
Package ‘ptycho’
April 9, 2025

Type Package
Title Bayesian Variable Selection with Hierarchical Priors
Version 1.1-5
Author Laurel Stell [aut, cre],

Chiara Sabatti [aut]
Maintainer Laurel Stell <lstell@stanford.edu>

URL http://web.stanford.edu/~lstell/ptycho/

Description Bayesian variable selection for linear regression models using hierarchical
priors. There is a prior that combines information across responses and one
that combines information across covariates, as well as a standard spike and
slab prior for comparison. An MCMC samples from the marginal posterior
distribution for the 0-1 variables indicating if each covariate belongs to the
model for each response.

License GPL (>= 2)
Depends R (>= 3.0.0)
Imports coda, plyr, reshape2
Suggests foreach, doRNG
NeedsCompilation no
Repository CRAN
Date/Publication 2025-04-08 23:30:07 UTC

Contents
ptycho-package . 2
checkConvergence . 2
createData . 4
createGroupsSim . 8
createOrthogonalX . 9
Data . 10
PosteriorStatistics . 11
print.ptycho . 12
ptycho . 13
WhichCols . 18

1

http://web.stanford.edu/~lstell/ptycho/

2 checkConvergence

Index 20

ptycho-package Bayesian Variable Selection with Hierarchical Priors

Description

Bayesian variable selection for linear regression models using hierarchical priors. There is a prior
that combines information across responses and one that combines information across covariates,
as well as a standard spike and slab prior for comparison. An MCMC samples from the marginal
posterior distribution for the 0-1 variables indicating if each covariate belongs to the model for each
response.

Details

This package provides functions to carry out Bayesian model selection combining different layers
of information: across multiple traits or across multiple variants in the same gene. The priors are
described by Stell and Sabatti (2015). To sample the posterior distribution for specified genotype
and phenotype matrices, use ptycho.

This package also provides functions to generate simulated data as in Stell and Sabatti (2015); see
createData and http://web.stanford.edu/~lstell/ptycho/. Those datasets are not included
in this package because they have images about 20 MB or larger. Instead small data objects are
included for examples; see Data.

Functions for post-processing ptycho objects are described at checkConvergence and Posteri-
orStatistics.

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

References

Stell, L. and Sabatti, C. (2015) Genetic variant selection: learning across traits and sites, arXiv:1504.00946.

checkConvergence Compute Differences Between MCMC Chains

Description

Compute the differences between the chains in a ptycho object of the means of τ and the indicator
variables.

Usage

checkConvergence(obj, doLastIterOnly=TRUE)

http://web.stanford.edu/~lstell/ptycho/

checkConvergence 3

Arguments

obj A ptycho object

doLastIterOnly Logical specifying whether to compute differences only for the last MCMC it-
eration in the input object or for all iterations

Details

For τ and each indicator variable in the input ptycho object, compute the difference between the
maximum and the minimum mean for each chain. If doLastIterOnly is TRUE, then the differences
are only computed for the last iteration in each chain; otherwise, the differences are computed at
each iteration in the input object.

Value

A data frame with the following columns:

iter MCMC iteration number

type Factor specifying the type of the variable; one of “tau”, “var” for variant indicator variable,
or “grp” for second-level indicator variable

index Number specifying the pertinent column in the design matrix (for type equal to “var” or for
type equal to “grp” when Across Traits prior was used) or the variant group index (for type
equal to “grp” when Across Sites prior was used); equal to 1 for type equal to “tau”

y Factor specifying the name of the response; empty for type equal to “tau” or for type equal to
“grp” when Across Traits prior was used

range Difference between maximum and minimum across chains

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

See Also

ptycho; also ptychoOut for example below

Examples

data(ptychoOut)
cvg <- checkConvergence(ptychoOut, doLastIterOnly=FALSE)
reshape2::dcast(cvg, ... ~ iter, value.var="range")

4 createData

createData Simulate Data

Description

Create a data object suitable for ptycho.all.

