Package ‘prefio’

September 28, 2025

Title Structures for Preference Data

Description Convenient structures for creating, sourcing, reading, writing
and manipulating ordinal preference data. Methods for writing to/from PrefLib
formats. See Nicholas Mattei and Toby Walsh " " PrefLib: A Library of Preference
Data" (2013) <doi:10.1007/978-3-642-41575-3_20>.

Version 0.2.0
Depends R (>=4.2)
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2

URL https://github.com/fleverest/prefio/,
https://fleverest.github.io/prefio/

BugReports https://github.com/fleverest/prefio/issues/
Imports dplyr, tidyr, tibble, vctrs, stats, rlang, purrr, utils
Suggests readr, covr, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Floyd Everest [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2726-6736>),
Heather Turner [aut] (ORCID: <https://orcid.org/0000-0002-1256-3375>),
Damjan Vukcevic [aut] (ORCID: <https://orcid.org/0000-0001-7780-9586>)

Maintainer Floyd Everest <me@floydeverest.com>
Repository CRAN
Date/Publication 2025-09-28 13:20:07 UTC

Contents

adjacenCy e e e
preferences

https://doi.org/10.1007/978-3-642-41575-3_20
https://github.com/fleverest/prefio/
https://fleverest.github.io/prefio/
https://github.com/fleverest/prefio/issues/
https://orcid.org/0000-0002-2726-6736
https://orcid.org/0000-0002-1256-3375
https://orcid.org/0000-0001-7780-9586

2 adjacency
pref_add_unranked 6
pref_blank L e e 6
Pref_cov . . . L e e e e 7
pref_get_items 8
pref_get_ranko 8
pref_irv . . o 9
pref_keep 10
pref_length L 11
pref_omit 11
Pref_pop 12
pref_rev . ..o 12
pref_trunc 13
pref_type 14
ranking_matriX L e e e 14
read_preflib 15
write_preflib. 17

Index 20

adjacency Compute the Adjacency Matrix for a vector of preferences

Description

Convert a set of preferences to an adjacency matrix summarising wins and losses between pairs of
items.

Usage

adjacency(x, preferences_col = NULL, frequency_col = NULL, ...)

Arguments

X

A preferences object or a tibble with a preferences-typed column.

preferences_col

<tidy-select> When x is a tibble, the column containing the preferences.

frequency_col <tidy-select> When x is a tibble, the column containing the frequency of

Details

the preferences. If not provided, each row is considered to be observed a single
time.

Currently unused.

For a preferences object with N items, the adjacency matrix is an /N by /N matrix, with element
(7, j) being the number of times item 7 wins over item j. For example, in the preferences {1} > {3,
4} > {2}, item 1 wins over items 2, 3, and 4, while items 3 and 4 win over item 2.

If weights is specified, the values in the adjacency matrix are the weighted counts.

preferences

Value

An N by N matrix, where N is the number of items.

Examples

x <- tibble::tribble(
~voter_id, ~species, ~food, ~ranking,
, "Rabbit"”, "Apple”, 1,
, "Rabbit”, "Banana"”, 2,
, "Rabbit”, "Carrot”, 3,
"Monkey", "Banana", 1,
"Monkey"”, "Apple"”, 2,
2, "Monkey"”, "Carrot"”, 3
) 1>
long_preferences(
food_preference,
id_cols = voter_id,
item_col = food,
rank_col = ranking

1
1
1
2
2

’
’

) 1>
dplyr::pull(food_preference) |>
adjacency()
preferences Preferences Objects
Description

A tidy interface for working with ordinal preferences.

Usage

long_preferences(
data,
col,
id_cols = NULL,
rank_col = NULL,
item_col = NULL,
item_names = NULL,
verbose = TRUE,
unused_fn = NULL,
na_action = c("drop_rows"”, "drop_preferences”),

wide_preferences(
data,

4 preferences

col = NULL,
ranking_cols = NULL,
verbose = TRUE,

na_action = c("keep_as_partial”, "drop_preferences"”),
)
as_preferences(strings, sep = ">", equality = "=", descending = TRUE)
preferences(
strings = character(oL),
sep = ”>”,
equality = "=",
descending = TRUE
)

S3 method for class 'preferences'
format(x, ...)

