE), control=list())

get_fixefVar(...)
get_predVar(..., variances=list(), which="predVar")
get_residVar(...)
get_respVar(...)
get_intervals(..., intervals="predVar")

Arguments

object The return object of fitting functions HLfit,corrHLfit,HLCor... returning an
object inheriting from HLfit class.

newdata Either NULL, a matrix or data frame, or a numeric vector.
If NULL, the original data are reused. Otherwise, all variables required to evaluate
model formulas must be included. Which variables are required may depend on
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other arguments: see “prediction with given phi’s” example, also illustrating the
syntax when formulas include an offset.
If newdata is a numeric vector, its names (if any) are ignored. This makes
it easier to use predict as an objective function for an optimization procedure
such as optim, which calls the objective function on unnamed vectors. However,
one must make sure that the order of elements in the vector is the order of first
occurrence of the variables in the model formula. This order can be checked in
the error message returned when calling predict on a newX vector of clearly
wrong size, e.g. predict(<object>,newdata=numeric(0)).

newX equivalent to newdata, available for back-compatibility

re.form formula for random effects to include. By default, it is NULL, in which case all
random effects are included. If it is NA, no random effect is included. If it is
a formula, only the random effects it contains are retained. The other variance
components are removed from both point prediction and variances calcula-
tions. If you want to retain only the spatial effects in the point prediction, but
all variances, either use re.form and add missing variances (on linear predic-
tor scale) manually, or ignore this argument and see Details and Examples for
different ways of controlling variances.

variances A list whose elements control the computation of different estimated variances.
predict can return four components of prediction variance: fixefVar, predVar,
residVar and respVar, whose definitions is detailed in predVar. They are all
returned as attributes of the point predictions.
In particular, variances=list(predVar=TRUE) is suitable for uncertainty in
point prediction, distinguished from the response variance given by list(respVar=TRUE).
See the predVar help page for further explanations and other options.

intervals NULL or character string or vector of strings. Provides prediction intervals
with nominal level level, deduced from the given prediction variance term, e.g.
intervals="predVar". Currently only intervals from fixefVar and predVar
(and for LMMs respVar including the residual variance) may have a probabilis-
tic meaning. Intervals returned in other cases are (currently) meaningless.

which any of "predVar","respVar","residVar", "fixefVar", "intervals", or "naive".

level Coverage of the intervals.

binding If binding is a character string, the predicted values are bound with the newdata
and the result is returned as a data frame. The predicted values column name
is the given binding, or a name based on it if the newdata already include a
variable with this name. If binding is FALSE, The predicted values are returned
as a one-column matrix and the data frame used for prediction is returned as an
attribute (unless it was NULL). If binding is NA, a vector is returned, without the
previous attributes.

fixdata A data frame describing reference data whose covariances with variable newdata
may be requested.

fix_X_ZAC.object

The return value of calling preprocess_fix_corr (see trivial Example). This
is a more efficient way of providing information about the fixdata for repeated
calls to get_predCov_var_fix with variable newdata.
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blockSize For data with many rows, it may be more efficient to perform some operations
on slices of the data, and this gives the maximum number or rows of each slice.
Further, parallelisation of computations over the slices is possible, as controlled
by the cluster_args argument. Slicing and parallelisation may operate only if
covariance matrices are not requested.

type character string; The returned point predictions are on the response scale if
type="response" (the default; for binomial response, a frequency 0<.<1). It
is on the linear predictor scale if type="link".
* The “prediction variance” (as opposed to the response variance, see predVar)
that may be returned as a "predVar" attribute of the point predictions is always
on the linear predictor scale, even when type="response". If you want to ex-
tract this predVar transformed to the response scale, use predict(.,variances=list(respVar=TRUE))
and take the difference between the respVar and residVar attributes of the re-
sult.
* Prediction intervals (as opposed to the response intervals) will be on the lin-
ear predictor or response scale depending on type (new to versions more recent
than 3.12.0).

control A list; a warning will direct you to relevant usage when needed.

cluster_args Passed to makeCluster. Parallel computations are possible if the slicing mech-
anism (as controlled by argument blockSize) is effective.

verbose A vector of booleans; it single currently used element is "showpbar", which
controls whether to show a progress bar in certain prediction variance computa-
tions.

na.action One of the functions dealing with NAs in data frames (see na.omit). if this is
set to na.exclude, NAs will be included in the returned point predictions, for
rows of the newdata which do not provide information for all required predictor
variables. The effect of the default na.omit is to not include such NAs (this
differs from the default of, e.g., predict.lm). Implementation is limited; in
particular, na.exclude currently does not have the effect of including NAs in the
optional attributes providing (co-)variance information, except the "mv" attribute
for predictions of multivariate-response fits.

... further arguments passed to or from other methods. For the get_... functions,
they are passed to predict.

Details

See the predVar help page for information about the different concepts of prediction variances
handled by spaMM (uncertainty of point prediction vs. of response) and about options controlling
their computation.

If newdata is NULL, predict returns the fitted responses, including random effects, from the
object. Otherwise it computes new predictions including random effects as far as possible. For
spatial random effects it constructs a correlation matrix C between new locations and locations in
the original fit. Then it infers the random effects in the new locations as C (L’)−1 v (see spaMM
for notation). For non-spatial random effects, it checks whether any group (i.e., level of a random
effect) in the new data was represented in the original data, and it adds the inferred random effect
for this group to the prediction for individuals in this group.
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In the point prediction of the linear predictor, the unconditional expected value of u is assigned
to the realizations of u for unobserved levels of non-spatial random effects (it is zero in GLMMs
but not for non-gaussian random effects), and the inferred value of u is assigned in all other cases.
Corresponding values of v are then deduced. This computation yields the classical “BLUP” or
empirical Bayes predictor in LMMs, but otherwise it may yield less well characterized predictors,
where “unconditional” v may not be its expected value when the rand.family link is not identity.

There are cases where prediction without a newdata argument may give results of different length
than prediction with newdata=<original data>, as for predict. Notably, for multivariate-response
fits, different subsets of lines of the data may be used for each submodel depending on the avail-
ability of all variables (including the response variable) for each submodel, and the resulting fitted
values from each submodel will be used from prediction; while prediction with newdata does not
check the availability of a response variable.

Intervals computations use the relevant variance estimates plugged in a Gaussian approximation,
except for the simple linear model where it uses Student’s t distribution.

Value

See Details in Tpoisson for questions specific to truncated distributions.

For predict, a matrix or data frame (according to the binding argument), with optional attributes
frame, intervals, predVar, fixefVar, residVar, and/or respVar, the last four holding one or
more variance vector or covariance matrices. The further attribute fittedName contains the binding
name, if any. The frame attribute includes information about any na.action effect on the new data.

The get_... extractor functions call predict and extract from its result the attribute implied by the
name of the extractor. By default, get_intervals will return prediction intervals using predVar.
get_predVar with non-default which argument has the same effect as the get_... function whose
name is implied by which.

See Also

The residVar function is an alternative extractor for residual variances, with additional functional-
ities compared to get_residVar. For example, it can return the phi dispersion parameter, distinct
from the variance in particular for fits with Gamma family.

The predVar documentation provides additional information specific to prediction variances sensu
lato, including the definitions of the four components of prediction variance, fixefVar, predVar,
residVar and respVar, that can be requested through the variances argument.

The get_cPredVar function returns a bootstrap-corrected version of variances returned by get_predVar.

Examples

data("blackcap")
fitobject <- fitme(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

fixed=list(nu=4,rho=0.4,phi=0.05))
predict(fitobject)

#### multiple controls of prediction variances
## (1) fit with an additional random effect
grouped <- cbind(blackcap,grp=c(rep(1,7),rep(2,7)))
fitobject2 <- fitme(migStatus ~ 1 + (1|grp) +Matern(1|longitude+latitude),
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data=grouped, fixed=list(nu=4,rho=0.4,phi=0.05))

## (2) re.form usage to remove a random effect from point prediction and variances:
predict(fitobject2,re.form= ~ 1 + Matern(1|longitude+latitude))

## (3) comparison of covariance matrices for two types of new data
moregroups <- grouped[1:5,]
rownames(moregroups) <- paste0("newloc",1:5)
moregroups$grp <- rep(3,5) ## all new data belong to an unobserved third group
cov1 <- get_predVar(fitobject2,newdata=moregroups,

variances=list(linPred=TRUE,cov=TRUE))
moregroups$grp <- 3:7 ## all new data belong to distinct unobserved groups
cov2 <- get_predVar(fitobject2,newdata=moregroups,

variances=list(linPred=TRUE,cov=TRUE))
cov1-cov2 ## the expected off-diagonal covariance due to the common group in the first fit.

## Not run:
#### Other extractors:
#
fix_X_ZAC.object <- preprocess_fix_corr(fitobject,fixdata=blackcap)
#
# ... for use in multiple calls to get_predCov_var_fix():
#
get_predCov_var_fix(fitobject,newdata=blackcap[14,],fix_X_ZAC.object=fix_X_ZAC.object)

#### Prediction with distinct given phi's in different locations,
# as specified by a resid.model:
#
varphi <- cbind(blackcap,logphi=runif(14))
vphifit <- fitme(migStatus ~ 1 + Matern(1|longitude+latitude),

resid.model = list(formula=~0+offset(logphi)),
data=varphi, fixed=list(nu=4,rho=0.4))

#
# For respVar computation (i.e., response variance, often called prediction variance),
# one then also needs to provide the variables used in 'resid.model', here 'logphi':
#
get_respVar(vphifit,newdata=data.frame(latitude=1,longitude=1,logphi=1))
#
# For default 'predVar' computation (i.e., uncertainty in point prediction),
# this is not needed:
#
get_predVar(vphifit,newdata=data.frame(latitude=1,longitude=1))

#### point predictions and variances with new X and Z
#
if(requireNamespace("rsae", quietly = TRUE)) {

data("landsat", package = "rsae")
fitobject <- fitme(HACorn ~ PixelsCorn + PixelsSoybeans + (1|CountyName),

data=landsat[-33,])
newXandZ <- unique(data.frame(PixelsCorn=landsat$MeanPixelsCorn,

PixelsSoybeans=landsat$MeanPixelsSoybeans,
CountyName=landsat$CountyName))

predict(fitobject,newdata=newXandZ,variances = list(predVar=TRUE))
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get_predVar(fitobject,newdata=newXandZ,variances = list(predVar=TRUE))
}

## End(Not run)

predVar Prediction and response variances

Description

spaMM allows computation of four variance components of prediction, returned by predict as
“...Var” attributes: predVar, fixefVar, residVar, or respVar. The phrase “prediction variance”
is used inconsistently in the literature. Often it is used to denote the uncertainty in the response
(therefore, including the residual variance), but spaMM follows some literature for mixed models
in departing from this usage. Here, this uncertainly is called the response variance (respVar), while
prediction variance (predVar) is used to denote the uncertainty in the linear predictor (as in Booth
& Hobert, 1998; see also Jeske & Harville, 1988). The respVar is the predVar plus the residual
variance residVar.

Which components are returned is controlled in particular by the type and variances arguments
of the relevant functions. variances is a list of booleans whose possible elements either match the
possible returned components: predVar, fixefVar, residVar, or respVar; or may additionally
include linPred, disp, cov, as_tcrossfac_list and possibly other cryptic ones.

The predict default value for all elements is NULL, which jointly translate to no component being
computed, equivalently to setting all elements to FALSE. However, setting one component to TRUE
may reverse the default effect for other components. In particular, by default, component predVar
implies linPred=TRUE, disp=TRUE and component respVar additionally implies residVar=TRUE;
in both cases, the linPred=TRUE default by default implies fixefVar=TRUE. Calling for one vari-
ance may imply that some of its components are not only computed but also returned as a distinct
attribute.

By default the returned components are vectors of variances (with exceptions for some type value).
To obtain covariance matrices (when applicable), set cov=TRUE. as_tcrossfac_list=TRUE can be
used to return a list of matrices Xi such that the predVar covariance matrix equals

∑
i XiX

′
i . It

thus provides a representation of the predVar that may be useful in particular when the predVar
has large dimension, as the component Xis may require less memory (being possibly non-square or
sparse).

residVar=TRUE evaluates residVar the residual variance. For families without a dispersion pa-
rameter (e.g., binomial or poisson), this is as given by the variance function of the family
object (in the binomial case, it is thus the variance of a single binary draw). For families with a
dispersion parameter (such as ϕ for gaussian or Gamma families, negative-binomial, beta), it is the
residual variance as function of the dispersion parameter, whether this parameter is a single scalar
or follows a more complex residual-dispersion model. Prior weights are however ignored (see the
residVar extractor for the opposite feature). For the beta-binomial family, it is also the variance of
a single binary draw; although this family has a residual-dispersion parameter the latter variance is
not affected by it.

fixefVar=TRUE evaluates fixefVar, the variance due to uncertainty in fixed effects (Xβ).
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Computations implying linPred=TRUE will take into account the variances of the linear predictor
η, i.e. the uncertainty in fixed effects (Xβ) and random effects (ZLv), for given dispersion pa-
rameters (see Details). For fixed-effect models, the fixefVar calculations reduces to the linPred
one.

Computations implying disp=TRUE additionally include the effect of uncertainty in estimates of dis-
persion parameters (λ and ϕ), with some limitations (see Details). variances=list(predVar=TRUE),
which evaluates the uncertainty of linear predictor, implies disp=TRUE by default, meaning that it
includes such effects of uncertainty in dispersion parameters on the linear predictor. variances=list(respVar=TRUE)
performs similarly but additionally includes the residual variance in the returned variance.

Details

fixefVar is the (co)variance of Xβ, deduced from the asymptotic covariance matrix of β estimates.

linPred is the prediction (co)variance of η=Xβ+Zv (see HLfit Details for notation, and keep in
mind that new matrices may replace the ones from the fit object when newdata are used), by default
computed for given dispersion parameters. It takes into account the joint uncertainty in estimation
of β and prediction of v. In particular, for new levels of the random effects, predVar computation
takes into account uncertainty in prediction of v for these new levels. For prediction covariance
with a new Z, it matters whether a single or multiple new levels are used: see Examples.

For computations implying disp=TRUE, prediction variance may also include a term accounting for
uncertainty in ϕ and λ, computed following Booth and Hobert (1998, eq. 19). This computation
acheives its originally described purpose for a scalar residual variance (ϕ) and for several random
effects with scalar variances (λ). This computation ignores uncertainties in spatial correlation pa-
rameters.

The (1998) formulas for the effect of uncertainty in dispersion parameters are here also applied to
the variance parameters in random-coefficient terms, but with a one-time warning. Not only this is
not expected to account for the uncertainty of the correlation parameter(s) of such terms, but the
result is then only heuristic as it depends on the internal representation (the “square root”) of the
covariance matrix, which may differ among the different fitting algorithms that may be used by
spaMM.

respVar is the sum of predVar (pre- and post-multiplied by ∂µ/∂η for models with non-identity
link) and of residVar.

These variance calculations are approximate except for LMMs, and cannot be guaranteed to give
accurate results.

References

Booth, J.G., Hobert, J.P. (1998) Standard errors of prediction in generalized linear mixed models.
J. Am. Stat. Assoc. 93: 262-272.