Usage

createData(X, y, omega = NULL, beta = NULL)
createDataBayesModel(mode = c("exchange","pleiotropy","gene"), n, p, q,

nreps, tau.min, tau.max, G)
createPubData(mode = c("tinysim","ptychoIn",

"exchange","pleiotropy","gene",
"actualGeno","actualPheno","corTest",
"fixedOmega","uniformEffects"),

X=NULL, y=NULL, var.detail=NULL, variants=NULL)

Arguments

X Design matrix or alist specifying how to generate such a matrix. If a list, the first
entry is a function name and the second is a list of arguments to the function.
In createPubData, X is ignored unless mode is “actualGeno”, “actualPheno”, or
corTest.

y Numeric vector or matrix or list with the following components:

nreps Number of replicates to simulate
q Number of responses to generate for each replicate
sd Standard deviation of the simulated noise

In createPubData, y is ignored unless mode is “actualPheno”.

omega Numeric vector or matrix or list specifying how to generate a list with the com-
ponent omega; see Details for its meaning. If this is a list, the first entry is a
function name and the second is a list of arguments to the function, which will
be prepended by the number of rows in output X and the number of columns in
output y. Only used if y is a list.

beta List specifying how to generate a matrix of effect sizes. The first entry of the list
is a function name and the second is a list of arguments to the function, which
will be prepended by a matrix specifying the variables selected and y$sd. Only
used if y is a list.

n Number of observations to simulate

p Number of covariates to simulate

q Number of responses to simulate for each replicate

nreps Number of replicates to simulate

mode String specifying type of dataset to create:

createData 5

tinysim Simulated data included with this package; equivalent to mode pleiotropy
except that the dataset is tiny, with n=100, p=10, q=5, and nreps=10

ptychoIn Simulated data included with this package; equivalent to mode gene
except that the dataset is tiny, with n=3000, p=10, q=1, and nreps=1

exchange Create orthogonal X and exchangeable variants; n=5000, p=50, q=5,
and nreps=100

pleiotropy Create orthogonal X, and several variants have nonzero effects on
multiple responses; n=5000, p=50, q=5, and nreps=100

gene Create orthogonal X, and each group of variants typically has either several
or no variants that effect a response; n=5000, p=50, q=5, and nreps=100

actualGeno Simulate responses for input X
corTest Simulate q=2 responses for input X. There will be 10 replicates with

the first variant in argument variants causal for both responses, 10 with
the second variant causal, and 20 with variant i causal for response i. No
other variant will be causal.

actualPheno Put input X and y into data object
fixedOmega Create orthogonal X, and each variant has a certain probability of

a nonzero effect size
uniformEffects Same as mode fixedOmega except that effect sizes are uni-

formly rather than normally distributed

For createDataBayesModel, mode must be one of “exchange”, “pleiotropy”, or
“gene”.

tau.min, tau.max
Endpoints of uniform distribution from which to draw tau

G Number of groups of covariates; unused if mode is not “gene”

var.detail Data frame with row names same as column names of X; must have columns
“MAF” and “GENE”. Ignored unless mode is “actualGeno”.

variants Character vector containing names of two columns of X; ignored unless mode is
“corTest”.

Details

We describe createData and then describe its wrappers createDataBayesModel and createPubData.

Although createData can form the data object required by ptycho.all when X and y are input, it
primarily exists to simplify simulating data from Y = Xβ + ϵ, where ϵ is normal with mean zero
and specified standard deviation and β is sparse with entries simulated as specified.

The function generates a specified number of replicates, all of which use the same design matrix
X . If this matrix is not input, then its argument must specify a function call to generate it. In either
case, suppose X has n rows and p columns.

If the input y is numeric, then it will be used for the lone replicate. If it is a matrix, it must have
n rows; let q be its number of columns. If input y is a numeric vector, it must have n entries and
will be cast as a matrix with q = 1 column. Otherwise, input y is a list specifying, along with the
arguments omega and beta, how to simulate the response(s). Because it is useful in analysis of the
estimation of the marginal posterior distribution, the returned object always contains, regardless of
how X and y are specified, a matrix eta2 with (j, k) entry equal to xT

j yk/(ny
T
k yk)

6 createData

If y is to be simulated, the first step is to choose the probability that each covariate is associated
with each reponse as specified by the input argument omega. If this argument is a matrix, it must
have size p-by-q. If it is not a matrix but is numeric, it will be passed to matrix to create a matrix of
the correct size. Otherwise, the matrix for each replicate will be generated by calling the function
whose name is given by omega[[1]] with argument list (p, q, omega[[2]]). This function must
return a list with component omega set to a p-by-q matrix; the list may also contain additional
components. The package contains several functions whose names start with “createOmega” that
might guide users in writing their own functions.

