
Package ‘nlme’
July 17, 2025

Version 3.1-168

Date 2025-03-31

Priority recommended

Title Linear and Nonlinear Mixed Effects Models

Contact see 'MailingList'

Description Fit and compare Gaussian linear and nonlinear mixed-effects models.

Depends R (>= 3.6.0)

Imports graphics, stats, utils, lattice

Suggests MASS, SASmixed

LazyData yes

Encoding UTF-8

License GPL (>= 2)

BugReports https://bugs.r-project.org

MailingList R-help@r-project.org

URL https://svn.r-project.org/R-packages/trunk/nlme/

NeedsCompilation yes

Author José Pinheiro [aut] (S version),
Douglas Bates [aut] (up to 2007),
Saikat DebRoy [ctb] (up to 2002),
Deepayan Sarkar [ctb] (up to 2005),
EISPACK authors [ctb] (src/rs.f),
Siem Heisterkamp [ctb] (Author fixed sigma),
Bert Van Willigen [ctb] (Programmer fixed sigma),
Johannes Ranke [ctb] (varConstProp()),
R Core Team [aut, cre] (ROR: <https://ror.org/02zz1nj61>)

Maintainer R Core Team <R-core@R-project.org>

Repository CRAN

Date/Publication 2025-03-31 11:21:01 UTC

1

https://bugs.r-project.org
https://svn.r-project.org/R-packages/trunk/nlme/
https://ror.org/02zz1nj61

2 Contents

Contents
ACF . 8
ACF.gls . 9
ACF.lme . 10
Alfalfa . 11
allCoef . 12
anova.gls . 13
anova.lme . 15
as.matrix.corStruct . 18
as.matrix.pdMat . 19
as.matrix.reStruct . 20
asOneFormula . 21
Assay . 21
asTable . 22
augPred . 23
balancedGrouped . 25
bdf . 26
BodyWeight . 27
Cefamandole . 28
Coef . 29
coef.corStruct . 30
coef.gnls . 31
coef.lme . 32
coef.lmList . 33
coef.modelStruct . 35
coef.pdMat . 36
coef.reStruct . 37
coef.varFunc . 38
collapse . 39
collapse.groupedData . 40
compareFits . 42
comparePred . 43
corAR1 . 44
corARMA . 46
corCAR1 . 47
corClasses . 49
corCompSymm . 50
corExp . 51
corFactor . 53
corFactor.corStruct . 54
corGaus . 55
corLin . 57
corMatrix . 58
corMatrix.corStruct . 59
corMatrix.pdMat . 61
corMatrix.reStruct . 62
corNatural . 63

Contents 3

corRatio . 64
corSpatial . 66
corSpher . 67
corSymm . 69
Covariate . 71
Covariate.varFunc . 72
Dialyzer . 73
Dim . 74
Dim.corSpatial . 74
Dim.corStruct . 75
Dim.pdMat . 77
Earthquake . 77
ergoStool . 78
Fatigue . 79
fdHess . 80
fitted.glsStruct . 81
fitted.gnlsStruct . 82
fitted.lme . 83
fitted.lmeStruct . 84
fitted.lmList . 85
fitted.nlmeStruct . 86
fixed.effects . 87
fixef.lmList . 88
formula.pdBlocked . 89
formula.pdMat . 90
formula.reStruct . 91
gapply . 92
Gasoline . 93
getCovariate . 94
getCovariate.corStruct . 95
getCovariate.data.frame . 96
getCovariate.varFunc . 97
getCovariateFormula . 98
getData . 98
getData.gls . 99
getData.lme . 100
getData.lmList . 101
getGroups . 102
getGroups.corStruct . 103
getGroups.data.frame . 104
getGroups.gls . 105
getGroups.lme . 106
getGroups.lmList . 107
getGroups.varFunc . 108
getGroupsFormula . 109
getResponse . 110
getResponseFormula . 110
getVarCov . 111

4 Contents

gls . 112
glsControl . 114
glsObject . 116
glsStruct . 117
Glucose . 118
Glucose2 . 118
gnls . 119
gnlsControl . 121
gnlsObject . 122
gnlsStruct . 124
groupedData . 125
gsummary . 127
Gun . 129
IGF . 129
Initialize . 130
Initialize.corStruct . 131
Initialize.glsStruct . 132
Initialize.lmeStruct . 132
Initialize.reStruct . 133
Initialize.varFunc . 134
intervals . 135
intervals.gls . 136
intervals.lme . 137
intervals.lmList . 139
isBalanced . 140
isInitialized . 141
LDEsysMat . 142
lme . 143
lme.groupedData . 146
lme.lmList . 148
lmeControl . 150
lmeObject . 152
lmeStruct . 154
lmList . 155
lmList.groupedData . 156
logDet . 157
logDet.corStruct . 158
logDet.pdMat . 159
logDet.reStruct . 160
logLik.corStruct . 161
logLik.glsStruct . 162
logLik.gnls . 163
logLik.gnlsStruct . 164
logLik.lme . 165
logLik.lmeStruct . 166
logLik.lmList . 167
logLik.reStruct . 168
logLik.varFunc . 169

Contents 5

Machines . 170
MathAchieve . 170
MathAchSchool . 171
Matrix . 171
Matrix.pdMat . 172
Matrix.reStruct . 173
Meat . 174
Milk . 174
model.matrix.reStruct . 175
Muscle . 176
Names . 177
Names.formula . 178
Names.pdBlocked . 179
Names.pdMat . 180
Names.reStruct . 181
needUpdate . 182
needUpdate.modelStruct . 182
Nitrendipene . 183
nlme . 184
nlme.nlsList . 187
nlmeControl . 189
nlmeObject . 191
nlmeStruct . 193
nlsList . 194
nlsList.selfStart . 196
Oats . 197
Orthodont . 198
Ovary . 199
Oxboys . 199
Oxide . 200
pairs.compareFits . 201
pairs.lme . 202
pairs.lmList . 203
PBG . 205
pdBlocked . 205
pdClasses . 207
pdCompSymm . 208
pdConstruct . 209
pdConstruct.pdBlocked . 210
pdDiag . 212
pdFactor . 214
pdFactor.reStruct . 215
pdIdent . 216
pdLogChol . 217
pdMat . 219
pdMatrix . 220
pdMatrix.reStruct . 221
pdNatural . 222

6 Contents

pdSymm . 223
Phenobarb . 225
phenoModel . 226
Pixel . 227
plot.ACF . 227
plot.augPred . 228
plot.compareFits . 229
plot.gls . 230
plot.intervals.lmList . 232
plot.lme . 233
plot.lmList . 235
plot.nffGroupedData . 236
plot.nfnGroupedData . 238
plot.nmGroupedData . 240
plot.ranef.lme . 242
plot.ranef.lmList . 244
plot.Variogram . 245
pooledSD . 246
predict.gls . 247
predict.gnls . 248
predict.lme . 249
predict.lmList . 250
predict.nlme . 252
print.summary.pdMat . 253
print.varFunc . 254
qqnorm.gls . 255
qqnorm.lme . 256
Quinidine . 258
quinModel . 259
Rail . 260
random.effects . 261
ranef.lme . 261
ranef.lmList . 263
RatPupWeight . 265
recalc . 265
recalc.corStruct . 266
recalc.modelStruct . 267
recalc.reStruct . 268
recalc.varFunc . 269
Relaxin . 270
Remifentanil . 270
residuals.gls . 272
residuals.glsStruct . 273
residuals.gnlsStruct . 274
residuals.lme . 275
residuals.lmeStruct . 276
residuals.lmList . 277
residuals.nlmeStruct . 278

Contents 7

reStruct . 279
simulate.lme . 281
solve.pdMat . 282
solve.reStruct . 283
Soybean . 284
splitFormula . 284
Spruce . 285
summary.corStruct . 286
summary.gls . 287
summary.lme . 288
summary.lmList . 289
summary.modelStruct . 291
summary.nlsList . 292
summary.pdMat . 293
summary.varFunc . 294
Tetracycline1 . 295
Tetracycline2 . 296
update.modelStruct . 296
update.varFunc . 297
varClasses . 298
varComb . 299
varConstPower . 300
varConstProp . 301
VarCorr . 304
varExp . 305
varFixed . 306
varFunc . 307
varIdent . 308
Variogram . 309
Variogram.corExp . 310
Variogram.corGaus . 311
Variogram.corLin . 312
Variogram.corRatio . 313
Variogram.corSpatial . 314
Variogram.corSpher . 315
Variogram.default . 316
Variogram.gls . 317
Variogram.lme . 319
varPower . 322
varWeights . 323
varWeights.glsStruct . 324
varWeights.lmeStruct . 325
Wafer . 326
Wheat . 326
Wheat2 . 327
[.pdMat . 327

Index 329

8 ACF

ACF Autocorrelation Function

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: gls and lme.

Usage

ACF(object, maxLag, ...)

Arguments

object any object from which an autocorrelation function can be obtained. Generally
an object resulting from a model fit, from which residuals can be extracted.

maxLag maximum lag for which the autocorrelation should be calculated.

... some methods for this generic require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <Bates@stat.wisc.edu>

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

ACF.gls, ACF.lme, plot.ACF

ACF.gls 9

ACF.gls Autocorrelation Function for gls Residuals

Description

This method function calculates the empirical autocorrelation function for the residuals from a gls
fit. If a grouping variable is specified in form, the autocorrelation values are calculated using pairs of
residuals within the same group; otherwise all possible residual pairs are used. The autocorrelation
function is useful for investigating serial correlation models for equally spaced data.

Usage

S3 method for class 'gls'
ACF(object, maxLag, resType, form, na.action, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted model.

maxLag an optional integer giving the maximum lag for which the autocorrelation should
be calculated. Defaults to maximum lag in the residuals.

resType an optional character string specifying the type of residuals to be used. If
"response", the "raw" residuals (observed - fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if "normalized", the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to "pearson".

form an optional one sided formula of the form ~ t, or ~ t | g, specifying a time
covariate t and, optionally, a grouping factor g. The time covariate must be
integer valued. When a grouping factor is present in form, the autocorrelations
are calculated using residual pairs within the same group. Defaults to ~ 1, which
corresponds to using the order of the observations in the data as a covariate, and
no groups.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes ACF.gls to print an error message and terminate
if there are any incomplete observations.

... some methods for this generic require additional arguments.

Value

a data frame with columns lag and ACF representing, respectively, the lag between residuals within
a pair and the corresponding empirical autocorrelation. The returned value inherits from class ACF.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

10 ACF.lme

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

ACF.lme, plot.ACF

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
ACF(fm1, form = ~ 1 | Mare)

Pinheiro and Bates, p. 255-257
fm1Dial.gls <- gls(rate ~

(pressure+I(pressure^2)+I(pressure^3)+I(pressure^4))*QB,
Dialyzer)

fm2Dial.gls <- update(fm1Dial.gls,
weights = varPower(form = ~ pressure))

ACF(fm2Dial.gls, form = ~ 1 | Subject)

ACF.lme Autocorrelation Function for lme Residuals

Description

This method function calculates the empirical autocorrelation function for the within-group resid-
uals from an lme fit. The autocorrelation values are calculated using pairs of residuals within the
innermost group level. The autocorrelation function is useful for investigating serial correlation
models for equally spaced data.

Usage

S3 method for class 'lme'
ACF(object, maxLag, resType, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

maxLag an optional integer giving the maximum lag for which the autocorrelation should
be calculated. Defaults to maximum lag in the within-group residuals.

Alfalfa 11

resType an optional character string specifying the type of residuals to be used. If
"response", the "raw" residuals (observed - fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if "normalized", the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to "pearson".

... some methods for this generic require additional arguments – not used.

Value

a data frame with columns lag and ACF representing, respectively, the lag between residuals within
a pair and the corresponding empirical autocorrelation. The returned value inherits from class ACF.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

ACF.gls, plot.ACF

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
Ovary, random = ~ sin(2*pi*Time) | Mare)

ACF(fm1, maxLag = 11)

Pinheiro and Bates, p240-241
fm1Over.lme <- lme(follicles ~ sin(2*pi*Time) +

cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)))

(ACF.fm1Over <- ACF(fm1Over.lme, maxLag=10))
plot(ACF.fm1Over, alpha=0.01)

Alfalfa Split-Plot Experiment on Varieties of Alfalfa

Description

The Alfalfa data frame has 72 rows and 4 columns.

12 allCoef

Format

This data frame contains the following columns:

Variety a factor with levels Cossack, Ladak, and Ranger

Date a factor with levels None S1 S20 O7

Block a factor with levels 1 2 3 4 5 6

Yield a numeric vector

Details

These data are described in Snedecor and Cochran (1980) as an example of a split-plot design. The
treatment structure used in the experiment was a 3x4 full factorial, with three varieties of alfalfa
and four dates of third cutting in 1943. The experimental units were arranged into six blocks, each
subdivided into four plots. The varieties of alfalfa (Cossac, Ladak, and Ranger) were assigned
randomly to the blocks and the dates of third cutting (None, S1—September 1, S20—September 20,
and O7—October 7) were randomly assigned to the plots. All four dates were used on each block.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.1)

Snedecor, G. W. and Cochran, W. G. (1980), Statistical Methods (7th ed), Iowa State University
Press, Ames, IA

allCoef Extract Coefficients from a Set of Objects

Description

The extractor function is applied to each object in ..., with the result being converted to a vector.
A map attribute is included to indicate which pieces of the returned vector correspond to the original
objects in dots.

Usage

allCoef(..., extract)

Arguments

... objects to which extract will be applied. Generally these will be model com-
ponents, such as corStruct and varFunc objects.

extract an optional extractor function. Defaults to coef.

Value

a vector with all elements, generally coefficients, obtained by applying extract to the objects in
....

anova.gls 13

Author(s)

José’ Pinheiro and Douglas Bates

See Also

lmeStruct,nlmeStruct

Examples

cs1 <- corAR1(0.1)
vf1 <- varPower(0.5)
allCoef(cs1, vf1)

anova.gls Compare Likelihoods of Fitted Objects

Description

When only one fitted model object is present, a data frame with the numerator degrees of freedom,
F-values, and P-values for Wald tests for the terms in the model (when Terms and L are NULL),
a combination of model terms (when Terms in not NULL), or linear combinations of the model
coefficients (when L is not NULL). Otherwise, when multiple fitted objects are being compared, a data
frame with the degrees of freedom, the (restricted) log-likelihood, the Akaike Information Criterion
(AIC), and the Bayesian Information Criterion (BIC) of each object is returned. If test=TRUE,
whenever two consecutive objects have different number of degrees of freedom, a likelihood ratio
statistic with the associated p-value is included in the returned data frame.

Usage

S3 method for class 'gls'
anova(object, ..., test, type, adjustSigma, Terms, L, verbose)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fit.

... other optional fitted model objects inheriting from classes "gls", "gnls", "lm",
"lme", "lmList", "nlme", "nlsList", or "nls".

test an optional logical value controlling whether likelihood ratio tests should be
used to compare the fitted models represented by object and the objects in
Defaults to TRUE.

type an optional character string specifying the type of sum of squares to be used
in F-tests for the terms in the model. If "sequential", the sequential sum of
squares obtained by including the terms in the order they appear in the model is
used; else, if "marginal", the marginal sum of squares obtained by deleting a
term from the model at a time is used. This argument is only used when a single
fitted object is passed to the function. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults to "sequential".

14 anova.gls

adjustSigma an optional logical value. If TRUE and the estimation method used to obtain
object was maximum likelihood, the residual standard error is multiplied by√
nobs/(nobs − npar), converting it to a REML-like estimate. This argument is

only used when a single fitted object is passed to the function. Default is TRUE.

Terms an optional integer or character vector specifying which terms in the model
should be jointly tested to be zero using a Wald F-test. If given as a character
vector, its elements must correspond to term names; else, if given as an integer
vector, its elements must correspond to the order in which terms are included in
the model. This argument is only used when a single fitted object is passed to
the function. Default is NULL.

L an optional numeric vector or array specifying linear combinations of the coeffi-
cients in the model that should be tested to be zero. If given as an array, its rows
define the linear combinations to be tested. If names are assigned to the vector
elements (array columns), they must correspond to coefficients names and will
be used to map the linear combination(s) to the coefficients; else, if no names are
available, the vector elements (array columns) are assumed in the same order as
the coefficients appear in the model. This argument is only used when a single
fitted object is passed to the function. Default is NULL.

verbose an optional logical value. If TRUE, the calling sequences for each fitted model
object are printed with the rest of the output, being omitted if verbose = FALSE.
Defaults to FALSE.

Value

a data frame inheriting from class "anova.lme".

Note

Likelihood comparisons are not meaningful for objects fit using restricted maximum likelihood and
with different fixed effects.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

gls, gnls, nlme, lme, logLik.gls, AIC, BIC, print.anova.lme

Examples

AR(1) errors within each Mare
fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ~ 1 | Mare))

anova.lme 15

anova(fm1)
variance changes with a power of the absolute fitted values?
fm2 <- update(fm1, weights = varPower())
anova(fm1, fm2)

Pinheiro and Bates, p. 251-252
fm1Orth.gls <- gls(distance ~ Sex * I(age - 11), Orthodont,

correlation = corSymm(form = ~ 1 | Subject),
weights = varIdent(form = ~ 1 | age))

fm2Orth.gls <- update(fm1Orth.gls,
corr = corCompSymm(form = ~ 1 | Subject))

anova(fm1Orth.gls, fm2Orth.gls)

Pinheiro and Bates, pp. 215-215, 255-260
#p. 215
fm1Dial.lme <-

lme(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
Dialyzer, ~ pressure + I(pressure^2))

p. 216
fm2Dial.lme <- update(fm1Dial.lme,

weights = varPower(form = ~ pressure))
p. 255
fm1Dial.gls <- gls(rate ~ (pressure +

I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
Dialyzer)

fm2Dial.gls <- update(fm1Dial.gls,
weights = varPower(form = ~ pressure))

anova(fm1Dial.gls, fm2Dial.gls)
fm3Dial.gls <- update(fm2Dial.gls,

corr = corAR1(0.771, form = ~ 1 | Subject))
anova(fm2Dial.gls, fm3Dial.gls)
anova.gls to compare a gls and an lme fit
anova(fm3Dial.gls, fm2Dial.lme, test = FALSE)

Pinheiro and Bates, pp. 261-266
fm1Wheat2 <- gls(yield ~ variety - 1, Wheat2)
fm3Wheat2 <- update(fm1Wheat2,

corr = corRatio(c(12.5, 0.2),
form = ~ latitude + longitude, nugget = TRUE))

Test a specific contrast
anova(fm3Wheat2, L = c(-1, 0, 1))

anova.lme Compare Likelihoods of Fitted Objects

Description

When only one fitted model object is present, a data frame with the numerator degrees of freedom,
denominator degrees of freedom, F-values, and P-values for Wald tests for the terms in the model

16 anova.lme

(when Terms and L are NULL), a combination of model terms (when Terms in not NULL), or linear
combinations of the model coefficients (when L is not NULL). Otherwise, when multiple fitted objects
are being compared, a data frame with the degrees of freedom, the (restricted) log-likelihood, the
Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC) of each object
is returned. If test=TRUE, whenever two consecutive objects have different number of degrees
of freedom, a likelihood ratio statistic with the associated p-value is included in the returned data
frame.

Usage

S3 method for class 'lme'
anova(object, ..., test, type, adjustSigma, Terms, L, verbose)
S3 method for class 'anova.lme'
print(x, verbose, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

... other optional fitted model objects inheriting from classes "gls", "gnls", "lm",
"lme", "lmList", "nlme", "nlsList", or "nls".

test an optional logical value controlling whether likelihood ratio tests should be
used to compare the fitted models represented by object and the objects in
Defaults to TRUE.

type an optional character string specifying the type of sum of squares to be used
in F-tests for the terms in the model. If "sequential", the sequential sum of
squares obtained by including the terms in the order they appear in the model is
used; else, if "marginal", the marginal sum of squares obtained by deleting a
term from the model at a time is used. This argument is only used when a single
fitted object is passed to the function. Partial matching of arguments is used, so
only the first character needs to be provided. Defaults to "sequential".

adjustSigma an optional logical value. If TRUE and the estimation method used to obtain
object was maximum likelihood, the residual standard error is multiplied by√
nobs/(nobs − npar), converting it to a REML-like estimate. This argument is

only used when a single fitted object is passed to the function. Default is TRUE.

Terms an optional integer or character vector specifying which terms in the model
should be jointly tested to be zero using a Wald F-test. If given as a character
vector, its elements must correspond to term names; else, if given as an integer
vector, its elements must correspond to the order in which terms are included in
the model. This argument is only used when a single fitted object is passed to
the function. Default is NULL.

L an optional numeric vector or array specifying linear combinations of the coeffi-
cients in the model that should be tested to be zero. If given as an array, its rows
define the linear combinations to be tested. If names are assigned to the vector
elements (array columns), they must correspond to coefficients names and will
be used to map the linear combination(s) to the coefficients; else, if no names are
available, the vector elements (array columns) are assumed in the same order as

anova.lme 17

the coefficients appear in the model. This argument is only used when a single
fitted object is passed to the function. Default is NULL.

x an object inheriting from class "anova.lme"

verbose an optional logical value. If TRUE, the calling sequences for each fitted model
object are printed with the rest of the output, being omitted if verbose = FALSE.
Defaults to FALSE.

Value

a data frame inheriting from class "anova.lme".

Note

Likelihood comparisons are not meaningful for objects fit using restricted maximum likelihood and
with different fixed effects.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

gls, gnls, nlme, lme, AIC, BIC, print.anova.lme, logLik.lme,

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
anova(fm1)
fm2 <- update(fm1, random = pdDiag(~age))
anova(fm1, fm2)

Pinheiro and Bates, pp. 251-254 --
fm1Orth.gls <- gls(distance ~ Sex * I(age - 11), Orthodont,

correlation = corSymm(form = ~ 1 | Subject),
weights = varIdent(form = ~ 1 | age))

fm2Orth.gls <- update(fm1Orth.gls,
corr = corCompSymm(form = ~ 1 | Subject))

anova.gls examples:
anova(fm1Orth.gls, fm2Orth.gls)
fm3Orth.gls <- update(fm2Orth.gls, weights = NULL)
anova(fm2Orth.gls, fm3Orth.gls)
fm4Orth.gls <- update(fm3Orth.gls, weights = varIdent(form = ~ 1 | Sex))
anova(fm3Orth.gls, fm4Orth.gls)
not in book but needed for the following command
fm3Orth.lme <- lme(distance ~ Sex*I(age-11), data = Orthodont,

random = ~ I(age-11) | Subject,
weights = varIdent(form = ~ 1 | Sex))

18 as.matrix.corStruct

Compare an "lme" object with a "gls" object (test would be non-sensical!)
anova(fm3Orth.lme, fm4Orth.gls, test = FALSE)

Pinheiro and Bates, pp. 222-225 --
op <- options(contrasts = c("contr.treatment", "contr.poly"))
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight, random = ~ Time)
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
Test a specific contrast
anova(fm2BW.lme, L = c("Time:Diet2" = 1, "Time:Diet3" = -1))

Pinheiro and Bates, pp. 352-365 --
fm1Theo.lis <- nlsList(

conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data=Theoph)
fm1Theo.lis
fm1Theo.nlme <- nlme(fm1Theo.lis)
fm2Theo.nlme <- update(fm1Theo.nlme, random= pdDiag(lKe+lKa+lCl~1))
fm3Theo.nlme <- update(fm2Theo.nlme, random= pdDiag(lKa+lCl~1))

Comparing the 3 nlme models
anova(fm1Theo.nlme, fm3Theo.nlme, fm2Theo.nlme)

options(op) # (set back to previous state)

as.matrix.corStruct Matrix of a corStruct Object

Description

This method function extracts the correlation matrix, or list of correlation matrices, associated with
object.

Usage

S3 method for class 'corStruct'
as.matrix(x, ...)

Arguments

x an object inheriting from class "corStruct", representing a correlation struc-
ture.

... further arguments passed from other methods.

Value

If the correlation structure includes a grouping factor, the returned value will be a list with com-
ponents given by the correlation matrices for each group. Otherwise, the returned value will be a
matrix representing the correlation structure associated with object.

as.matrix.pdMat 19

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

corClasses, corMatrix

Examples

cst1 <- corAR1(form = ~1|Subject)
cst1 <- Initialize(cst1, data = Orthodont)
as.matrix(cst1)

as.matrix.pdMat Matrix of a pdMat Object

Description

This method function extracts the positive-definite matrix represented by x.

Usage

S3 method for class 'pdMat'
as.matrix(x, ...)

Arguments

x an object inheriting from class "pdMat", representing a positive-definite matrix.

... further arguments passed from other methods.

Value

a matrix corresponding to the positive-definite matrix represented by x.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

20 as.matrix.reStruct

See Also

pdMat, corMatrix

Examples

as.matrix(pdSymm(diag(4)))

as.matrix.reStruct Matrices of an reStruct Object

Description

This method function extracts the positive-definite matrices corresponding to the pdMat elements
of object.

Usage

S3 method for class 'reStruct'
as.matrix(x, ...)

Arguments

x an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

... further arguments passed from other methods.

Value

a list with components given by the positive-definite matrices corresponding to the elements of
object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

as.matrix.pdMat, reStruct, pdMat

Examples

rs1 <- reStruct(pdSymm(diag(3), ~age+Sex, data = Orthodont))
as.matrix(rs1)

asOneFormula 21

asOneFormula Combine Formulas of a Set of Objects

Description

The names of all variables used in the formulas extracted from the objects defined in ... are con-
verted into a single linear formula, with the variables names separated by +.

Usage

asOneFormula(..., omit)

Arguments

... objects, or lists of objects, from which a formula can be extracted.

omit an optional character vector with the names of variables to be omitted from the
returned formula. Defaults to c(".", "pi").

Value

a one-sided linear formula with all variables named in the formulas extracted from the objects in
..., except the ones listed in omit.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

formula, all.vars

Examples

asOneFormula(y ~ x + z | g, list(~ w, ~ t * sin(2 * pi)))

Assay Bioassay on Cell Culture Plate

Description

The Assay data frame has 60 rows and 4 columns.

22 asTable

Format

This data frame contains the following columns:

Block an ordered factor with levels 2 < 1 identifying the block where the wells are measured.

sample a factor with levels a to f identifying the sample corresponding to the well.

dilut a factor with levels 1 to 5 indicating the dilution applied to the well

logDens a numeric vector of the log-optical density

Details

These data, courtesy of Rich Wolfe and David Lansky from Searle, Inc., come from a bioassay run
on a 96-well cell culture plate. The assay is performed using a split-block design. The 8 rows on
the plate are labeled A–H from top to bottom and the 12 columns on the plate are labeled 1–12 from
left to right. Only the central 60 wells of the plate are used for the bioassay (the intersection of rows
B–G and columns 2–11). There are two blocks in the design: Block 1 contains columns 2–6 and
Block 2 contains columns 7–11. Within each block, six samples are assigned randomly to rows and
five (serial) dilutions are assigned randomly to columns. The response variable is the logarithm of
the optical density. The cells are treated with a compound that they metabolize to produce the stain.
Only live cells can make the stain, so the optical density is a measure of the number of cells that are
alive and healthy.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.2)

asTable Convert groupedData to a matrix

Description

Create a tabular representation of the response in a balanced groupedData object.

Usage

asTable(object)

Arguments

object A balanced groupedData object

Details

A balanced groupedData object can be represented as a matrix or table of response values corre-
sponding to the values of a primary covariate for each level of a grouping factor. This function
creates such a matrix representation of the data in object.

augPred 23

Value

A matrix. The data in the matrix are the values of the response. The columns correspond to the
distinct values of the primary covariate and are labelled as such. The rows correspond to the distinct
levels of the grouping factor and are labelled as such.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

groupedData, isBalanced, balancedGrouped

Examples

asTable(Orthodont)

Pinheiro and Bates, p. 109
ergoStool.mat <- asTable(ergoStool)

augPred Augmented Predictions

Description

Predicted values are obtained at the specified values of primary. If object has a grouping structure
(i.e. getGroups(object) is not NULL), predicted values are obtained for each group. If level
has more than one element, predictions are obtained for each level of the max(level) grouping
factor. If other covariates besides primary are used in the prediction model, their average (numeric
covariates) or most frequent value (categorical covariates) are used to obtain the predicted values.
The original observations are also included in the returned object.

Usage

augPred(object, primary, minimum, maximum, length.out, ...)
S3 method for class 'lme'
augPred(object, primary = NULL,

minimum = min(primary), maximum = max(primary),
length.out = 51, level = Q, ...)

24 augPred

Arguments

object a fitted model object from which predictions can be extracted, using a predict
method.

primary an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generate object (using getCovariate), it will be used as
primary.

minimum an optional lower limit for the primary covariate. Defaults to min(primary).

maximum an optional upper limit for the primary covariate. Defaults to max(primary).

length.out an optional integer with the number of primary covariate values at which to
evaluate the predictions. Defaults to 51.

level an optional integer vector specifying the desired prediction levels. Levels in-
crease from outermost to innermost grouping, with level 0 representing the pop-
ulation (fixed effects) predictions. Defaults to the innermost level.

... some methods for the generic may require additional arguments.

Value

a data frame with four columns representing, respectively, the values of the primary covariate, the
groups (if object does not have a grouping structure, all elements will be 1), the predicted or
observed values, and the type of value in the third column: original for the observed values and
predicted (single or no grouping factor) or predict.groupVar (multiple levels of grouping), with
groupVar replaced by the actual grouping variable name (fixed is used for population predictions).
The returned object inherits from class "augPred".

Note

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: gls, lme, and lmList.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

plot.augPred, getGroups, predict

Examples

fm1 <- lme(Orthodont, random = ~1)
augPred(fm1, length.out = 2, level = c(0,1))

balancedGrouped 25

balancedGrouped Create a groupedData object from a matrix

Description

Create a groupedData object from a data matrix. This function can be used only with balanced
data. The opposite conversion, from a groupedData object to a matrix, is done with asTable.

Usage

balancedGrouped(form, data, labels=NULL, units=NULL)

Arguments

form A formula of the form y ~ x | g giving the name of the response, the primary
covariate, and the grouping factor.

data A matrix or data frame containing the values of the response grouped according
to the levels of the grouping factor (rows) and the distinct levels of the primary
covariate (columns). The dimnames of the matrix are used to construct the levels
of the grouping factor and the primary covariate.

labels an optional list of character strings giving labels for the response and the pri-
mary covariate. The label for the primary covariate is named x and that for the
response is named y. Either label can be omitted.

units an optional list of character strings giving the units for the response and the
primary covariate. The units string for the primary covariate is named x and that
for the response is named y. Either units string can be omitted.

Value

A balanced groupedData object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

See Also

groupedData, isBalanced, asTable

26 bdf

Examples

OrthoMat <- asTable(Orthodont)
Orth2 <- balancedGrouped(distance ~ age | Subject, data = OrthoMat,

labels = list(x = "Age",
y = "Distance from pituitary to pterygomaxillary fissure"),

units = list(x = "(yr)", y = "(mm)"))
Orth2[1:10,] ## check the first few entries

Pinheiro and Bates, p. 109
ergoStool.mat <- asTable(ergoStool)
balancedGrouped(effort~Type|Subject,

data=ergoStool.mat)

bdf Language scores

Description

The bdf data frame has 2287 rows and 25 columns of language scores from grade 8 pupils in
elementary schools in The Netherlands.

Usage

bdf

Format

schoolNR a factor denoting the school.

pupilNR a factor denoting the pupil.

IQ.verb a numeric vector of verbal IQ scores

IQ.perf a numeric vector of IQ scores.

sex Sex of the student.

Minority a factor indicating if the student is a member of a minority group.

repeatgr an ordered factor indicating if one or more grades have been repeated.

aritPRET a numeric vector

classNR a numeric vector

aritPOST a numeric vector

langPRET a numeric vector

langPOST a numeric vector

ses a numeric vector of socioeconomic status indicators.

denomina a factor indicating of the school is a public school, a Protestant private school, a Catholic
private school, or a non-denominational private school.

schoolSES a numeric vector

BodyWeight 27

satiprin a numeric vector

natitest a factor with levels 0 and 1

meetings a numeric vector

currmeet a numeric vector

mixedgra a factor indicating if the class is a mixed-grade class.

percmino a numeric vector

aritdiff a numeric vector

homework a numeric vector

classsiz a numeric vector

groupsiz a numeric vector

Source

‘http://stat.gamma.rug.nl/snijders/multilevel.htm’, the first edition of http://www.stats.
ox.ac.uk/~snijders/mlbook.htm.

References

Snijders, Tom and Bosker, Roel (1999), Multilevel Analysis: An Introduction to Basic and Advanced
Multilevel Modeling, Sage.

Examples

summary(bdf)

More examples, including lme() fits reproducing parts in the above
book, are available in the R script files
system.file("mlbook", "ch04.R", package ="nlme") # and
system.file("mlbook", "ch05.R", package ="nlme")

BodyWeight Rat weight over time for different diets

Description

The BodyWeight data frame has 176 rows and 4 columns.

Format

This data frame contains the following columns:

weight a numeric vector giving the body weight of the rat (grams).

Time a numeric vector giving the time at which the measurement is made (days).

Rat an ordered factor with levels 2 < 3 < 4 < 1 < 8 < 5 < 6 < 7 < 11 < 9 < 10 < 12 < 13 < 15 < 14
< 16 identifying the rat whose weight is measured.

Diet a factor with levels 1 to 3 indicating the diet that the rat receives.

http://www.stats.ox.ac.uk/~snijders/mlbook.htm
http://www.stats.ox.ac.uk/~snijders/mlbook.htm

28 Cefamandole

Details

Hand and Crowder (1996) describe data on the body weights of rats measured over 64 days. These
data also appear in Table 2.4 of Crowder and Hand (1990). The body weights of the rats (in grams)
are measured on day 1 and every seven days thereafter until day 64, with an extra measurement on
day 44. The experiment started several weeks before “day 1.” There are three groups of rats, each
on a different diet.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.3)

Crowder, M. and Hand, D. (1990), Analysis of Repeated Measures, Chapman and Hall, London.

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall, Lon-
don.

Cefamandole Pharmacokinetics of Cefamandole

Description

The Cefamandole data frame has 84 rows and 3 columns.

Format

This data frame contains the following columns:

Subject a factor giving the subject from which the sample was drawn.

Time a numeric vector giving the time at which the sample was drawn (minutes post-injection).

conc a numeric vector giving the observed plasma concentration of cefamandole (mcg/ml).

Details

Davidian and Giltinan (1995, 1.1, p. 2) describe data obtained during a pilot study to investigate the
pharmacokinetics of the drug cefamandole. Plasma concentrations of the drug were measured on
six healthy volunteers at 14 time points following an intraveneous dose of 15 mg/kg body weight of
cefamandole.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.4)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London.

Coef 29

Examples

plot(Cefamandole)
fm1 <- nlsList(SSbiexp, data = Cefamandole)
summary(fm1)

Coef Assign Values to Coefficients

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include all "pdMat", "corStruct" and
"varFunc" classes, "reStruct", and "modelStruct".

coefficients<- is an alias for coef<-.

Usage

coef(object, ...) <- value

coefficients(object, ...) <- value

Arguments

object any object representing a fitted model, or, by default, any object with a coef
component.

... some methods for this generic function may require additional arguments.

value a value to be assigned to the coefficients associated with object.

Value

will depend on the method function; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

coef

30 coef.corStruct

coef.corStruct Coefficients of a corStruct Object

Description

This method function extracts the coefficients associated with the correlation structure represented
by object.

Usage

S3 method for class 'corStruct'
coef(object, unconstrained, ...)
S3 replacement method for class 'corStruct'
coef(object, ...) <- value

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

unconstrained a logical value. If TRUE the coefficients are returned in unconstrained form (the
same used in the optimization algorithm). If FALSE the coefficients are returned
in "natural", possibly constrained, form. Defaults to TRUE.

value a vector with the replacement values for the coefficients associated with object.
It must be a vector with the same length of coef{object} and must be given in
unconstrained form.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the coefficients corresponding to object.

SIDE EFFECTS

On the left side of an assignment, sets the values of the coefficients of object to value. Object
must be initialized (using Initialize) before new values can be assigned to its coefficients.

Author(s)

José Pinheiro and Douglas Bates

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

coef.gnls 31

See Also

corAR1, corARMA, corCAR1, corCompSymm, corExp, corGaus, corLin, corRatio, corSpatial,
corSpher, corSymm,Initialize

Examples

cst1 <- corARMA(p = 1, q = 1)
coef(cst1)

coef.gnls Extract gnls Coefficients

Description

The estimated coefficients for the nonlinear model represented by object are extracted.

Usage

S3 method for class 'gnls'
coef(object, ...)

Arguments

object an object inheriting from class "gnls", representing a generalized nonlinear
least squares fitted model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the estimated coefficients for the nonlinear model represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls

Examples

fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

coef(fm1)

32 coef.lme

coef.lme Extract lme Coefficients

Description

The estimated coefficients at level i are obtained by adding together the fixed effects estimates and
the corresponding random effects estimates at grouping levels less or equal to i. The resulting esti-
mates are returned as a data frame, with rows corresponding to groups and columns to coefficients.
Optionally, the returned data frame may be augmented with covariates summarized over groups.

Usage

S3 method for class 'lme'
coef(object, augFrame, level, data, which, FUN,

omitGroupingFactor, subset, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

augFrame an optional logical value. If TRUE, the returned data frame is augmented with
variables defined in data; else, if FALSE, only the coefficients are returned. De-
faults to FALSE.

level an optional positive integer giving the level of grouping to be used in extracting
the coefficients from an object with multiple nested grouping levels. Defaults to
the highest or innermost level of grouping.

data an optional data frame with the variables to be used for augmenting the returned
data frame when augFrame = TRUE. Defaults to the data frame used to fit object.

which an optional positive integer or character vector specifying which columns of
data should be used in the augmentation of the returned data frame. Defaults to
all columns in data.

FUN an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing data by groups. Group-invariant vari-
ables are always summarized by the unique value that they assume within that
group. If FUN is a single function it will be applied to each non-invariant variable
by group to produce the summary for that variable. If FUN is a list of functions,
the names in the list should designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated function will be applied to any
group-varying variables of that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and ordered. The Mode function,
defined internally in gsummary, returns the modal or most popular value of the
variable. It is different from the mode function that returns the S-language mode
of the variable.

coef.lmList 33

omitGroupingFactor

an optional logical value. When TRUE the grouping factor itself will be omitted
from the group-wise summary of data but the levels of the grouping factor will
continue to be used as the row names for the returned data frame. Defaults to
FALSE.

subset an optional expression specifying a subset

... some methods for this generic require additional arguments. None are used in
this method.

Value

a data frame inheriting from class "coef.lme" with the estimated coefficients at level level and,
optionally, other covariates summarized over groups. The returned object also inherits from classes
"ranef.lme" and "data.frame".

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York, esp. pp. 455-457.

See Also

lme, ranef.lme, plot.ranef.lme, gsummary

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
coef(fm1)
coef(fm1, augFrame = TRUE)

coef.lmList Extract lmList Coefficients

Description

The coefficients of each lm object in the object list are extracted and organized into a data frame,
with rows corresponding to the lm components and columns corresponding to the coefficients. Op-
tionally, the returned data frame may be augmented with covariates summarized over the groups
associated with the lm components.

Usage

S3 method for class 'lmList'
coef(object, augFrame, data, which, FUN,

omitGroupingFactor, ...)

34 coef.lmList

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

augFrame an optional logical value. If TRUE, the returned data frame is augmented with
variables defined in the data frame used to produce object; else, if FALSE, only
the coefficients are returned. Defaults to FALSE.

data an optional data frame with the variables to be used for augmenting the returned
data frame when augFrame = TRUE. Defaults to the data frame used to fit object.

which an optional positive integer or character vector specifying which columns of the
data frame used to produce object should be used in the augmentation of the
returned data frame. Defaults to all variables in the data.

FUN an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing the data by groups. Group-invariant
variables are always summarized by the unique value that they assume within
that group. If FUN is a single function it will be applied to each non-invariant
variable by group to produce the summary for that variable. If FUN is a list
of functions, the names in the list should designate classes of variables in the
frame such as ordered, factor, or numeric. The indicated function will be
applied to any group-varying variables of that class. The default functions to
be used are mean for numeric factors, and Mode for both factor and ordered.
The Mode function, defined internally in gsummary, returns the modal or most
popular value of the variable. It is different from the mode function that returns
the S-language mode of the variable.

omitGroupingFactor

an optional logical value. When TRUE the grouping factor itself will be omitted
from the group-wise summary of data but the levels of the grouping factor will
continue to be used as the row names for the returned data frame. Defaults to
FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a data frame inheriting from class "coef.lmList" with the estimated coefficients for each "lm"
component of object and, optionally, other covariates summarized over the groups correspond-
ing to the "lm" components. The returned object also inherits from classes "ranef.lmList" and
"data.frame".

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York, esp. pp. 457-458.

coef.modelStruct 35

See Also

lmList, fixed.effects.lmList, ranef.lmList, plot.ranef.lmList, gsummary

Examples

fm1 <- lmList(distance ~ age|Subject, data = Orthodont)
coef(fm1)
coef(fm1, augFrame = TRUE)

coef.modelStruct Extract modelStruct Object Coefficients

Description

This method function extracts the coefficients associated with each component of the modelStruct
list.

Usage

S3 method for class 'modelStruct'
coef(object, unconstrained, ...)
S3 replacement method for class 'modelStruct'
coef(object, ...) <- value

Arguments

object an object inheriting from class "modelStruct", representing a list of model
components, such as "corStruct" and "varFunc" objects.

unconstrained a logical value. If TRUE the coefficients are returned in unconstrained form (the
same used in the optimization algorithm). If FALSE the coefficients are returned
in "natural", possibly constrained, form. Defaults to TRUE.

value a vector with the replacement values for the coefficients associated with object.
It must be a vector with the same length of coef{object} and must be given in
unconstrained form.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with all coefficients corresponding to the components of object.