Jeske, Daniel R. & Harville, David A. (1988) Prediction-interval procedures and (fixed-effects)
confidence-interval procedures for mixed linear models. Communications in Statistics - Theory
and Methods, 17: 1053-1087. doi:10.1080/03610928808829672

Examples

## Not run:
# (but run in help("get_predVar"))

https://doi.org/10.1080/03610928808829672
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data("blackcap")
fitobject <- fitme(migStatus ~ 1 + Matern(1|longitude+latitude),data=blackcap,

fixed=list(nu=4,rho=0.4,phi=0.05))

#### multiple controls of prediction variances
# (1) fit with an additional random effect
grouped <- cbind(blackcap,grp=c(rep(1,7),rep(2,7)))
fitobject <- fitme(migStatus ~ 1 + (1|grp) +Matern(1|longitude+latitude),

data=grouped, fixed=list(nu=4,rho=0.4,phi=0.05))

# (2) re.form usage to remove a random effect from point prediction and variances:
predict(fitobject,re.form= ~ 1 + Matern(1|longitude+latitude))

# (3) comparison of covariance matrices for two types of new data
moregroups <- grouped[1:5,]
rownames(moregroups) <- paste0("newloc",1:5)
moregroups$grp <- rep(3,5) ## all new data belong to an unobserved third group
cov1 <- get_predVar(fitobject,newdata=moregroups,

variances=list(linPred=TRUE,cov=TRUE))
moregroups$grp <- 3:7 ## all new data belong to distinct unobserved groups
cov2 <- get_predVar(fitobject,newdata=moregroups,

variances=list(linPred=TRUE,cov=TRUE))
cov1-cov2 ## the expected off-diagonal covariance due to the common group in the first fit.

## End(Not run)
## see help("get_predVar") for further examples

pseudoR2 Pseudo R-squared

Description

Generalization of R-squared based on likelihood ratios, called pseudo-R2 below, and variously
attributed to Cragg & Uhler (1970), Cox & Snell (1989), Magee (1990) and some other authors (see
comments in the References section). The null model used in the definition of R2 can be modified
by the user.

If you are looking for a goodness-of-fit test, the gof function may be more interesting that R2
computations.

Usage

pseudoR2(fitobject, nullform = . ~ 1, R2fun = LR2R2, rescale=FALSE, verbose=TRUE)

Arguments

fitobject The fitted model object, obtained as the return value of a spaMM fitting func-
tion.
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nullform Mean-response formula for the null model. The default value (including only
an intercept) represents the traditional choice in R2 computation for linear mod-
els. Alternative formulas (including, e.g., random effects) can be specified us-
ing either the update.formula syntax (e.g., with a '.' on the right hand side;
note that spaMM’s updating conventions differ from those implemented by
stats::update.formula, see update.HLfit), or a full formula (which may
be a safer syntax).

R2fun The backend function computing R2 given the fitted and null model. The default
implements the pseudo-R2. For linear models, it reduces to the canonical R2 and
the value adjusted as in summary.lm is also returned.

rescale Boolean or formula, controlling whether and how to rescale R2 so that its max-
imum possible value is 1 (often considered for discrete-response models). If a
formula, it should specify the model with maximal R2. If TRUE, rescaling is
performed in a way meaningful only for binary logistic regression (see Exam-
ples for how this is implemented).

verbose Boolean; whether to display various informations about the procedure (most
notably, to warn about some potential problem in applying the default procedure
to fitobject).

Details

None of the R2-like computations I am aware of helps in addressing, for the general class of
models handled by spaMM, a well-defined inference task (comparable to, say, formally testing
goodness of fit, or measuring accuracy of prediction of new data as considered for AIC). This
problem has been well-known (e.g., Magee, 1990), and the canonical R2 itself for linear models
is not devoid of weaknesses from this perspective (e.g., https://stats.stackexchange.com/
questions/13314/is-r2-useful-or-dangerous). As a consequence, strong statements about
the properties that R2 should have are difficult to follow (and this includes the claim that it should
always have maximum value 1).

Given the above problems, (1) ultimately the main reason for computing R2 may be to deal with
requests by misguided reviewers; (2) no attempt has been made here to implement the wide diversity
of R2-like descriptors discussed in the literature. The LR2R2 backend function implements the
pseudo-R2, chosen on the basis that this is the simplest general method that makes at least as much
sense as any other computation I have seen; and implementation of rescaling by maximal R2 is
minimal (the examples explain some of its details). LR2R2 allows adaptation of the R2 definition
for mixed-effect models, by including some random effect(s) in the null model, using the nullform
argument.

Value

As returned by the function specified by argument R2fun. The default function returns a numeric
vector of length 2 for linear models and a single value otherwise.

References

Cox, D.R., Snell, E.J. (1989). The analysis of binary data (2nd ed.). Chapman and Hall.
Often cited in this context, but they barely mention the topic, in an exercise p. 208-209.

https://stats.stackexchange.com/questions/13314/is-r2-useful-or-dangerous
https://stats.stackexchange.com/questions/13314/is-r2-useful-or-dangerous


pseudoR2 179

Pseudo-R2 is known to go back at least to
Cragg, J. G., & Uhler, R. S. (1970). The demand for automobiles. The Canadian Journal of Eco-
nomics, 3(3), 386. doi:10.2307/133656
where they already discussed its rescaling by a maximum value, in the context of binary regression.

Magee, L. (1990) R2 Measures based on Wald and likelihood ratio joint significance tests. The
American Statistician, 44, 250-253. doi:10.1080/00031305.1990.10475731
also often cited for the pseudo-R2, this paper reformulates some related descriptors and concisely
reviews earlier literature.

Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika,
Vol. 78, No. 3. (Sep., 1991), pp. 691-692. doi:10.1093/biomet/78.3.691
details the properties of pseudo-R2 (including the way it “partitions” variation). Argues emphati-
cally for its rescaling, for which it is often cited.

See Also

gof

Examples

#### Pseudo-R2 *is* R2 for linear models:
#
# lmfit <- lm(sr ~ pop15+pop75+dpi+ddpi , data = LifeCycleSavings)
# summary(lmfit) # Multiple R-squared = 0.3385, adjusted = 0.2797
#
spfit <- fitme(sr ~ pop15+pop75+dpi+ddpi , data = LifeCycleSavings)
pseudoR2(spfit) # consistent with summary(lmfit)

#### Toy example of pseudo-R2 for binary data
#
set.seed(123)
toydf <- data.frame(x=seq(50), y=sample(0:1,50,TRUE))
#
## Binary logistic regression:
#
binlog <- fitme(y~x, data=toydf, family=binomial())
(blR2 <- pseudoR2(binlog)) # quite low, despite the model being correct
#
## Rescaling by 'maximum possible' R2 for binary logistic regression:
#
pseudoR2(binlog, rescale=TRUE)
#
# which is acheived by silently computing the maximum possible R2 value
# by the following brutal but effective way:
#
perfbinlog <- fitme(y~I(y), data=toydf, family=binomial())
(maxblR2 <- pseudoR2(perfbinlog)) # = 0.7397...
#
# (this 'maximum possible' value would be modified if the null model were modified).
#
blR2/maxblR2 # again, rescaled value
#

https://doi.org/10.2307/133656
https://doi.org/10.1080/00031305.1990.10475731
https://doi.org/10.1093/biomet/78.3.691
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## Same by more general syntax:
#
pseudoR2(binlog, rescale=y~I(y))

random-effects Structure of random effects

Description

The structure of random-effect models adjustable by spaMM can generally be described by the
following steps.

First, independent and identically distributed (iid) random effects u are drawn from one of the fol-
lowing distributions: Gaussian with zero mean, unit variance, and identity link; Beta-distributed,
where u ~B(1/(2λ), 1/(2λ)) with mean=1/2, and var= λ/[4(1+λ)]; and with logit link v=logit(u);
Gamma-distributed random effects, where u ~ Gamma(shape=1+1/λ,scale=1/λ): see Gamma for al-
lowed links and further details; and Inverse-Gamma-distributed random effects, where u ~ inverse-
Gamma(shape=1+1/λ,rate=1/λ): see inverse.Gamma for allowed links and further details.

Second, a transformation v= f (u) is applied (this defines v whose elements are still iid). By default,
v=u for gaussian random effects but not necessarily for other distributions of random effects (see
Gamma).

Third, correlated random effects are obtained as Mv, where the matrix M can describe spatial
correlation between observed locations, block effects (or repeated observations in given locations),
and possibly also correlations involving unobserved locations (as is often the case for autoregressive
models). In most cases M is determined from the model formula, but it can also be controlled by
covStruct argument. M takes the form ZL or ZAL, where Z is determined from the model formula,
the optional A factor is given by the optional "AMatrices" attribute of argument covStruct of
HLCor (also handled by fitme and corrHLfit), and L can be determined from the model formula
or from covStruct. In particular:
* Z is typically an incidence matrix: its elements zij are 1 if the ith observation is affected by the
jth element of ALb, and zero otherwise.

* For spatial random effects, L is typically the Cholesky “square root” of a correlation matrix
determined by the random effect specification (e.g., Matern(...)), or given by the covStruct ar-
gument. This may be meaningful only for Gaussian random effects. Coefficients for each level of a
random-coefficient model can also be represented as Lv where L is the “square root” of a correla-
tion matrix.

* If there is one response value par location, L for a spatial random effect is thus a square matrix
whose dimension is the number of observations. Alternatively, several observations may be taken in
the same location, and a matrix Z (automatically constructed) tells which element of Lv affects each
observation. The linear predictor then contains a term of the form ZLv, where dim(Z) is (number
of observations,number of locations).
* in IMRF random effects (IMRF for Interpolated Markov Random Fields), the realized random

effects in response locations are defined as linear combinations ALv of random effects Lv in distinct
locations. In that case the dimension of L is the number of such distinct locations, an automatically
constructed A matrix maps them to the observed locations, and Z again maps them to possibly
repeated observations in observed locations.
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rankinfo Checking the rank of the fixed-effects design matrix

Description

By default, fitting functions in spaMM check the rank of the design matrix for fixed effects, as
stats::lm or stats::glm do (but not, say, nlme::lme). This computation can be quite long. To
save time when fitting different models with the same fixed-effect terms to the same data, the result
of the check can be extracted from a return object by get_rankinfo(), and can be provided as
argument control.HLfit$rankinfo to another fit. Alternatively, the check will not be performed
if control.HLfit$rankinfo is set to NA.

Usage

get_rankinfo(object)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

Details

The check is performed by a call to qr() methods for either dense or sparse matrices. If the design
matrix is singular, a set of columns from the design matrix that define a non-singular matrix is
identified. Note that different sets may be identified by sparse- and dense-matrix qr methods.

Value

A list with elements rank, whichcols (a set of columns that define a non-singular matrix), and
method (identifying the algorithm used).

Examples

## Data preparation
# Singular matrix from ?Matrix::qr :
singX <- cbind(int = 1,

b1=rep(1:0, each=3), b2=rep(0:1, each=3),
c1=rep(c(1,0,0), 2), c2=rep(c(0,1,0), 2), c3=rep(c(0,0,1),2))

rownames(singX) <- paste0("r", seq_len(nrow(singX)))
donn <- as.data.frame(singX)
set.seed(123)
donn$y <- runif(6)

fitlm <- fitme(y~int+ b1+b2+c1+c2+c3,data=donn)
get_rankinfo(fitlm)
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register_cF Declare corrFamily constructor for use in formula

Description

register_cF registers the name of a new corrFamily constructor so that it can be used as the
keyword of a random effect in a formula (as in y ~ 1 + ARp()). unregister_cF cancels this.

Usage

register_cF(corrFamilies = NULL, reset = FALSE)
unregister_cF(corrFamilies)

Arguments

corrFamilies NULL, or character vector of names of corrFamily constructors.

reset Boolean. Set it to TRUE in order to reset the list of registered constructors to the
spaMM built-in default, before registering the ones specified by corrFamilies.

Value

No value; operates through side-effects on internal variables.

Examples

ts <- data.frame(lh=lh,time=seq(48)) ## using 'lh' data from 'stats' package

myARp <- ARp # defines 'new' corrFamily from built-in one

# Now, this would not yet work:

# fitme(lh ~ 1 + myARp(1|time), data=ts, method="REML")

# but this works if we first register "myARp"

register_cF("myARp") # registers it

fitme(lh ~ 1 + myARp(1|time), data=ts, method="REML")
#
# same as
#
fitme(lh ~ 1 + corrFamily(1|time), data=ts, method="REML",

covStruct=list(corrFamily=myARp()))
#
# showing it's possible not to register myARp,
# although this has limitations (see Details in help("corrFamily")).

## Specifying arguments of the corrFamily constructor:
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fitme(lh ~ 1 + myARp(1|time, p=3), data=ts, method="REML")
#
# same as
#
fitme(lh ~ 1 + corrFamily(1|time), data=ts, method="REML",

covStruct=list(corrFamily=ARp(p=3)))

unregister_cF("myARp") # Tidy things before leaving.

resid.model Structured dispersion models

Description

The resid.model argument of fitting functions can be used to specify a model for a residual-
dispersion parameter of various response families, that is, either
(1) the ϕ parameter of the gaussian and Gamma GLM families;
(2a) the dispersion parameter of some other GLM families, such as the shape parameter of the
negbin1 and negbin2 families; or
(2b) the dispersion parameter of some other (non-GLM) distribution families, such as the precision
parameter of the beta family.

This documentation is more specifically for case (2). Case (1) is more specifically documented as
phi-resid.model.

In case (2) the model for the dispersion parameter is constrained as a fixed-effect model, of the form
dispersion parameter = exp(Xβ+offset),
and specified using the standard formula syntax. Random effects cannot be included, in contrast to
dispersion models for case (1).

Usage

# 'resid.model' argument of fitme() and fitmv()

Arguments

The resid.model for case (2) is simply a formula (without left-hand side) for the logarithm of the
dispersion parameter. Fixed β values can be specified through the rdisPars element of the fixed
argument in the fitme call (or through the fixed argument of each submodel of a fitmv call).
Likewise, initial values can be specified through the init argument.

Details

In case (2) a fixed “heteroscedastic” model can also be specified directly through the family spec-
ification, e.g., family=negbin1(shape=<vector>) where the vector has the length of the response
vector, but this may not be suitable if the model is to be used for prediction purposes (where the
residual-dispersion model should be specified in such a way that one can “predict” new dispersion
values from it).
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The design matrix for the specified model is internally rescaled to avoid numerical problems. That
means that there is no need to rescale the predictor variable, even if it tends to take large (cf ‘popu-
lation’ variable in the Examples) of small values (this is also true for fixed-effect predictors of the
mean-response model).

Value

The fit results for the residual model are accessible through the summary and various extractors. In
particular, the get_fittedPars extractor will by default include in its return value the rdisPars
element, which is here the vector of fitted β coefficients. residVar(., which="fam_parm") will
return the vector of fitted values of the dispersion parameter.

Examples

data("scotlip")
if (spaMM.getOption("example_maxtime")>3) {
(toyfit <- fitme(cases~1+(1|id),family=negbin1(), data=scotlip, resid.model = ~ population))

# => This toy example is a bit challenging to fit because the data set is small and
# individual-level variation is here described both by a random effect
# and by a two-parameter negbin1 residual variation. The fit might often stop
# at a local maximum of the logLik in such cases (although there is no evidence
# that this is presently the case).
}

residuals.HLfit Extract model residuals

Description

Extracts several types of residuals from an object of class HLfit. Note that the default type
("deviance") of returned residuals differs from the default (response residuals) of equivalent func-
tions in base R.

Usage

## S3 method for class 'HLfit'
residuals(object,
type = c("deviance", "pearson", "response", "working", "std_dev_res", "RQR"),
force=FALSE, ...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.
type The type of residuals which should be returned. See Details for additional infor-

mation.
force Boolean: to force recomputation of the "std_dev_res" residuals even if they

are available in the object, for checking purposes.
... For consistency with the generic.



residuals.HLfit 185

Details

The first four types "deviance" (default), "pearson", "response" are "working" are, for GLM
families, the same that are returned by residuals.glm. The fifth type, "RQR", are the randomized
quantile residuals (Dunn & Smuth, 1996), also computed by gof.

"working" residuals may be returned only for fixed-effect models. "deviance" residuals are the
signed square root of those returned by dev_resids when there are no prior weights.

