Package 'sbfc'

October 14, 2022

Type Package

Title Selective Bayesian Forest Classifier

Version 1.0.3

Date 2022-01-15

Author Viktoriya Krakovna

Maintainer Viktoriya Krakovna <vkrakovna@gmail.com>

URL https://github.com/vkrakovna/sbfc

BugReports https://github.com/vkrakovna/sbfc/issues

Description An MCMC algorithm for simultaneous feature selection and classification, and visualization of the selected features and feature interactions. An implementation of SBFC by Krakovna, Du and Liu (2015), <arXiv:1506.02371>.

License GPL (>= 2)

Depends R (>= 2.10), DiagrammeR

Imports Rcpp (>= 0.12.2), Matrix, discretization

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.0

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-01-15 17:02:42 UTC

R topics documented:

sbfc-package	2
corral_augmented	3
data_disc	4
edge_density_plot	5
heart	5
logposterior_plot	6

sbfc-package

	 10
signal_size_plot	
sbfc_graph	
sbfc	 7
madelon	

Index

sbfc-package

Selective Bayesian Forest Classifier

Description

An MCMC algorithm for simultaneous feature selection and classification, and visualization of the selected features and feature interactions. An implementation of SBFC by Krakovna, Du and Liu (2015), <arXiv:1506.02371>.

Details

Package:	sbfc
Туре:	Package
Title:	Selective Bayesian Forest Classifier
Version:	1.0.3
Date:	2022-01-15
Author:	Viktoriya Krakovna
Maintainer:	Viktoriya Krakovna <vkrakovna@gmail.com></vkrakovna@gmail.com>
URL:	https://github.com/vkrakovna/sbfc
BugReports:	https://github.com/vkrakovna/sbfc/issues
Description:	An MCMC algorithm for simultaneous feature selection and classification, and visualization of the selected f
License:	GPL (>= 2)
Depends:	R (>= 2.10), DiagrammeR
Imports:	Rcpp (>= 0.12.2), Matrix, discretization
LinkingTo:	Rcpp, RcppArmadillo
RoxygenNote:	7.1.0
LazyData:	true
Index of help	topics:
corral_augm	ented Augmented corral data set: synthetic data with correlated attributes augmented with noise

	0
	features
data_disc	Data set discretization and formatting
<pre>edge_density_plot</pre>	Plots the density of edges in a given group over the MCMC iterations
heart	Heart disease data set: disease outcomes given health attributes

2

logposterior_plot	Log posterior plot
madelon	Madelon data set: synthetic data from NIPS 2003 feature selection challenge
	C
sbfc	Selective Bayesian Forest Classifier (SBFC) algorithm
sbfc-package	Selective Bayesian Forest Classifier
sbfc_graph	SBFC graph
signal_size_plot	Trace plot of Group 1 size
signal_var_proportion	Signal variable proportion

Run the SBFC algorithm on a data set using the sbfc function. Make SBFC graphs based on the MCMC samples using the sbfc_graph function. Other analysis, e.g. feature selection plots using signal_var_proportion (based on how often each variable appeared in the signal group).

Author(s)

Viktoriya Krakovna Maintainer: Viktoriya Krakovna <vkrakovna@gmail.com>

corral_augmented	Augmented corral data set: synthetic data with correlated attributes
	augmented with noise features

Description

This is an artificial domain where the target concept is (X1^X2) V (X3^X4). Data set from John et al (1994). Training and test splits from SGI. The first 6 features are the real features from the original corral data set. The rest are noise features added by V. Krakovna by shuffling copies of real features. The SBFC paper uses subsets of this data set with the first 100 and 1000 features.

Usage

```
data(corral_augmented)
```

Format

TrainX A matrix with 128 rows and 10000 columns.

TrainY A vector with 128 rows.

References

John et al (1994) paper introducing the corral data set SBFC paper describing augmentation of corral data set

Examples

data_disc

Data set discretization and formatting

Description

Removes rows containing missing data, and discretizes the data set using Minimum Description Length Partitioning (MDLP).

Usage

data_disc(data, n_train = NULL, missing = "?")

Arguments

data	Data frame, where the last column must be the class variable.
n_train	Number of data frame rows to use as the training set - the rest are used for the test set. If NULL, all rows are used for training, and there is no test set (default=NULL).
missing	Label that denotes missing values in your data frame (default='?').

Value

A discretized data set:

TrainX Matrix containing the training data.

TrainY Vector containing the class labels for the training data.

TestX Matrix containing the test data (optional).

TestY Vector containing the class labels for the test data (optional).