SIDE EFFECTS

On the left side of an assignment, sets the values of the coefficients of object to value. Object
must be initialized (using Initialize) before new values can be assigned to its coefficients.

36 coef.pdMat

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Initialize

Examples

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ~age)),
corStruct = corAR1(0.3))

coef(lms1)

coef.pdMat pdMat Object Coefficients

Description

This method function extracts the coefficients associated with the positive-definite matrix repre-
sented by object.

Usage

S3 method for class 'pdMat'
coef(object, unconstrained, ...)
S3 replacement method for class 'pdMat'
coef(object, ...) <- value

Arguments

object an object inheriting from class "pdMat", representing a positive-definite matrix.

unconstrained a logical value. If TRUE the coefficients are returned in unconstrained form (the
same used in the optimization algorithm). If FALSE the upper triangular elements
of the positive-definite matrix represented by object are returned. Defaults to
TRUE.

value a vector with the replacement values for the coefficients associated with object.
It must be a vector with the same length of coef{object} and must be given in
unconstrained form.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the coefficients corresponding to object.

coef.reStruct 37

SIDE EFFECTS

On the left side of an assignment, sets the values of the coefficients of object to value.

Author(s)

José Pinheiro and Douglas Bates

References

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

See Also

pdMat

Examples

coef(pdSymm(diag(3)))

coef.reStruct reStruct Object Coefficients

Description

This method function extracts the coefficients associated with the positive-definite matrix repre-
sented by object.

Usage

S3 method for class 'reStruct'
coef(object, unconstrained, ...)
S3 replacement method for class 'reStruct'
coef(object, ...) <- value

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

unconstrained a logical value. If TRUE the coefficients are returned in unconstrained form (the
same used in the optimization algorithm). If FALSE the coefficients are returned
in "natural", possibly constrained, form. Defaults to TRUE.

value a vector with the replacement values for the coefficients associated with object.
It must be a vector with the same length of coef(object) and must be given in
unconstrained form.

... some methods for this generic require additional arguments. None are used in
this method.

38 coef.varFunc

Value

a vector with the coefficients corresponding to object.

SIDE EFFECTS

On the left side of an assignment, sets the values of the coefficients of object to value.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

coef.pdMat, reStruct, pdMat

Examples

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ~Score),
B = pdDiag(2 * diag(4), form = ~Educ)))

coef(rs1)

coef.varFunc varFunc Object Coefficients

Description

This method function extracts the coefficients associated with the variance function structure repre-
sented by object.

Usage

S3 method for class 'varFunc'
coef(object, unconstrained, allCoef, ...)
S3 replacement method for class 'varIdent'
coef(object, ...) <- value

Arguments

object an object inheriting from class "varFunc" representing a variance function struc-
ture.

unconstrained a logical value. If TRUE the coefficients are returned in unconstrained form (the
same used in the optimization algorithm). If FALSE the coefficients are returned
in "natural", generally constrained form. Defaults to TRUE.

allCoef a logical value. If FALSE only the coefficients which may vary during the opti-
mization are returned. If TRUE all coefficients are returned. Defaults to FALSE.

collapse 39

value a vector with the replacement values for the coefficients associated with object.
It must be have the same length of coef{object} and must be given in uncon-
strained form. Object must be initialized before new values can be assigned to
its coefficients.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the coefficients corresponding to object.

SIDE EFFECTS

On the left side of an assignment, sets the values of the coefficients of object to value.

Author(s)

José Pinheiro and Douglas Bates

See Also

varFunc

Examples

vf1 <- varPower(1)
coef(vf1)
coef(vf1) <- 2

collapse Collapse According to Groups

Description

This function is generic; method functions can be written to handle specific classes of objects.
Currently, only a groupedData method is available.

Usage

collapse(object, ...)

Arguments

object an object to be collapsed, usually a data frame.

... some methods for the generic may require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

40 collapse.groupedData

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

collapse.groupedData

collapse.groupedData Collapse a groupedData Object

Description

If object has a single grouping factor, it is returned unchanged. Else, it is summarized by the
values of the displayLevel grouping factor (or the combination of its values and the values of the
covariate indicated in preserve, if any is present). The collapsed data is used to produce a new
groupedData object, with grouping factor given by the displayLevel factor.

Usage

S3 method for class 'groupedData'
collapse(object, collapseLevel, displayLevel,

outer, inner, preserve, FUN, subset, ...)

Arguments

object an object inheriting from class groupedData, generally with multiple grouping
factors.

collapseLevel an optional positive integer or character string indicating the grouping level to
use when collapsing the data. Level values increase from outermost to innermost
grouping. Default is the highest or innermost level of grouping.

displayLevel an optional positive integer or character string indicating the grouping level to
use as the grouping factor for the collapsed data. Default is collapseLevel.

outer an optional logical value or one-sided formula, indicating covariates that are
outer to the displayLevel grouping factor. If equal to TRUE, the displayLevel
element attr(object, "outer") is used to indicate the outer covariates. An
outer covariate is invariant within the sets of rows defined by the grouping factor.
Ordering of the groups is done in such a way as to preserve adjacency of groups
with the same value of the outer variables. Defaults to NULL, meaning that no
outer covariates are to be used.

inner an optional logical value or one-sided formula, indicating a covariate that is
inner to the displayLevel grouping factor. If equal to TRUE, attr(object,
"outer") is used to indicate the inner covariate. An inner covariate can change
within the sets of rows defined by the grouping factor. Defaults to NULL, meaning
that no inner covariate is present.

collapse.groupedData 41

preserve an optional one-sided formula indicating a covariate whose levels should be
preserved when collapsing the data according to the collapseLevel grouping
factor. The collapsing factor is obtained by pasting together the levels of the
collapseLevel grouping factor and the values of the covariate to be preserved.
Default is NULL, meaning that no covariates need to be preserved.

FUN an optional summary function or a list of summary functions to be used for
collapsing the data. The function or functions are applied only to variables in
object that vary within the groups defined by collapseLevel. Invariant vari-
ables are always summarized by group using the unique value that they assume
within that group. If FUN is a single function it will be applied to each non-
invariant variable by group to produce the summary for that variable. If FUN
is a list of functions, the names in the list should designate classes of variables
in the data such as ordered, factor, or numeric. The indicated function will
be applied to any non-invariant variables of that class. The default functions to
be used are mean for numeric factors, and Mode for both factor and ordered.
The Mode function, defined internally in gsummary, returns the modal or most
popular value of the variable. It is different from the mode function that returns
the S-language mode of the variable.

subset an optional named list. Names can be either positive integers representing
grouping levels, or names of grouping factors. Each element in the list is a
vector indicating the levels of the corresponding grouping factor to be preserved
in the collapsed data. Default is NULL, meaning that all levels are used.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a groupedData object with a single grouping factor given by the displayLevel grouping factor,
resulting from collapsing object over the levels of the collapseLevel grouping factor.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

groupedData, plot.nmGroupedData

Examples

collapsing by Dog
collapse(Pixel, collapseLevel = 1)
same as collapse(Pixel, collapseLevel = "Dog")

42 compareFits

compareFits Compare Fitted Objects

Description

The columns in object1 and object2 are put together in matrices which allow direct comparison
of the individual elements for each object. Missing columns in either object are replaced by NAs.

Usage

compareFits(object1, object2, which)

Arguments

object1, object2
data frames, or matrices, with the same row names, but possibly different col-
umn names. These will usually correspond to coefficients from fitted objects
with a grouping structure (e.g. lme and lmList objects).

which an optional integer or character vector indicating which columns in object1 and
object2 are to be used in the returned object. Defaults to all columns.

Value

a three-dimensional array, with the third dimension given by the number of unique column names
in either object1 or object2. To each column name there corresponds a matrix with as many rows
as the rows in object1 and two columns, corresponding to object1 and object2. The returned
object inherits from class compareFits.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

plot.compareFits, pairs.compareFits, comparePred, coef, random.effects

Examples

fm1 <- lmList(Orthodont)
fm2 <- lme(fm1)
(cF12 <- compareFits(coef(fm1), coef(fm2)))

comparePred 43

comparePred Compare Predictions

Description

Predicted values are obtained at the specified values of primary for each object. If either object1
or object2 have a grouping structure (i.e. getGroups(object) is not NULL), predicted values are
obtained for each group. When both objects determine groups, the group levels must be the same.
If other covariates besides primary are used in the prediction model, their group-wise averages
(numeric covariates) or most frequent values (categorical covariates) are used to obtain the predicted
values. The original observations are also included in the returned object.

Usage

comparePred(object1, object2, primary, minimum, maximum,
length.out, level, ...)

Arguments

object1, object2
fitted model objects, from which predictions can be extracted using the predict
method.

primary an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generate the objects (using getCovariate), it will be used
as primary.

minimum an optional lower limit for the primary covariate. Defaults to min(primary),
after primary is evaluated in the data used in fitting object1.

maximum an optional upper limit for the primary covariate. Defaults to max(primary),
after primary is evaluated in the data used in fitting object1.

length.out an optional integer with the number of primary covariate values at which to
evaluate the predictions. Defaults to 51.

level an optional integer specifying the desired prediction level. Levels increase from
outermost to innermost grouping, with level 0 representing the population (fixed
effects) predictions. Only one level can be specified. Defaults to the innermost
level.

... some methods for the generic may require additional arguments.

Value

a data frame with four columns representing, respectively, the values of the primary covariate, the
groups (if object does not have a grouping structure, all elements will be 1), the predicted or
observed values, and the type of value in the third column: the objects’ names are used to classify
the predicted values and original is used for the observed values. The returned object inherits
from classes comparePred and augPred.

44 corAR1

Note

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: gls, lme, and lmList.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

augPred, getGroups

Examples

fm1 <- lme(distance ~ age * Sex, data = Orthodont, random = ~ age)
fm2 <- update(fm1, distance ~ age)
comparePred(fm1, fm2, length.out = 2)

corAR1 AR(1) Correlation Structure

Description

This function is a constructor for the corAR1 class, representing an autocorrelation structure of order
1. Objects created using this constructor must later be initialized using the appropriate Initialize
method.

Usage

corAR1(value, form, fixed)

Arguments

value the value of the lag 1 autocorrelation, which must be between -1 and 1. Defaults
to 0 (no autocorrelation).

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and,
optionally, a grouping factor g. A covariate for this correlation structure must be
integer valued. When a grouping factor is present in form, the correlation struc-
ture is assumed to apply only to observations within the same grouping level;
observations with different grouping levels are assumed to be uncorrelated. De-
faults to ~ 1, which corresponds to using the order of the observations in the data
as a covariate, and no groups.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

corAR1 45

Value

an object of class corAR1, representing an autocorrelation structure of order 1.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 235, 397.

See Also

ACF.lme, corARMA, corClasses, Dim.corSpatial, Initialize.corStruct, summary.corStruct

Examples

covariate is observation order and grouping factor is Mare
cs1 <- corAR1(0.2, form = ~ 1 | Mare)

Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1. <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1.)

Pinheiro and Bates, p. 240
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),

data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1())

Pinheiro and Bates, pp. 255-258: use in gls
fm1Dial.gls <-

gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
Dialyzer)

fm2Dial.gls <- update(fm1Dial.gls,
weights = varPower(form = ~ pressure))

fm3Dial.gls <- update(fm2Dial.gls,
corr = corAR1(0.771, form = ~ 1 | Subject))

Pinheiro and Bates use in nlme:
from p. 240 needed on p. 396
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),

data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm5Ovar.lme <- update(fm1Ovar.lme,

correlation = corARMA(p = 1, q = 1))
p. 396
fm1Ovar.nlme <- nlme(follicles~

A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time),

46 corARMA

data=Ovary, fixed=A+B+C+w~1,
random=pdDiag(A+B+w~1),
start=c(fixef(fm5Ovar.lme), 1))

p. 397
fm2Ovar.nlme <- update(fm1Ovar.nlme,

correlation=corAR1(0.311))

corARMA ARMA(p,q) Correlation Structure

Description

This function is a constructor for the corARMA class, representing an autocorrelation-moving average
correlation structure of order (p, q). Objects created using this constructor must later be initialized
using the appropriate Initialize method.

Usage

corARMA(value, form, p, q, fixed)

Arguments

value a vector with the values of the autoregressive and moving average parameters,
which must have length p + q and all elements between -1 and 1. Defaults to a
vector of zeros, corresponding to uncorrelated observations.

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and,
optionally, a grouping factor g. A covariate for this correlation structure must be
integer valued. When a grouping factor is present in form, the correlation struc-
ture is assumed to apply only to observations within the same grouping level;
observations with different grouping levels are assumed to be uncorrelated. De-
faults to ~ 1, which corresponds to using the order of the observations in the data
as a covariate, and no groups.

p, q non-negative integers specifying respectively the autoregressive order and the
moving average order of the ARMA structure. Both default to 0, but at least one
should be > 0.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corARMA, representing an autocorrelation-moving average correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

corCAR1 47

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 236, 397.

See Also

corAR1, corClasses Initialize.corStruct, summary.corStruct

Examples

ARMA(1,2) structure, with observation order as a covariate and
Mare as grouping factor
cs1 <- corARMA(c(0.2, 0.3, -0.1), form = ~ 1 | Mare, p = 1, q = 2)

Pinheiro and Bates, p. 237
cs1ARMA <- corARMA(0.4, form = ~ 1 | Subject, q = 1)
cs1ARMA <- Initialize(cs1ARMA, data = Orthodont)
corMatrix(cs1ARMA)

cs2ARMA <- corARMA(c(0.8, 0.4), form = ~ 1 | Subject, p=1, q=1)
cs2ARMA <- Initialize(cs2ARMA, data = Orthodont)
corMatrix(cs2ARMA)

Pinheiro and Bates use in nlme:
from p. 240 needed on p. 396
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),

data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm5Ovar.lme <- update(fm1Ovar.lme,

correlation = corARMA(p = 1, q = 1))
p. 396
fm1Ovar.nlme <- nlme(follicles~

A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time),
data=Ovary, fixed=A+B+C+w~1,
random=pdDiag(A+B+w~1),
start=c(fixef(fm5Ovar.lme), 1))

p. 397
fm3Ovar.nlme <- update(fm1Ovar.nlme,

correlation=corARMA(p=0, q=2))

corCAR1 Continuous AR(1) Correlation Structure

Description

This function is a constructor for the corCAR1 class, representing an autocorrelation structure of
order 1, with a continuous time covariate. Objects created using this constructor must be later
initialized using the appropriate Initialize method.

48 corCAR1

Usage

corCAR1(value, form, fixed)

Arguments

value the correlation between two observations one unit of time apart. Must be be-
tween 0 and 1. Defaults to 0.2.

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and,
optionally, a grouping factor g. Covariates for this correlation structure need not
be integer valued. When a grouping factor is present in form, the correlation
structure is assumed to apply only to observations within the same grouping
level; observations with different grouping levels are assumed to be uncorre-
lated. Defaults to ~ 1, which corresponds to using the order of the observations
in the data as a covariate, and no groups.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corCAR1, representing an autocorrelation structure of order 1, with a continuous
time covariate.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Jones, R.H. (1993) "Longitudinal Data with Serial Correlation: A State-space Approach", Chapman
and Hall.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 236, 243.

See Also

corClasses, Initialize.corStruct, summary.corStruct

Examples

covariate is Time and grouping factor is Mare
cs1 <- corCAR1(0.2, form = ~ Time | Mare)

Pinheiro and Bates, pp. 240, 243
fm1Ovar.lme <- lme(follicles ~

sin(2*pi*Time) + cos(2*pi*Time),
data = Ovary, random = pdDiag(~sin(2*pi*Time)))

corClasses 49

fm4Ovar.lme <- update(fm1Ovar.lme,
correlation = corCAR1(form = ~Time))

corClasses Correlation Structure Classes

Description

Standard classes of correlation structures (corStruct) available in the nlme package.

Value

Available standard classes:

corAR1 autoregressive process of order 1.

corARMA autoregressive moving average process, with arbitrary orders for the autoregres-
sive and moving average components.

corCAR1 continuous autoregressive process (AR(1) process for a continuous time covari-
ate).

corCompSymm compound symmetry structure corresponding to a constant correlation.

corExp exponential spatial correlation.

corGaus Gaussian spatial correlation.

corLin linear spatial correlation.

corRatio Rational quadratics spatial correlation.

corSpher spherical spatial correlation.

corSymm general correlation matrix, with no additional structure.

Note

Users may define their own corStruct classes by specifying a constructor function and, at a min-
imum, methods for the functions corMatrix and coef. For examples of these functions, see the
methods for classes corSymm and corAR1.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

corAR1, corARMA, corCAR1, corCompSymm, corExp, corGaus, corLin, corRatio, corSpher, corSymm,
summary.corStruct

50 corCompSymm

corCompSymm Compound Symmetry Correlation Structure

Description

This function is a constructor for the corCompSymm class, representing a compound symmetry struc-
ture corresponding to uniform correlation. Objects created using this constructor must later be
initialized using the appropriate Initialize method.

Usage

corCompSymm(value, form, fixed)

Arguments

value the correlation between any two correlated observations. Defaults to 0.

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t
and, optionally, a grouping factor g. When a grouping factor is present in form,
the correlation structure is assumed to apply only to observations within the
same grouping level; observations with different grouping levels are assumed to
be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the
observations in the data as a covariate, and no groups.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corCompSymm, representing a compound symmetry correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Milliken, G. A. and Johnson, D. E. (1992) "Analysis of Messy Data, Volume I: Designed Experi-
ments", Van Nostrand Reinhold.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 233-234.

See Also

corClasses, Initialize.corStruct, summary.corStruct

corExp 51

Examples

covariate is observation order and grouping factor is Subject
cs1 <- corCompSymm(0.5, form = ~ 1 | Subject)
cs1 # Uninitialized ...

Pinheiro and Bates, p. 225
cs1CompSymm <- corCompSymm(value = 0.3, form = ~ 1 | Subject)
cs2CompSymm <- corCompSymm(value = 0.3, form = ~ age | Subject)
cs1CompSymm <- Initialize(cs1CompSymm, data = Orthodont)
corMatrix(cs1CompSymm)

corExp Exponential Correlation Structure

Description

This function is a constructor for the "corExp" class, representing an exponential spatial correlation
structure. Letting d denote the range and n denote the nugget effect, the correlation between two ob-
servations a distance r apart is exp(−r/d) when no nugget effect is present and (1−n) exp(−r/d)
when a nugget effect is assumed. Objects created using this constructor must later be initialized
using the appropriate Initialize method.

Usage

corExp(value, form, nugget, metric, fixed)

Arguments

value an optional vector with the parameter values in constrained form. If nugget is
FALSE, value can have only one element, corresponding to the "range" of the
exponential correlation structure, which must be greater than zero. If nugget is
TRUE, meaning that a nugget effect is present, value can contain one or two ele-
ments, the first being the "range" and the second the "nugget effect" (one minus
the correlation between two observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults to numeric(0), which results in a range of 90% of the minimum dis-
tance and a nugget effect of 0.1 being assigned to the parameters when object
is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

52 corExp

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class "corExp", also inheriting from class "corSpatial", representing an exponential
spatial correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
238.

See Also

corClasses, Initialize.corStruct, summary.corStruct, dist

Examples

sp1 <- corExp(form = ~ x + y + z)

Pinheiro and Bates, p. 238
spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)

cs1Exp <- corExp(1, form = ~ x + y)
cs1Exp <- Initialize(cs1Exp, spatDat)
corMatrix(cs1Exp)

cs2Exp <- corExp(1, form = ~ x + y, metric = "man")
cs2Exp <- Initialize(cs2Exp, spatDat)
corMatrix(cs2Exp)

cs3Exp <- corExp(c(1, 0.2), form = ~ x + y,

corFactor 53

nugget = TRUE)
cs3Exp <- Initialize(cs3Exp, spatDat)
corMatrix(cs3Exp)

example lme(..., corExp ...)
Pinheiro and Bates, pp. 222-247
p. 222
options(contrasts = c("contr.treatment", "contr.poly"))
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,

random = ~ Time)
p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
p. 246
fm3BW.lme <- update(fm2BW.lme,

correlation = corExp(form = ~ Time))
p. 247
fm4BW.lme <-

update(fm3BW.lme, correlation = corExp(form = ~ Time,
nugget = TRUE))

anova(fm3BW.lme, fm4BW.lme)

corFactor Factor of a Correlation Matrix

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include all "corStruct" classes, see ‘cor-
Classes’.

Usage

corFactor(object, ...)

Arguments

object an object from which a correlation matrix can be extracted.

... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

54 corFactor.corStruct

See Also

corFactor.corStruct, recalc.corStruct

corFactor.corStruct Factor of a corStruct Object Matrix

Description

This method function extracts a transpose inverse square-root factor, or a series of transpose inverse
square-root factors, of the correlation matrix, or list of correlation matrices, represented by object.
Letting Σ denote a correlation matrix, a square-root factor of Σ is any square matrix L such that
Σ = L′L. This method extracts L−t.

Usage

S3 method for class 'corStruct'
corFactor(object, ...)

Arguments

object an object inheriting from class "corStruct" representing a correlation struc-
ture, which must have been initialized (using Initialize).

... some methods for this generic require additional arguments. None are used in
this method.

Value

If the correlation structure does not include a grouping factor, the returned value will be a vector
with a transpose inverse square-root factor of the correlation matrix associated with object stacked
column-wise. If the correlation structure includes a grouping factor, the returned value will be a
vector with transpose inverse square-root factors of the correlation matrices for each group, stacked
by group and stacked column-wise within each group.

Note

This method function is used intensively in optimization algorithms and its value is returned as
a vector for efficiency reasons. The corMatrix method function can be used to obtain transpose
inverse square-root factors in matrix form.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corFactor, corMatrix.corStruct, recalc.corStruct, Initialize.corStruct

corGaus 55

Examples

cs1 <- corAR1(form = ~1 | Subject)
cs1 <- Initialize(cs1, data = Orthodont)
corFactor(cs1)

corGaus Gaussian Correlation Structure

Description

This function is a constructor for the corGaus class, representing a Gaussian spatial correlation
structure. Letting d denote the range and n denote the nugget effect, the correlation between
two observations a distance r apart is exp(−(r/d)2) when no nugget effect is present and (1 −
n) exp(−(r/d)2) when a nugget effect is assumed. Objects created using this constructor must
later be initialized using the appropriate ‘ Initialize method.

Usage

corGaus(value, form, nugget, metric, fixed)

Arguments

value an optional vector with the parameter values in constrained form. If nugget is
FALSE, value can have only one element, corresponding to the "range" of the
Gaussian correlation structure, which must be greater than zero. If nugget is
TRUE, meaning that a nugget effect is present, value can contain one or two ele-
ments, the first being the "range" and the second the "nugget effect" (one minus
the correlation between two observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults to numeric(0), which results in a range of 90% of the minimum dis-
tance and a nugget effect of 0.1 being assigned to the parameters when object
is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

56 corGaus

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corGaus, also inheriting from class corSpatial, representing a Gaussian spatial
correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Initialize.corStruct, summary.corStruct, dist

Examples

sp1 <- corGaus(form = ~ x + y + z)

example lme(..., corGaus ...)
Pinheiro and Bates, pp. 222-249
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,

random = ~ Time)
p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
p 246
fm3BW.lme <- update(fm2BW.lme,

correlation = corExp(form = ~ Time))
p. 249
fm8BW.lme <- update(fm3BW.lme, correlation = corGaus(form = ~ Time))

corLin 57

corLin Linear Correlation Structure

Description

This function is a constructor for the corLin class, representing a linear spatial correlation structure.
Letting d denote the range and n denote the nugget effect, the correlation between two observations
a distance r < d apart is 1− (r/d) when no nugget effect is present and (1− n)(1− (r/d)) when
a nugget effect is assumed. If r ≥ d the correlation is zero. Objects created using this constructor
must later be initialized using the appropriate Initialize method.

Usage

corLin(value, form, nugget, metric, fixed)

Arguments

value an optional vector with the parameter values in constrained form. If nugget is
FALSE, value can have only one element, corresponding to the "range" of the
linear correlation structure, which must be greater than zero. If nugget is TRUE,
meaning that a nugget effect is present, value can contain one or two elements,
the first being the "range" and the second the "nugget effect" (one minus the
correlation between two observations taken arbitrarily close together); the first
must be greater than zero and the second must be between zero and one. Defaults
to numeric(0), which results in a range of 90% of the minimum distance and a
nugget effect of 0.1 being assigned to the parameters when object is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

58 corMatrix

Value

an object of class corLin, also inheriting from class corSpatial, representing a linear spatial
correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Initialize.corStruct, summary.corStruct, dist

Examples

sp1 <- corLin(form = ~ x + y)

example lme(..., corLin ...)
Pinheiro and Bates, pp. 222-249
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,

random = ~ Time)
p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
p 246
fm3BW.lme <- update(fm2BW.lme,

correlation = corExp(form = ~ Time))
p. 249
fm7BW.lme <- update(fm3BW.lme, correlation = corLin(form = ~ Time))

corMatrix Extract Correlation Matrix

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include all "corStruct" classes, see ‘cor-
Classes’.

corMatrix.corStruct 59

Usage

corMatrix(object, ...)

Arguments

object an object for which a correlation matrix can be extracted.
... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corMatrix.corStruct, corMatrix.pdMat, corMatrix.reStruct

corMatrix.corStruct Matrix of a corStruct Object

Description

This method function extracts the correlation matrix (or its transpose inverse square-root factor),
or list of correlation matrices (or their transpose inverse square-root factors) corresponding to
covariate and object. Letting Σ denote a correlation matrix, a square-root factor of Σ is any
square matrix L such that Σ = L′L. When corr = FALSE, this method extracts L−t.

Usage

S3 method for class 'corStruct'
corMatrix(object, covariate, corr, ...)

Arguments

object an object inheriting from class "corStruct" representing a correlation struc-
ture.

covariate an optional covariate vector (matrix), or list of covariate vectors (matrices), at
which values the correlation matrix, or list of correlation matrices, are to be
evaluated. Defaults to getCovariate(object).

corr a logical value. If TRUE the function returns the correlation matrix, or list of
correlation matrices, represented by object. If FALSE the function returns a
transpose inverse square-root of the correlation matrix, or a list of transpose
inverse square-root factors of the correlation matrices.

... some methods for this generic require additional arguments. None are used in
this method.

60 corMatrix.corStruct

Value

If covariate is a vector (matrix), the returned value will be an array with the corresponding cor-
relation matrix (or its transpose inverse square-root factor). If the covariate is a list of vectors
(matrices), the returned value will be a list with the correlation matrices (or their transpose inverse
square-root factors) corresponding to each component of covariate.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

corFactor.corStruct, Initialize.corStruct

Examples

cs1 <- corAR1(0.3)
corMatrix(cs1, covariate = 1:4)
corMatrix(cs1, covariate = 1:4, corr = FALSE)

Pinheiro and Bates, p. 225
cs1CompSymm <- corCompSymm(value = 0.3, form = ~ 1 | Subject)
cs1CompSymm <- Initialize(cs1CompSymm, data = Orthodont)
corMatrix(cs1CompSymm)

Pinheiro and Bates, p. 226
cs1Symm <- corSymm(value = c(0.2, 0.1, -0.1, 0, 0.2, 0),

form = ~ 1 | Subject)
cs1Symm <- Initialize(cs1Symm, data = Orthodont)
corMatrix(cs1Symm)

Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1 <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1)

Pinheiro and Bates, p. 237
cs1ARMA <- corARMA(0.4, form = ~ 1 | Subject, q = 1)
cs1ARMA <- Initialize(cs1ARMA, data = Orthodont)
corMatrix(cs1ARMA)

Pinheiro and Bates, p. 238
spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)
cs1Exp <- corExp(1, form = ~ x + y)
cs1Exp <- Initialize(cs1Exp, spatDat)
corMatrix(cs1Exp)

corMatrix.pdMat 61

corMatrix.pdMat Extract Correlation Matrix from a pdMat Object

Description

The correlation matrix corresponding to the positive-definite matrix represented by object is ob-
tained.

Usage

S3 method for class 'pdMat'
corMatrix(object, ...)

Arguments

object an object inheriting from class "pdMat", representing a positive definite matrix.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the correlation matrix corresponding to the positive-definite matrix represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

as.matrix.pdMat, pdMatrix

Examples

pd1 <- pdSymm(diag(1:4))
corMatrix(pd1)

62 corMatrix.reStruct

corMatrix.reStruct Extract Correlation Matrix from Components of an reStruct Object

Description

This method function extracts the correlation matrices corresponding to the pdMat elements of
object.

Usage

S3 method for class 'reStruct'
corMatrix(object, ...)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with components given by the correlation matrices corresponding to the elements of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

as.matrix.reStruct, corMatrix, reStruct, pdMat

Examples

rs1 <- reStruct(pdSymm(diag(3), ~age+Sex, data = Orthodont))
corMatrix(rs1)

corNatural 63

corNatural General correlation in natural parameterization

Description

This function is a constructor for the corNatural class, representing a general correlation structure
in the “natural” parameterization, which is described under pdNatural. Objects created using this
constructor must later be initialized using the appropriate Initialize method.

Usage

corNatural(value, form, fixed)

Arguments

value an optional vector with the parameter values. Default is numeric(0), which
results in a vector of zeros of appropriate dimension being assigned to the pa-
rameters when object is initialized (corresponding to an identity correlation
structure).

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and,
optionally, a grouping factor g. A covariate for this correlation structure must be
integer valued. When a grouping factor is present in form, the correlation struc-
ture is assumed to apply only to observations within the same grouping level;
observations with different grouping levels are assumed to be uncorrelated. De-
faults to ~ 1, which corresponds to using the order of the observations in the data
as a covariate, and no groups.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corNatural representing a general correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Initialize.corNatural, pdNatural, summary.corNatural

Examples

covariate is observation order and grouping factor is Subject
cs1 <- corNatural(form = ~ 1 | Subject)
cs1 # Uninitialized ...
summary(Initialize(cs1, data = Orthodont))

64 corRatio

corRatio Rational Quadratic Correlation Structure

Description

This function is a constructor for the corRatio class, representing a rational quadratic spatial cor-
relation structure. Letting d denote the range and n denote the nugget effect, the correlation be-
tween two observations a distance r apart is 1/(1 + (r/d)2) when no nugget effect is present and
(1− n)/(1 + (r/d)2) when a nugget effect is assumed. Objects created using this constructor need
to be later initialized using the appropriate Initialize method.

Usage

corRatio(value, form, nugget, metric, fixed)

Arguments

value an optional vector with the parameter values in constrained form. If nugget
is FALSE, value can have only one element, corresponding to the "range" of
the rational quadratic correlation structure, which must be greater than zero. If
nugget is TRUE, meaning that a nugget effect is present, value can contain one
or two elements, the first being the "range" and the second the "nugget effect"
(one minus the correlation between two observations taken arbitrarily close to-
gether); the first must be greater than zero and the second must be between zero
and one. Defaults to numeric(0), which results in a range of 90% of the mini-
mum distance and a nugget effect of 0.1 being assigned to the parameters when
object is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

corRatio 65

Value

an object of class corRatio, also inheriting from class corSpatial, representing a rational quadratic
spatial correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Initialize.corStruct, summary.corStruct, dist

Examples

sp1 <- corRatio(form = ~ x + y + z)

example lme(..., corRatio ...)
Pinheiro and Bates, pp. 222-249
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,

random = ~ Time)
p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
p 246
fm3BW.lme <- update(fm2BW.lme,

correlation = corExp(form = ~ Time))
p. 249
fm5BW.lme <- update(fm3BW.lme, correlation =

corRatio(form = ~ Time))

example gls(..., corRatio ...)
Pinheiro and Bates, pp. 261, 263
fm1Wheat2 <- gls(yield ~ variety - 1, Wheat2)
p. 263
fm3Wheat2 <- update(fm1Wheat2, corr =

corRatio(c(12.5, 0.2),
form = ~ latitude + longitude,

nugget = TRUE))

66 corSpatial

corSpatial Spatial Correlation Structure

Description

This function is a constructor for the corSpatial class, representing a spatial correlation struc-
ture. This class is "virtual", having four "real" classes, corresponding to specific spatial correlation
structures, associated with it: corExp, corGaus, corLin, corRatio, and corSpher. The returned
object will inherit from one of these "real" classes, determined by the type argument, and from the
"virtual" corSpatial class. Objects created using this constructor must later be initialized using
the appropriate Initialize method.

Usage

corSpatial(value, form, nugget, type, metric, fixed)

Arguments

value an optional vector with the parameter values in constrained form. If nugget is
FALSE, value can have only one element, corresponding to the "range" of the
spatial correlation structure, which must be greater than zero. If nugget is TRUE,
meaning that a nugget effect is present, value can contain one or two elements,
the first being the "range" and the second the "nugget effect" (one minus the
correlation between two observations taken arbitrarily close together); the first
must be greater than zero and the second must be between zero and one. Defaults
to numeric(0), which results in a range of 90% of the minimum distance and a
nugget effect of 0.1 being assigned to the parameters when object is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

type an optional character string specifying the desired type of correlation structure.
Available types include "spherical", "exponential", "gaussian", "linear",
and "rational". See the documentation on the functions corSpher, corExp,
corGaus, corLin, and corRatio for a description of these correlation struc-
tures. Partial matching of arguments is used, so only the first character needs to
be provided.Defaults to "spherical".

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

corSpher 67

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class determined by the type argument and also inheriting from class corSpatial,
representing a spatial correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

See Also

corExp, corGaus, corLin, corRatio, corSpher, Initialize.corStruct, summary.corStruct,
dist

Examples

sp1 <- corSpatial(form = ~ x + y + z, type = "g", metric = "man")

corSpher Spherical Correlation Structure

Description

This function is a constructor for the corSpher class, representing a spherical spatial correlation
structure. Letting d denote the range and n denote the nugget effect, the correlation between two
observations a distance r < d apart is 1−1.5(r/d)+0.5(r/d)3 when no nugget effect is present and
(1−n)(1−1.5(r/d)+0.5(r/d)3) when a nugget effect is assumed. If r ≥ d the correlation is zero.
Objects created using this constructor must later be initialized using the appropriate Initialize
method.

Usage

corSpher(value, form, nugget, metric, fixed)

68 corSpher

Arguments

value an optional vector with the parameter values in constrained form. If nugget is
FALSE, value can have only one element, corresponding to the "range" of the
spherical correlation structure, which must be greater than zero. If nugget is
TRUE, meaning that a nugget effect is present, value can contain one or two ele-
ments, the first being the "range" and the second the "nugget effect" (one minus
the correlation between two observations taken arbitrarily close together); the
first must be greater than zero and the second must be between zero and one.
Defaults to numeric(0), which results in a range of 90% of the minimum dis-
tance and a nugget effect of 0.1 being assigned to the parameters when object
is initialized.

form a one sided formula of the form ~ S1+...+Sp, or ~ S1+...+Sp | g, specifying
spatial covariates S1 through Sp and, optionally, a grouping factor g. When a
grouping factor is present in form, the correlation structure is assumed to apply
only to observations within the same grouping level; observations with different
grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corre-
sponds to using the order of the observations in the data as a covariate, and no
groups.

nugget an optional logical value indicating whether a nugget effect is present. Defaults
to FALSE.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corSpher, also inheriting from class corSpatial, representing a spherical spatial
correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Littel, Milliken, Stroup, and Wolfinger (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

corSymm 69

See Also

Initialize.corStruct, summary.corStruct, dist

Examples

sp1 <- corSpher(form = ~ x + y)

example lme(..., corSpher ...)
Pinheiro and Bates, pp. 222-249
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight,

random = ~ Time)
p. 223
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
p 246
fm3BW.lme <- update(fm2BW.lme,

correlation = corExp(form = ~ Time))
p. 249
fm6BW.lme <- update(fm3BW.lme,

correlation = corSpher(form = ~ Time))

example gls(..., corSpher ...)
Pinheiro and Bates, pp. 261, 263
fm1Wheat2 <- gls(yield ~ variety - 1, Wheat2)
p. 262
fm2Wheat2 <- update(fm1Wheat2, corr =

corSpher(c(28, 0.2),
form = ~ latitude + longitude, nugget = TRUE))

corSymm General Correlation Structure

Description

This function is a constructor for the corSymm class, representing a general correlation structure.
The internal representation of this structure, in terms of unconstrained parameters, uses the spherical
parametrization defined in Pinheiro and Bates (1996). Objects created using this constructor must
later be initialized using the appropriate Initialize method.

Usage

corSymm(value, form, fixed)

Arguments

value an optional vector with the parameter values. Default is numeric(0), which
results in a vector of zeros of appropriate dimension being assigned to the pa-
rameters when object is initialized (corresponding to an identity correlation
structure).

70 corSymm

form a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and,
optionally, a grouping factor g. A covariate for this correlation structure must be
integer valued. When a grouping factor is present in form, the correlation struc-
ture is assumed to apply only to observations within the same grouping level;
observations with different grouping levels are assumed to be uncorrelated. De-
faults to ~ 1, which corresponds to using the order of the observations in the data
as a covariate, and no groups.

fixed an optional logical value indicating whether the coefficients should be allowed
to vary in the optimization, or kept fixed at their initial value. Defaults to FALSE,
in which case the coefficients are allowed to vary.

Value

an object of class corSymm representing a general correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Initialize.corSymm, summary.corSymm

Examples

covariate is observation order and grouping factor is Subject
cs1 <- corSymm(form = ~ 1 | Subject)

Pinheiro and Bates, p. 225
cs1CompSymm <- corCompSymm(value = 0.3, form = ~ 1 | Subject)
cs1CompSymm <- Initialize(cs1CompSymm, data = Orthodont)
corMatrix(cs1CompSymm)

Pinheiro and Bates, p. 226
cs1Symm <- corSymm(value =

c(0.2, 0.1, -0.1, 0, 0.2, 0),
form = ~ 1 | Subject)

cs1Symm <- Initialize(cs1Symm, data = Orthodont)
corMatrix(cs1Symm)

example gls(..., corSpher ...)
Pinheiro and Bates, pp. 261, 263
fm1Wheat2 <- gls(yield ~ variety - 1, Wheat2)
p. 262
fm2Wheat2 <- update(fm1Wheat2, corr =

Covariate 71

corSpher(c(28, 0.2),
form = ~ latitude + longitude, nugget = TRUE))

example gls(..., corSymm ...)
Pinheiro and Bates, p. 251
fm1Orth.gls <- gls(distance ~ Sex * I(age - 11), Orthodont,

correlation = corSymm(form = ~ 1 | Subject),
weights = varIdent(form = ~ 1 | age))

Covariate Assign Covariate Values

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include all "varFunc" classes, see ‘var-
Classes’.

Usage

covariate(object) <- value

Arguments

object any object with a covariate component.

value a value to be assigned to the covariate associated with object.

Value

will depend on the method function; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

covariate<-.varFunc, getCovariate

72 Covariate.varFunc

Covariate.varFunc Assign varFunc Covariate

Description

The covariate(s) used in the calculation of the weights of the variance function represented by
object is (are) replaced by value. If object has been initialized, value must have the same
dimensions as getCovariate(object).

Usage

S3 replacement method for class 'varFunc'
covariate(object) <- value

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

value a value to be assigned to the covariate associated with object.

Value

a varFunc object similar to object, but with its covariate attribute replaced by value.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getCovariate.varFunc

Examples

vf1 <- varPower(1.1, form = ~age)
covariate(vf1) <- Orthodont[["age"]]

Dialyzer 73

Dialyzer High-Flux Hemodialyzer

Description

The Dialyzer data frame has 140 rows and 5 columns.

Format

This data frame contains the following columns:

Subject an ordered factor with levels 10 < 8 < 2 < 6 < 3 < 5 < 9 < 7 < 1 < 4 < 17 < 20 < 11 < 12 <
16 < 13 < 14 < 18 < 15 < 19 giving the unique identifier for each subject

QB a factor with levels 200 and 300 giving the bovine blood flow rate (dL/min).

pressure a numeric vector giving the transmembrane pressure (dmHg).

rate the hemodialyzer ultrafiltration rate (mL/hr).

index index of observation within subject—1 through 7.

Details

Vonesh and Carter (1992) describe data measured on high-flux hemodialyzers to assess their in
vivo ultrafiltration characteristics. The ultrafiltration rates (in mL/hr) of 20 high-flux dialyzers were
measured at seven different transmembrane pressures (in dmHg). The in vitro evaluation of the
dialyzers used bovine blood at flow rates of either 200~dl/min or 300~dl/min. The data, are also
analyzed in Littell, Milliken, Stroup, and Wolfinger (1996).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.6)

Vonesh, E. F. and Carter, R. L. (1992), Mixed-effects nonlinear regression for unbalanced repeated
measures, Biometrics, 48, 1-18.

Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996), SAS System for Mixed
Models, SAS Institute, Cary, NC.

74 Dim.corSpatial

Dim Extract Dimensions from an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: "corSpatial", "corStruct", "pdCompSymm",
"pdDiag", "pdIdent", "pdMat", and "pdSymm".

Usage

Dim(object, ...)

Arguments

object any object for which dimensions can be extracted.

... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

Note

If dim allowed more than one argument, there would be no need for this generic function.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Dim.corSpatial, Dim.pdMat, Dim.corStruct

Dim.corSpatial Dimensions of a corSpatial Object

Description

if groups is missing, it returns the Dim attribute of object; otherwise, calculates the dimensions
associated with the grouping factor.

Usage

S3 method for class 'corSpatial'
Dim(object, groups, ...)