In the presence of prior weights, what the standard extractors do is often a matter of confusion
and spaMM has not always been consistent with them. For a gaussian-response GLM (see Exam-
ples) stats::deviance.lm calls weighted.residuals() which returns unscaled deviance resid-
uals weighted by prior weights. Unscaled deviance residuals are defined in McCullagh and Nelder
1989, p. 34 and depend on the response values and fitted values but not on the canonical ϕ pa-
rameter, and prior weights are not considered. weighted.residuals() still ignores ϕ but accounts
for prior weights. This means that different residuals(<glm>) and deviance(<glm>) will be re-
turned for equivalent fits with different parametrizations of the residual variance (as produced by
glm(., family=gaussian, weights=rep(2,nrow<data>)) versus the glm call without weights).
residuals(<HLfit object>,"deviance") and deviance(<HLfit object>,"deviance") are con-
sistent with this behavior. By contrast, dev_resids(<HLfit object>) always return the unscaled
deviance residuals by default.

Following Lee et al. (2006, p.52), the standardized deviance residuals returned for type="std_dev_res"
are defined as the deviance residuals divided by ϕ

√
(1 − q), where the deviance residuals are de-

fined as for a GLM, ϕ is the dispersion parameter of the distribution family (a vector of values, for
heteroscedastic cases), and q is a vector of leverages given by hatvalues(., type="std") (see
hatvalues for details about these specific standardizing leverages).

Some definitions must be extended for non-GLM response families. In the latter case, the deviance
residuals are as defined in Details of llm.fit (there is no concept of unscaled residuals here, nor
indeed of scaled ones since the residual dispersion parameter is not generally a scale factor, but
the returned deviance residuals for non-GLMs are analogous to the scaled ones for GLMs as they
depend on residual dispersion). "std_dev_res" residuals are defined from them as shown above
for GLM response families, with the additional convention that ϕ = 1 (since the family’s own
residual dispersion parameter already enters in the definition of deviance residuals for non-GLM
families). Pearson residuals and response residuals are defined as in stats:::residuals.glm.
The "working" residuals are defined for each response as −[d log(clik)/dη]/[d2 log(clik)/dη2]
where clik is the conditional likelihood.

Value

A vector of residuals

References

Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalized linear models with random effects:
unified analysis via h-likelihood. Chapman & Hall: London.

Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5, 1-10.
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Examples

data("wafers")
fit <- fitme(y ~X1+(1|batch) ,data=wafers, init=list(phi=NaN)) # : this 'init'
# implies that standardized deviance residuals are saved in the
# fit result, allowing the following comparison:

r1 <- residuals(fit, type="std_dev_res") # gets stored value
r2 <- residuals(fit, type="std_dev_res", force=TRUE) # forced recomputation
if (diff(range(r1-r2))>1e-14) stop()

#####
## Not run:
glmfit <- glm(I(y/1000)~X1, family=gaussian(), data=wafers)
deviance(glmfit) # 3... (a)
sum(residuals(glmfit)^2) # 3... (b)

# Same model, with different parametrization of residual variance
glmfit2 <- glm(I(y/1000)~X1, family=gaussian(), data=wafers, weights=rep(2,198))
deviance(glmfit2) # 6... (c)
sum(residuals(glmfit2)^2) # 6... (d)

# Same comparison but for HLfit objects:
spfit <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers)
deviance(spfit) # 3... (e)
sum(residuals(spfit)^2) # 3... (f)
sum(dev_resids(spfit)) # 3...

spfit2 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, prior.weights=rep(2,198))
deviance(spfit2) # 6... (g) ~ (c,d) # post v4.2.0
sum(residuals(spfit2)^2) # 6... (h) ~ (c,d)
sum(dev_resids(spfit2)) # 3...

# Unscaled residuals should not depend on arbitrarily fixed residual variance:
spfit3 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, fixed=list(phi=2),

prior.weights=rep(2,198))
deviance(spfit3) # 6... (i) ~ (g)
sum(residuals(spfit3)^2) # 6... (k) ~ (h)
sum(dev_resids(spfit3)) # 3...

## End(Not run)

residVar Residual variance extractor

Description

Extracts from a fit object the residual variance or, depending on the which argument, a family
dispersion parameter phi (which is generally not the residual variance itself except for gaussian-
response models without prior weights), or a vector of values of the dispersion parameter, or further
information about the residual variance model.
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For gaussian and Gamma response families, the return values for which = "var" and "phi" include
prior weights, if any.

Usage

residVar(object, which = "var", submodel = NULL, newdata = NULL)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

which Character: "var" for the fitted residual variances, "phi" for the fitted phi values,
"fam_parm" for the dispersion parameter of COMPoisson, negbin1, negbin2,
beta_resp or betabin families, "fit" for the fitted residual model (a GLM or
a mixed model for residual variances, if not a simpler object), and "family" or
"formula" for such properties of the residual model.

submodel integer: the index of a submodel, if object is a multivariate-response model
fitted by fitmv. This argument is mandatory for all which values except "var"
and "phi".

newdata Either NULL, a matrix or data frame, or a numeric vector. See predict.HLfit
for details.

Value

which="var" (default) and "phi" always return a vector of residual variances (or, alternatively, phi
values) of length determined by the newdata and submodel arguments.
which="fit" returns an object of class HLfit, glm, or a single scalar depending on the residual
dispersion model (which="fit" is the option to be used to extract the scalar phi value).
which="fam_parm" returns either NULL (for families without such a parameter), a vector (if
a resid.model was specified for relevant families), a single scalar (relevant families, without
resid.model), or a list of such objects (for multivariate-response models).
Other which values return an object of class family or formula as expected.

See Also

get_residVar is a alternative extractor of residual variances with different features inherited from
get_predVar. In particular, it is more suited for computing the residual variances of new realiza-
tions of a fitted model, not accounting for prior weights used in fitting the model (basic examples
of using the IsoriX package provide a context where this is the appropriate design decision). By
contrast, residVar aims to account for prior weights.

Examples

## residVar optional arguments:

# data preparation: simulated trivial life-history data
set.seed(123)
nind <- 20L
u <- rnorm(nind)
lfh <- data.frame(
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id=seq_len(nind), id2=seq_len(nind),
feco= rpois(nind, lambda = exp(1+u)),
growth=rgamma(nind,shape=1/0.2, scale=0.2*exp(1+u)) # mean=exp(1+u), var= 0.2*mean^2

)
# multivariate-response fit
fitlfh <- fitmv(submodels=list(list(feco ~ 1+(1|id), family=poisson()),

list(growth ~ 1+(1|id), family=Gamma(log))),
data=lfh)

#
residVar(fitlfh)
residVar(fitlfh, which="phi") # shows fixed phi=1 for Poisson responses
residVar(fitlfh, submodel=2)
residVar(fitlfh, which="family", submodel=2)
residVar(fitlfh, which="formula", submodel=2)
residVar(fitlfh, which="fit", submodel=2) # Fit here characterized by a single scalar

## Prior weights in residVar() vs. get_residVar():
data(wafers)
spfit <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers)
residVar(spfit)[1] # 0.015...
get_residVar(spfit)[1] # 0.015...

spfit2 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, prior.weights=rep(2,198))
head(residVar(spfit2)) # 0.015... = phi/prior.weights
head(get_residVar(spfit2)) # 0.030... = phi

spfit3 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, fixed=list(phi=2),
prior.weights=rep(2,198))

residVar(spfit3)[1] # 1 = phi/prior.weights
get_residVar(spfit3)[1] # 2 = phi

salamander Salamander mating data

Description

Data from a salamander mating experiment discussed by McCullagh and Nelder (1989, Ch. 14).
Twenty males and twenty females from two populations (Rough Butt and Whiteside) were each
paired with 6 individuals from their own or from the other population. The experiments were later
published by Arnold et al. (1996).

Usage

data("salamander")

Format

The data frame includes 360 observations on the following variables:



scotlip 189

Female Index of the female;

Male Index of the male;

Mate Whether the pair successfully mated or not;

TypeF Population of origin of female;

TypeM Population of origin of male;

Cross Interaction term between TypeF and TypeM;

Season A factor with levels Summer and Fall;

Experiment Index of experiment

Source

The data frame was borrowed from the HGLMMM package (Molas and Lesaffre, 2011), version 0.1.2.

References

Arnold, S.J., Verrell, P.A., and Tilley S.G. (1996) The evolution of asymmetry in sexual isolation:
a model and a test case. Evolution 50, 1024-1033.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, 2nd edition. London: Chapman
& Hall.

Molas, M., Lesaffre, E. (2011) Hierarchical Generalized Linear Models: The R Package HGLMMM.
Journal of Statistical Software 39, 1-20.

Examples

data("salamander")

## Not run:
HLfit(cbind(Mate,1-Mate)~TypeF+TypeM+TypeF*TypeM+(1|Female)+(1|Male),

family=binomial(),data=salamander,method="ML")
# equivalent fo using fitme(), but here a bit faster

## End(Not run)

scotlip Lip cancer in Scotland 1975 - 1980

Description

This data set provides counts of lip cancer diagnoses made in Scottish districts from 1975 to 1980,
and additional information relative to these data from Clayton and Kaldor (1987) and Breslow and
Clayton (1993). The data set contains (for each district) counts of disease events and estimates of
the fraction of the population involved in outdoor industry (agriculture, fishing, and forestry) which
exposes it to sunlight.

data("scotlip") actually loads a data frame, scotlip, and an adjacency matrix, Nmatrix, be-
tween 56 Scottish districts, as given by Clayton and Kaldor (1987, Table 1).
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Usage

data("scotlip")

Format

The data frame includes 56 observations on the following 7 variables:

gridcode alternative district identifier.

id numeric district identifier (1 to 56).

district district name.

cases number of lip cancer cases diagnosed 1975 - 1980.

population total person years at risk 1975 - 1980.

prop.ag percent of the population engaged in outdoor industry.

expec offsets considered by Breslow and Clayton (1993, Table 6, ’Exp’ variable)

The rows are ordered according to gridcode, so that they match the rows of Nmatrix.

References

Clayton D, Kaldor J (1987). Empirical Bayes estimates of age-standardized relative risks for use in
disease mapping. Biometrics, 43: 671 - 681.

Breslow, NE, Clayton, DG. (1993). Approximate Inference in Generalized Linear Mixed Models.
Journal of the American Statistical Association: 88 9-25.

Examples

data("scotlip")
fitme(cases~I(log(expec)), data=scotlip, family=poisson)

## see 'help(autoregressive)' for additional examples involving 'scotlip'.

seaMask Masks of seas or lands

Description

These convenient masks can be added to maps of (parts of) the world to mask map information for
these areas.

However, many other tools may be available since this documentation was conceived. See e.g. the
rnaturalearth package, used to provide a sea mask in an example for filled.mapMM

Usage

data("seaMask")
data("landMask")
# data("worldcountries") # deprecated and removed
# data("oceanmask") # deprecated and removed
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Format

seaMask and landMask are data frames with two variables, x and y for longitude and latitude. Its
contents are suitable for use with polypath: they define different polygones, each separated by a
row of NAs.

worldcountries and oceanmask were sp::SpatialPolygonsDataFrame objects previously in-
cluded in spaMM (see Details for replacement). Such objects were useful for creating land masks
for different geographical projections.

Details

The removed objects worldcountries and oceanmask were suitable for plots involving geograph-
ical projections not available through map, and more generally for raster plots. A land mask
could be produced out of worldcountries by filling the countries, as by fill="black" in the
code for country.layer in the Examples in https://gitlab.mbb.univ-montp2.fr/francois/
spamm-ref/-/blob/master/vignettePlus/example_raster.html. These objects may now be
available through the same web page, but a better place to look for the same functionality is the
IsoriX package (objects CountryBorders and OceanMask).

seaMask and landMask were created from the world map in the maps package. polypath requires
polygons, while map(interior=FALSE,plot=FALSE) returns small segments. landMask is the
result of reconnecting the segments into full coastlines of all land blocks.

See Also

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/
example_raster.html for access to, and use of worldcountries and oceanmask; https://cran.
r-project.org/package=IsoriX for replacement CountryBorders and OceanMask for these ob-
jects.

Examples

## Predicting behaviour for a land bird: simplified fit for illustration
data("blackcap")
bfit <- fitme(migStatus ~ means+ Matern(1|longitude+latitude),data=blackcap,

fixed=list(lambda=0.5537,phi=1.376e-05,rho=0.0544740,nu=0.6286311))

## the plot itself, with a sea mask,
## and an ad hoc 'pointmask' to see better the predictions on small islands
#
def_pointmask <- function(xy,r=1,npts=12) {

theta <- 2*pi/npts *seq(npts)
hexas <- lapply(seq(nrow(xy)), function(li){
p <- as.numeric(xy[li,])
hexa <- cbind(x=p[1]+r*cos(theta),y=p[2]+r*sin(theta))
rbind(rep(NA,2),hexa) ## initial NA before each polygon

})
do.call(rbind,hexas)

}
ll <- blackcap[,c("longitude","latitude")]
pointmask <- def_pointmask(ll[c(2,4,5,6,7),],r=0.8) ## small islands only
#

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/example_raster.html
https://cran.r-project.org/package=IsoriX
https://cran.r-project.org/package=IsoriX
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if (spaMM.getOption("example_maxtime")>1) {
data("seaMask")

filled.mapMM(bfit,add.map=TRUE,
plot.title=title(main="Inferred migration propensity of blackcaps",

xlab="longitude",ylab="latitude"),
decorations=quote(points(pred[,coordinates],cex=1,pch="+")),
plot.axes=quote({axis(1);axis(2);

polypath(rbind(seaMask,pointmask),border=FALSE,
col="grey", rule="evenodd")

}))
}

seeds Seed germination data

Description

A classic toy data set, “from research conducted by microbiologist Dr P. Whitney of Surrey Univer-
sity. A batch of tiny seeds is brushed onto a plate covered with a certain extract at a given dilution.
The numbers of germinated and ungerminated seeds are subsequently counted” (Crowder, 1978).
Two seed types and two extracts are here considered in a 2x2 factorial design.

Usage

data("seeds")

Format

The data frame includes 21 observations on the following variables:

plate Factor for replication;

seed Seed type, a factor with two levels O73 and O75;

extract Root extract, a factor with two levels Bean and Cucumber;

r Number of seeds that germinated;

n Total number of seeds tested

Source

Crowder (1978), Table 3.

References

Crowder, M.J., 1978. Beta-binomial anova for proportions. Appl. Statist., 27, 34-37.

Y. Lee and J. A. Nelder. 1996. Hierarchical generalized linear models (with discussion). J. R.
Statist. Soc. B, 58: 619-678.
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Examples

# An extended quasi-likelihood (EQL) fit as considered by Lee & Nelder (1996):
data("seeds")
fitme(cbind(r,n-r)~seed*extract+(1|plate),family=binomial(),

rand.family=Beta(),
method="EQL-", # see help("method") for difference with "EQL+" method
data=seeds)

setNbThreads Parallel computations in fits

Description

A few steps of fitting can be parallelized. Currently it is possible to control the use of multiple
threads by OpenMP by the Eigen library. By default only one thread will be used, but this may be
modified by using control.HLfit$NbThreads in a fitting function’s arguments, as in

avail_thr <- parallel::detectCores(logical=FALSE) - 1L
fitme(., control.HLfit=list(NbThreads=max(avail_thr, 1L)))

This control is distinct from that of post-fit steps such as bootstraps where some parallel computa-
tions are controlled e.g. the nb_cores argument of spaMM_boot. In cases where post-fits computa-
tion imply refits of models (as is typical of parametric bootstraps), the two parallelizations should
not be combined, and the spaMM code for post-fit operations will in principle automatically take
care of this.

According to https://cran.r-project.org/doc/manuals/r-devel/R-exts.html#OpenMP-support,
using openMP may decrease the precision of some computations, and may be less efficient under
Windows; and according to https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
only a few Eigen computations will benefit from such parallelisation, mainly the dense matrix prod-
ucts. spaMM will suggest using parallelisation when random effects have many levels and dense-
correlation methods are selected (see algebra), that is mainly for geostatiscal models with many
locations. Speed gains appear moderate, as the slowest steps are not parallelized.

simulate.HLfit Simulate realizations of a fitted model.

