Package ‘runjags’

July 17, 2025

Title Interface Utilities, Model Templates, Parallel Computing Methods
and Additional Distributions for MCMC Models in JAGS

Version 2.2.2-5
Date 2025-04-09

Description User-friendly interface utilities for MCMC models via
Just Another Gibbs Sampler (JAGS), facilitating the use of parallel
(or distributed) processors for multiple chains, automated control
of convergence and sample length diagnostics, and evaluation of the
performance of a model using drop-k validation or against simulated
data. Template model specifications can be generated using a standard
Ime4-style formula interface to assist users less familiar with the
BUGS syntax. A JAGS extension module provides additional distributions
including the Pareto family of distributions, the DuMouchel prior and
the half-Cauchy prior.

URL https://github.com/ku-awdc/runjags

BugReports https://github.com/ku-awdc/runjags/issues

License GPL-2

Encoding UTF-8

SystemRequirements JAGS >= 4.3.0 (https://mcmc-jags.sourceforge.io/)
Depends R (>=2.14.0)

Imports parallel, lattice (>= 0.20-10), coda (>= 0.17-1), stats, utils

Suggests rjags (>= 4-7), modeest, testthat (>= 3.0.0), knitr,
markdown, spelling

Config/testthat/edition 3
VignetteBuilder knitr
Language en-GB
RoxygenNote 7.3.2

NeedsCompilation yes

https://github.com/ku-awdc/runjags
https://github.com/ku-awdc/runjags/issues

2 add.summary
Author Matthew Denwood [aut, cre],
Martyn Plummer [cph] (Copyright holder of the code in
src/distributions/DPar1.*, configure.ac, R/rjags_functions.R, and
original copyright holder of some modified code where indicated)

Maintainer Matthew Denwood <md@sund. ku. dk>

Repository CRAN

Date/Publication 2025-04-09 14:20:02 UTC

Contents
add.summary e e e e e e e 2
ask . . e 7
AUEOTUNJAZS « « v v v v e e e e e e e e e e e e e e e 8
combINE.MCIMC o vttt e e e e e e e e 14
dump.list.format. 16
EXIIACLIUNJAZS « « . v v v v e e e e e e e e e e e e e e e e e 17
findjags L e e e 19
load.runjagsmodule 19
mutate.functions L. L e 22
NEW_UNIQUE .« . . o v v v v et e e e e e e e e e e e e e e 23
read.jagsfile e 24
results.jags 28
TUNLJAZS © o v v v e e e e e e e e e e e e e e e e e e 31
runjags.study e e 39
runjags-class e e e 42
Tunjags.options e e e e e e e e e e e 45
runjags.printmethods 48
template.jags e e e e e e e 50
template_huiwaltero 52
teSLJAZS . . . e e 54
MESIING o v e e e e e e e e 55
writejagsfile L e 56

Index 59

add. summary Summary statistics and plot methods for runjags class objects
Description

Objects of class runjags-class have specialised options available for print, plot and summary.
These allow various options for controlling how the output is presented, including sub-selection of
variables of interest (using partial matching).

add.summary

Usage

add. summary (
runjags.object,
vars = NA,
mutate = NA,
psrf.target = 1.05,
normalise.mecmc = TRUE,
modeest.opts = list(),
confidence = c(0.95),
autocorr.lags = c(10),
custom = NULL,
silent.jags = runjags.getOption("silent.jags"),
plots = runjags.getOption("predraw.plots”),
plot.type = c("trace”, "ecdf”, "histogram”, "autocorr"”, "key”, "crosscorr"),
col = NA,
summary.iters = 20000,
trace.iters = 1000,
separate.chains = FALSE,
trace.options = list(),
density.options = list(),
histogram.options = list(),
ecdfplot.options = list(),
acplot.options = list()

S3 method for class 'runjags'
summary (object, ...)

S3 method for class 'runjags'

plot(
X,
plot.type = c("trace”, "ecdf"”, "histogram", "autocorr”, "crosscorr"),
vars = NA,

layout = runjags.getOption("plot.layout”),
new.windows = runjags.getOption("new.windows"),
file = "",

mutate = NULL,

col = NA,

trace.iters = NA,

separate.chains = NA,

trace.options = NA

density.options = ,
histogram.options = NA,
ecdfplot.options = NA,
acplot.options = NA,

NA

add.summary

S3 method for class 'runjags'
print(x, vars = NA, digits =5, ...)

S3 method for class 'runjagsplots'

print(
X’

layout = runjags.getOption("plot.layout”),

new.windows
> —_ nn
file = s

)

runjags.getOption("new.windows"),

S3 method for class 'runjagsplots'

plot(
X)

layout = runjags.getOption("plot.layout”),
new.windows = runjags.getOption("new.windows"),

file = "",

Arguments

runjags.object

vars

mutate

psrf.target

normalise.mcmc

modeest.opts

an object of class runjags-class.

an optional character vector of variable names. If supplied, only variable names
in the object supplied with a partial match to anything in ’vars’ will be used.
Note that regular expressions are not allowed, but the caret (*) token can be
used to specify the match at the start of a variable name, and a quoted vars will
be matched exactly. Default NA meaning all variables available are returned.

either a function or a list with first element a function and remaining elements
arguments to this function. This can be used to add new variables to the poste-
rior chains that are derived from the directly monitored variables in JAGS. This
allows the variables to be summarised or extracted as part of the MCMC objects
as if they had been calculated in JAGS, but without the computational or storage
overheads associated with calculating them in JAGS directly. The plot, summary
and as.mcmc methods for runjags objects will automatically extract the mutated
variables along with the directly monitored variables.

the desired cutoff for ’convergence’ as determined Gelman and Rubin’s conver-
gence diagnostic (see gelman.diag). This is somewhat arbitrary, but 1.05 is a
commonly used figure.

an option test transformations of the monitored variable for improved normality,
which is an assumption of the Gelman and Rubin statistic. Setting this option to
FALSE will likely cause problems with calculating the psrf for highly skewed
variables.

arguments to be passed to the mlv function to calculate the mode of continuous
variables. Ignored if the mode.continuous option in runjags.options is set to
FALSE.

add.summary

confidence

autocorr.lags

custom

silent. jags

plots

plot. type

col

summary.iters

trace.iters

separate.chains

trace.options

density.options

a numeric vector of probabilities (between 0 and 1) on which to base confidence
interval calculations.

a numeric vector of integers on which to base the autocorrelation diagnostic.
See also the autocorr plot type.

a custom function which takes a numeric object as input and outputs a single
summary statistic. This statistic will be included with the others in the print and
summary method outputs.

option to suppress feedback text produced by the summary function when sum-
mary statistics must be recalculated.

option to pre-draw the plots given by plot.type to facilitate more convinient as-
sessment of convergence after the model has finished running, at the expense of
requiring a larger object to stored. The default value uses the option given in
runjags.options

a character vector of plots to produce, from ’trace’, ’density’, ’ecdf’, "histogram’,
“autocorr’, crosscort’, “key’ or ’all’. These are all based on the equivalent plots
from the lattice package with some modifications.

a vector of colours to use for the different chains. This will be used for all
plot types (where relevant), including the key’ plot which functions to label
the chain numbers of the various colours. The default uses the standard lattice
colour palatte for up to 7 chains, with a rainbow palette used for larger numbers
of chains, and combined chains shown in dark grey.

the number of iterations to thin the chains to before calculating summary statis-
tics (including all plots except the trace plot). Setting too high a value will cause
a long delay while calculating these statistics.

the number of iterations to thin the chains to before producing traceplots. Setting
too high a value will cause large file sizes and delays displaying the trace plots.

option to display each plot separately for different chains (except crosscorr and
key). If FALSE, either the separate chains will be shown on the same plot (for
trace, density, and ecdf) or as a single plot with combined chains (for histogram
and autocorr).

a list of arguments to be passed to the underlying plot function that creates the
trace plots. A colour specification should be specified using the *col’ argument
above to ensure that this is the same across plot types.

a list of arguments to be passed to the underlying plot function that creates the
density plots. A colour specification should be specified using the ’col’ argu-
ment above to ensure that this is the same across plot types.

histogram.options

a list of arguments to be passed to the underlying plot function that creates the
histogram plots. A colour specification should be specified using the ’col” argu-
ment above to ensure that this is the same across plot types.

ecdfplot.options

a list of arguments to be passed to the underlying plot function that creates the
ecdf plots. A colour specification should be specified using the ’col’ argument
above to ensure that this is the same across plot types.

6 add.summary

acplot.options a list of arguments to be passed to the underlying plot function that creates the
autocorr plots. A colour specification should be specified using the ’col’ argu-
ment above to ensure that this is the same across plot types.

object an object of class runjags-class.

additional arguments to be passed to pdf for the plot.runjags method, or the
default print method for the print.runjags method.

X an object of class runjags-class.

layout the layout of the runjags plots to print, a numeric vector of length 2 stating
the number of rows and columns of plots. The default value is taken from
runjags.options.

new.windows option to produce each plot (or matrix of plots) on a new graphics window rather
than over-writing the previous plots. For R interfaces where plots can be cycled
through (e.g. the OS X GUI and RStudio), it is likely to be preferable to produce
all plots to the same device. The default value is taken from runjags.options,
which depends on the system.

file an optional filename to which plots can be saved using pdf. The default ""
means produce plots in the active graphics device.
digits the number of digits to display for printed numerical output.
Details

The print method is designed to display option prettily, wheras the summary method is designed
to return the central table (summary statistics for each variable) as a numeric matrix that can be
assigned to another variable and manipulated by the user. If summary statistics have been pre-
calculated these will be returned without re-calculation by both methods, wheras only the summary
method will re-calculate summary statistics if they are not already available.

The add.summary function returns an object of class runjags, with the new summary statistics (and
plots if selected) stored internally for future use. Note that many of the summary method options can
be passed to run. jags when the model is run and will be remembered for future output, although
they can be modified explicitly by subsequent calls to summary or add.summary. If the summary
statistics or plots requested are identical to those stored inside the runjags object, they will not be re-
calculated. Calculation of the mode of continuous variables is possible, but requires the suggested
modeest package.

Value

The summary method returns a numeric matrix of summary statistics for each variable (invisibly for
the print method), wheras the add.summary function returns an object of class runjags-class with
the new sumamry statistics (and plots if selected) stored for future use. Some summary statistics
are only calculated for stochastic variables, but all monitored variables are shown in the output. The
information returned as part of the summary is as follows:

* LowerXX The lower confidence limit for the highest posterior density (HPD) credible inter-
val, as calculated by HPDinterval. One or more confidence limits can be selected using the
confidence argument - the default of 0.95 corresponds to 95% credible intervals.

* Median The median value, as calculated by median.

ask

UpperXX The upper confidence limit for the highest posterior density (HPD) credible inter-
val, as calculated by HPDinterval. One or more confidence limits can be selected using the
confidence argument - the default of 0.95 corresponds to 95% credible intervals.

Mean The mean value, as calculated by mean.
SD The sample standard deviation, derived from var.

Mode The mode of the variable. For discrete variables this is calculated using table, and for
continuous variables by mlv if this package is installed - see the modeest.opts argument for
more details.

MCerr The Monte Carlo standard error associated with this variable, which is the standard
error divided by the square root of the effective sample size as caulculated by effectiveSize.

MC%ofSD The Monte Carlo standard error expressed as a percentage of the standard devia-
tion of the variable - a rule of thumb is that this should be less than approximately 5%.

SSeff The effective sample size as caulculated by effectiveSize. An effective sample size
of over 400 should correspond to an MCerr of less than 5% of the sample standard deviation.

AC.XX The autocorrelation of the sample, as calculated by autocorr.diag. One or more lag
values can be specified using the autocorr.lags argument - the default is 10 iterations.

pstf The potential scale reduction factor of the Gelman-Rubin statistic autocorrelation of the
sample, as calculated by autocorr.diag. This is sometimes referred to as Rhat (or R-hat).
Note that any variables marked with a $ sign were stochastic in some chains but not in others
- this usually indicates a problem with the model or sampler.

References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Utilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

runjags-class for details on other methods available for runjags class objects

ask

Obtain Input from User With Error Handling

Description

A simple function to detect input from the user, and keep prompting until a response matching the
class of input required is given.