Dim.corStruct 75

Arguments

object an object inheriting from class "corSpatial", representing a spatial correlation
structure.

groups an optional factor defining the grouping of the observations; observations within
a group are correlated and observations in different groups are uncorrelated.

... further arguments to be passed to or from methods.

Value

a list with components:

N length of groups

M number of groups

spClass an integer representing the spatial correlation class; 0 = user defined class, 1 =
corSpher, 2 = corExp, 3 = corGaus, 4 = corLin

sumLenSq sum of the squares of the number of observations per group

len an integer vector with the number of observations per group

start an integer vector with the starting position for the distance vectors in each group,
beginning from zero

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Dim, Dim.corStruct

Examples

Dim(corGaus(), getGroups(Orthodont))

cs1ARMA <- corARMA(0.4, form = ~ 1 | Subject, q = 1)
cs1ARMA <- Initialize(cs1ARMA, data = Orthodont)
Dim(cs1ARMA)

Dim.corStruct Dimensions of a corStruct Object

Description

if groups is missing, it returns the Dim attribute of object; otherwise, calculates the dimensions
associated with the grouping factor.

76 Dim.corStruct

Usage

S3 method for class 'corStruct'
Dim(object, groups, ...)

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

groups an optional factor defining the grouping of the observations; observations within
a group are correlated and observations in different groups are uncorrelated.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with components:

N length of groups

M number of groups

maxLen maximum number of observations in a group

sumLenSq sum of the squares of the number of observations per group

len an integer vector with the number of observations per group

start an integer vector with the starting position for the observations in each group,
beginning from zero

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Dim, Dim.corSpatial

Examples

Dim(corAR1(), getGroups(Orthodont))

Dim.pdMat 77

Dim.pdMat Dimensions of a pdMat Object

Description

This method function returns the dimensions of the matrix represented by object.

Usage

S3 method for class 'pdMat'
Dim(object, ...)

Arguments

object an object inheriting from class "pdMat", representing a positive-definite matrix.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an integer vector with the number of rows and columns of the matrix represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Dim

Examples

Dim(pdSymm(diag(3)))

Earthquake Earthquake Intensity

Description

The Earthquake data frame has 182 rows and 5 columns.

78 ergoStool

Format

This data frame contains the following columns:

Quake an ordered factor with levels 20 < 16 < 14 < 10 < 3 < 8 < 23 < 22 < 6 < 13 < 7 < 21 <
18 < 15 < 4 < 12 < 19 < 5 < 9 < 1 < 2 < 17 < 11 indicating the earthquake on which the
measurements were made.

Richter a numeric vector giving the intensity of the earthquake on the Richter scale.

distance the distance from the seismological measuring station to the epicenter of the earthquake
(km).

soil a factor with levels 0 and 1 giving the soil condition at the measuring station, either soil or
rock.

accel maximum horizontal acceleration observed (g).

Details

Measurements recorded at available seismometer locations for 23 large earthquakes in western
North America between 1940 and 1980. They were originally given in Joyner and Boore (1981);
are mentioned in Brillinger (1987); and are analyzed in Davidian and Giltinan (1995).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.8)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London.

Joyner and Boore (1981), Peak horizontal acceleration and velocity from strong-motion records in-
cluding records from the 1979 Imperial Valley, California, earthquake, Bulletin of the Seismological
Society of America, 71, 2011-2038.

Brillinger, D. (1987), Comment on a paper by C. R. Rao, Statistical Science, 2, 448-450.

ergoStool Ergometrics experiment with stool types

Description

The ergoStool data frame has 36 rows and 3 columns.

Format

This data frame contains the following columns:

effort a numeric vector giving the effort (Borg scale) required to arise from a stool.

Type a factor with levels T1, T2, T3, and T4 giving the stool type.

Subject an ordered factor giving a unique identifier for the subject in the experiment.

Fatigue 79

Details

Devore (2000) cites data from an article in Ergometrics (1993, pp. 519-535) on “The Effects of a
Pneumatic Stool and a One-Legged Stool on Lower Limb Joint Load and Muscular Activity.”

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.9)

Devore, J. L. (2000), Probability and Statistics for Engineering and the Sciences (5th ed), Duxbury,
Boston, MA.

Examples

fm1 <-
lme(effort ~ Type, data = ergoStool, random = ~ 1 | Subject)

anova(fm1)

Fatigue Cracks caused by metal fatigue

Description

The Fatigue data frame has 262 rows and 3 columns.

Format

This data frame contains the following columns:

Path an ordered factor with levels 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < 13 < 14 < 15
< 16 < 17 < 18 < 19 < 20 < 21 giving the test path (or test unit) number. The order is in terms
of increasing failure time or decreasing terminal crack length.

cycles number of test cycles at which the measurement is made (millions of cycles).

relLength relative crack length (dimensionless).

Details

These data are given in Lu and Meeker (1993) where they state “We obtained the data in Table 1
visually from figure 4.5.2 on page 242 of Bogdanoff and Kozin (1985).” The data represent the
growth of cracks in metal for 21 test units. An initial notch of length 0.90 inches was made on each
unit which then was subjected to several thousand test cycles. After every 10,000 test cycles the
crack length was measured. Testing was stopped if the crack length exceeded 1.60 inches, defined
as a failure, or at 120,000 cycles.

Source

Lu, C. Joséph , and Meeker, William Q. (1993), Using degradation measures to estimate a time-to-
failure distribution, Technometrics, 35, 161-174

80 fdHess

fdHess Finite difference Hessian

Description

Evaluate an approximate Hessian and gradient of a scalar function using finite differences.

Usage

fdHess(pars, fun, ...,
.relStep = .Machine$double.eps^(1/3), minAbsPar = 0)

Arguments

pars the numeric values of the parameters at which to evaluate the function fun and
its derivatives.

fun a function depending on the parameters pars that returns a numeric scalar.

... Optional additional arguments to fun

.relStep The relative step size to use in the finite differences. It defaults to the cube root
of .Machine$double.eps

minAbsPar The minimum magnitude of a parameter value that is considered non-zero. It
defaults to zero meaning that any non-zero value will be considered different
from zero.

Details

This function uses a second-order response surface design known as a “Koschal design” to deter-
mine the parameter values at which the function is evaluated.

Value

A list with components

mean the value of function fun evaluated at the parameter values pars

gradient an approximate gradient (of length length(pars)).

Hessian a matrix whose upper triangle contains an approximate Hessian.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

Examples

(fdH <- fdHess(c(12.3, 2.34), function(x) x[1]*(1-exp(-0.4*x[2]))))
stopifnot(length(fdH$ mean) == 1,

length(fdH$ gradient) == 2,
identical(dim(fdH$ Hessian), c(2L, 2L)))

fitted.glsStruct 81

fitted.glsStruct Calculate glsStruct Fitted Values

Description

The fitted values for the linear model represented by object are extracted.

Usage

S3 method for class 'glsStruct'
fitted(object, glsFit, ...)

Arguments

object an object inheriting from class "glsStruct", representing a list of linear model
components, such as corStruct and "varFunc" objects.

glsFit an optional list with components logLik (log-likelihood), beta (coefficients),
sigma (standard deviation for error term), varBeta (coefficients’ covariance ma-
trix), fitted (fitted values), and residuals (residuals). Defaults to attr(object,
"glsFit").

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the fitted values for the linear model represented by object.

Note

This method function is generally only used inside gls and fitted.gls.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, residuals.glsStruct

82 fitted.gnlsStruct

fitted.gnlsStruct Calculate gnlsStruct Fitted Values

Description

The fitted values for the nonlinear model represented by object are extracted.

Usage

S3 method for class 'gnlsStruct'
fitted(object, ...)

Arguments

object an object inheriting from class "gnlsStruct", representing a list of model com-
ponents, such as corStruct and varFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the fitted values for the nonlinear model represented by object.

Note

This method function is generally only used inside gnls and fitted.gnls.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, residuals.gnlsStruct

fitted.lme 83

fitted.lme Extract lme Fitted Values

Description

The fitted values at level i are obtained by adding together the population fitted values (based only
on the fixed effects estimates) and the estimated contributions of the random effects to the fitted
values at grouping levels less or equal to i. The resulting values estimate the best linear unbiased
predictions (BLUPs) at level i.

Usage

S3 method for class 'lme'
fitted(object, level, asList, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values from object. Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

asList an optional logical value. If TRUE and a single value is given in level, the re-
turned object is a list with the fitted values split by groups; else the returned value
is either a vector or a data frame, according to the length of level. Defaults to
FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

If a single level of grouping is specified in level, the returned value is either a list with the fitted
values split by groups (asList = TRUE) or a vector with the fitted values (asList = FALSE); else,
when multiple grouping levels are specified in level, the returned object is a data frame with
columns given by the fitted values at different levels and the grouping factors. For a vector or data
frame result the napredict method is applied.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Bates, D.M. and Pinheiro, J.C. (1998) "Computational methods for multilevel models" available in
PostScript or PDF formats at http://nlme.stat.wisc.edu/pub/NLME/

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 235, 397.

84 fitted.lmeStruct

See Also

lme, residuals.lme

Examples

fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
fitted(fm1, level = 0:1)

fitted.lmeStruct Calculate lmeStruct Fitted Values

Description

The fitted values at level i are obtained by adding together the population fitted values (based only
on the fixed effects estimates) and the estimated contributions of the random effects to the fitted
values at grouping levels less or equal to i. The resulting values estimate the best linear unbiased
predictions (BLUPs) at level i.

Usage

S3 method for class 'lmeStruct'
fitted(object, level, conLin, lmeFit, ...)

Arguments

object an object inheriting from class "lmeStruct", representing a list of linear mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values from object. Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying lme
model. Defaults to attr(object, "conLin").

lmeFit an optional list with components beta and b containing respectively the fixed
effects estimates and the random effects estimates to be used to calculate the
fitted values. Defaults to attr(object, "lmeFit").

... some methods for this generic accept other optional arguments.

Value

if a single level of grouping is specified in level, the returned value is a vector with the fitted values
at the desired level; else, when multiple grouping levels are specified in level, the returned object
is a matrix with columns given by the fitted values at different levels.

fitted.lmList 85

Note

This method function is generally only used inside lme and fitted.lme.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, fitted.lme, residuals.lmeStruct

fitted.lmList Extract lmList Fitted Values

Description

The fitted values are extracted from each lm component of object and arranged into a list with as
many components as object, or combined into a single vector.

Usage

S3 method for class 'lmList'
fitted(object, subset, asList, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

subset an optional character or integer vector naming the lm components of object
from which the fitted values are to be extracted. Default is NULL, in which case
all components are used.

asList an optional logical value. If TRUE, the returned object is a list with the fitted
values split by groups; else the returned value is a vector. Defaults to FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with components given by the fitted values of each lm component of object, or a vector with
the fitted values for all lm components of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, residuals.lmList

86 fitted.nlmeStruct

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
fitted(fm1)

fitted.nlmeStruct Calculate nlmeStruct Fitted Values

Description

The fitted values at level i are obtained by adding together the contributions from the estimated
fixed effects and the estimated random effects at levels less or equal to i and evaluating the model
function at the resulting estimated parameters. The resulting values estimate the predictions at level
i.

Usage

S3 method for class 'nlmeStruct'
fitted(object, level, conLin, ...)

Arguments

object an object inheriting from class "nlmeStruct", representing a list of mixed-
effects model components, such as reStruct, corStruct, and varFunc objects,
plus attributes specifying the underlying nonlinear model and the response vari-
able.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the fitted values from object. Level values increase from outermost to inner-
most grouping, with level zero corresponding to the population fitted values.
Defaults to the highest or innermost level of grouping.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying nlme
model. Defaults to attr(object, "conLin").

... additional arguments that could be given to this method. None are used.

Value

if a single level of grouping is specified in level, the returned value is a vector with the fitted values
at the desired level; else, when multiple grouping levels are specified in level, the returned object
is a matrix with columns given by the fitted values at different levels.

Note

This method function is generally only used inside nlme and fitted.nlme.

fixed.effects 87

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Bates, D.M. and Pinheiro, J.C. (1998) "Computational methods for multilevel models" available in
PostScript or PDF formats at http://nlme.stat.wisc.edu/pub/NLME/

See Also

nlme, residuals.nlmeStruct

fixed.effects Extract Fixed Effects

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include lmList and lme.

fixed.effects is an alias for fixef; methods are implemented for the latter.

Usage

fixed.effects(object, ...)
fixef(object, ...)

Arguments

object any fitted model object from which fixed effects estimates can be extracted.

... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

fixef.lmList

88 fixef.lmList

fixef.lmList Extract lmList Fixed Effects

Description

The average of the coefficients corresponding to the lm components of object is calculated.

Usage

S3 method for class 'lmList'
fixef(object, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the average of the individual lm coefficients in object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, random.effects.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
fixef(fm1)
fixed.effects(fm1) # the same, using the longer alias

formula.pdBlocked 89

formula.pdBlocked Extract pdBlocked Formula

Description

The formula attributes of the pdMat elements of x are extracted and returned as a list, in case
asList=TRUE, or converted to a single one-sided formula when asList=FALSE. If the pdMat ele-
ments do not have a formula attribute, a NULL value is returned.

Usage

S3 method for class 'pdBlocked'
formula(x, asList, ...)

Arguments

x an object inheriting from class "pdBlocked", representing a positive definite
block diagonal matrix.

asList an optional logical value. If TRUE, a list with the formulas for the individual
block diagonal elements of x is returned; else, if FALSE, a one-sided formula
combining all individual formulas is returned. Defaults to FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list of one-sided formulas, or a single one-sided formula, or NULL.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

pdBlocked, pdMat

Examples

pd1 <- pdBlocked(list(~ age, ~ Sex - 1))
formula(pd1)
formula(pd1, asList = TRUE)

90 formula.pdMat

formula.pdMat Extract pdMat Formula

Description

This method function extracts the formula associated with a pdMat object, in which the column and
row names are specified.

Usage

S3 method for class 'pdMat'
formula(x, asList, ...)

Arguments

x an object inheriting from class "pdMat", representing a positive definite matrix.

asList logical. Should the asList argument be applied to each of the components?
Never used.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if x has a formula attribute, its value is returned, else NULL is returned.

Note

Because factors may be present in formula(x), the pdMat object needs to have access to a data
frame where the variables named in the formula can be evaluated, before it can resolve its row and
column names from the formula.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

pdMat

Examples

pd1 <- pdSymm(~Sex*age)
formula(pd1)

formula.reStruct 91

formula.reStruct Extract reStruct Object Formula

Description

This method function extracts a formula from each of the components of x, returning a list of
formulas.

Usage

S3 method for class 'reStruct'
formula(x, asList, ...)

Arguments

x an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

asList logical. Should the asList argument be applied to each of the components?

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with the formulas of each component of x.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

formula

Examples

rs1 <- reStruct(list(A = pdDiag(diag(2), ~age), B = ~1))
formula(rs1)

92 gapply

gapply Apply a Function by Groups

Description

Applies the function to the distinct sets of rows of the data frame defined by groups.

Usage

gapply(object, which, FUN, form, level, groups, ...)

Arguments

object an object to which the function will be applied - usually a groupedData object
or a data.frame. Must inherit from class "data.frame".

which an optional character or positive integer vector specifying which columns of
object should be used with FUN. Defaults to all columns in object.

FUN function to apply to the distinct sets of rows of the data frame object defined
by the values of groups.

form an optional one-sided formula that defines the groups. When this formula is
given the right-hand side is evaluated in object, converted to a factor if neces-
sary, and the unique levels are used to define the groups. Defaults to formula(object).

level an optional positive integer giving the level of grouping to be used in an object
with multiple nested grouping levels. Defaults to the highest or innermost level
of grouping.

groups an optional factor that will be used to split the rows into groups. Defaults to
getGroups(object, form, level).

... optional additional arguments to the summary function FUN. Often it is helpful
to specify na.rm = TRUE.

Value

Returns a data frame with as many rows as there are levels in the groups argument.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
sec. 3.4.

See Also

gsummary

Gasoline 93

Examples

Find number of non-missing "conc" observations for each Subject
gapply(Phenobarb, FUN = function(x) sum(!is.na(x$conc)))

Pinheiro and Bates, p. 127
table(gapply(Quinidine, "conc", function(x) sum(!is.na(x))))
changeRecords <- gapply(Quinidine, FUN = function(frm)

any(is.na(frm[["conc"]]) & is.na(frm[["dose"]])))

Gasoline Refinery yield of gasoline

Description

The Gasoline data frame has 32 rows and 6 columns.

Format

This data frame contains the following columns:

yield a numeric vector giving the percentage of crude oil converted to gasoline after distillation and
fractionation

endpoint a numeric vector giving the temperature (degrees F) at which all the gasoline is vaporized

Sample an ordered factor giving the inferred crude oil sample number

API a numeric vector giving the crude oil gravity (degrees API)

vapor a numeric vector giving the vapor pressure of the crude oil (lbf/in2)

ASTM a numeric vector giving the crude oil 10% point ASTM—the temperature at which 10% of
the crude oil has become vapor.

Details

Prater (1955) provides data on crude oil properties and gasoline yields. Atkinson (1985) uses these
data to illustrate the use of diagnostics in multiple regression analysis. Three of the covariates—
API, vapor, and ASTM—measure characteristics of the crude oil used to produce the gasoline. The
other covariate — endpoint—is a characteristic of the refining process. Daniel and Wood (1980)
notice that the covariates characterizing the crude oil occur in only ten distinct groups and conclude
that the data represent responses measured on ten different crude oil samples.

Source

Prater, N. H. (1955), Estimate gasoline yields from crudes, Petroleum Refiner, 35 (5).

Atkinson, A. C. (1985), Plots, Transformations, and Regression, Oxford Press, New York.

Daniel, C. and Wood, F. S. (1980), Fitting Equations to Data, Wiley, New York

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S (4th ed), Springer, New
York.

94 getCovariate

getCovariate Extract Covariate from an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include corStruct, corSpatial, data.frame,
and varFunc.

Usage

getCovariate(object, form, data)

Arguments

object any object with a covariate component

form an optional one-sided formula specifying the covariate(s) to be extracted. De-
faults to formula(object).

data a data frame in which to evaluate the variables defined in form.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
100.

See Also

getCovariate.corStruct, getCovariate.data.frame, getCovariate.varFunc, getCovariateFormula

getCovariate.corStruct 95

getCovariate.corStruct

Extract corStruct Object Covariate

Description

This method function extracts the covariate(s) associated with object.

Usage

S3 method for class 'corStruct'
getCovariate(object, form, data)

Arguments

object an object inheriting from class corStruct representing a correlation structure.

form this argument is included to make the method function compatible with the
generic. It will be assigned the value of formula(object) and should not be
modified.

data an optional data frame in which to evaluate the variables defined in form, in case
object is not initialized and the covariate needs to be evaluated.

Value

when the correlation structure does not include a grouping factor, the returned value will be a vector
or a matrix with the covariate(s) associated with object. If a grouping factor is present, the returned
value will be a list of vectors or matrices with the covariate(s) corresponding to each grouping level.
For spatial correlation structures, this extracts the distances implied by the covariates, and excludes
1-observation groups.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

getCovariate

Examples

cs1 <- corAR1(form = ~ 1 | Subject)
getCovariate(cs1, data = Orthodont)

96 getCovariate.data.frame

getCovariate.data.frame

Extract Data Frame Covariate

Description

The right hand side of form, stripped of any conditioning expression (i.e. an expression following
a | operator), is evaluated in object.

Usage

S3 method for class 'data.frame'
getCovariate(object, form, data)

Arguments

object an object inheriting from class data.frame.

form an optional formula specifying the covariate to be evaluated in object. Defaults
to formula(object).

data some methods for this generic require a separate data frame. Not used in this
method.

Value

the value of the right hand side of form, stripped of any conditional expression, evaluated in object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getCovariateFormula

Examples

getCovariate(Orthodont)

getCovariate.varFunc 97

getCovariate.varFunc Extract varFunc Covariate

Description

This method function extracts the covariate(s) associated with the variance function represented by
object, if any is present.

Usage

S3 method for class 'varFunc'
getCovariate(object, form, data)

Arguments

object an object inheriting from class varFunc, representing a variance function struc-
ture.

form an optional formula specifying the covariate to be evaluated in object. Defaults
to formula(object).

data some methods for this generic require a data object. Not used in this method.

Value

if object has a covariate attribute, its value is returned; else NULL is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

covariate<-.varFunc

Examples

vf1 <- varPower(1.1, form = ~age)
covariate(vf1) <- Orthodont[["age"]]
getCovariate(vf1)

98 getData

getCovariateFormula Extract Covariates Formula

Description

The right hand side of formula(object), without any conditioning expressions (i.e. any expres-
sions after a | operator) is returned as a one-sided formula.

Usage

getCovariateFormula(object)

Arguments

object any object from which a formula can be extracted.

Value

a one-sided formula describing the covariates associated with formula(object).

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getCovariate

Examples

getCovariateFormula(y ~ x | g)
getCovariateFormula(y ~ x)

getData Extract Data from an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include gls, lme, and lmList.

Usage

getData(object)

getData.gls 99

Arguments

object an object from which a data frame can be extracted, generally a fitted model
object.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getData.gls, getData.lme, getData.lmList

getData.gls Extract gls Object Data

Description

If present in the calling sequence used to produce object, the data frame used to fit the model is
obtained.

Usage

S3 method for class 'gls'
getData(object)

Arguments

object an object inheriting from class gls, representing a generalized least squares fit-
ted linear model.

Value

if a data argument is present in the calling sequence that produced object, the corresponding data
frame (with na.action and subset applied to it, if also present in the call that produced object)
is returned; else, NULL is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, getData

100 getData.lme

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
correlation = corAR1(form = ~ 1 | Mare))

getData(fm1)

getData.lme Extract lme Object Data

Description

If present in the calling sequence used to produce object, the data frame used to fit the model is
obtained.

Usage

S3 method for class 'lme'
getData(object)

Arguments

object an object inheriting from class lme, representing a linear mixed-effects fitted
model.

Value

if a data argument is present in the calling sequence that produced object, the corresponding data
frame (with na.action and subset applied to it, if also present in the call that produced object)
is returned; else, NULL is returned.

Note that as from version 3.1-102, this only omits rows omitted in the fit if na.action = na.omit,
and does not omit at all if na.action = na.exclude. That is generally what is wanted for plotting,
the main use of this function.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, getData

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
random = ~ sin(2*pi*Time))

getData(fm1)

getData.lmList 101

getData.lmList Extract lmList Object Data

Description

If present in the calling sequence used to produce object, the data frame used to fit the model is
obtained.

Usage

S3 method for class 'lmList'
getData(object)

Arguments

object an object inheriting from class lmList, representing a list of lm objects with a
common model.

Value

if a data argument is present in the calling sequence that produced object, the corresponding data
frame (with na.action and subset applied to it, if also present in the call that produced object)
is returned; else, NULL is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, getData

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
getData(fm1)

102 getGroups

getGroups Extract Grouping Factors from an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include corStruct, data.frame, gls, lme,
lmList, and varFunc.

Usage

getGroups(object, form, level, data, sep)

Arguments

object any object

form an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the | operator). Defaults to formula(object).

level a positive integer vector with the level(s) of grouping to be used when multi-
ple nested levels of grouping are present. This argument is optional for most
methods of this generic function and defaults to all levels of nesting.

data a data frame in which to interpret the variables named in form. Optional for
most methods.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

See Also

getGroupsFormula

getGroups.corStruct, getGroups.data.frame, getGroups.gls, getGroups.lmList, getGroups.lme,
getGroups.varFunc

getGroups.corStruct 103

getGroups.corStruct Extract corStruct Groups

Description

This method function extracts the grouping factor associated with object, if any is present.

Usage

S3 method for class 'corStruct'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class corStruct representing a correlation structure.

form this argument is included to make the method function compatible with the
generic. It will be assigned the value of formula(object) and should not be
modified.

level this argument is included to make the method function compatible with the
generic and is not used.

data an optional data frame in which to evaluate the variables defined in form, in case
object is not initialized and the grouping factor needs to be evaluated.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'.

Value

if a grouping factor is present in the correlation structure represented by object, the function returns
the corresponding factor vector; else the function returns NULL.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getGroups

Examples

cs1 <- corAR1(form = ~ 1 | Subject)
getGroups(cs1, data = Orthodont)

104 getGroups.data.frame

getGroups.data.frame Extract Groups from a Data Frame

Description

Each variable named in the expression after the | operator on the right hand side of form is evaluated
in object. If more than one variable is indicated in level they are combined into a data frame;
else the selected variable is returned as a vector. When multiple grouping levels are defined in form
and level > 1, the levels of the returned factor are obtained by pasting together the levels of the
grouping factors of level greater or equal to level, to ensure their uniqueness.

Usage

S3 method for class 'data.frame'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class data.frame.

form an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the | operator). Defaults to formula(object).

level a positive integer vector with the level(s) of grouping to be used when multiple
nested levels of grouping are present. Defaults to all levels of nesting.

data unused

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'.

Value

either a data frame with columns given by the grouping factors indicated in level, from outer to
inner, or, when a single level is requested, a factor representing the selected grouping factor.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

See Also

getGroupsFormula

getGroups.gls 105

Examples

getGroups(Pixel)
getGroups(Pixel, level = 2)

getGroups.gls Extract gls Object Groups

Description

If present, the grouping factor associated to the correlation structure for the linear model represented
by object is extracted.

Usage

S3 method for class 'gls'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class gls, representing a generalized least squares fit-
ted linear model.

form an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the | operator). Defaults to formula(object). Not used.

level a positive integer vector with the level(s) of grouping to be used when multi-
ple nested levels of grouping are present. This argument is optional for most
methods of this generic function and defaults to all levels of nesting. Not used.

data a data frame in which to interpret the variables named in form. Optional for
most methods. Not used.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'. Not used.

Value

if the linear model represented by object incorporates a correlation structure and the corresponding
corStruct object has a grouping factor, a vector with the group values is returned; else, NULL is
returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, corClasses

106 getGroups.lme

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

getGroups(fm1)

getGroups.lme Extract lme Object Groups

Description

The grouping factors corresponding to the linear mixed-effects model represented by object are
extracted. If more than one level is indicated in level, the corresponding grouping factors are
combined into a data frame; else the selected grouping factor is returned as a vector.

Usage

S3 method for class 'lme'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class lme, representing a fitted linear mixed-effects
model.

form this argument is included to make the method function compatible with the
generic and is ignored in this method.

level an optional integer vector giving the level(s) of grouping to be extracted from
object. Defaults to the highest or innermost level of grouping.

data unused

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'.

Value

either a data frame with columns given by the grouping factors indicated in level, or, when a single
level is requested, a factor representing the selected grouping factor.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme

getGroups.lmList 107

Examples

fm1 <- lme(pixel ~ day + day^2, Pixel,
random = list(Dog = ~day, Side = ~1))

getGroups(fm1, level = 1:2)

getGroups.lmList Extract lmList Object Groups

Description

The grouping factor determining the partitioning of the observations used to produce the lm com-
ponents of object is extracted.

Usage

S3 method for class 'lmList'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class lmList, representing a list of lm objects with a
common model.

form an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the | operator). Defaults to formula(object). Not used.

level a positive integer vector with the level(s) of grouping to be used when multi-
ple nested levels of grouping are present. This argument is optional for most
methods of this generic function and defaults to all levels of nesting. Not used.

data a data frame in which to interpret the variables named in form. Optional for
most methods. Not used.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'. Not used.

Value

a vector with the grouping factor corresponding to the lm components of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
getGroups(fm1)

108 getGroups.varFunc

getGroups.varFunc Extract varFunc Groups

Description

This method function extracts the grouping factor associated with the variance function represented
by object, if any is present.

Usage

S3 method for class 'varFunc'
getGroups(object, form, level, data, sep)

Arguments

object an object inheriting from class varFunc, representing a variance function struc-
ture.

form an optional formula with a conditioning expression on its right hand side (i.e. an
expression involving the | operator). Defaults to formula(object). Not used.

level a positive integer vector with the level(s) of grouping to be used when multi-
ple nested levels of grouping are present. This argument is optional for most
methods of this generic function and defaults to all levels of nesting. Not used.

data a data frame in which to interpret the variables named in form. Optional for
most methods. Not used.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'. Not used.

Value

if object has a groups attribute, its value is returned; else NULL is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

Examples

vf1 <- varPower(form = ~ age | Sex)
vf1 <- Initialize(vf1, Orthodont)
getGroups(vf1)

getGroupsFormula 109

getGroupsFormula Extract Grouping Formula

Description

The conditioning expression associated with formula(object) (i.e. the expression after the |
operator) is returned either as a named list of one-sided formulas, or a single one-sided formula,
depending on the value of asList. The components of the returned list are ordered from outermost
to innermost level and are named after the grouping factor expression.

Usage

getGroupsFormula(object, asList, sep)

Arguments

object any object from which a formula can be extracted.

asList an optional logical value. If TRUE the returned value with be a list of formulas;
else, if FALSE the returned value will be a one-sided formula. Defaults to FALSE.

sep character, the separator to use between group levels when multiple levels are
collapsed. The default is '/'.

Value

a one-sided formula, or a list of one-sided formulas, with the grouping structure associated with
formula(object). If no conditioning expression is present in formula(object) a NULL value is
returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getGroupsFormula.gls, getGroupsFormula.lmList, getGroupsFormula.lme, getGroupsFormula.reStruct,
getGroups

Examples

getGroupsFormula(y ~ x | g1/g2)

110 getResponseFormula

getResponse Extract Response Variable from an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include data.frame, gls, lme, and lmList.

Usage

getResponse(object, form)

Arguments

object any object.

form an optional two-sided formula. Defaults to formula(object).

Value

For the data.frame method, the result of evaluating the left-hand side of form in object.

For gls, lme, and lmList, the sum of the fitted values and the residuals.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getResponseFormula

Examples

getResponse(Orthodont)

getResponseFormula Extract Formula Specifying Response Variable

Description

The left hand side of formula{object} is returned as a one-sided formula.

Usage

getResponseFormula(object)

getVarCov 111

Arguments

object any object from which a formula can be extracted.

Value

a one-sided formula with the response variable associated with formula{object}.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

getResponse

Examples

getResponseFormula(y ~ x | g)

getVarCov Extract variance-covariance matrix

Description

Extract the variance-covariance matrix from a fitted model, such as a mixed-effects model.

Usage

getVarCov(obj, ...)
S3 method for class 'lme'
getVarCov(obj, individuals,

type = c("random.effects", "conditional", "marginal"), ...)
S3 method for class 'gls'
getVarCov(obj, individual = 1, ...)

Arguments

obj A fitted model. Methods are available for models fit by lme and by gls

individuals For models fit by lme a vector of levels of the grouping factor can be specified
for the conditional or marginal variance-covariance matrices.

individual For models fit by gls the only type of variance-covariance matrix provided is the
marginal variance-covariance of the responses by group. The optional argument
individual specifies the group of responses.

type For models fit by lme the type argument specifies the type of variance-covariance
matrix, either "random.effects" for the random-effects variance-covariance
(the default), or "conditional" for the conditional. variance-covariance of the
responses or "marginal" for the the marginal variance-covariance of the re-
sponses.

... Optional arguments for some methods, as described above

112 gls

Value

A variance-covariance matrix or a list of variance-covariance matrices.

Author(s)

Mary Lindstrom <lindstro@biostat.wisc.edu>

See Also

lme, gls

Examples

fm1 <- lme(distance ~ age, data = Orthodont, subset = Sex == "Female")
getVarCov(fm1)
getVarCov(fm1, individuals = "F01", type = "marginal")
getVarCov(fm1, type = "conditional")
fm2 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ~ 1 | Mare))
getVarCov(fm2)

gls Fit Linear Model Using Generalized Least Squares

Description

This function fits a linear model using generalized least squares. The errors are allowed to be
correlated and/or have unequal variances.

Usage

gls(model, data, correlation, weights, subset, method, na.action,
control, verbose)

S3 method for class 'gls'
update(object, model., ..., evaluate = TRUE)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted linear model.

model a two-sided linear formula object describing the model, with the response on the
left of a ~ operator and the terms, separated by + operators, on the right.

model. Changes to the model – see update.formula for details.

data an optional data frame containing the variables named in model, correlation,
weights, and subset. By default the variables are taken from the environment
from which gls is called.

gls 113

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. If a grouping variable is to be used, it must be specified in
the form argument to the corStruct constructor. Defaults to NULL, correspond-
ing to uncorrelated errors.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic errors.

subset an optional expression indicating which subset of the rows of data should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes gls to print an error message and terminate if
there are any incomplete observations.

control a list of control values for the estimation algorithm to replace the default values
returned by the function glsControl. Defaults to an empty list.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

evaluate If TRUE evaluate the new call else return the call.

Details

offset terms in model are an error since 3.1-157 (2022-03): previously they were silently ignored.

Value

an object of class "gls" representing the linear model fit. Generic functions such as print, plot,
and summary have methods to show the results of the fit. See glsObject for the components of the
fit. The functions resid, coef and fitted, can be used to extract some of its components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The different correlation structures available for the correlation argument are described in Box,
G.E.P., Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and
Wolfinger, R.D. (1996), and Venables, W.N. and Ripley, B.D. (2002). The use of variance functions

114 glsControl

for linear and nonlinear models is presented in detail in Carroll, R.J. and Ruppert, D. (1988) and
Davidian, M. and Giltinan, D.M. (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Carroll, R.J. and Ruppert, D. (1988) "Transformation and Weighting in Regression", Chapman and
Hall.

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measure-
ment Data", Chapman and Hall.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed
Models", SAS Institute.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

See Also

corClasses, glsControl, glsObject, glsStruct, plot.gls, predict.gls, qqnorm.gls, residuals.gls,
summary.gls, varClasses, varFunc

Examples

AR(1) errors within each Mare
fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ~ 1 | Mare))
variance increases as a power of the absolute fitted values
fm2 <- update(fm1, weights = varPower())

glsControl Control Values for gls Fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the gls function.

Usage

glsControl(maxIter, msMaxIter, tolerance, msTol, msVerbose,
singular.ok, returnObject = FALSE, apVar, .relStep,
opt = c("nlminb", "optim"), optimMethod,
minAbsParApVar, natural, sigma = NULL)

glsControl 115

Arguments

maxIter maximum number of iterations for the gls optimization algorithm. Default is
50.

msMaxIter maximum number of iterations for the optimization step inside the gls opti-
mization. Default is 50.

tolerance tolerance for the convergence criterion in the gls algorithm. Default is 1e-6.

msTol tolerance for the convergence criterion of the first outer iteration when optim is
used. Default is 1e-7.

msVerbose a logical value passed as the trace control value to the chosen optimizer (see
documentation on that function). Default is FALSE.

singular.ok a logical value indicating whether non-estimable coefficients (resulting from lin-
ear dependencies among the columns of the regression matrix) should be al-
lowed. Default is FALSE.

returnObject a logical value indicating whether the fitted object should be returned when the
maximum number of iterations is reached without convergence of the algorithm.
Default is FALSE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3).

opt the optimizer to be used, either "nlminb" (the current default) or "optim" (the
previous default).

optimMethod character - the optimization method to be used with the optim optimizer. The
default is "BFGS". An alternative is "L-BFGS-B".

minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance
calculation. The default is 0.05.

natural logical. Should the natural parameterization be used for the approximate vari-
ance calculations? Default is TRUE.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

Value

a list with components for each of the possible arguments.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>; the sigma option: Siem Heisterkamp
and Bert van Willigen.

See Also

gls

116 glsObject

Examples

decrease the maximum number of iterations and request tracing
glsControl(msMaxIter = 20, msVerbose = TRUE)

glsObject Fitted gls Object

Description

An object returned by the gls function, inheriting from class "gls" and representing a generalized
least squares fitted linear model. Objects of this class have methods for the generic functions anova,
coef, fitted, formula, getGroups, getResponse, intervals, logLik, plot, predict, print,
residuals, summary, and update.

Value

The following components must be included in a legitimate "gls" object.

apVar an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the list of control values used in the call to gls, this component
is equal to NULL.

call a list containing an image of the gls call that produced the object.

coefficients a vector with the estimated linear model coefficients.

contrasts a list of the contrast matrices used to represent factors in the model formula.
This information is important for making predictions from a new data frame in
which not all levels of the original factors are observed. If no factors are used in
the model, this component will be an empty list.

dims a list with basic dimensions used in the model fit, including the components N -
the number of observations in the data and p - the number of coefficients in the
linear model.

fitted a vector with the fitted values.

modelStruct an object inheriting from class glsStruct, representing a list of linear model
components, such as corStruct and varFunc objects.

groups the correlation structure grouping factor, if any is present.

logLik the log-likelihood at convergence.

method the estimation method: either "ML" for maximum likelihood, or "REML" for re-
stricted maximum likelihood.

numIter the number of iterations used in the iterative algorithm.

residuals a vector with the residuals.

sigma the estimated residual standard error.

varBeta an approximate covariance matrix of the coefficients estimates.

glsStruct 117

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, glsStruct

glsStruct Generalized Least Squares Structure

Description

A generalized least squares structure is a list of model components representing different sets of
parameters in the linear model. A glsStruct may contain corStruct and varFunc objects. NULL
arguments are not included in the glsStruct list.

Usage

glsStruct(corStruct, varStruct)

Arguments

corStruct an optional corStruct object, representing a correlation structure. Default is
NULL.

varStruct an optional varFunc object, representing a variance function structure. Default
is NULL.

Value

a list of model variance-covariance components determining the parameters to be estimated for the
associated linear model.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corClasses, gls, residuals.glsStruct, varFunc

Examples

gls1 <- glsStruct(corAR1(), varPower())

118 Glucose2

Glucose Glucose levels over time

Description

The Glucose data frame has 378 rows and 4 columns.

Format

This data frame contains the following columns:

Subject an ordered factor with levels 6 < 2 < 3 < 5 < 1 < 4

Time a numeric vector

conc a numeric vector of glucose levels

Meal an ordered factor with levels 2am < 6am < 10am < 2pm < 6pm < 10pm

Source

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall, Lon-
don.

Glucose2 Glucose Levels Following Alcohol Ingestion

Description

The Glucose2 data frame has 196 rows and 4 columns.

Format

This data frame contains the following columns:

Subject a factor with levels 1 to 7 identifying the subject whose glucose level is measured.

Date a factor with levels 1 2 indicating the occasion in which the experiment was conducted.

Time a numeric vector giving the time since alcohol ingestion (in min/10).

glucose a numeric vector giving the blood glucose level (in mg/dl).

Details

Hand and Crowder (Table A.14, pp. 180-181, 1996) describe data on the blood glucose levels
measured at 14 time points over 5 hours for 7 volunteers who took alcohol at time 0. The same
experiment was repeated on a second date with the same subjects but with a dietary additive used
for all subjects.

gnls 119

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.10)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall, Lon-
don.

gnls Fit Nonlinear Model Using Generalized Least Squares

Description

This function fits a nonlinear model using generalized least squares. The errors are allowed to be
correlated and/or have unequal variances.

Usage

gnls(model, data, params, start, correlation, weights, subset,
na.action, naPattern, control, verbose)

Arguments

model a two-sided formula object describing the model, with the response on the left
of a ~ operator and a nonlinear expression involving parameters and covariates
on the right. If data is given, all names used in the formula should be defined
as parameters or variables in the data frame.

data an optional data frame containing the variables named in model, correlation,
weights, subset, and naPattern. By default the variables are taken from the
environment from which gnls is called.

params an optional two-sided linear formula of the form p1+...+pn~x1+...+xm, or list
of two-sided formulas of the form p1~x1+...+xm, with possibly different mod-
els for each parameter. The p1,...,pn represent parameters included on the
right hand side of model and x1+...+xm define a linear model for the param-
eters (when the left hand side of the formula contains several parameters, they
are all assumed to follow the same linear model described by the right hand
side expression). A 1 on the right hand side of the formula(s) indicates a single
fixed effects for the corresponding parameter(s). By default, the parameters are
obtained from the names of start.

start an optional named list, or numeric vector, with the initial values for the param-
eters in model. It can be omitted when a selfStarting function is used in
model, in which case the starting estimates will be obtained from a single call to
the nls function.

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. If a grouping variable is to be used, it must be specified in
the form argument to the corStruct constructor. Defaults to NULL, correspond-
ing to uncorrelated errors.

120 gnls

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic errors.

subset an optional expression indicating which subset of the rows of data should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes gnls to print an error message and terminate if
there are any incomplete observations.

naPattern an expression or formula object, specifying which returned values are to be re-
garded as missing.

control a list of control values for the estimation algorithm to replace the default values
returned by the function gnlsControl. Defaults to an empty list.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

Value

an object of class gnls, also inheriting from class gls, representing the nonlinear model fit. Generic
functions such as print, plot and summary have methods to show the results of the fit. See
gnlsObject for the components of the fit. The functions resid, coef, and fitted can be used
to extract some of its components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The different correlation structures available for the correlation argument are described in Box,
G.E.P., Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and
Wolfinger, R.D. (1996), and Venables, W.N. and Ripley, B.D. (2002). The use of variance functions
for linear and nonlinear models is presented in detail in Carrol, R.J. and Rupert, D. (1988) and
Davidian, M. and Giltinan, D.M. (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Carrol, R.J. and Rupert, D. (1988) "Transformation and Weighting in Regression", Chapman and
Hall.

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measure-
ment Data", Chapman and Hall.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed
Models", SAS Institute.

gnlsControl 121

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

corClasses, gnlsControl, gnlsObject, gnlsStruct, predict.gnls, varClasses, varFunc

Examples

variance increases with a power of the absolute fitted values
fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,

weights = varPower())
summary(fm1)

gnlsControl Control Values for gnls Fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the gnls function.

