Package ‘prodest’

October 14, 2022
Type Package

Title Production Function Estimation

Version 1.0.1

Author Gabriele Rovigatti [aut,cre]

Maintainer Gabriele Rovigatti <gabriele.rovigatti@gmail.com>

Description Implements the methods proposed by Ol-
ley, G.S. and Pakes, A. (1996) <doi:10.2307/2171831>, Levin-
sohn, J. and Petrin, A. (2003) <doi:10.1111/1467-937X.00246>, Acker-
berg, D.A. and Caves, K. and Frazer, G. (2015) <doi:10.3982/ECTA13408> and Wooldridge, J.M. (2009) <doi:10.1016/j.ec
tural productivity estimation .

License GPL-3
BugReports https://github.com/GabrieleRovigatti/prodest/issues

URL https://github.com/GabrieleRovigatti/prodest/tree/master/prodest
LazyData TRUE

Depends R (>=2.10), dplyr, parallel, Matrix, methods

Imports Rsolnp, DEoptim, AER

Suggests testthat

Repository CRAN

RoxygenNote 6.0.1

NeedsCompilation no

Date/Publication 2018-06-19 13:21:32 UTC

R topics documented:

block.boot.resample 2
checkM e e e e 3
checkMD e e e e 3
chilean e e 4
coef . . e e e 5
finalACF e e 5

https://doi.org/10.2307/2171831
https://doi.org/10.1111/1467-937X.00246
https://doi.org/10.3982/ECTA13408
https://doi.org/10.1016/j.econlet.2009.04.026
https://github.com/GabrieleRovigatti/prodest/issues
https://github.com/GabrieleRovigatti/prodest/tree/master/prodest

2 block.boot.resample

finalOPLP e 6
FSres . . . e 7
SACF . . 8
gOPLP 8
lagPanel 9
OMEZA .+ v v v e 10
panelSimo e 10
printProd 12
prod . .o 13
prodestACF e 14
prodestLP e e e e 17
prodestOP e 21
prodestROB 24
prodestWRDG oL 27
prodestWRDG_GMM e e 29
ShOW . . . e 32
SUIMMATY .« . v v v v v ot e e e e e e e e e e e e e e e e e 33
weightM oL 33
withinvar L 34
Index 35

block.boot.resample Cluster Bootstrap Resampling

Description

Function to generate R vectors of resampled IDs. It works reshuffling the row number of the original
data - which is stored in the input idvar along with the relative IDs. The output is a list (N_ix1xR),
where N_i is a random number depending on the reshuffle.

Usage

block.boot.resample(idvar, R)

Arguments

idvar Vector of IDs to be resampled.

R Number of samples to be computed.
Details

block.boot.resample() accepts two inputs: a vector of IDs - i.e., the vector of panel identifier
- and the number of resamplings. For each resampling, it reshuffles the IDs and outputs a vector
whose row number is newly-created *bootstrap’ ID, while the value of each cell is the relative row
to be reshuffled. This way, each individual can be sampled multiple times, keeping all her number
of observations, without generating duplicates.

checkM 3

Author(s)

Gabriele Rovigatti

checkM Change input to matrix

Description

Function to transform all input to matrix.

Usage

checkM(input)

Arguments

input An R object. Can be a matrix/dataframe/vector/scalar.

Details

checkM() accepts one input and - if codeinput is a matrix - returns it without column names, other-
wise transforms it into a matrix and returns it without column names.

Author(s)

Gabriele Rovigatti

checkMD Change dummy input to dummy matrix

Description
Function to transform all input to a matrix. In addition, it checks whether all elements of the input
are either O or 1.

Usage

checkMD(input)

Arguments

input An R object. Can be a matrix/dataframe/vector/scalar.

4 chilean

Details

checkMD() accepts one input and - if codeinput is a matrix - returns it without column names,
otherwise transforms it into a matrix and returns it without column names. In case any of the
elements of input are different from O or 1, it stops the routine and throws an error.

Author(s)

Gabriele Rovigatti

chilean Data: Chilean firm-level production data 1986-1996

Description

Sectoral subsample of Chilean firm-level production data 1986-1996.

Usage

data("chilean")

Format

A data.frame object containing 9 variables with production-related data.

Value
Y vector of log(outcome) - Value added.
sX vector of log(capital).
fX matrix of log(skilled labor) and log(unskilled labor).
cX vector of log(water).
pX vector of log(electricity).
inv vector of log(investment).
idvar vector of panel identifier.
timevar vector of time.
References

http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/industria/series_
estadisticas/series_estadisticas_enia.php

http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/industria/series_estadisticas/series_estadisticas_enia.php
http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/industria/series_estadisticas/series_estadisticas_enia.php

coef 5

coef Print the estimated parameters

Description

This method provides the way to extract and print the estimated parameters from a prod S4 object
- estimates from prodestOP, prodestLP, prodestACF, prodestWRDG and prodestWRDG_GMM -
defined in the prodest package

Usage
coef(object,...)
Arguments
object object of class prod.
Additional arguments.
Details

coef accepts an S4 prod object and prints the vector of estimated parameters.

Author(s)

Gabriele Rovigatti

finalACF ACF estimation routine

Description

finalACF is the function linking the data cleaning part of the routine with the final function to be
bootstrapped.

Usage

finalACF(ind, data, fnum, snum, cnum, opt, theta®@, boot = FALSE)

6 final OPLP

Arguments
ind Vector of indices to reshuffle the data.
data data. frame with the data to perform the estimation on.
fnum Number of free variables.
shum Number of state variables.
cnum Number of control variables.
opt String with the optimizer.
thetad Vector of starting points.
boot Binary indicator for the estimation routine being the baseline estimation (boot
= FALSE, the default) or a bootstrap repetition.
Details

finalACF () accepts at least 7 inputs: a vector of reshuffled indices, the data. frame with the data,
the number of free, state and control variables, the starting points and the optimizer. It collects the
results of gACF () function - baseline and bootstrapped - calculates the standard errors and stores all
in a prod object.

Author(s)

Gabriele Rovigatti

finalOPLP OP and LP estimation routine

Description
finalOPLP is the function linking the data cleaning part of the routine with the final function to be
bootstrapped.