S3 method for class 'preferences'
levels(x, ...)

Arguments

data A data.frame or tibble to extract preferences from

col The name of the new column, as a string or symbol.

id_cols <tidy-select> The columns by which to group the dataset to extract a single
preference selection.

rank_col <tidy-select> For data in long-format: the column representing the rank for
the associated item.

item_col <tidy-select> For data in long-format: the column representing the items
by name or by index, in which case the item_names parameter should also be
passed.

item_names The names of the full set of items. This is necessary when the dataset specifies
items by index rather than by name, or when there are items which do not appear
in any preference selection.

verbose If TRUE, diagnostic messages will be sent to stdout.

unused_fn When format="long", summarise the values of unused columns (those which
are not specified by id_cols, item_col, or rank_col). The default action is to
drop all unused columns. This can be a named list (e.g. 1ist(column = function))
if you want to apply different summaries for different columns or keep only spe-
cific unused columns, or it can be a single function to be applied across all
unused columns.

na_action Specifies how to handle NA values.

long_preferences "drop_rows” Removes individual rows containing NA val-
ues before processing

preferences 5

"drop_preferences” Removes the entire preference selection that con-
tains any NA
wide_preferences "keep” Interprets rows containing NAs as partial order-
ings
"drop” Removes preferences with any NA ranks

Unused.
ranking_cols <tidy-select> The columns from which to extract wide-format preferences.
strings A character vector of preference strings
sep Character separating the items in the string (default: ">")
equality Character representing equality between items (default: "=")
descending If TRUE, parse as descending order preferences.
X A vector of preferences.
format The format of the data: one of "ordering", "ranking", or "long" (see above). By

default, data is assumed to be in "long" format.

Value

A preferences object, or a modified tibble with a column of preferences when datais adata. frame
or tibble.

Examples

Votes cast by two animals ranking a variety of fruits and vegetables.
This is not real data, I made this up.
x <- tibble::tribble(

~voter_id, ~species, ~food, ~ranking,

1, "Rabbit", "Apple", 1,

1, "Rabbit", "Carrot”, 2,

1, "Rabbit”, "Banana", 3,

2, "Monkey", "Banana”, 1,

2, "Monkey", "Apple"”, 2,

2, "Monkey"”, "Carrot”, 3

~—

Process preferencial data into a single column.
X |>
long_preferences(
food_preference,
id_cols = voter_id,
item_col = food,
rank_col = ranking
)
The same, but keep the species data.
X |>
long_preferences(
food_preference,
id_cols = voter_id,
item_col = food,
rank_col = ranking,

6 pref_blank

unused_fn = list(species = dplyr::first)

)
pref_add_unranked Complete preferences by adding unselected items as last place occur-
rances.
Description

Complete preferences by adding unselected items as last place occurrances.

Usage
pref_add_unranked(x)

Arguments

X A vector of preferences.

Value

A new vector of preferences, with each selection starting with the corresponding selections made in
x, but with all unranked items placed last.

Examples

Complete partial rankings by adding unranked items last
pref_add_unranked(preferences(c("a > b", "c > a", "b")))

pref_blank Check if a preference is blank.

Description

Check if a preference is blank.

Usage
pref_blank(x)

Arguments

X A vector of preferences.

Value

A logical vector indicating which preferences are blank, i.e., [].

pref_cov 7

Examples
pref_blank(preferences(c(”a > b > c", "", "b > c")))
pref_cov Covariance matrix for preferences, calculated using the rankings ma-
trix.
Description

Covariance matrix for preferences, calculated using the rankings matrix.

Usage

pref_cov(x, preferences_col = NULL, frequency_col = NULL, ...)
Arguments

X A vector of preferences, or a tibble with a column of preferences.

preferences_col
<tidy-select> When x is a tibble, the column containing the preferences.

frequency_col <tidy-select> When x is a tibble, the column containing the frequency of
the preferences. If not provided, each row is considered to be observed a single
time.

Extra arguments to be passed to stats: :cov.wt.

Value

A covariance matrix containing covariances for the ranks assigned to item pairs.