Usage

gnlsControl(maxIter = 50, nlsMaxIter = 7, msMaxIter = 50, minScale = 0.001,
tolerance = 1e-6, nlsTol = 0.001, msTol = 1e-7,
returnObject = FALSE, msVerbose = FALSE,
apVar = TRUE, .relStep =,
opt = c("nlminb", "optim"), optimMethod = "BFGS",
minAbsParApVar = 0.05, sigma = NULL)

Arguments

maxIter maximum number of iterations for the gnls optimization algorithm. Default is
50.

nlsMaxIter maximum number of iterations for the nls optimization step inside the gnls
optimization. Default is 7.

msMaxIter maximum number of iterations for the optimization step inside the gnls opti-
mization. Default is 50.

minScale minimum factor by which to shrink the default step size in an attempt to decrease
the sum of squares in the nls step. Default 0.001.

tolerance tolerance for the convergence criterion in the gnls algorithm. Default is 1e-6.

nlsTol tolerance for the convergence criterion in nls step. Default is 1e-3.

msTol tolerance for the convergence criterion of the first outer iteration when optim is
used. Default is 1e-7.

122 gnlsObject

returnObject a logical value indicating whether the fitted object should be returned with a
warning (instead of an error via stop()) when the maximum number of itera-
tions is reached without convergence of the algorithm.

msVerbose a logical value passed as the trace argument to the optimizer chosen by opt;
see documentation on that. Default is FALSE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3)
(about 6e-6).

opt the optimizer to be used, either "nlminb" (the current default) or "optim" (the
previous default).

optimMethod character - the optimization method to be used with the optim optimizer. The
default is "BFGS". An alternative is "L-BFGS-B".

minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance
calculation. The default is 0.05.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

Value

a list with components for each of the possible arguments.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>; the sigma option: Siem Heisterkamp
and Bert van Willigen.

See Also

gnls

Examples

decrease the maximum number of iterations and request tracing
gnlsControl(msMaxIter = 20, msVerbose = TRUE)

gnlsObject Fitted gnls Object

Description

An object returned by the gnls function, inheriting from class "gnls" and also from class "gls",
and representing a generalized nonlinear least squares fitted model. Objects of this class have
methods for the generic functions anova, coef, fitted, formula, getGroups, getResponse,
intervals, logLik, plot, predict, print, residuals, summary, and update.

gnlsObject 123

Value

The following components must be included in a legitimate "gnls" object.

apVar an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the control values used in the call to gnls, this component is
equal to NULL.

call a list containing an image of the gnls call that produced the object.

coefficients a vector with the estimated nonlinear model coefficients.

contrasts a list of the contrast matrices used to represent factors in the model formula.
This information is important for making predictions from a new data frame in
which not all levels of the original factors are observed. If no factors are used in
the model, this component will be an empty list.

dims a list with basic dimensions used in the model fit, including the components N -
the number of observations used in the fit and p - the number of coefficients in
the nonlinear model.

fitted a vector with the fitted values.

modelStruct an object inheriting from class gnlsStruct, representing a list of model com-
ponents, such as corStruct and varFunc objects.

groups a vector with the correlation structure grouping factor, if any is present.

logLik the log-likelihood at convergence.

numIter the number of iterations used in the iterative algorithm.

plist

pmap

residuals a vector with the residuals.

sigma the estimated residual standard error.

varBeta an approximate covariance matrix of the coefficients estimates.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, gnlsStruct

124 gnlsStruct

gnlsStruct Generalized Nonlinear Least Squares Structure

Description

A generalized nonlinear least squares structure is a list of model components representing different
sets of parameters in the nonlinear model. A gnlsStruct may contain corStruct and varFunc
objects. NULL arguments are not included in the gnlsStruct list.

Usage

gnlsStruct(corStruct, varStruct)

Arguments

corStruct an optional corStruct object, representing a correlation structure. Default is
NULL.

varStruct an optional varFunc object, representing a variance function structure. Default
is NULL.

Value

a list of model variance-covariance components determining the parameters to be estimated for the
associated nonlinear model.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, corClasses, residuals.gnlsStruct varFunc

Examples

gnls1 <- gnlsStruct(corAR1(), varPower())

groupedData 125

groupedData Construct a groupedData Object

Description

An object of the groupedData class is constructed from the formula and data by attaching the
formula as an attribute of the data, along with any of outer, inner, labels, and units that are
given. If order.groups is TRUE the grouping factor is converted to an ordered factor with the order-
ing determined by FUN. Depending on the number of grouping levels and the type of primary covari-
ate, the returned object will be of one of three classes: nfnGroupedData - numeric covariate, single
level of nesting; nffGroupedData - factor covariate, single level of nesting; and nmGroupedData -
multiple levels of nesting. Several modeling and plotting functions can use the formula stored with
a groupedData object to construct default plots and models.

Usage

groupedData(formula, data, order.groups, FUN, outer, inner,
labels, units)

S3 method for class 'groupedData'
update(object, formula, data, order.groups, FUN,

outer, inner, labels, units, ...)

Arguments

object an object inheriting from class groupedData.

formula a formula of the form resp ~ cov | group where resp is the response, cov is
the primary covariate, and group is the grouping factor. The expression 1 can
be used for the primary covariate when there is no other suitable candidate.
Multiple nested grouping factors can be listed separated by the / symbol as in
fact1/fact2. In an expression like this the fact2 factor is nested within the
fact1 factor.

data a data frame in which the expressions in formula can be evaluated. The result-
ing groupedData object will consist of the same data values in the same order
but with additional attributes.

order.groups an optional logical value, or list of logical values, indicating if the grouping
factors should be converted to ordered factors according to the function FUN
applied to the response from each group. If multiple levels of grouping are
present, this argument can be either a single logical value (which will be repeated
for all grouping levels) or a list of logical values. If no names are assigned to the
list elements, they are assumed in the same order as the group levels (outermost
to innermost grouping). Ordering within a level of grouping is done within the
levels of the grouping factors which are outer to it. Changing the grouping factor
to an ordered factor does not affect the ordering of the rows in the data frame
but it does affect the order of the panels in a trellis display of the data or models
fitted to the data. Defaults to TRUE.

126 groupedData

FUN an optional summary function that will be applied to the values of the response
for each level of the grouping factor, when order.groups = TRUE, to determine
the ordering. Defaults to the max function.

outer an optional one-sided formula, or list of one-sided formulas, indicating covari-
ates that are outer to the grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-sided formula, or a list of one-
sided formulas. If no names are assigned to the list elements, they are assumed in
the same order as the group levels (outermost to innermost grouping). An outer
covariate is invariant within the sets of rows defined by the grouping factor. Or-
dering of the groups is done in such a way as to preserve adjacency of groups
with the same value of the outer variables. When plotting a groupedData object,
the argument outer = TRUE causes the panels to be determined by the outer for-
mula. The points within the panels are associated by level of the grouping factor.
Defaults to NULL, meaning that no outer covariates are present.

inner an optional one-sided formula, or list of one-sided formulas, indicating covari-
ates that are inner to the grouping factor(s). If multiple levels of grouping are
present, this argument can be either a single one-sided formula, or a list of one-
sided formulas. If no names are assigned to the list elements, they are assumed
in the same order as the group levels (outermost to innermost grouping). An in-
ner covariate can change within the sets of rows defined by the grouping factor.
An inner formula can be used to associate points in a plot of a groupedData
object. Defaults to NULL, meaning that no inner covariates are present.

labels an optional list of character strings giving labels for the response and the pri-
mary covariate. The label for the primary covariate is named x and that for the
response is named y. Either label can be omitted.

units an optional list of character strings giving the units for the response and the
primary covariate. The units string for the primary covariate is named x and that
for the response is named y. Either units string can be omitted.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an object of one of the classes nfnGroupedData, nffGroupedData, or nmGroupedData, and also
inheriting from classes groupedData and data.frame.

Author(s)

Douglas Bates and José Pinheiro

References

Bates, D.M. and Pinheiro, J.C. (1997), "Software Design for Longitudinal Data Analysis", in "Mod-
elling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions",
T.G. Gregoire (ed.), Springer-Verlag, New York. doi:10.1007/9781461206996_4

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

https://doi.org/10.1007/978-1-4612-0699-6_4

gsummary 127

See Also

formula, gapply, gsummary, lme, plot.nffGroupedData, plot.nfnGroupedData, plot.nmGroupedData,
reStruct

Examples

Orth.new <- # create a new copy of the groupedData object
groupedData(distance ~ age | Subject,

data = as.data.frame(Orthodont),
FUN = mean,
outer = ~ Sex,
labels = list(x = "Age",

y = "Distance from pituitary to pterygomaxillary fissure"),
units = list(x = "(yr)", y = "(mm)"))

plot(Orth.new) # trellis plot by Subject
formula(Orth.new) # extractor for the formula
gsummary(Orth.new) # apply summary by Subject
fm1 <- lme(Orth.new) # fixed and groups formulae extracted from object
Orthodont2 <- update(Orthodont, FUN = mean)

gsummary Summarize by Groups

Description

Provide a summary of the variables in a data frame by groups of rows. This is most useful with a
groupedData object to examine the variables by group.

Usage

gsummary(object, FUN, omitGroupingFactor, form, level,
groups, invariantsOnly, ...)

Arguments

object an object to be summarized - usually a groupedData object or a data.frame.
FUN an optional summary function or a list of summary functions to be applied to

each variable in the frame. The function or functions are applied only to vari-
ables in object that vary within the groups defined by groups. Invariant vari-
ables are always summarized by group using the unique value that they assume
within that group. If FUN is a single function it will be applied to each non-
invariant variable by group to produce the summary for that variable. If FUN is
a list of functions, the names in the list should designate classes of variables in
the frame such as ordered, factor, or numeric. The indicated function will
be applied to any non-invariant variables of that class. The default functions to
be used are mean for numeric factors, and Mode for both factor and ordered.
The Mode function, defined internally in gsummary, returns the modal or most
popular value of the variable. It is different from the mode function that returns
the S-language mode of the variable.

128 gsummary

omitGroupingFactor

an optional logical value. When TRUE the grouping factor itself will be omitted
from the group-wise summary but the levels of the grouping factor will continue
to be used as the row names for the data frame that is produced by the summary.
Defaults to FALSE.

form an optional one-sided formula that defines the groups. When this formula is
given, the right-hand side is evaluated in object, converted to a factor if neces-
sary, and the unique levels are used to define the groups. Defaults to formula(object).

level an optional positive integer giving the level of grouping to be used in an object
with multiple nested grouping levels. Defaults to the highest or innermost level
of grouping.

groups an optional factor that will be used to split the rows into groups. Defaults to
getGroups(object, form, level).

invariantsOnly an optional logical value. When TRUE only those covariates that are invariant
within each group will be summarized. The summary value for the group is al-
ways the unique value taken on by that covariate within the group. The columns
in the summary are of the same class as the corresponding columns in object.
By definition, the grouping factor itself must be an invariant. When combined
with omitGroupingFactor = TRUE, this option can be used to discover is there
are invariant covariates in the data frame. Defaults to FALSE.

... optional additional arguments to the summary functions that are invoked on the
variables by group. Often it is helpful to specify na.rm = TRUE.

Value

A data.frame with one row for each level of the grouping factor. The number of columns is at
most the number of columns in object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

summary, groupedData, getGroups

Examples

gsummary(Orthodont) # default summary by Subject
gsummary with invariantsOnly = TRUE and omitGroupingFactor = TRUE
determines whether there are covariates like Sex that are invariant
within the repeated observations on the same Subject.
gsummary(Orthodont, invariantsOnly = TRUE, omitGroupingFactor = TRUE)

Gun 129

Gun Methods for firing naval guns

Description

The Gun data frame has 36 rows and 4 columns.

Format

This data frame contains the following columns:

rounds a numeric vector

Method a factor with levels M1 M2

Team an ordered factor with levels T1S < T3S < T2S < T1A < T2A < T3A < T1H < T3H < T2H

Physique an ordered factor with levels Slight < Average < Heavy

Details

Hicks (p.180, 1993) reports data from an experiment on methods for firing naval guns. Gunners of
three different physiques (slight, average, and heavy) tested two firing methods. Both methods were
tested twice by each of nine teams of three gunners with identical physique. The response was the
number of rounds fired per minute.

Source

Hicks, C. R. (1993), Fundamental Concepts in the Design of Experiments (4th ed), Harcourt Brace,
New York.

IGF Radioimmunoassay of IGF-I Protein

Description

The IGF data frame has 237 rows and 3 columns.

Format

This data frame contains the following columns:

Lot an ordered factor giving the radioactive tracer lot.

age a numeric vector giving the age (in days) of the radioactive tracer.

conc a numeric vector giving the estimated concentration of IGF-I protein (ng/ml)

130 Initialize

Details

Davidian and Giltinan (1995) describe data obtained during quality control radioimmunoassays
for ten different lots of radioactive tracer used to calibrate the Insulin-like Growth Factor (IGF-I)
protein concentration measurements.

Source

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London.

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.11)

Initialize Initialize Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: corStruct, glsStruct, lmeStruct,
reStruct, and varFunc.

Usage

Initialize(object, data, ...)

Arguments

object any object requiring initialization, e.g. "plug-in" structures such as corStruct
and varFunc objects.

data a data frame to be used in the initialization procedure.

... some methods for this generic function require additional arguments.

Value

an initialized object with the same class as object. Changes introduced by the initialization proce-
dure will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

Initialize.corStruct 131

See Also

Initialize.corStruct, Initialize.glsStruct, Initialize.lmeStruct, Initialize.reStruct,
Initialize.varFunc, isInitialized

Initialize.corStruct Initialize corStruct Object

Description

This method initializes object by evaluating its associated covariate(s) and grouping factor, if any
is present, in data, calculating various dimensions and constants used by optimization algorithms
involving corStruct objects (see the appropriate Dim method documentation), and assigning initial
values for the coefficients in object, if none were present.

Usage

S3 method for class 'corStruct'
Initialize(object, data, ...)

Arguments

object an object inheriting from class "corStruct" representing a correlation struc-
ture.

data a data frame in which to evaluate the variables defined in formula(object).

... this argument is included to make this method compatible with the generic.

Value

an initialized object with the same class as object representing a correlation structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Dim.corStruct

Examples

cs1 <- corAR1(form = ~ 1 | Subject)
cs1 <- Initialize(cs1, data = Orthodont)

132 Initialize.lmeStruct

Initialize.glsStruct Initialize a glsStruct Object

Description

The individual linear model components of the glsStruct list are initialized.

Usage

S3 method for class 'glsStruct'
Initialize(object, data, control, ...)

Arguments

object an object inheriting from class "glsStruct", representing a list of linear model
components, such as corStruct and varFunc objects.

data a data frame in which to evaluate the variables defined in formula(object).

control an optional list with control parameters for the initialization and optimization
algorithms used in gls. Defaults to list(singular.ok = FALSE), implying
that linear dependencies are not allowed in the model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a glsStruct object similar to object, but with initialized model components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, Initialize.corStruct, Initialize.varFunc, Initialize

Initialize.lmeStruct Initialize an lmeStruct Object

Description

The individual linear mixed-effects model components of the lmeStruct list are initialized.

Usage

S3 method for class 'lmeStruct'
Initialize(object, data, groups, conLin, control, ...)

Initialize.reStruct 133

Arguments

object an object inheriting from class "lmeStruct", representing a list of linear mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

data a data frame in which to evaluate the variables defined in formula(object).

groups a data frame with the grouping factors corresponding to the lme model asso-
ciated with object as columns, sorted from innermost to outermost grouping
level.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying lme
model. Defaults to attr(object, "conLin").

control an optional list with control parameters for the initialization and optimization
algorithms used in lme. Defaults to list(niterEM=20, gradHess=TRUE), im-
plying that 20 EM iterations are to be used in the derivation of initial estimates
for the coefficients of the reStruct component of object and, if possible, nu-
merical gradient vectors and Hessian matrices for the log-likelihood function are
to be used in the optimization algorithm.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an lmeStruct object similar to object, but with initialized model components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, Initialize.reStruct, Initialize.corStruct, Initialize.varFunc, Initialize

Initialize.reStruct Initialize reStruct Object

Description

Initial estimates for the parameters in the pdMat objects forming object, which have not yet been
initialized, are obtained using the methodology described in Bates and Pinheiro (1998). These
estimates may be refined using a series of EM iterations, as described in Bates and Pinheiro (1998).
The number of EM iterations to be used is defined in control.

Usage

S3 method for class 'reStruct'
Initialize(object, data, conLin, control, ...)

134 Initialize.varFunc

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

data a data frame in which to evaluate the variables defined in formula(object).

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

control an optional list with a single component niterEM controlling the number of
iterations for the EM algorithm used to refine initial parameter estimates. It is
given as a list for compatibility with other Initialize methods. Defaults to
list(niterEM = 20).

... some methods for this generic require additional arguments. None are used in
this method.

Value

an reStruct object similar to object, but with all pdMat components initialized.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct, pdMat, Initialize

Initialize.varFunc Initialize varFunc Object

Description

This method initializes object by evaluating its associated covariate(s) and grouping factor, if any
is present, in data; determining if the covariate(s) need to be updated when the values of the co-
efficients associated with object change; initializing the log-likelihood and the weights associated
with object; and assigning initial values for the coefficients in object, if none were present. The
covariate(s) will only be initialized if no update is needed when coef(object) changes.

Usage

S3 method for class 'varFunc'
Initialize(object, data, ...)

intervals 135

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

data a data frame in which to evaluate the variables named in formula(object).

... this argument is included to make this method compatible with the generic.

Value

an initialized object with the same class as object representing a variance function structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Initialize

Examples

vf1 <- varPower(form = ~ age | Sex)
vf1 <- Initialize(vf1, Orthodont)

intervals Confidence Intervals on Coefficients

Description

Confidence intervals on the parameters associated with the model represented by object are ob-
tained. This function is generic; method functions can be written to handle specific classes of
objects. Classes which already have methods for this function include: gls, lme, and lmList.

Usage

intervals(object, level, ...)

Arguments

object a fitted model object from which parameter estimates can be extracted.

level an optional numeric value for the interval confidence level. Defaults to 0.95.

... some methods for the generic may require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

136 intervals.gls

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

intervals.lme, intervals.lmList, intervals.gls

intervals.gls Confidence Intervals on gls Parameters

Description

Approximate confidence intervals for the parameters in the linear model represented by object
are obtained, using a normal approximation to the distribution of the (restricted) maximum like-
lihood estimators (the estimators are assumed to have a normal distribution centered at the true
parameter values and with covariance matrix equal to the negative inverse Hessian matrix of the
(restricted) log-likelihood evaluated at the estimated parameters). Confidence intervals are obtained
in an unconstrained scale first, using the normal approximation, and, if necessary, transformed to
the constrained scale.

Usage

S3 method for class 'gls'
intervals(object, level, which, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted linear model.

level an optional numeric value for the interval confidence level. Defaults to 0.95.

which an optional character string specifying the subset of parameters for which to
construct the confidence intervals. Possible values are "all" for all parame-
ters, "var-cov" for the variance-covariance parameters only, and "coef" for
the linear model coefficients only. Defaults to "all".

... some methods for this generic require additional arguments. None are used in
this method.

intervals.lme 137

Value

a list with components given by data frames with rows corresponding to parameters and columns
lower, est., and upper representing respectively lower confidence limits, the estimated values,
and upper confidence limits for the parameters. Possible components are:

coef linear model coefficients, only present when which is not equal to "var-cov".

corStruct correlation parameters, only present when which is not equal to "coef" and a
correlation structure is used in object.

varFunc variance function parameters, only present when which is not equal to "coef"
and a variance function structure is used in object.

sigma residual standard error.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

gls, intervals, print.intervals.gls

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

intervals(fm1)

intervals.lme Confidence Intervals on lme Parameters

Description

Approximate confidence intervals for the parameters in the linear mixed-effects model represented
by object are obtained, using a normal approximation to the distribution of the (restricted) maxi-
mum likelihood estimators (the estimators are assumed to have a normal distribution centered at the
true parameter values and with covariance matrix equal to the negative inverse Hessian matrix of the
(restricted) log-likelihood evaluated at the estimated parameters). Confidence intervals are obtained
in an unconstrained scale first, using the normal approximation, and, if necessary, transformed to
the constrained scale. The pdNatural parametrization is used for general positive-definite matrices.

Usage

S3 method for class 'lme'
intervals(object, level = 0.95,

which = c("all", "var-cov", "fixed"), ...)

138 intervals.lme

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

level an optional numeric value with the confidence level for the intervals. Defaults
to 0.95.

which an optional character string specifying the subset of parameters for which to
construct the confidence intervals. Possible values are "all" for all parameters,
"var-cov" for the variance-covariance parameters only, and "fixed" for the
fixed effects only. Defaults to "all".

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with components given by data frames with rows corresponding to parameters and columns
lower, est., and upper representing respectively lower confidence limits, the estimated values,
and upper confidence limits for the parameters. Possible components are:

fixed fixed effects, only present when which is not equal to "var-cov".

reStruct random effects variance-covariance parameters, only present when which is not
equal to "fixed".

corStruct within-group correlation parameters, only present when which is not equal to
"fixed" and a correlation structure is used in object.

varFunc within-group variance function parameters, only present when which is not
equal to "fixed" and a variance function structure is used in object.

sigma within-group standard deviation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

lme, intervals, print.intervals.lme, pdNatural

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
intervals(fm1)

intervals.lmList 139

intervals.lmList Confidence Intervals on lmList Coefficients

Description

Confidence intervals on the linear model coefficients are obtained for each lm component of object
and organized into a three dimensional array. The first dimension corresponding to the names of
the object components. The second dimension is given by lower, est., and upper corresponding,
respectively, to the lower confidence limit, estimated coefficient, and upper confidence limit. The
third dimension is given by the coefficients names.

Usage

S3 method for class 'lmList'
intervals(object, level = 0.95, pool = attr(object, "pool"), ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

level an optional numeric value with the confidence level for the intervals. Defaults
to 0.95.

pool an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default is attr(object, "pool").

... some methods for this generic require additional arguments. None are used in
this method.

Value

a three dimensional array with the confidence intervals and estimates for the coefficients of each lm
component of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

lmList, intervals, plot.intervals.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
intervals(fm1)

140 isBalanced

isBalanced Check a Design for Balance

Description

Check the design of the experiment or study for balance.

Usage

isBalanced(object, countOnly, level)

Arguments

object A groupedData object containing a data frame and a formula that describes the
roles of variables in the data frame. The object will have one or more nested
grouping factors and a primary covariate.

countOnly A logical value indicating if the check for balance should only consider the num-
ber of observations at each level of the grouping factor(s). Defaults to FALSE.

level an optional integer vector specifying the desired prediction levels. Levels in-
crease from outermost to innermost grouping, with level 0 representing the pop-
ulation (fixed effects) predictions. Defaults to the innermost level.

Details

A design is balanced with respect to the grouping factor(s) if there are the same number of obser-
vations at each distinct value of the grouping factor or each combination of distinct levels of the
nested grouping factors. If countOnly is FALSE the design is also checked for balance with respect
to the primary covariate, which is often the time of the observation. A design is balanced with
respect to the grouping factor and the covariate if the number of observations at each distinct level
(or combination of levels for nested factors) is constant and the times at which the observations are
taken (in general, the values of the primary covariates) also are constant.

Value

TRUE or FALSE according to whether the data are balanced or not

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

table, groupedData

isInitialized 141

Examples

isBalanced(Orthodont) # should return TRUE
isBalanced(Orthodont, countOnly = TRUE) # should return TRUE
isBalanced(Pixel) # should return FALSE
isBalanced(Pixel, level = 1) # should return FALSE

isInitialized Check if Object is Initialized

Description

Checks if object has been initialized (generally through a call to Initialize), by searching for
components and attributes which are modified during initialization.

Usage

isInitialized(object)

Arguments

object any object requiring initialization.

Value

a logical value indicating whether object has been initialized.

Author(s)

José Pinheiro and Douglas Bates

See Also

Initialize

Examples

pd1 <- pdDiag(~age)
isInitialized(pd1)

142 LDEsysMat

LDEsysMat Generate system matrix for LDEs

Description

Generate the system matrix for the linear differential equations determined by a compartment
model.

Usage

LDEsysMat(pars, incidence)

Arguments

pars a numeric vector of parameter values.
incidence an integer matrix with columns named From, To, and Par. Values in the Par

column must be in the range 1 to length(pars). Values in the From column
must be between 1 and the number of compartments. Values in the To column
must be between 0 and the number of compartments.

Details

A compartment model describes material transfer between k in a system of k compartments to a
linear system of differential equations. Given a description of the system and a vector of parameter
values this function returns the system matrix.
This function is intended for use in a general system for solving compartment models, as described
in Bates and Watts (1988).

Value

A k by k numeric matrix.

Author(s)

Douglas Bates <bates@stat.wisc.edu>

References

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
New York.

Examples

incidence matrix for a two compartment open system
incidence <-

matrix(c(1,1,2,2,2,1,3,2,0), ncol = 3, byrow = TRUE,
dimnames = list(NULL, c("Par", "From", "To")))

incidence
LDEsysMat(c(1.2, 0.3, 0.4), incidence)

lme 143

lme Linear Mixed-Effects Models

Description

This generic function fits a linear mixed-effects model in the formulation described in Laird and
Ware (1982) but allowing for nested random effects. The within-group errors are allowed to be
correlated and/or have unequal variances.

This page describes the formula method; the methods lme.lmList and lme.groupedData are doc-
umented separately.

Usage

lme(fixed, data, random, correlation, weights, subset, method,
na.action, control, contrasts = NULL, keep.data = TRUE)

S3 method for class 'formula'
lme(fixed, data, random, correlation, weights, subset, method,

na.action, control, contrasts = NULL, keep.data = TRUE)

S3 method for class 'lme'
update(object, fixed., ..., evaluate = TRUE)

Arguments

object an object inheriting from class lme, representing a fitted linear mixed-effects
model.

fixed a two-sided linear formula object describing the fixed-effects part of the model,
with the response on the left of a ~ operator and the terms, separated by + oper-
ators, on the right, an "lmList" object, or a "groupedData" object.
There is limited support for formulae such as resp ~ 1 and resp ~ 0, and less
prior to version ‘3.1-112’.

fixed. Changes to the fixed-effects formula – see update.formula for details.

data an optional data frame containing the variables named in fixed, random, correlation,
weights, and subset. By default the variables are taken from the environment
from which lme is called.

random optionally, any of the following: (i) a one-sided formula of the form ~ x1 +
... + xn | g1/.../gm, with x1 + ... + xn specifying the model for the random
effects and g1/.../gm the grouping structure (m may be equal to 1, in which
case no / is required). The random effects formula will be repeated for all levels
of grouping, in the case of multiple levels of grouping; (ii) a list of one-sided
formulas of the form ~ x1 + ... + xn | g, with possibly different random effects
models for each grouping level. The order of nesting will be assumed the same
as the order of the elements in the list; (iii) a one-sided formula of the form
~ x1 + ... + xn, or a pdMat object with a formula (i.e. a non-NULL value for

144 lme

formula(object)), or a list of such formulas or pdMat objects. In this case, the
grouping structure formula will be derived from the data used to fit the linear
mixed-effects model, which should inherit from class "groupedData"; (iv) a
named list of formulas or pdMat objects as in (iii), with the grouping factors
as names. The order of nesting will be assumed the same as the order of the
order of the elements in the list; (v) an reStruct object. See the documentation
on pdClasses for a description of the available pdMat classes. Defaults to a
formula consisting of the right hand side of fixed.

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to no within-group corre-
lations.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes lme to print an error message and terminate if
there are any incomplete observations.

control a list of control values for the estimation algorithm to replace the default values
returned by the function lmeControl. Defaults to an empty list.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

keep.data logical: should the data argument (if supplied and a data frame) be saved as
part of the model object?

... some methods for this generic require additional arguments. None are used in
this method.

evaluate If TRUE evaluate the new call else return the call.

Details

offset terms in fixed are an error since 3.1-157 (2022-03): previously they were silently ignored.

Value

An object of class "lme" representing the linear mixed-effects model fit. Generic functions such
as print, plot and summary have methods to show the results of the fit. See lmeObject for the
components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects
can be used to extract some of its components.

lme 145

Note

The function does not do any scaling internally: the optimization will work best when the response
is scaled so its variance is of the order of one.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The computational methods follow the general framework of Lindstrom and Bates (1988). The
model formulation is described in Laird and Ware (1982). The variance-covariance parametrizations
are described in Pinheiro and Bates (1996). The different correlation structures available for the
correlation argument are described in Box, Jenkins and Reinsel (1994), Littell et al (1996), and
Venables and Ripley (2002). The use of variance functions for linear and nonlinear mixed effects
models is presented in detail in Davidian and Giltinan (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994). Time Series Analysis: Forecasting and Con-
trol, 3rd Edition, Holden–Day.

Davidian, M. and Giltinan, D.M. (1995). Nonlinear Mixed Effects Models for Repeated Measure-
ment Data, Chapman and Hall. doi:10.1201/9780203745502.

Laird, N.M. and Ware, J.H. (1982). Random-Effects Models for Longitudinal Data. Biometrics 38,
963–974. doi:10.2307/2529876.

Lindstrom, M.J. and Bates, D.M. (1988). Newton-Raphson and EM Algorithms for Linear Mixed-
Effects Models for Repeated-Measures Data. Journal of the American Statistical Association 83,
1014–1022. doi:10.2307/2290128.

Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996). SAS Systems for Mixed
Models, SAS Institute.

Pinheiro, J.C. and Bates., D.M. (1996). Unconstrained Parametrizations for Variance-Covariance
Matrices. Statistics and Computing 6, 289–296. doi:10.1007/BF00140873.

Pinheiro, J.C., and Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS, Springer. doi:10.1007/
b98882.

Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S, 4th Edition, Springer-
Verlag. doi:10.1007/9780387217062.

See Also

corClasses, lme.lmList, lme.groupedData, lmeControl, lmeObject, lmeStruct, lmList, pdClasses,
plot.lme, predict.lme, qqnorm.lme, residuals.lme, reStruct, simulate.lme, summary.lme,
varClasses, varFunc

Examples

fm1 <- lme(distance ~ age, data = Orthodont) # random is ~ age
fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
summary(fm1)
summary(fm2)

https://doi.org/10.1201/9780203745502
https://doi.org/10.2307/2529876
https://doi.org/10.2307/2290128
https://doi.org/10.1007/BF00140873
https://doi.org/10.1007/b98882
https://doi.org/10.1007/b98882
https://doi.org/10.1007/978-0-387-21706-2

146 lme.groupedData

lme.groupedData LME fit from groupedData Object

Description

The response variable and primary covariate in formula(fixed) are used to construct the fixed
effects model formula. This formula and the groupedData object are passed as the fixed and data
arguments to lme.formula, together with any other additional arguments in the function call. See
the documentation on lme.formula for a description of that function.

Usage

S3 method for class 'groupedData'
lme(fixed, data, random, correlation, weights,

subset, method, na.action, control, contrasts, keep.data = TRUE)

Arguments

fixed a data frame inheriting from class "groupedData".
data this argument is included for consistency with the generic function. It is ignored

in this method function.
random optionally, any of the following: (i) a one-sided formula of the form ~x1+...+xn

| g1/.../gm, with x1+...+xn specifying the model for the random effects and
g1/.../gm the grouping structure (m may be equal to 1, in which case no / is
required). The random effects formula will be repeated for all levels of grouping,
in the case of multiple levels of grouping; (ii) a list of one-sided formulas of the
form ~x1+...+xn | g, with possibly different random effects models for each
grouping level. The order of nesting will be assumed the same as the order of
the elements in the list; (iii) a one-sided formula of the form ~x1+...+xn, or
a pdMat object with a formula (i.e. a non-NULL value for formula(object)),
or a list of such formulas or pdMat objects. In this case, the grouping structure
formula will be derived from the data used to fit the linear mixed-effects model,
which should inherit from class groupedData; (iv) a named list of formulas
or pdMat objects as in (iii), with the grouping factors as names. The order of
nesting will be assumed the same as the order of the order of the elements in
the list; (v) an reStruct object. See the documentation on pdClasses for a
description of the available pdMat classes. Defaults to a formula consisting of
the right hand side of fixed.

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to no within-group corre-
lations.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

lme.groupedData 147

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes lme to print an error message and terminate if
there are any incomplete observations.

control a list of control values for the estimation algorithm to replace the default values
returned by the function lmeControl. Defaults to an empty list.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

keep.data logical: should the data argument (if supplied and a data frame) be saved as
part of the model object?

Value

an object of class lme representing the linear mixed-effects model fit. Generic functions such as
print, plot and summary have methods to show the results of the fit. See lmeObject for the
components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects
can be used to extract some of its components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The computational methods follow on the general framework of Lindstrom, M.J. and Bates, D.M.
(1988). The model formulation is described in Laird, N.M. and Ware, J.H. (1982). The variance-
covariance parametrizations are described in Pinheiro, J.C. and Bates., D.M. (1996). The different
correlation structures available for the correlation argument are described in Box, G.E.P., Jenkins,
G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D.
(1996), and Venables, W.N. and Ripley, B.D. (2002). The use of variance functions for linear and
nonlinear mixed effects models is presented in detail in Davidian, M. and Giltinan, D.M. (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measure-
ment Data", Chapman and Hall.

Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics,
38, 963-974.

Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-
Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83,
1014-1022.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed
Models", SAS Institute.

148 lme.lmList

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

See Also

lme, groupedData, lmeObject

Examples

fm1 <- lme(Orthodont)
summary(fm1)

lme.lmList LME fit from lmList Object

Description

If the random effects names defined in random are a subset of the lmList object coefficient names,
initial estimates for the covariance matrix of the random effects are obtained (overwriting any val-
ues given in random). formula(fixed) and the data argument in the calling sequence used to
obtain fixed are passed as the fixed and data arguments to lme.formula, together with any other
additional arguments in the function call. See the documentation on lme.formula for a description
of that function.

Usage

S3 method for class 'lmList'
lme(fixed, data, random, correlation, weights, subset, method,

na.action, control, contrasts, keep.data)

Arguments

fixed an object inheriting from class "lmList.", representing a list of lm fits with a
common model.

data this argument is included for consistency with the generic function. It is ignored
in this method function.

random an optional one-sided linear formula with no conditioning expression, or a pdMat
object with a formula attribute. Multiple levels of grouping are not allowed with
this method function. Defaults to a formula consisting of the right hand side of
formula(fixed).

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to no within-group corre-
lations.

lme.lmList 149

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes lme to print an error message and terminate if
there are any incomplete observations.

control a list of control values for the estimation algorithm to replace the default values
returned by the function lmeControl. Defaults to an empty list.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

keep.data logical: should the data argument (if supplied and a data frame) be saved as
part of the model object?

Value

an object of class lme representing the linear mixed-effects model fit. Generic functions such as
print, plot and summary have methods to show the results of the fit. See lmeObject for the
components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects
can be used to extract some of its components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The computational methods follow the general framework of Lindstrom and Bates (1988). The
model formulation is described in Laird and Ware (1982). The variance-covariance parametrizations
are described in Pinheiro and Bates (1996). The different correlation structures available for the
correlation argument are described in Box, Jenkins and Reinse (1994), Littel et al (1996), and
Venables and Ripley, (2002). The use of variance functions for linear and nonlinear mixed effects
models is presented in detail in Davidian and Giltinan (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden–Day.

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measure-
ment Data", Chapman and Hall.

Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics,
38, 963–974.

150 lmeControl

Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-
Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83,
1014–1022.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed
Models", SAS Institute.

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289–296.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

See Also

lme, lmList, lmeObject

Examples

fm1 <- lmList(Orthodont)
fm2 <- lme(fm1)
summary(fm1)
summary(fm2)

lmeControl Specifying Control Values for lme Fit

Description

The values supplied in the lmeControl() call replace the defaults, and a list with all settings (i.e.,
values for all possible arguments) is returned. The returned list is used as the control argument to
the lme function.

Usage

lmeControl(maxIter = 50, msMaxIter = 50, tolerance = 1e-6, niterEM = 25,
msMaxEval = 200,

msTol = 1e-7, msVerbose = FALSE,
returnObject = FALSE, gradHess = TRUE, apVar = TRUE,

.relStep = .Machine$double.eps^(1/3), minAbsParApVar = 0.05,
opt = c("nlminb", "optim"),

optimMethod = "BFGS", natural = TRUE,
sigma = NULL,

allow.n.lt.q = FALSE,
...)

lmeControl 151

Arguments

maxIter maximum number of iterations for the lme optimization algorithm. Default is
50.

msMaxIter maximum number of iterations for the optimization step inside the lme opti-
mization. Default is 50.

tolerance tolerance for the convergence criterion in the lme algorithm. Default is 1e-6.
niterEM number of iterations for the EM algorithm used to refine the initial estimates of

the random effects variance-covariance coefficients. Default is 25.
msMaxEval maximum number of evaluations of the objective function permitted for nlminb.

Default is 200.
msTol tolerance for the convergence criterion on the first iteration when optim is used.

Default is 1e-7.
msVerbose a logical value passed as the trace argument to nlminb or optim. Default is

FALSE.
returnObject a logical value indicating whether the fitted object should be returned with a

warning (instead of an error via stop()) when the maximum number of itera-
tions is reached without convergence of the algorithm. Default is FALSE.

gradHess a logical value indicating whether numerical gradient vectors and Hessian ma-
trices of the log-likelihood function should be used in the internal optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no "varying" parameters and the
pdMat classes used in the random effects structure are pdSymm (general positive-
definite), pdDiag (diagonal), pdIdent (multiple of the identity), or pdCompSymm
(compound symmetry). Default is TRUE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3).
opt the optimizer to be used, either "nlminb" (the default) or "optim".
optimMethod character - the optimization method to be used with the optim optimizer. The

default is "BFGS". An alternative is "L-BFGS-B".
minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance

calculation. The default is 0.05.
natural a logical value indicating whether the pdNatural parametrization should be

used for general positive-definite matrices (pdSymm) in reStruct, when the ap-
proximate covariance matrix of the estimators is calculated. Default is TRUE.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

allow.n.lt.q logical indicating if it is ok to have less observations than random effects for
each group. The default, FALSE signals an error; if NA, such a situation only
gives a warning, as in nlme versions prior to 2019; if true, no message is given
at all.

... further named control arguments to be passed, depending on opt, to nlminb
(those from abs.tol down) or optim (those except trace and maxit; reltol
is used only from the second iteration).

152 lmeObject

Value

a list with components for each of the possible arguments.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>; the sigma option: Siem Heisterkamp
and Bert van Willigen.

See Also

lme, nlminb, optim

Examples

decrease the maximum number iterations in the ms call and
request that information on the evolution of the ms iterations be printed
str(lCtr <- lmeControl(msMaxIter = 20, msVerbose = TRUE))
This should always work:
do.call(lmeControl, lCtr)

lmeObject Fitted lme Object

Description

An object returned by the lme function, inheriting from class "lme" and representing a fitted linear
mixed-effects model. Objects of this class have methods for the generic functions anova, coef,
fitted, fixed.effects, formula, getGroups, getResponse, intervals, logLik, pairs, plot,
predict, print, random.effects, residuals, sigma, summary, update, and vcov.

Value

The following components must be included in a legitimate "lme" object.

apVar an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the control values used in the call to lme, this component is
NULL.

call a list containing an image of the lme call that produced the object.

coefficients a list with two components, fixed and random, where the first is a vector con-
taining the estimated fixed effects and the second is a list of matrices with the
estimated random effects for each level of grouping. For each matrix in the
random list, the columns refer to the random effects and the rows to the groups.

contrasts a list of the contrast matrices used to represent factors in the fixed effects for-
mula and/or random effects formula. This information is important for making
predictions from a new data frame in which not all levels of the original factors
are observed. If no factors are used in the lme model, this component will be an
empty list.

lmeObject 153

dims a list with basic dimensions used in the lme fit, including the components N - the
number of observations in the data, Q - the number of grouping levels, qvec - the
number of random effects at each level from innermost to outermost (last two
values are equal to zero and correspond to the fixed effects and the response),
ngrps - the number of groups at each level from innermost to outermost (last
two values are one and correspond to the fixed effects and the response), and
ncol - the number of columns in the model matrix for each level of grouping
from innermost to outermost (last two values are equal to the number of fixed
effects and one).

fitted a data frame with the fitted values as columns. The leftmost column corresponds
to the population fixed effects (corresponding to the fixed effects only) and suc-
cessive columns from left to right correspond to increasing levels of grouping.

fixDF a list with components X and terms specifying the denominator degrees of free-
dom for, respectively, t-tests for the individual fixed effects and F-tests for the
fixed-effects terms in the models.

groups a data frame with the grouping factors as columns. The grouping level increases
from left to right.

logLik the (restricted) log-likelihood at convergence.

method the estimation method: either "ML" for maximum likelihood, or "REML" for re-
stricted maximum likelihood.

modelStruct an object inheriting from class lmeStruct, representing a list of mixed-effects
model components, such as reStruct, corStruct, and varFunc objects.

numIter the number of iterations used in the iterative algorithm.

residuals a data frame with the residuals as columns. The leftmost column corresponds to
the population residuals and successive columns from left to right correspond to
increasing levels of grouping.

terms the terms, including formula, see also terms.object.

sigma the estimated within-group error standard deviation.

varFix an approximate covariance matrix of the fixed effects estimates.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, lmeStruct

154 lmeStruct

lmeStruct Linear Mixed-Effects Structure

Description

A linear mixed-effects structure is a list of model components representing different sets of param-
eters in the linear mixed-effects model. An lmeStruct list must contain at least a reStruct object,
but may also contain corStruct and varFunc objects. NULL arguments are not included in the
lmeStruct list.

Usage

lmeStruct(reStruct, corStruct, varStruct)

Arguments

reStruct a reStruct representing a random effects structure.

corStruct an optional corStruct object, representing a correlation structure. Default is
NULL.

varStruct an optional varFunc object, representing a variance function structure. Default
is NULL.