Usage

ask(prompt = "?", type = "logical”, bounds = c(-Inf, Inf), na.allow = FALSE)

8 autorun.jags

Arguments
prompt what text string should be used to prompt the user? (character string)
type the class of object expected to be returned - "logical”, "numeric", "integer",
"character". If the user input does not match this return, the prompt is repeated
bounds the lower and upper bounds of number to be returned. Ignored if type is "logical”
or "character".
na.allow if TRUE, allows the user to input "NA" for any type, which is returned as NA
See Also

readline and menu

autorun. jags Run or extend a user-specified Bayesian MCMC model in JAGS with
automatically calculated run-length and convergence diagnostics

Description

Runs or extends a user specified JAGS model from within R, returning an object of class runjags-class.
The model is automatically assessed for convergence and adequate sample size before being re-
turned.

Usage

autorun. jags(
model,
monitor = NA,
data = NA,
n.chains = NA,
inits = NA,
startburnin = 4000,
startsample = 10000,
adapt = 1000,
datalist = NA,
initlist = NA,
jags = runjags.getOption("”jagspath"),
silent.jags = runjags.getOption("silent.jags"),
modules = runjags.getOption("modules”),
factories = runjags.getOption("”factories”),
summarise = TRUE,
mutate = NA,
thin = 1,
thin.sample = FALSE,
raftery.options = list(),
crash.retry = 1,
interactive = FALSE,

autorun.jags 9

max.time = Inf,

tempdir = runjags.getOption("tempdir”),
jags.refresh = 0.1,

batch.jags = silent.jags,

method = runjags.getOption("method"),
method.options = list(),

)

autoextend. jags(
runjags.object,
add.monitor = character(9),
drop.monitor = character(0),
drop.chain = numeric(0),
combine = length(c(add.monitor, drop.monitor, drop.chain)) == 0,
startburnin = 0,
startsample = 10000,
adapt = 1000,
jags = NA,
silent.jags = NA,
summarise = TRUE,
thin = NA,
thin.sample = FALSE,
raftery.options = list(),
crash.retry = 1,
interactive = FALSE,
max.time = Inf,
tempdir = runjags.getOption("tempdir”),
jags.refresh = NA,
batch.jags = NA,
method = NA,
method.options = NA,

)
Arguments
model either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. No default. See
read. jagsfile for more details.
monitor a character vector of the names of variables to monitor. No default. The spe-

cial node names ’deviance’, "pd’, 'popt’, ’dic’, ’ped’ and ’full.pd’ are used to
monitor the deviance, mean pD, mean pOpt, DIC, PED and full distribution of
sum(pD) respectively. Note that these monitored nodes (with the exception of
’deviance’) require multiple chains within the same simulation, and won’t ap-
pear as variables in the summary statistics or plots (but see extract for a way
of extracting these from the returned object).

10

data

n.chains

inits

startburnin

startsample

adapt

datalist
initlist

jags

silent. jags

autorun.jags

anamed list, data frame, environment, character string in the R dump format (see
dump.format), or a function (with no arguments) returning one of these types.
If the model text contains inline #data# comments, then this argument specifies
the list, data frame or environment in which to search first for these variables
(the global environment is always searched last). If the model text does not
contain #data# comments, then the full list or data frame (but not environment)
is included as data. If the data argument is a character string, then any #data#
comments in the model are ignored (with a warning). The default specifies the
parent environment of the function call.

the number of chains to use with the simulation. More chains will improve
the sensitivity of the convergence diagnostic, but will cause the simulation to
run more slowly (although this may be improved by using a method such as
‘parallel’, ‘rjparallel’ or ’snow’). The minimum (and default) number of chains
is 2.

either a character vector with length equal to the number of chains the model
will be run using, or a list of named lists representing names and corresponding
values of inits for each chain, or a function with either 1 argument represent-
ing the chain or no arguments. If a vector, each element of the vector must be
a character string in the R dump format representing the initial values for that
chain, or NA. If not all initialising variables are specified, the unspecified vari-
ables are taken deterministically from the mean or mode of the prior distribution
by JAGS. Values left as NA result in all initial values for that chain being taken
from the prior distribution. The special variables *.RNG.seed’, *.RNG.name’,
and ’.RNG:.state’ are allowed for explicit control over random number genera-
tors in JAGS. If a function is provided, the data is available inside the function
as a named list ’data’ - this may be useful for setting initial values that depend
on the data. Default NA.

the number of burnin iterations, NOT including the adaptive iterations to use for
the initial pilot run of the chains.

the total number of samples (including the chains supplied in runjags.object for
autoextend.jags) on which to assess convergence, with a minimum of 4000. If
the runjags.object already contains this number of samples then convergence
will be assessed on this object, otherwise the required number of additional
samples will be obtained before combining the chains with the old chains. More
samples will give a better chance of allowing the chain to converge, but will take
longer to achieve. Default 10000 iterations.

the number of adaptive iterations to use at the start of each simulation. For the
rjags method this adaptation is only performed once and the model remains com-
piled, unless the repeatable.methods option is activated in runjags.options.
For all other methods adaptation is done every time the simulation is extended.
Default 1000 iterations.

deprecated argument.

deprecated argument.

the system call or path for activating JAGS. Default uses the option given in
runjags.options.

option to suppress output of the JAGS simulations. Default uses the option given
in runjags.options.

autorun.jags

modules

factories

summarise

mutate

thin

thin.sample

raftery.options

crash.retry

interactive

11

a character vector of external modules to be loaded into JAGS, either as the
module name on its own or as the module name and status separated by a space,
for example ’glm on’.

a character vector of factory modules to be loaded into JAGS. Factories should
be provided in the format \<facname\> \<factype\> \<status\>’ (where status is
optional), for example: factories="mix::TemperedMix sampler on’. You must
also ensure that any required modules are also specified (in this case "mix’).

should summary statistics be automatically calculated for the output chains?
Default TRUE (but see also ?runjags.options -> force.summary).

either a function or a list with first element a function and remaining elements
arguments to this function. This can be used to add new variables to the pos-
terior chains that are derived from the directly monitored variables in JAGS.
This allows the variables to be summarised or extracted as part of the MCMC
objects as if they had been calculated in JAGS, but without the computational
or storage overheads associated with calculating them in JAGS directly. The
plot, summary and as.mcmc methods for runjags objects will automatically ex-
tract the mutated variables along with the directly monitored variables. For an
application to pairwise comparisons of different levels within fixed effects see
contrasts.mcmc.

the thinning interval to be used in JAGS. Increasing the thinning interval may
reduce autocorrelation, and therefore reduce the number of samples required, but
will increase the time required to run the simulation. Using this option thinning
is performed directly in JAGS, rather than on an existing MCMC object as with
thin.sample. Default 1.

option to thin the final MCMC chain(s) before calculating summary statistics
and returning the chains. Thinning very long chains reduces the size of the
returned object. If TRUE, the chain is thinned to as close to a minimum of
startsample iterations as possible to ensure the chain length matches thin.sample.
A positive integer can also be specified as the desired chain length after thinning;
the chains will be thinned to as close to this minimum value as possible. Default
TRUE (thinned chains of length startsample returned). This option does NOT
carry out thinning in JAGS, therefore R must have enough available memory to
hold the chains BEFORE thinning. To avoid this problem use the ’thin’ option
instead.

a named list which is passed as additional arguments to raftery.diag, or the
logical FALSE to deactivate automatic run length calculation. Default none
(default arguments to raftery.diag are used).

the number of times to re-attempt a simulation if the model returns an error.
Default 1 retry (simulation will be aborted after the second crash).

option to allow the simulation to be interactive, in which case the user is asked if
the simulation should be extended when run length and convergence calculations
are performed and the extended simulation will take more than 1 minute. The
function will wait for a response before extending the simulations. If FALSE, the
simulation will be run until the chains have converged or until the next extension
would extend the simulation beyond *max.time’. Default FALSE.

12

max.time

tempdir

jags.refresh

batch. jags

method

method.options

runjags.object

add.monitor

drop.monitor

autorun.jags

the maximum time for which the function is allowed to extend the chains to
improve convergence, as a character string including units or as an integer in
which case units are taken as seconds. Ignored if interactive=TRUE. If the func-
tion thinks that the next simulation extension to improve convergence will result
in a total time of greater than max.time, the extension is aborted. The time per
iteration is estimated from the first simulation. Acceptable units include ’sec-
onds’, 'minutes’, "hours’, ’days’, *weeks’, or the first letter(s) of each.

option to use the temporary directory as specified by the system rather than cre-
ating files in the working directory. Any files created in the temporary directory
are removed when the function exits for any reason. Default TRUE.

the refresh interval (in seconds) for monitoring JAGS output using the ’interac-
tive’ and ’parallel” methods (see the method’ argument). Longer refresh inter-
vals will use slightly less processor time, but will make the simulation updates to
be shown on the screen less frequently. Reducing the refresh rate to every 10 or
30 seconds may be worthwhile for simulations taking several days to run. Note
that this will have no effect on the processor use of the simulations themselves.
Default 0.1 seconds.

option to call JAGS in batch mode, rather than using input redirection. On JAGS
>= 3.0.0, this suppresses output of the status which may be useful in some situ-
ations. Default TRUE if silent.jags is TRUE, or FALSE otherwise.

the method with which to call JAGS; probably a character vector specifying one
of ’rjags’, ’simple’, ’interruptible’, ’parallel’, ‘rjparallel’, or ’snow’. The ’rjags’
and ’rjparallel’ methods run JAGS using the rjags package, whereas other op-
tions do not require the rjags package and call JAGS as an external executable.
The advantage of the 'rjags’ method is that the model will not need to be re-
compiled between successive calls to extend.jags, all other methods require a
re-compilation (and adaptation if necessary) every time the model is extended.
Note that the ’rjparallel’ and ’snow’ methods may leave behind zombie JAGS
processes if the user interrupts the R session used to start the simulations - for
this reason the ’parallel” method is recommended for interactive use with paral-
lel chains. The ’parallel’ and ’interruptible’ methods for Windows require XP
Professional, Vista or later (or any Unix-alike). For more information refer to
the userguide vignette.

a deprecated argument currently permitted for backwards compatibility, but this
will be removed from a future version of runjags. Pass these arguments directly
to autorun.jags or autoextend.jags.

summary parameters to be passed to add.summary, and/or additional options
to control some methods including n.sims for parallel methods, cl for rjparallel
and snow methods, remote.jags for snow, and by and progress.bar for the rjags
method.

the model to be extended - the output of a run.jags (or autorun.jags or extend.jags
etc) function, with class 'runjags’. No default.

a character vector of variables to add to the monitored variable list. All previ-

ously monitored variables are automatically included - although see the *drop.monitor’

argument. Default no additional monitors.

a character vector of previously monitored variables to remove from the moni-
tored variable list for the extended model. Default none.

autorun.jags 13

drop.chain a numeric vector of chains to remove from the extended model. Default none.

combine a logical flag indicating if results from the new JAGS run should be combined
with the previous chains. Default TRUE if not adding or removing variables or
chains, and FALSE otherwise.

Details

The autorun.jags function reads, compiles, and updates a JAGS model based on a model represen-
tation (plus data, monitors and initial values) input by the user. The autoextend.jags function takes
an existing runjags-class object and extends the simulation as required. Chain convergence over
the first run of the simulation is assessed using Gelman and Rubin’s convergence diagnostic. If nec-
essary, the simulation is extended to improve chain convergence (up to a user-specified maximum
time limit), before the required sample size of the Markov chain is calculated using Raftery and
Lewis’s diagnostic. The simulation is extended to the required sample size dependant on autocorre-
lation and the number of chains. Note that automated convergence diagnostics are not perfect, and
should not be considered as a replacement for manually assessing convergence and Monte Carlo er-
ror using the results returned. For more complex models, the use of run. jags directly with manual
assessment of necessary run length may be preferable.

For autoextend.jags, any arguments with a default of NA are taken from the runjags object passed
to the function.

Value

An object of class 'runjags’ (see runjags-class for available methods).