Examples

Simple covariance on a vector of preferences
prefs <- preferences(c(”a > b > c”, "b > c > a", "c >a > b"))
pref_cov(prefs)

Weighted covariance by frequency

df <- tibble::tibble(
prefs = preferences(c(”"a > b > c", "b > c > a")),
freq = c(3, 2)

)

pref_cov(df, preferences_col = prefs, frequency_col = freq)

8 pref_get_rank

pref_get_items Get the name of the item(s) assigned a specific rank, e.g., first.

Description

Get the name of the item(s) assigned a specific rank, e.g., first.

Usage

pref_get_items(x, rank, drop = FALSE)

Arguments
X A vector of preferences.
rank A single integer, the rank which you would like to inspect.
drop When FALSE (default), blank preferences will remain. When TRUE, blank pref-
erences will be omitted.
Value

A list containing the name(s) of the item(s) ranked rank in each of the preferences in x.

Examples

Get items ranked first

pref_get_items(preferences(c(”a > b > ¢", "b = ¢ > a")), rank = 1)
Get items ranked second
pref_get_items(preferences(c("a > b > c¢", "b = ¢ > a")), rank = 2)
Get items ranked first, dropping blank preferences
pref_get_items(preferences(c(”a > b > c¢”, "", "b = ¢ > a")), rank = 1, drop = TRUE)
pref_get_rank Get the rank assigned to a specific item in a set of preferences.
Description

Get the rank assigned to a specific item in a set of preferences.

Usage

pref_get_rank(x, item_name)

Arguments

X A vector of preferences.

item_name The name of the item to extract the rank for.

pref_irv 9

Value

The rank of item_name for each of the preferences in x.

Examples
pref_get_rank(preferences(c(”a > b > c¢”, "b > c = a", "")), "a")
pref_irv Compute the instant-runoff voting winner for a set of preferences.
Description

A very rudimentary implementation of the IRV counting algorithm. It does not handle ties elegantly,
and should only be used for demonstration purposes. This implementation eliminates all candidates
with the fewest first-choice votes in each round until one candidate has a majority or fewer than two
candidates remain.

Usage
pref_irv(x, preferences_col = NULL, frequency_col = NULL)

Arguments

X A vector of preferences, or a tibble with a column of preferences.
preferences_col

<tidy-select> When x is a tibble, the column containing the preferences.
frequency_col <tidy-select> When x is a tibble, the column containing the frequency of

the preferences. If not provided, each row is considered to be observed a single
time.

Value
A list containing:

winner The winning candidate(s) after IRV counting
rounds A list of tibbles, each containing vote tallies for each round

eliminated Character vector of eliminated candidates in order

Examples

Multi-round election with four candidates
prefs <- preferences(c(
"alice > bob > charlie > david”,
"alice > bob > charlie > david”,
"alice > charlie > bob > david”,
"bob > alice > charlie > david”,
"bob > charlie > alice > david”,

10

"bob > charlie > alice > david”,
"charlie > david > alice > bob”,
"charlie > david > bob > alice”,
"david > charlie > bob > alice”,
"david > charlie > bob > alice”
))
result <- pref_irv(prefs)
result$winner # Final winner after elimination rounds
result$rounds # Vote tallies for each round

Using aggregated data frame
df <- tibble::tibble(
prefs = preferences(c(
"alice > bob > charlie > david”,
"alice > charlie > bob > david”,
"bob > alice > charlie > david”,
"bob > charlie > alice > david”,
"charlie > david > alice > bob",
"charlie > david > bob > alice”,
"david > charlie > bob > alice”
),
freq = c(2, 1, 1, 2, 1, 1, 2)
)
pref_irv(df, prefs, freq)

pref_keep

pref_keep Keep only specified items from preferences.

Description

Keep only specified items from preferences.

Usage

pref_keep(x, items)

Arguments

X A vector of preferences.

items The names of the items which should be kept for preferences in x.
Value

A new vector of preferences, but only containing items from each selection.

Examples

[

Keep only 'a' and 'c'
pref_keep(preferences(c("a > b > c", "b > ¢ > a")), c("a", "c"))

pref_length

11

pref_length Check the length (number of rankings) of a preference.

Description

Check the length (number of rankings) of a preference.

Usage
pref_length(x)

Arguments

X A vector of preferences.

Value

The number of items listed on each of the preferences.

Examples
pref_length(preferences(c(”a > b > c¢", "", "b > c")))
pref_omit Remove specified items from preferences.
Description

Remove specified items from preferences.