Examples

```
data(iris)
iris_disc = data_disc(iris)
```

4

edge_density_plot Plots the density of edges in a given group over the MCMC iterations

Description

Plots the edge density for the given group for a range of the MCMC iterations (indicated by start and end).

Usage

```
edge_density_plot(sbfc_result, group, start = 0, end = 1)
```

Arguments

<pre>sbfc_result</pre>	An object of class sbfc.
group	Which group (0 or 1) to plot edge density for.
start	The start of the included range of MCMC iterations (default=0, i.e. starting with the first iteration).
end	The end of the included range of MCMC iterations (default=1, i.e. ending with the last iteration).

heart Heart disease data set: disease outcomes given health attributes	
--	--

Description

Data set from UCI repository, discretized using the mdlp package.

Usage

data(heart)

Format

TrainX A matrix with 270 rows and 13 columns.

TrainY A vector with 270 rows.

References

UCI heart data set

logposterior_plot Log posterior plot

Description

Plots the log posterior for a range of the MCMC iterations (indicated by start and end).

Usage

```
logposterior_plot(sbfc_result, start = 0, end = 1, type = "trace")
```

Arguments

<pre>sbfc_result</pre>	An object of class sbfc.
start	The start of the included range of MCMC iterations (default=0, i.e. starting with the first iteration).
end	The end of the included range of MCMC iterations (default=1, i.e. ending with the last iteration).
type	Type of plot (either trace or acf, default=trace).
madelon	Madelon data set: synthetic data from NIPS 2003 feature selection challenge

Description

This is a two-class classification problem. The difficulty is that the problem is multivariate and highly non-linear. Of the 500 features, 20 are real features, 480 are noise features. Data set from UCI repository, discretized using median cutoffs.

Usage

data(madelon)

Format

TrainX A matrix with 2000 rows and 500 columns.

TrainY A vector with 2000 rows.

TestX A matrix with 600 rows and 500 columns.

TestY A vector with 600 rows.

References

UCI madelon data set

sbfc

Description

Runs the SBFC algorithm on a discretized data set. To discretize your data, use the data_disc command.

Usage

```
sbfc(
  data,
  nstep = NULL,
  thin = 50,
  burnin_denom = 5,
  cv = T,
  thinoutputs = F,
  alpha = 5,
  y_penalty = 1,
  x_penalty = 4
)
```

Arguments

data	Discretized data set:
	TrainX Matrix containing the training data.
	TrainY Vector containing the class labels for the training data.
	TestX Matrix containing the test data (optional).
	TestY Vector containing the class labels for the test data (optional).
nstep	Number of MCMC steps, default max(10000, 10 * ncol(TrainX)).
thin	Thinning factor for the MCMC.
burnin_denom	Denominator of the fraction of total MCMC steps discarded as burnin (de-fault=5).
CV	Do cross-validation on the training set (if test set is not provided).
thinoutputs	Return thinned MCMC outputs (parents, groups, trees, logposterior), rather than all outputs (default=FALSE).
alpha	Dirichlet hyperparameter(default=1)
y_penalty	Prior coefficient for y-edges, which penalizes signal group size (default=1)
x_penalty	Prior coefficient for x-edges, which penalizes tree size (default=4)

Details

Data needs to be discretized before running SBFC.

If the test data matrix TestX is provided, SBFC runs on the entire training set TrainX, and provides predicted class labels for the test data. If the test data class vector TestY is provided, the accuracy is computed. If the test data matrix TestX is not provided, and cv is set to TRUE, SBFC performs cross-validation on the training data set TrainX, and returns predicted classes and accuracy for the training data.

Value

An object of class sbfc:

- accuracy Classification accuracy (on the test set if provided, otherwise cross-validation accuracy on training set).
- predictions Vector of class label predictions (for the test set if provided, otherwise for the training set).
- probabilities Matrix of class label probabilities (for the test set if provided, otherwise for the training set).
- runtime Total runtime of the algorithm in seconds.
- parents Matrix representing the structures sampled by MCMC, where parents[i,j] is the index of the parent of node j at iteration i (0 if node is a root).
- groups Matrix representing the structures sampled by MCMC, where groups[i,j] indicates which group node j belongs to at iteration j (0 is noise, 1 is signal).
- trees Matrix representing the structures sampled by MCMC, where trees[i,j] indicates which tree node j belongs to at iteration j.
- logposterior Vector representing the log posterior at each iteration of the MCMC.

Parameters nstep, thin, burnin_denom, cv, thinoutputs, alpha, y_penalty, x_penalty.

