
proto: An R Package for Prototype Programming

Louis Kates
GKX Associates Inc.

Thomas Petzoldt
Technische Universität Dresden

Abstract

proto is an R package which facilitates a style of programming known as prototype
programming. Prototype programming is a type of object oriented programming in which
there are no classes. proto is simple yet retains the object oriented features of delegation
(the prototype counterpart to inheritance) and object oriented dispatch. proto can be
used to organize the concrete data and procedures in statistical studies and other appli-
cations without the necessity of defining classes while still providing convenient access to
an object oriented style of programming. Furthermore, it can be used in a class-based
style as well so that incremental design can begin with defining the concrete objects and
later transition to abstract classes, once the general case is understood, without having
to change to object-oriented frameworks. The key goals of the package are to integrate
into R while providing nothing more than a thin layer on top of it.

Keywords: prototype programming, delegation, inheritance, clone, object orientated, S3, R.

1. Introduction

1.1. Object Oriented Programming in R

The R system for statistical computing (R Development Core Team 2005, http://www.

R-project.org/) ships with two systems for object oriented programming referred to as
S3 and S4. With the increased interest in object oriented programming within R over the
last years additional object oriented programming packages emerged. These include the
R.oo package (Bengtsson 2003) and the OOP package (Chambers and Lang 2001, http:

//www.omegahat.net/OOP/). All these packages have the common thread that they use
classes as the basis of inheritance. When a message is sent to an object the class of the object
is examined and that class determines the specific function to be executed. In prototype pro-
gramming there are no classes making it simple yet it retains much of the power of class-based
programming. In the fact, proto is so simple that there is only one significant new routine
name, proto. The other routines are just the expected support routines such as as.proto to
coerce objects to proto objects, $ to access and set proto object components and is.proto to
check whether an object is a proto object. In addition, graph.proto will generate a graphical
ancestor tree showing the parent-child relationships among generated proto objects.

The aim of the package is to provide a lightweight layer for prototype programming in R
written only in R leveraging the existing facilities of the language rather than adding its own.

http://www.R-project.org/
http://www.R-project.org/
http://www.omegahat.net/OOP/
http://www.omegahat.net/OOP/

2 proto: An R Package for Prototype Programming

1.2. History

The concept of prototype programming (Lieberman 1986; Taivalsaari 1996; Noble, Taivalsaari,
and Moore 1999) has developed over a number of years with the Self language (Agesen,
Bak, Chambers, Chang, Hölzle, Maloney, Smith, and Ungar 1992) being the key evolved
programming language to demonstrate the concept. In statistics, the Lisp-based LispStat
programming language (Tierney 1990) was the first and possibly only statistical system to
feature prototype programming.

Despite having been developed over 20 years ago, and some attempts to enter the mainstream
(e.g. Newtonscript on the Newton computer, which is no longer available, and Javascript where
it is available but whose domain of application largely precluses use of prototype program-
ming) prototype programming is not well known due to lack of language support in popular
programming languages such as C and Java. It tends to be the domain of research languages
or Lisp.

Thus the the availability of a popular language, R 1, that finally does provide the key infras-
tructure is an important development.

This work grew out of the need to organize multiple scenarios of model simulations in ecological
modelling (Petzoldt 2003) and was subsequently generalized to the present package. A number
of iterations of the code, some motivated by the ever increasing feature set in R, resulted in
a series of utilities and ultimately successive versions of an R package developed over the
last year. An initial version used R lists as the basis of the package. Subsequently the
package was changed to use R environments. The first version to use environments stored the
receiver object variable in a proxy parent environment which was created on-the-fly at each
method call. The present version of the proto package passes the receiver object through the
argument list, while hiding this from the caller. It defines the proto class as a subclass of the
environment class so that functionality built into R for the environment class is automatically
inherited by the proto class.

1.3. Overview

It is assumed that the reader has some general familiarity with object oriented programming
concepts and with R.

The paper will proceed primarily by example focusing on illustrating the package proto

through such demonstration. The remainder of the paper is organized as follows: Section 2
explains how "proto" objects are created and illustrates the corresponding methods for set-
ting and getting components. It further discusses how object oriented delegation (the proto-
type programming analogue of inheritance) is handled and finally discusses the internals of
the package. This section uses small examples chosen for their simplicity in illustrating the
concepts. In Section 3 we provide additional examples of prototype programming in action.
Four examples are shown. The first involves smoothing of data. Secondly we demonstrate the
calculation of correlation confidence intervals using classical (Fisher Transform) and modern
(bootstrapping) methods. Thirdly we demonstrate the development of a binary tree as would
be required for a dendrogram. Fourthly, we use the solution of linear equations to illustrate
program evolution from object-based to class-based, all within the proto framework. Sec-

1Some indications of the popularity of R are the high volume mailing lists, international development team,
the existence of over 500 addon packages, conferences and numerous books and papers devoted to R.

Louis Kates, Thomas Petzoldt 3

tion 4 gives a few summarizing remarks. Finally, an appendix provides a reference card that
summarizes the functionality contained in proto in terms of its constituent commands.

2. The class "proto" and its methods

2.1. Creation of "proto" objects

In this section we shall show, by example, the creation of two prototype objects and related
operations. The simple idea is that each "proto" object is a set of components: functions
(methods) and variables, which are tightly related in some way.

A prototype object is an environment holding the variables and methods of the object. 2

A prototype object is created using the constructor function proto (see Appendix B at the
end of this paper or proto package help for complete syntax of commands).

addProto <- proto(x = rnorm(5), add = function(.) sum(.$x))

In this simple example, the proto function defines two components: a variable x and a method
add. The variable x is a vector of 5 numbers and the method sums those numbers. The proto
object addProto contains the variable and the method. Thus the addProto proto object can
be used to compute the sum of the values stored in it. As shown with the add method in this
example, formal argument lists of methods must always have a first argument of dot (i.e. .)
which signifies the object on which the method is operating. The dot refers to the current
object in the same way that a dot refers to the current directory in UNIX. Within the method
one must refer to other variables and methods in the object by prefacing each with .$. For
example, in the above we write sum(.$x). Finally, note that the data and the method are
very closely related. Such close coupling is important in order to create an easily maintained
system.

To illustrate the usage of proto, we first load the package and set the random seed to make
the examples in this paper exactly reproducible.

> library(proto)

> set.seed(123)

Then, we create the proto object from above and call its add method.

> addProto <- proto(x = rnorm(5), add = function(.) sum(.$x))

> addProto$add()

[1] 0.9678513

We also create another object, addProto2 with a different x vector and invoke its add method
too.

2In particular this implies that "proto" objects have single inheritance, follow ordinary environment scoping
rules and have mutable state as environments do.