Usage

pref_omit(x, items)

Arguments

X A vector of preferences.

items The names of the items which should be removed from the preferences in x.
Value

A new vector of preferences, but with items removed from each selection.

Examples

Remove 'b'

pref_omit(preferences(c("a > b > c", "b > ¢c > a")), "b")

Remove 'b' and 'd’

pref_omit(preferences(c("a > b >c > d", "b > c > a > d")), c("b", "d"))

12 pref_rev

pref_pop Eliminate lowest (or highest) ranked items from preferences.

Description

Eliminate lowest (or highest) ranked items from preferences.

Usage

pref_pop(x, n = 1L, lowest = TRUE, drop = FALSE)

Arguments
X A vector of preferences.
n The number of times to remove the bottom rank.
lowest If TRUE, eliminates the lowest ranked item(s) for each selection.
drop If TRUE, drops blank preferences from the output.
Value

A new vector of preferences which is equal to x but with the least preferred selection dropped for
each selection.

Examples

Remove the lowest ranked item from each preference
pref_pop(preferences(c(”a > b > c", "b > c > a")))

Remove the 2 lowest ranked items
pref_pop(preferences(c(”a > b >c >d", "o >c >a>d")), n=2)

Remove the highest ranked item instead
pref_pop(preferences(c(”a > b > c", "b > ¢ > a")), lowest = FALSE)

Remove blank preferences that result from popping

pref_pop(preferences(c(”a > b", "c", "")), drop = TRUE)
pref_rev Reverse preference rankings
Description

Reverse preference rankings

pref_trunc 13

Usage
pref_rev(x, ...)
Arguments
X A vector of preferences.
Not used.
Value

A vector of preferences with rankings reversed (first becomes last, etc.)

Examples
pref_rev(preferences(c(”a > b > c", "b > c > a")))
pref_trunc Truncate preferences to a maximum number of ranks.
Description

Truncate preferences to a maximum number of ranks.

Usage

pref_trunc(x, n = 1L, bottom = FALSE)

Arguments
X A vector of preferences.
n The maximum number of ranks to include (positive) or number of ranks to drop
(negative). Must be an integer.
bottom If FALSE (default), operates on top ranks. If TRUE, operates on bottom ranks.
Value

A vector of preferences with each selection truncated according to the parameters.

Examples

Keep only the top 2 ranks

pref_trunc(preferences(c(”a > b > c >d", "b > c > a")), n=2)

Keep only the bottom 2 ranks

pref_trunc(preferences(c(”a > b > c > d", "b > c > a")), n = 2, bottom = TRUE)
Drop the bottom 2 ranks (keep top ranks)

pref_trunc(preferences(c(”a > b > c > d", "b > c > a")), n=-2)

Drop the top 2 ranks (keep bottom ranks)

pref_trunc(preferences(c(”a > b > c > d", "b > c > a")), n = -2, bottom = TRUE)

14 ranking_matrix

pref_type pref_type

Description

Ordinal preferences can order every item, or they can order a subset. Some ordinal preference
datasets will contain ties between items at a given rank. Hence, there are four distinct types of
preferential data:

soc Strict Orders - Complete List
soi Strict Orders - Incomplete List
toc Orders with Ties - Complete List

toi Orders with Ties - Incomplete List

Usage

pref_type(x, n_items = NULL)

Arguments
X A preferences object (or vector data representing preferences)
n_items The number of items, needed to assess whether a selection is complete or not.
Defaults to nlevels(x) if x has class preferences, otherwise defaults to the
length of the longest preference.
Value

n s

One of c("soc”, "soi"”, "toc"”, "toi"), indicating the type of preferences in x (with or without
ties / complete or incomplete rankings).

ranking_matrix Compute the Rankings Matrix for a vector of preferences

Description

Convert a set of preferences to a rankings matrix, where each preference defines a single row in the
output. The columns in the rankings matrix give the vector or ranks assigned to the corresponding
candidate.

Usage

ranking_matrix(x, preferences_col = NULL, frequency_col = NULL, ...)

read_preflib 15

Arguments

X A preferences object or a tibble with a preferences-typed column.
preferences_col
<tidy-select> When x is a tibble, the column containing the preferences.

frequency_col <tidy-select> When x is a tibble, the column containing the frequency of
the preferences. If not provided, each row is considered to be observed a single
time.