The next step is to draw a p-by-q matrix indic.var whose (j, k) entry is equal to one with proba-
bility omega[j,k] and zero otherwise. This matrix will be drawn until all column sums are positive.

For each entry in indic.var that is equal to one, the effect size must be drawn. This is done by
calling the function whose name is given by beta[[1]] with argument list (indic.var, y$sd,
beta[[2]]). This function must return a list with component beta set to a p-by-q matrix; the list
may also contain additional components. If indic.var[j,k] is zero, then beta[j,k] should be
zero. The package contains functions whose names start with “createBeta” that might guide users
in writing their own functions.

Finally, an n-by-q matrix of noise is drawn from N(0, σ2), where σ is the input noise.sd, and
added to Xβ to obtain y. The column names of each response matrix generated will be y1, y2, and
so forth.

The function createPubData generates the data sets used in Stell and Sabatti (2015). For mode
equal to “exchange”, “pleiotropy”, or “geno”, it calls createData via createDataBayesModel;
otherwise, it calls createData directly. These functions also serve as additional examples of the
use of createData. For reproducibility, createPubData first sets the random seed to 1234, except
that it is set to 4 when mode equals “ptychoIn” and it does not set it when mode equals “corTest”.

In createDataBayesModel, if mode is “exchange”, then one ω ∼ Beta(12, 48) is drawn indepen-
dently for each trait. If mode is “pleiotropy”, then one probability of association for a trait is drawn
from Beta(16,55) for each data set, that probability is used to draw indic.grp for each variant,
and then the probability of nonzero indic.var[j,k] is drawn from Beta(48,12) for each nonzero
indic.grp[j]. Finally, if mode is “gene”, the process is analogous to pleiotropy except that each
trait is simulated independently.

Value

List containing:

X Design matrix

q Number of columns in each response

noise.sd Standard deviation of the simulated noise; NULL if input y is numeric

omega Input omega

beta Input beta

replicates List of length y$nreps (length 1 if y is numeric), each entry of which is a list
with the following components:

omega Matrix containing probabilities of association between covariates and re-
sponses; row names are colnames(X) and column names are colnames(y);
NULL if input y is numeric

createData 7

indic.var Matrix containing ones for associations and zeros otherwise; row
and column names are same as for omega; NULL if input y is numeric

beta Matrix of effect sizes; row and column names are same as for omega; NULL
if input y is numeric

y Response matrix
eta2 Matrix with row names equal to colnames(X) and column names equal

to colnames(y)

For createDataBayesModel with mode that uses a second level of indicator
variables, each entry in the replicate list also has components omega.grp and
indic.grp containing the intermediate steps of drawing the second-level indi-
cator variable before drawing omega. If the argument beta to createData is
“createBetaNormal” (which it is when called by createDataBayesModel), then
each replicate will also have a component tau giving the value drawn by a call
to runif(1, tau.min, tau.max).

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

References

Stell, L. and Sabatti, C. (2015) Genetic variant selection: learning across traits and sites, arXiv:1504.00946.

See Also

createOrthogonalX, createGroupsSim; also Data describes tinysim in example below as well
as another object output by createData

Examples

EXAMPLE 1
data(tinysim)
Data generated with mode equal to pleiotropy, so indic.grp exists and
has an entry for each column in X.
colnames(tinysim$X)
tinysim$replicates[[5]]$indic.grp
X4, X6, and X9 are associated with some responses.
tinysim$replicates[[5]]$indic.var

EXAMPLE 2
Generate miniature data set with information shared across covariates.
set.seed(1234)
tiny1 <- createDataBayesModel(mode="gene", n=100, p=10, q=5, nreps=10,

tau.min=0.045, tau.max=0.063, G=2)
A covariate can only have indic.var=1 if the group it belongs to has
indic.grp=1. For example,indic.grp[1,4]=0 implies
indic.var[groups$group2var[1],4]=0.
tiny1$replicates[[1]]$indic.grp
tiny1$omega[[2]]$groups$group2var[1]