Value

a list of model components determining the parameters to be estimated for the associated linear
mixed-effects model.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corClasses, lme, residuals.lmeStruct, reStruct, varFunc

Examples

lms1 <- lmeStruct(reStruct(~age), corAR1(), varPower())

lmList 155

lmList List of lm Objects with a Common Model

Description

Data is partitioned according to the levels of the grouping factor g and individual lm fits are obtained
for each data partition, using the model defined in object.

Usage

lmList(object, data, level, subset, na.action = na.fail,
pool = TRUE, warn.lm = TRUE)

S3 method for class 'formula'
lmList(object, data, level, subset, na.action = na.fail,

pool = TRUE, warn.lm = TRUE)

S3 method for class 'lmList'
update(object, formula., ..., evaluate = TRUE)
S3 method for class 'lmList'
print(x, pool, ...)

Arguments

object For lmList, either a linear formula object of the form y ~ x1+...+xn | g or a
groupedData object. In the formula object, y represents the response, x1,...,xn
the covariates, and g the grouping factor specifying the partitioning of the data
according to which different lm fits should be performed. The grouping factor g
may be omitted from the formula, in which case the grouping structure will be
obtained from data, which must inherit from class groupedData. The method
function lmList.groupedData is documented separately. For the method update.lmList,
object is an object inheriting from class lmList.

formula (used in update.lmList only) a two-sided linear formula with the common
model for the individuals lm fits.

formula. Changes to the formula – see update.formula for details.

data a data frame in which to interpret the variables named in object.

level an optional integer specifying the level of grouping to be used when multiple
nested levels of grouping are present.

subset an optional expression indicating which subset of the rows of data should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes lmList to print an error message and terminate
if there are any incomplete observations.

156 lmList.groupedData

pool an optional logical value indicating whether a pooled estimate of the residual
standard error should be used in calculations of standard deviations or standard
errors for summaries.

warn.lm logical indicating if lm() errors (all of which are caught by tryCatch) should
be signalled as a “summarizing” warning.

x an object inheriting from class lmList to be printed.

... some methods for this generic require additional arguments. None are used in
this method.

evaluate If TRUE evaluate the new call else return the call.

Value

a list of lm objects with as many components as the number of groups defined by the grouping factor.
Generic functions such as coef, fixed.effects, lme, pairs, plot, predict, random.effects,
summary, and update have methods that can be applied to an lmList object.

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

lm, lme.lmList, plot.lmList, pooledSD, predict.lmList, residuals.lmList, summary.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
summary(fm1)

lmList.groupedData lmList Fit from a groupedData Object

Description

The response variable and primary covariate in formula(object) are used to construct the linear
model formula. This formula and the groupedData object are passed as the object and data
arguments to lmList.formula, together with any other additional arguments in the function call.
See the documentation on lmList.formula for a description of that function.

Usage

S3 method for class 'groupedData'
lmList(object, data, level, subset, na.action = na.fail,

pool = TRUE, warn.lm = TRUE)

logDet 157

Arguments

object a data frame inheriting from class "groupedData".
data this argument is included for consistency with the generic function. It is ignored

in this method function.
level an optional integer specifying the level of grouping to be used when multiple

nested levels of grouping are present.
subset an optional expression indicating which subset of the rows of data should be

used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes lmList to print an error message and terminate
if there are any incomplete observations.

pool, warn.lm optional logicals, see lmList.

Value

a list of lm objects with as many components as the number of groups defined by the grouping factor.
Generic functions such as coef, fixed.effects, lme, pairs, plot, predict, random.effects,
summary, and update have methods that can be applied to an lmList object.

See Also

groupedData, lm, lme.lmList, lmList, lmList.formula

Examples

fm1 <- lmList(Orthodont)
summary(fm1)

logDet Extract the Logarithm of the Determinant

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: corStruct, several pdMat classes,
and reStruct.

Usage

logDet(object, ...)

Arguments

object any object from which a matrix, or list of matrices, can be extracted
... some methods for this generic function require additional arguments.

158 logDet.corStruct

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

logLik, logDet.corStruct, logDet.pdMat, logDet.reStruct

logDet.corStruct Extract corStruct Log-Determinant

Description

This method function extracts the logarithm of the determinant of a square-root factor of the corre-
lation matrix associated with object, or the sum of the log-determinants of square-root factors of
the list of correlation matrices associated with object.

Usage

S3 method for class 'corStruct'
logDet(object, covariate, ...)

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

covariate an optional covariate vector (matrix), or list of covariate vectors (matrices), at
which values the correlation matrix, or list of correlation matrices, are to be
evaluated. Defaults to getCovariate(object).

... some methods for this generic require additional arguments. None are used in
this method.

Value

the log-determinant of a square-root factor of the correlation matrix associated with object, or the
sum of the log-determinants of square-root factors of the list of correlation matrices associated with
object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

logLik.corStruct, corMatrix.corStruct, logDet

logDet.pdMat 159

Examples

cs1 <- corAR1(0.3)
logDet(cs1, covariate = 1:4)

logDet.pdMat Extract Log-Determinant from a pdMat Object

Description

This method function extracts the logarithm of the determinant of a square-root factor of the positive-
definite matrix represented by object.

Usage

S3 method for class 'pdMat'
logDet(object, ...)

Arguments

object an object inheriting from class "pdMat", representing a positive definite matrix.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the log-determinant of a square-root factor of the positive-definite matrix represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

pdMat, logDet

Examples

pd1 <- pdSymm(diag(1:3))
logDet(pd1)

160 logDet.reStruct

logDet.reStruct Extract reStruct Log-Determinants

Description

Calculates, for each of the pdMat components of object, the logarithm of the determinant of a
square-root factor.

Usage

S3 method for class 'reStruct'
logDet(object, ...)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the log-determinants of square-root factors of the pdMat components of object.

Author(s)

José Pinheiro

See Also

reStruct, pdMat, logDet

Examples

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ~Score),
B = pdDiag(2 * diag(4), form = ~Educ)))

logDet(rs1)

logLik.corStruct 161

logLik.corStruct Extract corStruct Log-Likelihood

Description

This method function extracts the component of a Gaussian log-likelihood associated with the cor-
relation structure, which is equal to the negative of the logarithm of the determinant (or sum of the
logarithms of the determinants) of the matrix (or matrices) represented by object.

Usage

S3 method for class 'corStruct'
logLik(object, data, ...)

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

data this argument is included to make this method function compatible with other
logLik methods and will be ignored.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the negative of the logarithm of the determinant (or sum of the logarithms of the determinants) of
the correlation matrix (or matrices) represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

logDet.corStruct, logLik.lme,

Examples

cs1 <- corAR1(0.2)
cs1 <- Initialize(cs1, data = Orthodont)
logLik(cs1)

162 logLik.glsStruct

logLik.glsStruct Log-Likelihood of a glsStruct Object

Description

Pars is used to update the coefficients of the model components of object and the individual
(restricted) log-likelihood contributions of each component are added together. The type of log-
likelihood (restricted or not) is determined by the settings attribute of object.

Usage

S3 method for class 'glsStruct'
logLik(object, Pars, conLin, ...)

Arguments

object an object inheriting from class "glsStruct", representing a list of linear model
components, such as corStruct and "varFunc" objects.

Pars the parameter values at which the (restricted) log-likelihood is to be evaluated.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying linear
model. Defaults to attr(object, "conLin").

... some methods for this generic require additional arguments. None are used in
this method.

Value

the (restricted) log-likelihood for the linear model described by object, evaluated at Pars.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, glsStruct, logLik.lme

logLik.gnls 163

logLik.gnls Log-Likelihood of a gnls Object

Description

Returns the log-likelihood value of the nonlinear model represented by object evaluated at the
estimated coefficients.

Usage

S3 method for class 'gnls'
logLik(object, REML, ...)

Arguments

object an object inheriting from class "gnls", representing a generalized nonlinear
least squares fitted model.

REML an logical value for consistency with logLik,gls, but only FALSE is accepted..

... some methods for this generic require additional arguments. None are used in
this method.

Value

the log-likelihood of the linear model represented by object evaluated at the estimated coefficients.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, logLik.lme

Examples

fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

logLik(fm1)

164 logLik.gnlsStruct

logLik.gnlsStruct Log-Likelihood of a gnlsStruct Object

Description

Pars is used to update the coefficients of the model components of object and the individual log-
likelihood contributions of each component are added together.

Usage

S3 method for class 'gnlsStruct'
logLik(object, Pars, conLin, ...)

Arguments

object an object inheriting from class gnlsStruct, representing a list of model com-
ponents, such as corStruct and varFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

Pars the parameter values at which the log-likelihood is to be evaluated.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vec-
tor (y), and "logLik", corresponding to the log-likelihood of the underlying
nonlinear model. Defaults to attr(object, "conLin").

... some methods for this generic require additional arguments. None are used in
this method.

Value

the log-likelihood for the linear model described by object, evaluated at Pars.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, gnlsStruct, logLik.gnls

logLik.lme 165

logLik.lme Log-Likelihood of an lme Object

Description

If REML=FALSE, returns the log-likelihood value of the linear mixed-effects model represented by
object evaluated at the estimated coefficients; else, the restricted log-likelihood evaluated at the
estimated coefficients is returned.

Usage

S3 method for class 'lme'
logLik(object, REML, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

REML an optional logical value. If TRUE the restricted log-likelihood is returned, else, if
FALSE, the log-likelihood is returned. Defaults to the method of estimation used,
that is TRUE if and only object was fitted with method = "REML" (the default for
these fitting functions) .

... some methods for this generic require additional arguments. None are used in
this method.

Value

the (restricted) log-likelihood of the model represented by object evaluated at the estimated coef-
ficients.

Author(s)

José Pinheiro and Douglas Bates

References

Harville, D.A. (1974) “Bayesian Inference for Variance Components Using Only Error Contrasts”,
Biometrika, 61, 383–385.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

lme,gls, logLik.corStruct, logLik.glsStruct, logLik.lmeStruct, logLik.lmList, logLik.reStruct,
logLik.varFunc,

166 logLik.lmeStruct

Examples

fm1 <- lme(distance ~ Sex * age, Orthodont, random = ~ age, method = "ML")
logLik(fm1)
logLik(fm1, REML = TRUE)

logLik.lmeStruct Log-Likelihood of an lmeStruct Object

Description

Pars is used to update the coefficients of the model components of object and the individual
(restricted) log-likelihood contributions of each component are added together. The type of log-
likelihood (restricted or not) is determined by the settings attribute of object.

Usage

S3 method for class 'lmeStruct'
logLik(object, Pars, conLin, ...)

Arguments

object an object inheriting from class "lmeStruct", representing a list of linear mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

Pars the parameter values at which the (restricted) log-likelihood is to be evaluated.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying lme
model. Defaults to attr(object, "conLin").

... some methods for this generic require additional arguments. None are used in
this method.

Value

the (restricted) log-likelihood for the linear mixed-effects model described by object, evaluated at
Pars.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, lmeStruct, logLik.lme

logLik.lmList 167

logLik.lmList Log-Likelihood of an lmList Object

Description

If pool=FALSE, the (restricted) log-likelihoods of the lm components of object are summed to-
gether. Else, the (restricted) log-likelihood of the lm fit with different coefficients for each level of
the grouping factor associated with the partitioning of the object components is obtained.

Usage

S3 method for class 'lmList'
logLik(object, REML, pool, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

REML an optional logical value. If TRUE the restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults to FALSE.

pool an optional logical value indicating whether all lm components of object may
be assumed to have the same error variance. Default is attr(object, "pool").

... some methods for this generic require additional arguments. None are used in
this method.

Value

either the sum of the (restricted) log-likelihoods of each lm component in object, or the (restricted)
log-likelihood for the lm fit with separate coefficients for each component of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, logLik.lme,

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
logLik(fm1) # returns NA when it should not

168 logLik.reStruct

logLik.reStruct Calculate reStruct Log-Likelihood

Description

Calculates the log-likelihood, or restricted log-likelihood, of the Gaussian linear mixed-effects
model represented by object and conLin (assuming spherical within-group covariance structure),
evaluated at coef(object). The settings attribute of object determines whether the log-likelihood,
or the restricted log-likelihood, is to be calculated. The computational methods are described in
Bates and Pinheiro (1998).

Usage

S3 method for class 'reStruct'
logLik(object, conLin, ...)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the log-likelihood, or restricted log-likelihood, of linear mixed-effects model represented by object
and conLin, evaluated at coef{object}.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct, pdMat, logLik.lme

logLik.varFunc 169

logLik.varFunc Extract varFunc logLik

Description

This method function extracts the component of a Gaussian log-likelihood associated with the vari-
ance function structure represented by object, which is equal to the sum of the logarithms of the
corresponding weights.

Usage

S3 method for class 'varFunc'
logLik(object, data, ...)

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

data this argument is included to make this method function compatible with other
logLik methods and will be ignored.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the sum of the logarithms of the weights corresponding to the variance function structure repre-
sented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

logLik.lme

Examples

vf1 <- varPower(form = ~age)
vf1 <- Initialize(vf1, Orthodont)
coef(vf1) <- 0.1
logLik(vf1)

170 MathAchieve

Machines Productivity Scores for Machines and Workers

Description

The Machines data frame has 54 rows and 3 columns.

Format

This data frame contains the following columns:

Worker an ordered factor giving the unique identifier for the worker.
Machine a factor with levels A, B, and C identifying the machine brand.
score a productivity score.

Details

Data on an experiment to compare three brands of machines used in an industrial process are pre-
sented in Milliken and Johnson (p. 285, 1992). Six workers were chosen randomly among the
employees of a factory to operate each machine three times. The response is an overall productivity
score taking into account the number and quality of components produced.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.14)

Milliken, G. A. and Johnson, D. E. (1992), Analysis of Messy Data, Volume I: Designed Experi-
ments, Chapman and Hall, London.

MathAchieve Mathematics achievement scores

Description

The MathAchieve data frame has 7185 rows and 6 columns.

Format

This data frame contains the following columns:

School an ordered factor identifying the school that the student attends
Minority a factor with levels No Yes indicating if the student is a member of a minority racial

group.
Sex a factor with levels Male Female
SES a numeric vector of socio-economic status.
MathAch a numeric vector of mathematics achievement scores.
MEANSES a numeric vector of the mean SES for the school.

MathAchSchool 171

Details

Each row in this data frame contains the data for one student.

Examples

summary(MathAchieve)

MathAchSchool School demographic data for MathAchieve

Description

The MathAchSchool data frame has 160 rows and 7 columns.

Format

This data frame contains the following columns:

School a factor giving the school on which the measurement is made.

Size a numeric vector giving the number of students in the school

Sector a factor with levels Public Catholic

PRACAD a numeric vector giving the percentage of students on the academic track

DISCLIM a numeric vector measuring the discrimination climate

HIMINTY a factor with levels 0 1

MEANSES a numeric vector giving the mean SES score.

Details

These variables give the school-level demographic data to accompany the MathAchieve data.

Matrix Assign Matrix Values

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include pdMat, pdBlocked, and reStruct.

Usage

matrix(object) <- value

172 Matrix.pdMat

Arguments

object any object to which as.matrix can be applied.

value a matrix, or list of matrices, with the same dimensions as as.matrix(object)
with the new values to be assigned to the matrix associated with object.

Value

will depend on the method function; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

as.matrix, also for examples, matrix<-.pdMat, matrix<-.reStruct.

Matrix.pdMat Assign Matrix to a pdMat or pdBlocked Object

Description

The positive-definite matrix represented by object is replaced by value. If the original matrix had
row and/or column names, the corresponding names for value can either be NULL, or a permutation
of the original names.

Usage

S3 replacement method for class 'pdMat'
matrix(object) <- value
S3 replacement method for class 'pdBlocked'
matrix(object) <- value

Arguments

object an object inheriting from class "pdMat", representing a positive definite matrix.

value a matrix with the new values to be assigned to the positive-definite matrix rep-
resented by object. Must have the same dimensions as as.matrix(object).

Value

a pdMat or pdBlocked object similar to object, but with its coefficients modified to produce the
matrix in value.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

Matrix.reStruct 173

See Also

pdMat, "matrix<-"

Examples

class(pd1 <- pdSymm(diag(3))) # "pdSymm" "pdMat"
matrix(pd1) <- diag(1:3)
pd1

Matrix.reStruct Assign reStruct Matrices

Description

The individual matrices in value are assigned to each pdMat component of object, in the order
they are listed. The new matrices must have the same dimensions as the matrices they are meant to
replace.

Usage

S3 replacement method for class 'reStruct'
matrix(object) <- value

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

value a matrix, or list of matrices, with the new values to be assigned to the matrices
associated with the pdMat components of object.

Value

an reStruct object similar to object, but with the coefficients of the individual pdMat components
modified to produce the matrices listed in value.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct, pdMat, "matrix<-"

Examples

rs1 <- reStruct(list(Dog = ~day, Side = ~1), data = Pixel)
matrix(rs1) <- list(diag(2), 3)

174 Milk

Meat Tenderness of meat

Description

The Meat data frame has 30 rows and 4 columns.

Format

This data frame contains the following columns:

Storage an ordered factor specifying the storage treatment - 1 (0 days), 2 (1 day), 3 (2 days), 4 (4
days), 5 (9 days), and 6 (18 days)

score a numeric vector giving the tenderness score of beef roast.

Block an ordered factor identifying the muscle from which the roast was extracted with levels II
< V < I < III < IV

Pair an ordered factor giving the unique identifier for each pair of beef roasts with levels II-1 <
. . . < IV-1

Details

Cochran and Cox (section 11.51, 1957) describe data from an experiment conducted at Iowa State
College (Paul, 1943) to compare the effects of length of cold storage on the tenderness of beef
roasts. Six storage periods ranging from 0 to 18 days were used. Thirty roasts were scored by four
judges on a scale from 0 to 10, with the score increasing with tenderness. The response was the sum
of all four scores. Left and right roasts from the same animal were grouped into pairs, which were
further grouped into five blocks, according to the muscle from which they were extracted. Different
storage periods were applied to each roast within a pair according to a balanced incomplete block
design.

Source

Cochran, W. G. and Cox, G. M. (1957), Experimental Designs, Wiley, New York.

Milk Protein content of cows’ milk

Description

The Milk data frame has 1337 rows and 4 columns.

model.matrix.reStruct 175

Format

This data frame contains the following columns:

protein a numeric vector giving the protein content of the milk.

Time a numeric vector giving the time since calving (weeks).

Cow an ordered factor giving a unique identifier for each cow.

Diet a factor with levels barley, barley+lupins, and lupins identifying the diet for each cow.

Details

Diggle, Liang, and Zeger (1994) describe data on the protein content of cows’ milk in the weeks
following calving. The cattle are grouped according to whether they are fed a diet with barley alone,
with barley and lupins, or with lupins alone.

Source

Diggle, Peter J., Liang, Kung-Yee and Zeger, Scott L. (1994), Analysis of longitudinal data, Oxford
University Press, Oxford.

model.matrix.reStruct reStruct Model Matrix

Description

The model matrices for each element of formula(object), calculated using data, are bound to-
gether column-wise. When multiple grouping levels are present (i.e. when length(object) > 1),
the individual model matrices are combined from innermost (at the leftmost position) to outermost
(at the rightmost position).

Usage

S3 method for class 'reStruct'
model.matrix(object, data, contrast, ...)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

data a data frame in which to evaluate the variables defined in formula(object).

contrast an optional named list specifying the contrasts to be used for representing the
factor variables in data. The components names should match the names of
the variables in data for which the contrasts are to be specified. The components
of this list will be used as the contrasts attribute of the corresponding factor.
If missing, the default contrast specification is used.

... some methods for this generic require additional arguments. None are used in
this method.

176 Muscle

Value

a matrix obtained by binding together, column-wise, the model matrices for each element of formula(object).

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

model.matrix, contrasts, reStruct, formula.reStruct

Examples

rs1 <- reStruct(list(Dog = ~day, Side = ~1), data = Pixel)
model.matrix(rs1, Pixel)

Muscle Contraction of heart muscle sections

Description

The Muscle data frame has 60 rows and 3 columns.

Format

This data frame contains the following columns:

Strip an ordered factor indicating the strip of muscle being measured.

conc a numeric vector giving the concentration of CaCl2

length a numeric vector giving the shortening of the heart muscle strip.

Details

Baumann and Waldvogel (1963) describe data on the shortening of heart muscle strips dipped in a
CaCl2 solution. The muscle strips are taken from the left auricle of a rat’s heart.

Source

Baumann, F. and Waldvogel, F. (1963), La restitution pastsystolique de la contraction de l’oreillette
gauche du rat. Effets de divers ions et de l’acetylcholine, Helvetica Physiologica Acta, 21.

Names 177

Names Names Associated with an Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: formula, pdBlocked, pdMat, and
reStruct.

Usage

Names(object, ...)
Names(object, ...) <- value

Arguments

object any object for which names can be extracted and/or assigned.

... some methods for this generic function require additional arguments.

value names to be assigned to object.

Value

will depend on the method function used; see the appropriate documentation.

SIDE EFFECTS

On the left side of an assignment, sets the names associated with object to value, which must have
an appropriate length.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Names.formula, Names.pdBlocked, Names.pdMat, Names.reStruct

178 Names.formula

Names.formula Extract Names from a formula

Description

This method function returns the names of the terms corresponding to the right hand side of object
(treated as a linear formula), obtained as the column names of the corresponding model.matrix.

Usage

S3 method for class 'formula'
Names(object, data, exclude, ...)

Arguments

object an object inheriting from class "formula".

data an optional data frame containing the variables specified in object. By default
the variables are taken from the environment from which Names.formula is
called.

exclude an optional character vector with names to be excluded from the returned value.
Default is c("pi",".").

... some methods for this generic require additional arguments. None are used in
this method.

Value

a character vector with the column names of the model.matrix corresponding to the right hand
side of object which are not listed in excluded.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

model.matrix, terms, Names

Examples

Names(distance ~ Sex * age, data = Orthodont)

Names.pdBlocked 179

Names.pdBlocked Names of a pdBlocked Object

Description

This method function extracts the first element of the Dimnames attribute, which contains the column
names, for each block diagonal element in the matrix represented by object.

Usage

S3 method for class 'pdBlocked'
Names(object, asList, ...)

Arguments

object an object inheriting from class "pdBlocked" representing a positive-definite ma-
trix with block diagonal structure

asList a logical value. If TRUE a list with the names for each block diagonal element is
returned. If FALSE a character vector with all column names is returned. Defaults
to FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if asList is FALSE, a character vector with column names of the matrix represented by object;
otherwise, if asList is TRUE, a list with components given by the column names of the individual
block diagonal elements in the matrix represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Names, Names.pdMat

Examples

pd1 <- pdBlocked(list(~Sex - 1, ~age - 1), data = Orthodont)
Names(pd1)

180 Names.pdMat

Names.pdMat Names of a pdMat Object

Description

This method function returns the fist element of the Dimnames attribute of object, which contains
the column names of the matrix represented by object.

Usage

S3 method for class 'pdMat'
Names(object, ...)
S3 replacement method for class 'pdMat'
Names(object, ...) <- value

Arguments

object an object inheriting from class "pdMat", representing a positive-definite matrix.

value a character vector with the replacement values for the column and row names of
the matrix represented by object. It must have length equal to the dimension of
the matrix represented by object and, if names have been previously assigned
to object, it must correspond to a permutation of the original names.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if object has a Dimnames attribute then the first element of this attribute is returned; otherwise
NULL.

SIDE EFFECTS

On the left side of an assignment, sets the Dimnames attribute of object to list(value, value).

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Names, Names.pdBlocked

Examples

pd1 <- pdSymm(~age, data = Orthodont)
Names(pd1)

Names.reStruct 181

Names.reStruct Names of an reStruct Object

Description

This method function extracts the column names of each of the positive-definite matrices repre-
sented the pdMat elements of object.

Usage

S3 method for class 'reStruct'
Names(object, ...)
S3 replacement method for class 'reStruct'
Names(object, ...) <- value

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

value a list of character vectors with the replacement values for the names of the indi-
vidual pdMat objects that form object. It must have the same length as object.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list containing the column names of each of the positive-definite matrices represented by the pdMat
elements of object.

SIDE EFFECTS

On the left side of an assignment, sets the Names of the pdMat elements of object to the corre-
sponding element of value.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct, pdMat, Names.pdMat

Examples

rs1 <- reStruct(list(Dog = ~day, Side = ~1), data = Pixel)
Names(rs1)

182 needUpdate.modelStruct

needUpdate Check if Update is Needed

Description

This function is generic; method functions can be written to handle specific classes of objects. By
default, it tries to extract a needUpdate attribute of object. If this is NULL or FALSE it returns
FALSE; else it returns TRUE. Updating of objects usually takes place in iterative algorithms in which
auxiliary quantities associated with the object, and not being optimized over, may change.

Usage

needUpdate(object)

Arguments

object any object

Value

a logical value indicating whether object needs to be updated.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

needUpdate.modelStruct

Examples

vf1 <- varExp()
vf1 <- Initialize(vf1, data = Orthodont)
needUpdate(vf1)

needUpdate.modelStruct

Check if a modelStruct Object Needs Updating

Description

This method function checks if any of the elements of object needs to be updated. Updating of
objects usually takes place in iterative algorithms in which auxiliary quantities associated with the
object, and not being optimized over, may change.

Nitrendipene 183

Usage

S3 method for class 'modelStruct'
needUpdate(object)

Arguments

object an object inheriting from class "modelStruct", representing a list of model
components, such as corStruct and varFunc objects.

Value

a logical value indicating whether any element of object needs to be updated.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

needUpdate

Examples

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ~age)),
varStruct = varPower(form = ~age))

needUpdate(lms1)

Nitrendipene Assay of nitrendipene

Description

The Nitrendipene data frame has 89 rows and 4 columns.

Format

This data frame contains the following columns:

activity a numeric vector

NIF a numeric vector

Tissue an ordered factor with levels 2 < 1 < 3 < 4

log.NIF a numeric vector

Source

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
New York.

184 nlme

nlme Nonlinear Mixed-Effects Models

Description

This generic function fits a nonlinear mixed-effects model in the formulation described in Lindstrom
and Bates (1990) but allowing for nested random effects. The within-group errors are allowed to be
correlated and/or have unequal variances.

Usage

nlme(model, data, fixed, random, groups, start, correlation, weights,
subset, method, na.action, naPattern, control, verbose)

S3 method for class 'formula'
nlme(model, data, fixed, random, groups, start, correlation, weights,

subset, method, na.action, naPattern, control, verbose)

Arguments

model a nonlinear model formula, with the response on the left of a ~ operator and
an expression involving parameters and covariates on the right, or an nlsList
object. If data is given, all names used in the formula should be defined as
parameters or variables in the data frame. The method function nlme.nlsList
is documented separately.

data an optional data frame containing the variables named in model, fixed, random,
correlation, weights, subset, and naPattern. By default the variables are
taken from the environment from which nlme is called.

fixed a two-sided linear formula of the form f1+...+fn~x1+...+xm, or a list of two-
sided formulas of the form f1~x1+...+xm, with possibly different models for
different parameters. The f1,...,fn are the names of parameters included on
the right hand side of model and the x1+...+xm expressions define linear models
for these parameters (when the left hand side of the formula contains several
parameters, they all are assumed to follow the same linear model, described by
the right hand side expression). A 1 on the right hand side of the formula(s)
indicates a single fixed effects for the corresponding parameter(s).

random optionally, any of the following: (i) a two-sided formula of the form r1+...+rn~x1+...+xm
| g1/.../gQ, with r1,...,rn naming parameters included on the right hand
side of model, x1+...+xm specifying the random-effects model for these pa-
rameters and g1/.../gQ the grouping structure (Q may be equal to 1, in which
case no / is required). The random effects formula will be repeated for all
levels of grouping, in the case of multiple levels of grouping; (ii) a two-sided
formula of the form r1+...+rn~x1+..+xm, a list of two-sided formulas of the
form r1~x1+...+xm, with possibly different random-effects models for differ-
ent parameters, a pdMat object with a two-sided formula, or list of two-sided

nlme 185

formulas (i.e. a non-NULL value for formula(random)), or a list of pdMat ob-
jects with two-sided formulas, or lists of two-sided formulas. In this case, the
grouping structure formula will be given in groups, or derived from the data
used to fit the nonlinear mixed-effects model, which should inherit from class
groupedData,; (iii) a named list of formulas, lists of formulas, or pdMat ob-
jects as in (ii), with the grouping factors as names. The order of nesting will be
assumed the same as the order of the order of the elements in the list; (iv) an
reStruct object. See the documentation on pdClasses for a description of the
available pdMat classes. Defaults to fixed, resulting in all fixed effects having
also random effects.

groups an optional one-sided formula of the form ~g1 (single level of nesting) or ~g1/.../gQ
(multiple levels of nesting), specifying the partitions of the data over which the
random effects vary. g1,...,gQ must evaluate to factors in data. The order of
nesting, when multiple levels are present, is taken from left to right (i.e. g1 is
the first level, g2 the second, etc.).

start an optional numeric vector, or list of initial estimates for the fixed effects and
random effects. If declared as a numeric vector, it is converted internally to a
list with a single component fixed, given by the vector. The fixed component
is required, unless the model function inherits from class selfStart, in which
case initial values will be derived from a call to nlsList. An optional random
component is used to specify initial values for the random effects and should
consist of a matrix, or a list of matrices with length equal to the number of
grouping levels. Each matrix should have as many rows as the number of groups
at the corresponding level and as many columns as the number of random effects
in that level.

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to no within-group corre-
lations.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "ML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes nlme to print an error message and terminate if
there are any incomplete observations.

naPattern an expression or formula object, specifying which returned values are to be re-
garded as missing.

control a list of control values for the estimation algorithm to replace the default values
returned by the function nlmeControl. Defaults to an empty list.

186 nlme

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

Value

an object of class nlme representing the nonlinear mixed-effects model fit. Generic functions such
as print, plot and summary have methods to show the results of the fit. See nlmeObject for the
components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects
can be used to extract some of its components.

Note

The function does not do any scaling internally: the optimization will work best when the response
is scaled so its variance is of the order of one.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The model formulation and computational methods are described in Lindstrom, M.J. and Bates,
D.M. (1990). The variance-covariance parametrizations are described in Pinheiro and Bates (1996).

Lindstrom, M.J. and Bates, D.M. (1990) "Nonlinear Mixed Effects Models for Repeated Measures
Data", Biometrics, 46, 673-687.

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

For the different correlation structures, variance functions and links, see ‘References’ in lme.

See Also

nlmeControl, nlme.nlsList, nlmeObject, nlsList, nlmeStruct, pdClasses, reStruct, varFunc,
corClasses, varClasses

Examples

fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1,
start = c(Asym = 103, R0 = -8.5, lrc = -3.3))

summary(fm1)
fm2 <- update(fm1, random = pdDiag(Asym + lrc ~ 1))
summary(fm2)

nlme.nlsList 187

nlme.nlsList NLME fit from nlsList Object

Description

If the random effects names defined in random are a subset of the lmList object coefficient names,
initial estimates for the covariance matrix of the random effects are obtained (overwriting any values
given in random). formula(fixed) and the data argument in the calling sequence used to obtain
fixed are passed as the fixed and data arguments to nlme.formula, together with any other
additional arguments in the function call. See the documentation on nlme.formula for a description
of that function.

Usage

S3 method for class 'nlsList'
nlme(model, data, fixed, random, groups, start, correlation, weights,

subset, method, na.action, naPattern, control, verbose)

Arguments

model an object inheriting from class "nlsList", representing a list of nls fits with a
common model.

data this argument is included for consistency with the generic function. It is ignored
in this method function.

fixed this argument is included for consistency with the generic function. It is ignored
in this method function.

random an optional one-sided linear formula with no conditioning expression, or a pdMat
object with a formula attribute. Multiple levels of grouping are not allowed with
this method function. Defaults to a formula consisting of the right hand side of
formula(fixed).

groups an optional one-sided formula of the form ~g1 (single level of nesting) or ~g1/.../gQ
(multiple levels of nesting), specifying the partitions of the data over which the
random effects vary. g1,...,gQ must evaluate to factors in data. The order of
nesting, when multiple levels are present, is taken from left to right (i.e. g1 is
the first level, g2 the second, etc.).

start an optional numeric vector, or list of initial estimates for the fixed effects and
random effects. If declared as a numeric vector, it is converted internally to a
list with a single component fixed, given by the vector. The fixed component
is required, unless the model function inherits from class selfStart, in which
case initial values will be derived from a call to nlsList. An optional random
component is used to specify initial values for the random effects and should
consist of a matrix, or a list of matrices with length equal to the number of
grouping levels. Each matrix should have as many rows as the number of groups
at the corresponding level and as many columns as the number of random effects
in that level.

188 nlme.nlsList

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. Defaults to NULL, corresponding to no within-group corre-
lations.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "ML".

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes nlme to print an error message and terminate if
there are any incomplete observations.

naPattern an expression or formula object, specifying which returned values are to be re-
garded as missing.

control a list of control values for the estimation algorithm to replace the default values
returned by the function nlmeControl. Defaults to an empty list.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

Value

an object of class nlme representing the linear mixed-effects model fit. Generic functions such as
print, plot and summary have methods to show the results of the fit. See nlmeObject for the
components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects
can be used to extract some of its components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

The computational methods follow on the general framework of Lindstrom, M.J. and Bates, D.M.
(1988). The model formulation is described in Laird, N.M. and Ware, J.H. (1982). The variance-
covariance parametrizations are described in <Pinheiro, J.C. and Bates., D.M. (1996). The different
correlation structures available for the correlation argument are described in Box, G.E.P., Jenkins,
G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D.
(1996), and Venables, W.N. and Ripley, B.D. (2002). The use of variance functions for linear and
nonlinear mixed effects models is presented in detail in Davidian, M. and Giltinan, D.M. (1995).

Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Con-
trol", 3rd Edition, Holden-Day.

nlmeControl 189

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measure-
ment Data", Chapman and Hall.

Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics,
38, 963-974.

Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-
Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83,
1014-1022.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed
Models", SAS Institute.

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

Venables, W.N. and Ripley, B.D. (2002) "Modern Applied Statistics with S", 4th Edition, Springer-
Verlag.

See Also

nlme, lmList, nlmeObject

Examples

fm1 <- nlsList(SSasymp, data = Loblolly)
fm2 <- nlme(fm1, random = Asym ~ 1)
summary(fm1)
summary(fm2)

nlmeControl Control Values for nlme Fit

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the control argument to the nlme function.

Usage

nlmeControl(maxIter, pnlsMaxIter, msMaxIter, minScale,
tolerance, niterEM, pnlsTol, msTol,
returnObject, msVerbose, msWarnNoConv,
gradHess, apVar, .relStep, minAbsParApVar = 0.05,
opt = c("nlminb", "nlm"), natural = TRUE, sigma = NULL, ...)

190 nlmeControl

Arguments

maxIter maximum number of iterations for the nlme optimization algorithm. Default is
50.

pnlsMaxIter maximum number of iterations for the PNLS optimization step inside the nlme
optimization. Default is 7.

msMaxIter maximum number of iterations for nlminb (iter.max) or the nlm (iterlim,
from the 10-th step) optimization step inside the nlme optimization. Default is
50 (which may be too small for e.g. for overparametrized cases).

minScale minimum factor by which to shrink the default step size in an attempt to decrease
the sum of squares in the PNLS step. Default 0.001.

tolerance tolerance for the convergence criterion in the nlme algorithm. Default is 1e-6.
niterEM number of iterations for the EM algorithm used to refine the initial estimates of

the random effects variance-covariance coefficients. Default is 25.
pnlsTol tolerance for the convergence criterion in PNLS step. Default is 1e-3.
msTol tolerance for the convergence criterion in nlm, passed as the gradtol argument

to the function (see documentation on nlm). Default is 1e-7.
returnObject a logical value indicating whether the fitted object should be returned when the

maximum number of iterations is reached without convergence of the algorithm.
Default is FALSE.

msVerbose a logical value passed as the trace to nlminb(.., control= list(trace = *,
..)) or as argument print.level to nlm(). Default is FALSE.

msWarnNoConv logical indicating if a warning should be signalled whenever the minimization
(by opt) in the LME step does not converge; defaults to TRUE.

gradHess a logical value indicating whether numerical gradient vectors and Hessian ma-
trices of the log-likelihood function should be used in the nlm optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no "varying" parameters and the
pdMat classes used in the random effects structure are pdSymm (general positive-
definite), pdDiag (diagonal), pdIdent (multiple of the identity), or pdCompSymm
(compound symmetry). Default is TRUE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3).
minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance

calculation. The default is 0.05.
opt the optimizer to be used, either "nlminb" (the default) or "nlm".
natural a logical value indicating whether the pdNatural parametrization should be

used for general positive-definite matrices (pdSymm) in reStruct, when the ap-
proximate covariance matrix of the estimators is calculated. Default is TRUE.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

... Further, named control arguments to be passed to nlminb (apart from trace and
iter.max mentioned above), where used (eval.max and those from abs.tol
down).

nlmeObject 191

Value

a list with components for each of the possible arguments.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>; the sigma option: Siem Heisterkamp
and Bert van Willigen.

See Also

nlme, nlm, optim, nlmeStruct

Examples

decrease the maximum number of iterations and request tracing
nlmeControl(msMaxIter = 20, msVerbose = TRUE)

nlmeObject Fitted nlme Object

Description

An object returned by the nlme function, inheriting from class "nlme", also inheriting from class
"lme", and representing a fitted nonlinear mixed-effects model. Objects of this class have methods
for the generic functions anova, coef, fitted, fixed.effects, formula, getGroups, getResponse,
intervals, logLik, pairs, plot, predict, print, random.effects, residuals, summary, and
update.

Value

The following components must be included in a legitimate "nlme" object.

apVar an approximate covariance matrix for the variance-covariance coefficients. If
apVar = FALSE in the control values used in the call to nlme, this component is
NULL.

call a list containing an image of the nlme call that produced the object.

coefficients a list with two components, fixed and random, where the first is a vector con-
taining the estimated fixed effects and the second is a list of matrices with the
estimated random effects for each level of grouping. For each matrix in the
random list, the columns refer to the random effects and the rows to the groups.

contrasts a list of the contrast matrices used to represent factors in the fixed effects for-
mula and/or random effects formula. This information is important for making
predictions from a new data frame in which not all levels of the original factors
are observed. If no factors are used in the nlme model, this component will be
an empty list.

192 nlmeObject

dims a list with basic dimensions used in the nlme fit, including the components N -
the number of observations in the data, Q - the number of grouping levels, qvec -
the number of random effects at each level from innermost to outermost (last two
values are equal to zero and correspond to the fixed effects and the response),
ngrps - the number of groups at each level from innermost to outermost (last
two values are one and correspond to the fixed effects and the response), and
ncol - the number of columns in the model matrix for each level of grouping
from innermost to outermost (last two values are equal to the number of fixed
effects and one).

fitted a data frame with the fitted values as columns. The leftmost column corresponds
to the population fixed effects (corresponding to the fixed effects only) and suc-
cessive columns from left to right correspond to increasing levels of grouping.

fixDF a list with components X and terms specifying the denominator degrees of free-
dom for, respectively, t-tests for the individual fixed effects and F-tests for the
fixed-effects terms in the models.

groups a data frame with the grouping factors as columns. The grouping level increases
from left to right.

logLik the (restricted) log-likelihood at convergence.

map a list with components fmap, rmap, rmapRel, and bmap, specifying various map-
pings for the fixed and random effects, used to generate predictions from the
fitted object.

method the estimation method: either "ML" for maximum likelihood, or "REML" for re-
stricted maximum likelihood.

modelStruct an object inheriting from class nlmeStruct, representing a list of mixed-effects
model components, such as reStruct, corStruct, and varFunc objects.

numIter the number of iterations used in the iterative algorithm.

residuals a data frame with the residuals as columns. The leftmost column corresponds to
the population residuals and successive columns from left to right correspond to
increasing levels of grouping.

sigma the estimated within-group error standard deviation.

varFix an approximate covariance matrix of the fixed effects estimates.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

nlme, nlmeStruct

nlmeStruct 193

nlmeStruct Nonlinear Mixed-Effects Structure

Description

A nonlinear mixed-effects structure is a list of model components representing different sets of pa-
rameters in the nonlinear mixed-effects model. An nlmeStruct list must contain at least a reStruct
object, but may also contain corStruct and varFunc objects. NULL arguments are not included in
the nlmeStruct list.

Usage

nlmeStruct(reStruct, corStruct, varStruct)

Arguments

reStruct a reStruct representing a random effects structure.

corStruct an optional corStruct object, representing a correlation structure. Default is
NULL.

varStruct an optional varFunc object, representing a variance function structure. Default
is NULL.

Value

a list of model components determining the parameters to be estimated for the associated nonlinear
mixed-effects model.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corClasses, nlme, residuals.nlmeStruct, reStruct, varFunc

Examples

nlms1 <- nlmeStruct(reStruct(~age), corAR1(), varPower())

194 nlsList

nlsList List of nls Objects with a Common Model

Description

Data is partitioned according to the levels of the grouping factor defined in model and individual
nls fits are obtained for each data partition, using the model defined in model.