Usage

finalOPLP(ind, data, fnum, snum, cnum, opt, theta®, boot, tol, att)

Arguments
ind Vector of indices to reshuffle the data.
data data. frame with the data to perform the estimation on.
fnum Number of free variables.
snum Number of state variables.
cnum Number of control variables.
opt String with the optimizer.

thetad Vector of starting points.

FSres 7

boot Binary indicator for the estimation routine being the baseline estimation or a
bootstrap repetition.

tol Optimization tolerance set.
att Indicator for attrition in the data - i.e., if firms exit the market.
Details

finalOPLP() accepts at 9 inputs: a vector of reshuffled indices, the data.frame with the data,
the number of free, state and control variables, the starting points, the optimizer, an indicator for
bootstrapped repetitions and the optimization tolerance. It collects the results of gACF () function -
baseline and bootstrapped - calculates the standard errors and stores all in a prod object.

Author(s)

Gabriele Rovigatti

FSres Generate the vector of the first stage residuals

Description
This method provides the way to estimate the first stage residuals from a prod S4 object - estimates
from prodestOP, prodestLP, prodestACF, prodestWRDG and prodestWRDG_GMM - defined in
the prodest package

Usage

FSres(object)

Arguments

object object of class prod.

Details

FSres accepts an S4 prod object and returns the vector of firs stage residuals.

Author(s)

Gabriele Rovigatti

8 gOPLP

gACF ACF Second Stage - GMM estimation

Description

gACF returns the second stage parameters estimates of ACF models. It is part of the prodestACF ()
routine.

Usage
gACF (theta, mZ, mW, mX, mlX, vphi, vlag.phi)

Arguments
theta Vector of parameters to be estimated.
mZ Matrix of instruments.
mW Weighting matrix.
mX Matrix of regressors.
m1X matrix of lagged regressors.
vphi Vector of fitted polynomial.
vlag.phi Lagged vector of fitted polynomial.
Details

gACF () estimates the second stage of ACF routine. It accepts 7 inputs, generates and optimizes over
the group of moment functions E(xi_itZ k_it).

Author(s)

Gabriele Rovigatti

gOPLP OP and LP Second Stage - GMM estimation

Description

gOPLP returns the second stage parameters estimates of both OP and LP models. It is part of both
prodestOP() and prodestsLP() routines.

Usage
gOPLP(vtheta, mX, mlX, vphi, vlag.phi, vres, stol, Pr.hat, att)

lagPanel 9

Arguments
vtheta Vector of parameters to be estimated.
mX Matrix of regressors.
m1X matrix of lagged regressors.
vphi Vector of fitted polynomial.
vlag.phi Lagged vector of fitted polynomial.
vres Vector of residuals of the free variables.
stol Number setting the tolerance of the routine.
Pr.hat Vector of fitted exit probabilities.
att Indicator for attrition in the data - i.e., if firms exit the market.
Details

gOPLP() estimates the second stage of OP and LP routines. It accepts 7 inputs, generates and
optimizes over the group of moment functions E(e_itX"k_it).

Author(s)

Gabriele Rovigatti

lagPanel Generate lagged input variables

Description

Function to generate lagged variables in a panel.

Usage
lagPanel(idvar, timevar, value)
Arguments
idvar vector of panel identifiers.
timevar vector of time identifiers.
value variable vector to be lagged.
Details

lagPanel() accepts three inputs (the ID, the time and the variable to be lagged) and returns the
vector of lagged variable. Lagged inputs with no correspondence - i.e., X_-1 - are returned as NA.

Author(s)

Gabriele Rovigatti

10 panelSim

omega Generate the omega estimates

Description
This method provides the way to estimate the omega residuals from a prod S4 object - estimates
from prodestOP, prodestLP, prodestACF, prodestWRDG and prodestWRDG_GMM - defined in
the prodest package

Usage

omega(object)

Arguments

object object of class prod.

Details

omega accepts an S4 prod object and returns a vector of omega estimates.

Value
* A vector of productivity estimates - omega.
Author(s)
Gabriele Rovigatti
panelSim Simulate Panel dataset
Description

panelSim() produces a N*T balanced panel dataset of firms’ production. In particular, it returns a
data.frame with free, state and proxy variables aimed at performing Monte Carlo simulations on
productivity-related models.

Usage

panelSim(N = 1000, T = 100, alphaL = .6, alphaK = .4, DGP = 1,
rho = .7, sigeps = .1, sigomg = .3, rholnw = .3)

panelSim

Arguments

N
T

alphal
alphakK
DGP

rho
sigeps

sigomg

rholnw

Details

11

the number of firms. By default N=1000

the total time span to be simulated. Only a fraction (the last 10% of observations)
will be returned. By default T=100

the parameter of the free variable. By default alphal=.6
the parameter of the state variable. By default alphaK=.4

Type of DGP; accepts 1, 2 or 3. They differ in terms of shock to wages (0 or
0.1), A (0 or 0.5) and shock to labor (0 or 0.37). See details. By default DGP=1.

the AR(1) coefficient for omega. By default rho=0.7
the standard deviation of epsilon. See details. By default sigeps = .1.

the standard deviation of the innovation to productivity w. By default sigomg =
.3,

AR(1) coefficient for log(wage). By default rholnw=.3.

panelSim() is the R implementation of the DGP written by Ackerberg, Caves and Frazer (2015).

Value

panelSim() returns a data. frame with 7 variables:

* idvar ID codes from 1 to N (by default N = 1000).

* timevar time variable ranging 1 to round(T0.1) (by default 7' = 100 and maz(timevar) =

10).

* Y log output value added variable

* sX log state variable

* fX log free variable

* pX1 log proxy variable - no measurement error

* pX2 log proxy variable - omeqsurementerror = -1

. pX3 10g proxy variable - Ormeasurementerror = -2

. pX4 log proxy variable - Ormeasurementerror = -9

Author(s)

Gabriele Rovigatti

References

Ackerberg, D., Caves, K. and Frazer, G. (2015). "Identification properties of recent production
function estimators." Econometrica, 83(6), 2411-2451.