8 createGroupsSim

tiny1$replicates[[1]]$indic.var

EXAMPLE 3
Alternatively, call createData directly
groups <- createGroupsSim(G=2, p=10)
omegaargs <- list(indic.grp.shape1=16, indic.grp.shape2=55,

shape1=48, shape2=12, groups=groups)
betaargs <- list(tau.min=0.045, tau.max=0.063)
set.seed(1234)
tiny2 <- createData(X=list("createOrthogonalX", list(n=100, p=10)),

y=list(nreps=10, q=5, sd=1),
omega=list("createOmegaCrossVars", omegaargs),
beta=list("createBetaNormal", betaargs))

identical(tiny1, tiny2)
SEE THE CODE FOR createPubData FOR MORE EXAMPLES.

createGroupsSim Create Groups of Covariates

Description

Create an object specifying groups of covariates as needed for some of the simulations.

Usage

createGroupsSim(G, p)

Arguments

G Number of groups

p Number of covariates

Details

If G divides p, then each group will have p/G consecutive covariates. If G does not divide p, then the
last group will have fewer covariates.

Value

List containing the following components:

var2group Integer vector of length p, with entry j being the index of the group containing covariate
j

group2var List of length G, each entry of which is an integer vector containing the indices of the
covariates belonging to that group

sizes Vector of length G containing the number of covariates in each group

createOrthogonalX 9

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

See Also

createData

Examples

grp <- createGroupsSim(G=3, p=15)
Which covariates are in group 2? Two ways to find out:
which(grp$var2group == 2)
grp$group2var[[2]]

createOrthogonalX Create Design Matrix With Orthogonal Columns

Description

Create a design matrix whose columns are orthogonal to each other.

Usage

createOrthogonalX(n, p)

Arguments

n Number of rows in X

p Number of columns in X

Details

First create X̂ = (Ip Ip · · · Ip)
T , where Ip, the identity matrix of size p, is repeated ceiling(n/p)

times. If p does not divide n, remove rows at the bottom so that X̂ has n rows. Divide by the root
mean square of the columns of X̂ .

Value

Matrix with n rows, p columns, and column names X1, X2, and so forth.

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

10 Data

See Also

createData

Examples

n <- 50; p <- 5
X <- createOrthogonalX(n, p)
XtX <- t(X) %*% X
D <- diag(n-1, nrow=p)
XtX and D are not quite equal due to roundoff error
range(XtX - D)

Data Sample Data

Description

Data objects used in examples in this package.

Usage

data(tinysim)
data(ptychoIn)
data(ptychoOut)

Format

The object tinysim is an object returned by createDataBayesModel with mode equal to “pleiotropy”.

The object ptychoIn is an object returned by createDataBayesModel with mode equal to “gene”.

The object ptychoOut is an object returned by ptycho applied to the data in ptychoIn using the
Across Sites prior.

Details

These data objects are constructed to illustrate certain features in the examples while still being
small enough not to be burdensome.

The object tinysim contains simulated data. Its design matrix is 100-by-10. It has 10 replicates,
each with a 100-by-5 response matrix. It is generated by createPubData.

The object ptychoIn also contains simulated data generated by createPubData. Its design matrix
is 3000-by-10 because, for its effect sizes, n must be about that large to distinguish signal from
noise as explained in the supplemental text to Stell and Sabatti (2015). To keep the object small, it
has only 1 replicate, which has only one response.

The object ptychoOut is generated by

PosteriorStatistics 11

G <- 2; p <- ncol(ptychoIn$X)
groups <- createGroupsSim(G, p)
state <- list(list(indic.grp=rep(FALSE,G),

indic.var=matrix(FALSE,nrow=p,ncol=1), tau=1),
list(indic.grp=rep(TRUE,G),

indic.var=matrix(TRUE,nrow=p,ncol=1), tau=1))
ptychoOut <- ptycho(X=ptychoIn$X, y=ptychoIn$replicates[[1]]$y,

groups=groups, initStates=state,
only.means=10000*seq_len(5), random.seed=12345)

Source

Stell, L. and Sabatti, C. (2015) Genetic variant selection: learning across traits and sites, arXiv:1504.00946.

See Also

createPubData, ptycho

PosteriorStatistics Extract Posterior Statistics

Description

Extract posterior statistics from a ptycho object.