Description

From an HLfit object, simulate.HLfit function generates new samples given the estimated fixed
effects and dispersion parameters. Simulation may be unconditional (the default, useful in many
applications of parametric bootstrap), or conditional on the predicted values of random effects, or
may draw from the conditional distribution of random effects given the observed response. Sim-
ulations may be run for the original sampling design (i.e., original values of fixed-effect predictor

https://cran.r-project.org/doc/manuals/r-devel/R-exts.html#OpenMP-support
https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
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variables and of random-effect levels, including spatial locations if relevant), or for a new design as
specified by the newdata argument.

simulate4boot is a wrapper around simulate.HLfit that can be used to precompute the bootstrap
samples to be used by spaMM_boot or spaMM2boot through their boot_samples argument (and is
called internally by these functions when boot_samples is NULL).

simulate_ranef will only simulate and return a vector of random effects, more specifically some
elements of the b vector appearing in the standard form offset+ Xβ + Z b for the linear predictor.

Usage

## S3 method for class 'HLfit'
simulate(object, nsim = 1, seed = NULL, newdata = NULL,

type = "marginal", re.form, conditional = NULL,
verbose = c(type=TRUE,

showpbar=eval(spaMM.getOption("barstyle"))),
sizes = if (is.null(newdata)) object$BinomialDen,
resp_testfn = NULL, phi_type = "predict",

prior.weights = if (is.null(newdata)) object$prior.weights,
variances=list(), ...)

## S3 method for class 'HLfitlist'
simulate(object, nsim = 1, seed = NULL,

newdata = object[[1]]$data, sizes = NULL, ...)

simulate4boot(object, nsim, seed=NULL, resp_testfn=NULL, type="marginal",
showpbar=eval(spaMM.getOption("barstyle")), ...)

simulate_ranef(object, which=NULL, newdata = NULL, nsim = 1L)

Arguments

object The return object of HLfit or similar function.

nsim number of response vectors to simulate. Defaults to ’1’.

seed A seed for set.seed. If such a value is provided, the initial state of the random
number generator at a global level is restored on exit from simulate.

newdata A data frame closely matching the original data, except that response values are
not needed. May provide new values of fixed predictor variables, new spatial
locations, new individuals within a block, or new values of the LHS in random-
effect terms of the form (<LHS>|<RHS>).

prior.weights Prior weights that may be substituted to those of the original fit, with the same
effect on the residual variance. See Details for the definition of the default when
newdata are provided. For multivariate-response fits, this is a list with one el-
ement per submodel, each element being a vector whose size is the number of
response levels to be simulated for each submodel (the object$prior.weights
provides an example).

sizes A vector of sample sizes to simulate in the case of a binomial or betabin fit.
See Details for the definition of the default when newdata are provided. For
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multivariate-response fits, the sizes argument should contain elements for re-
sponse levels for all submodels whatever their response families (e.g. for sub-
models with families and response levels poisson: 3 and binomial: 2, respec-
tively, the sizes vector should contain 5 elements, e.g. 1 1 1 5 10, only the last
two of which having nontrivial meaning).

re.form formula for random effects to condition on. Default behaviour depends on the
type argument. The joint default is the latter’s default, i.e., unconditional sim-
ulation. re.form is currently ignored when type="predVar" (with a warning).
Otherwise, re.form=NULL conditions on all random effects (as type="residual"
does), and re.form=NA conditions on none of the random effects (as type="marginal"
or re.form=~0 do).

type character string specifying which uncertainties are taken into account in the lin-
ear predictor and notably in the random effect terms. Whatever the type, the
residual variance is always accounted in the simulation output. "marginal" ac-
counts for the marginal variance of the random effect (and, by default, also for
the uncertainty in fixed effects); "predVar" accounts for the conditional dis-
tribution of the random effects given the data (see Details); and "residual"
should perhaps be "none" as no uncertainty is accounted in the linear predictor:
the simulation variance is only the residual variance of the fitted model.

conditional Obsolete and will be deprecated. Boolean; TRUE and FALSE are equivalent to
type="residual" and type="marginal", respectively.

verbose Either a single boolean (which determines verbose[["type"]], or a vector of
booleans with possible elements "type" (to display basic information about the
type of simulation) and "showpbar" (see predict(.,verbose)).

resp_testfn NULL, or a function that tests a condition which simulated samples should sat-
isfy. This function takes a response vector as argument and return a boolean
(TRUE indicating that the sample satisfies the condition).

phi_type Character string, either "predict" or one of the values possible for type. This
controls the residual variance parameter ϕ. The default is to use predicted ϕ val-
ues from the fit, which are the fitted ϕ values except when a structured-dispersion
model is involved together with non-NULL newdata. However, when a structured-
dispersion model is involved, it is also possible to simulate new ϕ values, and
for a mixed-effects structured-dispersion model, the same types of simulation
controlled by type for the mean response can be performed as controlled by
phi_type. For a fixed-effects structured-dispersion model, these types cannot
be distinguished, and any phi_type distinct from "predict" will imply simu-
lation under the fixed-effect model (see Examples).

variances Used when type="predVar": see Details.

... For simulate4boot, further arguments passed to simulate.HLfit (e.g., newdata).
For simulate.HLfit, further arguments only passed to predict in a specula-
tive bit of code (see Details).

which Integer, or integer vector: the random effect(s) (indexed as ordered as in the
model formula) to be simulated. If NULL, all of them are simulated.

showpbar Controls display of progress bar. See barstyle option for details.
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Details

type="predVar" accounts for the uncertainty of the linear predictor, by drawing new values of
the predictor in a multivariate gaussian distribution with mean and covariance matrix of prediction.
In this case, the user has to provide a variances argument, passed to predict, which controls what
goes into this covariance matrix. For example, with variances=list(linPred=TRUE,disp=TRUE)),
the covariance matrix takes into account the joint uncertainty in the fixed-effect coefficients and of
any random effects given the response and the point estimates of dispersion and correlation param-
eters ("linPred" variance component), and in addition accounts for uncertainty in the dispersion
parameters (effect of "disp" variance component as further described in predict.HLfit). The
total simulation variance is then the response variance. Uncertainty in correlation parameters (such
a parameters of the Matern family) is not taken into account. The "linPred" uncertainty is known
exactly in LMMs, and otherwise approximated as a Gaussian distribution with mean vector and
covariance matrix given as per the Laplace approximation.

type="(ranef|response)" can be viewed as a special version of type="predVar" where
variances=list(linPred=TRUE,disp=FALSE)) and only the uncertainty in the random effects is
taken into account.

A full discussion of the merits of the different types is beyond the scope of this documentation, but
these different types may not all be useful. type="marginal" is typically used for computation of
confidence intervals by parametric bootstrap methods. type="residual" is used by get_cPredVar
for its evaluation of a bias term. The other types may be used to simulate the uncertainty in the
random effects, conditionally on the data, and may therefore be more akin to the computation of
prediction intervals conditionally on an (unknown but inferred) realization of the random effects.
But these should presumably not be used in a bootstrap computation of such intervals, as this would
represent a double accounting of the uncertainty that the bootstrap aims to quantify.

There are cases where simulation without a newdata argument may give results of different length
than simulation with newdata=<original data>, as for predict.

When newdata are provided but new values of prior.weights or sizes are missing, new values of
these missing arguments are guessed, and warnings may be issued depending on the kind of guess
made for response families dependent on such arguments. The prior.weights values used in the
fit are re-used without warning when such values were identical (generally, unit) for all response
values, and labelled as such in the object$prior.weights. Unit weights will be used otherwise,
with a warning. Unit binomial sizes will be used, with a warning, whenever there are newdata.

Value

simulate.HLfit returns a vector (if nsim=1) or a matrix with nsim columns, each containing sim-
ulated responses (or simulated random effects, for simulated_ranef()). For multivariate-response
simulations, an nobs attribute gives the number of responses for each submodel if no resp_testfn
was applied.

simulate4boot returns a list with elements

bootreps the result of simulate.HLfit as a matrix with nsim columns;

RNGstate the state of .Random.seed at the beginning of the sample simulation.

The simulate.HLfitlist method returns a list of simulated responses.
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Examples

data("Loaloa")
HLC <- HLCor(cbind(npos,ntot-npos)~Matern(1|longitude+latitude),

data=Loaloa,family=binomial(),
ranPars=list(lambda=1,nu=0.5,rho=1/0.7))

simulate(HLC,nsim=2)

## Structured dispersion model
data("wafers")
hl <- HLfit(y ~X1+X2+X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log),

resid.model = ~ X3+I(X3^2) ,data=wafers)
simulate(hl,type="marginal",phi_type="simulate",nsim=2)
simulate_ranef(hl,nsim=2)

spaMM Inference in mixed models, in particular spatial GLMMs

Description

Fits a range of mixed-effect models, including those with spatially correlated random effects. The
random effects are either Gaussian (which defines GLMMs), or other distributions (which defines
the wider class of hierarchical GLMs), or simply absent (which makes a LM or GLM). Multivariate-
response models can be fitted by the fitmv function. Other models can be fitted by fitme. Also
available are previously conceived fitting functions HLfit (sometimes faster, for non-spatial mod-
els), HLCor (sometimes faster, for conditional-autoregressive models and fixed-correlation models),
and corrHLfit (now of lesser interest). A variety of post-fit procedures are available for prediction,
simulation and testing (see, e.g., fixedLRT, simulate and predict).

A variety of special syntaxes for fixed effects, such as poly, splines::ns or bs, or lmDiallel::GCA,
may be handled natively although some might not be fully handled by post-fit procedures such as
predict. poly is fully handled. lmDiallel::GCA cannot be due to its inherent limitations, but see
X.GCA for a more functional alternative for diallel/multi-membership fixed-effect terms. Note that
packages implementing these terms must be attached to the search list as :: will not be properly
understood in a formula.

Both maximum likelihood (ML) and restricted likelihood (REML) can be used for linear mixed
models, and extensions of these methods using Laplace approximations are used for non-Gaussian
random response. Several variants of these methods discussed in the literature are included (see
Details in HLfit), the most notable of which may be “PQL/L” for binary-response GLMMs (see
Example for arabidopsis data). PQL methods implemented in spaMM are closer to (RE)ML
methods than those implemented in MASS::glmmPQL.

Details

The standard response families gaussian, binomial, poisson, and Gamma are handled, as well as
negative binomial (see negbin1 and negbin2), beta (beta_resp), beta-binomial (betabin), zero-
truncated poisson and negative binomial and Conway-Maxwell-Poisson response (see Tpoisson,
Tnegbin and COMPoisson). A multi family look-alike is also available for multinomial response,
with some constraints.
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The variance parameter of residual error is denoted ϕ (phi): this is the residual variance for gaussian
response, but for Gamma-distributed response, the residual variance is ϕµ2 where µ is expected
response. A (possibly mixed-effects) linear predictor for ϕ, modeling heteroscedasticity, can be
considered (see Examples).

The package fits models including several nested or crossed random effects, including autocor-
related ones. An interface is being developed allowing users to implement their own parametric
correlation models (see corrFamily), beyond the following ones which are built in spaMM:
* geostatistical (Matern, Cauchy),
* interpolated Markov Random Fields (IMRF, MaternIMRFa),
* autoregressive time-series (AR1, ARp, ARMA),
* conditional autoregressive as specified by an adjacency matrix,
* pairwise interactions with individual-level random effects, such as diallel experiments (diallel),
* or any fixed correlation matrix (corrMatrix).

GLMMs and HGLMs are fit via Laplace approximations for (1) the marginal likelihood with respect
to random effects and (2) the restricted likelihood (as in REML), i.e. the likelihood of random
effect parameters given the fixed effect estimates. All handled models can be formulated in terms
of a linear predictor of the traditional form offset+ Xβ + Z b, where X is the design matrix of
fixed effects, β (beta) is a vector of fixed-effect coefficients, Z is a “design matrix” for the random
effects (which is instead denoted M=ZAL elsewhere in the package documentation), and b a vector
of random effect values. The general structure of Mb is described in random-effects.

Gaussian and non-gaussian random effects can be fitted. Different gaussian random-effect terms
are handled, with the following effects:

* (1|<RHS>), for non-autocorrelated random effects as in lme4;
* (<LHS>|<RHS>), for random-coefficient terms as in lme4, *and

additional terms depending on the <LHS> type* (further detailed below);
* (<LHS> || <RHS>) is interpreted as in lme4: any such term is immediately

converted to ( (1|<RHS>) + (0+<LHS>|<RHS>) ). It should be counted as two
random effects for all purposes (e.g., for fixing the variances of the
random effects). However, this syntax is useless when the LHS includes a
factor (see help('lme4::expandDoubleVerts')).

* <prefix>(1|<RHS>), to specify autocorrelated random effects,
e.g. Matern(1|long+lat).

* <prefix>(<LHS>|<RHS>), where the <LHS> can be used to alter the
autocorrelated random effect as detailed below.

Different LHS types of gaussian (<LHS>|<RHS>) random-effect terms are handled, with the fol-
lowing effects:

* <logical> (TRUE/FALSE): affects only responses for which <LHS> is TRUE.
* <factor built from a logical>: same a <logical> case;
* <factor not built from a logical>: random-coefficient term as in lme4;
* 0 + <factor not built from a logical>: same but contrasts are not used;
* factors specified by the mv(...) expression, generate random-coefficient
terms specific to multivariate-response models fitted by fitmv() (see
help("mv")). 0 + mv(...) has the expected effect of not using contrasts;

* <numeric> (but not '0+<numeric>'): random-coefficient term as in lme4,
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with 2*2 covariance matrix of effects on Intercept and slope;
* 0 + <numeric>: no Intercept so no covariance matrix (random-slope-only

term);

The ’0 + <numeric>’ effect is achieved by direct control of the elements of the incidence matrix Z
through the <LHS> term: for numeric z, such elements are multiplied by z values, and thus provide
a variance of order O(z squared).

If one wishes to fit uncorrelated group-specific random-effects with distinct variances for different
groups or for different response variables, three syntaxes are thus possible. The most general, suit-
able for fitting several variances (see GxE for an example), is to fit a (0 + <factor>| <RHS>) random-
coefficient term with correlation(s) fixed to 0. Alternatively, one can define numeric (0|1) variables
for each group (as as.numeric(<boolean for given group membership>)), and use each of them
in a 0 + <numeric> LHS (so that the variance of each such random effect is zero for response
not belonging to the given group). See lev2bool for various ways of specifying such indicator
variables for several levels.

Gaussian <prefix>(<LHS not 1>|<RHS>) random-effect terms may be handled, with two main
cases depending on the LHS type, motivated by the following example: independent Matérn effects
can be fitted for males and females by using the syntax Matern(male|.) + Matern(female|.),
where male and female are TRUE/FALSE (or a factor with TRUE/FALSE levels). In contrast to a
(male|.) term, no random-coefficient correlation matrix is fitted. However, for some other types of
RHS, one can fit composite random effects combining a random-coefficient correlation matrix and
the correlation model defined by the “prefix”. This combination is defined in composite-ranef.
This leads to the following distinction:
* The terms are *not* composite random effects when the non-‘1’ LHS type is boolean or factor-
from-boolean, a just illustrated, but also 0+<numeric>: for example, Matern(0+<numeric>|.)
represents an autocorrelated random-slope (only) term or, equivalently, a direct specification of
heteroscedasticity of the Matérn random effect.
* By contrast, Matern(<numeric>|.) implies estimating a random-coefficient covariance matrix
and thus defines a composite random effects, as does an LHS that is a factor constructed from
numeric or character levels.
Composite random effects can be fitted in principle for all “prefixes”, including for <corrFamily>
terms. In practice, this functionality has been checked for Matern, corrMatrix, AR1 and the ARp-
corrFamily term. In these terms, the <.> %in% <.> form of nested random effect is allowed.