4 proto: An R Package for Prototype Programming

> addProto2 <- addProto$proto(x = 1:5)

> addProto2$add()

[1] 15

In the examples above, we created a prototype object addProto and then called its add

method as just explained. The notation addProto$add tells the system to look for the add

method in the addProto object. In the expression addProto$add, the proto object to the left
of the dollar sign, addProto here, is referred to as the receiver object. This expression also has
a second purpose which is to pass the receiver object implicitly as the first argument of add.
Note that we called add as if it had zero arguments but, in fact, it has one argument because
the receiver is automatically and implicitly supplied as the first argument. In general, the
notation object$method(arguments) is used to invoke the indicated method of the receiver
object using the object as the implicit first argument along with the indicated arguments
as the subsequent arguments. As with the addProto example, the receiver object not only
determines where to find the method but also is implicitly passed to the method through
the first argument. The motivation for this notation is to relieve the user of specifying the
receiver object twice: once to locate the method in the object and a second time to pass the
object itself to the method. The $ is overloaded by the proto class to automatically do both
with one reference to the receiver object. Even though, as with the addProto example, the
first argument is not listed in the call it still must be listed among the formal arguments in
the definition of the method. It is conventional to use a dot . as the first formal argument in
the method/function definition. That is, we call add using addProto$add() displaying zero
arguments but we define add in addProto displaying one argument add <- function(.), the
dot.

In this example, we also created a second object, addProto2, which has the first object,
addProto as its parent. Any reference to a component in the second object that is unsuccessful
will cause search to continue in the parent. Thus the call addProto2$add() looks for add

in addProto2 and not finding it there searches its parent, addProto, where it is, indeed,
found. add is invoked with the receiver object, addProto2, as the value of dot. The call
addProto2$add() actually causes the add in addProto to run but it still uses the x from
addProto2 since dot (.) is addProto2 here and add references .$x. Note that the reference
to .$x in the add found in addProto does not refer to the x in addProto itself. The x in
addProto2 has overridden the x in its parent. This point is important so the reader should
take care to absorb this point.

This simple example already shows the key elements of the system and how delegation (the
prototype programming term for inheritance) works without classes.

We can add new components or replace components in an object and invoke various methods
like this:

> addProto2$y <- seq(2, 10, 2)

> addProto2$x <- 1:10

> addProto2$add3 <- function(., z) sum(.$x) + sum(.$y) + sum(z)

> addProto2$add()

[1] 55

Louis Kates, Thomas Petzoldt 5

> addProto2$add3(c(2, 3, 5))

[1] 95

> addProto2$y

[1] 2 4 6 8 10

In this example, we insert variable y into the object addProto2 with a value of seq(2,10,2),
reset variable x to a new value and insert a new method, add3. Then we invoke our two
methods and display y. Again, note that in the case of protoAdd2$add the add method is
not present in protoAdd2 and so search continues to the parent addProto where it is found.

2.2. Internals

So far, we have used simple examples to illustrate the basic manipulation of objects: construc-
tion, getting and setting components and method invocation. We now discuss the internals
of the package and how it relates to R constructs. proto is actually an S3 class which is
a subclass of the environment class. Every proto object is an environment and its class is
c("proto", "environment"). The $ accessor is similar to the same accessor in environments
except it will use the R get function to search up parent links if it cannot otherwise find the
object (unlike environments). When accessing a method, $ automatically supplies the first
argument to the method unless the object is .that or .super. .that is a special variable
which proto adds to every proto object denoting the object itself. .super is also added to
every proto object and is the parent of .that. .that and .super are normally used within
methods of an object to refer to other components of the same or parent object, respectively,
as opposed to the receiver (.). For example, suppose we want add in addProto2 to add the
elements of x together and the elements of y together and then add these two sums. We could
redefine add like this:

> addProto2$add <- function(.) .super$add(.) + sum(.$y)

making use of the add already defined in the parent. One exception should be noted here.
When one uses .super, as above, or .that to specify a method then the receiver object must
be explicitly specified in argument one (since in those cases the receiver is possibly different
than .super or .that so the system cannot automatically supply it to the call.)

Setting a value is similar to the corresponding operation for environments except that any
function, i.e method, which is inserted has its environment set to the environment of the
object into which it is being inserted. This is necessary so that such methods can reference
.that and .super using lexical scoping.

In closing this section a few points should be re-emphasized and expanded upon. A proto

object is an environment whose parent object is the parent environment of the proto object.
The methods in the proto objects are ordinary functions that have the containing object as
their environment.

The R with function can be used with environments and therefore can be used with proto

objects since proto objects are environments too. Thus with(addProto, x) refers to the

6 proto: An R Package for Prototype Programming

variable x in proto object addProto and with(addProto, add) refers to the method add in
the same way. with(addProto, add)(addProto) can be used to call add. These constructs
all follow from their corresponding use in environments from which they are inherited.

Because the with expressions are somewhat verbose, two common cases can be shortened using
the $ operator. addProto$x can be used to refer to variable x in proto object addProto and
has the same meaning as with(addProto, x). In particular like with but unlike the the
behavior of the $ operator on environments, when used with proto objects, $ will search not
only the object itself but also its ancestors. Similarly addProto$add() can be used to call
method add in addProto also searching through ancestors if not found in addProto. Note
that addProto$add returns an object of class

c("instantiatedProtoMethod", "function") which is derived from add such that the first
argument, the proto object, is already inserted. Note that there is a print method for class
"instantiatedProtoMethod" so printing such objects will display the underlying function
but returning such objects is not the same as returning the function without slot one inserted.
Thus, if one wants exactly the original add as a value one should use with(addProto, add)

or addProto$with(add).

Within a method, if a variable is referred to without qualification simply as x, say, then its
meaning is unchanged from how it is otherwise used in R and follows the same scope rules
as any variable to resolve its name. If it is desired that the variable have object scope, i.e.
looked up in the receiver object and its ancestors, then .$x or similar with notation, i.e.
with(., x), should be used. Similarly .$f(x) calls method f automatically inserting the
receiver object into argument one and using x for argument two. It looks for f first in the
receiver object and then its ancestors.

2.3. Traits

Let us look at the definition of a child object once again. In the code below, addProto is
the previously defined parent object and the expression addProto$proto(x = 1:5) defines a
child object of addProto and assigns it to variable addProto2a.

> addProto2a <- addProto$proto(x = 1:5)

> addProto2a$add()

[1] 15

That is, proto can be used to create a new child of an existing object by writing the parent
object on the left of the $ and proto on its right. Any contents to be added to the new child
are listed in arguments of proto as shown.