Usage

meanTau(obj)
varTau(obj)
meanIndicators(obj)
meanVarIndicators(obj)
meanGrpIndicators(obj)

Arguments

obj A ptycho object

Details

A ptycho object contains means for many different variables. If multiple chains were run, it has
separate means for each, and it may have running means from different points within each chain.
The functions described here simplify extracting from the input object certain statistics of the pos-
terior distribution sampled by ptycho.

The function meanTau identifies the last iteration saved in the input ptycho object and computes the
mean of τ at that iteration across all chains. The function varTau is analogous, computing var(τ).

Similarly, meanIndicators returns the mean across all chains of each indicator variable. The
functions meanVarIndicators and meanGrpIndicators compute the means only of the indicators
of variants or only of second-level indicator variables, respectively.

12 print.ptycho

Value

Both meanTau and varTau return a scalar.

The other functions, which extract means of indicator variables, return vectors with names copied
from the column names of the input obj.

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

See Also

ptycho, WhichCols; also Data describes ptychoIn and ptychoOut in example below

Examples

data(ptychoIn)
data(ptychoOut)
Compare averages of sampled group indicator variables to truth.
cbind(ptychoIn$replicates[[1]]$indic.grp,

meanGrpIndicators(ptychoOut))
Compare averages of sampled covariate indicator variables to truth.
cbind(ptychoIn$replicates[[1]]$indic.var,

meanVarIndicators(ptychoOut))
Compare average of sampled values of tau to truth.
ptychoIn$replicates[[1]]$tau
meanTau(ptychoOut)
Variance of sampled values of tau is reasonable because sampled model
is usually NOT empty.
varTau(ptychoOut)

print.ptycho Print ptycho Object

Description

Print the sample means in a ptycho object; do not print the attributes.

Usage

S3 method for class 'ptycho'
print(x, ...)

Arguments

x Object of class ptycho

... Additional print arguments

ptycho 13

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

See Also

ptycho

ptycho Sample From Posterior Distributions

Description

Generate MCMC samples from posterior distribution. Two interfaces are provided: ptycho gener-
ates samples for one design matrix and response matrix while ptycho.all runs in batch an object
generated by createData.

Usage

ptycho(X, y, initStates, groups = NULL,
tau.min = 0.01, tau.max = 10, tau.sd = (tau.max - tau.min)/4,
doGPrior = TRUE, doDetPrior = FALSE, prob.varadd = 0.5,
isOmegaFixed = FALSE, omega = NULL, omega.grp = NULL,
probs.grp = NULL, rho.alpha = 10, rho.lambda = rho.alpha,
only.means = FALSE, nburn = 0, nthin = 1, nSavePerChain,
parallel.chains=FALSE, random.seed=NULL)

ptycho.all(data, across=c("none","traits","sites"), doGrpIndicator,
dir.out, nreplicates=NULL, parallel.replicates=FALSE,
doSetSeed=TRUE, ncolumns=NULL, ...)

Arguments

X n-by-p design matrix

y n-by-q matrix containing response(s)

initStates List containing initial states for chains. Each state is a list with components:

indic.var p-by-q logical matrix. If (j, k) entry is TRUE, then covariate j is
initially in the model for response k.

tau Scalar
indic.grp Logical vector of length equal to the number of groups; analogous

to indic.var; NULL to use priors that do not incorporate a second-level
indicator variable

groups To combine information across variants, list containing

var2group Integer vector of length p, with entry j being the index of the group
containing covariate j

14 ptycho

group2var List of length G, each entry of which is an integer vector containing
the indices of the covariates belonging to that group

sizes Vector of length G containing the number of covariates in each group

Otherwise, NULL.
tau.min, tau.max

Endpoints of uniform prior distribution on tau

tau.sd Standard deviation of the Metropolis-Hastings proposal distribution for tau

doGPrior Logical indicating whether to use the g-prior for effect sizes

doDetPrior Unsupported; use default value

prob.varadd If initStates[[1]]]$indic.grp is NULL, the probability that the Metropolis-
Hastings proposal changes one entry of indic.var from FALSE to TRUE. Oth-
erwise, the probability of this event given that the proposal does not change
indic.grp.

isOmegaFixed Logical indicating whether omega is known

omega If isOmegaFixed is TRUE, a p-by-q matrix containing the known probabilities.
Otherwise, a matrix containing the parameters for the Beta prior distribution on
omega. Such a matrix has columns “A” and “B”; the number of rows should be:

• 1 if q = 1 and initStates[[1]]$indic.grp is NULL,
• length(groups$group2var) if that is nonzero, or
• p otherwise.