References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Utilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

run. jags for fixed run length models, read.winbugs for details of model specification options,
read. jagsfile and summary.runjags for details on available methods for the returned models,
and run. jags. study for examples of simulation studies using automated model control provided
by autorun.jags

Examples

Run a model to calculate the intercept and slope of the expression
#y=mx + c, assuming normal observation errors for y:

Simulate the data

N <- 100

X <- 1:N

Y <= rnorm(N, 2xX + 10, 1)

Model in the JAGS format
model <- "model {

14

for(i in 1 : N){

Y[i] ~ dnorm(true.y[i], precision)
true.y[i] <- m * X[i] + ¢

3

m ~ dunif(-1000,1000)

c ~ dunif(-1000,1000)

precision ~ dexp(1)

#data# N, X, Y
#inits# m, c, precision

}u

Initial values to be used:
m <- list(-10, 10)

c <- list(-10, 10)

precision <- list(0.1, 10)
Not run:

Run the model using rjags with a 5 minute timeout:
results <- autorun.jags(model=model, max.time="5m",

n_n

monitor=c("m", "c", "precision”), n.chains=2,
method="rjags")

Analyse standard plots of the results to assess convergence:

plot(results)

Summary of the monitored variables:
results

For more details about possible methods see:
vignette('userguide', package='runjags')

End(Not run)

combine.mcmc

combine.mcmc Combining and dividing runjags and MCMC objects

Description

Utility functions for combining separate MCMC or runjags objects into a single object, or the

reverse operation

Usage

combine.mcmc(
mcmc.objects = list(),
thin = 1,
return.samples = NA,

collapse.chains = if (length(mcmc.objects) == 1) TRUE else FALSE,

vars = NA,

combine.mcmc 15

add.mutate = TRUE
)

combine. jags(runjags.objects = list(), summarise = TRUE, ...)

divide. jags(
runjags.object,
which.chains = 1:nchain(as.mcmc.list(runjags.object)),
summarise = TRUE,

Arguments

mcmc.objects a list of MCMC or runjags objects, all with the same number of chains and
matching variable names, or a single MCMC object/list or runjags object. No
default.

thin an integer to use to thin the (final) MCMC object by, in addition to any thinning
already applied to the objects before being passed to combine.mcmc. Ignored
if return.samples is specified (!is.na). Default 1 (no additional thinning is per-
formed).

return.samples the number of samples to return after thinning. The chains will be thinned
to as close to this minimum value as possible, and any excess iterations dis-
carded. Supersedes thin if both are specified. Ignored if niter(mcmc.objects) <
return.samples. Default NA.

collapse.chains
option to combine all MCMC chains into a single MCMC chain with more it-
erations. Can be used for combining chains prior to calculating results in or-
der to reduce the Monte Carlo error of estimates. Default TRUE if a single
mcmc.object is provided, or FALSE otherwise.

vars an optional character vector of variable names to extract. If supplied, only vari-
able names in the object supplied with a partial match to anything in ’vars’ will
be used. Note that regular expressions are not allowed, but the caret (*) token
can be used to specify the match at the start of a variable name, and a quoted
vars will be matched exactly. Default NA meaning all variables available are
returned.

add.mutate should any mutate function associated with the runjags objects be run to collect
the additional variables before returning MCMC chains?

runjags.objects
a list of runjags class objects to be combined

summarise option to add a new set of summary statistics to the newly created runjags object
other arguments to be passed to add. summary
runjags.object a single runjags class object to be divided

which.chains the chains to extract from the runjags object

16 dump.list.format

Details

The combine.mcmc function allows an MCMC object (with 1 or more chains) to be combined with
object(s) representing extensions of the same simulation, to produce one MCMC object that con-
tains the continuous combined Markov chains. Alternatively, a single MCMC list object can be con-
verted into a single chain by combining all chains sequentially. An object of class runjags-class
can also be used, in which case the MCMC objects will be extracted from this. The combine.jags
function does a similar operation, but returning the entire runjags object as a single object that can
be extended using extend. jags. The divide.jags extracts one or more chains from a given runjags
object.

Value

For combine.mcmc: an MCMC object if collapse.chains=TRUE, or an mcmc.list object if col-
lapse.chains=FALSE

For combine.jags and divide.jags: a runjags-class object

See Also

run. jags and runjags-class

dump.list.format Conversion Between a Named List and a Character String in the R
Dump Format

Description

Convert a named list of numeric vector(s) or array(s) of data or initial values to a character string in
the correct format to be read directly by JAGS as either data or initial values.

Usage

dump.format(namedlist = list(), checkvalid = TRUE, convertfactors = TRUE)

list.format(data = character(), checkvalid = TRUE)
Arguments

namedlist a named list of numeric or integer (or something that can be coerced to numeric)
vectors, matrices or arrays. The name of each list item will be used as the name
of the resulting dump.format variables.

checkvalid option to ensure that the object returned from the function does not contain any
values that would be invalid for import into JAGS, such as Inf, -Inf or character
values etc.

convertfactors option to automatically convert any factor variables to numeric (otherwise the
presence of factors will create an error if checkvalid==TRUE).

data a character string in the R dump format, such as that produced by dump.format.

extract.runjags 17

Details

The ’dump.format’ function creates a character string of the supplied variables in the same way
that dump() would, except that the result is returned as a character string rather than written to
file. Additionally, dump.format() will look for any variable with the name *.RNG.name’ and double
quote the value if not already double quoted (to ensure compatibility with JAGS).

Value

Either a character string in the R dump format (for dump.format), or a named list (for list.format).

See Also

run. jags and dump

Examples

A named list:

namedlistl <- list(N=1@, Count=c(4,2,7,0,6,9,1,4,12,1))
Convert to a character vector:

chardata <- dump.format(namedlist1)

And back to a named list:

namedlist2 <- list.format(chardata)

These should be the same:
stopifnot(identical(namedlistl, namedlist2))

extract.runjags Extract peripheral information from runjags objects

Description

Objects of class ‘runjags’ are produced by run. jags, results. jags and autorun. jags, and con-
tain the MCMC chains as well as all information required to extend the simulation. This function
allows specific information to be extracted from these functions. For other utility methods for the
runjags class, see runjags-class.

Usage
S3 method for class 'runjags'
extract(x, what, force.resample = FALSE, ...)
Arguments
X an object of class runjags.
what the information contained in the runjags object to be extracted. See the details

section for the available options.

force.resample option to re-draw new deviance/DIC/PED etc samples from the model (using
dic.samples) rather than using any statistics that may already be available from
the saved runjags object

additional options to be passed to dic.samples

18 extract.runjags

Details

The supported options for the *what’ argument are as follows:

crosscorr - the cross-correlation matrix

summary - the same as the summary method for runjags object
model - the model

data - the data

end.state - the model state at the last iteration (or initial values for non-updated models) which will
be used to start an extended simulation

samplers - a matrix giving the sampler used for stochastic nodes (not available for all models)

stochastic - a logical vector of length equal to the number of variables indicating which variables
are stochastic, with NA values for variables that are stochastic in one chain but not others - the
return value of this can be passed to the vars’ argument for combine.mcmc etc functions

dic - the DIC, as returned by dic.samples

dic - the PED, as returned by dic.samples with type="popt"

sum.deviance - the sum of the mean estimated deviance for each stochastic variable
sum.pd - the sum of the mean estimated pD for each stochastic variable

sum.popt - the sum of the mean estimated pOpt for each stochastic variable
mean.deviance - the mean estimated pD for each stochastic variable

mean.pd - the mean estimated pD for each stochastic variable

mean.popt - the mean estimated pOpt for each stochastic variable

full.deviance - the sum of the model deviance at each iteration (for each chain)
full.pd - the sum of the estimated pD at each iteration

Note that for the deviance/DIC related parameters, these will be extracted from the available infor-
mation if possible, or otherwise re-sampled.

References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Utilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

runjags-class for additional methods for runjags objects, add. summary for details on plot, print
and summary methods for runjags class objects, runjags.options for general options available,
and run. jags and autorun. jags for the functions that create objects of this class.

findjags 19

findjags Attempt to Locate a JAGS Install

Description

Search the most likely locations for JAGS to be installed on the users system, based on the operating
system, and return the most likely path to try. Where multiple installs exist, findjags will attempt
to return the path to the install with the highest version number. For Unix systems, calling jags
using ’jags’ requires the jags binary to be in the search path, which may be specified in your user
*.Profile’ if necessary (the JAGS executable is also looked for in the default install location of
/usr/local/bin/jags if popen support is enabled).

Usage
findjags(ostype = .Platform$0S.type, look_in = NA, ...)
Arguments
ostype the operating system type. There is probably no reason to want to change this...
look_in for Windows only, the path to a folder (or vector of folders) which contains
another folder with name containing "JAGS’, where the JAGS executable(s) are
to be found. findjags() will attempt to find the highest version, assuming that the
version number is somewhere in the file path to the executable (as per default
installation).
provided for compatibility with deprecated arguments.
Value

A path or command for the most likely location of the desired JAGS executable on the system.
On unix this will always be ’jags’, on Windows for example "C:/Program Files/JAGS/bin/jags-
terminal.exe" or "C:/Program Files/JAGS/JAGS-1.0.0/bin/jags-terminal.exe"

See Also

testjags. runjags.options and run. jags

load. runjagsmodule Load the internal JAGS module provided by runjags

Description

The runjags package contains a JAGS extension module that provides several additional distribu-
tions for use within JAGS (see details below). This function is a simple wrapper to load this module.
The version of the module supplied within the runjags package can only be used with the rjags pack-
age, or with the rjags or rjparallel methods within runjags. For a standalone JAGS module for use
with any JAGS method (or independent JAGS runs) please see: https://sourceforge.net/projects/runjags/files/paretoprior/

20 load.runjagsmodule
Usage
load.runjagsmodule(fail = TRUE, silent = FALSE)
unload.runjagsmodule()
load.runJAGSmodule(fail = TRUE, silent = FALSE)
unload. runJAGSmodule ()
Arguments
fail should the function fail using stop() if the module cannot be loaded?
silent if !fail, the function will by default print a diagnostic message if the module
cannot be loaded - the silent option suppresses this message.
Details

This module provides the following distributions for JAGS:
PARETO TYPE I: dparl(alpha, sigma)

p(z) = ac®g~(eth)

a>0,0>0,x>0

PARETO TYPE II: dpar2(alpha, sigma, mu)

afa+z—pu ~(at1)
pla) = & (2

g o

a>0,0>0,z>p

PARETO TYPE III: dpar3(sigma, mu, gamma)

c>0,7v>0,z>pu

PARETO TYPE 1IV: dpar4(alpha, sigma, mu, gamma)

a>0,0>0,v>0,2>pu

21

load.runjagsmodule
LOMAX: dlomax(alpha, sigma)

o T —(a+1)
p(z) = — (1 + 7>
o o

a>0,0>0,2>0

GENERALISED PARETO: dgenpar(sigma, mu, Xi)

- ee(5)

For ¢ = 0:
1 —@-w
p(z) = ;6’ 7
oc>0,z>pu
DUMOUCHEL: dmouch(sigma)
o
p(x) =
(@ +0)?
oc>0,z>0
HALF CAUCHY: dhalfcauchy(sigma)
20

PO = o)

oc>0,z>0

For an easier to read version of these PDF equations, see the userguide vignette.

Value
Invisibly returns TRUE if able to (un)load the module, or FALSE otherwise

References
Denwood, M.J. 2016. runjags: An R Package Providing Interface Utilities, Model Templates,
Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS. J. Stat.

Softw. 71. doi:10.18637/jss.v071.109.

See Also

runjags-class, load.module

22 mutate.functions

Examples

Load the module for use with any rjags model:
available <- load.runjagsmodule(fail=FALSE)
if(available){
A simple model to sample from a Lomax distribution.
(Requires the rjags or rjparallel methods)
m <- "model{
L ~ dlomax(1,1)
3
Not run:
results <- run.jags(m, monitor="L", method="rjags"”, modules="runjags")

End(Not run)
3

mutate.functions Mutate functions to be used with runjags summary methods

Description

Objects of class runjags-class have specialised options available for print, plot and summary.
These methods allow a mutate function to be specified which produces additional variables based
on the monitor variables. These functions are examples of valid syntax, and may be useful in their
own right.

Usage

contrasts.mcmc(x, vars)

prec2sd(x, vars)

Arguments
X an object of class MCMC.
vars an optional character vector of variable names. If supplied, only variable names
in the object supplied with a partial match to anything in ’vars’ will be used.
Note that regular expressions are not allowed, but the caret (*) token can be
used to specify the match at the start of a variable name, and a quoted vars will
be matched exactly. Default NA meaning all variables available are returned.
Details

The contrasts.mcmc and prec2sd functions are two common applications of the mutate argument
to add.summary and run. jags and can be used as examples of the expected inputs and permitted
return values. They must take an MCMC object as input, and return an MCMC object or named
list with the same length. This can be used to add new variables to the posterior chains that are
derived from the directly monitored variables in JAGS. This allows the variables to be summarised
or extracted as part of the MCMC objects as if they had been calculated in JAGS, but without

new_unique 23

the computational or storage overheads associated with calculating them in JAGS directly. The
contrasts.mcmc and prec2sd functions are examples of valid objects (but both require an argument,
so will have to be passed as e.g. mutate=list(’contrasts.mcmc’, ’variabletocontrast’)). See the mutate
argument to add. summary.