For example, first let us create a class-like structure. In the following Add is an object that
behaves very much like a class with an add method and a method new which constructs new
objects. In the line creating object add1 the expression Add$new(x = 1:5) invokes the new

constructor of the receiver object Add. The method new has an argument of x = 1:5 which
defines an x variable in the add1 object being instantiated. We similarly create another object
add2.

> Add <- proto(add = function(.) sum(.$x), new = function(., x) .$proto(x = x))

Louis Kates, Thomas Petzoldt 7

> add1 <- Add$new(x = 1:5)

> add1$add()

[1] 15

> add2 <- Add$new(x = 1:10)

> add2$add()

[1] 55

An object which contains only methods and variables that are intended to be shared by all
its children (as opposed to an object whose purpose is to have its own methods and variables)
is known as a trait (Agesen et al. 1992). It is similar to a class in class-based object oriented
programming. Note that the objects add1 and add2 have the trait Add as their parent.
We could implement subclass-like and superclass-like objects by simply defining similar trait
objects to be the parent or child of Add. For example, suppose we want a class which calculates
the sum of the logarithms of the data. We could define:

> Logadd <- Add$proto(logadd = function(.) log(.$add()))

> logadd1 <- Logadd$new(1:5)

> logadd1$logadd()

[1] 2.70805

Here the capitalized objects are traits. Logadd is a trait. It is a child of Add which is also a
trait. logadd1 is an ordinary object, not a trait. One possible design is to create a tree of
traits and other objects in which the leaves are ordinary objects and the remaining nodes are
traits. This would closely correspond to class-based object oriented programming.

Note that the delegation of methods from one trait to another as in new which is inherited by
Logadd from Add is nothing more than the same mechanism by which traits delegate methods
to objects since, of course, traits are just objects no different from any other object other
than by the conventions we impose on them. This unification of subclassing and instantiation
beautifully shows the simplification that prototype programming represents.

2.4. Utilities

The fact that method calls automatically insert the first argument can be used to good effect
in leveraging existing R functions while allowing an object-oriented syntax.

For example, ls() can be used to list the components of proto objects:

> addProto$ls()

[1] "add" "x"

Functions like:

8 proto: An R Package for Prototype Programming

> addProto$str()

> addProto$print()

> addProto$as.list()

> addProto2a$parent.env()

show additional information about the elements. eapply can be used to explore more prop-
erties such as the the length of each component of an object:

> addProto$eapply(length)

Another example of some interest in any object oriented system which allows multiple ref-
erences to one single object is that object identity can be tested using the respective base
function:

> addProto$identical(addProto2)

[1] FALSE

proto does contain a special purpose str.proto function but in the main it is important
to notice here, that proto has no code that is specific to ls or any of the other ordinary R
functions listed. We are simply making use of the fact that obj$fun(...) is transformed
into get("fun", obj)(obj, ...) by the proto $ operator. For example, in the case of
addProto$ls() the system looks for ls in object addProto. It cannot find it there so it looks
to its parent, which is the global environment. It does not find it there so it searches the
remainder of the search path, i.e. the path shown by running the R command search(),
and finally finds it in the base package, invoking it with an argument of addProto. Since all
proto objects are also environments ls(addProto) interprets addProto as an environment
and runs the ls command with it. In the ls example there were no arguments other than
addProto, and even that one was implicit, but if there were additional arguments then they
would be passed as shown in the eapply and identical examples above.

2.5. Plotting

The graph.proto function can be used to create graphs that can be rendered by the Rgraphviz
package creating visual representations of ancestor trees (figure 1). That package provides an
interface to the GraphViz dot program (Ganser and North 2000).

graph.proto takes three arguments, all of which are usually omitted. The first argument is a
proto object (or an environment) out of which all contained proto objects and their parents
(but not higher order ancestors) are graphed. If it is omitted, the current environment is
assumed. The second argument is a graph (in the sense of the graph package) to which the
nodes and edges are added. If it is omitted an empty graph is assumed. The last argument is
a logical variable that specifies the orientation of arrows. If omitted arrows are drawn from
children to their parents.

> library(Rgraphviz)

> g <- graph.proto()

> plot(g)

Louis Kates, Thomas Petzoldt 9

logadd1

Logadd

Add

add2 add1

R_GlobalEnv

addProto2a

addProto

addProto2

Figure 1: Ancestor tree generated using graph.proto. Edges point from child to parent.

3. Examples

3.1. Smoothing

In the following we create a proto object named oo containing a vector of data x (gen-
erated from a simulated autoregressive model) and time points tt, an intermediate result
x.smooth, some plotting parameters xlab, ylab, pch, col and three methods smooth, plot
and residuals which smooth the data, plot the data and calculate residuals, respectively.
We also define ..x.smooth which holds intermediate results. Names beginning with two dots
prevent them from being delegated to children. If we override x in a child we would not want
an out-of-sync x.smooth. Note that the components of an object can be specified using a
code block in place of the argument notation we used previously in the proto command.

> oo <- proto(expr = {

+ x <- rnorm(251, 0, 0.15)

+ x <- filter(x, c(1.2, -0.05, -0.18), method = "recursive")

+ x <- unclass(x[-seq(100)]) * 2 + 20

+ tt <- seq(12200, length = length(x))

+ ..x.smooth <- NA

+ xlab <- "Time (days)"

+ ylab <- "Temp (deg C)"

+ pch <- "."

+ col <- rep("black", 2)

+ smooth <- function(., ...) {

+ .$..x.smooth <- supsmu(.$tt, .$x, ...)$y

10 proto: An R Package for Prototype Programming

+ }

+ plot <- function(.) with(., {

+ graphics::plot(tt, x, pch = pch, xlab = xlab, ylab = ylab,

+ col = col[1])

+ if (!is.na(..x.smooth[1]))

+ lines(tt, ..x.smooth, col = col[2])

+ })

+ residuals <- function(.) with(., {

+ data.frame(t = tt, y = x - ..x.smooth)

+ })

+ })

Having defined our proto object we can inspect it, as shown below, using print which is
automatically invoked if the name of the object, oo, is entered on a line by itself. In this case,
there is no proto print method so we inherit the environment print method which displays the
environment hash code. Although it produces too much output to show here, we could have
displayed a list of the entire contents of the object oo via oo$as.list(all.names = TRUE).
We can get a list of the names of the components of the object using oo$ls(all.names =

TRUE) and will look at the contents of one component, oo$pch.

> oo

<environment: 0x01fbd8c8>

attr(,"class")

[1] "proto" "environment"

> oo$ls(all.names = TRUE)

[1] "..x.smooth" ".super" ".that" "col" "pch"

[6] "plot" "residuals" "smooth" "tt" "x"

[11] "xlab" "ylab"

> oo$pch

[1] "."