12 printProd
Examples

require(prodest)

Simulate a dataset with 100 firms (T = 50).
\code{Panelsim()} delivers the last 10% of usable time per panel.

panel.data <- panelSim(N = 100, T = 50)
attach(panel.data)

Estimate various models
ACF.fit <- prodestACF(Y, fX, sX, pX2, idvar, timevar, theta® = c(.5,.5))

LP.fit <- prodestLP(Y, fX, sX, pX2, idvar, timevar)
WRDG.fit <- prodestWRDG(Y, fX, sX, pX3, idvar, timevar)

print results in lateX tabular format
printProd(list(LP.fit, ACF.fit, WRDG.fit))

printProd Print output - prod objects

Description
The printProd() function accepts a 1ist of prod class objects and returns a screen printed tabular
in lateX format of the results.

Usage

printProd(mods, modnames = NULL, parnames = NULL, outfile = NULL,
ptime = FALSE, nboot = FALSE, screen = FALSE)

Arguments

mods a list of prod objects.

modnames an optional vector of model names. By default, model names are the @odelMethod
values in prod objects.

parnames an optional vector of parameter names. By default, parameter names are the
names () vector of @Estimatespars in prod objects.

outfile optional string with the path and directory to store a text file (.txt, .tex, etc.
depending on the specified extension) with the tabular. By default outfile =
NULL.

ptime add a row showing the computational time. By default ptime = FALSE.

nboot add a row showing the number of bootstrap repetitions. By default nboot =
FALSE.

screen print the table on-screen without teX format. By default screen = FALSE.

prod

Value

13

The output of the function printProd is either a screen printed tabular in lateX format of prod
object results or a text file tabular in lateX format of prod object results.

Author(s)

Gabriele Rovigatti

Examples

data(”chilean”)

run various models
WRDGfit <- prodestWRDG_GMM(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2),

chilean$sX, chilean$pX, chilean$idvar, chilean$timevar)

OPfit <- prodestOP(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,

chilean$pX, chilean$idvar, chilean$timevar)

show the output in latex - tabular format
printProd(list(OPfit, WRDGfit), modnames = c('Olley-Pakes', 'Wooldridge'),

parnames = c('bunsk', 'bsk', 'bk'))

show the output on-screen - no teX format
printProd(list(OPfit, WRDGfit), modnames = c('Olley-Pakes', 'Wooldridge'),

parnames = c('bunsk', 'bsk', 'bk'), screen = TRUE)

prod

Class for Prodest Fitted object

Description

Class for prodest fitted objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

Model: Object of class 1ist. Contains information about the model and the optimization proce-
dure:

method: string The method used in estimation.

FSbetas: numeric First-stage estimated parameters.
boot.repetitions: numeric Number of bootstrap repetitions.
elapsed. time: numeric Time - in seconds - required for estimation.
theta@: numeric Vector of Second-stage optimization starting points.
opt: string Optimizer used for the Second-stage.

14 prodestACF

e seed: numeric seed set.

e opt.outcome: 1list Optimization outcome (depends on optimizer choice).
Data: Object of class 1ist. Contains:

* Y: numeric Dependent variable - Value added.
e free: matrix Free variable(s).

e state: matrix State variable(s).

e proxy: matrix Proxy variable(s).

e control: matrix Control variable(s).

e idvar: numeric Panel identifiers.

e timevar: numeric Time identifiers.

* FSresiduals: numeric First-Stage residuals.

Estimates: Object of class 1ist. Contains:

* pars: numeric Estimated parameters for the variables of interest.
e std.errors: numeric Estimated standard errors for the variables of interest.

Methods

* show signature(object = 'prod'): Show table with the method, the estimated parameters
and their standard errors.

* summary signature(object = 'prod'): Show table with method, parameters, std.errors and
auxiliary information on model and optimization.

* FSres signature(object = 'prod"'): Extract First-Stage residual vector.
* omega signature(object = 'prod'): Extract estimated productivity vector.

e coef signature(object = 'prod'): Extract estimated coefficients.

Author(s)

Gabriele Rovigatti

prodestACF Estimate productivity - Ackerberg-Caves-Frazer correction

Description

The prodestACF () function accepts at least 6 objects (id, time, output, free, state and proxy vari-
ables), and returns a prod object of class S3 with three elements: (i) a list of model-related objects,
(ii) a list with the data used in the estimation and estimated vectors of first-stage residuals, and (iii)
a list with the estimated parameters and their bootstrapped standard errors .

Usage

prodestACF(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL,
opt = 'optim', theta® = NULL, cluster = NULL)

prodestACF 15

Arguments
Y the vector of value added log output.
fX the vector/matrix/dataframe of log free variables.
sX the vector/matrix/dataframe of log state variables.
pX the vector/matrix/dataframe of log proxy variables.
cX the vector/matrix/dataframe of control variables. By default cX= NULL.
idvar the vector/matrix/dataframe identifying individual panels.
timevar the vector/matrix/dataframe identifying time.
R the number of block bootstrap repetitions to be performed in the standard error
estimation. By default R = 20.
opt a string with the optimization algorithm to be used during the estimation. By
default opt = 'optim'.
theta® a vector with the second stage optimization starting points. By default theta@
= NULL and the optimization is run starting from the first stage estimated param-
eters + IV (0,0.01) noise.
cluster an object of class "SOCKcluster” or "cluster”. By default cluster = NULL.
Details

Consider a Cobb-Douglas production technology for firm 7 at time ¢
* Yit = o+ wirS + ki + wir + €

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and €;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wit = B(wit|wit—1) + wie = g(wir—1) + i

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency, the
state variables in k;; and the lagged free variables w;;_1. ACF propose an estimation algorithm
alternative to OP and LP procedures claiming that the labour demand and the control function are
partially collinear. It is based on the following set of assumptions:

* a) pir = p(kit, lit, w;t) is the proxy variable policy function;

* b) pj; is strictly monotone in w;;;

*) wj; is scalar unobservable in p;s = m(.) ;

¢ d) The state variable are decided at time t-1. The less variable labor input, /;;, is chosen at t-b,

where 0 < b < 1. The free variables, w;;, are chosen in t when the firm productivity shock is
realized.

Under this set of assumptions, the first stage is meant to remove the shock ¢;; from the the output,
y;t- As in the OP/LP case, the inverted policy function replaces the productivity term w;; in the
production function:

* Yir = kuy + w8+ Lkt + h(pie, kies Wit Lir) + €3t

which is estimated by a non-parametric approach - First Stage. Exploiting the Markovian nature of
the productivity process one can use assumption d) in order to set up the relevant moment conditions
and estimate the production function parameters - Second stage.