The syntax (z-1|.), for numeric z only, can also be used to fit some heteroscedastic non-
Gaussian random effects. For example, a Gamma random-effect term (wei-1|block) specifies
an heteroscedastic Gamma random effect u with constant mean 1 and variance wei^2 λ, where λ
is still the estimated variance parameter. See Details of negbin for a possible application. Here,
this effect is not implemented through direct control of Z (multiplying the elements of an incidence
matrix Z by wei), as this would have a different effect on the distribution of the random effect
term. (z|.) is not defined for non-Gaussian random effects. It could mean that a correlation struc-
ture between random intercepts and random slopes for (say) Gamma-distributed random effects is
considered, but such correlation structures are not well-specified by their correlation matrix.

Author(s)

spaMM was initially published by François Rousset and Jean-Baptiste Ferdy, and is continually de-
veloped by F. Rousset and tested by Alexandre Courtiol.
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See Also

See the test directory of the package for many additional examples of spaMM usage beyond those
from the formal documentation.

See fitme for multivariate-response models.

Specific information for installation of spaMM dependencies from source may be found at
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref#installation.

Examples

data("wafers")
data("scotlip") ## loads 'scotlip' data frame, but also 'Nmatrix'

## Linear model
fitme(y ~ X1, data=wafers)

## GLM
fitme(y ~ X1, family=Gamma(log), data=wafers)
fitme(cases ~ I(log(population)), data=scotlip, family=poisson)

## Non-spatial GLMMs
fitme(y ~ 1+(1|batch), family=Gamma(log), data=wafers)
fitme(cases ~ 1+(1|gridcode), data=scotlip, family=poisson)
#
# Random-slope model (mind the output!)
fitme(y~X1+(X2|batch),data=wafers, method="REML")

## Spatial, conditional-autoregressive GLMM
if (spaMM.getOption("example_maxtime")>2) {

fitme(cases ~ I(log(population))+adjacency(1|gridcode), data=scotlip, family=poisson,
adjMatrix=Nmatrix) # with adjacency matrix provided by data("scotlip")

}
# see ?adjacency for more details on these models

## Spatial, geostatistical GLMM:
# see e.g. examples in ?fitme, ?corrHLfit, ?Loaloa, or ?arabidopsis;
# see examples in ?Matern for group-specific spatial effects.

## Hierachical GLMs with non-gaussian random effects
data("salamander")

if (spaMM.getOption("example_maxtime")>1) {
# both gaussian and non-gaussian random effects
fitme(cbind(Mate,1-Mate)~1+(1|Female)+(1|Male),family=binomial(),

rand.family=list(gaussian(),Beta(logit)),data=salamander)

https://doi.org/10.1111/ecog.00566
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref#installation
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# Random effect of Male nested in that of Female:
fitme(cbind(Mate,1-Mate)~1+(1|Female/Male),

family=binomial(),rand.family=Beta(logit),data=salamander)
# [ also allowed is cbind(Mate,1-Mate)~1+(1|Female)+(1|Male %in% Female) ]

}

## Modelling residual variance ( = structured-dispersion models)
# GLM response, fixed effects for residual variance
fitme( y ~ 1,family=Gamma(log),

resid.model = ~ X3+I(X3^2) ,data=wafers)
#
# GLMM response, and mixed effects for residual variance
if (spaMM.getOption("example_maxtime")>1.5) {

fitme(y ~ 1+(1|batch),family=Gamma(log),
resid.model = ~ 1+(1|batch) ,data=wafers)

}

spaMM-conventions spaMM conventions and differences from related fitting procedures

Description

input arguments are generally similar to those of glm and (g)lmer, in particular for the spaMM::fitme
function, with the exception of the prior.weights argument, which is simply weights in the
other packages. The name prior.weights seems more consistent, since e.g. glm returns its input
weights as output prior.weights, while its output weights are instead the weights in the final
iteration of an iteratively weighted least-square fit.

The default likelihood target for dispersion parameters is restricted likelihood (REML estimation)
for corrHLfit and (marginal) likelihood (ML estimation) for fitme. Model fits may provide re-
stricted likelihood values(ReL) even if restricted likelihood is is not used as an objective function at
any step in the analysis.

See good-practice for advice about the proper syntax of formula.

Computation times depend on control parameters given by spaMM.getOption("spaMM_tol") pa-
rameters (for iterative algorithms), and spaMM.getOption("nloptr") parameters for the default
optimizer. Do not use spaMM.options() to control them globally, unless you know what you are
doing. Rather control them locally by the control.HLfit argument to control spaMM_tol, and
by the control arguments of corrHLfit and fitme to control nloptr. If nloptr$Xtol_rel is set
above 5e-06, fitme will by default refit the fixed effects and dispersion parameters (but not other
correlation parameters estimated by nloptr) by the iterative algorithm after nloptr convergence.
Increasing nloptr$Xtol_rel value may therefore switches the bulk of computation time from the
optimizer to the iterative algorithm, and may increase or decrease computation time depending on
which algorithm is faster for a given input. Use control$refit if you wish to inhibit this, but note
that by default it provides a rescue to a poor nloptr result due to a too large Xtol_rel.
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References

Chambers J.M. (2008) Software for data analysis: Programming with R. Springer-Verlag New York

spaMM.colors A flashy color palette.

Description

spaMM.colors is the default color palette for some color plots in spaMM.

Usage

spaMM.colors(n = 64, redshift = 1, adjustcolor_args=NULL)

Arguments

n Number of color levels returned by the function. A calling graphic function with
argument nlevels will typically take the first (i.e., bluest) nlevels color levels.
If n<nlevels, the color levels are recycled

redshift The higher it is, the more the palette blushes....

adjustcolor_args

Either NULL or a list of arguments for adjustcolor, in which case adjustcolor
is called to modify spaMM.colors’s default vector of colors. See the documen-
tation of the latter function for further information. All arguments except col
are possible.

Details

If you don’t like this color palette, have a look at the various ones provided by the fields package.

Value

A vector giving the colors in a hexadecimal format.

Examples

## see mapMM examples
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spaMM.filled.contour Level (Contour) Plots with better aspect ratio control (for geographi-
cal maps, at least)

Description

This function is derived from filled.contour in the graphics package, and this documentation
is likewise heavily based on that of filled.contour.

This function likewise produces a contour plot with the areas between the contours filled in solid
color, and a key showing how the colors map to z values is likewise shown to the right of the
plot. The only difference is the way the aspect ratio is determined and can be controlled (using the
map.asp parameter instead of asp), They thus easily provide nice-looking maps with meaningful
latitude/longitude ratio (see Examples). However, this does not work well with rstudio.

Usage

spaMM.filled.contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
xrange = range(x, finite = TRUE),
yrange = range(y, finite = TRUE),
zrange = range(z, finite = TRUE, na.rm=TRUE),
margin=1/20,
levels = pretty(zrange, nlevels), nlevels = 20,
color.palette = spaMM.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title=NULL, key.axes=NULL,
map.asp = NULL, xaxs = "i", yaxs = "i", las = 1,
axes = TRUE, frame.plot = axes, ...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must be in
ascending order. (The rest of this description does not apply to .filled.contour.)
By default, equally spaced values from 0 to 1 are used. If x is a list, its com-
ponents x$x and x$y are used for x and y, respectively. If the list has component
z this is used for z.

z a numeric matrix containing the values to be plotted.. Note that x can be used
instead of z for convenience.

xrange x range of the plot.
yrange y range of the plot.
zrange z range of the plot.
margin This controls how far (in relative terms) the plot extends beyond the x and y

ranges of the analyzed points, and is overriden by explicit xrange and yrange
arguments.
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levels a set of levels which are used to partition the range of z. Must be strictly in-
creasing (and finite). Areas with z values between consecutive levels are painted
with the same color.

nlevels if levels is not specified, the range of z, values is divided into approximately
this many levels.

color.palette a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification. There should be one less color than levels

plot.title statements which add titles to the main plot.

plot.axes statements which draw axes (and a box) on the main plot. This overrides the
default axes.

key.title statements which add titles for the plot key.

key.axes statements which draw axes on the plot key. This overrides the default axis.

map.asp the y/x aspect ratio of the 2D plot area (not of the full figure including the scale).
Default is (plotted y range)/(plotted x range) (i.e., scales for x and y are identical)
as long as this does not conflict too much with the available plot area deduced
from the device dimensions.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as in plot.default.

... additional graphical parameters, currently only passed to title().

Details

The values to be plotted can contain NAs. Rectangles with two or more corner values are NA are
omitted entirely: where there is a single NA value the triangle opposite the NA is omitted.

Values to be plotted can be infinite: the effect is similar to that described for NA values.

Value

This returns invisibly a list with elements of the plot, the x, y, z coordinates and the contour levels.

Note

Builds heavily on filled.contour by Ross Ihaka and R-core. spaMM.filled.contour uses the
layout function and so is restricted to a full page display.

The output produced by spaMM.filled.contour is actually a combination of two plots; one is the
filled contour and one is the legend. Two separate coordinate systems are set up for these two plots,
but they are only used internally – once the function has returned these coordinate systems are lost.
If you want to annotate the main contour plot, for example to add points, you can specify graphics
commands in the plot.axes argument. See the Examples.
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References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette; contourplot and levelplot from package lattice.

Examples

spaMM.filled.contour(volcano, color.palette = spaMM.colors) # simple

## Comparing the layout with that of filled.contour:
# (except that it does not always achieve the intended effect
# in RStudio Plots pane).

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
spaMM.filled.contour(x, y, volcano, color.palette = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },
key.title = title(main = "Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10))) # maybe also asp = 1

mtext(paste("spaMM.filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

## compare with

filled.contour(x, y, volcano, color.palette = terrain.colors,
plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },
key.title = title(main = "Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10))) # maybe also asp = 1

mtext(paste("filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

spaMM_boot Parametric bootstrap

Description

spaMM_boot simulates samples from a fit object inheriting from class "HLfit", as produced by
spaMM’s fitting functions, and applies a given function to each simulated sample. Parallelization is
supported (see Details).
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spaMM2boot is similar except that it assumes that the original model is refitted on the simulated
data, and the given function is applied to the refitted model, and the value is in a format directly
usable as input for boot::boot.ci.

Both of these functions can be used to apply standard parametric bootstrap procedures. spaMM_boot
is suitable for more diverse applications, e.g. to fit by one model some samples simulated under
another model (see Example).

Usage

spaMM_boot(object, simuland, nsim, nb_cores=NULL, seed=NULL,
resp_testfn=NULL, control.foreach=list(),
debug. = FALSE, type, fit_env=NULL, cluster_args=NULL,
showpbar= eval(spaMM.getOption("barstyle")),
boot_samples=NULL,
...)

spaMM2boot(object, statFUN, nsim, nb_cores=NULL, seed=NULL,
resp_testfn=NULL, control.foreach=list(),
debug. = FALSE, type="marginal", fit_env=NULL,
cluster_args=NULL, showpbar= eval(spaMM.getOption("barstyle")),
boot_samples=NULL,
...)

Arguments

object The fit object to simulate from.

simuland The function to apply to each simulated sample. See Details for requirements of
this function.

statFUN The function to apply to each fit object for each simulated sample. See Details
for requirements of this function.

nsim Number of samples to simulate and analyze.

nb_cores Number of cores to use for parallel computation. The default is spaMM.getOption("nb_cores"),
and 1 if the latter is NULL. nb_cores=1 prevents the use of parallelisation pro-
cedures.

seed Passed to simulate.HLfit

resp_testfn Passed to simulate.HLfit; NULL, or a function that tests a condition which
simulated samples should satisfy. This function takes a response vector as argu-
ment and return a boolean (TRUE indicating that the sample satisfies the condi-
tion).

control.foreach

list of control arguments for foreach. These include in particular .combine
(with default value "rbind"), and .errorhandling (with default value "remove",
but "pass" is quite useful for debugging).

debug. Boolean (or integer, interpreted as boolean). For debugging purposes, given
that spaMM_boot does not stop when the fit of a bootstrap replicate fails. Sub-
ject to changes with no or little notice. In serial computation, debug.=2 will
stop on an error. In parallel computation, this would be ignored. The effect of
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debug.=TRUE depends on what simuland does of it. The default simuland for
likelihood ratio testing functions, eval_replicate, shows how debug. can be
used to control a call to dump.frames (however, debugging user-defined func-
tions by such a call does not require control by debug.).

type Character: passed to simulate.HLfit. Defaults, with a warning, to type="marginal"
in order to replicate the behaviour of previous versions of spaMM_boot. This is
an appropriate default for various parametric bootstrpa analyses, but not neces-
sarily the appropriate type for all possible uses. See Details of simulate.HLfit
for other implemented options.

fit_env An environment or list containing variables necessary to evaluate simuland on
each sample, and not included in the fit object. E.g., use fit_env=list(phi_fix=phi_fix)
if the fit assumed fixed=list(phi=phi_fix): the name in list(phi_fix=<.>)
must be the name of the object that will be sought by the called process when in-
terpreting fixed=list(phi=phi_fix) (if still unsure about the proper syntax,
see the clusterExport documentation, as fit_env is used in the following con-
text: parallel::clusterExport(cl=<cluster>, varlist=ls(fit_env), envir=fit_env)).

cluster_args NULL or a list of arguments, passed to makeCluster.

showpbar Controls display of progress bar. See barstyle option for details.

boot_samples NULL, or precomputed bootstrap samples from the fitted model, provided as
a matrix with one column per bootstrap replicate (the format of the result of
simulate.HLfit), or as a list including a bootreps element with the same
matrix format.

... Further arguments passed to the simuland function.

Details

The simuland function must take as first argument a vector of response values, and may have other
arguments including ‘. . . ’. When required, these additional arguments must be passed through the
‘. . . ’ arguments of spaMM_boot. Variables needed to evaluate them must be available from within
the simuland function or otherwise provided as elements of fit_env.

The statFUN function must take as first argument (named refit) a fit object, and may have other
arguments including ‘. . . ’ handled as for simuland.

spaMM_boot handles parallel backends with different features. pbapply::pbapply has a very sim-
ple interface (essentially equivalent to apply) and provides progress bars, but (in version 1.4.0,
at least) does not have efficient load-balancing. doSNOW also provides a progress bar and allows
more efficient load-balancing, but its requires foreach. foreach handles errors differently from
pbapply (which will simply stop if fitting a model to a bootstrap replicate fails): see the foreach
documentation.

spaMM_boot calls simulate.HLfit on the fit object and applies simuland on each column of the
matrix returned by this call. simulate.HLfit uses the type argument, which must be explicitly
provided.

Value

spaMM_boot returns a list, with the following element(s) (unless debug. is TRUE):
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bootreps nsim return values in the format returned either by apply or parallel::parApply or by
foreach::`%dopar%` as controlled by control.foreach$.combine (which is here "rbind"
by default).

RNGstate (absent in the case the boot_samples argument was used to provide the new response
values but not the RNGstate) the state of .Random.seed at the beginning of the sample simu-
lation.

spaMM2boot returns a list suitable for use by boot.ci, with elements:

t nsim return values of the simulated statistic (in matrix format).

t0 nsim return the value of statFUN from the original fit.

sim The simulation type ("parametric").

R nsim

.Random.seed the state of .Random.seed at the beginning of the sample simulation.

(other elements of an object of class boot are currently not included.)

Examples

if (spaMM.getOption("example_maxtime")>7) {
data("blackcap")

# Generate fits of null and full models:
lrt <- fixedLRT(null.formula=migStatus ~ 1 + Matern(1|longitude+latitude),

formula=migStatus ~ means + Matern(1|longitude+latitude),
method='ML',data=blackcap)

# The 'simuland' argument:
myfun <- function(y, what=NULL, lrt, ...) {

data <- lrt$fullfit$data
data$migStatus <- y ## replaces original response (! more complicated for binomial fits)
full_call <- getCall(lrt$fullfit) ## call for full fit
full_call$data <- data
res <- eval(full_call) ## fits the full model on the simulated response
if (!is.null(what)) res <- eval(what)(res=res) ## post-process the fit
return(res) ## the fit, or anything produced by evaluating 'what'

}
# where the 'what' argument (not required) of myfun() allows one to control
# what the function returns without redefining the function.