Let us illustrate a variety of manipulations. We will set up the output to plot 2 plots per
screen using mfrow. We change the plotting symbol, smooth the data, invoke the plot method
to display a plot of the data and the smooth and then plot the residuals in the second plot
(figure 2).

> par(mfrow = c(1, 2))

> oo$pch <- 20

> oo$smooth()

> oo$plot()

> plot(oo$residuals(), type = "l")

Louis Kates, Thomas Petzoldt 11

●

●

●

●●●
●

●●●
●●●
●

●●
●
●●

●●
●●●●

●
●
●●

●
●

●
●

●
●
●●

●

●

●

●

●●

●
●

●

●
●●●●

●●

●●

●
●

●

●●
●
●●
●●●
●●

●●
●●●●●

●
●●
●
●
●
●●
●●●●●

●

●

●
●
●
●

●

●

●●
●●
●
●
●

●●●
●

●●
●

●●
●

●

●

●●
●
●●●●

●
●
●

●●
●
●
●

●
●●●●

●
●

●
●●

●●
●
●●●
●●●

●●

12200 12300

17
19

21

Time (days)

T
em

p
(d

eg
 C

)

12200 12300

−
1.

0
0.

0

t
y

Figure 2: Data and smooth from oo$plot() (left) and plot of oo$residuals() (right).

Now let us illustrate the creation of a child object and delegation. We create a new child
object of oo called oo.res. We will override the x value in its parent by setting x in the child
to the value of the residuals in the parent. We will also override the pch and ylab plotting
parameters. We will return to 1 plot per screen and run plot using the oo.res object as
the receiver invoking the smooth and plot methods (which are delegated from the parent oo)
with the data in the child (figure 3).

> oo.res <- oo$proto(pch = "-", x = oo$residuals()$y, ylab = "Residuals deg K")

> par(mfrow = c(1, 1))

> oo.res$smooth()

> oo.res$plot()

Now we make use of delegation to change the parent and child in a consistent way with respect
to certain plot characteristics. We have been using a numeric time axis. Let us interpret these
numbers as the number of days since the Epoch, January 1, 1970, and let us also change the
plot colors.

> oo$tt <- oo$tt + as.Date("1970-01-01")

> oo$xlab <- format(oo.res$tt[1], "%Y")

> oo$col <- c("blue", "red")

We can introduce a new method, splot, into the parent oo and have it automatically inherited
by its children. In this example it smooths and then plots and we use it with both oo and
oo.res (figure 4).

> oo$splot <- function(., ...) {

+ .$smooth(...)

12 proto: An R Package for Prototype Programming

−

−

−

−

−−

−

−−

−

−

−−

−

−−

−
−
−

−
−

−−

−
−

−

−
−
−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−
−

−
−

−

−
−

−

−

−

−
−
−
−

−
−−
−−
−

−
−

−
−−
−
−

−

−
−

−
−
−

−
−

−
−
−
−−

−

−

−

−

−

−

−

−

−
−

−
−

−

−

−

−−
−
−

−
−

−

−−
−

−

−

−
−

−

−−
−

−

−

−

−

−
−

−
−
−

−
−
−

−
−

−

−

−

−−

−
−

−

−
−
−
−
−−

−
−

12200 12250 12300 12350

−
1.

0
−

0.
5

0.
0

0.
5

Time (days)

R
es

id
ua

ls
 d

eg
 K

Figure 3: Output of oo.res$plot(). oo.res$x contains the residuals from oo.

+ .$plot()

+ }

> par(mfrow = c(1, 2))

> oo$splot(bass = 2)

> oo.res$splot()

Numerous possibilities exist to make use of the mechanisms shown, so one may create different
child objects, apply different smoothing parameters, overwrite the smoothing function with a
lowess smoother and finally compare fits and residuals.

Now lets change the data and repeat the analysis. Rather than overwrite the data we will
preserve it in oo and create a child oos to hold an analysis with sinusoidal data.

> oos <- oo$proto(expr = {

+ tt <- seq(0, 4 * pi, length = 1000)

+ x <- sin(tt) + rnorm(tt, 0, 0.2)

+ })

> oos$splot()

Lets perform the residual analysis with oos. We will make a deep copy of oo.res, i.e.
duplicate its contents and not merely delegate it, by copying oo.res to a list from which we
create the duplicate, or cloned, proto object (figure 5 and 6):

> oos.res <- as.proto(oo.res$as.list(), parent = oos)

> oos.res$x <- oos$residuals()$y

> oos.res$splot()

We have delegated variables and methods and overridden both. Thus, even with such a simple
analysis, object orientation and delegation came into play. The reader can plainly see that
smoothing and residual analysis were not crucial to the example and this example could be
replaced with any statistical analysis including likelihood or other estimation techniques, time

Louis Kates, Thomas Petzoldt 13

●

●

●

●●●
●

●●●
●●●
●

●●
●
●●

●●
●●●●

●
●
●●

●
●

●
●

●
●
●●

●

●

●

●

●●

●
●

●

●
●●●●

●●

●●

●
●

●

●●
●
●●
●●●
●●

●●
●●●●●

●
●●
●
●
●
●●
●●●●●

●

●

●
●
●
●

●

●

●●
●●
●
●
●

●●●
●

●●
●

●●
●

●

●

●●
●
●●●●

●
●
●

●●
●
●
●

●
●●●●

●
●

●
●●

●●
●
●●●
●●●

●●

17
19

21

2003

T
em

p
(d

eg
 C

)

Jun Aug Oct

−
−

−
−
−−
−
−−
−
−
−−−
−−
−−−

−−−
−
−−
−
−−−

−
−

−
−

−−
−−
−
−

−
−

−
−

−
−
−
−
−
−−
−−−
−−
−
−

−

−−−
−
−−−−−−

−−
−−−
−−
−
−−
−−−
−−
−−−−−
−

−

−
−
−
−

−

−
−−
−−
−
−
−
−−−−
−−
−

−−−
−

−
−−
−
−−−−
−
−
−

−−
−−−
−−−
−−
−
−

−
−−

−−−
−−−−−−

−−

−
1.

0
0.