Value

An MCMC object.

References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Ultilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

add. summary for an applciation of these functions.

new_unique Create a Unique Filename

Description

Search the current working directory for a file or directory matching the input name, and if it exists
suggest a new name by appending a counter to the input name. Alternatively, the function can ask
the user if the existing file should be overwritten, in which case the existing file will be erased if
the answer is "yes’. The function also checks for write access permissions at the current working

directory.
Usage
new_unique(
name = NA,
suffix = "",
ask = FALSE,
prompt = "A file or directory with this name already exists. Overwrite?"”,
touch = FALSE,
type = "file”
)
Arguments
name the filename to be used (character string). A vector of character strings is also

permissible, in which case they will be pasted together. One or more missing
(NA) values can also be used, which will be replaced with a randomly generated
9 character alphanumeric string. Default NA.

24 read.jagsfile

suffix the file extension (including ’.”) to use (character string). If this does not start
with a’.’, one will be prepended automatically. Default none.
ask if a file exists with the input name, should the function ask to overwrite the

file? (logical) If FALSE, a new filename is used instead and no files will be
over-written. Default FALSE.

prompt what text string should be used to prompt the user? (character string) Ignored is
ask==FALSE. A generic default is supplied.
touch option to create (touch) the file/folder after generating the unique name, which

prevents other processes from sneaking in and creating a file with the same name
before the returned filename has had chance to be used. Default FALSE.

type if touch==TRUE, then type controls if a file or directory is created. One of ’file’,
7, directory’, or ’d’. Default ’file’.
Value

A unique filename that is safe to use without fear of destroying existing files

See Also

ask

Examples

Create a unique file name with a .R extension.
new_unique(c("new_file"”, NA), ".R", ask=FALSE)

read. jagsfile Extract Any Models, Data, Monitored Variables or Initial Values As
Character Vectors from a JAGS or WinBUGS Format Textfile

Description

Read a user specified BUGS or JAGS textfile or character variable and extract any models, data,
monitored variables or initial values as character vectors. Used by (auto)run.jags to interpret the
input file(s) or strings. This function is more likely to be used via run.jags where the model
specified to run.jags is the path used by this function. The read.winbugs function is an alias to
read.jagsfile.

Usage
read. jagsfile(file)

read.JAGSfile(file)
read.winbugs(file)

read.WinBUGS(file)

read.jagsfile 25

Arguments

file either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. May also be a vector
of paths to different text files, possibly separately containing the model, data and
intitial values. No default. The model must be started with the string model{’
and ended with *}’ on new lines. Data must be similarly started with ’data{’,
monitored variables with *monitor{’, and initial values as ’inits{’, and all ended
with ’}’. Seperate variables in such blocks must be separated by a line break.
If multiple models are found, all but the first one are ignored with a warning.
Multiple data blocks and monitor blocks are combined, multiple inits blocks are
used for different chains. Monitors may also be given using the phrase *#mon-
itor# variable’ within the model block, in which case ’variable’ is added to the
list of monitored variables found in the monitor block(s). The use of automat-
ically generated data and initial values is also supported using similar syntax,
with *#data# variable’ for automatically generated data variables or "#inits# vari-
able’ for automatically generated initial value variables in which case ’variable’
is used as data or initial values with a value taken by run. jags from datalist,
initlist or R objects as appropriate. ’#inits#’, *#data#’ and ’#monitor#’ state-
ments can appear on the same line as model code, but no more than one of these
statements should be used on the same line. Examples of acceptable model syn-
tax are given below.

Details

There are a number of special strings permitted inside the model specification as follows:
#data# variables to be retrieved from a list or environment

#inits# variables to be retrieved from a list or environment

#monitors# monitored variables to use

#modules# JAGS extension modules optionally also specifying the status (e.g. #modules# glm on,
dic on)

#factories# JAGS factories and types required, optionally also specifying the status (e.g. #factories#
mix::TemperedMix sampler on)

#response# - a single variable name specifying the response variable (optional)
#residual# - a single variable name specifying a variable that represents the residuals (optional)
#fitted# - a single variable name specifying a variable that represents the fitted value (optional)

#Rdata# when placed inside a data{ } or inits{ } block, this signifies that any arrays indside are in
column major order. This is the default for any blocks that are not specified as a list().

#BUGSdata# when placed inside a data{ } or inits{ } block, this signifies that any arrays indside
are in row major order. This is the default for any blocks that are specified as a list(), such as those
that have been created for use with WinBUGS.

#modeldata# when placed inside a data{ } block, this signifies that the code is to be passed to JAGS
along with the model{ } block

26

Value

read.jagsfile

A named list of elements required to compile a model. These can be used to create a call to

run. jags, but it would be more usual to call this function directly on the model file.

References

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS book: A practical
introduction to Bayesian analysis. CRC press; and Matthew J. Denwood (2016). runjags: An
R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Ad-
ditional Distributions for MCMC Models in JAGS. Journal of Statistical Software, 71(9), 1-25.
doi:10.18637/jss.v071.109

See Also

run. jags and write. jagsfile for the reverse operation, and possibly an example of the format-
ting allowed

Examples

#

T A N N

* o#

#

H

#

string <-

ALL SYNTAX GIVEN BELOW IS EQUIVALENT

Use a modified WinBUGS text file with manual inits and manual data and

a seperate monitor block (requires least modification from a WinBUGS
file). For compatibility with WinBUGS, the use of list() to enclose
data and initial values is allowed and ignored, however all seperate
variables in the data and inits blocks must be seperated with a line

break (commas or semicolons before linebreaks are ignored). data{ ...

and inits{ ... } must also be added to WinBUGS textfiles so that the
function can seperate data from initial values. Iterative loops are

allowed in data blocks but not in init blocks. See also the differences

in JAGS versus WinBUGS syntax in the JAGS help file.

The examples below are given as character strings for portability,
but these could also be contained in a separate model file with the
arguments to read.jagsfile and run.jags specified as the file path

A model that could be used with WinBUGS, incorporating data and inits.

A note will be produced that the data and inits are being converted
from WinBUGS format:

n

model{

for(i in 1:N){
Count[i] ~ dpois(mean)

}

mean ~ dgamma(@.01, 100)

}

data{

read.jagsfile

list(

Count = ¢(1,2,3,4,5,6,7,8,9,10),
N =10

)

3

inits{
list(
mean = 1

inits{
list(

mean = 100
)

3

n

model <- read.winbugs(string)
Not run:
results <- run.jags(string, monitor='mean')

End(Not run)

The same model but specified in JAGS format. This syntax also defines
monitors in the model, and uses data retrieved from the R environment:
string <- "
model{

for(i in 1:N){

Count[i] ~ dpois(mean) #data# Count, N
3

mean ~ dgamma(0.01, 100)

#monitor# mean

3

inits{
mean <- 1

}

inits{
mean <- 100

}

n

model <- read.jagsfile(string)
Count <- 1:10

N <- length(Count)

Not run:

27

28 results.jags

results <- run.jags(string)

End(Not run)

The same model using autoinits and a mixture of manual and autodata:
string <- "
model{

for(i in 1:N){

Count[i] ~ dpois(mean) #data# Count
3

mean ~ dgamma(0.01, 100)

#monitor# mean

#inits# mean

}
data{

N <- 10

model <- read.jagsfile(string)

Count <- 1:10

mean <- list(1, 100)

Not run:

results <- run.jags(string, n.chains=2)

End(Not run)

results.jags Importing of saved JAGS simulations with partial error recovery

Description

Imports a completed JAGS simulation from a folder created by run. jags using the background or
bgparallel methods, or any other method where the keep.jags.files=TRUE option was used. Par-
tial recovery simulations is possible for parallel methods where one or more simulation failed to
complete. Additional chain thinning and parameter import selection is also supported.

Usage

results. jags(
foldername,
echo = NA,
combine = NA,
summarise = NA,

results.jags 29

keep.jags.files = NA,
read.monitor = NA,

return.samples = NA,
recover.chains = NA,

)

results.JAGS(
foldername,
echo = NA,
combine = NA,
summarise = NA,
keep.jags.files = NA,
read.monitor = NA,
return.samples = NA,
recover.chains = NA,

Arguments

foldername the absolute or relative path to the folder containing the JAGS simulation to be
imported. May also be the return value of a call to run. jags with method =
"background’ or method = ’bgparallel’, which will avoid having to re-load some
information from disk and therefore may be slightly faster.

echo option to display the output of the simulations to screen. If the simulations have
not finished, the progress-to-date will be displayed.

combine a logical flag indicating if results from the new JAGS run should be combined
with the previous chains. Default value respects the setting chosen during the
initial run.jags function call, changing the option to TRUE or FALSE overrides
the original setting.

summarise should summary statistics be automatically calculated for the output chains?

Default value respects the setting chosen during the initial run.jags function call,

changing the option to TRUE or FALSE overrides the original setting.
keep.jags.files

option to keep the folder with files needed to call JAGS, rather than deleting

it after importing. Default value respects the setting chosen during the initial

run.jags function call, changing the option to TRUE or FALSE overrides the

original setting. See also the cleanup. jags function.

read.monitor an optional character vector of variables to import from the simulation folder.
This may be useful for models with large numbers of variables that would oth-
erwise not be able to be loaded into R. Default value loads all variables given
by the monitor argument (but NOT the noread.monitor argument) to the original
run.jags call.

return.samples option to thin the final MCMC chain(s) before calculating summary statistics
and returning the chains. Note that this option does NOT currently carry out
thinning in JAGS, therefore R must have enough available memory to hold the

30 results.jags

chains BEFORE thinning (for very large chains, it may be necessary to specify a
subset of the variables at a time using read.monitor="..." and keep.jags.files=TRUE).
Default value returns all available iterations.

recover.chains option to try to recover successful simulations if some simulations failed (this
is only relevant for parallel methods with more than 1 simulation). A value
of TRUE returns only successful simulations, FALSE will cause an error if
any simulation has failed. A numeric vector of specific chain(s) to be read is
also permitted, but an error will be returned if any of the simulations contain-
ing these chains was unsuccessful. The default version reads the option set in
runjags.options.

additional summary parameters to be passed to add. summary

Value

An object of class ‘runjags’ (see runjags-class).

See Also
runjags-class for details of available methods for the returned object, run. jags for details of

how to start simulations, and runjags.options for user options regarding warning messages etc.

Examples

Run a model using parallel background JAGS calls:

Simulate the data:

N <- 100

X <= 1:N

Y <= rnorm(N, 2*X + 10, 1)

Initial values for 2 chains:
m <- list(-10, 10)

c <- list(-10, 10)

precision <- list(0.01, 10)

Model in the JAGS format
model <- "model {

for(i in 1 : N){

Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m x X[i]) + ¢
3

m ~ dunif(-1000,1000)

¢ ~ dunif(-1000,1000)
precision ~ dexp(1)

#data# X, Y, N

#monitor# m, c, precision
#inits# m, c, precision

}u

Not run:
Run the model and produce plots
fileinfo <- run.jags(model=model, n.chains=2, method="bgparallel”)

run.jags 31

Wait for the simulations to complete:
Sys.sleep(10)

Import only variable m from the first chain:
results <- results.jags(fileinfo, read.monitor='m
Look at the summary statistics:

print(results)

, recover.chains=1)

End(Not run)

run.jags Run or extend a user-specified Bayesian MCMC model in JAGS from
within R

Description

Runs or extends a user specified JAGS model from within R, returning an object of class runjags-class.