Usage

nlsList(model, data, start, control, level, subset,
na.action = na.fail, pool = TRUE, warn.nls = NA)

S3 method for class 'formula'
nlsList(model, data, start, control, level, subset,

na.action = na.fail, pool = TRUE, warn.nls = NA)

S3 method for class 'nlsList'
update(object, model., ..., evaluate = TRUE)

Arguments

object an object inheriting from class nlsList, representing a list of fitted nls objects.

model either a nonlinear model formula, with the response on the left of a ~ operator
and an expression involving parameters, covariates, and a grouping factor sep-
arated by the | operator on the right, or a selfStart function. The method
function nlsList.selfStart is documented separately.

model. changes to the model – see update.formula for details.

data a data frame in which to interpret the variables named in model.

start an optional named list with initial values for the parameters to be estimated in
model. It is passed as the start argument to each nls call and is required when
the nonlinear function in model does not inherit from class selfStart.

control a list of control values passed as the control argument to nls. Defaults to an
empty list.

level an optional integer specifying the level of grouping to be used when multiple
nested levels of grouping are present.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes nlsList to print an error message and terminate
if there are any incomplete observations.

nlsList 195

pool an optional logical value that is preserved as an attribute of the returned value.
This will be used as the default for pool in calculations of standard deviations
or standard errors for summaries.

warn.nls logical indicating if nls() errors (all of which are caught by tryCatch) should
be signalled as a “summarizing” warning.

... some methods for this generic require additional arguments. None are used in
this method.

evaluate If TRUE evaluate the new call else return the call.

Details

As nls(.) is called on each sub group, and convergence of these may be problematic, these calls
happen with error catching.

Since nlme version 3.1-127 (2016-04), all the errors are caught (via tryCatch) and if present, a
“summarizing” warning is stored as attribute of the resulting "nlsList" object and signalled unless
suppressed by warn.nls = FALSE or currently also when warn.nls = NA (default) and getOption("show.error.messages")
is false.

nlsList() originally had used try(*) (with its default silent=FALSE) and hence all errors were
printed to the console unless the global option show.error.messages was set to true. This still
works, but has been deprecated.

Value

a list of nls objects with as many components as the number of groups defined by the grouping fac-
tor. Generic functions such as coef, fixed.effects, lme, pairs, plot, predict, random.effects,
summary, and update have methods that can be applied to an nlsList object.

References

Pinheiro, J.C., and Bates, D.M. (2000), Mixed-Effects Models in S and S-PLUS, Springer.

See Also

nls, nlme.nlsList, nlsList.selfStart, summary.nlsList

Examples

fm1 <- nlsList(uptake ~ SSasympOff(conc, Asym, lrc, c0),
data = CO2, start = c(Asym = 30, lrc = -4.5, c0 = 52))

summary(fm1)
cfm1 <- confint(fm1) # via profiling each % FIXME: only *one* message instead of one *each*
mat.class <- class(matrix(1)) # ("matrix", "array") for R >= 4.0.0; ("matrix" in older R)
i.ok <- which(vapply(cfm1,

function(r) identical(class(r), mat.class), NA))
stopifnot(length(i.ok) > 0, !anyNA(match(c(2:4, 6:9, 12), i.ok)))
where as (some of) the others gave errors during profile re-fitting :
str(cfm1[- i.ok])

196 nlsList.selfStart

nlsList.selfStart nlsList Fit from a selfStart Function

Description

The response variable and primary covariate in formula(data) are used together with model to
construct the nonlinear model formula. This is used in the nls calls and, because a self-starting
model function can calculate initial estimates for its parameters from the data, no starting estimates
need to be provided.

Usage

S3 method for class 'selfStart'
nlsList(model, data, start, control, level, subset,

na.action = na.fail, pool = TRUE, warn.nls = NA)

Arguments

model a "selfStart" model function, which calculates initial estimates for the model
parameters from data.

data a data frame in which to interpret the variables in model. Because no grouping
factor can be specified in model, data must inherit from class "groupedData".

start an optional named list with initial values for the parameters to be estimated in
model. It is passed as the start argument to each nls call and is required when
the nonlinear function in model does not inherit from class selfStart.

control a list of control values passed as the control argument to nls. Defaults to an
empty list.

level an optional integer specifying the level of grouping to be used when multiple
nested levels of grouping are present.

subset an optional expression indicating the subset of the rows of data that should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes nlsList to print an error message and terminate
if there are any incomplete observations.

pool, warn.nls optional logicals, see nlsList.

Value

a list of nls objects with as many components as the number of groups defined by the grouping
factor. A NULL value is assigned to the components corresponding to clusters for which the nls
algorithm failed to converge. Generic functions such as coef, fixed.effects, lme, pairs, plot,
predict, random.effects, summary, and update have methods that can be applied to an nlsList
object.

Oats 197

See Also

selfStart, groupedData, nls, nlsList, nlme.nlsList, nlsList.formula

Examples

fm1 <- nlsList(SSasympOff, CO2)
summary(fm1)

Oats Split-plot Experiment on Varieties of Oats

Description

The Oats data frame has 72 rows and 4 columns.

Format

This data frame contains the following columns:

Block an ordered factor with levels VI < V < III < IV < II < I

Variety a factor with levels Golden Rain Marvellous Victory

nitro a numeric vector

yield a numeric vector

Details

These data have been introduced by Yates (1935) as an example of a split-plot design. The treatment
structure used in the experiment was a 3 × 4 full factorial, with three varieties of oats and four
concentrations of nitrogen. The experimental units were arranged into six blocks, each with three
whole-plots subdivided into four subplots. The varieties of oats were assigned randomly to the
whole-plots and the concentrations of nitrogen to the subplots. All four concentrations of nitrogen
were used on each whole-plot.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.15)

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. (4th ed), Springer, New
York.

198 Orthodont

Orthodont Growth curve data on an orthdontic measurement

Description

The Orthodont data frame has 108 rows and 4 columns of the change in an orthdontic measurement
over time for several young subjects.

Format

This data frame contains the following columns:

distance a numeric vector of distances from the pituitary to the pterygomaxillary fissure (mm).
These distances are measured on x-ray images of the skull.

age a numeric vector of ages of the subject (yr).

Subject an ordered factor indicating the subject on which the measurement was made. The levels
are labelled M01 to M16 for the males and F01 to F13 for the females. The ordering is by
increasing average distance within sex.

Sex a factor with levels Male and Female

Details

Investigators at the University of North Carolina Dental School followed the growth of 27 children
(16 males, 11 females) from age 8 until age 14. Every two years they measured the distance be-
tween the pituitary and the pterygomaxillary fissure, two points that are easily identified on x-ray
exposures of the side of the head.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.17)

Potthoff, R. F. and Roy, S. N. (1964), “A generalized multivariate analysis of variance model useful
especially for growth curve problems”, Biometrika, 51, 313–326.

Examples

formula(Orthodont)
plot(Orthodont)

Ovary 199

Ovary Counts of Ovarian Follicles

Description

The Ovary data frame has 308 rows and 3 columns.

Format

This data frame contains the following columns:

Mare an ordered factor indicating the mare on which the measurement is made.

Time time in the estrus cycle. The data were recorded daily from 3 days before ovulation until
3 days after the next ovulation. The measurement times for each mare are scaled so that the
ovulations for each mare occur at times 0 and 1.

follicles the number of ovarian follicles greater than 10 mm in diameter.

Details

Pierson and Ginther (1987) report on a study of the number of large ovarian follicles detected in
different mares at several times in their estrus cycles.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.18)

Pierson, R. A. and Ginther, O. J. (1987), Follicular population dynamics during the estrus cycle of
the mare, Animal Reproduction Science, 14, 219-231.

Oxboys Heights of Boys in Oxford

Description

The Oxboys data frame has 234 rows and 4 columns.

Format

This data frame contains the following columns:

Subject an ordered factor giving a unique identifier for each boy in the experiment

age a numeric vector giving the standardized age (dimensionless)

height a numeric vector giving the height of the boy (cm)

Occasion an ordered factor - the result of converting age from a continuous variable to a count so
these slightly unbalanced data can be analyzed as balanced.

200 Oxide

Details

These data are described in Goldstein (1987) as data on the height of a selection of boys from
Oxford, England versus a standardized age.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.19)

Oxide Variability in Semiconductor Manufacturing

Description

The Oxide data frame has 72 rows and 5 columns.

Format

This data frame contains the following columns:

Source a factor with levels 1 and 2

Lot a factor giving a unique identifier for each lot.

Wafer a factor giving a unique identifier for each wafer within a lot.

Site a factor with levels 1, 2, and 3

Thickness a numeric vector giving the thickness of the oxide layer.

Details

These data are described in Littell et al. (1996, p. 155) as coming “from a passive data collection
study in the semiconductor industry where the objective is to estimate the variance components to
determine the assignable causes of the observed variability.” The observed response is the thickness
of the oxide layer on silicon wafers, measured at three different sites of each of three wafers selected
from each of eight lots sampled from the population of lots.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.20)

Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996), SAS System for Mixed
Models, SAS Institute, Cary, NC.

pairs.compareFits 201

pairs.compareFits Pairs Plot of compareFits Object

Description

Scatter plots of the values being compared are generated for each pair of coefficients in x. Different
symbols (colors) are used for each object being compared and values corresponding to the same
group are joined by a line, to facilitate comparison of fits. If only two coefficients are present, the
trellis function xyplot is used; otherwise the trellis function splom is used.

Usage

S3 method for class 'compareFits'
pairs(x, subset, key, ...)

Arguments

x an object of class compareFits.

subset an optional logical or integer vector specifying which rows of x should be used
in the plots. If missing, all rows are used.

key an optional logical value, or list. If TRUE, a legend is included at the top of
the plot indicating which symbols (colors) correspond to which objects being
compared. If FALSE, no legend is included. If given as a list, key is passed down
as an argument to the trellis function generating the plots (splom or xyplot).
Defaults to TRUE.

... optional arguments passed down to the trellis function generating the plots.

Value

Pairwise scatter plots of the values being compared, with different symbols (colors) used for each
object under comparison.

Author(s)

José Pinheiro and Douglas Bates

See Also

compareFits, plot.compareFits, pairs.lme, pairs.lmList, xyplot, splom

Examples

example(compareFits) # cF12 <- compareFits(coef(lmList(Orthodont)), .. lme(*))
pairs(cF12)

202 pairs.lme

pairs.lme Pairs Plot of an lme Object

Description

Diagnostic plots for the linear mixed-effects fit are obtained. The form argument gives considerable
flexibility in the type of plot specification. A conditioning expression (on the right side of a |
operator) always implies that different panels are used for each level of the conditioning factor,
according to a Trellis display. The expression on the right hand side of the formula, before a |
operator, must evaluate to a data frame with at least two columns. If the data frame has two columns,
a scatter plot of the two variables is displayed (the Trellis function xyplot is used). Otherwise, if
more than two columns are present, a scatter plot matrix with pairwise scatter plots of the columns
in the data frame is displayed (the Trellis function splom is used).

Usage

S3 method for class 'lme'
pairs(x, form, label, id, idLabels, grid, ...)

Arguments

x an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

form an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtain x can be referenced. In addition,
x itself can be referenced in the formula using the symbol ".". Conditional
expressions on the right of a | operator can be used to define separate panels in
a Trellis display. The expression on the right hand side of form, and to the left of
the | operator, must evaluate to a data frame with at least two columns. Default
is ~ coef(.) , corresponding to a pairs plot of the coefficients evaluated at the
innermost level of nesting.

label an optional character vector of labels for the variables in the pairs plot.
id an optional numeric value, or one-sided formula. If given as a value, it is used

as a significance level for an outlier test based on the Mahalanobis distances of
the estimated random effects. Groups with random effects distances greater than
the 1− value percentile of the appropriate chi-square distribution are identified
in the plot using idLabels. If given as a one-sided formula, its right hand side
must evaluate to a logical, integer, or character vector which is used to identify
points in the plot. If missing, no points are identified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the points identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified points. Default is the
innermost grouping factor.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed to the Trellis plot function.

pairs.lmList 203

Value

a diagnostic Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, pairs.compareFits, pairs.lmList, xyplot, splom

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)

scatter plot of coefficients by gender, identifying unusual subjects
pairs(fm1, ~coef(., augFrame = TRUE) | Sex, id = 0.1, adj = -0.5)

scatter plot of estimated random effects :
pairs(fm1, ~ranef(.))

pairs.lmList Pairs Plot of an lmList Object

Description

Diagnostic plots for the linear model fits corresponding to the x components are obtained. The form
argument gives considerable flexibility in the type of plot specification. A conditioning expression
(on the right side of a | operator) always implies that different panels are used for each level of
the conditioning factor, according to a Trellis display. The expression on the right hand side of the
formula, before a | operator, must evaluate to a data frame with at least two columns. If the data
frame has two columns, a scatter plot of the two variables is displayed (the Trellis function xyplot
is used). Otherwise, if more than two columns are present, a scatter plot matrix with pairwise scatter
plots of the columns in the data frame is displayed (the Trellis function splom is used).

Usage

S3 method for class 'lmList'
pairs(x, form, label, id, idLabels, grid, ...)

Arguments

x an object inheriting from class "lmList", representing a list of lm objects with
a common model.

204 pairs.lmList

form an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtain x can be referenced. In addition,
x itself can be referenced in the formula using the symbol ".". Conditional
expressions on the right of a | operator can be used to define separate panels in
a Trellis display. The expression on the right hand side of form, and to the left of
the | operator, must evaluate to a data frame with at least two columns. Default
is ~ coef(.) , corresponding to a pairs plot of the coefficients of x.

label an optional character vector of labels for the variables in the pairs plot.

id an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for an outlier test based on the Mahalanobis distances of
the estimated random effects. Groups with random effects distances greater than
the 1− value percentile of the appropriate chi-square distribution are identified
in the plot using idLabels. If given as a one-sided formula, its right hand side
must evaluate to a logical, integer, or character vector which is used to identify
points in the plot. If missing, no points are identified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted
to character and used to label the points identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified points. Default is the
innermost grouping factor.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, pairs.lme, pairs.compareFits, xyplot, splom

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)

scatter plot of coefficients by gender, identifying unusual subjects
pairs(fm1, ~coef(.) | Sex, id = 0.1, adj = -0.5)

scatter plot of estimated random effects -- "bivariate Gaussian (?)"
pairs(fm1, ~ranef(.))

PBG 205

PBG Effect of Phenylbiguanide on Blood Pressure

Description

The PBG data frame has 60 rows and 5 columns.

Format

This data frame contains the following columns:

deltaBP a numeric vector

dose a numeric vector

Run an ordered factor with levels T5 < T4 < T3 < T2 < T1 < P5 < P3 < P2 < P4 < P1

Treatment a factor with levels MDL 72222 Placebo

Rabbit an ordered factor with levels 5 < 3 < 2 < 4 < 1

Details

Data on an experiment to examine the effect of a antagonist MDL 72222 on the change in blood
pressure experienced with increasing dosage of phenylbiguanide are described in Ludbrook (1994)
and analyzed in Venables and Ripley (2002, section 10.3). Each of five rabbits was exposed to
increasing doses of phenylbiguanide after having either a placebo or the HD5-antagonist MDL
72222 administered.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.21)

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S (4th ed), Springer, New
York.

Ludbrook, J. (1994), Repeated measurements and multiple comparisons in cardiovascular research,
Cardiovascular Research, 28, 303-311.

pdBlocked Positive-Definite Block Diagonal Matrix

206 pdBlocked

Description

This function is a constructor for the pdBlocked class, representing a positive-definite block-
diagonal matrix. Each block-diagonal element of the underlying matrix is itself a positive-definite
matrix and is represented internally as an individual pdMat object. When value is numeric(0),
a list of uninitialized pdMat objects, a list of one-sided formulas, or a list of vectors of character
strings, object is returned as an uninitialized pdBlocked object (with just some of its attributes and
its class defined) and needs to have its coefficients assigned later, generally using the coef or matrix
replacement functions. If value is a list of initialized pdMat objects, object will be constructed
from the list obtained by applying as.matrix to each of the pdMat elements of value. Finally, if
value is a list of numeric vectors, they are assumed to represent the unrestricted coefficients of the
block-diagonal elements of the underlying positive-definite matrix.

Usage

pdBlocked(value, form, nam, data, pdClass)

Arguments

value an optional list with elements to be used as the value argument to other pdMat
constructors. These include: pdMat objects, positive-definite matrices, one-
sided linear formulas, vectors of character strings, or numeric vectors. All el-
ements in the list must be similar (e.g. all one-sided formulas, or all numeric
vectors). Defaults to numeric(0), corresponding to an uninitialized object.

form an optional list of one-sided linear formulas specifying the row/column names
for the block-diagonal elements of the matrix represented by object. Because
factors may be present in form, the formulas needs to be evaluated on a data.frame
to resolve the names they define. This argument is ignored when value is a list
of one-sided formulas. Defaults to NULL.

nam an optional list of vector of character strings specifying the row/column names
for the block-diagonal elements of the matrix represented by object. Each of
its components must have length equal to the dimension of the corresponding
block-diagonal element and unreplicated elements. This argument is ignored
when value is a list of vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is made
to obtain information on any factors appearing in the formulas. Defaults to the
parent frame from which the function was called.

pdClass an optional vector of character strings naming the pdMat classes to be assigned
to the individual blocks in the underlying matrix. If a single class is specified, it
is used for all block-diagonal elements. This argument will only be used when
value is missing, or its elements are not pdMat objects. Defaults to "pdSymm".

Value

a pdBlocked object representing a positive-definite block-diagonal matrix, also inheriting from
class pdMat.

pdClasses 207

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
162.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

pd1 <- pdBlocked(list(diag(1:2), diag(c(0.1, 0.2, 0.3))),
nam = list(c("A","B"), c("a1", "a2", "a3")))

pd1

pdClasses Positive-Definite Matrix Classes

Description

Standard classes of positive-definite matrices (pdMat) available in the nlme package.

Value

Available standard classes:

pdSymm general positive-definite matrix, with no additional structure

pdLogChol general positive-definite matrix, with no additional structure, using a log-Cholesky
parameterization

pdDiag diagonal

pdIdent multiple of an identity

pdCompSymm compound symmetry structure (constant diagonal and constant off-diagonal el-
ements)

pdBlocked block-diagonal matrix, with diagonal blocks of any "atomic" pdMat class

pdNatural general positive-definite matrix in natural parametrization (i.e. parametrized in
terms of standard deviations and correlations). The underlying coefficients are
not unrestricted, so this class should NOT be used for optimization.

Note

Users may define their own pdMat classes by specifying a constructor function and, at a minimum,
methods for the functions pdConstruct, pdMatrix, and coef. For examples of these functions, see
the methods for classes pdSymm and pdDiag.

208 pdCompSymm

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

pdBlocked, pdCompSymm, pdDiag, pdFactor, pdIdent, pdMat, pdMatrix, pdNatural, pdSymm,
pdLogChol

pdCompSymm Positive-Definite Matrix with Compound Symmetry Structure

Description

This function is a constructor for the pdCompSymm class, representing a positive-definite matrix with
compound symmetry structure (constant diagonal and constant off-diagonal elements). The under-
lying matrix is represented by 2 unrestricted parameters. When value is numeric(0), an uninitial-
ized pdMat object, a one-sided formula, or a vector of character strings, object is returned as an
uninitialized pdCompSymm object (with just some of its attributes and its class defined) and needs to
have its coefficients assigned later, generally using the coef or matrix replacement functions. If
value is an initialized pdMat object, object will be constructed from as.matrix(value). Finally,
if value is a numeric vector of length 2, it is assumed to represent the unrestricted coefficients of
the underlying positive-definite matrix.

Usage

pdCompSymm(value, form, nam, data)

Arguments

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sepa-
rated by +), a vector of character strings, or a numeric vector of length 2. De-
faults to numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

pdConstruct 209

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

Value

a pdCompSymm object representing a positive-definite matrix with compound symmetry structure,
also inheriting from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
161.

See Also

as.matrix.pdMat, coef.pdMat, matrix<-.pdMat, pdClasses

Examples

pd1 <- pdCompSymm(diag(3) + 1, nam = c("A","B","C"))
pd1

pdConstruct Construct pdMat Objects

Description

This function is an alternative constructor for the pdMat class associated with object and is mostly
used internally in other functions. See the documentation on the principal constructor function,
generally with the same name as the pdMat class of object.

Usage

pdConstruct(object, value, form, nam, data, ...)

210 pdConstruct.pdBlocked

Arguments

object an object inheriting from class pdMat, representing a positive definite matrix.

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by +), a vector of character strings, or a numeric vector. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

... optional arguments for some methods.

Value

a pdMat object representing a positive-definite matrix, inheriting from the same classes as object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

pdCompSymm, pdDiag, pdIdent, pdNatural, pdSymm

Examples

pd1 <- pdSymm()
pdConstruct(pd1, diag(1:4))

pdConstruct.pdBlocked Construct pdBlocked Objects

pdConstruct.pdBlocked 211

Description

This function give an alternative constructor for the pdBlocked class, representing a positive-
definite block-diagonal matrix. Each block-diagonal element of the underlying matrix is itself a
positive-definite matrix and is represented internally as an individual pdMat object. When value is
numeric(0), a list of uninitialized pdMat objects, a list of one-sided formulas, or a list of vectors
of character strings, object is returned as an uninitialized pdBlocked object (with just some of
its attributes and its class defined) and needs to have its coefficients assigned later, generally using
the coef or matrix replacement functions. If value is a list of initialized pdMat objects, object
will be constructed from the list obtained by applying as.matrix to each of the pdMat elements of
value. Finally, if value is a list of numeric vectors, they are assumed to represent the unrestricted
coefficients of the block-diagonal elements of the underlying positive-definite matrix.

Usage

S3 method for class 'pdBlocked'
pdConstruct(object, value, form, nam, data, pdClass,
...)

Arguments

object an object inheriting from class "pdBlocked", representing a positive definite
block-diagonal matrix.

value an optional list with elements to be used as the value argument to other pdMat
constructors. These include: pdMat objects, positive-definite matrices, one-
sided linear formulas, vectors of character strings, or numeric vectors. All el-
ements in the list must be similar (e.g. all one-sided formulas, or all numeric
vectors). Defaults to numeric(0), corresponding to an uninitialized object.

form an optional list of one-sided linear formula specifying the row/column names for
the block-diagonal elements of the matrix represented by object. Because fac-
tors may be present in form, the formulas needs to be evaluated on a data.frame
to resolve the names they defines. This argument is ignored when value is a list
of one-sided formulas. Defaults to NULL.

nam an optional list of vector of character strings specifying the row/column names
for the block-diagonal elements of the matrix represented by object. Each of
its components must have length equal to the dimension of the corresponding
block-diagonal element and unreplicated elements. This argument is ignored
when value is a list of vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

pdClass an optional vector of character strings naming the pdMat classes to be assigned
to the individual blocks in the underlying matrix. If a single class is specified, it
is used for all block-diagonal elements. This argument will only be used when
value is missing, or its elements are not pdMat objects. Defaults to "pdSymm".

212 pdDiag

... some methods for this generic require additional arguments. None are used in
this method.

Value

a pdBlocked object representing a positive-definite block-diagonal matrix, also inheriting from
class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

as.matrix.pdMat, coef.pdMat, pdBlocked, pdClasses, pdConstruct, matrix<-.pdMat

Examples

pd1 <- pdBlocked(list(c("A","B"), c("a1", "a2", "a3")))
pdConstruct(pd1, list(diag(1:2), diag(c(0.1, 0.2, 0.3))))

pdDiag Diagonal Positive-Definite Matrix

Description

This function is a constructor for the pdDiag class, representing a diagonal positive-definite matrix.
If the matrix associated with object is of dimension n, it is represented by n unrestricted parame-
ters, given by the logarithm of the square-root of the diagonal values. When value is numeric(0),
an uninitialized pdMat object, a one-sided formula, or a vector of character strings, object is re-
turned as an uninitialized pdDiag object (with just some of its attributes and its class defined) and
needs to have its coefficients assigned later, generally using the coef or matrix replacement func-
tions. If value is an initialized pdMat object, object will be constructed from as.matrix(value).
Finally, if value is a numeric vector, it is assumed to represent the unrestricted coefficients of the
underlying positive-definite matrix.

Usage

pdDiag(value, form, nam, data)

pdDiag 213

Arguments

value an optional initialization value, which can be any of the following: a pdMat
object, a positive-definite matrix, a one-sided linear formula (with variables
separated by +), a vector of character strings, or a numeric vector of length
equal to the dimension of the underlying positive-definite matrix. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

Value

a pdDiag object representing a diagonal positive-definite matrix, also inheriting from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

pd1 <- pdDiag(diag(1:3), nam = c("A","B","C"))
pd1

214 pdFactor

pdFactor Square-Root Factor of a Positive-Definite Matrix

Description

A square-root factor of the positive-definite matrix represented by object is obtained. Letting
Σ denote a positive-definite matrix, a square-root factor of Σ is any square matrix L such that
Σ = L′L. This function extracts L.

Usage

pdFactor(object)

Arguments

object an object inheriting from class pdMat, representing a positive definite matrix,
which must have been initialized (i.e. length(coef(object)) > 0).

Value

a vector with a square-root factor of the positive-definite matrix associated with object stacked
column-wise.

Note

This function is used intensively in optimization algorithms and its value is returned as a vector for
efficiency reasons. The pdMatrix function can be used to obtain square-root factors in matrix form.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

pdMatrix

Examples

pd1 <- pdCompSymm(4 * diag(3) + 1)
pdFactor(pd1)

pdFactor.reStruct 215

pdFactor.reStruct Extract Square-Root Factor from Components of an reStruct Object

Description

This method function extracts square-root factors of the positive-definite matrices corresponding to
the pdMat elements of object.

Usage

S3 method for class 'reStruct'
pdFactor(object)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

Value

a vector with square-root factors of the positive-definite matrices corresponding to the elements of
object stacked column-wise.

Note

This function is used intensively in optimization algorithms and its value is returned as a vector for
efficiency reasons. The pdMatrix function can be used to obtain square-root factors in matrix form.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

pdFactor, pdMatrix.reStruct, pdFactor.pdMat

Examples

rs1 <- reStruct(pdSymm(diag(3), ~age+Sex, data = Orthodont))
pdFactor(rs1)

216 pdIdent

pdIdent Multiple of the Identity Positive-Definite Matrix

Description

This function is a constructor for the pdIdent class, representing a multiple of the identity positive-
definite matrix. The matrix associated with object is represented by 1 unrestricted parameter,
given by the logarithm of the square-root of the diagonal value. When value is numeric(0), an
uninitialized pdMat object, a one-sided formula, or a vector of character strings, object is returned
as an uninitialized pdIdent object (with just some of its attributes and its class defined) and needs
to have its coefficients assigned later, generally using the coef or matrix replacement functions. If
value is an initialized pdMat object, object will be constructed from as.matrix(value). Finally,
if value is a numeric value, it is assumed to represent the unrestricted coefficient of the underlying
positive-definite matrix.

Usage

pdIdent(value, form, nam, data)

Arguments

value an optional initialization value, which can be any of the following: a pdMat
object, a positive-definite matrix, a one-sided linear formula (with variables
separated by +), a vector of character strings, or a numeric value. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

Value

a pdIdent object representing a multiple of the identity positive-definite matrix, also inheriting
from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

pdLogChol 217

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

pd1 <- pdIdent(4 * diag(3), nam = c("A","B","C"))
pd1

pdLogChol General Positive-Definite Matrix

Description

This function is a constructor for the pdLogChol class, representing a general positive-definite ma-
trix. If the matrix associated with object is of dimension n, it is represented by n(n + 1)/2
unrestricted parameters, using the log-Cholesky parametrization described in Pinheiro and Bates
(1996).

• When value is numeric(0), an uninitialized pdMat object, a one-sided formula, or a character
vector, object is returned as an uninitialized pdLogChol object (with just some of its attributes
and its class defined) and needs to have its coefficients assigned later, generally using the coef
or matrix replacement functions.

• If value is an initialized pdMat object, object will be constructed from as.matrix(value).

• Finally, if value is a numeric vector, it is assumed to represent the unrestricted coefficients of
the matrix-logarithm parametrization of the underlying positive-definite matrix.

Usage

pdLogChol(value, form, nam, data)

Arguments

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by +), a vector of character strings, or a numeric vector. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

218 pdLogChol

nam an optional character vector specifying the row/column names for the matrix
represented by object. It must have length equal to the dimension of the un-
derlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a character vector. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

Details

Internally, the pdLogChol representation of a symmetric positive definite matrix is a vector starting
with the logarithms of the diagonal of the Choleski factorization of that matrix followed by its upper
triangular portion.

Value

a pdLogChol object representing a general positive-definite matrix, also inheriting from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C. and Bates., D.M. (1996) Unconstrained Parametrizations for Variance-Covariance
Matrices, Statistics and Computing 6, 289–296.

Pinheiro, J.C., and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS, Springer.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

(pd1 <- pdLogChol(diag(1:3), nam = c("A","B","C")))

(pd4 <- pdLogChol(1:6))
(pd4c <- chol(pd4)) # -> upper-tri matrix with off-diagonals 4 5 6
pd4c[upper.tri(pd4c)]
log(diag(pd4c)) # 1 2 3

pdMat 219

pdMat Positive-Definite Matrix

Description

This function gives an alternative way of constructing an object inheriting from the pdMat class
named in pdClass, or from data.class(object) if object inherits from pdMat, and is mostly
used internally in other functions. See the documentation on the principal constructor function,
generally with the same name as the pdMat class of object.

Usage

pdMat(value, form, nam, data, pdClass)

Arguments

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by +), a vector of character strings, or a numeric vector. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

pdClass an optional character string naming the pdMat class to be assigned to the re-
turned object. This argument will only be used when value is not a pdMat
object. Defaults to "pdSymm".

Value

a pdMat object representing a positive-definite matrix, inheriting from the class named in pdClass,
or from class(object), if object inherits from pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

220 pdMatrix

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

pdClasses, pdCompSymm, pdDiag, pdIdent, pdNatural, pdSymm, reStruct, solve.pdMat, summary.pdMat

Examples

pd1 <- pdMat(diag(1:4), pdClass = "pdDiag")
pd1
str(pd1)

pdMatrix Extract Matrix or Square-Root Factor from a pdMat Object

Description

The positive-definite matrix represented by object, or a square-root factor of it is obtained. Letting
Σ denote a positive-definite matrix, a square-root factor of Σ is any square matrix L such that
Σ = L′L. This function extracts Σ or L.

Usage

pdMatrix(object, factor)

Arguments

object an object inheriting from class pdMat, representing a positive definite matrix.

factor an optional logical value. If TRUE, a square-root factor of the positive-definite
matrix represented by object is returned; else, if FALSE, the positive-definite
matrix is returned. Defaults to FALSE.

Value

if factor is FALSE the positive-definite matrix represented by object is returned; else a square-root
of the positive-definite matrix is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
162.

pdMatrix.reStruct 221

See Also

as.matrix.pdMat, pdClasses, pdFactor, pdMat, pdMatrix.reStruct, corMatrix

Examples

pd1 <- pdSymm(diag(1:4))
pdMatrix(pd1)

pdMatrix.reStruct Extract Matrix or Square-Root Factor from Components of an reStruct
Object

Description

This method function extracts the positive-definite matrices corresponding to the pdMat elements
of object, or square-root factors of the positive-definite matrices.

Usage

S3 method for class 'reStruct'
pdMatrix(object, factor)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

factor an optional logical value. If TRUE, square-root factors of the positive-definite
matrices represented by the elements of object are returned; else, if FALSE, the
positive-definite matrices are returned. Defaults to FALSE.

Value

a list with components given by the positive-definite matrices corresponding to the elements of
object, or square-root factors of the positive-definite matrices.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
162.

See Also

as.matrix.reStruct, reStruct, pdMat, pdMatrix, pdMatrix.pdMat

222 pdNatural

Examples

rs1 <- reStruct(pdSymm(diag(3), ~age+Sex, data = Orthodont))
pdMatrix(rs1)

pdNatural General Positive-Definite Matrix in Natural Parametrization

Description

This function is a constructor for the pdNatural class, representing a general positive-definite ma-
trix, using a natural parametrization . If the matrix associated with object is of dimension n, it is
represented by n(n+1)/2 parameters. Letting σij denote the ij-th element of the underlying posi-
tive definite matrix and ρij = σi/

√
σiiσjj , i ̸= j denote the associated "correlations", the "natural"

parameters are given by
√
σii, i = 1, . . . , n and log((1 + ρij)/(1 − ρij)), i ̸= j. Note that all

natural parameters are individually unrestricted, but not jointly unrestricted (meaning that not all
unrestricted vectors would give positive-definite matrices). Therefore, this parametrization should
NOT be used for optimization. It is mostly used for deriving approximate confidence intervals on
parameters following the optimization of an objective function. When value is numeric(0), an
uninitialized pdMat object, a one-sided formula, or a vector of character strings, object is returned
as an uninitialized pdSymm object (with just some of its attributes and its class defined) and needs
to have its coefficients assigned later, generally using the coef or matrix replacement functions. If
value is an initialized pdMat object, object will be constructed from as.matrix(value). Finally,
if value is a numeric vector, it is assumed to represent the natural parameters of the underlying
positive-definite matrix.

Usage

pdNatural(value, form, nam, data)

Arguments

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by +), a vector of character strings, or a numeric vector. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

pdSymm 223

Value

a pdNatural object representing a general positive-definite matrix in natural parametrization, also
inheriting from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. p.
162.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

pdNatural(diag(1:3))

pdSymm General Positive-Definite Matrix

Description

This function is a constructor for the pdSymm class, representing a general positive-definite matrix.
If the matrix associated with object is of dimension n, it is represented by n(n + 1)/2 unre-
stricted parameters, using the matrix-logarithm parametrization described in Pinheiro and Bates
(1996). When value is numeric(0), an uninitialized pdMat object, a one-sided formula, or a vec-
tor of character strings, object is returned as an uninitialized pdSymm object (with just some of
its attributes and its class defined) and needs to have its coefficients assigned later, generally us-
ing the coef or matrix replacement functions. If value is an initialized pdMat object, object
will be constructed from as.matrix(value). Finally, if value is a numeric vector, it is assumed
to represent the unrestricted coefficients of the matrix-logarithm parametrization of the underlying
positive-definite matrix.

Usage

pdSymm(value, form, nam, data)

224 pdSymm

Arguments

value an optional initialization value, which can be any of the following: a pdMat ob-
ject, a positive-definite matrix, a one-sided linear formula (with variables sep-
arated by +), a vector of character strings, or a numeric vector. Defaults to
numeric(0), corresponding to an uninitialized object.

form an optional one-sided linear formula specifying the row/column names for the
matrix represented by object. Because factors may be present in form, the
formula needs to be evaluated on a data.frame to resolve the names it defines.
This argument is ignored when value is a one-sided formula. Defaults to NULL.

nam an optional vector of character strings specifying the row/column names for the
matrix represented by object. It must have length equal to the dimension of the
underlying positive-definite matrix and unreplicated elements. This argument is
ignored when value is a vector of character strings. Defaults to NULL.

data an optional data frame in which to evaluate the variables named in value and
form. It is used to obtain the levels for factors, which affect the dimensions
and the row/column names of the underlying matrix. If NULL, no attempt is
made to obtain information on factors appearing in the formulas. Defaults to
the parent frame from which the function was called.

Value

a pdSymm object representing a general positive-definite matrix, also inheriting from class pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance
Matrices", Statistics and Computing, 6, 289-296.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

as.matrix.pdMat, coef.pdMat, pdClasses, matrix<-.pdMat

Examples

pd1 <- pdSymm(diag(1:3), nam = c("A","B","C"))
pd1

Phenobarb 225

Phenobarb Phenobarbitol Kinetics

Description

The Phenobarb data frame has 744 rows and 7 columns.

Format

This data frame contains the following columns:

Subject an ordered factor identifying the infant.

Wt a numeric vector giving the birth weight of the infant (kg).

Apgar an ordered factor giving the 5-minute Apgar score for the infant. This is an indication of
health of the newborn infant.

ApgarInd a factor indicating whether the 5-minute Apgar score is < 5 or >= 5.

time a numeric vector giving the time when the sample is drawn or drug administered (hr).

dose a numeric vector giving the dose of drug administered (ug/kg).

conc a numeric vector giving the phenobarbital concentration in the serum (ug/L).

Details

Data from a pharmacokinetics study of phenobarbital in neonatal infants. During the first few days
of life the infants receive multiple doses of phenobarbital for prevention of seizures. At irregular
intervals blood samples are drawn and serum phenobarbital concentrations are determined. The
data were originally given in Grasela and Donn(1985) and are analyzed in Boeckmann, Sheiner and
Beal (1994), in Davidian and Giltinan (1995), and in Littell et al. (1996).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.23)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London. (section 6.6)

Grasela and Donn (1985), Neonatal population pharmacokinetics of phenobarbital derived from
routine clinical data, Developmental Pharmacology and Therapeutics, 8, 374-383.

Boeckmann, A. J., Sheiner, L. B., and Beal, S. L. (1994), NONMEM Users Guide: Part V, Univer-
sity of California, San Francisco.

Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996), SAS System for Mixed
Models, SAS Institute, Cary, NC.

226 phenoModel

phenoModel Model function for the Phenobarb data

Description

A model function for a model used with the Phenobarb data. This function uses compiled C code
to improve execution speed.

Usage

phenoModel(Subject, time, dose, lCl, lV)

Arguments

Subject an integer vector of subject identifiers. These should be sorted in increasing
order.

time numeric. A vector of the times at which the sample was drawn or the drug
administered (hr).

dose numeric. A vector of doses of drug administered (ug/kg).

lCl numeric. A vector of values of the natural log of the clearance parameter ac-
cording to Subject and time.

lV numeric. A vector of values of the natural log of the effective volume of distri-
bution according to Subject and time.

Details

See the details section of Phenobarb for a description of the model function that phenoModel eval-
uates.

Value

a numeric vector of predicted phenobarbital concentrations.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer. (section
6.4)

Pixel 227

Pixel X-ray pixel intensities over time

Description

The Pixel data frame has 102 rows and 4 columns of data on the pixel intensities of CT scans of
dogs over time

Format

This data frame contains the following columns:

Dog a factor with levels 1 to 10 designating the dog on which the scan was made

Side a factor with levels L and R designating the side of the dog being scanned

day a numeric vector giving the day post injection of the contrast on which the scan was made

pixel a numeric vector of pixel intensities

Source

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

fm1 <- lme(pixel ~ day + I(day^2), data = Pixel,
random = list(Dog = ~ day, Side = ~ 1))

summary(fm1)
VarCorr(fm1)

plot.ACF Plot an ACF Object

Description

an xyplot of the autocorrelations versus the lags, with type = "h", is produced. If alpha > 0,
curves representing the critical limits for a two-sided test of level alpha for the autocorrelations are
added to the plot.

Usage

S3 method for class 'ACF'
plot(x, alpha, xlab, ylab, grid, ...)

228 plot.augPred

Arguments

x an object inheriting from class ACF, consisting of a data frame with two columns
named lag and ACF, representing the autocorrelation values and the correspond-
ing lags.

alpha an optional numeric value with the significance level for testing if the autocorre-
lations are zero. Lines corresponding to the lower and upper critical values for a
test of level alpha are added to the plot. Default is 0, in which case no lines are
plotted.

xlab, ylab optional character strings with the x- and y-axis labels. Default respectively to
"Lag" and "Autocorrelation".

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed to the xyplot function.

Value

an xyplot Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

ACF, xyplot

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
plot(ACF(fm1, maxLag = 10), alpha = 0.01)

plot.augPred Plot an augPred Object

Description

A Trellis xyplot of predictions versus the primary covariate is generated, with a different panel
for each value of the grouping factor. Predicted values are joined by lines, with different line types
(colors) being used for each level of grouping. Original observations are represented by circles.

Usage

S3 method for class 'augPred'
plot(x, key, grid, ...)

plot.compareFits 229

Arguments

x an object of class "augPred".

key an optional logical value, or list. If TRUE, a legend is included at the top of the
plot indicating which symbols (colors) correspond to which prediction levels.
If FALSE, no legend is included. If given as a list, key is passed down as an
argument to the trellis function generating the plots (xyplot). Defaults to
TRUE.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed down to the trellis function generating the plots.

Value

A Trellis plot of predictions versus the primary covariate, with panels determined by the grouping
factor.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

augPred, xyplot

Examples

fm1 <- lme(Orthodont)
plot(augPred(fm1, level = 0:1, length.out = 2))

plot.compareFits Plot a compareFits Object

Description

A Trellis dotplot of the values being compared, with different rows per group, is generated, with
a different panel for each coefficient. Different symbols (colors) are used for each object being
compared.

Usage

S3 method for class 'compareFits'
plot(x, subset, key, mark, ...)

230 plot.gls

Arguments

x an object of class "compareFits".

subset an optional logical or integer vector specifying which rows of x should be used
in the plots. If missing, all rows are used.

key an optional logical value, or list. If TRUE, a legend is included at the top of
the plot indicating which symbols (colors) correspond to which objects being
compared. If FALSE, no legend is included. If given as a list, key is passed
down as an argument to the trellis function generating the plots (dotplot).
Defaults to TRUE.

mark an optional numeric vector, of length equal to the number of coefficients be-
ing compared, indicating where vertical lines should be drawn in the plots. If
missing, no lines are drawn.

... optional arguments passed down to the trellis function generating the plots.

Value

A Trellis dotplot of the values being compared, with rows determined by the groups and panels
by the coefficients.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

compareFits, pairs.compareFits, dotplot

Examples

example(compareFits) # cF12 <- compareFits(coef(lmList(Orthodont)), .. lme(*))
plot(cF12)

plot.gls Plot a gls Object

Description

Diagnostic plots for the linear model fit are obtained. The form argument gives considerable flexi-
bility in the type of plot specification. A conditioning expression (on the right side of a | operator)
always implies that different panels are used for each level of the conditioning factor, according to
a Trellis display. If form is a one-sided formula, histograms of the variable on the right hand side
of the formula, before a | operator, are displayed (the Trellis function histogram is used). If form
is two-sided and both its left and right hand side variables are numeric, scatter plots are displayed
(the Trellis function xyplot is used). Finally, if form is two-sided and its left had side variable
is a factor, box-plots of the right hand side variable by the levels of the left hand side variable are
displayed (the Trellis function bwplot is used).

plot.gls 231

Usage

S3 method for class 'gls'
plot(x, form, abline, id, idLabels, idResType, grid, ...)