0
2003

R
es

id
ua

ls
 d

eg
 K

Jun Aug Oct

Figure 4: Plotting options and splot function applied to both parent (left) and child (right)
object

●●
●

●
●●
●

●
●
●

●

●

●
●
●●●

●

●

●
●●●●

●

●●
●●
●●

●

●●
●●●

●

●

●

●

●

●

●

●●●●
●
●

●

●
●
●
●
●

●

●●
●
●
●

●
●
●
●

●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●
●
●●
●

●●

●

●
●●
●

●

●

●
●
●

●●●

●

●

●
●●
●●
●
●

●

●

●

●

●

●

●●
●●
●●

●

●●●

●

●
●
●

●
●
●
●

●

●

●●

●

●

●

●
●●
●
●
●
●

●

●
●

●
●●●●●●

●

●
●●
●

●

●●
●

●●

●

●

●

●

●
●●

●
●
●

●●

●

●

●

●●
●
●
●●
●

●●

●●
●●●

●

●

●
●
●
●

●
●
●
●

●
●
●

●
●
●

●
●
●●●

●

●
●
●●●
●

●
●●●

●

●

●●

●●

●●●

●●●●

●●

●●

●

●
●

●

●●●●
●
●
●●
●●

●
●
●
●
●●

●
●
●
●●
●
●

●
●

●

●

●●
●
●●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●●●
●●
●

●
●
●
●

●
●
●

●

●●●
●

●

●
●
●

●

●

●

●

●●
●
●

●
●

●

●
●
●
●●

●

●
●●
●
●
●●●

●

●
●

●

●●
●

●

●

●
●
●
●

●
●

●●

●

●

●

●●

●
●

●

●
●
●●
●●
●
●

●

●
●
●●

●

●
●

●

●

●

●●●●
●
●
●

●

●

●●●
●
●

●●
●
●
●

●
●●
●●
●
●

●●●
●●
●
●

●

●

●●

●
●

●

●●
●

●
●
●
●
●

●

●●
●

●
●●

●●●

●●●
●
●●

●
●

●

●

●●
●●
●

●
●
●

●

●

●
●●
●●
●●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●
●●●

●

●
●●

●●

●

●

●
●

●

●

●

●●
●
●
●●
●
●●
●

●

●●

●
●

●

●
●●
●●
●
●
●●
●

●●
●●●

●

●●

●
●

●●●
●
●

●

●●●

●
●
●
●●●

●
●●

●

●

●
●

●
●

●
●
●●
●

●

●
●
●
●
●

●
●

●
●
●
●

●

●

●
●
●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●

●
●

●
●●

●●●
●

●

●

●

●

●

●
●
●
●●

●●
●

●
●

●

●
●●●

●

●

●

●

●
●●

●

●
●

●●●
●●
●

●●

●

●●

●

●●●●●●●

●●

●

●
●●
●
●

●

●
●
●
●
●●●

●

●●

●

●●

●

●●●●

●●

●
●
●

●
●●

●

●●
●●●

●

●
●●

●

●
●
●

●

●
●

●

●
●●●
●

●
●●
●●
●●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●●

●
●

●

●

●●
●●

●

●

●●

●

●

●●●

●

●

●
●●
●

●●
●

●

●●●
●

●

●
●

●
●
●●
●

●

●●

●
●●

●
●

●

●
●
●●
●
●
●
●●
●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●
●
●
●
●●

●
●

●●
●
●

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●●

●

●●
●

●

●
●
●

●●●●

●●

●●●●
●●
●●

●

●
●●
●

●●

●

●●
●

●●

●
●●●●

●

●●

●

●
●
●

●
●●
●

●
●

●
●
●
●
●●
●
●

●
●

●

●

●

●●

●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●●
●
●

●
●
●

●
●●●

●

●
●

●●

●

●

●
●●
●

●

●

●

●

●

●●

●●

●

●
●

●●

●●●
●
●
●●●●
●

●

0 2 4 6 8 12

−
1.

5
0.

0
1.

5

2003

T
em

p
(d

eg
 C

)

−−
−

−
−−
−
−
−
−

−

−

−−
−−−

−

−
−
−−−−

−

−−
−−−−

−

−−
−−−

−

−

−

−

−

−
−

−−−−
−
−

−

−
−
−
−
−

−
−−
−
−
−

−
−
−
−

−

−
−
−
−
−
−

−
−

−−

−
−

−
−
−
−
−
−−
−

−−

−

−
−−
−
−

−

−
−
−
−−−

−

−

−
−−
−−
−
−

−

−

−

−

−
−
−−
−−
−−

−

−−−
−

−
−
−

−
−
−
−

−

−

−−

−

−

−

−
−−
−
−
−
−

−
−
−
−
−−−−−−

−

−−
−
−

−

−−
−

−−

−

−

−

−
−
−−

−
−
−

−−

−

−

−

−−
−−
−−
−

−−

−−
−−−

−

−

−
−
−
−
−
−
−
−

−−
−

−
−
−

−
−
−−−

−

−
−
−−
−
−
−
−−−

−

−

−−

−−

−−−

−−−−
−−

−−

−

−
−
−

−−−−
−
−
−−
−−

−
−
−
−
−−

−
−
−
−−
−
−
−
−

−

−
−−−
−−−−
−

−

−−

−

−

−

−

−

−

−
−

−

−

−−−−−

−

−

−

−
−−−−−
−

−
−
−
−

−
−
−

−

−−−
−

−

−
−
−
−

−

−

−

−−
−
−

−
−

−

−
−
−
−−

−

−
−−
−
−
−−−

−

−
−

−

−−
−

−

−

−
−
−
−

−
−
−−

−

−
−

−−

−
−

−
−−
−−
−−−
−
−

−−
−−

−

−−

−

−

−

−−−−
−−
−

−

−

−−−
−−

−−
−
−
−

−
−−−
−
−
−

−−−
−−
−
−

−

−
−−

−
−

−

−−
−

−
−
−
−
−

−

−−
−
−−
−
−−−

−−−
−
−−

−
−

−

−

−−
−−
−

−
−
−

−

−

−
−−
−−
−−−

−

−−

−

−

−

−

−
−

−
−−−−
−
−

−

−
−−−

−

−
−−

−−

−

−
−
−

−

−

−

−−
−
−
−−
−
−−
−

−

−−
−
−

−

−
−−
−−
−
−−−
−

−−
−−−

−

−−

−
−

−−−
−
−

−

−−−

−
−
−
−−−

−
−−

−

−

−
−

−−

−
−
−−
−

−

−−
−
−
−

−
−

−
−
−
−

−

−

−
−
−−

−
−
−

−
−
−

−

−

−

−

−

−
−
−

−
−−
−
−
−

−
−

−
−

−
−−

−−−
−

−

−

−

−

−
−
−
−
−−
−−
−

−
−

−

−
−−−

−

−
−

−

−−
−

−

−
−

−−−
−−
−

−−

−

−−

−

−−−−−−−

−−

−

−
−−
−
−

−

−
−
−
−
−−−

−

−−

−

−−

−

−−−−

−−

−−
−

−
−−

−

−−
−−−

−

−
−−

−

−
−
−

−

−
−

−

−
−−−
−

−
−−−−
−−

−

−
−

−

−
−

−−

−

−
−−−

−

−

−

−−

−−

−

−

−−
−−

−

−
−−

−

−

−−−

−

−

−
−−
−

−−
−

−

−−−
−

−

−
−

−
−
−−
−

−

−−
−
−−

−
−

−
−
−
−−
−
−
−
−−−

−

−−

−

−

−−

−

−
−

−

−

−−

−
−−
−
−
−
−−

−−

−−
−
−

−

−
−

−

−

−

−−
−−

−

−

−
−

−

−−

−

−−
−

−

−
−
−

−−−−

−−

−−−−−
−
−−

−

−
−−
−

−−
−
−−
−

−−

−
−−−−

−

−−

−

−
−
−

−
−−
−

−
−

−
−
−
−
−−
−
−

−−

−

−

−

−−

−
−
−
−

−

−
−−

−

−

−

−−

−

−

−
−−
−
−

−
−
−

−
−−−

−

−
−

−−
−

−

−
−−
−

−

−

−

−

−

−−
−−

−

−
−

−−
−−−
−
−
−−−−
−

−

0 2 4 6 8 12

−
0.