Usage

run. jags(
model,
monitor = NA,
data = NA,
n.chains = NA,
inits = NA,
burnin = 4000,
sample = 10000,
adapt = 1000,
noread.monitor = NULL,
datalist = NA,
initlist = NA,
jags = runjags.getOption("”jagspath"),
silent.jags = runjags.getOption("silent.jags"),
modules = runjags.getOption("modules”),
factories = runjags.getOption("factories”),
summarise = TRUE,
mutate = NA,
thin = 1,
keep.jags.files = FALSE,
tempdir = runjags.getOption("tempdir"),
jags.refresh = 0.1,
batch.jags = silent.jags,
method = runjags.getOption("method"),
method.options = list(),

extend. jags(

32

)

runjags.object,

add.monitor = character(0),
drop.monitor = character (@),
drop.chain = numeric(0),

combine = length(c(add.monitor, drop.monitor, drop.chain)) ==

burnin = 0,

sample = 10000,

adapt = 1000,
noread.monitor = NA,

jags = NA,

silent.jags = NA,
summarise = sample >= 100,
thin = NA,

keep.jags.files = FALSE,
tempdir = runjags.getOption("tempdir”),
jags.refresh = NA,
batch.jags = silent.jags,
method = NA,
method.options = NA,

run. JAGS(

model,

monitor = NA,

data = NA,

n.chains = NA,

inits = NA,

burnin = 4000,

sample = 10000,

adapt = 1000,
noread.monitor = NULL,
datalist = NA,
initlist = NA,

jags = runjags.getOption("jagspath"),

silent.jags = runjags.getOption("silent.jags"),

modules = runjags.getOption("modules”),
factories = runjags.getOption("factories”),
summarise = TRUE,

mutate = NA,

thin = 1,

keep.jags.files = FALSE,

tempdir = runjags.getOption("tempdir”),
jags.refresh = 0.1,

batch.jags = silent.jags,

method = runjags.getOption("method"),
method.options = list(),

run.jags

run.jags 33

extend. JAGS(
runjags.object,
add.monitor = character(0),
drop.monitor = character(9),
drop.chain = numeric(0),

combine = length(c(add.monitor, drop.monitor, drop.chain)) == 0,
burnin = 0,

sample = 10000,

adapt = 1000,

noread.monitor = NA,

jags = NA,

silent.jags = NA,

summarise = sample >= 100,

thin = NA,

keep.jags.files = FALSE,

tempdir = runjags.getOption("tempdir"),
jags.refresh = NA,

batch.jags = silent.jags,

method = NA,

method.options = NA,

Arguments

model either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. No default. See
read. jagsfile for more details.

monitor a character vector of the names of variables to monitor. No default. The spe-
cial node names ’deviance’, "pd’, "popt’, ’dic’, ’ped’ and ’full.pd’ are used to
monitor the deviance, mean pD, mean pOpt, DIC, PED and full distribution of
sum(pD) respectively. Note that these monitored nodes (with the exception of
’deviance’) require multiple chains within the same simulation, and won’t ap-
pear as variables in the summary statistics or plots (but see extract for a way
of extracting these from the returned object).

data anamed list, data frame, environment, character string in the R dump format (see
dump.format), or a function (with no arguments) returning one of these types.
If the model text contains inline #data# comments, then this argument specifies
the list, data frame or environment in which to search first for these variables
(the global environment is always searched last). If the model text does not
contain #data# comments, then the full list or data frame (but not environment)
is included as data. If the data argument is a character string, then any #data#
comments in the model are ignored (with a warning). The default specifies the
parent environment of the function call.

n.chains the number of chains to use with the simulation. More chains will improve

34

inits

burnin

sample

adapt

noread.monitor

datalist
initlist

jags

silent. jags

run.jags

the sensitivity of the convergence diagnostic, but will cause the simulation to
run more slowly (although this may be improved by using a method such as
“parallel’, ‘rjparallel’ or ’snow’). The minimum (and default) number of chains
is 2.

either a character vector with length equal to the number of chains the model
will be run using, or a list of named lists representing names and corresponding
values of inits for each chain, or a function with either 1 argument represent-
ing the chain or no arguments. If a vector, each element of the vector must be
a character string in the R dump format representing the initial values for that
chain, or NA. If not all initialising variables are specified, the unspecified vari-
ables are taken deterministically from the mean or mode of the prior distribution
by JAGS. Values left as NA result in all initial values for that chain being taken
from the prior distribution. The special variables *.RNG.seed’, *.RNG.name’,
and ’.RNG:.state’ are allowed for explicit control over random number genera-
tors in JAGS. If a function is provided, the data is available inside the function as
a named list "data’ - this may be useful for setting initial values that depend on
the data. Default NA. Note that the dimensions of any variables used for initial
values must match the dimensions of the same parameter in the model - recy-
cling is not performed. If any elements of the initial values have deterministic
values in the model, the corresponding elements must be defined as NA in the
initial values.

the number of burnin iterations, NOT including the adaptive iterations to use for
the simulation. Note that the default is 4000 plus 1000 adaptive iterations, with
a total of 5000.

the total number of (additional) samples to take. Default 10000 iterations. If
specified as 0, then the model will be created and returned without any MCMC
samples (burnin and adapt will be ignored). Note that a minimum of 100 sam-
ples is required to generate summary statistics.

the number of adaptive iterations to use at the start of the simulation. If the
adaptive phase is not long enough, the sampling efficiency of the MCMC chains
will be compromised. If the model does not require adaptation (either because
a compiled rjags model is already available or because the model contains no
data) then this will be ignored, with a warning that the model is not in adaptive
mode. Default 1000 iterations.

an optional character vector of variables to monitor in JAGS and output to coda
files, but that should not be read back into R. This may be useful (in conjunction
with keep.jags.files=TRUE) for looking at large numbers of variables a few at a
time using the read.monitor argument to results.jags. This argument is ignored
for the rjags and rjparallel methods, and if keep.jags.files=FALSE.

deprecated argument.
deprecated argument.

the system call or path for activating JAGS. Default uses the option given in
runjags.options.

option to suppress output of the JAGS simulations. Default uses the option given
in runjags.options.

run.jags

modules

factories

summarise

mutate

thin

keep.jags.files

tempdir

jags.refresh

35

a character vector of external modules to be loaded into JAGS, either as the
module name on its own or as the module name and status separated by a space,
for example ’glm on’.

a character vector of factory modules to be loaded into JAGS. Factories should
be provided in the format "\<facname\> \<factype\> \<status\>’ (where status is
optional), for example: factories="mix::TemperedMix sampler on’. You must
also ensure that any required modules are also specified (in this case 'mix’).

should summary statistics be automatically calculated for the output chains?
Default TRUE (but see also ?runjags.options -> force.summary).

either a function or a list with first element a function and remaining elements
arguments to this function. This can be used to add new variables to the pos-
terior chains that are derived from the directly monitored variables in JAGS.
This allows the variables to be summarised or extracted as part of the MCMC
objects as if they had been calculated in JAGS, but without the computational
or storage overheads associated with calculating them in JAGS directly. The
plot, summary and as.mcmc methods for runjags objects will automatically ex-
tract the mutated variables along with the directly monitored variables. For an
application to pairwise comparisons of different levels within fixed effects see
contrasts.mcmc.

the thinning interval to be used in JAGS. Increasing the thinning interval may
reduce autocorrelation, and therefore reduce the number of samples required, but
will increase the time required to run the simulation. Using this option thinning
is performed directly in JAGS, rather than on an existing MCMC object as with
thin.sample. Default 1.

option to keep the folder with files needed to call JAGS, rather than deleting it.
This allows the simulation results to be re-read using results.jags(path-to-folder),
even from another R session, and may also be useful for attempting to bug fix
models. A character string can also provided, in which case this folder name
will be used instead of the default (existing folders will NOT be over-written).
Default FALSE. See also the cleanup. jags function.

option to use the temporary directory as specified by the system rather than
creating files in the working directory. If keep.jags.files=TRUE then the folder
is copied to the working directory after the job has finished (with a unique folder
name based on ’runjagsfiles’). Any files created in the temporary directory are
removed when the function exits for any reason. It is not possible to use a
temporary directory with the background methods, so tempdir will be set to
FALSE if not done so by the user (possibly with a warning depending on the
settings in runjags.options). Default TRUE.

the refresh interval (in seconds) for monitoring JAGS output using the ’interac-
tive’ and ’parallel’ methods (see the method’ argument). Longer refresh inter-
vals will use slightly less processor time, but will make the simulation updates to
be shown on the screen less frequently. Reducing the refresh rate to every 10 or
30 seconds may be worthwhile for simulations taking several days to run. Note
that this will have no effect on the processor use of the simulations themselves.
Default 0.1 seconds.

36 run.jags

batch. jags option to call JAGS in batch mode, rather than using input redirection. On JAGS
>=3.0.0, this suppresses output of the status which may be useful in some situ-
ations. Default TRUE if silent.jags is TRUE, or FALSE otherwise.

method the method with which to call JAGS; probably a character vector specifying one
of 'rjags’, ’simple’, ’interruptible’, *parallel’, 'rjparallel’, *background’, bgpar-
allel’ or ’snow’. The ’rjags’ and ’rjparallel’ methods run JAGS using the rjags
package, whereas other options do not require the rjags package and call JAGS
as an external executable. The advantage of the 'rjags’ method is that the model
will not need to be recompiled between successive calls to extend.jags, all other
methods require a re-compilation (and adaptation if necessary) step at every call
to extend.jags. Note that the 'rjparallel’ and ’snow’ methods may leave behind
zombie JAGS processes if the user interrupts the R session used to start the sim-
ulations - for this reason the "parallel’ method is recommended for interactive
use with parallel chains. The *background’ and *bgparallel’ return a filename for
the started simulation, which can be read using results. jags. The ’parallel’
and ’interruptible’ methods for Windows require XP Professional, Vista or later
(or any Unix-alike). For more information refer to the userguide vignette.

method.options a deprecated argument currently permitted for backwards compatibility, but this
will be removed from a future version of runjags. Pass these arguments directly
to run.jags or extend.jags.

summary parameters to be passed to add.summary, and/or additional options
to control some methods including n.sims for parallel methods, cl for rjparallel
and snow methods, remote.jags for snow, and by and progress.bar for the rjags
method.

runjags.object the model to be extended - the output of a run.jags (or autorun.jags or extend.jags
etc) function, with class 'runjags’. No default.

add.monitor a character vector of variables to add to the monitored variable list. All previ-
ously monitored variables are automatically included - although see the *drop.monitor’
argument. Default no additional monitors.

drop.monitor a character vector of previously monitored variables to remove from the moni-
tored variable list for the extended model. Default none.

drop.chain a numeric vector of chains to remove from the extended model. Default none.

combine a logical flag indicating if results from the new JAGS run should be combined
with the previous chains. Default TRUE if not adding or removing variables or
chains, and FALSE otherwise.

Details

The run.jags function reads, compiles, and updates a JAGS model based on a model representation
(plus data, monitors and initial values) input by the user. The model can be contained in an external
text file, or a character vector within R. The autorun.jags function takes an existing runjags-class
object and extends the simulation. Running a JAGS model using these functions has two main
advantages:

1. The method used to call or extend the simulation can be changed simply using the method
option. The methods most likely to be used are ’interruptible’ and ’rjags’ which use one sim-
ulation per model, or ’parallel’, *bgparallel’ and ’rjparallel” which run a separate simulation

run.jags 37

for each chain to speed up the model run. For more details see below under the *method’
argument.

2. All information required to re-run the simulations is stored within the runjags-class object
returned. This complete representation can be written to a text file using write. jagsfile,
then modified as necessary and re-run using only the file path as input.

3. Summary statistics for the returned simulations are automatically calculated and displayed us-
ing associated S3 methods intended to facilitate checking model convergence and run length.
Additional methods are available for plot functions, as well as conversion to and from MCMC
and rjags objects. See the help file for runjags-class for more details.

Value

Usually an object of class 'runjags’, or an object of class 'runjagsbginfo’ for background methods
(see runjags-class).

References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Utilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

results.jags to import completed simulations (or partially successful simulations) from saved
JAGS files, runjags-class for details of available methods for the returned object, read. jagsfile
for more details on the permitted format of the model file, write. jagsfile for a way to write an
existing runjags object to file, and runjags.options for user options regarding warning messages
etc.