If omega is NULL and isOmegaFixed is FALSE, defaults to uniform priors.

omega.grp If isOmegaFixed is TRUE, the known probability that entries in indic.grp are
TRUE. Otherwise, a vector with names “A” and “B” containing the parameters
for the Beta prior distribution on omega.grp. If NULL, defaults to uniform priors.
Unused if initStates[[1]]$indic.grp is NULL.

probs.grp Vector containing the probabilities that the Metropolis-Hastings proposal will
add, leave unchanged, or remove, respectively, a group. If NULL, defaults to
c(0.25,0.5,0.25). Unused if initStates[[1]]$indic.grp is NULL.

rho.alpha, rho.lambda
Parameters for the Gamma prior distribution on ρ, which is the precision of the
noise. Here, the Gamma(α, λ) distribution has density function proportional to
xαe−λx.

only.means If logical, specifies whether to return samples or the running means of the sam-
ples. Can also be a vector containing the iterations (after the burn-in interval) at
which to save the means.

nburn Number of MCMC samples to make before starting to save samples or to com-
pute means

nthin Interval between saved samples; default value 1 saves all samples. Unused if
only.means is TRUE or a vector.

nSavePerChain If only.means is FALSE, number of MCMC samples to return from each chain,
which means a total of nthin * nSavePerChain + nburn samples are drawn per
chain. If only.means is TRUE, then nSavePerChain + nburn samples are drawn,
and only the averages of the last nSavePerChain samples are returned. Unused
if only.means is not a logical.

ptycho 15

parallel.chains

Logical indicating whether to run chains in parallel; see Details.
random.seed Random seed to pass to chain iterator; if NULL, the random seed is not set. See

Details.
data Data in format output by createData

across Whether to combine information across traits, sites, or neither
doGrpIndicator Whether to use priors that incorporate indic.grp

dir.out Directory to which to save samples or means
nreplicates Vector of replicates to run; if NULL, all will be run
parallel.replicates

Logical indicating whether to run replicates in parallel; see Details.
doSetSeed If TRUE, call set.seed(n.repl) before running samples.
ncolumns Scalar. If across is “none” or “sites”, each of the first ncolumns of repl$y will

be used in turn, running all columns by default. Ignored if across is “sites”.
... Additional arguments passed to ptycho

Details

These functions run MCMC sampling from the posterior of the linear regression models using
hierarchical priors described in Stell and Sabatti (2015). The function ptycho.all is a wrapper
of ptycho to simplify running the simulation experiments over many replicates. These functions
determine which priors to use as follows:

• Standard spike and slab priors that do not combine information (basic)
For ptycho.all, argument across is “none” and doGrpIndicator is FALSE.
For ptycho, argument y has one column, groups is NULL, and indic.grp is NULL or missing
in each entry of initStates.

• Combine information across traits (Across Traits)
For ptycho.all, argument across is “traits” and doGrpIndicator is TRUE.
For ptycho, argument y has p > 1 columns, groups is NULL, and indic.grp is a logical
vector of length p in each entry of initStates.

• Combine information across variants (Across Sites)
For ptycho.all, argument across is “sites” and doGrpIndicator is TRUE.
For ptycho, argument y has one column, groups specifies how to combine information, and
indic.grp in each entry of initStates is a logical vector of the same length as groups$group2var.

• Combine information across traits incorrectly (Unadjusted)
For ptycho.all, argument across is “traits” and doGrpIndicator is FALSE.
For ptycho, argument y has p > 1 columns, groups is NULL, and indic.grp is NULL in each
entry of initStates.
This prior does not properly correct for multiple hypothesis testing and is only included be-
cause it is needed to reproduce results in Stell and Sabatti (2015).

Combining information across both phenotypes and variants is planned for a future release. These
functions perform some checks for compatibility of X, y, groups, and initStates; but invalid input
could lead to unpredictable behavior. Singular X can result in an error; even strongly correlated
covariates can cause difficulties as described by Stell and Sabatti (2015).