6
0.

0
0.

6

2003

R
es

id
ua

ls
 d

eg
 K

Figure 5: Smoothing of sinusoidal data (left) and of their residuals (right)

14 proto: An R Package for Prototype Programming

oo.res

oo

oos

oos.res

Figure 6: Cloning (dashed line) and delegation (solid line). Edges point from child to parent.

series, survival analysis, stochastic processes and so on. The key aspect is just that we are
performing one-of analyses and do not want to set up an elaborate class infrastructure but
just want to directly create objects to organize our calculations while relying on delegation
and dispatch to eliminate redundancy.

3.2. Correlation, Fisher’s Transform and Bootstrapping

The common approach to confidence intervals for the correlation coefficient is to assume nor-
mality of the underlying data and then use Fisher’s transform to transform the correlation
coefficient to an approximately normal random variable. Fisher showed that with the above
normality assumption, transforming the correlation coefficient using the hyperbolic arc tan-
gent function yields a random variable approximately distributed with an N(p,1)√

(n−3)
distribution.

The transformed random variable can be used to create normal distribution confidence inter-
vals and the procedure can be back transformed to get confidence intervals for the original
correlation coefficient.

A more recent approach to confidence intervals for the correlation coefficient is to use boot-
strapping. This does not require the assumption of normality of the underlying distribution
and requires no special purpose theory devoted solely to the correlation coefficient,

Let us calculate the 95% confidence intervals using Fisher’s transform first. We use GNP and
Unemployed from the Longley data set. First we retrieve the data set and extract the required
columns into x. Then we set n to the number of cases and pp to the percentiles of interest.
Finally we calculate the sample correlation and create a function to calculate the confidence
interval using Fisher’s Transform. This function not only returns the confidence interval but
also stores it in CI in the receiver object.

> longley.ci <- proto(expr = {

+ data(longley)

+ x <- longley[, c("GNP", "Unemployed")]

Louis Kates, Thomas Petzoldt 15

+ n <- nrow(x)

+ pp <- c(0.025, 0.975)

+ corx <- cor(x)[1, 2]

+ ci <- function(.) (.$CI <- tanh(atanh(.$corx) + qnorm(.$pp)/sqrt(.$n -

+ 3)))

+ })

Now let us repeat this analysis using the bootstrapping approach. We derive a new object
longley.ci.boot as child of longley.ci, setting the number of replications, N, and defining
the procedure, ci which does the actual bootstrap calculation.

> longley.ci.boot <- longley.ci$proto({

+ N <- 1000

+ ci <- function(.) {

+ corx <- function(idx) cor(.$x[idx,])[1, 2]

+ samp <- replicate(.$N, corx(sample(.$n, replace = TRUE)))

+ (.$CI <- quantile(samp, .$pp))

+ }

+ })

In the example code below the first line runs the Fisher Transform procedure and the second
runs the bootstrap procedure. Just to check that we have performed sufficient bootstrap
iterations we rerun it in the third line, creating a delegated object on-the-fly running its ci

method and then immediately throwing the object away. The fact that 4,000 replications
give roughly the same result as 1,000 replications satisfies us that we have used a sufficient
number of replications.

> longley.ci$ci()

[1] 0.1549766 0.8464304

> longley.ci.boot$ci()

2.5% 97.5%

0.2299395 0.8211854

> longley.ci.boot$proto(N = 4000)$ci()

2.5% 97.5%

0.2480999 0.8259276

We now have the results stored in two objects nicely organized for the future. Note, again,
that despite the simplicity of the example we have used the features of object oriented pro-
gramming, coupling the data and methods that go together, while relying on delegation and
dispatch to avoid duplication.

16 proto: An R Package for Prototype Programming

3.3. Dendrograms

In Gentleman (2002) there is an S4 example of creating a binary tree for use as a dendrogram.
Here we directly define a binary tree with no setup at all. To keep it short we will create
a binary tree of only two nodes having a root whose left branch points to a leaf. The leaf
inherits the value and incr components from the root. The attractive feature is that the
leaf be defined as a child of the parent using proto before the parent is even finished being
defined. Compared to the cited S4 example where it was necessary to create an extra class
to introduce the required level of indirection there is no need to take any similar action.

tree is the root node of the tree. It has four components. A method incr which increments
the value component, a ..Name, the value component itself and the left branch ..left.
..left is itself a proto object which is a child of tree. The leaf inherits the value component
from its parent, the root. As mentioned, at the time we define ..left we have not even
finished defining tree yet we are able to implicitly reference the yet to be defined parent.

> tree <- proto(expr = {

+ incr <- function(., val) .$value <- .$value + val

+ ..Name <- "root"

+ value <- 3

+ ..left <- proto(expr = {

+ ..Name = "leaf"

+ })

+ })

Although this is a simple structure we could have embedded additional children into root

and leaf and so on recursively making the tree or dendrogram arbitrarily complex.

Let us do some computation with this structure. We display the value fields in the two nodes,
increment the value field in the root and then display the two nodes again to show .that the
leaf changed too.

> cat("root:", tree$value, "leaf:", tree$..left$value, "\n")

root: 3 leaf: 3

> tree$incr(1)

> cat("root:", tree$value, "leaf:", tree$..left$value, "\n")

root: 4 leaf: 4

If we increment value in leaf directly (see the example below where we increment it by 10)
then it receives its own copy of value so from that point on leaf no longer inherits value

from root. Thus incrementing the root by 5 no longer increments the value field in the leaf.