16 prodestACF

Value

The output of the function prodestACF is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list with elements:

* method: a string describing the method (" ACF’).

* boot.repetitions: the number of bootstrap repetitions used for standard errors’ computa-
tion.

* elapsed.time: time elapsed during the estimation.

* theta®@: numeric object with the optimization starting points - second stage.

* opt: string with the optimization routine used - *optim’, ’solnp’ or 'DEoptim’.
* opt.outcome: optimization outcome.

* FSbetas: first stage estimated parameters.
Data, a list with elements:

* Y: the vector of value added log output.

* free: the vector/matrix/dataframe of log free variables.

* state: the vector/matrix/dataframe of log state variables.

* proxy: the vector/matrix/dataframe of log proxy variables.

* control: the vector/matrix/dataframe of log control variables.

* idvar: the vector/matrix/dataframe identifying individual panels.
* timevar: the vector/matrix/dataframe identifying time.

* FSresiduals: numeric object with the residuals of the first stage.
Estimates, a list with elements:

e pars: the vector of estimated coefficients.

* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;; = yi;r — (o + w8 + kiy). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

Author(s)

Gabriele Rovigatti

References

Ackerberg, D., Caves, K. and Frazer, G. (2015). "Identification properties of recent production
function estimators." Econometrica, 83(6), 2411-2451.

prodestLP 17

Examples

require(prodest)

Chilean data on production.The full version is Publicly available at
http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/industria/
series_estadisticas/series_estadisticas_enia.php

data(chilean)

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

ACF.fit <- prodestACF(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,
chilean$pX, chilean$idvar, chilean$timevar,
thetad = c(.5,.5,.5), R =5)

set.seed(154673)
ACF.fit.solnp <- prodestACF(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,
chilean$pX, chilean$idvar, chilean$timevar,
thetad® = c(.5,.5,.5), opt = 'solnp')

run the same regression in parallel

nCores <- as.numeric(Sys.getenv(”"NUMBER_OF_PROCESSORS")) # Windows systems

nCores <- 3

cl <- makeCluster(getOption(”cl.cores”, nCores - 1))

set.seed(154673)

ACF.fit.par <- prodestACF(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,

chilean$pX, chilean$idvar, chilean$timevar,
theta® = c¢(.5,.5,.5), cluster = cl)

stopCluster(cl)

show results
coef (ACF.fit)
coef (ACF.fit.solnp)

show results in .tex tabular format
printProd(list(ACF.fit, ACF.fit.solnp))

prodestLP Estimate productivity - Levinsohn-Petrin method

Description

The prodestLP() The prodestWRDG() function accepts at least 6 objects (id, time, output, free,
state and proxy variables), and returns a prod object of class S3 with three elements: (i) a list
of model-related objects, (ii) a list with the data used in the estimation and estimated vectors of
first-stage residuals, and (iii) a list with the estimated parameters and their bootstrapped standard
errors.

18

Usage

prodestLP

prodestLP(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL,

Arguments

Y

X

sX

pX

cX
idvar
timevar

R

opt

theta

cluster
tol

exit

Details

opt = 'optim', theta® = NULL, cluster = NULL, tol = 1e-100, exit = FALSE)

the vector of value added log output.

the vector/matrix/dataframe of log free variables.

the vector/matrix/dataframe of log state variables.

the vector/matrix/dataframe of log proxy variables.

the vector/matrix/dataframe of control variables. By default cX= NULL.
the vector/matrix/dataframe identifying individual panels.

the vector/matrix/dataframe identifying time.

the number of block bootstrap repetitions to be performed in the standard error
estimation. By default R = 20.

a string with the optimization algorithm to be used during the estimation. By
default opt = 'optim'.

a vector with the second stage optimization starting points. By default theta®
= NULL and the optimization is run starting from the first stage estimated param-
eters + N(p = 0,0 = 0.01) noise.

an object of class "SOCKcluster” or "cluster”. By default cluster = NULL.
optimizer tolerance. By default tol = 1e-100.

Indicator for attrition in the data - i.e., if firms exit the market. By default exit
= FALSE; if exit = TRUE, an indicator function for firms whose last appearance
is before the last observation’s date is generated and used in the second stage.
The user can even specify an indicator variable/matrix/dataframe with the exit
years.

Consider a Cobb-Douglas production technology for firm ¢ at time ¢

* Yit = @+ wif + kiy + wit + €t

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and €;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wir = B(wit|wit—1) + tir = g(wir—1) + s

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency, the
state variables in k;; and the lagged free variables w;;—1. The LP method relies on the following set

of assumptions:

* a) firms immediately adjust the level of inputs according to demand function m(wy, k;;) after
the technical efficiency shock realizes;

prodestLP 19

b) m;; is strictly monotone in w;¢;
¢) wj¢ is scalar unobservable in m;; = m(.) ;

d) the levels of k;; are decided at time ¢ — 1; the level of the free variable, w;;, is decided after
the shock u;; realizes.

Assumptions a)-d) ensure the invertibility of m;; in w;; and lead to the partially identified model:

Yit = o+ Wit B+ kipy + h(mag, kit) + € = o+ wie B+ d(me, kir) + €i

which is estimated by a non-parametric approach - First Stage. Exploiting the Markovian nature of
the productivity process one can use assumption d) in order to set up the relevant moment conditions
and estimate the production function parameters - Second stage. Exploiting the residual v;; of:

Yit — wif = a+ kiy + g(wit—1, Xit) + Vit

and g(.) is typically left unspecified and approximated by a n*" order polynomial and Y;; is an
indicator function for the attrition in the market.

Value

The output of the function prodestLP is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list containing:

method: a string describing the method ("LP’).

boot.repetitions: the number of bootstrap repetitions used for standard errors’ computa-
tion.

elapsed. time: time elapsed during the estimation.

theta@: numeric object with the optimization starting points - second stage.
opt: string with the optimization routine used - *optim’, ’solnp’ or "DEoptim’.
opt.outcome: optimization outcome.

FSbetas: first stage estimated parameters.