Examples

run a model to calculate the intercept and slope of the expression
y=mx + c, assuming normal observation errors for y:

Simulate the data
X <-1:100
Y <- rnorm(length(X), 2*X + 10, 1)

Model in the JAGS format

model <- "model {

for(i in 1 : N){

Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m * X[i]) + ¢

3

m ~ dunif(-1000,1000)

c ~ dunif(-1000,1000)

precision ~ dexp(1)

}n

Data and initial values in a named list format,

38

with explicit control over the random number
generator used for each chain (optional):
data <- list(X=X, Y=Y, N=length(X))

inits1 <- list(m=1, c=1, precision=1,
.RNG.name="base: : Super-Duper"”, .RNG.seed=1)
inits2 <- list(m=0.1, c=10@, precision=1,
.RNG.name="base: :Wichmann-Hill", .RNG.seed=2)

Not run:
Run the model and produce plots

results <- run.jags(model=model, monitor=c("m”, "c", "precision"),
data=data, n.chains=2, method="rjags", inits=list(inits1,inits2))

Standard plots of the monitored variables:
plot(results)

Look at the summary statistics:
print(results)

Extract only the coefficient as an mcmc.list object:
library('coda')

coeff <- as.mcmc.list(results, vars="m")

End(Not run)

run.jags

The same model but using embedded shortcuts to specify data, inits and monitors,

and using parallel chains:
Model in the JAGS format

model <- "model {

for(i in 1 : N){ #data# N

Y[i] ~ dnorm(true.y[i], precision) #data# Y
true.y[i] <= (m x X[i]) + c #data# X

3

m ~ dunif(-1000,1000) #inits# m

c ~ dunif(-1000,1000)

precision ~ dexp(1)

#monitor# m, c, precision

3

Simulate the data

X <- 1:100

Y <= rnorm(length(X), 2xX + 10, 1)
N <- length(X)

initfunction <- function(chain) return(switch(chain,
"r=list(m=-10), "2"=list(m=10)))

Not run:
Run the 2 chains in parallel (allowing the run.jags function
to control the number of parallel chains). We also use a

run.jags.study

mutate function to convert the precision to standard deviation:
results <- run.jags(model, n.chains=2, inits=initfunction,
method="parallel”, mutate=list("prec2sd”, vars="precision”))

View the results using the standard print method:
results

Look at some plots of the intercept and slope on a 3x3 grid:
plot(results, c('trace', 'histogram', 'ecdf', 'crosscorr', 'key"'),
vars=c("m","*c"),layout=c(3,3))

Write the current model representation to file:
write.jagsfile(results, file="mymod.txt')

And re-run the simulation from this point:
newresults <- run.jags('mymod.txt"')

End(Not run)

Run the same model using 8 chains in parallel:
distributed computing cluster:

Not run:

A list of 8 randomly generated starting values for m:
initlist <- replicate(8,list(m=runif(1,-20,20)),simplify=FALSE)

Run the chains in parallel using JAGS (2 models

with 4 chains each):

results <- run.jags(model, n.chains=8, inits=initlist,
method="parallel”, n.sims=2)

Set up a distributed computing cluster with 2 nodes:
library(parallel)
cl <- makeCluster(4)

Run the chains in parallel rjags models (4 models

with 2 chains each) on this cluster:

results <- run.jags(model, n.chains=8, inits=initlist,
method="rjparallel”, cl=cl)

stopCluster(cl)

For more examples see the quick-start vignette:
vignette('quickjags', package='runjags')

And for more details about possible methods see:
vignette('userguide', package='runjags')

End(Not run)

run. jags.study Drop-k and simulated dataset studies using JAGS

40

Description

run.jags.study

These functions can be used to fit a user specified JAGS model to multiple datasets with automatic
control of run length and convergence, over a distributed computing cluster such as that provided
by snow. The results for monitored variables are compared to the target values provided and a
summary of the model performance is returned. This may be used to facilitate model validation
using simulated data, or to assess model fit using a ’drop-k’ type cross validation study where one
or more data points are removed in turn and the model’s ability to predict that datapoint is assessed.

Usage
drop.k(runjags.object, dropvars, k = 1, simulations = NA, ...)
drop.k.jags(runjags.object, dropvars, k = 1, simulations = NA, ...)
drop.k.JAGS(runjags.object, dropvars, k = 1, simulations = NA, ...)

run. jags.study(
simulations,

model,

datafunction,

targets = list(),

confidence
record.chains

0.95,

= FALSE,

max.time = "15m",

silent. jags

TRUE,

parallel.method = parLapply,

n.cores =

export.cluster = character(0),
inits = list(),

Arguments

runjags.object an object of class runjagsstudy-class on which to perform the drop-k analy-

dropvars

simulations

S1S

the variable(s) to be eliminated from the data so that the ability of the model
to predict these datapoints can be assessed. The variable can be specified as a
vector, or as a single character for which partial matching will be done. Array in-
dices can be used, but must be specified as a complete range e.g. variable[2:5,2]
is permitted, but variable[,2] is not because the first index is empty

the number of datapoints to be dropped from each individual simulation. The
default of 1 is a drop-1 study (also called a leave-one-out cross validation study).

the number of datasets to run the model on. For drop.k the default is to use the
number of unique datapoints, resulting in a drop-1 study. If the specified number
of simulations is different to the number of unique datapoints, the datapoints are
dropped randomly between simulations.

run.jags.study

model

datafunction

targets

confidence

record.chains

max.time

silent. jags

parallel.method

n.cores

export.cluster

inits

Details

41

optional arguments to be passed to autorun. jags, or to the parallel method
function (such as ’cl’).

the JAGS model to use, in the same format as would be specified to run. jags.

a function that will be used to specify the data. This must take either zero argu-
ments, or one argument representing the simulation number, and return either a
named list or character vector in the R dump format containing the data specific
to that simulation. It is possible to specify any data that does not change for each
simulation using a #data# \<variable\> tag in the model code.

anamed list of variables (which can include vectors/arrays) with values to which
the model outputs are compared (if stochastic). The target variable names are
also automatically included as monitored variables.

a probability (or vector of probabilities) to use when calculating the proportion
of credible intervals containing the true target value. Default 95% CI.

option to return the full runjags objects returned from each simulation as a list
item named 'runjags’.

the maximum time for which each individual simulation is allowed to run by the
underling autorun.jags function. Acceptable units include ’seconds’, *minutes’,
“hours’, days’, *weeks’, or the first letter(s) of each. Default is 15 minutes.

option to suppress all JAGS output, even for simulations run locally. If set to
FALSE, there is no guarantee that the output will be displayed in sequential
order between the parallel simulations. Default TRUE.

a function that will be used to call the repeated simulations. This must take
the first two arguments *X’ and "FUN’ as for lapply, with other optional argu-
ments passed through from the parent function call. Default uses parLapply,
but lapply or mclapply could also be used.

the maximum number of cores to use for parallel simulations. Default value uses
detectCores, or aminumum of 2. Ignored if cl is supplied, or if parallel.method
does not take a cl argument.

a character vector naming objects to be retrieved from the parent frame of the
function call and made available to the cluster nodes. This may be useful if
the initial values specified for the model are required to be extracted from the
working environment, however it may be preferable to specify a function for
inits instead.

as for run. jags, except that it is not permitted to be an environment. It is rec-
ommended to a function to return appropriate initial values (which may depend
on the data visible when the function is evaluated).

The drop.k function is a wrapper to run.jags.study for the common application of drop-k cross
validation studies on fitted JAGS models. The run.jags.study function is more flexible, and can be
used for validating the performance of a model against simulated data with known parameters. For
the latter, a user-specified function to generate suitable datasets to analyse is required.

42 runjags-class

Value

An object of class runjagsstudy-class, containing a summary of the performance of the model
with regards to the target variables specified. If record.chains=TRUE, an element named 'runjags’
containing a list of all the runjags objects returned will also be present. Any error messages given
by individual simulations will be contained in the ’errors’ element of the returned list.

See Also
autorun. jags for the underlying methods used to run simulations to convergence, and runjagsstudy-class

for details of the returned object

Examples

For examples of usage see the following vignette:
Not run:
vignette('userguide', package='runjags')

End(Not run)

runjags-class The runjags class and available S3 methods

Description

Objects of class ‘runjags’ are produced by run. jags, results. jags and autorun. jags, and con-
tain the MCMC chains as well as all information required to extend the simulation. These are a
number of utility functions associated with these objects.

Usage

S3 method for class 'runjags'
as.mcmc(x, vars = NA, add.mutate = TRUE, ...)

S3 method for class 'runjags'
as.mcmc.list(x, vars = NA, add.mutate = TRUE, ...)

S3 method for class 'runjags'
as.jags(x, adapt = 1000, quiet = FALSE, ...)

S3 method for class 'jags'
as.runjags(
jags.model,
monitor = stop(”No monitored variables supplied”),
modules = runjags.getOption("modules”),
factories = runjags.getOption("factories”),
jags = runjags.getOption("”jagspath"),
mutate = NA,

runjags-class 43

check = TRUE,

)

is.runjags(x)

cleanup. jags(all.folders = FALSE, silent = FALSE)

cleanup.JAGS(all.folders = FALSE, silent = FALSE)

failed. jags(show = c("model”, "output"))

as.jags(x, adapt = 1000, quiet = FALSE, ...)
Default S3 method:

as.jags(x, ...)
as.runjags(jags.model, ...)

Default S3 method:
as.runjags(jags.model, ...)

S3 method for class 'runjags'
residuals(
object,
variable = object$residual,
show. summary = FALSE,
output = "mean”,

)

S3 method for class 'runjags'
fitted(
object,
variable = object$fitted,
show. summary = FALSE,
output = "mean”,

Arguments

X an object of class runjags.

vars an optional character vector of variable names to extract. If supplied, only vari-
able names in the object supplied with a partial match to anything in ’vars’ will
be summarised/plotted/extracted. Note that regular expressions are not allowed,
but the caret (*) token can be used to specify the match at the start of a vari-
able name, and a quoted vars will be matched exactly. Default NA meaning all

44

add.mutate

adapt
quiet
jags.model
monitor
modules

factories

jags

mutate
check
all.folders

silent
show

object
variable
show. summary

output

Details

runjags-class

variables available are returned.

option to use the inbuild mutate function to produce additional MCMC variables
before returning the MCMC object.

additional options to be passed to default methods or additional functions.
as for jags.model

as for jags.model

a model produced by jags.model

a character vector of the names of variables to monitor, as for run. jags

a character vector of external modules to be loaded into JAGS, either as the
module name on its own or as the module name and status separated by a space,
for example "glm on’.

a character vector of factory modules to be loaded into JAGS. Factories should
be provided in the format "\<facname\> \<factype\> \<status\>’ (where status is
optional), for example: factories="mix::TemperedMix sampler on’. You must
also ensure that any required modules are also specified (in this case 'mix’).

the system call or path for activating JAGS. Default uses the option given in
runjags.options.

either a function or a list with first element a function and remaining elements
arguments to this function that can be used to add variables to the model output.
See add. summary for more details.

option to check that the model can be (re)-compiled.

option to remove ALL simulation folders created using keep.jags.filessTRUE
and not just unsuccessful simulations.

option to suppress feedback when deleting simulation folders.

which parts of the failed JAGS simulation to display - options are: 'model’,
’data’, ’inits’, "output’, "end.state’, all’

an object of class runjags.

the name of the variable within the JAGS simulation that denotes the resid-
ual/fitted variable. This must be specified to be able to use the residuals and
fitted methods.

option to show the full summary statistics of the returned models before extract-
ing just the residuals/fitted variable information.

the type of output required for the residuals and fitted methods - options are:
’mean’, 'mcmce’, “hpd’, ’summary’, ‘runjags’.

The functions and methods detailed here permit conversion of runjags objects to MCMC objects
and to/from jags models created by jags.model. There are also S3 methods for print, summary
and plot available for runjags class objects - see add. summary for details of the arguments available
to these. The ’failed.jags’ function allows the user to interrogate the details of JAGS models that
failed to compile or produce MCMC output. By default, any simulation folders for models that
failed to import are kept until the R session is ended - in some circumstances it may be possible
to partially recover the results using results.jags. The cleanup.jags function can be used to
remove simulation folders created in the current R session, and is called when the runjags package

is unloaded.

runjags.options 45

See Also

add. summary for details on plot, print and summary methods for runjags class objects, extract.runjags
for a method to extract peripheral information from runjags objects, runjags.options for general
options available, and run.jags and autorun. jags for the functions that create objects of this
class.

Examples

if(require('rjags')){

Coercion between jags and runjags objects (requires loading the rjags package):
data(LINE)

jags.model <- LINE

runjags.model <- as.runjags(jags.model, monitor=c('alpha', 'beta'))
Not run:

runjags.model <- extend.jags(runjags.model)

jags.model <- as.jags(runjags.model)

Coercion to MCMC (requires loading the coda package):
library('coda')

mcmc <- as.mcmc.list(runjags.model)

summary (memc)

End(Not run)
3

runjags.options Options for the runjags package

Description

Utility function to change the default options for the runjags package. Options will be used for
all runjags function calls until the runjags package is unloaded. For a permanent solution, create
a named list called ’.runjags.options’ containing the desired options in an R profile file - on load-
ing, runjags will check to see if this object exists in the global environment and set the options
automatically.