# Call myfun() with no 'what' argument: returns a list of fits
spaMM_boot(lrt$nullfit, simuland = myfun, nsim=1, lrt=lrt,

type ="marginal")[["bootreps"]]

# Return only a model coefficient for each fit:
spaMM_boot(lrt$nullfit, simuland = myfun, nsim=7,

what=quote(function(res) fixef(res)[2L]),
lrt=lrt, type ="marginal")[["bootreps"]]

## Not run:
# Parametric bootstrap by spaMM2boot() and spaMM_boot():
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boot.ci_info <- spaMM2boot(lrt$nullfit, statFUN = function(refit) fixef(refit)[1],
nsim=99, type ="marginal")

boot::boot.ci(boot.ci_info, , type=c("basic","perc","norm"))

nullfit <- lrt$nullfit
boot_t <- spaMM_boot(lrt$nullfit, simuland = function(y, nullfit) {

refit <- update_resp(nullfit, y)
fixef(refit)[1]

}, nsim=99, type ="marginal", nullfit=nullfit)$bootreps
boot::boot.ci(list(R = length(boot_t), sim="parametric"), t0=fixef(nullfit)[1],

t= t(boot_t), type=c("basic","perc","norm"))

## End(Not run)
}

spaMM_glm.fit Fitting generalized linear models without initial-value or divergence
headaches

Description

spaMM_glm.fit is a stand-in replacement for glm.fit, which can be called through glm by using
glm(<>, method="spaMM_glm.fit"). Input and output structure are exactly as for glm.fit. It
uses a Levenberg-Marquardt algorithm to prevent divergence of estimates. For models families
such as Gamma() (with default inverse link) where the linear predictor is constrained to be positive,
if the rcdd package is installed, the function can automatically find valid starting values or else
indicate that no parameter value is feasible. It also automatically provides good starting values
in some cases where the base functions request them from the user (notably, for gaussian(log)
with some negative response). spaMM_glm is a convenient wrapper, calling glm with default method
glm.fit, then calling method spaMM_glm.fit, with possibly different initial values, if glm.fit
failed.

Usage

spaMM_glm.fit(x, y, weights = rep(1, nobs), start = NULL, etastart = NULL,
mustart = NULL, offset = rep(0, nobs), family = gaussian(),
control = list(maxit=200), intercept = TRUE, singular.ok = TRUE)

spaMM_glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,

control = list(...), model = TRUE, method = c("glm.fit","spaMM_glm.fit"),
x = FALSE, y = TRUE, singular.ok = TRUE, contrasts = NULL, strict=FALSE, ...)

Arguments

All arguments except strict are common to these functions and their stats package equivalents,
glm and glm.fit. Most arguments operate as for the latter functions, whose documentation is
repeated below. The control argument may operate differently.
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formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given in the ‘Details’ section of glm.

family a description of the error distribution and link function to be used in the model.
For spaMM_glm this can be a character string naming a family function, a family
function or the result of a call to a family function. For spaMM_glm.fit only the
third option is supported. (See family for details of family functions.)

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which glm is called.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

control a list of parameters for controlling the fitting process. This is passed to glm.control,
as for glm.fit. Because one can assume that spaMM_glm.fit will converge
in many cases where glm.fit does not, spaMM_glm.fit allows more itera-
tions (200) by default. However, if spaMM_glm.fit is called through glm(.
. ., method="spaMM_glm.fit"), then the number of iterations is controlled
by the glm.control call within glm, so that it is 25 by default, overriding the
spaMM_glm.fit default.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

method A 2-elements vector specifying first the method to be used by spaMM_glm in
the first attempt to fit the model, second the method to be used in a second
attempt if the first failed. Possible methods include those shown in the default,
"model.frame", which returns the model frame and does no fitting, or user-
supplied fitting functions. These functions can be supplied either as a function
or a character string naming a function, with a function which takes the same
arguments as glm.fit.

x, y For spaMM_glm: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.
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For spaMM_glm.fit: x is a design matrix of dimension n * p, and y is a vector
of observations of length n.

singular.ok logical; if FALSE a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

intercept logical. Should an intercept be included in the null model?

strict logical. Whether to perform a fit by spaMM_glm.fit if glm.fit returned the
warning "glm.fit: algorithm did not converge".

... arguments to be used to form the default control argument if it is not supplied
directly.

Value

An object inheriting from class glm. See glm for details.

Note

The source and documentation is derived in large part from those of glm.fit.

Examples

x <- c(8.752,20.27,24.71,32.88,27.27,19.09)
y <- c(5254,35.92,84.14,641.8,1.21,47.2)

# glm(.) fails:
(check_error <- try(glm(y~ x,data=data.frame(x,y),family=Gamma(log)), silent=TRUE))
if ( ! inherits(check_error,"try-error")) stop("glm(.) call unexpectedly succeeded")

spaMM_glm(y~ x,data=data.frame(x,y),family=Gamma(log))

## Gamma(inverse) examples
x <- c(43.6,46.5,21.7,18.6,17.3,16.7)
y <- c(2420,708,39.6,16.7,46.7,10.8)

# glm(.) fails (can't find starting value)
(check_error <- suppressWarnings(try(glm(y~ x,data=data.frame(x,y),family=Gamma()) , silent=TRUE)))
if ( ! inherits(check_error,"try-error")) stop("glm(.) call unexpectedly succeeded.")

if (requireNamespace("rcdd",quietly=TRUE)) {
spaMM_glm(y~ x,data=data.frame(x,y),family=Gamma())

}

## A simple exponential regression with some negative response values

set.seed(123)
x <- seq(50)
y <- exp( -0.1 * x) + rnorm(50, sd = 0.1)
glm(y~ x,data=data.frame(x,y),family=gaussian(log), method="spaMM_glm.fit")

# => without the 'method' argument, stats::gaussian(log)$initialize() is called
# and stops on negative response values.
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stripHLfit Reduce the size of fitted objects

Description

Large matrices and other memory-expensive objects may be stored in a fit object. This function
removes them in order to reduce the size of the object, particularly when stored on disk. In principle,
the removed objects can be regenerated automatically when needed (e.g., for a predict()).

Usage

stripHLfit(object, ...)

Arguments

object The result of a fit (an object of class HLfit).

... Further arguments, not currently used.

Value

The input fit objects with some elements removed.

Note

The effect may change without notice between versions as the efficiency of the operation is highly
sensitive to implementation details.

Examples

## Not run:
## rather unconvincing example : quantitative effect is small.

# measure size of saved object:
saveSize <- function (object,...) {

tf <- tempfile(fileext = ".RData")
on.exit(unlink(tf))
save(object, file = tf,...)
file.size(tf)

}
data("Loaloa")
lfit <- fitme(cbind(npos,ntot-npos)~elev1+elev2+elev3+elev4+maxNDVI1+seNDVI

+Matern(1|longitude+latitude), method="HL(0,1)",
data=Loaloa, family=binomial(), fixed=list(nu=0.5,rho=1,lambda=0.5))

saveSize(lfit)
pfit <- predict(lfit,newdata=Loaloa,variances=list(cov=TRUE)) # increases size!
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saveSize(lfit)
lfit <- stripHLfit(lfit)
saveSize(lfit)

## End(Not run)

summary.HLfit Summary and print methods for fit and test results.

Description

Summary and print methods for results from HLfit or related functions. summary may also be used
as an extractor (see e.g. beta_table).

Usage

## S3 method for class 'HLfit'
summary(object, details=FALSE, max.print=100L, verbose=TRUE, ...)
## S3 method for class 'HLfitlist'
summary(object, ...)
## S3 method for class 'fixedLRT'
summary(object, verbose=TRUE, ...)
## S3 method for class 'HLfit'
print(x,...)
## S3 method for class 'HLfitlist'
print(x,...)
## S3 method for class 'fixedLRT'
print(x,...)

Arguments

object An object of class HLfit, as returned by the fitting functions in spaMM.

x The return object of HLfit or related functions.

verbose For summary.HLfit, whether to print the screen output that is the primary pur-
pose of summary. verbose=FALSE may be convenient when summary is used as
an extractor. For summary.fixedLRT, whether to print the model fits or not.

max.print Controls options("max.print") locally.

details A vector with elements controlling whether to print some obscure details. El-
ement ranCoefs=TRUE will print details about random-coefficients terms (see
Details); and element p_value="Wald" will print a p-value for the t-value of
each fixed-effect coefficient, assuming a gaussian distribution of the test statis-
tic (but, beyond the generally questionable nature of p-value tables, see e.g. LRT
and fixedLRT for alternative testing approaches). p_value=TRUE instead use
Student’s t test.

... further arguments passed to or from other methods.
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Details

The random effect terms of the linear predictor are of the form ZLv. In particular, for random-
coefficients models (i.e., including random-effect terms such as (z|group) specifying a random-
slope component), correlated random effects are represented as b = Lv for some matrix L, and
where the elements of v are uncorrelated. In the output of the fit, the Var. column gives the vari-
ances of the correlated effects, b=Lv. The Corr. column(s) give their correlation(s). If details is
TRUE, estimates and SEs of the (log) variances of the elements of v are reported as for other ran-
dom effects in the Estimate and cond.SE. columns of the table of lambda coefficients. However,
this non-default output is potentially misleading as the elements of v cannot generally be assigned
to specific terms (such as intercept and slope) of the random-effect formula, and the representation
of b as Lv is not unique.

Value

The return value is a list whose elements may be subject to changes, but two of them can be con-
sidered stable, and are thus part of the API: the beta_table and lambda_table which are the
displayed tables for the coefficients of fixed effects and random-effect variances.

Examples

## see examples of fitme() or corrHLfit() usage

update.HLfit Updates a fit

Description

update and update_resp will update and (by default) re-fit a model. They do this mostly by ex-
tracting the call stored in the object, updating the call and evaluating that call. Using update(<fit>)
is a risky programming style (see Details). update_formulas(<mv fit>, ...) can update formu-
las from a fitmv fit as well as the single formula of a fit by the other fitting functions.

update_resp handles a new response vector as produced by simulate.

Usage

## S3 method for class 'HLfit'
update(object, formula., ..., evaluate = TRUE)
update_resp(object, newresp, ..., evaluate = TRUE)

update_formulas(object, formula., ...)

# <fit object>$respName[s] : see Details.
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Arguments

object A return object from an HLfit call.

formula. A standard formula; or a formula with a peculiar syntax only describing changes
to the original model formula (see update.formula for details); or (for multivariate-
response models) a list of formula of such types.

newresp New response vector.

... Additional arguments to the call, or arguments with changed values. Use name
= NULL to remove the argument with given name.

evaluate If TRUE, evaluate the new call else return the call.

Details

Controlling response updating: Updating the data may be tricky when the response specified
in a formula is not simply the name of a variable in the data. For example, if the response was
specified as I(foo^2) the variable foo is not what simulate.HLfit will simulate, so foo should
not be updated with such simulation results, yet this is what should be updated in the data. For
some time spaMM has handled such cases by using an alternative way to provide updated response
information, but this has some limitations. So spaMM now update the data after checking that this
is correct, which the consequence that when response updating is needed (notably, for bootstrap
procedures), the response should preferably be specified as the name of a variable in the data, rather
than a more complicated expression.

However, in some cases, dynamic evaluation of the response variable may be helpful. For example,
for bootstrapping hurdle models, the zero-truncated response may be specified as I(count[presence>0]
<- NA; count) (where both the zero-truncated count and binary presence variables are both up-
dated by the bootstrap simulation). In that case the names of the two variables to be updated is
provided by setting (say)
<fit object>$respNames <- c("presence", "count")
for an hurdle model fit as a bivariate-response model, with first submodel for presence/absence, and
second submodel for zero-truncated response. A full example is developed in the “Gentle intro-
duction” to spaMM ( https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/
master/vignettePlus/spaMMintro.pdf). Alternatively for univariate-response fits, use
<fit object>$respName <- "count"

Controlling formula updating: Early versions of spaMM’s update method relied on stats::update.formula
whose results endorse stats’s (sometimes annoying) convention that a formula without an explicit
intercept term actually includes an intercept. spaMM::update.HLfit was then defined to avoid this
problem. Formula updates should still be carefully checked, as getting them perfect has not been
on the priority list.

Various post-fit functions from base R may use update.formula directly, rather than using auto-
matic method selection for update. update.formula is not itself a generic, which leads to the fol-
lowing problem. To make update.formula() work on multivariate-response fits, one would like to
be able to redefine it as a generic, with an HLfit method that would perform what update_formulas
does, but such a redefinition appears to be forbidden in a package distributed on CRAN. Instead it
is suggested to define a new generic spaMM::update, which could have a spaMM::update.formula
as a method (possibly itself a generic). This would be of limited interest as the new spaMM::update.formula
would be visible to spaMM::update but not to stats::update, and thus the post-fit functions from
base R would still not use this method.

https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/spaMMintro.pdf
https://gitlab.mbb.univ-montp2.fr/francois/spamm-ref/-/blob/master/vignettePlus/spaMMintro.pdf
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Safe updating: update(<fit>, ...), as a general rule, is tricky. update methods are easily
affected in a non-transparent way by changes in variables used in the original call. For example

foo <- rep(1,10)
m <- lm(rnorm(10)~1, weights=foo)
rm(foo)
update(m, .~.) # Error

To avoid such problems, spaMM tries to avoid references to variables in the global environment,
by enforcing that the data are explicitly provided to the fitting functions by the data argument, and
that any variable used in the prior.weights argument is in the data.

Bugs can also result when calling update on a fit produced within some function, say function
somefn calling fitme(data=mydata,...), as e.g. update(<fit>) will then seek a global variable
mydata that may differ from the fitted mydata which was local to somefn.

Value

update.formula(object) returns an object of the same nature as formula(object). The other
functions and methods return an HLfit fit of the same type as the input object, or a call object,
depending on the evaluate value. Warning: The object returned by update_resp cannot be used
safely for further programming, for the reason explained in the Details section.

See Also

See also HLCor, HLfit.

Examples

data("wafers")
## First the fit to be updated:
wFit <- HLfit(y ~X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log),

resid.model = ~ X3+I(X3^2) ,data=wafers)

newresp <- simulate(wFit)
update_resp(wFit,newresp=newresp)

# For estimates given by Lee et al., Appl. Stochastic Models Bus. Ind. (2011) 27: 315-328:
# Refit with given beta or/and phi values:

betavals <- c(5.55,0.08,-0.14,-0.21,-0.08,-0.09,-0.09)
# reconstruct fitted phi value from predictor for log(phi)
Xphi <- with(wafers,cbind(1,X3,X3^2)) ## design matrix
phifit <- exp(Xphi %*% c(-2.90,0.1,0.95))
upd_wafers <- wafers
designX <- get_matrix(wFit)
upd_wafers$off_b <- designX %*% betavals
update(wFit,formula.= . ~ offset(off_b)+(1|batch), data=upd_wafers,

ranFix=list(lambda=exp(-3.67),phi=phifit))

## There are subtlety in performing REML fits of constrained models,
## illustrated by the fact that the following fit does not recover
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## the original likelihood values, because dispersion parameters are
## estimated but the REML correction changes with the formula:
upd_wafers$off_f <- designX %*% fixef(wFit) ## = predict(wFit,re.form=NA,type="link")
update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers)
#
## To maintain the original REML correction, Consider instead
update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers,

REMLformula=formula(wFit)) ## recover original p_v and p_bv
## Alternatively, show original wFit as differences from betavals:
update(wFit,formula.= . ~ . +offset(off_f), data=upd_wafers)

vcov Extract covariance or correlation components from a fitted model ob-
ject

Description

summary(<fit object>)$beta_table returns the table of fixed-effect coefficients as it is printed
by summary, including standard errors and t-values.

vcov returns the variance-covariance matrix of the fixed-effects coefficients (cf See Also for related
computations involving random effects).