Data, a list containing:

Y: the vector of value added log output.

free: the vector/matrix/dataframe of log free variables.

state: the vector/matrix/dataframe of log state variables.

proxy: the vector/matrix/dataframe of log proxy variables.
control: the vector/matrix/dataframe of log control variables.
idvar: the vector/matrix/dataframe identifying individual panels.
timevar: the vector/matrix/dataframe identifying time.

FSresiduals: numeric object with the residuals of the first stage.

Estimates, a list containing:

pars: the vector of estimated coefficients.

20 prodestLP

* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;z = y;+ — (o + w8 + kiry). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

Author(s)

Gabriele Rovigatti

References
Levinsohn, J. and Petrin, A. (2003). "Estimating production functions using inputs to control for
unobservables." The Review of Economic Studies, 70(2), 317-341.

Examples

require(prodest)

Chilean data on production.
Publicly available at http://www.ine.cl/canales/chile_estadistico/estadisticas_
economicas/industria/series_estadisticas/series_estadisticas_enia.php

data(chilean)

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

set.seed(154673)

LP.fit <- prodestLP(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,
chilean$pX, chilean$idvar, chilean$timevar)

LP.fit.solnp <- prodestLP(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,

chilean$pX, chilean$idvar, chilean$timevar, opt = 'solnp')
Not run:
run the same model in parallel
require(parallel)

nCores <- as.numeric(Sys.getenv(”"NUMBER_OF_PROCESSORS"))
cl <- makeCluster(getOption(”cl.cores”, nCores - 1))
set.seed(154673)
LP.fit.par <- prodestLP(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$pX, chilean$idvar, chilean$timevar,
cluster = cl)
stopCluster(cl)

End(Not run)
show results

summary (LP.fit)
summary (LP.fit.solnp)

prodestOP

21

show results in .tex tabular format
printProd(list(LP.fit, LP.fit.solnp))

prodestOP

Estimate productivity - Olley-Pakes method

Description

The prodestOP() function accepts at least 6 objects (id, time, output, free, state and proxy vari-
ables), and returns a prod object of class S4 with three elements: (i) a list of model-related objects,
(ii) a list with the data used in the estimation and estimated vectors of first-stage residuals, and (iii)
a list with the estimated parameters and their bootstrapped standard errors .

Usage

prodestOP(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL,

Arguments

Y

fX

sX

pX

cX
idvar
timevar

R

opt

theta0

cluster

tol

exit

opt = 'optim', theta® = NULL, cluster = NULL, tol = 1e-100, exit = FALSE)

the vector of value added log output.

the vector/matrix/dataframe of log free variables.

the vector/matrix/dataframe of log state variables.

the vector/matrix/dataframe of log proxy variables.

the vector/matrix/dataframe of control variables. By default cX= NULL.
the vector/matrix/dataframe identifying individual panels.

the vector/matrix/dataframe identifying time.

the number of block bootstrap repetitions to be performed in the standard error
estimation. By default R = 20.

a string with the optimization algorithm to be used during the estimation. By
default opt = 'optim'.

a vector with the second stage optimization starting points. By default theta®
= NULL and the optimization is run starting from the first stage estimated param-
eters + N(p = 0,0 = 0.01) noise.

an object of class "SOCKcluster” or "cluster”. By default cluster = NULL.
optimizer tolerance. By default tol = 1e-100.

Indicator for attrition in the data - i.e., if firms exit the market. By default exit
= FALSE; if exit = TRUE, an indicator function for firms whose last appearance
is before the last observation’s date is generated and used in the second stage.
The user can even specify an indicator variable/matrix/dataframe with the exit
years.

22 prodestOP

Details

Consider a Cobb-Douglas production technology for firm ¢ at time ¢
* Yit = o+ wirS + kipy + wir + €

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and €;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wit = B(wit|wit—1) + tir = g(wir—1) + s

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency, the
state variables in k;; and the lagged free variables w;;—1. The OP method relies on the following
set of assumptions:

* a) i;; = i(kit,w;) - investments are a function of both the state variable and the technical
efficiency parameter;
* b) i is strictly monotone in w;y;

* ¢) w;; is scalar unobservable in i;; = i(.) ;

d) the levels of i;; and k;; are decided at time ¢ — 1; the level of the free variable, w;;, is
decided after the shock wu;; realizes.

Assumptions a)-d) ensure the invertibility of 4;; in w;; and lead to the partially identified model:
* Yit = @+ wi B+ kit y + hii, ki) + €0 = o+ wirB + ¢(iit, kir) + €

which is estimated by a non-parametric approach - First Stage. Exploiting the Markovian nature of
the productivity process one can use assumption d) in order to set up the relevant moment conditions
and estimate the production function parameters - Second stage. Exploiting the residual e;; of:

o Yir — Wit = o+ kyy + g(Wir—1, Xar) + €ir

and g(.) is typically left unspecified and approximated by a n'" order polynomial and y;; is an
indicator function for the attrition in the market.

Value

The output of the function prodestOP is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list containing:

* method: a string describing the method ("OP”).

* boot.repetitions: the number of bootstrap repetitions used for standard errors’ computa-
tion.

* elapsed. time: time elapsed during the estimation.

* theta®@: numeric object with the optimization starting points - second stage.

* opt: string with the optimization routine used - *optim’, ’solnp’ or "DEoptim’.
* opt.outcome: optimization outcome.

* FSbetas: first stage estimated parameters.

prodestOP 23

Data, a list containing:

* Y: the vector of value added log output.

* free: the vector/matrix/dataframe of log free variables.

* state: the vector/matrix/dataframe of log state variables.

* proxy: the vector/matrix/dataframe of log proxy variables.

e control: the vector/matrix/dataframe of log control variables.

* idvar: the vector/matrix/dataframe identifying individual panels.
* timevar: the vector/matrix/dataframe identifying time.

* FSresiduals: numeric object with the residuals of the first stage.
Estimates, a list containing:

e pars: the vector of estimated coefficients.

* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;; = yir — (o + w8 + kiy). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

Author(s)

Gabriele Rovigatti

References

Olley, S G and Pakes, A (1996). "The dynamics of productivity in the telecommunications equip-
ment industry.” Econometrica, 64(6), 1263-1297.