Usage
runjags.options(...)
runjags.getOption(name)

runJAGS.getOption(name)

Arguments

named option(s) to change - for a list of available options, see details below.

name the name of the option to get the current value of - for a list of available options,
see details below.

46 runjags.options

Details

The following default options can be specified:

* jagspath - the path to JAGS to use unless over-ridden in a function call (uses the findjags()
function by default).

* method - the runjags method to use unless over-ridden in a function call (default is ’rjags’ if
the rjags package is installed, or ’interruptible’ otherwise).

* tempdir - default to temporary directory unless over-ridden in a function call (default TRUE).

* plot.layout - the layout for plots unless over-ridden in a function call. Must be a numeric
vector of length 2.

* new.windows - use multiple windows for plots unless over-ridden in a function call (default
is platform dependent).

* modules - the modules to load unless over-ridden in a function call (default none).
« factories - the factories to load unless over-ridden in a function call (default none).

* bg.alert - an optional command to run once background JAGS processes have completed.
Note that this command is run on the command line via system(), so will be system dependent.
The default attempts to make an alert sound using a system appropriate method, which may
not work on all platforms.

* linenumbers - display line numbers when printing runjags model, data and inits class objects
unless over-ridden in a function call (default none).

* inits.warning - display warning messages about initial values being not specified or re-used.

* rng.warning - display warning messages relating to pseudo-random number generation for
parallel chains.

* summary.warning - display a warning message if summary statistics are requested for a small
number of samples (and a few other similar situations).

* blockcombine.warning - display a warning message if multiple data or inits blocks are com-
bined in a model file.

* blockignore.warning - display a warning message if ignoring monitors, data or inits in the
model file because a character argument was given for the same parameters to the run.jags
function.

* tempdir.warning - display a warning message if tempdir=TRUE is requested with a back-
ground method.

* nodata.warning - display a warning message if the model has been run without any data.

* adapt.incomplete - all models are checked to make sure that the adaptive phase has completed
- this option controls the behaviour of runjags if this adaptation is not complete before MCMC
sampling. If adapt.incomplete=’silent’ no action is taken, if warning’ then the model run
is continued but a warning is given after the simulation is finished, and if ’error’ an error
will be returned. Note that for most methods the error is returned immediately following the
adapt/burnin phases (so the sample iterations are not run), but for the simple and snow methods
the full model will be run before the error is given.

* repeatable.methods - option to ensure that the MCMC object produced by the rjags and
rjparallel methods are identical to those produced by other methods (given the same starting
values). This is primarily for extending compiled models, where additional burnin iterations

runjags.options 47

will be done to replace unnecessary adpative steps for consistency with other methods, and
following dic sampling, where the rjags model will be reset to the state it was in before dic
sampling. Note that the precision of the numbers returned may differ between methods on
some platforms.

* silent.jags - suppress output of JAGS (or rjags) when updating models.
* silent.runjags - suppress feedback provided by the runjags functions.

* predraw.plots - automatically pre-calculate convergence diagnostic plots (this will save time
when displaying plots at the cost of increased storage requirement for the runjags object).

* force.summary - override the default behaviour to omit calculation of summary statistics for
greater than 50 variables, and attempt to calculate summary statistics anyway (this may cause
long delays in the processing of results).

* mode.continuous - calculate the mode of continuous variables for summary statistics (re-
quires the "modeest" package to be installed).

* timeout.import - the maximum number of seconds for runjags to wait for coda files to finish
being written before giving up. If a large number of monitored variables are being written,
either the timeout can be increased or results.jags() can be used once the files have been
written.

« partial.import - force runjags to read in successful simulations even when parallel simulations
crashed. If this option is set to TRUE, it is not guaranteed that a model result will contain the
requested number of chains!

* keep.crashed.files - allows folders containing crashed simulations to be preserved even if
keep.jags.files = FALSE. Any folders kept will be deleted when runjags is unlaoded or when
R quits.

* full.cleanup - when unloading the runjags package, should all simulation folders preserved
using keep.jags.files=TRUE be deleted? This option may not work as expected on all systems
when quitting R, but should always work for unloadNamespace(’runjags’). Note also that
folders for any failed JAGS runs are always deleted on exit - if you want to keep these, they
will have to be copied manually.

* debug - display internal debugging output.

Value
The current value of all available runjags options (after applying any changes specified) is returned
invisibly as a named list.

See Also

run. jags, findjags, runjags-class

Examples
Not run:
Create a list of options in the global environment (perhaps in an

R startup profile file) BEFORE load()ing runjags:
.runjags.options <- list(inits.warning=FALSE, rng.warning=FALSE)

48

Or if it is run in a different environment:

.runjags.options <<- list(inits.warning=FALSE, rng.warning=FALSE)

Then load runjags and verify that the options have been set:

library('runjags')
print(runjags.options())

Change the default option to remove all feedback provided by
runjags and JAGS/rjags (only errors will be printed to screen):

runjags.options(silent. jags=TRUE, silent.runjags=TRUE)

End(Not run)

runjags.printmethods

runjags.printmethods

Print methods for runjags helper classes

Description

Print methods for a number of classes that are associated with runjags objects, such as model, data

and initial values files etc.

Usage

S3 method for class
print(x, linenumbers =

S3 method for class
print(x, linenumbers =

S3 method for class
print(x, linenumbers =

S3 method for class
print(x, linenumbers =

S3 method for class
print(x, linenumbers =

'failedjags'
runjags.getOption(”linenumbers"),

'runjagsmodel’
runjags.getOption(”linenumbers"),

'runjagsdata’
runjags.getOption(”linenumbers"),

'runjagsinits’
runjags.getOption(”linenumbers"),

'runjagsoutput’
runjags.getOption(”linenumbers"),

S3 method for class 'rjagsoutput'
print(x, ...)

S3 method for class 'crosscorrstats'
print(x, vars = NA, digits =5, ...)
S3 method for class 'mcsestats'

runjags.printmethods 49

print(x, vars = NA, digits =5, ...)

S3 method for class 'gelmanwithtarget'
print(x, vars = NA, digits = 3, ...)

S3 method for class 'dicstats'
print(x, digits = 3, ...)

S3 method for class 'runjagsbginfo'
print(x, ...)

S3 method for class 'runjagsstudy'
print(x, ...)

S3 method for class 'runjagsstudy'
summary (object, ...)

S3 method for class 'runjagsstudy'

plot(x, ...)
Arguments
X the object to be printed or converted.
linenumbers option to display line numbers alongside model, data and initial values output
(this may be helpful for debugging). Defualt uses the option setin runjags.options.
other arguments which are passed to the default print method for some methods
but ignored (with/without a warning) for others
vars an optional character vector of variable names. If supplied, only variable names
in the object supplied with a partial match to anything in ’vars’ will be used.
Note that regular expressions are not allowed, but the caret (*) token can be
used to specify the match at the start of a variable name, and a quoted vars will
be matched exactly. Default NA meaning all variables available are returned.
digits the number of digits to display for printed numerical output.
object the object to be summarised.
References

Matthew J. Denwood (2016). runjags: An R Package Providing Interface Utilities, Model Tem-
plates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.109

See Also

runjags-class for print and plot methods associated with the main runjags class

50 template.jags

template. jags Generate a generalised linear mixed model (GLMM) specification in
JAGS

Description

Use an Ime4 style syntax to create a JAGS model representation of a GLMM, including all data,
initial values and monitor specifications required to run the model using run. jags.

Usage
template. jags(
formula,
data,
file = "JAGSmodel.txt",
family = "gaussian”,

write.data = TRUE,

write.inits = TRUE,

precision.prior = "dgamma(@.001, 0.001)",
effect.prior = "dnorm(@, 10%-6)",
n.chains = 2,

precision.inits = c(0.01, 10),
effect.inits = c(-1, 1),

inits = NULL
)
template. JAGS(
formula,
data,
file = "JAGSmodel.txt",
family = "gaussian”,

write.data = TRUE,

write.inits = TRUE,

precision.prior = "dgamma(@.001, 0.001)",
effect.prior = "dnorm(@, 10%-6)",
n.chains = 2,

precision.inits = c(0.01, 10),
effect.inits = c(-1, 1),

inits = NULL
)
Arguments
formula a formula representation of the desired model, using Ime4 style syntax. Two-
way interactions for all variables are permitted, as are random intercepts.
data a data frame containing the variables specified in formula. This must be speci-

fied.

template.jags 51

file the filename of the model to output. This will be over-written if it exists.

family a character string representing the response distribution - options are: ’gaussian’,
’binomial’, "Poisson’, 'negative binomial’, *ZIB’, *ZIP’, ZINB’ (the latter de-
note zero-inflated distributions).

write.data option to write the data to file with the model. If the data is very large it may
be better not to write this to file, but the same data frame must be given to the
subsequent run.jags call that runs the model.

write.inits option to write the initial values to file with the model.
precision.prior
the prior distribution to be used for precision parameters.

effect.prior the prior distribution to be used for linear and fixed effect terms, as well as
interactions and the intercept.

n.chains the number of chains to use.

precision.inits
a numeric vector of initial values from which the precision parameters in the
model will be randomly chosen. It is recommended to make these over-dispersed,
but if the values are too extreme the model may not compile.

effect.inits anumeric vector of initial values from which the effect parameters in the model
will be randomly chosen. It is recommended to make these over-dispersed, but
if the values are too extreme the model may not compile.

inits an optional list of named lists to specify initial values for one or more parameters
in each chain. The number of named lists must match n.chains.

Details

This function is designed to allow new users to MCMC to create relatively simple GLMM models
in JAGS using an Ime4-style formula interface. Examining the template created by this function is
a good way to learn about how the BUGS language is structured, as well as the options provided
by the runjags package. After generating the template model, the user is encouraged to examine
the model file and make whatever changes are necessary before running the model using ‘run.jags’.
You can also run the models with no changes and compapre the results to those obtained through
more standard model fitting approaches to learn more about how the differently presented sets of
inference relate to each other. Note that the effect of the reference level for factors is explicitly
given as 0 in output from runjags. For more about the BUGS language, see Lunn et al (2012).

Value

The filename of the created model template.

References

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS book: A practical
introduction to Bayesian analysis. CRC press; and Matthew J. Denwood (2016). runjags: An
R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Ad-
ditional Distributions for MCMC Models in JAGS. Journal of Statistical Software, 71(9), 1-25.
doi:10.18637/jss.v071.109

52 template_huiwalter

See Also

run. jags to run the model, add. summary for details of summary statistics available from the fitted
model, and runjags-class for details of how to extract information such as residuals and the fitted
values.

Examples

Not run:
Create a simple linear model and compare the results to LM:

This is based on the example in ?1lm:

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)

D9 <- data.frame(weight, group)

Im.D9 <- 1m(weight ~ group, data=D9)

3,5.14)

3
32,4.69)

The JAGS equivalent:

model <- template.jags(weight ~ group, D9, n.chains=2,
family="gaussian')

JAGS.D9 <- run.jags(model)

summary (JAGS.D9)

summary (1m.D9)

Note that 1m reports sigma and JAGS the precision - to

make them more comparable we could use a mutate function:
JAGS.D9 <- run.jags(model, mutate=list(prec2sd, 'precision'))
summary (JAGS.D9)

summary (1m.D9)

Compare the estimated residuals:

plot(residuals(1m.D9), residuals(JAGS.D9, output='mean'))

For more examples see:
vignette('quickjags', package='runjags')

End(Not run)

template_huiwalter Create a Hui-Walter model based on paired test data for an arbitrary
number of tests and populations

Description

Create a Hui-Walter model based on paired test data for an arbitrary number of tests and populations

Usage

template_huiwalter(
testdata,

template_huiwalter

outfile = "hu

53

iwalter_model.txt",

covariance = data.frame(Test_A = character(@), Test_B = character(@), Active =

logical(@))

’

se_priors = "dbeta(1,1)",
sp_priors = "dbeta(1,1)",

prev_priors =
cov_as_cor =

"dbeta(1,1)",
FALSE,

specify_populations = FALSE,

outcome_check
check_min_obs

Arguments

testdata

outfile

covariance

se_priors

sp_priors

prev_priors

cov_as_cor

specify_populat

outcome_check

check_min_obs

Examples

N <- 600

= TRUE,
= 20L

the input paired test data, where each column name corresponds to a test result
- except possibly "ID" which is ignored, and "Population" indicating a popula-
tion identifier for that row. Each row must represent test results from the same
individual either as logical or a factor with two levels (and where the first level
indicates a negative test result). Data may be missing at random (except for
Population).