> tree$..left$incr(10)

> cat("root:", tree$value, "leaf:", tree$..left$value, "\n")

root: 4 leaf: 14

Louis Kates, Thomas Petzoldt 17

> tree$incr(5)

> cat("root:", tree$value, "leaf:", tree$..left$value, "\n")

root: 9 leaf: 14

3.4. From Prototypes to Classes

In many cases we will use proto for a design that uses prototypes during the full development
cycle. In other cases we may use it in an incremental way starting with prototypes but
ultimately transitioning to classes. As shown in Section 2.3 the proto package is powerful
enough to handle class-based as well as class-free programming. Here we illustrate this process
of incremental design starting with concrete objects and then over time classifing them into
classes, evolving a class-based program. proto provides a smooth transition path since it
can handle both the class-free and the class-based phases – there is no need to switch object
systems part way through. In this example, we define an object which holds a linear equation,
eq, represented as a character string in terms of the unknown variable x and a print and a
solve method. We execute the print method to solve it. We also create child object lineq2
which overrides eq and execute its print method.

> lineq <- proto(eq = "6*x + 12 - 10*x/4 = 2*x", solve = function(.) {

+ e <- eval(parse(text = paste(sub("=", "-(", .$eq), ")")),

+ list(x = 0+1i))

+ -Re(e)/Im(e)

+ }, print = function(.) cat("Equation:", .$eq, "Solution:", .$solve(),

+ "\n"))

> lineq$print()

Equation: 6*x + 12 - 10*x/4 = 2*x Solution: -8

> lineq2 <- lineq$proto(eq = "2*x = 7*x-12+x")

> lineq2$print()

Equation: 2*x = 7*x-12+x Solution: 2

We could continue with enhancements but at this point we decide that we have a general
case and so wish to abstract lineq into a class. Thus we define a trait, Lineq, which is
just lineq minus eq plus a constructor new. The key difference between new and the usual
proto function is that with new the initialization of eq is mandatory. Having completed this
definition we instantiate an object of class/trait Lineq and execute it.

> Lineq <- lineq

> rm(eq, envir = Lineq)

> Lineq$new <- function(., eq) proto(., eq = eq)

> lineq3 <- Lineq$new("3*x=6")

> lineq3$print()

18 proto: An R Package for Prototype Programming

Equation: 3*x=6 Solution: 2

Note how we have transitioned from a prototype style of programming to a class-based style
of programming all the while staying within the proto framework.

4. Summary

4.1. Benefits

The key benefit of the proto package is to provide access to a style of programming that has
not been conveniently accessible within R or any other mainstream language today.

proto can be used in two key ways: class-free object oriented programming and class-based
object oriented programming.

A key application for proto in class-free programming is to wrap the code and data for each run
of a particular statistical study into an object for purposes of organization and reproducibility.
It provides such organization directly and without the need and overhead of class definitions
yet still provides the inheritance and dispatch advantages of object oriented programming.
We provide examples of this style of programming in Section 3.1 and Section 3.2. A third
example in Section 3.3 illustrates a beneficial use of proto with recursive data structures.

Another situation where prototype programming is of interest is in the initial development
stages of a program. In this case, the design may not be fully clear so it is more convenient
to create concrete objects individually rather than premature abstractions through classes.
The graph.proto function can be used to generate visual representations of the object tree
suggesting classifications of objects so that as the program evolves the general case becomes
clearer and in a bottom up fashion the objects are incrementally abstracted into classes.
In this case, proto provides a smooth transition path since it not only supports class-free
programming but, as explained in the Section 2.3, is sufficiently powerful to support class-
based programming, as well.

4.2. Conclusion

The package proto provides an S3 subclass of the environment class for constructing and
manipulating object oriented systems without classes. It can also emulate classes even though
classes are not a primitive structure. Its key design goals are to provide as simple and as thin
a layer as practically possible while giving the user convenient access to this alternate object
oriented paradigm. This paper describes, by example, how prototype programming can be
carried out in R using proto and illustrates such usage. Delegation, cloning traits and general
manipulation and incremental development are all reviewed by example.

Computational details

The results in this paper were obtained using R 2.1.0 with the package proto 0.3–2. R itself
and the proto package are available from CRAN at http://CRAN.R-project.org/. The
GraphViz software is available from http://www.graphviz.org.

http://CRAN.R-project.org/
http://www.graphviz.org

Louis Kates, Thomas Petzoldt 19

References

Agesen O, Bak L, Chambers C, Chang BW, Hölzle U, Maloney J, Smith RB, Ungar D
(1992). The SELF Programmer’s Reference Manual. 2550 Garcia Avenue, Mountain View,
CA 94043, USA. Version 2.0.

Bengtsson H (2003). “The R.oo Package – Object-Oriented Programming with References
Using Standard R Code.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the
3rd International Workshop on Distributed Statistical Computing. Vienna, Austria. URL
http://www.maths.lth.se/help/R/.

Chambers JM, Lang DT (2001). “Object-Oriented Programming in R.” R News, 1(3), 17–19.
URL http://CRAN.R-project.org/doc/Rnews/.

Ganser ER, North SC (2000). “An Open Graph Visualization System with Applications
to Software Engineering.” Software–Practice and Experience, 30(11), 1203–1233. URL
http://www.graphviz.org.

Gentleman R (2002). “S4 Classes in 15 Pages More or Less.” URL http://www.

bioconductor.org/develPage/guidelines/programming/S4Objects.pdf.

Kates L, Petzoldt T (2004). “Prototype-Based Programming in Statistical Computation.”
URL http://r-proto.googlecode.com/files/prototype_approaches.pdf.

Lieberman H (1986). “Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems.” In N Meyrowitz (ed.), Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), volume
21(11), pp. 214–223. ACM Press, New York, NY. URL http://citeseer.ist.psu.edu/

lieberman86using.html.

Noble J, Taivalsaari A, Moore I (1999). Prototype-Programming. Springer-Verlag Singapore
Pte. Ltd.

Petzoldt T (2003). “R as a Simulation Platform in Ecological Modelling.” R News, 3(3), 8–16.
URL http://CRAN.R-project.org/doc/Rnews/.

R Development Core Team (2005). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Taivalsaari A (1996). “Classes vs. Prototypes Some Philosophical and Historical Observa-
tions.” Journal of Object-Oriented Programming, 10(7), 44–50. URL http://www.csee.

umbc.edu/331/resources/papers/Inheritance.pdf.