Examples

require(prodest)

Chilean data on production.The full version is Publicly available at
http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/industria/
series_estadisticas/series_estadisticas_enia.php

data(chilean)

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

OP.fit <- prodestOP(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2), chilean$sX,

chilean$inv, chilean$idvar, chilean$timevar)

OP.fit.solnp <- prodestOP(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$inv, chilean$idvar,
chilean$timevar, opt='solnp')

OP.fit.control <- prodestOP(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2),

chilean$sX, chilean$inv, chilean$idvar,

24 prodestROB

chilean$timevar, cX = chilean$cX)

OP.fit.attrition <- prodestOP(chilean$yY, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$inv, chilean$idvar,
chilean$timevar, exit = TRUE)

show results

summary (OP.fit)
summary (OP. fit.solnp)
summary (OP.fit.control)

show results in .tex tabular format
printProd(list(OP.fit, OP.fit.solnp, OP.fit.control, OP.fit.attrition))

prodestROB Estimate productivity - Robinson-Wooldridge method

Description

The prodestROB() function accepts at least 6 objects (id, time, output, free, state and proxy vari-
ables), and returns a prod object of class S3 with three elements: (i) a list of model-related objects,
(ii) a list with the data used in the estimation and estimated vectors of first-stage residuals, and (iii)
a list with the estimated parameters and their bootstrapped standard errors.

Usage

prodestROB(Y, fX, sX, pX, idvar, timevar, cX = NULL)

Arguments
Y the vector of value added log output.
fX the vector/matrix/dataframe of log free variables.
sX the vector/matrix/dataframe of log state variables.
pX the vector/matrix/dataframe of log proxy variables.
cX the vector/matrix/dataframe of control variables. By default cX= NULL.
idvar the vector/matrix/dataframe identifying individual panels.
timevar the vector/matrix/dataframe identifying time.
Details

Consider a Cobb-Douglas production technology for firm ¢ at time ¢
* Yir = a+wiB + kiy + wir + €t

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and €;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wir = B(wit|wit—1) + tir = g(wir—1) + it

prodestROB 25

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency,
the state variables in k;; and the lagged free variables w;;_1. Wooldridge method allows to jointly
estimate OP/LP two stages jointly in a system of two equations. It relies on the following set of
assumptions:
* a) wit = g(wit, pir): productivity is an unknown function g(.) of state and a proxy variables;
* b) E(wit|wit—1) = flwit—1], productivity is an unknown function f[.] of lagged productivity,

Wit—1-

Under the above set of assumptions, It is possible to construct a system gmm using the vector of
residuals from

* Tl = Yit — 0 — Wit — Ty — g(xitapit)
* ot = Yit — o — Wit B — iy — fl9(Tir—1, Pir—1)]

where the unknown function f(.) is approximated by a n-th order polynomial and g(z;:, m;t) =
Ao+ (i, mi) A In particular, g(2;+, m;) is a linear combination of functions in (x;¢, m;:) and ¢;;
are the addends of this linear combination. The residuals 7;; are used to set the moment conditions

d E(Zit * T‘it) =0

with the following set of instruments:
* 21y = (1, wit, Tit, Cit)
* Z2ip = (Wit—1, Cit, Cit)

According to the input timing in ACF, the first equation proposed by Wooldridge would not be
useful to identify any of the parameters, but it would be possible to achieve the identification from
the second equation by exploiting the orthogonality condition:

* €it|Tit, Wit—1, Tit—1, Mit—1, -y Ti1, Wi, My1) = 0

with an instrumental variable version of Robinson (1988)’s estimator.

Value

The output of the function prodestROB is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list containing:

* method: a string describing the method CROB-IV’).
* elapsed.time: time elapsed during the estimation.

e opt.outcome: optimization outcome.
Data, a list containing:

* Y: the vector of value added log output.
* free: the vector/matrix/dataframe of log free variables.
* state: the vector/matrix/dataframe of log state variables.

* proxy: the vector/matrix/dataframe of log proxy variables.

26

prodestROB

e control: the vector/matrix/dataframe of log control variables.
e idvar: the vector/matrix/dataframe identifying individual panels.

e timevar: the vector/matrix/dataframe identifying time.
Estimates, a list containing:

e pars: the vector of estimated coefficients.

* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;z = y;+ — (o + w8 + kiry). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

Author(s)

Gabriele Rovigatti

References

Ackerberg, D., K. Caves, and G. Frazer (2015). "Identification Properties of Recent Production
Function Estimators." Econometrica 83(6): 2411-2451.

Robinson, P. M. (1988). "Root-N-consistent semiparametric regression." Econometrica: Journal of
the Econometric Society, 931-954.

Wooldridge, J M (2009). "On estimating firm-level production functions using proxy variables to
control for unobservables." Economics Letters, 104, 112-114.

Examples

data("chilean")

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

ROB.IV.fit <- prodestROB(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$pX, chilean$idvar, chilean$timevar)

show results
ROB.IV.fit

estimate a panel dataset - DGP1, various measurement errors - and run the estimation
sim <- panelSim()

ROB.IV.siml <- prodestROB(simY, simfX, simsX, simpX1, sim$idvar, sim$timevar)
ROB.IV.sim2 <- prodestROB(simY, simfX, simsX, simpX2, sim$idvar, sim$timevar)
ROB.IV.sim3 <- prodestROB(simY, simfX, simsX, simpX3, sim$idvar, sim$timevar)
ROB.IV.sim4 <- prodestROB(simY, simfX, simsX, simpX4, sim$idvar, sim$timevar)

show results in .tex tabular format

prodestWRDG 27

printProd(list(ROB.IV.sim1, ROB.IV.sim2, ROB.IV.sim3, ROB.IV.sim4),
parnames = c('Free', 'State'))

prodestWRDG Estimate productivity - IV Wooldridge method

Description

The prodestWRDG() function accepts at least 6 objects (id, time, output, free, state and proxy
variables), and returns a prod object of class S3 with three elements: (i) a list of model-related
objects, (ii) a list with the data used in the estimation and estimated vectors of first-stage residuals,
and (iii) a list with the estimated parameters and their bootstrapped standard errors.