Corr by default returns correlation matrices of random effects (though see Details for user-defined
correlation models).

VarCorr returns (co)variance parameters of random effects, and optionally the residual variance(s),
from a fit object, in different possible formats (see Details). Other extractors to consider are
get_ranPars and get_inits_from_fit, the latter providing parameters in a form suitable for
initializing a fit.

The covariance matrix of residuals of a fit can be obtained as a block of the hat matrix
(get_matrix(., which="hat_matrix")). This is (as other covariances matrices above) a matrix
of expected values, generally assuming that the fitted model is correct and that its parameters are
“well” estimated, and should not to be confused with the computation of diagnostic correlations
among inferred residuals of a fit.

Usage

## S3 method for class 'HLfit'
vcov(object, ...)
## S3 method for class 'HLfit'
VarCorr(x, sigma = 1, add_residVars=TRUE, verbose=TRUE, format="lmelike",...)
Corr(object, A=TRUE, cov2cor.=TRUE, ...)

Arguments

object, x A fitted model object, inheriting from class "HLfit", as returned by the fitting
functions in spaMM.

add_residVars Boolean; whether to include residual variance information in the returned table.
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sigma ignored argument, included for consistency with the generic function.

format Selects the return format. See Details.

A Boolean: Whether to return the correlation matrix described by the AL matrix
product, when there is an A matrix (as for IMRF terms; see random-effects).

cov2cor. Boolean: Whether to convert covariance matrices to correlation matrices (see
Details).

verbose Boolean: Whether to print some notes.

... Other arguments that may be needed by some method.

Details

Any matrix returned by the Corr extractor is by default the unconditional correlation matrix of a
vector “ALv” of random effects (as defined in random-effects).

But it may also be an heteroscedastic matrix for some random effects if cov2cor. is set to FALSE.
In particular, the IMRF and MaternIMRFa models are by default defined in terms of the inverse of an
heteroscedastic covariance matrix (with tcrossprod factor L), and of a A matrix of weights. The
product AL will be the tcrossprod factor of a covariance matrix rather than a correlation matrix,
unless a non-default normalization was requested when declaring the random-effect terms. User-
defined random-effects models may also be heteroscedastic. In all these cases Corr will by default
return the correlation matrix, by applying cov2cor to the tcrossproduct.

For format="lmelike" (the default), VarCorr.HLfit returns a data frame whose format is roughly
consistent with (although distinct from) that of objects produced by nlme::VarCorr.lme, in par-
ticular including columns with consistent names for easier extraction.

For the alternative format="merMod", VarCorr.HLfit returns an object whose format is con-
sistent with that of objects produced by lme4:::VarCorr.merMod, and inheriting from the class
"VarCorr.merMod", so that the as.data.frame and print methods defined in lme4 for this class
can be selected for this returned object.

Value

vcov returns a matrix.

Corr returns a list, for the different random effect terms. For each random-effect term with nontriv-
ial correlation structure, the returned element is a matrix, returned in base matrix format or in some
class from Matrix. Otherwise the it is an information message.

By default, VarCorr returns either NULL (if no variance to report, as for a poisson GLM) or a data
frame with columns for the grouping factor, term, variance of random effect, standard deviation
(the root of the variance), and optionally for correlation of random effect in random-coefficient
terms. Information about the residual variance is optionally included as the last row(s) of the data
frame, when relevant (gaussian- or Gamma-response models with single scalar parameter; beware
the meaning of the residual variance parameter for Gamma-response models). One may have to
consult the summary of the fit object to check the meaning of the contents of this data frame (e.g.,
of ’variance’ coefficients for non-gaussian random effects).

VarCorr(., format="merMod") returns a list of the same format as returned by lme4:::VarCorr.merMod.

Some variance parameters may be removed from the VarCorr output, with a message, such as the
slope of the linear predictor describing the correlation model of an adjacency term (see autoregressive).
The rare user of such parametrization should not consider this as a stable feature.
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See Also

get_inits_from_fit and get_ranPars.

get_matrix(., which="beta_v_cov") for the joint covariance matrix of estimates/predictions of
fixed-effect coefficients and random effects; and
get_matrix(., which="v_condcov") for the covariance matrix of predictions of random effects
given fixed effects (the variances corresponding to the condsd reported in some lme4 output). Both
of these computations refer to the random effects v as defined in random-effects.

Examples

data("wafers")
m1 <- HLfit(y ~ X1+X2+(1|batch), resid.model = ~ 1 ,data=wafers, method="ML")
vcov(m1)

# Example from VarCorr() documentation in 'nlme' package
data("Orthodont",package = "nlme")
sp1 <- fitme(distance ~ age+(age|Subject), data = Orthodont, method="REML")
VarCorr(sp1)
VarCorr(sp1, format="merMod")

verbose Tracking progress of fits

Description

This (partially) documents the usage of the verbose argument of the fitting functions, and more
specifically of verbose["TRACE"] values.

Default is TRACE=FALSE (or 0) which is self-explanatory. TRACE=TRUE (or 1) shows values of outer-
estimated parameters (and possibly fixed values of parameters that would be outer-estimated), some
cryptic progress bar, and the attained value of the likelihood objective function (but when there
inner-estimated dispersion parameters, the output is more difficult to describe concisely). Other
values have effect may change in later versions without notice see Details).

If the fitted model includes a residual-dispersion mdoel, some tracing output for the latter may be
confusingly intermingled with tracing output of the mean-response model. The Details are valid
only for the mean-response model.

Details

0<TRACE<1 only shows the cryptic progress bar.
TRACE=2 will further show information about the progress of Levenberg-Marquardt-like steps for
linear-predictor coefficients.
TRACE=3 will further show information about the progress of distinct Levenberg-Marquardt-like
steps random effects given fixed-effect coefficients.
TRACE=4 will further show cryptic information about which matrix computations are requested.
TRACE=5 will further report (through a call to the base trace function) the str(.) of the results of
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such matrix computations.
TRACE=6 will further pause between iterations of the reweighted least-squares algorithm, allowing
a browser session to be called.

wafers Data from a resistivity experiment for semiconductor materials.

Description

This data set was reported and analyzed by Robinson et al. (2006) and reanalyzed by Lee et al.
(2011). The data “deal with wafers in a single etching process in semiconductor manufacturing.
Wafers vary through time since there are some variables that are not perfectly controllable in the
etching process. For this reason, wafers produced on any given day (batch) may be different from
those produced on another day (batch). To measure variation over batch, wafers are tested by
choosing several days at random. In this data, resistivity is the response of interest. There are three
variables, gas flow rate (x1), temperature (x2), and pressure (x3) and one random effect (batch or
day).” (Lee et al 2011).

Usage

data("wafers")

Format

The data frame includes 198 observations on the following variables:

y resistivity.

batch batch, indeed.

X1 gas flow rate.

X2 temperature.

X3 pressure.

Source

This data set was manually pasted from Table 3 of Lee et al. (2011). Transcription errors may have
occurred.

References

Robinson TJ, Wulff SS, Montgomery DC, Khuri AI. 2006. Robust parameter design using general-
ized linear mixed models. Journal of Quality Technology 38: 38–65.

Lee, Y., Nelder, J.A., and Park, H. 2011. HGLMs for quality improvement. Applied Stochastic
Models in Business and Industry 27, 315-328.

Examples

## see examples in the main Documentation page for the package.
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welding Welding data set

Description

The data give the results of an unreplicated experiment for factors affecting welding quality con-
ducted by the National Railway Corporation of Japan (Taguchi and Wu, 1980, cited in Smyth et
al., 2001). It is a toy example for heteroscedastic models and is also suitable for illustrating fit of
overparameterized models.

Usage

data("welding")

Format

The data frame includes 16 observations on 10 variables:

Strengh response variable;

. . . nine two-level factors.

Source

The data were downloaded from http://www.statsci.org/data/general/welding.txt on 2014/08/19 and
are consistent with those shown in table 5 of Bergman and Hynén (1997).

References

Bergman B, Hynén A (1997) Dispersion effects from unreplicated designs in the 2k−p series. Tech-
nometrics, 39, 191–98.

Smyth GK, Huele AF, Verbyla AP (2001). Exact and approximate REML for heteroscedastic re-
gression. Statistical Modelling 1, 161-175.

Taguchi G, Wu Y (1980) Introduction to off-line quality control. Nagoya, Japan: Central Japan
Quality Control Association.

Examples

data("welding")
## toy example from Smyth et al.
fitme(Strength ~ Drying + Material,resid.model = ~ Material+Preheating ,data=welding, method="REML")
## toy example of overparameterized model
fitme(Strength ~ Rods+Thickness*Angle+(1|Rods),resid.model = ~ Rods+Thickness*Angle ,data=welding)



222 WinterWheat

WinterWheat Example of yield stability analysis

Description

Translation of an example that may be found at
https://www.r-bloggers.com/2019/06/genotype-experiments-fitting-a-stability-variance-model-with-r/,
based on yield of eight durum wheat genotypes over seven years, following a randomised block
design with three replicates. A genotype-in-year random effect is used to quantify genotype-by-
environment interactions. In the first fit (constvar), the variance of this random effect is constant
over genotypes. In the second fit (varvar), different variances are fitted for the distinct genotypes,
to assess the relative stability of yield of the different genotypes over environments. This second
model can be fitted as a constrained random-coefficient model, where the constraint describes a
diagonal covariance matrix for the random coefficients.

This example uses the fact that the argument fixed=list(ranCoefs=<...>) can be used to fit a
covariance matrix with an arbitrary set of constrained elements. Only elements left as ’NA’ (here
the diagonal elements of the matrix) are fitted.

Examples

if (spaMM.getOption("example_maxtime")>1.5 &&
requireNamespace("agridat", quietly = TRUE)) {

data("onofri.winterwheat", package="agridat")

(constvar <- fitme(
yield ~ gen + (1|year) + (1|block %in% year)+(1|gen %in% year),
data=onofri.winterwheat, method="REML"))

# Diagonal matrix of NA's, represented as vector for its lower triangle:
ranCoefs_for_diag <- function(nlevels) {
## Conceptual version
# diagmat <- matrix(NA, ncol=nlevels,nrow=nlevels)
# diagmat[lower.tri(diagmat,diag=FALSE)] <- 0
# return(diagmat[lower.tri(diagmat,diag=TRUE)])
## which amounts to:
vec <- rep(0,nlevels*(nlevels+1L)/2L)
vec[cumsum(c(1L,rev(seq(nlevels-1L)+1L)))] <- NA
vec

}

(varvar <- fitme(
yield ~ gen + (1|year) + (1|block %in% year)+(0+gen|gen %in% year), method="REML",
data=onofri.winterwheat, fixed=list(ranCoefs=list("3"=ranCoefs_for_diag(8L)))))

}

https://www.r-bloggers.com/2019/06/genotype-experiments-fitting-a-stability-variance-model-with-r/
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wrap_parallel Selecting interfaces for parallelisation

Description

spaMM implements three interfaces for parallelisation. Depending on their arguments, either serial
computation (default), a socket cluster (parallelisation default), or a fork cluster (available in linux
and alike operating systems) can be used by all interfaces.

dopar is called by default by its bootstrap procedures, and dofuture has been developed as an
alternative, whose use is controlled by spaMM.options(wrap_parallel="dofuture") (versus the
default, spaMM.options(wrap_parallel="dopar"). combinepar is the third and more recent
interface; it is not a formally supported wrap_parallel option because its additional functionalities
are of no use in spaMM’s bootstrap procedures.

dopar is based on a patchwork of backends: for socket clusters, depending whether the doSNOW
package is attached, foreach or pbapply is called (doSNOW allows more efficient load balancing
than pbapply); for fork clusters, parallel::mclapply is used. This makes it impossible to en-
sure consistency of options accross computation environments, notably of enforcing the .combine
control of foreach; and this makes it error-prone to ensure identical control of random number
generators in all cases (although dopar and combinepar still aim to ensure the latter control).

By contrast, dofuture is based only on the future and future.apply packages, in principle allowing
a single syntax to control of random number generator across the different cases, hence repeatable
results across them. This does not make a difference for bootstrap computations in spaMM as the
bootstrap samples are never simulated in parallel: only refitting the models is performed in parallel,
and fit results do not depend on random numbers. Further, the future-based code for socket clusters
appears significantly slower than the one used by dopar. For these reasons, the latter function is
used by default by spaMM.

combinepar is a third and more recent approach designed to address the other issue: it always
uses foreach so that the .combine control is consistently enforced. It uses future only when no
alternative is available to produce a progress bar (namely, for socket clusters when doSNOW is not
available).

X.GCA Fixed-effect terms for dyadic interactions

Description

X.GCA and X.antisym are functions which, when called in a model formula, stand for terms de-
signed to represent the effet of symmetric interactions between pairs of individuals (order of indi-
viduals in the pair does not matter). antisym likewise represents anti-symmetric interactions (the
effect of reciprocal ordered pairs on the outcome are opposite, as in the so-called Bradley-Terry
models). These constructs all account for multiple membership, i.e., the fact that the same individ-
ual may act as the first or the second individual among different pairs, or even within one pair if this
makes sense).
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The outcome of an interaction between a pair i, j of agents is subject to a symmetric overall effect
aij when the effect “on” individual i (or viewed from the perspective of individual i) equals the
effect on j: aij = aji. This may result from the additive effect of individual effects ai and aj :
aij = ai + aj . A X.GCA call represents such symmetric additive effects. Conversely, antisymmetry
is characterized by aij = ai − aj = −aji and is represented by a X.antisym call. See the diallel
documentation for similar constructs for random effects, for additional comments on semantics (e.g.
about “GCA”), and for further references.

If individual-level factors ID1 + ID2 were included in a formula for dyadic interactions, this would
result in different coefficients being fitted for the same level in each factor. By contrast, the present
constucts ensure that a single coefficient is fitted for the same-named levels of factors ID1 and ID2.

Usage

X.GCA(term, contr="contr.treatment", ...)
X.antisym(term, contr="contr.treatment", ...)

Arguments

term an expression of the form <.>:<.> where each <.> represents a factor (or a vari-
able that will automaticall be converted to a factor) present in the data of the
fitting function call.

contr The contrasts used. Only the default and "contr.sum" are implemented.

... For programming purposes, not documented.

Details

The fixed-effect terms (GCA(Par1,Par2), etc) from the lmDiallel package (Onofri & Terzaroli,
2021), defined by functions returning design matrices for usage with stats:lm, work in a formula
for a spaMM fit, and users can define use such functions as templates for additional functions that
will work similarly. However, not all post-fit functions will handle terms defined in this way well:
checking robustness of predict on small and permuted newdata, as shown in the Examples, is
a good test. Such problems happen because the formula-handling machinery of R handles terms
represented by either a matrix or a factor, while both the model matrix and the factor information
used to construct dyadic-interaction terms are needed to correctly predict, with new data, from
models including such terms.

The presently designed functions are defined to solve this issue. By using such functions as tem-
plate, users can define additional functions with the same return format (as further explained in the
documented source code of X.antisym), which will allow them to perform correct predictions from
fitted models.

Value

The functions return design matrices with additional class "factorS" and attributes "call" and
"spec_levs".

References

Onofri A., Terzaroli N. (2021) lmDiallel: Linear fixed effects models for diallel crosses. Version
0.9.4. https://cran.r-project.org/package=lmDiallel.

https://cran.r-project.org/package=lmDiallel
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Examples

#### Simulate dyadic data

set.seed(123)
nind <- 10 # Beware data grow as O(nind^2)
x <- runif(nind^2)
id12 <- expand.grid(id1=seq(nind),id2=seq(nind))
id1 <- id12$id1
id2 <- id12$id2
u <- rnorm(nind,mean = 0, sd=0.5)

## additive individual effects:
y <- 0.1 + 1*x + u[id1] + u[id2] + rnorm(nind^2,sd=0.2)

## anti-smmetric individual effects:
t <- 0.1 + 1*x + u[id1] - u[id2] + rnorm(nind^2,sd=0.2)

dyaddf <- data.frame(x=x, y=y, t=t, id1=id1,id2=id2)
# : note that this contains two rows per dyad, which avoids identifiability issues.