Tierney L (1990). LISP-STAT: An Object-Oriented Environment for Statistical Computing
and Dynamic Graphics. Wiley, New York, NY.

http://www.maths.lth.se/help/R/
http://CRAN.R-project.org/doc/Rnews/
http://www.graphviz.org
http://www.bioconductor.org/develPage/guidelines/programming/S4Objects.pdf
http://www.bioconductor.org/develPage/guidelines/programming/S4Objects.pdf
http://r-proto.googlecode.com/files/prototype_approaches.pdf
http://citeseer.ist.psu.edu/lieberman86using.html
http://citeseer.ist.psu.edu/lieberman86using.html
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.R-project.org
http://www.csee.umbc.edu/331/resources/papers/Inheritance.pdf
http://www.csee.umbc.edu/331/resources/papers/Inheritance.pdf

20 proto: An R Package for Prototype Programming

A. Frequently Asked Questions

1. What scope do unqualified object references within methods use?

A proto object is an environment and that environment is the environment of the
methods in it (by default). That is, unqualified object references within a proto method
look first in the method itself and secondly in the proto object containing the method.
This is referred to as object scope as opposed to lexical scope or dynamic scope. It
allows simple situations, where delegation is not used, to use unqualified names. Thus
simple situations remain simple. (Kates and Petzoldt 2004) discusses the fragile base
class problem which relates to this question. Also note that if a proto object is created
via the proto function using an argument of funEnvir = FALSE then the environment
of the function/method will not be set as just described (but rather it will retain its
original environment) so the above does not apply. This can be used for instances when
non-default processing is desirable.

2. Why does obj$meth not return the method, meth?

Conceptually obj$meth returns meth but with obj already inserted into its first argu-
ment. This is termed an instantiated proto method and is of S3 class "instantiatedProtoMethod".

In contrast, the method itself (i.e. the uninstantited method) would not have the first
argument already inserted. To return the method itself use with(obj, meth.

The main advantage of a design that makes the distinction between instantiated and
uninstantiated methods is that uninstantiated methods are never changed so debugging
can be more readily carried out (as discussed in the next question and answer).

3. How does one debug a method?

proto does not dynamically redefine methods. This has the advantage that the ordinary
R debug and undebug commands can be used. When using these be sure that to use
them with the uninstantiated method itself and not the instantiated method derived
from it. That is, use:

with(obj, debug(meth))

and not

debug(obj$meth) # wrong

4. Is multiple inheritance supported?

No. proto is just a thin layer on top of R environments and R environments provide
single inheritance only. (Kates and Petzoldt 2004) discusses some ways of handling
situations which would otherwise require multiple inheritance.

Louis Kates, Thomas Petzoldt 21

5. Does proto support lazy evaluation?

Since proto methods are just R functions they do support lazy evaluation; however, the
proto function itself does evaluate its arguments. To get the effect of lazy evaluation
when using the proto function replace any properties with a function.

If the caller is the parent of the proto object then its particularly simple. Note how we
got the equivalent of lazy evaluation in the second example where f is a function:

eager evaluation

x <- 0

p <- proto(f = x, g = function(.) $x)

x <- 1

p$f # 0

versus making f a function

simulates lazy evaluation

x <- 0

p <- proto(f = function(.) x, g = function(.) .$x)

x <- 1

p$f() # 1

If we cannot guarantee that the proto object has the caller as its parent then ensure
that the environment of the function has not been reset. If no method needs to reference
.that or .super then we can arrange for that using funEnvir=FALSE as seen here in
the second example:

does not work as intended

x <- 0

p <- proto(x = 99)

q <- p$proto(f = function(.) x, g = function(.) .$x)

x <- 1

q$f() # 99

does work

x <- 0

p <- proto(x = 99)

q <- p$proto(f = function(.) x, g = function(.) .$x, funEnvir = FALSE)

x <- 1

q$f() # 1

If we wish only to not reset the function used to simulate lazy evaluation then we can
do it using either of the two equivalent alternatives below. g is an ordinary method
whose environment is reset to q whereas f is a function whose environment is not reset
and serves to provide lazy evaluation for x found in the caller.

22 proto: An R Package for Prototype Programming

x <- 0

p <- proto(x = 99)

g will use q's y in children of q even if those children

override y

q <- p$proto(y = 25, g = function(.) .that$y + .$x)

q[["f"]] <- function(.) x

x <- 1

q$f() # 1

equivalent alternative

x <- 0

p <- proto(x = 99)

q <- proto(f = function(.) x, funEnvir = FALSE,

envir = p$proto(y = 25, g = function(.) .that$y + .$x))

x <- 1

q$f() # 1

Louis Kates, Thomas Petzoldt 23

B. Reference Card

24 proto: An R Package for Prototype Programming

Creation
proto proto(., expr, envir, ...) embeds the components

specified in expr and/or ... into the proto object or envi-
ronment specified by envir. A new object is created if envir
is omitted. The parent of the object is set to . . The par-
ent object, ., defaults to the parent of envir or the current
environment if envir is missing. expr and ... default to
empty specifications. The returned object will contain .that

and .super variables referring to the object itself and the par-
ent of the object, respectively.

Coercion
as.proto If x is a proto object or environment then x is returned

as a proto object with the values of .that and .super in-
serted in the case of an environment or refreshed in the
case of a proto object. If x is a list then additional ar-
guments are available: as.proto(x, envir, parent, FUN,

all.names, ...). Each component of x is copied into envir.
envir may be an environment or proto object. If it is miss-
ing a new proto object is created. If all.names = FALSE then
only list components whose names do not begin with a dot
are copied. If FUN is specified then, in addition, only list com-
ponents v for which FUN(v) is TRUE are copied. If parent is
specified then the resulting proto object will have that parent.
Otherwise, it will have the parent of envir if envir was speci-
fied. If neither are specified the parent defaults to the current
environment.

Standard methods
$ obj$x searches proto object obj for x. If the name x does not

begin with two dots then ancestors are searched if the name
is not found in obj. If x is a variable or if obj is .super

or .that then x is returned. Otherwise, the call obj$x(...)
is equivalent to the call get("x", obj)(obj, ...). If it is
desired to return a method as a value rather than in the context
of a call then use get("x", obj) (or obj[["x"]] x is known
to be directly in obj) rather than $ syntax.

$<- obj$x <- value sets x in proto object obj to value creating
x if not present. If obj is .super then a side effect is to set the
parent of obj to value.

is.proto(x) returns TRUE if x is a proto object and othewise returns FALSE.

Utilities
graph.proto graph.proto(e, g, child.to.parent) adds a graph in the

sense of the graph package representing an ancestor tree among
all proto objects in environment or proto object e to graph
g. e defaults to the current environment and g defaults to an
empty graph. child.to.parent is a logical variable specifying
the direction of arrows. By default they are displayed from
children to parents.

Louis Kates, Thomas Petzoldt 25

Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

mailto:name@address
http://link/to/webpage/

	Introduction
	Object Oriented Programming in R
	History
	Overview

	The class "proto" and its methods
	Creation of "proto" objects
	Internals
	Traits
	Utilities
	Plotting

	Examples
	Smoothing
	Correlation, Fisher's Transform and Bootstrapping
	Dendrograms
	From Prototypes to Classes

	Summary
	Benefits
	Conclusion

	References
	Frequently Asked Questions
	Reference Card