Usage
prodestWRDG(Y, fX, sX, pX, idvar, timevar, cX = NULL)

Arguments
Y the vector of value added log output.
fX the vector/matrix/dataframe of log free variables.
sX the vector/matrix/dataframe of log state variables.
pX the vector/matrix/dataframe of log proxy variables.
cX the vector/matrix/dataframe of control variables. By default cX= NULL.
idvar the vector/matrix/dataframe identifying individual panels.
timevar the vector/matrix/dataframe identifying time.
Details

Consider a Cobb-Douglas production technology for firm ¢ at time ¢
* Yit = a+wi + kiy + wit + €t

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and €;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wit = E(wit|lwit—1) + wir = g(wir—1) + it

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency,
the state variables in k;; and the lagged free variables w;;_1. Wooldridge method allows to jointly
estimate OP/LP two stages jointly in a system of two equations. It relies on the following set of
assumptions:

* a) wit = g(@it, pir): productivity is an unknown function g(.) of state and a proxy variables;

28 prodestWRDG

* b) E(wit|wit—1) = flwit—1], productivity is an unknown function f[.] of lagged productivity,
Wit—1-

Under the above set of assumptions, It is possible to construct a system gmm using the vector of
residuals from

* Tt = Yir — & — WS — ity — 9(Tit, Pit)
* T2t = Yir — & — witB — Tty — flg(Tit—1,Pit—1)]
where the unknown function f(.) is approximated by a n-th order polynomial and g(z;, mit) =

Ao+ (i, mi) A In particular, g(2;+, m;;) is a linear combination of functions in (2, m;;) and c;;
are the addends of this linear combination. The residuals 7;; are used to set the moment conditions

* E(Zixrit) =0

with the following set of instruments:
o Z1i = (1, wit, Tst, Cit)
* 72 = (Wit—1, Cit, Cit)

Following previous assumptions, being f(w) = &y + 61(citA) + 62(cieN)? + ... + 6a(cie), one
can set 61 = G = 1 and estimate the model in a linear fashion - i.e., using a linear 2SLS model.

Value
The output of the function prodestWRDG is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list containing:

* method: a string describing the method CWRDG”).
* elapsed. time: time elapsed during the estimation.
* opt.outcome: optimization outcome.

Data, a list containing:

* Y: the vector of value added log output.

* free: the vector/matrix/dataframe of log free variables.

* state: the vector/matrix/dataframe of log state variables.

* proxy: the vector/matrix/dataframe of log proxy variables.

* control: the vector/matrix/dataframe of log control variables.

e idvar: the vector/matrix/dataframe identifying individual panels.
* timevar: the vector/matrix/dataframe identifying time.

Estimates, a list containing:

e pars: the vector of estimated coefficients.
* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;; = y;t — (o + w8 + kiy). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

prodestWRDG_GMM 29

Author(s)

Gabriele Rovigatti

References

Wooldridge, J M (2009). "On estimating firm-level production functions using proxy variables to
control for unobservables." Economics Letters, 104, 112-114.

Examples

data("chilean")

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

WRDG.IV.fit <- prodestWRDG_GMM(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$pX, chilean$idvar, chilean$timevar)

show results
WRDG.IV.fit

estimate a panel dataset - DGP1, various measurement errors - and run the estimation
sim <- panelSim()

WRDG.IV.siml <- prodestWRDG_GMM(simY, simfX, simsX, simpX1, sim$idvar, sim$timevar)
WRDG.IV.sim2 <- prodestWRDG_GMM(simY, simfX, simsX, simpX2, sim$idvar, sim$timevar)
WRDG.IV.sim3 <- prodestWRDG_GMM(simY, simfX, simsX, simpX3, sim$idvar, sim$timevar)
WRDG.IV.sim4 <- prodestWRDG_GMM(simY, simfX, simsX, simpX4, sim$idvar, sim$timevar)

show results in .tex tabular format
printProd(list(WRDG.IV.sim1, WRDG.IV.sim2, WRDG.IV.sim3, WRDG.IV.sim4),
parnames = c('Free', 'State'))

prodestWRDG_GMM Estimate productivity - Wooldridge method

Description

The prodestWRDG_GMM() function accepts at least 6 objects (id, time, output, free, state and proxy
variables), and returns a prod object of class S3 with three elements: (i) a list of model-related
objects, (ii) a list with the data used in the estimation and estimated vectors of first-stage residuals,
and (iii) a list with the estimated parameters and their bootstrapped standard errors.

Usage

prodestWRDG_GMM(Y, fX, sX, pX, idvar, timevar, cX = NULL, tol = 1e-100)

30 prodestWRDG_GMM

Arguments
Y the vector of value added log output.
fX the vector/matrix/dataframe of log free variables.
sX the vector/matrix/dataframe of log state variables.
pX the vector/matrix/dataframe of log proxy variables.
cX the vector/matrix/dataframe of control variables. By default cX= NULL.
idvar the vector/matrix/dataframe identifying individual panels.
timevar the vector/matrix/dataframe identifying time.
tol optimizer tolerance. By default tol = 1e-100.
Details

Consider a Cobb-Douglas production technology for firm ¢ at time ¢
* Yit = a+wirf + kiy +wit + €t

where y;; is the (log) output, w_it a 1xJ vector of (log) free variables, k_it is a 1xK vector of
state variables and ¢€;; is a normally distributed idiosyncratic error term. The unobserved technical
efficiency parameter w;; evolves according to a first-order Markov process:

* wir = EB(wit|wit—1) + i = g(wir—1) + it

and u;; is a random shock component assumed to be uncorrelated with the technical efficiency,
the state variables in k;; and the lagged free variables w;;_1. Wooldridge method allows to jointly
estimate OP/LP two stages jointly in a system of two equations. It relies on the following set of
assumptions:
* a) wit = g(@it, pir): productivity is an unknown function g(.) of state and a proxy variables;
* b) E(wit|wit—1) = flwie—1], productivity is an unknown function f[.] of lagged productivity,

Wit—1-

Under the above set of assumptions, It is possible to construct a system gmm using the vector of
residuals from

* Tt = Yit — 0 — Wit B — Ty — 9(Tit, Dit)
* ot = Yit — o — Wit B — xyy — Flg(Tie—1, Pit—1)]

where the unknown function f(.) is approximated by a n-th order polynomial and g(x;, m;t) =
Ao+ e(xie, mig). In particular, g(x;, m;;) is a linear combination of functions in (z;;, m;;) and ¢;;
are the addends of this linear combination. The residuals 7;; are used to set the moment conditions

. E(th * Tit) =0
with the following set of instruments:

o Z1i = (1, wit, T4t, Cit)

* 72 = (Wit—1, Cit, Cit)

prodestWRDG_GMM 31

Value

The output of the function prodestWRDG is a member of the S3 class prod. More precisely, is a list
(of length 3) containing the following elements:

Model, a list containing:
* method: a string describing the method CWRDG”).