If cv=TRUE, the MCMC samples from the first fold are returned (parents, groups, trees, logposterior).

Examples

```
data(madelon)
madelon_result = sbfc(madelon)
data(heart)
heart_result = sbfc(heart, cv=FALSE)
```

sbfc_graph

SBFC graph

Description

Plots a sampled MCMC graph or an average of sampled graphs using Graphviz. In average graphs, nodes are color-coded according to importance - the proportion of samples where the node appeared in Group 1 (dark-shaded nodes appear more often). In average graphs, thickness of edges also corresponds to importance: the proportion of samples where the edge appeared.

sbfc_graph

Usage

```
sbfc_graph(
  sbfc_result,
  iter = 10000,
  average = T,
  edge_cutoff = 0.1,
  single_noise_nodes = F,
  labels = paste0("X", 1:ncol(sbfc_result$parents)),
  save_graphviz_code = F,
  colorscheme = "blues",
  ncolors = 7,
  width = NULL,
  height = NULL
)
```

Arguments

<pre>sbfc_result</pre>	An object of class sbfc.
iter	MCMC iteration of the sampled graph to plot, if average=F (default=10000).
average	Plot an average of sampled MCMC graphs (default=TRUE).
edge_cutoff	The average graph includes edges that appear in at least this fraction of the sampled graphs, if average=T (default=0.1).
single_noise_no	odes
	Plot single-node trees that appear in the noise group (Group 0) in at least 80 percent of the samples, which can be numerous for high-dimensional data sets (default=FALSE).
labels save_graphviz_c	A vector of node labels (default=c("X1", "X2",)).
	Save the Graphviz source code in a .gv file (default=FALSE).
colorscheme	Graphviz color scheme for the nodes (default="blues").
ncolors	number of colors in the palette (default=7).
width	An optional parameter for specifying the width of the resulting graphic in pixels.
height	An optional parameter for specifying the height of the resulting graphic in pixels.

Examples

```
data(madelon)
madelon_result = sbfc(madelon)
sbfc_graph(madelon_result)
sbfc_graph(madelon_result, average=FALSE, iter=5000) # graph for 5000th iteration
sbfc_graph(madelon_result, single_noise_nodes=TRUE) # wide graph with 480 single nodes
data(heart)
heart_result = sbfc(heart)
heart_labels = c("Age", "Sex", "Chest Pain", "Rest Blood Pressure", "Cholesterol",
"Blood Sugar", "Rest ECG", "Max Heart Rate", "Angina", "ST Depression", "ST Slope",
"Fluoroscopy Colored Vessels", "Thalassemia")
sbfc_graph(heart_result, labels=heart_labels, width=700)
```

Description

Plots the Group 1 size for a range of the MCMC iterations (indicated by start and end).

Usage

```
signal_size_plot(sbfc_result, start = 0, end = 1, samples = F)
```

Arguments

<pre>sbfc_result</pre>	An object of class sbfc.
start	The start of the included range of MCMC iterations (default=0, i.e. starting with the first iteration).
end	The end of the included range of MCMC iterations (default=1, i.e. ending with the last iteration).
samples	Calculate signal group size based on sampled MCMC graphs after burn-in and thinning, rather than graphs from all iterations (default=FALSE).

signal_var_proportion Signal variable proportion

Description

For each variable, computes the proportion of the samples in which this variable is in the signal group (Group 1). Plots the top nvars variables in decreasing order of signal proportion.

Usage

```
signal_var_proportion(
   sbfc_result,
   nvars = 10,
   samples = F,
   labels = paste0("X", 1:ncol(sbfc_result$parents)),
   label_size = 1,
   rotate_labels = F
)
```

Arguments

<pre>sbfc_result</pre>	An object of class sbfc.
nvars	Number of top signal variables to include in the plot (default=10).
samples	Calculate signal variable proportion based on sampled MCMC graphs after burn- in and thinning, rather than graphs from all iterations (default=FALSE).
labels	A vector of node labels (default=c("X1", "X2",)).
label_size	Size of variable labels on the X-axis (default=1).
rotate_labels	Rotate x-axis labels by 90 degrees to make them vertical (default=FALSE)

Value

Signal proportion for the top nvars variables in decreasing order.

Index

* datasets corral_augmented, 3 heart, 5 madelon, 6 * package sbfc-package, 2 corral_augmented, 3 data_disc, 4, 7 edge_density_plot, 5 heart, 5 logposterior_plot, 6 madelon, 6 sbfc, 7 sbfc-package, 2 sbfc_graph, 8

signal_size_plot, 10
signal_var_proportion, 10