The simplest way to run the simulations in Stell and Sabatti (2015) is, for example,

16 ptycho

data <- createPubData("pleiotropy")
ptycho.all(data=data, across="traits", doGrpIndicator=TRUE,

dir.out="/path/to/output/dir/",
only.means=50000*(1:10), nburn=10000)

ptycho.all(data=data, across="sites", doGrpIndicator=TRUE,
dir.out="/path/to/another/dir/",
groups=createGroupsSim(G=10, ncol(data$X)),
only.means=50000*(1:10), nburn=10000)

With these calls, the replicates run sequentially and so do the chains of the MCMC sampler; the
results will be reproducible because the random seed is set for each replicate.

Parallelization is implemented via the foreach package. The user must not only have it installed but
also an appropriate parallel backend, which must be registered. To run chains in parallel using the
doMC, for example,

data(ptychoIn)
G <- 2; p <- ncol(ptychoIn$X)
groups <- createGroupsSim(G, p)
state <- list(list(indic.grp=rep(FALSE,G),

indic.var=matrix(FALSE,nrow=p,ncol=1), tau=1),
list(indic.grp=rep(TRUE,G),

indic.var=matrix(TRUE,nrow=p,ncol=1), tau=1))
require(doMC)
registerDoMC(length(state))
ptychoOut <- ptycho(X=ptychoIn$X, y=ptychoIn$replicates[[1]]$y,

groups=groups, initStates=state,
only.means=100*seq_len(5), parallel.chains=TRUE)

The results would not be reproducible, however, even if one set the random seed before calling
ptycho. For reproducible results, pass the random seed in the call to ptycho, which requires that
the doRNG package is also installed. Running the chains in parallel when calling ptycho.all
also requires the option parallel.chains=TRUE, which uses doRNG unless doSetSeed=FALSE.
By default, one of the chains starts with all variants in the model, so that chain takes much longer
to run than do the other chains. Consequently, when running multiple replicates via ptycho.all,
much greater time savings can be achieved by running the replicates in parallel with, for example,

data <- createPubData("pleiotropy")
require(doMC)
registerDoMC(8)
ptycho.all(data=data, across="traits", doGrpIndicator=TRUE,

dir.out="/path/to/output/dir/",
only.means=50000*(1:10), nburn=10000)

In this case, the default behavior of reproducible results does not require doRNG because the seed
is set after each parallel worker is created.

We conclude this description with a discussion of the running time of the MCMC sampler. Our ac-
tual data has 5335 subjects, 764 variants and three traits. An mcmc.list containing 50,000 samples
for each of four chains can take about 5~GB. Running chains in parallel, it takes less than an hour

ptycho 17

(on a Linux computer with 2.6 GHz processors) to perform 510,000 samples per chain. The run
time depends primarily on the number of entries that are TRUE in the sampled indic.var matrices;
increasing this will increase run times. A chain that initially has all entries of indic.var set to
TRUE will take longer than one where the model is initially empty. Priors that inflate the posterior
expectation of indic.var[j,k] (such as combining information across responses without using
indic.grp) will also take longer.

Value

The results of ptycho.all are written to files by save. For priors that use only one response,
the output for replicate r and column c will be written to ‘rpl<r>col<c>.Rdata’ in the directory
specified by dir.out. For priors that use multiple responses, ptycho is called only once for each
replicate, and the file name will be ‘rpl<r>col1.Rdata’. The object in each such file has the name
smpl and is the value of a call to ptycho. The format of these objects depends upon the argument
only.means. In all cases, however, it has attribute params set to a list containing most of the
arguments in the call to ptycho.

If only.means is FALSE, then ptycho returns an mcmc.list whose length is the same as the length
of initStates. Each entry in this list is an mcmc object with nSavePerChain rows and a column
for each entry of indic.var and indic.grp plus a column for tau.

Otherwise, ptycho returns an object of class ptycho, which is actually a matrix. The matrix has
a column for each sampled indicator variable, for tau and its square (so that its variance can be
computed), and for the chain and iteration numbers. If only.means is TRUE, then each row contains
the means of the samples in one chain and there will be length(initStates) * nSavePerChain
rows. If only.means is a vector, then there will be length(initStates) * length(only.means)
rows.

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

References

Stell, L. and Sabatti, C. (2015) Genetic variant selection: learning across traits and sites, arXiv:1504.00946.