Arguments

x an object inheriting from class "gls", representing a generalized least squares
fitted linear model.

form an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtain x can be referenced. In addition, x itself
can be referenced in the formula using the symbol ".". Conditional expressions
on the right of a | operator can be used to define separate panels in a Trellis dis-
play. Default is resid(., type = "p") ~ fitted(.) , corresponding to a plot
of the standardized residuals versus fitted values, both evaluated at the innermost
level of nesting.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id an optional numeric value, or one-sided formula. If given as a value, it is
used as a significance level for a two-sided outlier test for the standardized
residuals. Observations with absolute standardized residuals greater than the
1 − value/2 quantile of the standard normal distribution are identified in the
plot using idLabels. If given as a one-sided formula, its right hand side must
evaluate to a logical, integer, or character vector which is used to identify obser-
vations in the plot. If missing, no observations are identified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted to
character mode and used to label the observations identified according to id. If
given as a one-sided formula, its right hand side must evaluate to a vector which
is converted to character mode and used to label the identified observations.
Default is the innermost grouping factor.

idResType an optional character string specifying the type of residuals to be used in iden-
tifying outliers, when id is a numeric value. If "pearson", the standardized
residuals (raw residuals divided by the corresponding standard errors) are used;
else, if "normalized", the normalized residuals (standardized residuals pre-
multiplied by the inverse square-root factor of the estimated error correlation
matrix) are used. Partial matching of arguments is used, so only the first charac-
ter needs to be provided. Defaults to "pearson".

grid an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: if xyplot defaults to TRUE, else
defaults to FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot.

232 plot.intervals.lmList

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, xyplot, bwplot, histogram

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

standardized residuals versus fitted values by Mare
plot(fm1, resid(., type = "p") ~ fitted(.) | Mare, abline = 0)
box-plots of residuals by Mare
plot(fm1, Mare ~ resid(.))
observed versus fitted values by Mare
plot(fm1, follicles ~ fitted(.) | Mare, abline = c(0,1))

plot.intervals.lmList Plot lmList Confidence Intervals

Description

A Trellis dot-plot of the confidence intervals on the linear model coefficients is generated, with
a different panel for each coefficient. Rows in the dot-plot correspond to the names of the lm
components of the lmList object used to produce x. The lower and upper confidence limits are
connected by a line segment and the estimated coefficients are marked with a "+".

This is based on function dotplot() from package lattice.

Usage

S3 method for class 'intervals.lmList'
plot(x, xlab = "", ylab = attr(x, "groupsName"),

strip = function(...) strip.default(..., style = 1),
...)

Arguments

x an object inheriting from class "intervals.lmList", representing confidence
intervals and estimates for the coefficients in the lm components of the lmList
object used to produce x.

xlab, ylab axis labels, each with a sensible default.

strip a function or FALSE, see dotplot() from package lattice.

... optional arguments passed to the dotplot function (see above).

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

plot.lme 233

Value

a Trellis plot with the confidence intervals on the coefficients of the individual lm components of
the lmList that generated x.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

intervals.lmList, lmList, dotplot

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
plot(intervals(fm1))

plot.lme Plot an lme or nls object

Description

Diagnostic plots for the linear mixed-effects fit are obtained. The form argument gives considerable
flexibility in the type of plot specification. A conditioning expression (on the right side of a |
operator) always implies that different panels are used for each level of the conditioning factor,
according to a Trellis display. If form is a one-sided formula, histograms of the variable on the
right hand side of the formula, before a | operator, are displayed (the Trellis function histogram is
used). If form is two-sided and both its left and right hand side variables are numeric, scatter plots
are displayed (the Trellis function xyplot is used). Finally, if form is two-sided and its left had
side variable is a factor, box-plots of the right hand side variable by the levels of the left hand side
variable are displayed (the Trellis function bwplot is used).

Usage

S3 method for class 'lme'
plot(x, form, abline, id, idLabels, idResType, grid, ...)
S3 method for class 'nls'
plot(x, form, abline, id, idLabels, idResType, grid, ...)

Arguments

x an object inheriting from class "lme", representing a fitted linear mixed-effects
model, or from nls, representing an fitted nonlinear least squares model.

form an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtain x can be referenced. In addition, x itself
can be referenced in the formula using the symbol ".". Conditional expressions

234 plot.lme

on the right of a | operator can be used to define separate panels in a Trellis dis-
play. Default is resid(., type = "p") ~ fitted(.) , corresponding to a plot
of the standardized residuals versus fitted values, both evaluated at the innermost
level of nesting.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id an optional numeric value, or one-sided formula. If given as a value, it is used as
a significance level for a two-sided outlier test for the standardized, or normal-
ized residuals. Observations with absolute standardized (normalized) residuals
greater than the 1 − value/2 quantile of the standard normal distribution are
identified in the plot using idLabels. If given as a one-sided formula, its right
hand side must evaluate to a logical, integer, or character vector which is used
to identify observations in the plot. If missing, no observations are identified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted to
character and used to label the observations identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified observations. Default is
the innermost grouping factor.

idResType an optional character string specifying the type of residuals to be used in iden-
tifying outliers, when id is a numeric value. If "pearson", the standardized
residuals (raw residuals divided by the corresponding standard errors) are used;
else, if "normalized", the normalized residuals (standardized residuals pre-
multiplied by the inverse square-root factor of the estimated error correlation
matrix) are used. Partial matching of arguments is used, so only the first charac-
ter needs to be provided. Defaults to "pearson".

grid an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: if xyplot defaults to TRUE, else
defaults to FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, xyplot, bwplot, histogram

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
standardized residuals versus fitted values by gender

plot.lmList 235

plot(fm1, resid(., type = "p") ~ fitted(.) | Sex, abline = 0)
box-plots of residuals by Subject
plot(fm1, Subject ~ resid(.))
observed versus fitted values by Subject
plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1))

plot.lmList Plot an lmList Object

Description

Diagnostic plots for the linear model fits corresponding to the x components are obtained. The form
argument gives considerable flexibility in the type of plot specification. A conditioning expression
(on the right side of a | operator) always implies that different panels are used for each level of the
conditioning factor, according to a Trellis display. If form is a one-sided formula, histograms of the
variable on the right hand side of the formula, before a | operator, are displayed (the Trellis function
histogram is used). If form is two-sided and both its left and right hand side variables are numeric,
scatter plots are displayed (the Trellis function xyplot is used). Finally, if form is two-sided and
its left had side variable is a factor, box-plots of the right hand side variable by the levels of the left
hand side variable are displayed (the Trellis function bwplot is used).

Usage

S3 method for class 'lmList'
plot(x, form, abline, id, idLabels, grid, ...)

Arguments

x an object inheriting from class "lmList", representing a list of lm objects with
a common model.

form an optional formula specifying the desired type of plot. Any variable present in
the original data frame used to obtain x can be referenced. In addition, x itself
can be referenced in the formula using the symbol ".". Conditional expressions
on the right of a | operator can be used to define separate panels in a Trellis
display. Default is resid(., type = "pool") ~ fitted(.) , corresponding to
a plot of the standardized residuals (using a pooled estimate for the residual
standard error) versus fitted values.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id an optional numeric value, or one-sided formula. If given as a value, it is
used as a significance level for a two-sided outlier test for the standardized
residuals. Observations with absolute standardized residuals greater than the
1 − value/2 quantile of the standard normal distribution are identified in the
plot using idLabels. If given as a one-sided formula, its right hand side must
evaluate to a logical, integer, or character vector which is used to identify obser-
vations in the plot. If missing, no observations are identified.

236 plot.nffGroupedData

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted to
character and used to label the observations identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified observations. Default is
getGroups(x).

grid an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: if xyplot defaults to TRUE, else
defaults to FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList,predict.lm, xyplot, bwplot, histogram

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
standardized residuals versus fitted values by gender
plot(fm1, resid(., type = "pool") ~ fitted(.) | Sex, abline = 0, id = 0.05)
box-plots of residuals by Subject
plot(fm1, Subject ~ resid(.))
observed versus fitted values by Subject
plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1))

plot.nffGroupedData Plot an nffGroupedData Object

Description

A Trellis dot-plot of the response by group is generated. If outer variables are specified, the com-
bination of their levels are used to determine the panels of the Trellis display. The Trellis function
dotplot is used.

Usage

S3 method for class 'nffGroupedData'
plot(x, outer, inner, innerGroups, xlab, ylab, strip, panel, key,

grid, ...)

plot.nffGroupedData 237

Arguments

x an object inheriting from class nffGroupedData, representing a groupedData
object with a factor primary covariate and a single grouping level.

outer an optional logical value or one-sided formula, indicating covariates that are
outer to the grouping factor, which are used to determine the panels of the Trellis
plot. If equal to TRUE, attr(object, "outer") is used to indicate the outer
covariates. An outer covariate is invariant within the sets of rows defined by
the grouping factor. Ordering of the groups is done in such a way as to preserve
adjacency of groups with the same value of the outer variables. Defaults to NULL,
meaning that no outer covariates are to be used.

inner an optional logical value or one-sided formula, indicating a covariate that is in-
ner to the grouping factor, which is used to associate points within each panel
of the Trellis plot. If equal to TRUE, attr(object, "inner") is used to indicate
the inner covariate. An inner covariate can change within the sets of rows de-
fined by the grouping factor. Defaults to NULL, meaning that no inner covariate
is present.

innerGroups an optional one-sided formula specifying a factor to be used for grouping the
levels of the inner covariate. Different colors, or symbols, are used for each
level of the innerGroups factor. Default is NULL, meaning that no innerGroups
covariate is present.

xlab an optional character string with the label for the horizontal axis. Default is the
y elements of attr(object, "labels") and attr(object, "units") pasted
together.

ylab an optional character string with the label for the vertical axis. Default is the
grouping factor name.

strip an optional function passed as the strip argument to the dotplot function.
Default is strip.default(..., style = 1) (see trellis.args).

panel an optional function used to generate the individual panels in the Trellis display,
passed as the panel argument to the dotplot function.

key an optional logical function or function. If TRUE and either inner or innerGroups
are non-NULL, a legend for the different inner (innerGroups) levels is included
at the top of the plot. If given as a function, it is passed as the key argument
to the dotplot function. Default is TRUE is either inner or innerGroups are
non-NULL and FALSE otherwise.

grid this argument is included for consistency with the plot.nfnGroupedData method
calling sequence. It is ignored in this method function.

... optional arguments passed to the dotplot function.

Value

a Trellis dot-plot of the response by group.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

238 plot.nfnGroupedData

References

Bates, D.M. and Pinheiro, J.C. (1997), "Software Design for Longitudinal Data", in "Modelling
Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions", T.G.
Gregoire (ed.), Springer-Verlag, New York.

See Also

groupedData, dotplot

Examples

plot(Machines)
plot(Machines, inner = TRUE)

plot.nfnGroupedData Plot an nfnGroupedData Object

Description

A Trellis plot of the response versus the primary covariate is generated. If outer variables are
specified, the combination of their levels are used to determine the panels of the Trellis display.
Otherwise, the levels of the grouping variable determine the panels. A scatter plot of the response
versus the primary covariate is displayed in each panel, with observations corresponding to same
inner group joined by line segments. The Trellis function xyplot is used.

Usage

S3 method for class 'nfnGroupedData'
plot(x, outer, inner, innerGroups, xlab, ylab, strip, aspect, panel,

key, grid, ...)

Arguments

x an object inheriting from class nfnGroupedData, representing a groupedData
object with a numeric primary covariate and a single grouping level.

outer an optional logical value or one-sided formula, indicating covariates that are
outer to the grouping factor, which are used to determine the panels of the Trellis
plot. If equal to TRUE, attr(object, "outer") is used to indicate the outer
covariates. An outer covariate is invariant within the sets of rows defined by
the grouping factor. Ordering of the groups is done in such a way as to preserve
adjacency of groups with the same value of the outer variables. Defaults to NULL,
meaning that no outer covariates are to be used.

inner an optional logical value or one-sided formula, indicating a covariate that is in-
ner to the grouping factor, which is used to associate points within each panel
of the Trellis plot. If equal to TRUE, attr(object, "inner") is used to indicate
the inner covariate. An inner covariate can change within the sets of rows de-
fined by the grouping factor. Defaults to NULL, meaning that no inner covariate
is present.

plot.nfnGroupedData 239

innerGroups an optional one-sided formula specifying a factor to be used for grouping the
levels of the inner covariate. Different colors, or line types, are used for each
level of the innerGroups factor. Default is NULL, meaning that no innerGroups
covariate is present.

xlab, ylab optional character strings with the labels for the plot. Default is the corre-
sponding elements of attr(object, "labels") and attr(object, "units")
pasted together.

strip an optional function passed as the strip argument to the xyplot function. De-
fault is strip.default(..., style = 1) (see trellis.args).

aspect an optional character string indicating the aspect ratio for the plot passed as the
aspect argument to the xyplot function. Default is "xy" (see trellis.args).

panel an optional function used to generate the individual panels in the Trellis display,
passed as the panel argument to the xyplot function.

key an optional logical function or function. If TRUE and innerGroups is non-NULL,
a legend for the different innerGroups levels is included at the top of the plot.
If given as a function, it is passed as the key argument to the xyplot function.
Default is TRUE if innerGroups is non-NULL and FALSE otherwise.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is TRUE.

... optional arguments passed to the xyplot function.

Value

a Trellis plot of the response versus the primary covariate.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Bates, D.M. and Pinheiro, J.C. (1997), "Software Design for Longitudinal Data", in "Modelling
Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions", T.G.
Gregoire (ed.), Springer-Verlag, New York.

See Also

groupedData, xyplot

Examples

different panels per Subject
plot(Orthodont)
different panels per gender
plot(Orthodont, outer = TRUE)

240 plot.nmGroupedData

plot.nmGroupedData Plot an nmGroupedData Object

Description

The groupedData object is summarized by the values of the displayLevel grouping factor (or the
combination of its values and the values of the covariate indicated in preserve, if any is present).
The collapsed data is used to produce a new groupedData object, with grouping factor given by the
displayLevel factor, which is plotted using the appropriate plot method for groupedData objects
with single level of grouping.

Usage

S3 method for class 'nmGroupedData'
plot(x, collapseLevel, displayLevel, outer, inner,

preserve, FUN, subset, key, grid, ...)

Arguments

x an object inheriting from class nmGroupedData, representing a groupedData
object with multiple grouping factors.

collapseLevel an optional positive integer or character string indicating the grouping level to
use when collapsing the data. Level values increase from outermost to innermost
grouping. Default is the highest or innermost level of grouping.

displayLevel an optional positive integer or character string indicating the grouping level to
use for determining the panels in the Trellis display, when outer is missing.
Default is collapseLevel.

outer an optional logical value or one-sided formula, indicating covariates that are
outer to the displayLevel grouping factor, which are used to determine the pan-
els of the Trellis plot. If equal to TRUE, the displayLevel element attr(object,
"outer") is used to indicate the outer covariates. An outer covariate is invariant
within the sets of rows defined by the grouping factor. Ordering of the groups
is done in such a way as to preserve adjacency of groups with the same value of
the outer variables. Defaults to NULL, meaning that no outer covariates are to be
used.

inner an optional logical value or one-sided formula, indicating a covariate that is
inner to the displayLevel grouping factor, which is used to associate points
within each panel of the Trellis plot. If equal to TRUE, attr(object, "outer")
is used to indicate the inner covariate. An inner covariate can change within the
sets of rows defined by the grouping factor. Defaults to NULL, meaning that no
inner covariate is present.

preserve an optional one-sided formula indicating a covariate whose levels should be
preserved when collapsing the data according to the collapseLevel grouping
factor. The collapsing factor is obtained by pasting together the levels of the
collapseLevel grouping factor and the values of the covariate to be preserved.
Default is NULL, meaning that no covariates need to be preserved.

plot.nmGroupedData 241

FUN an optional summary function or a list of summary functions to be used for
collapsing the data. The function or functions are applied only to variables in
object that vary within the groups defined by collapseLevel. Invariant vari-
ables are always summarized by group using the unique value that they assume
within that group. If FUN is a single function it will be applied to each non-
invariant variable by group to produce the summary for that variable. If FUN
is a list of functions, the names in the list should designate classes of variables
in the data such as ordered, factor, or numeric. The indicated function will
be applied to any non-invariant variables of that class. The default functions to
be used are mean for numeric factors, and Mode for both factor and ordered.
The Mode function, defined internally in gsummary, returns the modal or most
popular value of the variable. It is different from the mode function that returns
the S-language mode of the variable.

subset an optional named list. Names can be either positive integers representing
grouping levels, or names of grouping factors. Each element in the list is a
vector indicating the levels of the corresponding grouping factor to be used for
plotting the data. Default is NULL, meaning that all levels are used.

key an optional logical value, or list. If TRUE, a legend is included at the top of the
plot indicating which symbols (colors) correspond to which prediction levels.
If FALSE, no legend is included. If given as a list, key is passed down as an
argument to the trellis function generating the plots (xyplot). Defaults to
TRUE.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is TRUE.

... optional arguments passed to the Trellis plot function.

Value

a Trellis display of the data collapsed over the values of the collapseLevel grouping factor and
grouped according to the displayLevel grouping factor.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Bates, D.M. and Pinheiro, J.C. (1997), "Software Design for Longitudinal Data", in "Modelling
Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions", T.G.
Gregoire (ed.), Springer-Verlag, New York.

See Also

groupedData, collapse.groupedData, plot.nfnGroupedData, plot.nffGroupedData

242 plot.ranef.lme

Examples

no collapsing, panels by Dog
plot(Pixel, displayLevel = "Dog", inner = ~Side)
collapsing by Dog, preserving day
plot(Pixel, collapseLevel = "Dog", preserve = ~day)

plot.ranef.lme Plot a ranef.lme Object

Description

Plots (class "Trellis" from package lattice) of the random effects from linear mixed effects model,
i.e., the result of ranef(lme(*)) (of class "ranef.lme").

Usage

S3 method for class 'ranef.lme'
plot(x, form = NULL, omitFixed = TRUE, level = Q,

grid = TRUE, control, xlab, ylab, strip,
...)

Arguments

x an object inheriting from class "ranef.lme", representing the estimated coef-
ficients or estimated random effects for the lme object from which it was pro-
duced.

form an optional formula specifying the desired type of plot.

• If given as a one-sided formula, a dotplot() of the estimated random ef-
fects (coefficients) grouped according to all combinations of the levels of
the factors named in form is returned.

• If given as a two-sided formula (or by default, NULL), an xyplot() Trellis
display of the random effect (coefficient) versus the named covariates is
returned. In NULL case the row names of the random effects (coefficients)
are used (as covariates).

See also ‘Details:’.

omitFixed an optional logical value indicating whether columns with values that are con-
stant across groups should be omitted. Default is TRUE.

level an optional integer value giving the level of grouping to be used for x. Only used
when x is a list with different components for each grouping level. Defaults to
the highest or innermost level of grouping.

grid an optional logical value indicating whether a grid should be added to plot. Only
applies to plots associated with two-sided formulas in form. Default is TRUE.

https://CRAN.R-project.org/package=lattice

plot.ranef.lme 243

control an optional list with control values for the plot, when form is given as a two-
sided formula. The control values are referenced by name in the control list
and only the ones to be modified from the default need to be specified. Available
values include: drawLine, a logical value indicating whether a loess smoother
should be added to the scatter plots and a line connecting the medians should be
added to the boxplots (default is TRUE); span.loess, used as the span argument
in the call to panel.loess (default is 2/3); degree.loess, used as the degree
argument in the call to panel.loess (default is 1); cex.axis, the character
expansion factor for the x-axis (default is 0.8); srt.axis, the rotation factor
for the x-axis (default is 0); and mgp.axis, the margin parameters for the x-axis
(default is c(2, 0.5, 0)).

xlab, ylab axis labels, each with a sensible default.
strip a function or FALSE, see dotplot() from package lattice.
... optional arguments passed to the Trellis dotplot function.

Details

If form is missing, or is given as a one-sided formula, a Trellis dot-plot (via dotplot() from pkg
lattice) of the random effects is generated, with a different panel for each random effect (coeffi-
cient). Rows in the dot-plot are determined by the form argument (if not missing) or by the row
names of the random effects (coefficients). Single factors (~g) or crossed factors (~g1*g2) are al-
lowed. For a single factor, its levels determine the dot-plot rows (with possibly multiple dots per
row); otherwise, if form specifies a crossing of factors, the dot-plot rows are determined by all
combinations of the levels of the individual factors in the formula.

If form is a two-sided formula, the left hand side must be a single random effect (coefficient) and
the right hand side is formed by covariates in x separated by +. An xyplot() Trellis display is
generated, with a different panel for each variable listed in the right hand side of form. Scatter plots
are generated for numeric variables and boxplots are generated for categorical (factor or ordered)
variables.

Value

a Trellis plot of the estimated random-effects (coefficients) versus covariates, or groups.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

ranef.lme, lme, dotplot.

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
plot(ranef(fm1))
fm1RE <- ranef(fm1, augFrame = TRUE)
plot(fm1RE, form = ~ Sex)
plot(fm1RE, form = age ~ Sex) # "connected" boxplots

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

244 plot.ranef.lmList

plot.ranef.lmList Plot a ranef.lmList Object

Description

If form is missing, or is given as a one-sided formula, a Trellis dot-plot of the random effects is
generated, with a different panel for each random effect (coefficient). Rows in the dot-plot are
determined by the form argument (if not missing) or by the row names of the random effects (coef-
ficients). If a single factor is specified in form, its levels determine the dot-plot rows (with possibly
multiple dots per row); otherwise, if form specifies a crossing of factors, the dot-plot rows are deter-
mined by all combinations of the levels of the individual factors in the formula. The Trellis function
dotplot is used in this method function.

If form is a two-sided formula, a Trellis display is generated, with a different panel for each variable
listed in the right hand side of form. Scatter plots are generated for numeric variables and boxplots
are generated for categorical (factor or ordered) variables.

Usage

S3 method for class 'ranef.lmList'
plot(x, form, grid, control, ...)

Arguments

x an object inheriting from class "ranef.lmList", representing the estimated co-
efficients or estimated random effects for the lmList object from which it was
produced.

form an optional formula specifying the desired type of plot. If given as a one-sided
formula, a dotplot of the estimated random effects (coefficients) grouped ac-
cording to all combinations of the levels of the factors named in form is returned.
Single factors (~g) or crossed factors (~g1*g2) are allowed. If given as a two-
sided formula, the left hand side must be a single random effects (coefficient)
and the right hand side is formed by covariates in x separated by +. A Trellis
display of the random effect (coefficient) versus the named covariates is returned
in this case. Default is NULL, in which case the row names of the random effects
(coefficients) are used.

grid an optional logical value indicating whether a grid should be added to plot. Only
applies to plots associated with two-sided formulas in form. Default is FALSE.

control an optional list with control values for the plot, when form is given as a two-
sided formula. The control values are referenced by name in the control list
and only the ones to be modified from the default need to be specified. Available
values include: drawLine, a logical value indicating whether a loess smoother
should be added to the scatter plots and a line connecting the medians should be
added to the boxplots (default is TRUE); span.loess, used as the span argument
in the call to panel.loess (default is 2/3); degree.loess, used as the degree
argument in the call to panel.loess (default is 1); cex.axis, the character
expansion factor for the x-axis (default is 0.8); srt.axis, the rotation factor

plot.Variogram 245

for the x-axis (default is 0); and mgp.axis, the margin parameters for the x-axis
(default is c(2, 0.5, 0)).

... optional arguments passed to the Trellis dotplot function.

Value

a Trellis plot of the estimated random-effects (coefficients) versus covariates, or groups.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, dotplot

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
plot(ranef(fm1))
fm1RE <- ranef(fm1, augFrame = TRUE)
plot(fm1RE, form = ~ Sex)
plot(fm1RE, form = age ~ Sex)

plot.Variogram Plot a Variogram Object

Description

an xyplot of the semi-variogram versus the distances is produced. If smooth = TRUE, a loess
smoother is added to the plot. If showModel = TRUE and x includes an "modelVariog" attribute, the
corresponding semi-variogram is added to the plot.

Usage

S3 method for class 'Variogram'
plot(x, smooth, showModel, sigma, span, xlab,

ylab, type, ylim, grid, ...)

Arguments

x an object inheriting from class "Variogram", consisting of a data frame with
two columns named variog and dist, representing the semi-variogram values
and the corresponding distances.

smooth an optional logical value controlling whether a loess smoother should be added
to the plot. Defaults to TRUE, when showModel is FALSE.

246 pooledSD

showModel an optional logical value controlling whether the semi-variogram corresponding
to an "modelVariog" attribute of x, if any is present, should be added to the
plot. Defaults to TRUE, when the "modelVariog" attribute is present.

sigma an optional numeric value used as the height of a horizontal line displayed in the
plot. Can be used to represent the process standard deviation. Default is NULL,
implying that no horizontal line is drawn.

span an optional numeric value with the smoothing parameter for the loess fit. De-
fault is 0.6.

xlab, ylab optional character strings with the x- and y-axis labels. Default respectively to
"Distance" and "SemiVariogram".

type an optional character indicating the type of plot. Defaults to "p".

ylim an optional numeric vector with the limits for the y-axis. Defaults to c(0,
max(x$variog)).

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed to the Trellis xyplot function.

Value

an xyplot Trellis plot.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

Variogram, xyplot, loess

Examples

fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary)
plot(Variogram(fm1, form = ~ Time | Mare, maxDist = 0.7))

pooledSD Extract Pooled Standard Deviation

Description

The pooled estimated standard deviation is obtained by adding together the residual sum of squares
for each non-null element of object, dividing by the sum of the corresponding residual degrees-of-
freedom, and taking the square-root.

Usage

pooledSD(object)

predict.gls 247

Arguments

object an object inheriting from class lmList.

Value

the pooled standard deviation for the non-null elements of object, with an attribute df with the
number of degrees-of-freedom used in the estimation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, lm

Examples

fm1 <- lmList(Orthodont)
pooledSD(fm1)

predict.gls Predictions from a gls Object

Description

The predictions for the linear model represented by object are obtained at the covariate values
defined in newdata.

Usage

S3 method for class 'gls'
predict(object, newdata, na.action, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted linear model.

newdata an optional data frame to be used for obtaining the predictions. All variables
used in the linear model must be present in the data frame. If missing, the fitted
values are returned.

na.action a function that indicates what should happen when newdata contains NAs. The
default action (na.fail) causes the function to print an error message and ter-
minate if there are any incomplete observations.

... some methods for this generic require additional arguments. None are used in
this method.

248 predict.gnls

Value

a vector with the predicted values.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

newOvary <- data.frame(Time = c(-0.75, -0.5, 0, 0.5, 0.75))
predict(fm1, newOvary)

predict.gnls Predictions from a gnls Object

Description

The predictions for the nonlinear model represented by object are obtained at the covariate values
defined in newdata.

Usage

S3 method for class 'gnls'
predict(object, newdata, na.action, naPattern, ...)

Arguments

object an object inheriting from class "gnls", representing a generalized nonlinear
least squares fitted model.

newdata an optional data frame to be used for obtaining the predictions. All variables
used in the nonlinear model must be present in the data frame. If missing, the
fitted values are returned.

na.action a function that indicates what should happen when newdata contains NAs. The
default action (na.fail) causes the function to print an error message and ter-
minate if there are any incomplete observations.

naPattern an expression or formula object, specifying which returned values are to be re-
garded as missing.

... some methods for this generic require additional arguments. None are used in
this method.

predict.lme 249

Value

a vector with the predicted values.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls

Examples

fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
weights = varPower())

newSoybean <- data.frame(Time = c(10,30,50,80,100))
predict(fm1, newSoybean)

predict.lme Predictions from an lme Object

Description

The predictions at level i are obtained by adding together the population predictions (based only on
the fixed effects estimates) and the estimated contributions of the random effects to the predictions at
grouping levels less or equal to i. The resulting values estimate the best linear unbiased predictions
(BLUPs) at level i. If group values not included in the original grouping factors are present in
newdata, the corresponding predictions will be set to NA for levels greater or equal to the level at
which the unknown groups occur.

Usage

S3 method for class 'lme'
predict(object, newdata, level = Q, asList = FALSE,

na.action = na.fail, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

newdata an optional data frame to be used for obtaining the predictions. All variables
used in the fixed and random effects models, as well as the grouping factors,
must be present in the data frame. If missing, the fitted values are returned.

level an optional integer vector giving the level(s) of grouping to be used in obtaining
the predictions. Level values increase from outermost to innermost grouping,
with level zero corresponding to the population predictions. Defaults to the
highest or innermost level of grouping.

250 predict.lmList

asList an optional logical value. If TRUE and a single value is given in level, the
returned object is a list with the predictions split by groups; else the returned
value is either a vector or a data frame, according to the length of level.

na.action a function that indicates what should happen when newdata contains NAs. The
default action (na.fail) causes the function to print an error message and ter-
minate if there are any incomplete observations.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if a single level of grouping is specified in level, the returned value is either a list with the predic-
tions split by groups (asList = TRUE) or a vector with the predictions (asList = FALSE); else, when
multiple grouping levels are specified in level, the returned object is a data frame with columns
given by the predictions at different levels and the grouping factors.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, fitted.lme

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
newOrth <- data.frame(Sex = c("Male","Male","Female","Female","Male","Male"),

age = c(15, 20, 10, 12, 2, 4),
Subject = c("M01","M01","F30","F30","M04","M04"))

The 'Orthodont' data has *no* 'F30', so predict NA at level 1 :
predict(fm1, newOrth, level = 0:1)

predict.lmList Predictions from an lmList Object

Description

If the grouping factor corresponding to object is included in newdata, the data frame is partitioned
according to the grouping factor levels; else, newdata is repeated for all lm components. The pre-
dictions and, optionally, the standard errors for the predictions, are obtained for each lm component
of object, using the corresponding element of the partitioned newdata, and arranged into a list with
as many components as object, or combined into a single vector or data frame (if se.fit=TRUE).

Usage

S3 method for class 'lmList'
predict(object, newdata, subset, pool, asList, se.fit, ...)

predict.lmList 251

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

newdata an optional data frame to be used for obtaining the predictions. All variables
used in the object model formula must be present in the data frame. If missing,
the same data frame used to produce object is used.

subset an optional character or integer vector naming the lm components of object
from which the predictions are to be extracted. Default is NULL, in which case
all components are used.

asList an optional logical value. If TRUE, the returned object is a list with the predictions
split by groups; else the returned value is a vector. Defaults to FALSE.

pool an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default is attr(object, "pool").

se.fit an optional logical value indicating whether pointwise standard errors should be
computed along with the predictions. Default is FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with components given by the predictions (and, optionally, the standard errors for the predic-
tions) from each lm component of object, a vector with the predictions from all lm components
of object, or a data frame with columns given by the predictions and their corresponding standard
errors.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, predict.lm

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
predict(fm1, se.fit = TRUE)

252 predict.nlme

predict.nlme Predictions from an nlme Object

Description

The predictions at level i are obtained by adding together the contributions from the estimated fixed
effects and the estimated random effects at levels less or equal to i and evaluating the model function
at the resulting estimated parameters. If group values not included in the original grouping factors
are present in newdata, the corresponding predictions will be set to NA for levels greater or equal to
the level at which the unknown groups occur.

Usage

S3 method for class 'nlme'
predict(object, newdata, level = Q, asList = FALSE,

na.action = na.fail, naPattern = NULL, ...)

Arguments

object an object inheriting from class "nlme", representing a fitted nonlinear mixed-
effects model.

newdata an optional data frame to be used for obtaining the predictions. All variables
used in the nonlinear model, the fixed and the random effects models, as well
as the grouping factors, must be present in the data frame. If missing, the fitted
values are returned.

level an optional integer vector giving the level(s) of grouping to be used in obtaining
the predictions. Level values increase from outermost to innermost grouping,
with level zero corresponding to the population predictions. Defaults to the
highest or innermost level of grouping (and is object$dims$Q).

asList an optional logical value. If TRUE and a single value is given in level, the
returned object is a list with the predictions split by groups; else the returned
value is either a vector or a data frame, according to the length of level.

na.action a function that indicates what should happen when newdata contains NAs. The
default action (na.fail) causes the function to print an error message and ter-
minate if there are any incomplete observations.

naPattern an expression or formula object, specifying which returned values are to be re-
garded as missing.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if a single level of grouping is specified in level, the returned value is either a list with the predic-
tions split by groups (asList = TRUE) or a vector with the predictions (asList = FALSE); else, when
multiple grouping levels are specified in level, the returned object is a data frame with columns
given by the predictions at different levels and the grouping factors.

print.summary.pdMat 253

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

nlme, fitted.lme

Examples

head(Loblolly) # groupedData w/ 'Seed' is grouping variable :
Grouped Data: height ~ age | Seed
height age Seed
1 4.51 3 301
15 10.89 5 301
..

fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc), data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1, ## <---grouping---> Asym ~ 1 | Seed
start = c(Asym = 103, R0 = -8.5, lrc = -3.3))

fm1

age. <- seq(from = 2, to = 30, by = 2)
newLL.301 <- data.frame(age = age., Seed = 301)
newLL.329 <- data.frame(age = age., Seed = 329)
(p301 <- predict(fm1, newLL.301, level = 0:1))
(p329 <- predict(fm1, newLL.329, level = 0:1))
Prediction are the same at level 0 :
all.equal(p301[,"predict.fixed"],

p329[,"predict.fixed"])
and differ by the 'Seed' effect at level 1 :
p301[,"predict.Seed"] -
p329[,"predict.Seed"]

print.summary.pdMat Print a summary.pdMat Object

Description

The standard deviations and correlations associated with the positive-definite matrix represented by
object (considered as a variance-covariance matrix) are printed, together with the formula and the
grouping level associated object, if any are present.

Usage

S3 method for class 'summary.pdMat'
print(x, sigma, rdig, Level, resid, ...)

254 print.varFunc

Arguments

x an object inheriting from class "summary.pdMat", generally resulting from ap-
plying summary to an object inheriting from class "pdMat".

sigma an optional numeric value used as a multiplier for the square-root factor of the
positive-definite matrix represented by object (usually the estimated within-
group standard deviation from a mixed-effects model). Defaults to 1.

rdig an optional integer value with the number of significant digits to be used in
printing correlations. Defaults to 3.

Level an optional character string with a description of the grouping level associated
with object (generally corresponding to levels of grouping in a mixed-effects
model). Defaults to NULL.

resid an optional logical value. If TRUE an extra row with the "residual" standard
deviation given in sigma will be included in the output. Defaults to FALSE.

... optional arguments passed to print.default; see the documentation on that
method function.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

summary.pdMat,pdMat

Examples

pd1 <- pdCompSymm(3 * diag(2) + 1, form = ~age + age^2,
data = Orthodont)

print(summary(pd1), sigma = 1.2, resid = TRUE)

print.varFunc Print a varFunc Object

Description

The class and the coefficients associated with x are printed.

Usage

S3 method for class 'varFunc'
print(x, ...)

Arguments

x an object inheriting from class "varFunc", representing a variance function
structure.

... optional arguments passed to print.default; see the documentation on that
method function.

qqnorm.gls 255

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

summary.varFunc

Examples

vf1 <- varPower(0.3, form = ~age)
vf1 <- Initialize(vf1, Orthodont)
print(vf1)

qqnorm.gls Normal Plot of Residuals from a gls Object

Description

Diagnostic plots for assessing the normality of residuals the generalized least squares fit are ob-
tained. The form argument gives considerable flexibility in the type of plot specification. A condi-
tioning expression (on the right side of a | operator) always implies that different panels are used
for each level of the conditioning factor, according to a Trellis display.

Usage

S3 method for class 'gls'
qqnorm(y, form, abline, id, idLabels, grid, ...)

Arguments

y an object inheriting from class "gls", representing a generalized least squares
fitted model.

form an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtain y can be referenced. In addition,
y itself can be referenced in the formula using the symbol ".". Conditional
expressions on the right of a | operator can be used to define separate panels in
a Trellis display. The expression on the right hand side of form and to the left
of a | operator must evaluate to a residuals vector. Default is ~ resid(., type
= "p"), corresponding to a normal plot of the standardized residuals.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

256 qqnorm.lme

id an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residuals
(random effects). Observations with absolute standardized residuals (random
effects) greater than the 1 − value/2 quantile of the standard normal distribu-
tion are identified in the plot using idLabels. If given as a one-sided formula,
its right hand side must evaluate to a logical, integer, or character vector which
is used to identify observations in the plot. If missing, no observations are iden-
tified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted to
character and used to label the observations identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified observations. Default is
the innermost grouping factor.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault depends on the type of Trellis plot used: if xyplot defaults to TRUE, else
defaults to FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot for assessing normality of residuals.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, plot.gls

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

qqnorm(fm1, abline = c(0,1))

qqnorm.lme Normal Plot of Residuals or Random Effects from an lme Object

Description

Diagnostic plots for assessing the normality of residuals and random effects in the linear mixed-
effects fit are obtained. The form argument gives considerable flexibility in the type of plot speci-
fication. A conditioning expression (on the right side of a | operator) always implies that different
panels are used for each level of the conditioning factor, according to a Trellis display.

qqnorm.lme 257

Usage

S3 method for class 'lme'
qqnorm(y, form, abline, id, idLabels, grid, ...)

Arguments

y an object inheriting from class "lme", representing a fitted linear mixed-effects
model or from class "lmList", representing a list of lm objects, or from class
"lm", representing a fitted linear model, or from class "nls", representing a
nonlinear least squares fitted model.

form an optional one-sided formula specifying the desired type of plot. Any variable
present in the original data frame used to obtain y can be referenced. In addi-
tion, y itself can be referenced in the formula using the symbol ".". Conditional
expressions on the right of a | operator can be used to define separate panels
in a Trellis display. The expression on the right hand side of form and to the
left of a | operator must evaluate to a residuals vector, or a random effects ma-
trix. Default is ~ resid(., type = "p"), corresponding to a normal plot of the
standardized residuals evaluated at the innermost level of nesting.

abline an optional numeric value, or numeric vector of length two. If given as a single
value, a horizontal line will be added to the plot at that coordinate; else, if given
as a vector, its values are used as the intercept and slope for a line added to the
plot. If missing, no lines are added to the plot.

id an optional numeric value, or one-sided formula. If given as a value, it is used
as a significance level for a two-sided outlier test for the standardized residuals
(random effects). Observations with absolute standardized residuals (random
effects) greater than the 1 − value/2 quantile of the standard normal distribu-
tion are identified in the plot using idLabels. If given as a one-sided formula,
its right hand side must evaluate to a logical, integer, or character vector which
is used to identify observations in the plot. If missing, no observations are iden-
tified.

idLabels an optional vector, or one-sided formula. If given as a vector, it is converted to
character and used to label the observations identified according to id. If given
as a one-sided formula, its right hand side must evaluate to a vector which is
converted to character and used to label the identified observations. Default is
the innermost grouping factor.

grid an optional logical value indicating whether a grid should be added to plot. De-
fault is FALSE.

... optional arguments passed to the Trellis plot function.

Value

a diagnostic Trellis plot for assessing normality of residuals or random effects.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

258 Quinidine

See Also

lme, plot.lme

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
normal plot of standardized residuals by gender
qqnorm(fm1, ~ resid(., type = "p") | Sex, abline = c(0, 1))
normal plots of random effects
qqnorm(fm1, ~ranef(.))

Quinidine Quinidine Kinetics

Description

The Quinidine data frame has 1471 rows and 14 columns.

Format

This data frame contains the following columns:

Subject a factor identifying the patient on whom the data were collected.

time a numeric vector giving the time (hr) at which the drug was administered or the blood sample
drawn. This is measured from the time the patient entered the study.

conc a numeric vector giving the serum quinidine concentration (mg/L).

dose a numeric vector giving the dose of drug administered (mg). Although there were two differ-
ent forms of quinidine administered, the doses were adjusted for differences in salt content by
conversion to milligrams of quinidine base.

interval a numeric vector giving the when the drug has been given at regular intervals for a suffi-
ciently long period of time to assume steady state behavior, the interval is recorded.

Age a numeric vector giving the age of the subject on entry to the study (yr).

Height a numeric vector giving the height of the subject on entry to the study (in.).

Weight a numeric vector giving the body weight of the subject (kg).

Race a factor with levels Caucasian, Latin, and Black identifying the race of the subject.

Smoke a factor with levels no and yes giving smoking status at the time of the measurement.

Ethanol a factor with levels none, current, former giving ethanol (alcohol) abuse status at the
time of the measurement.

Heart a factor with levels No/Mild, Moderate, and Severe indicating congestive heart failure for
the subject.

Creatinine an ordered factor with levels < 50 < >= 50 indicating the creatinine clearance (mg/min).

glyco a numeric vector giving the alpha-1 acid glycoprotein concentration (mg/dL). Often mea-
sured at the same time as the quinidine concentration.

quinModel 259

Details

Verme et al. (1992) analyze routine clinical data on patients receiving the drug quinidine as a
treatment for cardiac arrhythmia (atrial fibrillation or ventricular arrhythmias). All patients were
receiving oral quinidine doses. At irregular intervals blood samples were drawn and serum concen-
trations of quinidine were determined. These data are analyzed in several publications, including
Davidian and Giltinan (1995, section 9.3).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.25)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London.

Verme, C. N., Ludden, T. M., Clementi, W. A. and Harris, S. C. (1992), Pharmacokinetics of quini-
dine in male patients: A population analysis, Clinical Pharmacokinetics, 22, 468-480.

quinModel Model function for the Quinidine data

Description

A model function for a model used with the Quinidine data. This function calls compiled C code.