the name of the text file to save the model representation

a data frame specifying which conditional depdendence terms should be in-
cluded (either activated or deactivated) with columns Test_A, Test_B, Active_Se
and Active_Sp. A single logical FALSE is allowed for back-compatibility, and
a single logical TRUE is also currently allowed but is deprecated.

the priors to use for sensitivity parameters (can be adjusted in the model once it
is generated)

the priors to use for specificity parameters (can be adjusted in the model once it
is generated)

the priors to use for prevalence parameters (can be adjusted in the model once it
is generated)

option for the prior for covariance terms to be put on the correlation rather than
covariance directly (deprecated; currently ignored with a warning)

ions

option for the active populations to be retrieved from a PopulationsUsing vector
in the R environment - this facilitates sensitivity analysis by excluding subsets
of populations without re-generating the model

option to facilitate comparing the observed tallies to the predicted tallies in order
to assess model fit

the minimum number of total observations required before an outcome_check
is generated (this prevents e.g. outcome checks being generated for partially
missing data)

54 testjags

status <- rbinom(N, 1, rep(c(0.25,0.5,0.75), each=N/3))
testdata <- data.frame(Population = rep(1:3, each=N/3),
FirstTest = rbinom(N, 1, status*0.95 + (1-status)*0.05),
SecondTest = rbinom(N, 1, status*@.75 + (1-status)=*0.02),
ThirdTest = rbinom(N, 1, status*0.5 + (1-status)*0.01)
)
template_huiwalter(testdata, outfile="huiwalter_model.txt",
covariance=data. frame(
Test_A="FirstTest”,
Test_B="SecondTest",
Active_Se=TRUE, Active_Sp=FALSE
)
)

Then examine and verify the code manually!
cat(readLines("huiwalter_model.txt"), sep="\n")

Before running the model:

Not run:
results <- run.jags("huiwalter_model.txt")
results

End(Not run)

Cleanup:
unlink("huiwalter_model.txt")

testjags Analyse the System to Check That JAGS Is Installed

Description

Test the users system to determine the operating system, version of R installed, and version of JAGS
installed. Some information is collected from other functions such as .platform and Sys.info. Used
by the run.jags function.

Usage

testjags(jags = runjags.getOption("”jagspath”), silent = FALSE)

Arguments

jags the system call or path for activating JAGS. Default calls findjags() to attempt
to locate JAGS on your system automatically. In unix the system call should
always be ’jags’, in Windows a path to the JAGS executable or the enclosing
/bin or /JAGS folder is required.

silent should on-screen feedback be suppressed? Default FALSE.

timestring 55

Value

A named list of values containing information about the JAGS installs found on the user’s system
(returned invisibly).

See Also

run. jags, findjags

Examples

Run the function to determine if JAGS is installed:
testjags()
testjags('some/jags/path')

timestring Calculate the Elapsed Time in Sensible Units

Description

Function to calculate the elapsed time between 2 time periods (in seconds), or to calculate a number
of seconds into a time measurement in more sensible units.

Usage

timestring(timel, time2 = NA, units = NA, show.units = TRUE)

Arguments
timel either the time index (from Sys.time()) at the start of the time period, a length of
time in seconds, or an object of class ’difftime’.
time2 either the time index (from Sys.time()) at the end of the time period, or missing
data if converting a single length of time. Default NA.
units either missing, in which case a sensible time unit is chosen automatically, or one
of ’s’,’m’, ’h’, ’d’, "w’, ’y’ to force a specific unit. Default NA.
show.units if TRUE, then the time is returned with units, if FALSE then just an integer is
returned. Default TRUE.
Value

A time measurement, with or without units.

See Also

Sys.time

56 write.jagsfile

Examples

Time how long it takes to complete a task:
pre.time <- Sys.time()

Sys.sleep(2) # PROCESS TO TIME

post.time <- Sys.time()

timestring(pre.time, post.time)

Convert 4687 seconds into hours:

timestring (4687, units="hours', show.units=FALSE)

write.jagsfile Write a complete JAGS model to a text file

Description

Writes the JAGS model, data, initial values and monitored variables etc to a file. The model can
then be run using a call to 1ink{run. jags} with the filename as the model argument.

Usage

write. jagsfile(
runjags.object,
file,
remove.tags = TRUE,
write.data = TRUE,
write.inits = TRUE

)

write.JAGSfile(
runjags.object,
file,
remove.tags = TRUE,
write.data = TRUE,
write.inits = TRUE

Arguments

runjags.object a valid (but not necessarily updated) runjags object to be saved to file. No de-
fault.

file a filename to which the model will be written. Note that any files already exist-
ing in that location will be overwritten with no warning (see new_unique for a
way to generate unique filenames). No default.

write.jagsfile 57

remove. tags should the runjags tags #data#, #inits#, #monitors#, #modules#, #factories#,
#residual#, #fitted# and #response# be removed from the original model code
before writing it to file? If left in, these may create conflicts with the tags auto-
matically added to the new file.

write.data should the data also be written to file? If FALSE, the model may not run from
the file without specifying a new source of data.

write.inits should the data also be written to file? If FALSE, the model may not run from
the file without specifying new initial values.

Value

Returns the filename that the model was saved to (invisibly)

References

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS book: A practical
introduction to Bayesian analysis. CRC press; and Matthew J. Denwood (2016). runjags: An
R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Ad-
ditional Distributions for MCMC Models in JAGS. Journal of Statistical Software, 71(9), 1-25.
doi:10.18637/jss.v071.109

See Also

read.jagsfile and run. jags for the reverse operation

Examples

Set up a model:
#y =mx + c, assuming normal observation errors for y:

Simulate the data
X <- 1:100
Y <= rnorm(length(X), 2*X + 10, 1)

Model in the JAGS format

model <- "model {

for(i in 1 : N){

Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m x X[i]) + ¢

3

m ~ dunif(-1000,1000)

c ~ dunif(-1000,1000)

precision ~ dexp(1)

}u

Data and initial values in a named list format,
with explicit control over the random number

generator used for each chain (optional):

data <- list(X=X, Y=Y, N=length(X))

inits1 <- list(m=1, c=1, precision=1,
.RNG.name="base: : Super-Duper”, .RNG.seed=1)

58

inits2 <- list(m=0.1, c=10, precision=1,
.RNG.name="base: :Wichmann-Hill", .RNG.seed=2)

Not run:
Compile the model but don't update it (sample=0):

n_n

compiled <- run.jags(model=model, monitor=c("m”, "c", "precision"),

data=data, n.chains=2, inits=list(inits1,inits2), sample=0)

Save the complete model to a file:
filepath <- write.jagsfile(compiled, file='model.txt')

And run the model from the file:
results <- run.jags(filepath)

End(Not run)

write.jagsfile

Index

+ methods
add. summary, 2
ask, 7
combine.mcmc, 14
dump.list.format, 16
findjags, 19
load.runjagsmodule, 19
mutate.functions, 22
new_unique, 23
read. jagsfile, 24
run. jags.study, 39
runjags.options, 45
runjags.printmethods, 48
testjags, 54
timestring, 55
write. jagsfile, 56

+ models
autorun. jags, 8
extract.runjags, 17
results. jags, 28
run.jags, 31
runjags-class, 42
template. jags, 50

add.summary, 2, 12, 15, 18, 23, 30, 36, 44, 45,

52
as.jags (runjags-class), 42

as.mcmc.list.runjags (runjags-class), 42

as.mcmc.runjags (runjags-class), 42
as.runjags (runjags-class), 42

ask, 7,24

autocorr.diag, 7
autoextend. JAGS (autorun. jags), 8
autoextend. jags (autorun. jags), 8
autorun.JAGS (autorun. jags), 8
autorun. jags, 8, 17, 18,41, 42,45

cleanup. JAGS (runjags-class), 42
cleanup. jags, 29, 35
cleanup. jags (runjags-class), 42

59

combine. JAGS (combine.mcmc), 14
combine. jags (combine.mcmc), 14
combine.MCMC (combine.mcmc), 14
combine.mcmc, 14

contrasts.MCMC (mutate.functions), 22

contrasts.memc, /1, 35

contrasts.memc (mutate. functions), 22

detectCores, 41

dic.runjags (extract.runjags), 17
dic.samples, 17, 18

divide. JAGS (combine.mcmc), 14
divide. jags (combine.mcmc), 14
drop.k (run. jags.study), 39

dump, 17

dump.format, 10, 33

dump.format (dump.list.format), 16
dump.list.format, 16

effectiveSize, 7
extend. JAGS (run. jags), 31
extend. jags, 16
extend. jags (run. jags), 31
extract, 9, 33

extract (extract.runjags), 17
extract.runjags, 17,45

failed. JAGS (runjags-class), 42
failed. jags (runjags-class), 42
failedjags (runjags-class), 42
findJAGS (findjags), 19
findjags, 19, 47, 55

fitted.runjags (runjags-class), 42

gelman.diag, 4
HPDinterval, 6, 7
is.runjags (runjags-class), 42

jags.model, 44

60

lapply, 41

lattice, 5

list.format (dump.list.format), 16

load.module, 2/

load. runJAGSmodule
(load.runjagsmodule), 19

load.runjagsmodule, 19

mclapply, 41

mean, 7

median, 6

menu, 8

mlv, 4, 7

modeest, 6
mutate.functions, 22

new_unique, 23, 56

parLapply, 41
pdf, 6
plot.runjags (add.summary), 2
plot.runjagsplots (add.summary), 2
plot.runjagsstudy
(runjags.printmethods), 48
prec2sd (mutate.functions), 22
predict.runjags (runjags-class), 42
print.crosscorrstats
(runjags.printmethods), 48
print.dicstats (runjags.printmethods),
48
print.failedjags
(runjags.printmethods), 48
print.gelman.with. target
(runjags.printmethods), 48
print.gelmanwithtarget
(runjags.printmethods), 48
print.mcsestats (runjags.printmethods),
48
print.rjagsoutput
(runjags.printmethods), 48
print.runjags (add.summary), 2
print.runjagsbginfo
(runjags.printmethods), 48
print.runjagsdata
(runjags.printmethods), 48
print.runjagsinits
(runjags.printmethods), 48
print.runjagsmodel
(runjags.printmethods), 48

INDEX

print.runjagsoutput
(runjags.printmethods), 48

print.runjagsplots (add.summary), 2

print.runjagsstudy
(runjags.printmethods), 48

raftery.diag, 11
read.JAGSfile (read. jagsfile), 24
read.jagsfile, 9, 13,24, 33,37, 57
read.WinBUGS (read. jagsfile), 24
read.winbugs, 13
read.winbugs (read. jagsfile), 24
readline, 8
residuals.runjags (runjags-class), 42
results.JAGS (results. jags), 28
results. jags, 17,28, 36, 37,42, 44
run.JAGS (run. jags), 31
run.jags, 6, 13, 16-19, 22, 24-26, 28-30, 31,
41, 42,44, 45,47, 50, 52, 55, 57
run.JAGS.study (run. jags.study), 39
run.jags.study, /3, 39
runjags-class, 42
runJAGS.getOption (runjags.options), 45
runjags.getOption (runjags.options), 45
runJAGS.options (runjags.options), 45
runjags.options, 4-6, 10, 18, 19, 30, 34, 35,
37,44, 45, 45, 49
runjags.printmethods, 48
runjagsclass (runjags-class), 42
runjagsstudy-class (runjags-class), 42
runjagsstudyclass (runjags-class), 42

summary.runjags, 13
summary.runjags (add. summary), 2
summary.runjagsstudy

(runjags.printmethods), 48
Sys.time, 55

table, 7
template. JAGS (template. jags), 50
template. jags, 50
template_huiwalter, 52

testJAGS (testjags), 54
testjags, 19, 54

timestring, 55

unload.runJAGSmodule
(load.runjagsmodule), 19

unload.runjagsmodule
(load.runjagsmodule), 19

INDEX

var, 7

write.JAGSfile (write. jagsfile), 56
write. jagsfile, 26, 37, 56

61

	add.summary
	ask
	autorun.jags
	combine.mcmc
	dump.list.format
	extract.runjags
	findjags
	load.runjagsmodule
	mutate.functions
	new_unique
	read.jagsfile
	results.jags
	run.jags
	run.jags.study
	runjags-class
	runjags.options
	runjags.printmethods
	template.jags
	template_huiwalter
	testjags
	timestring
	write.jagsfile
	Index