# Enforce that interactions are between distinct individuals (not essential for the fit):
dyaddf <- dyaddf[- seq.int(1L,nind^2,nind+1L),]

# Fits:

(addfit <- fitme(y ~x +X.GCA(id1:id2), data=dyaddf))

(antifit <- fitme(t ~x +X.antisym(id1:id2), data=dyaddf))

if (FALSE) { #### check of correct handling by predict():

# First scramble the data so that input factors are in no particular order
set.seed(123)
dyaddf <- dyaddf[sample(nrow(dyaddf)),]

addfiti <- fitme(y ~x +X.GCA(id1:id2), data=dyaddf)
foo <- rev(2:4)
p1 <- predict(addfiti)[foo]
p2 <- predict(addfiti, newdata=dyaddf[foo,])
diff(range(p1-p2))<1e-10 # must be TRUE

}

ZAXlist S4 classes for structured matrices

Description

A ZAXlist object is a representation of the “ZAL” matrix as an S4 class holding a list of descriptors
of each ZAL block for each random effect.
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A Kronfacto object is a representation of a Kronecker product as an S4 class holding its factors.
Methods defined for this class may avoid the computation of the Kronecker product as an actual
matrix of large dimensions.

This documentation is for development purposes and may be incomplete. The objects and methods
are not part of the programming interface and are subject to modification without notice.

Usage

# new("ZAXlist", LIST=.)
# new("Kronfacto", BLOB=.)

Slots

LIST: A list whose each element is a ZAL block represented as either a (M|m)atrix, or a list with
two elements (and additional class ZA_QCHM): ZA, and the Cholesky factor Q_CHMfactor of
the precision matrix (L=solve(Q_CHMfactor,system="Lt")).

BLOB: An environment holding lhs and rhs, the factors of the Kronecker product, and other objects
initialized as promises. See the source code of the non-exported .def_Kranfacto constructor
for further information.
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adjacency (autoregressive), 17
adjlg, 4
adjlgMat (adjlg), 4
adjustcolor, 202
AIC, 6
AIC.HLfit, 62
algebra, 10, 33, 34, 43, 154, 193
aliases, 11, 76
anova, 113
anova (LRT), 120
anova.glm, 122
anova.HLfit, 16
anova.lm, 122
antisym (diallel), 53
AR1, 81, 105, 141, 198
AR1 (autoregressive), 17
arabidopsis, 13, 197
ARMA, 198
ARMA (ARp), 14
ARp, 14, 18, 37, 38, 40, 43, 93, 198
as.data.frame, 210
as_LMLT, 16, 57, 63, 84, 122, 123, 169
as_precision (covStruct), 51
autoregressive, 17, 105

barstyle, 61, 195, 207
barstyle (options), 153
besselK, 133
Beta (HLfit), 105
Beta-distribution-random-effects

(HLfit), 105
beta_resp, 19, 20, 116, 138, 151, 197
beta_table, 213
beta_table (vcov), 217
betabin, 19, 138, 151, 197

binomialize (multinomial), 143
blackcap, 22
bobyqa, 153
boot, 208
boot.ci, 31
box, 204
bs, 197

CAR (autoregressive), 17
Cauchy, 81, 198
Cauchy (CauchyCorr), 23
CauchyCorr, 23, 105
Cholesky, 226
class:Kronfacto (ZAXlist), 225
class:LMLTslots (as_LMLT), 16
class:missingOrNULL (ZAXlist), 225
class:ZAXlist (ZAXlist), 225
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clusterSetRNGStream, 58, 61
coef.corMatern (corMatern), 35
coef.HLfit (extractors), 67
coef<-.corMatern (corMatern), 35
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combinepar, 223
combinepar (dopar), 59
COMPoisson, 25, 154, 197
composite-ranef, 27
confint, 32
confint (confint.HLfit), 31
confint.HLfit, 31
contour, 129, 205
contourplot, 205
contrasts, 224
control.HLfit, 33, 107
convergence, 34
corFactor.corMatern (corMatern), 35
corMatern, 35, 133
corMatrix.corMatern (corMatern), 35
Corr, 91, 109
Corr (vcov), 217
corr_family, 50
corrFamily, 15, 37, 42, 54, 134, 198, 199
corrFamily-definition, 41
corrFamily-design, 42
corrHLfit, 46, 105, 106, 110, 197
corrMatrix, 11, 49, 104, 105, 198
corrPars, 151
corrPars (fixed), 79
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covStruct, 11, 40, 49, 51, 104, 155, 180
crossprod,Kronfacto,Matrix-method

(ZAXlist), 225
crossprod,Kronfacto,matrix-method

(ZAXlist), 225
crossprod,Kronfacto,numeric-method

(ZAXlist), 225
crossprod,ZAXlist,Matrix-method

(ZAXlist), 225
crossprod,ZAXlist,matrix-method

(ZAXlist), 225
crossprod,ZAXlist,numeric-method

(ZAXlist), 225
crossprod-methods (ZAXlist), 225

dev_resids, 185
dev_resids (extractors), 67
deviance (extractors), 67
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df.residual.HLfit, 57
DHARMa (post-fit), 169
diagnose_conv (div_info), 56
diallel, 39, 40, 53, 65, 198, 224
dim.Kronfacto (ZAXlist), 225
dist, 126
div_info, 56
DoF, 8, 57, 109
dofuture, 58, 62, 223
dopar, 7, 58, 59, 59, 223
drop1 (drop1.HLfit), 62
drop1.HLfit, 16, 62
dyad, 64

Earth (make_scaled_dist), 125
EarthChord (make_scaled_dist), 125
eigen, 136
emmeans (post-fit), 169
etaFix, 108
etaFix (fixed), 79
eval_replicate, 66, 121, 207
extractAIC (AIC), 6
extractors, 67, 108
extreme_eig, 70

factor, 115
family, 25, 47, 72, 117, 148, 168, 210
family (extractors), 67
filled.mapMM, 190
filled.mapMM (mapMM), 127

fitme, 46, 71, 75, 106, 110, 157, 197, 200
fitmv, 75, 144, 147, 165, 197
fitted (extractors), 67
fitted.HLfitlist (multinomial), 143
fix_predVar, 84
fixed, 72, 79, 93
fixedLRT, 48, 67, 82, 107, 120, 123, 197
fixef (extractors), 67
formula, 47, 72, 106, 210
formula (extractors), 67
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freight, 86

Gamma, 113, 180
Gamma (inverse.Gamma), 112
geometric (COMPoisson), 25
get_any_IC, 57, 109
get_any_IC (AIC), 6
get_cPredVar, 87, 173, 196
get_fittedPars, 92, 94, 108, 159
get_fittedPars (get_ranPars), 92
get_fixefVar (predict), 170
get_inits_from_fit, 89, 92, 94, 217, 219
get_intervals (predict), 170
get_matrix, 70, 90, 101, 108, 217, 219
get_predCov_var_fix (predict), 170
get_predVar, 87, 92
get_predVar (predict), 170
get_rankinfo (rankinfo), 181
get_ranPars, 90, 92, 109, 217, 219
get_residVar, 92, 94, 187
get_residVar (predict), 170
get_respVar (predict), 170
get_RLRsim_args, 70, 94, 122, 123
get_RLRTSim_args, 169
get_RLRTSim_args (get_RLRsim_args), 94
get_ZALMatrix, 109
get_ZALMatrix (get_matrix), 90
getCovariate.corMatern (corMatern), 35
getDistMat (extractors), 67
glht (post-fit), 169
glm, 25, 108, 138, 210, 211
glm.control, 107, 210
glmmPQL, 36
gof, 96, 160, 177, 179, 185
good-practice, 97
graphical parameters, 204
grep, 85
Gryphon, 10, 52, 99, 147
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Gryphon_A (Gryphon), 99
Gryphon_df (Gryphon), 99
Gryphon_pedigree (Gryphon), 99
GxE, 81, 115, 199
GxE (WinterWheat), 222

hatvalues, 70, 109, 185
hatvalues (hatvalues.HLfit), 101
hatvalues.HLfit, 101, 158
HLCor, 47, 72, 73, 75, 76, 103, 110, 157, 197,

216
HLfit, 33, 47, 72, 73, 75, 76, 103, 105, 105,

157, 176, 197, 216
how, 109, 110
hyper, 151
hyper (multIMRF), 140

image, 205
IMRF, 10, 18, 81, 134, 180, 198, 218
IMRF (multIMRF), 140
Initialize.corMatern (corMatern), 35
inits, 34, 111
inla.spde2.matern (multIMRF), 140
inla.spde2.pcmatern (multIMRF), 140
intervals (predict), 170
inverse.Gamma, 112, 180
is_separated, 113

keepInREML, 76
keepInREML (fixed), 79
kronecker, 27, 28
Kronfacto (ZAXlist), 225
Kronfacto-class (ZAXlist), 225

landMask (seaMask), 190
layout, 204
Leuca, 114
lev2bool, 81, 115, 199
levelplot, 205
LevenbergM (options), 153
LL-family (llm.fit), 116
llm.fit, 107, 116, 185
lme, 36
lmerTest (post-fit), 169
LMLTslots (as_LMLT), 16
LMLTslots-class (as_LMLT), 16
Loaloa, 48, 118, 133
logDet.corMatern (corMatern), 35
logLik, 138

logLik (extractors), 67
logLik.HLfitlist (multinomial), 143
lower.tri, 81
LR2R2 (pseudoR2), 177
LRT, 62, 63, 67, 83, 84, 95, 120

make.link, 20, 21, 149, 150, 168
make_scaled_dist, 47, 72, 104, 125, 132
makeCluster, 172, 207
map_ranef (mapMM), 127
mapMM, 127
mat_sqrt, 47, 73, 76, 104, 136
Matern, 35, 47, 72, 81, 134, 198
Matern (MaternCorr), 131
MaternCorr, 35, 36, 104, 105, 115, 131
MaternIMRFa, 18, 38, 40, 133, 140, 198, 218
mclapply, 61
method, 48, 62, 72, 73, 83, 104, 107, 108, 122,

137
missingOrNULL (ZAXlist), 225
missingOrNULL-class (ZAXlist), 225
mm (dyad), 64
mmfn, 55
mmfn (dyad), 64
model.frame.HLfit (extractors), 67
model.matrix.HLfit (extractors), 67
model.matrix.LMLTslots (as_LMLT), 16
model.offset, 210
MSFDR, 139
multcomp (post-fit), 169
multi, 47, 72, 76, 144
multi (multinomial), 143
multIMRF, 76, 93, 140
multinomial, 143, 197
mv, 28, 75, 77, 147

na.exclude, 210
na.fail, 210
na.omit, 172, 210
negbin, 148, 199
negbin1, 116, 138, 148, 150, 151, 197
negbin2, 117, 151, 197
negbin2 (negbin), 148
nloptr, 73, 153
Nmatrix (scotlip), 189
nobs (extractors), 67
ns, 197
numInfo, 16, 17, 31, 32, 151
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obsInfo (method), 137
oceanmask (seaMask), 190
offset, 210
optim, 153
options, 153, 210

PAIRfn (dyad), 64
palette, 205
pdep_effects (plot_effects), 161
pedigree, 11, 52, 155
phi-resid.model, 156
plot (plot.HLfit), 159
plot.default, 204
plot.HLfit, 159, 169
plot_effects, 161
pois4mlogit, 12, 144, 164
Poisson, 167
poly, 197
polypath, 191
post-fit, 169
predict, 170, 173, 196, 197
predict.HLfit, 87, 165, 187, 196
predict.pois4mlogit (pois4mlogit), 164
Predictor, 47, 72, 103, 106
Predictor (covStruct), 51
predVar, 28, 161, 171–173, 175
preprocess_fix_corr (predict), 170
pretty, 129
print (summary.HLfit), 213
print.corr_family (corr_family), 50
print.ranef (extractors), 67
print.singeigs (numInfo), 151
prior.weights (HLfit), 105
pseudoR2, 177

ranCoefs, 151
ranCoefs (fixed), 79
ranCoefs_for_diag, 81
ranCoefs_for_diag (WinterWheat), 222
random-effects, 180
ranef (extractors), 67
ranFix, 47, 107
ranFix (fixed), 79
ranGCA, 38
ranGCA (diallel), 53
rankinfo, 181
ranPars, 103
ranPars (fixed), 79
recalc.corMatern (corMatern), 35

refit (update.HLfit), 214
register_cF, 182
regularize, 43
regularize (extreme_eig), 70
REMLformula, 76, 77
REMLformula (HLfit), 105
remove_from_parlist (get_ranPars), 92
reshape2long (pois4mlogit), 164
resid.model, 19, 20, 93, 107, 148, 150, 151,

159, 183
residuals (residuals.HLfit), 184
residuals.glm, 185
residuals.HLfit, 68, 70, 184
residVar, 70, 77, 92, 94, 109, 173, 175, 186
respName (update.HLfit), 214
response (extractors), 67
rho.mapping (make_scaled_dist), 125
RLRsim (post-fit), 169
ROI_solve, 113

salamander, 188
SAR_WWt (corr_family), 50
scotlip, 189
seaMask, 130, 190
seeds, 192
separation (is_separated), 113
set.seed, 194
setNbThreads, 193
shapiro.test, 96
simulate, 197
simulate (simulate.HLfit), 193
simulate.HLfit, 83, 87, 193, 206, 207
simulate4boot (simulate.HLfit), 193
simulate_ranef (simulate.HLfit), 193
small_spde (multIMRF), 140
spaMM, 47, 72, 106, 172, 197
spaMM-conventions, 201
spaMM-package (spaMM), 197
spaMM.colors, 202
spaMM.filled.contour, 129, 203
spaMM.getOption (options), 153
spaMM.options, 47, 73
spaMM.options (options), 153
spaMM2boot, 62, 194
spaMM2boot (spaMM_boot), 205
spaMM_boot, 31, 62, 83, 121, 122, 194, 205
spaMM_glm, 138
spaMM_glm (spaMM_glm.fit), 209
spaMM_glm.fit, 209
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spaMMplot2D (mapMM), 127
sparse_precision, 155, 156
sparse_precision (algebra), 10
sparseMatrix, 91
str.inla.spde2 (multIMRF), 140
stripHLfit, 212
summary (summary.HLfit), 213
summary.HLfit, 28, 70, 123, 213

t.ZAXlist (ZAXlist), 225
tcrossprod,ZAXlist,missingOrNULL-method

(ZAXlist), 225
tcrossprod-methods (ZAXlist), 225
terms (extractors), 67
terms.object, 70
title, 204
Tnegbin, 197
Tnegbin (negbin), 148
Tpoisson, 173, 197
Tpoisson (Poisson), 167
txtProgressBar, 154

unregister_cF (register_cF), 182
update.formula, 178, 215
update.formula (update.HLfit), 214
update.HLfit, 97, 107, 178, 214
update_formulas, 77
update_formulas (update.HLfit), 214
update_resp (update.HLfit), 214

VarCorr, 90, 92, 94, 109
VarCorr (vcov), 217
Variogram.corMatern (corMatern), 35
vcov, 91, 108, 109, 217
vcov.HLfit, 70
verbose, 48, 73, 219

wafers, 220
weighted.residuals, 185
weights (extractors), 67
weights.glm, 69
welding, 221
WinterWheat, 222
worldcountries (seaMask), 190
wrap_parallel, 59, 62, 223

X.antisym (X.GCA), 223
X.GCA, 54, 197, 223
X2X (fitmv), 75

ZAXlist, 91, 225
ZAXlist-class (ZAXlist), 225
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