* elapsed. time: time elapsed during the estimation.

* opt.outcome: optimization outcome.
Data, a list containing:

* Y: the vector of value added log output.

» free: the vector/matrix/dataframe of log free variables.

* state: the vector/matrix/dataframe of log state variables.

* proxy: the vector/matrix/dataframe of log proxy variables.

* control: the vector/matrix/dataframe of log control variables.

e idvar: the vector/matrix/dataframe identifying individual panels.

* timevar: the vector/matrix/dataframe identifying time.
Estimates, a list containing:

e pars: the vector of estimated coefficients.

* std.errors: the vector of bootstrapped standard errors.

Members of class prod have an omega method returning a numeric object with the estimated pro-
ductivity - that is: w;t = y;+ — (o + w8 + kiry). FSres method returns a numeric object with the
residuals of the first stage regression, while summary, show and coef methods are implemented and
work as usual.

Author(s)

Gabriele Rovigatti

References
Wooldridge, J M (2009). "On estimating firm-level production functions using proxy variables to
control for unobservables." Economics Letters, 104, 112-114.

Examples

data(”"chilean”)

we fit a model with two free (skilled and unskilled), one state (capital)
and one proxy variable (electricity)

WRDG.GMM.fit <- prodestWRDG_GMM(chilean$Y, fX = cbind(chilean$fX1, chilean$fX2),
chilean$sX, chilean$pX, chilean$idvar, chilean$timevar)

32 show

show results
WRDG.GMM. fit

estimate a panel dataset - DGP1, various measurement errors - and run the estimation
sim <- panelSim()

WRDG.GMM. sim1 <- prodestWRDG_GMM(simY, simfX, simsX, simpX1, sim$idvar, sim$timevar)
WRDG.GMM.sim2 <- prodestWRDG_GMM(simY, simfX, simsX, simpX2, sim$idvar, sim$timevar)
WRDG.GMM. sim3 <- prodestWRDG_GMM(simY, simfX, simsX, simpX3, sim$idvar, sim$timevar)
WRDG.GMM. sim4 <- prodestWRDG_GMM(simY, simfX, simsX, simpX4, sim$idvar, sim$timevar)

show results in .tex tabular format
printProd(list(WRDG.GMM.sim1, WRDG.GMM.sim2, WRDG.GMM.sim3, WRDG.GMM.sim4),
parnames = c('Free', 'State'))

show Print a table with parameter estimates

Description

This method allows the user to print a table with the parameter estimates of an S4 prod object.

Usage

show(object)

Arguments

object object of class prod.

Details

show accepts an S4 prod object and prints a table with estimated parameters.

Author(s)

Gabriele Rovigatti

summary 33

summary Print a table with a summary of results

Description

This method allows the user to print a table with a summary of the results within an S4 prod object:
the parameter estimates, the method, the number of observations, the time elapsed, the number of
bootstrap repetitions, the first stage estimates and the starting points.

Arguments
object object of class prod.
Additional arguments.
Details

summary accepts an S4 prod object and prints a table with the results.

Author(s)

Gabriele Rovigatti

weightM Generate optimal GMM weighting matrix

Description
In a Wooldridge estimation setting, i.e., in a system GMM framework, this function returns the op-
timal weighting matrix or the variance-covariance matrix given 1st or 2nd stage estimation results.
Usage

weightM(Y, X1, X2, Z1, Z2, betas, numR, SE = FALSE)

Arguments
Y Vector of log(value added output).
X1 Matrix of regressors for the first equation.
X2 Matrix of regressors for the second equation.
Z1 Matrix of instruments for the first equation.
z2 Matrix of instruments for the second equation.
betas Vector of first/second stage parameter estimates.
numR Number of state + number of free + number of control variables (i.e., number of

constrained parameters).

SE Binary indicator for first (SE == FALSE, the default) or second stage.

34 withinvar

Details

weightM() accepts at least 7 inputs: Y, X1, X2, Z1, Z2, betas and numR. With these, computes the
optimal weighting matrix in a system GMM framework, i.e. W* = sigma*Z’Z. If it is called during
the first stage, it returns W*, otherwise will return an estimate of the parameters’ standard errors,
i.e., the square root of the diagonal of the variance-covariance matrix: 1/N((X’Z) W* (Z’X))-1.

Author(s)

Gabriele Rovigatti

withinvar Generate the variance of the demeaned variable

Description

withinvar() subtracts the mean of a vector from the vector itself, and then returns its variance.

Usage
withinvar(inmat)
Arguments
inmat Vector of log(value added output).
Details

withinvar() accepts a vector as input, then subtracts the mean from it and returns the variance.

Author(s)

Gabriele Rovigatti

Index

* classes summary, 33

prod, 13 summary, prod-method (summary), 33
x datasets

chilean, 4 weightM, 33

withinvar, 34
block.boot.resample, 2

checkM, 3

checkMD, 3

chilean, 4

coef, 5
coef,prod-method (coef), 5

data.frame, 4

finalACF, 5

finalOPLP, 6

FSres, 7

FSres,prod-method (FSres), 7

gACF, 8
gOPLP, 8

lagPanel, 9

omega, 10
omega,prod-method (omega), 10

panelSim, 10

printProd, 12

prod, 5, 7, 10, 13, 32, 33
prod-class (prod), 13
prodestACF, 5, 7, 10, 14
prodestLP, 5,7, 10, 17
prodestOP, 5, 7, 10, 21
prodestROB, 24
prodestWRDG, 5, 7, 10, 27
prodestWRDG_GMM, 5, 7, 10, 29

show, 32
show, prod-method (show), 32

35

	block.boot.resample
	checkM
	checkMD
	chilean
	coef
	finalACF
	finalOPLP
	FSres
	gACF
	gOPLP
	lagPanel
	omega
	panelSim
	printProd
	prod
	prodestACF
	prodestLP
	prodestOP
	prodestROB
	prodestWRDG
	prodestWRDG_GMM
	show
	summary
	weightM
	withinvar
	Index