Currently unused.

Details

For a preferences vector of length N with M items, the rankings matrix is an N by M matrix,
with element (7, j) being the rank assigned to candidate j in the ith selection.

Value

An N by M matrix, where N is the number of preferences, and M is the number of items.

Examples

x <- tibble::tribble(
~voter_id, ~species, ~food, ~ranking,
1, "Rabbit", "Apple", 1,
1, "Rabbit”, "Banana", 2,
1, "Rabbit"”, "Carrot", 3,
2, "Monkey", "Banana”, 1,
2, "Monkey"”, "Apple", 2,
2, "Monkey", "Carrot”, 3
) 1>
long_preferences(
food_preference,
id_cols = voter_id,
item_col = food,
rank_col = ranking
) 1>
dplyr::pull(food_preference) |>
ranking_matrix()

read_preflib Read Ordinal Preference Data From PrefLib

Description

Read orderings from . soc, .soi, .toc or .toi files storing ordinal preference data format as de-
fined by {PrefLib}: A Library for Preferences into a preferences object.

https://preflib.github.io/PrefLib-Jekyll/

16 read_preflib

Usage

read_preflib(
file,
from_preflib = FALSE,
preflib_url = "https://raw.githubusercontent.com/PrefLib/PrefLib-Data/main/datasets/"

)

Arguments

file A preferential data file, conventionally with extension . soc, .soi, .toc or . toi
according to data type.

from_preflib A logical which, when TRUE will attempt to source the file from PrefLib by
adding the database HTTP prefix.

preflib_url The URL which will be preprended to file, if from_preflib is TRUE.

Details

Note that PrefLib refers to the items being ordered by "alternatives".

The file types supported are

.soc Strict Orders - Complete List

.soi Strict Orders - Incomplete List

.toc Orders with Ties - Complete List

.toi Orders with Ties - Incomplete List

The numerically coded orderings and their frequencies are read into a tibble, storing all original
metadata in a "preflib" attribute.

A PrefLib file may be corrupt, in the sense that the ordered alternatives do not match their names.
In this case, the file will still be read, but with a warning.

Value

A tibble with two columns: preferences and frequency. The preferences column contains
all the preferential orderings in the file, and the frequency column the relative frequency of this
selection.

Note

The Netflix and cities datasets used in the examples are from Caragiannis et al (2017) and Bennet
and Lanning (2007) respectively. These data sets require a citation for re-use.

References

Mattei, N. and Walsh, T. (2013) PrefLib: A Library of Preference Data. Proceedings of Third
International Conference on Algorithmic Decision Theory (ADT 2013). Lecture Notes in Artificial
Intelligence, Springer.

Bennett, J. and Lanning, S. (2007) The Netflix Prize. Proceedings of The KDD Cup and Workshops.

write_preflib 17

Examples

Can take a little while depending on speed of internet connection

strict complete orderings of four films on Netflix

netflix <- read_preflib("00004 - netflix/00004-00000138.soc", from_preflib = TRUE)
head(netflix)

levels(netflix$preferences)

strict incomplete orderings of 6 random cities from 36 in total
cities <- read_preflib("00034 - cities/00034-00000001.s0i”, from_preflib = TRUE)

write_preflib Write Ordinal Preference Data to PrefLib Formats

Description

Write preferences to . soc, .soi, . toc or . toi file types, as defined by the PrefLib specification:
{PrefLib}: A Library for Preferences.

Usage

write_preflib(
X,
file = "",
preferences_col = NULL,
frequency_col = NULL,
title = NULL,
publication_date = NULL,
modification_type = NULL,
modification_date = NULL,
description = NULL,
relates_to = NULL,
related_files = NULL

)
Arguments
X A preferences object or a tibble with a preferences-typed column to write
to file.
file Either a character string naming the a file or a writeable, open connection. The

nn

empty string "" will write to stdout.
preferences_col
<tidy-select> When x is a tibble, the column containing the preferences to

be written to file. If not provided and x is a tibble, then

https://preflib.github.io/PrefLib-Jekyll/

18 write_preflib

frequency_col <tidy-select> When x is a tibble, the column containing the frequency of
the preferences. If not provided, each row is considered to be observed a single
time.