See Also

createData for simulating input data.

checkConvergence and PosteriorStatistics for analyzing output of ptycho.

Data describes tinysim in example below as well as an object created with ptycho.

Examples

data(tinysim)
Use replicate 4.
X <- tinysim$X; p <- ncol(X); nr <- 4
COMBINE INFORMATION ACROSS RESPONSES
Y <- tinysim$replicates[[nr]]$y; q <- ncol(Y)
Run 2 chains.

18 WhichCols

state <- list(list(indic.grp=rep(FALSE,p),
indic.var=matrix(FALSE,nrow=p,ncol=q), tau=1),

list(indic.grp=rep(TRUE,p),
indic.var=matrix(TRUE,nrow=p,ncol=q), tau=1))

In each chain, discard first 10 burn-in samples, then generate
100 samples and save running means after every 20 samples.
smpl.ph <- ptycho(X=X, y=Y, initStates=state, only.means=20*(1:5),

nburn=10)
COMBINE INFORMATION ACROSS VARIANTS
Use two groups of variants.
G <- 2; groups <- createGroupsSim(G, p)
Run 2 chains.
state <- list(list(indic.grp=rep(FALSE,G),

indic.var=matrix(FALSE,nrow=p,ncol=1), tau=1),
list(indic.grp=rep(TRUE,G),

indic.var=matrix(TRUE,nrow=p,ncol=1), tau=1))
Use response 3.
y <- tinysim$replicates[[nr]]$y[,3,drop=FALSE]
smpl.var <- ptycho(X=X, y=y, groups=groups, initStates=state,

only.means=c(20*(1:5)), nburn=10, nthin=1)

WhichCols Identify Columns Containing Indicator Variables

Description

Determine which columns contain indic.var or indic.grp in an object returned by ptycho.

Usage

indicVarCols(obj)
indicGrpCols(obj)

Arguments

obj Object output by ptycho or any numeric object

Value

If the input object is a numeric vector, returns the indices of its entries that have names starting with
“indic.var” or “indic.grp”, respectively.

Otherwise, it returns the indices of colnames(obj) that start with “indic.var” or “indic.grp”, re-
spectively.

Author(s)

Laurel Stell and Chiara Sabatti
Maintainer: Laurel Stell <lstell@stanford.edu>

WhichCols 19

See Also

ptycho; also ptychoOut and PosteriorStatistics for example below

Examples

data(ptychoOut)
colnames(ptychoOut)[indicVarCols(ptychoOut)]
Can also apply these functions to output of meanIndicators ...
mi <- meanIndicators(ptychoOut)
mi[indicGrpCols(mi)]
... instead of using meanGrpIndicators or meanVarIndicators
meanGrpIndicators(ptychoOut)

Index

∗ datasets
Data, 10

∗ models
ptycho, 13
ptycho-package, 2

∗ package
ptycho-package, 2

∗ regression
ptycho, 13
ptycho-package, 2

checkConvergence, 2, 2, 17
createData, 2, 4, 9, 10, 13, 15, 17
createDataBayesModel, 10
createDataBayesModel (createData), 4
createGroupsSim, 7, 8
createOrthogonalX, 7, 9
createPubData, 10, 11
createPubData (createData), 4

Data, 2, 7, 10, 12, 17

indicGrpCols (WhichCols), 18
indicVarCols (WhichCols), 18

matrix, 6
mcmc, 17
mcmc.list, 17
meanGrpIndicators

(PosteriorStatistics), 11
meanIndicators (PosteriorStatistics), 11
meanTau (PosteriorStatistics), 11
meanVarIndicators

(PosteriorStatistics), 11

PosteriorStatistics, 2, 11, 17, 19
print.ptycho, 12
ptycho, 2, 3, 10–13, 13, 18, 19
ptycho-package, 2
ptycho.all, 4
ptychoIn (Data), 10

ptychoOut, 3, 19
ptychoOut (Data), 10

save, 15, 17

tinysim (Data), 10

varTau (PosteriorStatistics), 11

WhichCols, 12, 18

20

	ptycho-package
	checkConvergence
	createData
	createGroupsSim
	createOrthogonalX
	Data
	PosteriorStatistics
	print.ptycho
	ptycho
	WhichCols
	Index