title The title of the data file, for instance the name of the election represented in the
data file. If not provided, we check for the presence of attr(x, "preflib"),
and if it exists we check for TITLE.

publication_date
The date at which the data file was published for the first time. If not provided,
we check for the presence of attr(x, "preflib”), and if it exists we check for
PUBLICATION DATE.

modification_type
The modification type of the data: one of original, induced, imbued or synthetic
(see Details). If not provided, we check for the presence of attr(x, "preflib"),
and if it exists we check for MODIFICATION TYPE.

modification_date
The last time the data was modified. If not provided, we check for the presence
of attr(x, "preflib"”), and if it exists we check for MODIFICATION DATE.

description A description of the data file, providing additional information about it. If not
provided, we check for the presence of attr(x, "preflib"), and if it exists we
check for DESCRIPTION.

relates_to The name of the data file that the current file relates to, typically the source file

in case the current file has been derived from another one. If not provided, we
check for the presence of attr(x, "preflib"), and if it exists we check for
RELATES TO.

related_files The list of all the data files related to this one, comma separated. If not provided,
we check for the presence of attr(x, "preflib”), and if it exists we check for
RELATED FILES.

Details
The file types supported are

.soc Strict Orders - Complete List

.soi Strict Orders - Incomplete List

stoc Orders with Ties - Complete List

.toi Orders with Ties - Incomplete List

The PrefLib format specification requires some additional metadata. Note that the additional meta-

data required for the PrefLib specification is not necessarily required for the write_preflib method;
any missing fields required by the PrefLib format will simply show "NA".

TITLE (required) The title of the data file, for instance the year of the election represented in the
data file.

DESCRIPTION (optional) A description of the data file, providing additional information about
it.

RELATES TO (optional) The name of the data file that the current file relates to, typically the
source file in case the current file has been derived from another one.

write_preflib 19

RELATED FILES (optional) The list of all the data files related to this one, comma separated.
PUBLICATION DATE (required) The date at which the data file was published for the first time.
MODIFICATION TYPE (required) The modification type of the data. One of:

original Data that has only been converted into a PrefLib format.

induced Data that has been induced from another context. For example, computing a pairwise
relation from a set of strict total orders. No assumptions have been made to create these
files, just a change in the expression language.

imbued Data that has been imbued with extra information. For example, extending an in-
complete partial order by placing all unranked candidates tied at the end.

synthetic Data that has been generated artificially.
MODIFICATION DATE (optional) The last time the data was modified.
In addition to these fields, some required PrefLib fields will be generated automatically depend-
ing on arguments to write_preflib() and the attributes of the aggregated_preferences object
being written to file:
FILE NAME The name of the output file.
DATA TYPE The data type (one of soc, soi, toc or toi).
NUMBER ALTERNATIVES The number of items.
ALTERNATIVE NAME X The name of each item, where X ranges from @ to length(items).
NUMBER VOTERS The total number of orderings.
NUMBER UNIQUE ORDERS The number of distinct orderings.

Note that PrefLib refers to the items as "alternatives". The "alternatives" in the output file will be
the same as the "items" in the aggregated_preferences object.

Value

No return value. Output will be written to file or stdout.

Index

adjacency, 2
as_preferences (preferences), 3

format.preferences (preferences), 3

levels.preferences (preferences), 3
long_preferences (preferences), 3

pref_add_unranked, 6
pref_blank, 6
pref_cov, 7
pref_get_items, 8
pref_get_rank, 8
pref_irv, 9
pref_keep, 10
pref_length, 11
pref_omit, 11
pref_pop, 12
pref_rev, 12
pref_trunc, 13
pref_type, 14
preferences, 2, 3,6, 8, 10-13, 15

ranking_matrix, 14
read_preflib, 15

wide_preferences (preferences), 3
write_preflib, 17

20

	adjacency
	preferences
	pref_add_unranked
	pref_blank
	pref_cov
	pref_get_items
	pref_get_rank
	pref_irv
	pref_keep
	pref_length
	pref_omit
	pref_pop
	pref_rev
	pref_trunc
	pref_type
	ranking_matrix
	read_preflib
	write_preflib
	Index