Usage

quinModel(Subject, time, conc, dose, interval, lV, lKa, lCl)

Arguments

Subject a factor identifying the patient on whom the data were collected.
time a numeric vector giving the time (hr) at which the drug was administered or the

blood sample drawn. This is measured from the time the patient entered the
study.

conc a numeric vector giving the serum quinidine concentration (mg/L).
dose a numeric vector giving the dose of drug administered (mg). Although there

were two different forms of quinidine administered, the doses were adjusted for
differences in salt content by conversion to milligrams of quinidine base.

interval a numeric vector giving the when the drug has been given at regular intervals for
a sufficiently long period of time to assume steady state behavior, the interval is
recorded.

lV numeric. A vector of values of the natural log of the effective volume of distri-
bution according to Subject and time.

lKa numeric. A vector of values of the natural log of the absorption rate constant
according to Subject and time.

lCl numeric. A vector of values of the natural log of the clearance parameter ac-
cording to Subject and time.

260 Rail

Details

See the details section of Quinidine for a description of the model function that quinModel evalu-
ates.

Value

a numeric vector of predicted quinidine concentrations.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer. (section
8.2)

Rail Evaluation of Stress in Railway Rails

Description

The Rail data frame has 18 rows and 2 columns.

Format

This data frame contains the following columns:

Rail an ordered factor identifying the rail on which the measurement was made.

travel a numeric vector giving the travel time for ultrasonic head-waves in the rail (nanoseconds).
The value given is the original travel time minus 36,100 nanoseconds.

Details

Devore (2000, Example 10.10, p. 427) cites data from an article in Materials Evaluation on “a
study of travel time for a certain type of wave that results from longitudinal stress of rails used for
railroad track.”

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.26)

Devore, J. L. (2000), Probability and Statistics for Engineering and the Sciences (5th ed), Duxbury,
Boston, MA.

random.effects 261

random.effects Extract Random Effects

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include lmList and lme.

random.effects is an alias for ranef; methods are implemented for the latter.

Usage

random.effects(object, ...)
ranef(object, ...)

Arguments

object any fitted model object from which random effects estimates can be extracted.
... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

See Also

ranef.lmList, ranef.lme

ranef.lme Extract lme Random Effects

Description

The estimated random effects at level i are represented as a data frame with rows given by the
different groups at that level and columns given by the random effects. If a single level of grouping
is specified, the returned object is a data frame; else, the returned object is a list of such data frames.
Optionally, the returned data frame(s) may be augmented with covariates summarized over groups.

Usage

S3 method for class 'lme'
ranef(object, augFrame, level, data, which, FUN,

standard, omitGroupingFactor, subset, ...)

262 ranef.lme

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

augFrame an optional logical value. If TRUE, the returned data frame is augmented with
variables defined in data; else, if FALSE, only the coefficients are returned. De-
faults to FALSE.

level an optional vector of positive integers giving the levels of grouping to be used
in extracting the random effects from an object with multiple nested grouping
levels. Defaults to all levels of grouping.

data an optional data frame with the variables to be used for augmenting the returned
data frame when augFrame = TRUE. Defaults to the data frame used to fit object.

which an optional positive integer vector specifying which columns of data should be
used in the augmentation of the returned data frame. Defaults to all columns in
data.

FUN an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing data by groups. Group-invariant vari-
ables are always summarized by the unique value that they assume within that
group. If FUN is a single function it will be applied to each non-invariant variable
by group to produce the summary for that variable. If FUN is a list of functions,
the names in the list should designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated function will be applied to any
group-varying variables of that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and ordered. The Mode function,
defined internally in gsummary, returns the modal or most popular value of the
variable. It is different from the mode function that returns the S-language mode
of the variable.

standard an optional logical value indicating whether the estimated random effects should
be "standardized" (i.e. divided by the estimate of the standard deviation of that
group of random effects). Defaults to FALSE.

omitGroupingFactor

an optional logical value. When TRUE the grouping factor itself will be omitted
from the group-wise summary of data but the levels of the grouping factor will
continue to be used as the row names for the returned data frame. Defaults to
FALSE.

subset an optional expression indicating for which rows the random effects should be
extracted.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a data frame, or list of data frames, with the estimated random effects at the grouping level(s)
specified in level and, optionally, other covariates summarized over groups. The returned object
inherits from classes random.effects.lme and data.frame.

ranef.lmList 263

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

See Also

coef.lme, gsummary, lme, plot.ranef.lme, random.effects

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
ranef(fm1)
random.effects(fm1) # same as above
random.effects(fm1, augFrame = TRUE)

ranef.lmList Extract lmList Random Effects

Description

The difference between the individual lm components coefficients and their average is calculated.

Usage

S3 method for class 'lmList'
ranef(object, augFrame, data, which, FUN, standard,

omitGroupingFactor, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

augFrame an optional logical value. If TRUE, the returned data frame is augmented with
variables defined in data; else, if FALSE, only the coefficients are returned. De-
faults to FALSE.

data an optional data frame with the variables to be used for augmenting the returned
data frame when augFrame = TRUE. Defaults to the data frame used to fit object.

which an optional positive integer vector specifying which columns of data should be
used in the augmentation of the returned data frame. Defaults to all columns in
data.

264 ranef.lmList

FUN an optional summary function or a list of summary functions to be applied to
group-varying variables, when collapsing data by groups. Group-invariant vari-
ables are always summarized by the unique value that they assume within that
group. If FUN is a single function it will be applied to each non-invariant variable
by group to produce the summary for that variable. If FUN is a list of functions,
the names in the list should designate classes of variables in the frame such as
ordered, factor, or numeric. The indicated function will be applied to any
group-varying variables of that class. The default functions to be used are mean
for numeric factors, and Mode for both factor and ordered. The Mode function,
defined internally in gsummary, returns the modal or most popular value of the
variable. It is different from the mode function that returns the S-language mode
of the variable.

standard an optional logical value indicating whether the estimated random effects should
be "standardized" (i.e. divided by the corresponding estimated standard error).
Defaults to FALSE.

omitGroupingFactor

an optional logical value. When TRUE the grouping factor itself will be omitted
from the group-wise summary of data but the levels of the grouping factor will
continue to be used as the row names for the returned data frame. Defaults to
FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the differences between the individual lm coefficients in object and their average.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp.
pp. 100, 461.

See Also

fixed.effects.lmList, lmList, random.effects

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
ranef(fm1)
random.effects(fm1) # same as above

RatPupWeight 265

RatPupWeight The weight of rat pups

Description

The RatPupWeight data frame has 322 rows and 5 columns.

Format

This data frame contains the following columns:

weight a numeric vector

sex a factor with levels Male Female

Litter an ordered factor with levels 9 < 8 < 7 < 4 < 2 < 10 < 1 < 3 < 5 < 6 < 21 < 22 < 24 < 27 <
26 < 25 < 23 < 17 < 11 < 14 < 13 < 15 < 16 < 20 < 19 < 18 < 12

Lsize a numeric vector

Treatment an ordered factor with levels Control < Low < High

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

recalc Recalculate Condensed Linear Model Object

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: corStruct, modelStruct, reStruct,
and varFunc.

Usage

recalc(object, conLin, ...)

Arguments

object any object which induces a recalculation of the condensed linear model object
conLin.

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

... some methods for this generic can take additional arguments.

266 recalc.corStruct

Value

the recalculated condensed linear model object.

Note

This function is only used inside model fitting functions, such as lme and gls, that require recalcu-
lation of a condensed linear model object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

recalc.corStruct, recalc.modelStruct, recalc.reStruct, recalc.varFunc

recalc.corStruct Recalculate for corStruct Object

Description

This method function pre-multiples the "Xy" component of conLin by the transpose square-root
factor(s) of the correlation matrix (matrices) associated with object and adds the log-likelihood
contribution of object, given by logLik(object), to the "logLik" component of conLin.

Usage

S3 method for class 'corStruct'
recalc(object, conLin, ...)

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the recalculated condensed linear model object.

Note

This method function is only used inside model fitting functions, such as lme and gls, that allow
correlated error terms.

recalc.modelStruct 267

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

corFactor, logLik.corStruct

recalc.modelStruct Recalculate for a modelStruct Object

Description

This method function recalculates the condensed linear model object using each element of object
sequentially from last to first.

Usage

S3 method for class 'modelStruct'
recalc(object, conLin, ...)

Arguments

object an object inheriting from class "modelStruct", representing a list of model
components, such as corStruct and varFunc objects.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying model.
Defaults to attr(object, "conLin").

... some methods for this generic require additional arguments. None are used in
this method.

Value

the recalculated condensed linear model object.

Note

This method function is generally only used inside model fitting functions, such as lme and gls,
that allow model components, such as correlated error terms and variance functions.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

recalc.corStruct, recalc.reStruct, recalc.varFunc

268 recalc.reStruct

recalc.reStruct Recalculate for an reStruct Object

Description

The log-likelihood, or restricted log-likelihood, of the Gaussian linear mixed-effects model repre-
sented by object and conLin (assuming spherical within-group covariance structure), evaluated
at coef(object) is calculated and added to the logLik component of conLin. The settings at-
tribute of object determines whether the log-likelihood, or the restricted log-likelihood, is to be
calculated. The computational methods for the (restricted) log-likelihood calculations are described
in Bates and Pinheiro (1998).

Usage

S3 method for class 'reStruct'
recalc(object, conLin, ...)

Arguments

object an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the condensed linear model with its logLik component updated.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

logLik, lme, recalc, reStruct

recalc.varFunc 269

recalc.varFunc Recalculate for varFunc Object

Description

This method function pre-multiples the "Xy" component of conLin by a diagonal matrix with diag-
onal elements given by the weights corresponding to the variance structure represented by objecte
and adds the log-likelihood contribution of object, given by logLik(object), to the "logLik"
component of conLin.

Usage

S3 method for class 'varFunc'
recalc(object, conLin, ...)

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

conLin a condensed linear model object, consisting of a list with components "Xy",
corresponding to a regression matrix (X) combined with a response vector (y),
and "logLik", corresponding to the log-likelihood of the underlying model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the recalculated condensed linear model object.

Note

This method function is only used inside model fitting functions, such as lme and gls, that allow
heteroscedastic error terms.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

recalc, varWeights, logLik.varFunc

270 Remifentanil

Relaxin Assay for Relaxin

Description

The Relaxin data frame has 198 rows and 3 columns.

Format

This data frame contains the following columns:

Run an ordered factor with levels 5 < 8 < 9 < 3 < 4 < 2 < 7 < 1 < 6

conc a numeric vector

cAMP a numeric vector

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

Remifentanil Pharmacokinetics of Remifentanil

Description

Intravenous infusion of remifentanil (a strong analgesic) in different rates over varying time periods
was applied to a total of 65 patients. Concentration measurements of remifentanil were taken along
with several covariates resulting in the Remifentanil data frame with 2107 rows and 12 columns.

Usage

Remifentanil

Format

This data frame (of class "groupedData", specifically "nfnGroupedData") contains the following
columns:

ID: numerical (patient) IDs.

Subject: an ordered factor with 65 levels (of the IDs): 30 < 21 < 25 < 23 < 29 < < 36 < 6
< 5 < 10 < 9.

Time: time from beginning of infusion in minutes (numeric).

conc: remifentanil concentration in [ng / ml] (numeric).

Rate: infusion rate in [µg / min].

Remifentanil 271

Amt: amount of remifentanil given in the current time interval in [µg].

Age: age of the patient in years.

Sex: gender of the patient, a factor with levels Female and Male.

Ht: height of the patient in cm.

Wt: weight of the patient in kg.

BSA: body surface area (DuBois and DuBois 1916): BSA := Wt0.425 ·Ht0.725 · 0.007184.

LBM: lean body mass (James 1976), with slightly different formula for men LBMm := 1.1Wt −
128(Wt/Ht)2, and women LBMf := 1.07Wt− 148(Wt/Ht)2.

Author(s)

of this help page: Niels Hagenbuch and Martin Maechler, SfS ETH Zurich.

Source

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS, Springer, New
York.

References

Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJM, Gambus PL, Billard V, Hoke JF,
Moore KHP, Hermann DJ, Muir KT, Mandema JW, Shafer SL (1997). Influence of age and gender
on the pharmacokinetics and pharmacodynamics of remifentanil: I. Model development. Anesthe-
siology 86 1, 10–23. doi:10.1097/0000054219970100000004

Charles F. Minto, Thomas W. Schnider and Steven L. Shafer (1997). Pharmacokinetics and Phar-
macodynamics of Remifentanil: II. Model Application. Anesthesiology 86 1, 24–33. doi:10.1097/
0000054219970100000005

Examples

plot(Remifentanil, type = "l", lwd = 2) # shows the 65 patients' remi profiles

The same on log-log scale (*more* sensible for modeling ?):
plot(Remifentanil, type = "l", lwd = 2, scales = list(log=TRUE))

str(Remifentanil)
summary(Remifentanil)

plot(xtabs(~Subject, Remifentanil))
summary(unclass(table(Remifentanil$Subject)))
between 20 and 54 measurements per patient (median: 24; mean: 32.42)

Only first measurement of each patient :
dim(Remi.1 <- Remifentanil[!duplicated(Remifentanil[,"ID"]),]) # 65 x 12

LBMfn <- function(Wt, Ht, Sex) ifelse(Sex == "Female",
1.07 * Wt - 148*(Wt/Ht)^2,
1.1 * Wt - 128*(Wt/Ht)^2)

with(Remi.1,

https://doi.org/10.1097/00000542-199701000-00004
https://doi.org/10.1097/00000542-199701000-00005
https://doi.org/10.1097/00000542-199701000-00005

272 residuals.gls

stopifnot(all.equal(BSA, Wt^{0.425} * Ht^{0.725} * 0.007184,
tolerance = 1.5e-5),

all.equal(LBM, LBMfn(Wt, Ht, Sex),
tolerance = 7e-7)

))

Rate: typically 3 µg / kg body weight, but :
sunflowerplot(Rate ~ Wt, Remifentanil)
abline(0,3, lty=2, col=adjustcolor("black", 0.5))

residuals.gls Extract gls Residuals

Description

The residuals for the linear model represented by object are extracted.

Usage

S3 method for class 'gls'
residuals(object, type, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted linear model, or from class gnls, representing a generalized nonlinear
least squares fitted linear model.

type an optional character string specifying the type of residuals to be used. If
"response", the "raw" residuals (observed - fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if "normalized", the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to "response".

... some methods for this generic function require additional arguments. None are
used in this method.

Value

a vector with the residuals for the linear model represented by object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls

residuals.glsStruct 273

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

residuals(fm1)

residuals.glsStruct Calculate glsStruct Residuals

Description

The residuals for the linear model represented by object are extracted.

Usage

S3 method for class 'glsStruct'
residuals(object, glsFit, ...)

Arguments

object an object inheriting from class "glsStruct", representing a list of linear model
components, such as corStruct and "varFunc" objects.

glsFit an optional list with components logLik (log-likelihood), beta (coefficients),
sigma (standard deviation for error term), varBeta (coefficients’ covariance ma-
trix), fitted (fitted values), and residuals (residuals). Defaults to attr(object,
"glsFit").

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the residuals for the linear model represented by object.

Note

This method function is primarily used inside gls and residuals.gls.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gls, glsStruct, residuals.gls, fitted.glsStruct

274 residuals.gnlsStruct

residuals.gnlsStruct Calculate gnlsStruct Residuals

Description

The residuals for the nonlinear model represented by object are extracted.

Usage

S3 method for class 'gnlsStruct'
residuals(object, ...)

Arguments

object an object inheriting from class "gnlsStruct", representing a list of model com-
ponents, such as corStruct and varFunc objects, and attributes specifying the
underlying nonlinear model and the response variable.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a vector with the residuals for the nonlinear model represented by object.

Note

This method function is primarily used inside gnls and residuals.gnls.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

gnls, residuals.gnls, fitted.gnlsStruct

residuals.lme 275

residuals.lme Extract lme Residuals

Description

The residuals at level i are obtained by subtracting the fitted levels at that level from the response
vector (and dividing by the estimated within-group standard error, if type="pearson"). The fitted
values at level i are obtained by adding together the population fitted values (based only on the
fixed effects estimates) and the estimated contributions of the random effects to the fitted values at
grouping levels less or equal to i.

Usage

S3 method for class 'lme'
residuals(object, level = Q,

type = c("response", "pearson", "normalized"), asList = FALSE, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals from object. Level values increase from outermost to innermost
grouping, with level zero corresponding to the population residuals. Defaults to
the highest or innermost level of grouping.

type an optional character string specifying the type of residuals to be used. If
"response", as by default, the “raw” residuals (observed - fitted) are used; else,
if "pearson", the standardized residuals (raw residuals divided by the corre-
sponding standard errors) are used; else, if "normalized", the normalized resid-
uals (standardized residuals pre-multiplied by the inverse square-root factor of
the estimated error correlation matrix) are used. Partial matching of arguments
is used, so only the first character needs to be provided.

asList an optional logical value. If TRUE and a single value is given in level, the
returned object is a list with the residuals split by groups; else the returned value
is either a vector or a data frame, according to the length of level. Defaults to
FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

if a single level of grouping is specified in level, the returned value is either a list with the resid-
uals split by groups (asList = TRUE) or a vector with the residuals (asList = FALSE); else, when
multiple grouping levels are specified in level, the returned object is a data frame with columns
given by the residuals at different levels and the grouping factors. For a vector or data frame result
the naresid method is applied.

276 residuals.lmeStruct

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, fitted.lme

Examples

fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
head(residuals(fm1, level = 0:1))
summary(residuals(fm1) /

residuals(fm1, type = "p")) # constant scaling factor 1.432

residuals.lmeStruct Calculate lmeStruct Residuals

Description

The residuals at level i are obtained by subtracting the fitted values at that level from the response
vector. The fitted values at level i are obtained by adding together the population fitted values
(based only on the fixed effects estimates) and the estimated contributions of the random effects to
the fitted values at grouping levels less or equal to i.

Usage

S3 method for class 'lmeStruct'
residuals(object, level, conLin, lmeFit, ...)

Arguments

object an object inheriting from class "lmeStruct", representing a list of linear mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals from object. Level values increase from outermost to innermost
grouping, with level zero corresponding to the population fitted values. Defaults
to the highest or innermost level of grouping.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying lme
model. Defaults to attr(object, "conLin").

lmeFit an optional list with components beta and b containing respectively the fixed
effects estimates and the random effects estimates to be used to calculate the
residuals. Defaults to attr(object, "lmeFit").

... some methods for this generic accept optional arguments.

residuals.lmList 277

Value

if a single level of grouping is specified in level, the returned value is a vector with the residuals
at the desired level; else, when multiple grouping levels are specified in level, the returned object
is a matrix with columns given by the residuals at different levels.

Note

This method function is primarily used within the lme function.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lme, residuals.lme, fitted.lmeStruct

residuals.lmList Extract lmList Residuals

Description

The residuals are extracted from each lm component of object and arranged into a list with as
many components as object, or combined into a single vector.

Usage

S3 method for class 'lmList'
residuals(object, type, subset, asList, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm objects with
a common model.

subset an optional character or integer vector naming the lm components of object
from which the residuals are to be extracted. Default is NULL, in which case all
components are used.

type an optional character string specifying the type of residuals to be extracted. Op-
tions include "response" for the "raw" residuals (observed - fitted), "pearson"
for the standardized residuals (raw residuals divided by the estimated residual
standard error) using different standard errors for each lm fit, and "pooled.pearson"
for the standardized residuals using a pooled estimate of the residual standard
error. Partial matching of arguments is used, so only the first character needs to
be provided. Defaults to "response".

asList an optional logical value. If TRUE, the returned object is a list with the residuals
split by groups; else the returned value is a vector. Defaults to FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

278 residuals.nlmeStruct

Value

a list with components given by the residuals of each lm component of object, or a vector with the
residuals for all lm components of object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, fitted.lmList

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
residuals(fm1)

residuals.nlmeStruct Calculate nlmeStruct Residuals

Description

The residuals at level i are obtained by subtracting the fitted values at that level from the response
vector. The fitted values at level i are obtained by adding together the contributions from the esti-
mated fixed effects and the estimated random effects at levels less or equal to i and evaluating the
model function at the resulting estimated parameters.

Usage

S3 method for class 'nlmeStruct'
residuals(object, level, conLin, ...)

Arguments

object an object inheriting from class "nlmeStruct", representing a list of mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

level an optional integer vector giving the level(s) of grouping to be used in extracting
the residuals from object. Level values increase from outermost to innermost
grouping, with level zero corresponding to the population fitted values. Defaults
to the highest or innermost level of grouping.

conLin an optional condensed linear model object, consisting of a list with components
"Xy", corresponding to a regression matrix (X) combined with a response vector
(y), and "logLik", corresponding to the log-likelihood of the underlying nlme
model. Defaults to attr(object, "conLin").

... optional arguments to the residuals generic. Not used.

reStruct 279

Value

if a single level of grouping is specified in level, the returned value is a vector with the residuals
at the desired level; else, when multiple grouping levels are specified in level, the returned object
is a matrix with columns given by the residuals at different levels.

Note

This method function is primarily used within the nlme function.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Bates, D.M. and Pinheiro, J.C. (1998) "Computational methods for multilevel models" available in
PostScript or PDF formats at http://nlme.stat.wisc.edu

See Also

nlme, fitted.nlmeStruct

reStruct Random Effects Structure

Description

This function is a constructor for the reStruct class, representing a random effects structure and
consisting of a list of pdMat objects, plus a settings attribute containing information for the opti-
mization algorithm used to fit the associated mixed-effects model.

Usage

reStruct(object, pdClass, REML, data)
S3 method for class 'reStruct'
print(x, sigma, reEstimates, verbose, ...)

Arguments

object any of the following: (i) a one-sided formula of the form ~x1+...+xn | g1/.../gm,
with x1+...+xn specifying the model for the random effects and g1/.../gm
the grouping structure (m may be equal to 1, in which case no / is required).
The random effects formula will be repeated for all levels of grouping, in the
case of multiple levels of grouping; (ii) a list of one-sided formulas of the form
~x1+...+xn | g, with possibly different random effects models for each group-
ing level. The order of nesting will be assumed the same as the order of the
elements in the list; (iii) a one-sided formula of the form ~x1+...+xn, or a

280 reStruct

pdMat object with a formula (i.e. a non-NULL value for formula(object)), or a
list of such formulas or pdMat objects. In this case, the grouping structure for-
mula will be derived from the data used to to fit the mixed-effects model, which
should inherit from class groupedData; (iv) a named list of formulas or pdMat
objects as in (iii), with the grouping factors as names. The order of nesting will
be assumed the same as the order of the order of the elements in the list; (v) an
reStruct object.

pdClass an optional character string with the name of the pdMat class to be used for the
formulas in object. Defaults to "pdLogChol" which corresponds to a general
positive-definite matrix (Log-Cholesky parametrization).

REML an optional logical value. If TRUE, the associated mixed-effects model will be
fitted using restricted maximum likelihood; else, if FALSE, maximum likelihood
will be used. Defaults to FALSE.

data an optional data frame in which to evaluate the variables used in the random
effects formulas in object. It is used to obtain the levels for factors, which af-
fect the dimensions and the row/column names of the underlying pdMat objects.
If NULL, no attempt is made to obtain information on factors appearing in the
formulas. Defaults to the parent frame from which the function was called.

x an object inheriting from class reStruct to be printed.

sigma an optional numeric value used as a multiplier for the square-root factors of the
pdMat components (usually the estimated within-group standard deviation from
a mixed-effects model). Defaults to 1.

reEstimates an optional list with the random effects estimates for each level of grouping.
Only used when verbose = TRUE.

verbose an optional logical value determining if the random effects estimates should be
printed. Defaults to FALSE.

... Optional arguments can be given to other methods for this generic. None are
used in this method.

Value

an object inheriting from class reStruct, representing a random effects structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

groupedData, lme, pdMat, solve.reStruct, summary.reStruct, update.reStruct

Examples

rs1 <- reStruct(list(Dog = ~day, Side = ~1), data = Pixel)
rs1 # 2 entries "Uninitialized"
str(rs1) # a bit more

simulate.lme 281

simulate.lme Simulate Results from lme Models

Description

The model object is fit to the data. Using the fitted values of the parameters, nsim new data vectors
from this model are simulated. Both object and m2 are fit by maximum likelihood (ML) and/or by
restricted maximum likelihood (REML) to each of the simulated data vectors.

Usage

S3 method for class 'lme'
simulate(object, nsim = 1, seed = , m2,

method = c("REML", "ML"), niterEM = c(40, 200), useGen, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model, or a list containing an lme model specification. If given as a list, it should
contain components fixed, data, and random with values suitable for a call to
lme. This argument defines the null model.

m2 an "lme" object or a list, like object containing a second lme model specifica-
tion. This argument defines the alternative model. If given as a list, only those
parts of the specification that change between model object and m2 need to be
specified.

seed an optional integer that is passed to set.seed. Defaults to a random integer.

method an optional character array. If it includes "REML" the models are fit by maximiz-
ing the restricted log-likelihood. If it includes "ML" the log-likelihood is maxi-
mized. Defaults to c("REML", "ML"), in which case both methods are used.

nsim an optional positive integer specifying the number of simulations to perform.
Defaults to 1. This has changed. Previously the default was 1000.

niterEM an optional integer vector of length 2 giving the number of iterations of the EM
algorithm to apply when fitting the object and m2 to each simulated set of data.
Defaults to c(40,200).

useGen an optional logical value. If TRUE, the nlminb optimizer is used with numerical
derivatives of the log-likelihood. If FALSE, the nlm algorithm is used with an
analytic gradient. The default depends on the "pdMat" classes used in object
and m2: if both are standard classes (see pdClasses) then defaults to FALSE,
otherwise defaults to TRUE.

... optional additional arguments. None are used.

Value

an object of class simulate.lme with components null and alt. Each of these has components
ML and/or REML which are matrices. An attribute called seed contains the seed that was used for the
random number generator.

282 solve.pdMat

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS, Springer.

See Also

lme, set.seed

Examples

orthSim <-
simulate.lme(list(fixed = distance ~ age, data = Orthodont,

random = ~ 1 | Subject),
nsim = 3, # limited here for speed
m2 = list(random = ~ age | Subject))

solve.pdMat Calculate Inverse of a Positive-Definite Matrix

Description

The positive-definite matrix represented by a is inverted and assigned to a.

Usage

S3 method for class 'pdMat'
solve(a, b, ...)

Arguments

a an object inheriting from class "pdMat", representing a positive definite matrix.

b this argument is only included for consistency with the generic function and is
not used in this method function.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a pdMat object similar to a, but with coefficients corresponding to the inverse of the positive-definite
matrix represented by a.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

solve.reStruct 283

See Also

pdMat

Examples

pd1 <- pdCompSymm(3 * diag(3) + 1)
solve(pd1)

solve.reStruct Apply Solve to an reStruct Object

Description

Solve is applied to each pdMat component of a, which results in inverting the positive-definite
matrices they represent.

Usage

S3 method for class 'reStruct'
solve(a, b, ...)

Arguments

a an object inheriting from class "reStruct", representing a random effects struc-
ture and consisting of a list of pdMat objects.

b this argument is only included for consistency with the generic function and is
not used in this method function.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an reStruct object similar to a, but with the pdMat components representing the inverses of the
matrices represented by the components of a.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

solve.pdMat, reStruct

Examples

rs1 <- reStruct(list(A = pdSymm(diag(1:3), form = ~Score),
B = pdDiag(2 * diag(4), form = ~Educ)))

solve(rs1)

284 splitFormula

Soybean Growth of soybean plants

Description

The Soybean data frame has 412 rows and 5 columns.

Format

This data frame contains the following columns:

Plot a factor giving a unique identifier for each plot.

Variety a factor indicating the variety; Forrest (F) or Plant Introduction #416937 (P).

Year a factor indicating the year the plot was planted.

Time a numeric vector giving the time the sample was taken (days after planting).

weight a numeric vector giving the average leaf weight per plant (g).

Details

These data are described in Davidian and Giltinan (1995, 1.1.3, p.7) as “Data from an experiment
to compare growth patterns of two genotypes of soybeans: Plant Introduction #416937 (P), an
experimental strain, and Forrest (F), a commercial variety.”

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.27)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data,
Chapman and Hall, London.

Examples

summary(fm1 <- nlsList(SSlogis, data = Soybean))

splitFormula Split a Formula

Description

Splits the right hand side of form into a list of subformulas according to the presence of sep. The
left hand side of form, if present, will be ignored. The length of the returned list will be equal to the
number of occurrences of sep in form plus one.

Spruce 285

Usage

splitFormula(form, sep)

Arguments

form a formula object.

sep an optional character string specifying the separator to be used for splitting the
formula. Defaults to "/".

Value

a list of formulas, corresponding to the split of form according to sep.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

formula

Examples

splitFormula(~ g1/g2/g3)

Spruce Growth of Spruce Trees

Description

The Spruce data frame has 1027 rows and 4 columns.

Format

This data frame contains the following columns:

Tree a factor giving a unique identifier for each tree.

days a numeric vector giving the number of days since the beginning of the experiment.

logSize a numeric vector giving the logarithm of an estimate of the volume of the tree trunk.

plot a factor identifying the plot in which the tree was grown.

Details

Diggle, Liang, and Zeger (1994, Example 1.3, page 5) describe data on the growth of spruce trees
that have been exposed to an ozone-rich atmosphere or to a normal atmosphere.

286 summary.corStruct

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.28)

Diggle, Peter J., Liang, Kung-Yee and Zeger, Scott L. (1994), Analysis of longitudinal data, Oxford
University Press, Oxford.

summary.corStruct Summarize a corStruct Object

Description

This method function prepares object to be printed using the print.summary method, by changing
its class and adding a structName attribute to it.

Usage

S3 method for class 'corStruct'
summary(object, structName, ...)

Arguments

object an object inheriting from class "corStruct", representing a correlation struc-
ture.

structName an optional character string defining the type of correlation structure associated
with object, to be used in the print.summary method. Defaults to class(object)[1].

... some methods for this generic require additional arguments. None are used in
this method.

Value

an object identical to object, but with its class changed to summary.corStruct and an additional
attribute structName. The returned value inherits from the same classes as object.

Author(s)

José Pinheiro and Douglas Bates

See Also

corClasses, corNatural, Initialize.corStruct, summary

Examples

cs1 <- corAR1(0.2)
summary(cs1)

summary.gls 287

summary.gls Summarize a Generalized Least Squares gls Object

Description

Additional information about the linear model fit represented by object is extracted and included
as components of object.

Usage

S3 method for class 'gls'
summary(object, verbose, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted linear model.

verbose an optional logical value used to control the amount of output when the object
is printed. Defaults to FALSE.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an object inheriting from class summary.gls with all components included in object (see glsObject
for a full description of the components) plus the following components:

corBeta approximate correlation matrix for the coefficients estimates

tTable a matrix with columns Value, Std. Error, t-value, and p-value representing
respectively the coefficients estimates, their approximate standard errors, the
ratios between the estimates and their standard errors, and the associated p-value
under a t approximation. Rows correspond to the different coefficients.

residuals if more than five observations are used in the gls fit, a vector with the minimum,
first quartile, median, third quartile, and maximum of the residuals distribution;
else the residuals.

AIC the Akaike Information Criterion corresponding to object.

BIC the Bayesian Information Criterion corresponding to object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

AIC, BIC, gls, summary

288 summary.lme

Examples

fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))

summary(fm1)
coef(summary(fm1)) # "the matrix"

summary.lme Summarize an lme Object

Description

Additional information about the linear mixed-effects fit represented by object is extracted and
included as components of object. The returned object has a print and a coef method, the latter
returning the coefficient’s tTtable.

Usage

S3 method for class 'lme'
summary(object, adjustSigma, verbose, ...)
S3 method for class 'summary.lme'
print(x, verbose = FALSE, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

adjustSigma an optional logical value. If TRUE and the estimation method used to obtain
object was maximum likelihood, the residual standard error is multiplied by√
nobs/(nobs − npar), converting it to a REML-like estimate. This argument is

only used when a single fitted object is passed to the function. Default is TRUE.

verbose an optional logical value used to control the amount of output in the print.summary.lme
method. Defaults to FALSE.

... additional optional arguments passed to methods, mainly for the print method.

x a "summary.lme" object.

Value

an object inheriting from class summary.lme with all components included in object (see lmeObject
for a full description of the components) plus the following components:

corFixed approximate correlation matrix for the fixed effects estimates.

tTable a matrix with columns named Value, Std. Error, DF, t-value, and p-value
representing respectively the fixed effects estimates, their approximate standard
errors, the denominator degrees of freedom, the ratios between the estimates
and their standard errors, and the associated p-value from a t distribution. Rows
correspond to the different fixed effects.

summary.lmList 289

residuals if more than five observations are used in the lme fit, a vector with the minimum,
first quartile, median, third quartile, and maximum of the innermost grouping
level residuals distribution; else the innermost grouping level residuals.

AIC the Akaike Information Criterion corresponding to object.

BIC the Bayesian Information Criterion corresponding to object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

AIC, BIC, lme.

Examples

fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
(s1 <- summary(fm1))
coef(s1) # the (coef | Std.E | t | P-v) matrix

summary.lmList Summarize an lmList Object

Description

The summary.lm method is applied to each lm component of object to produce summary informa-
tion on the individual fits, which is organized into a list of summary statistics. The returned object
is suitable for printing with the print.summary.lmList method.

Usage

S3 method for class 'lmList'
summary(object, pool, ...)

Arguments

object an object inheriting from class "lmList", representing a list of lm fitted objects.

pool an optional logical value indicating whether a pooled estimate of the residual
standard error should be used. Default is attr(object, "pool").

... some methods for this generic require additional arguments. None are used in
this method.

290 summary.lmList

Value

a list with summary statistics obtained by applying summary.lm to the elements of object, inherit-
ing from class summary.lmList. The components of value are:

call a list containing an image of the lmList call that produced object.

coefficients a three dimensional array with summary information on the lm coefficients. The
first dimension corresponds to the names of the object components, the second
dimension is given by "Value", "Std. Error", "t value", and "Pr(>|t|)",
corresponding, respectively, to the coefficient estimates and their associated
standard errors, t-values, and p-values. The third dimension is given by the
coefficients names.

correlation a three dimensional array with the correlations between the individual lm coef-
ficient estimates. The first dimension corresponds to the names of the object
components. The third dimension is given by the coefficients names. For each
coefficient, the rows of the associated array give the correlations between that
coefficient and the remaining coefficients, by lm component.

cov.unscaled a three dimensional array with the unscaled variances/covariances for the in-
dividual lm coefficient estimates (giving the estimated variance/covariance for
the coefficients, when multiplied by the estimated residual errors). The first
dimension corresponds to the names of the object components. The third di-
mension is given by the coefficients names. For each coefficient, the rows of the
associated array give the unscaled covariances between that coefficient and the
remaining coefficients, by lm component.

df an array with the number of degrees of freedom for the model and for residuals,
for each lm component.

df.residual the total number of degrees of freedom for residuals, corresponding to the sum
of residuals df of all lm components.

fstatistics an array with the F test statistics and corresponding degrees of freedom, for each
lm component.

pool the value of the pool argument to the function.

r.squared a vector with the multiple R-squared statistics for each lm component.

residuals a list with components given by the residuals from individual lm fits.

RSE the pooled estimate of the residual standard error.

sigma a vector with the residual standard error estimates for the individual lm fits.

terms the terms object used in fitting the individual lm components.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

lmList, summary

summary.modelStruct 291

Examples

fm1 <- lmList(distance ~ age | Subject, Orthodont)
summary(fm1)

summary.modelStruct Summarize a modelStruct Object

Description

This method function applies summary to each element of object.

Usage

S3 method for class 'modelStruct'
summary(object, ...)

Arguments

object an object inheriting from class "modelStruct", representing a list of model
components, such as reStruct, corStruct and varFunc objects.

... some methods for this generic require additional arguments. None are used in
this method.

Value

a list with elements given by the summarized components of object. The returned value is of class
summary.modelStruct, also inheriting from the same classes as object.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct, summary

Examples

lms1 <- lmeStruct(reStruct = reStruct(pdDiag(diag(2), ~age)),
corStruct = corAR1(0.3))

summary(lms1)

292 summary.nlsList

summary.nlsList Summarize an nlsList Object

Description

The summary function is applied to each nls component of object to produce summary information
on the individual fits, which is organized into a list of summary statistics. The returned object is
suitable for printing with the print.summary.nlsList method.

Usage

S3 method for class 'nlsList'
summary(object, ...)

Arguments

object an object inheriting from class "nlsList", representing a list of nls fitted ob-
jects.

... optional arguments to the summary.lmList method. One such optional argu-
ment is pool, a logical value indicating whether a pooled estimate of the residual
standard error should be used. Default is attr(object, "pool").

Value

a list with summary statistics obtained by applying summary to the elements of object, inheriting
from class summary.nlsList. The components of value are:

call a list containing an image of the nlsList call that produced object.

parameters a three dimensional array with summary information on the nls coefficients.
The first dimension corresponds to the names of the object components, the
second dimension is given by "Value", "Std. Error", "t value", and "Pr(>|t|)",
corresponding, respectively, to the coefficient estimates and their associated
standard errors, t-values, and p-values. The third dimension is given by the
coefficients names.

correlation a three dimensional array with the correlations between the individual nls co-
efficient estimates. The first dimension corresponds to the names of the object
components. The third dimension is given by the coefficients names. For each
coefficient, the rows of the associated array give the correlations between that
coefficient and the remaining coefficients, by nls component.

cov.unscaled a three dimensional array with the unscaled variances/covariances for the in-
dividual lm coefficient estimates (giving the estimated variance/covariance for
the coefficients, when multiplied by the estimated residual errors). The first
dimension corresponds to the names of the object components. The third di-
mension is given by the coefficients names. For each coefficient, the rows of the
associated array give the unscaled covariances between that coefficient and the
remaining coefficients, by nls component.

summary.pdMat 293

df an array with the number of degrees of freedom for the model and for residuals,
for each nls component.

df.residual the total number of degrees of freedom for residuals, corresponding to the sum
of residuals df of all nls components.

pool the value of the pool argument to the function.

RSE the pooled estimate of the residual standard error.

sigma a vector with the residual standard error estimates for the individual lm fits.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

nlsList, summary

Examples

fm1 <- nlsList(SSasymp, Loblolly)
summary(fm1)

summary.pdMat Summarize a pdMat Object

Description

Attributes structName and noCorrelation, with the values of the corresponding arguments to the
method function, are appended to object and its class is changed to summary.pdMat.

Usage

S3 method for class 'pdMat'
summary(object, structName, noCorrelation, ...)

Arguments

object an object inheriting from class "pdMat", representing a positive definite matrix.

structName an optional character string with a description of the pdMat class. Default de-
pends on the method function: "Blocked" for pdBlocked, "Compound Symmetry"
for pdCompSymm, "Diagonal" for pdDiag, "Multiple of an Identity" for pdIdent,
"General Positive-Definite, Natural Parametrization" for pdNatural,
"General Positive-Definite" for pdSymm, and data.class(object) for pdMat.

noCorrelation an optional logical value indicating whether correlations are to be printed in
print.summary.pdMat. Default depends on the method function: FALSE for
pdDiag and pdIdent, and TRUE for all other classes.

... some methods for this generic require additional arguments. None are used in
this method.

294 summary.varFunc

Value

an object similar to object, with additional attributes structName and noCorrelation, inheriting
from class summary.pdMat.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

print.summary.pdMat, pdMat

Examples

summary(pdSymm(diag(4)))

summary.varFunc Summarize "varFunc" Object

Description

A structName attribute, with the value of corresponding argument, is appended to object and its
class is changed to summary.varFunc.

Usage

S3 method for class 'varFunc'
summary(object, structName, ...)

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

structName an optional character string with a description of the varFunc class. Default
depends on the method function:

for varComb: "Combination of variance functions",
for varConstPower: "Constant plus power of variance covariate",
for varConstProp: "Constant plus proportion of variance covariate",
for varExp: "Exponential of variance covariate",
for varIdent: "Different standard deviations per stratum",
for varPower: "Power of variance covariate",
for varFunc: data.class(object).

... some methods for this generic require additional arguments. None are used in
this method.

Tetracycline1 295

Value

an object similar to object, with an additional attribute structName, inheriting from class summary.varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

varClasses, varFunc

Examples

vf1 <- varPower(0.3, form = ~age)
vf1 <- Initialize(vf1, Orthodont)
summary(vf1)

Tetracycline1 Pharmacokinetics of tetracycline

Description

The Tetracycline1 data frame has 40 rows and 4 columns.

Format

This data frame contains the following columns:

conc a numeric vector

Time a numeric vector

Subject an ordered factor with levels 5 < 3 < 2 < 4 < 1

Formulation a factor with levels tetrachel tetracyn

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

296 update.modelStruct

Tetracycline2 Pharmacokinetics of tetracycline

Description

The Tetracycline2 data frame has 40 rows and 4 columns.

Format

This data frame contains the following columns:

conc a numeric vector

Time a numeric vector

Subject an ordered factor with levels 4 < 5 < 2 < 1 < 3

Formulation a factor with levels Berkmycin tetramycin

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

update.modelStruct Update a modelStruct Object

Description

This method function updates each element of object, allowing the access to data.

Usage

S3 method for class 'modelStruct'
update(object, data, ...)

Arguments

object an object inheriting from class "modelStruct", representing a list of model
components, such as corStruct and varFunc objects.

data a data frame in which to evaluate the variables needed for updating the elements
of object.

... some methods for this generic require additional arguments. None are used in
this method.

Value

an object similar to object (same class, length, and names), but with updated elements.

update.varFunc 297

Note

This method function is primarily used within model fitting functions, such as lme and gls, that
allow model components such as variance functions.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

reStruct

update.varFunc Update varFunc Object

Description

If the formula(object) includes a "." term, representing a fitted object, the variance covariate
needs to be updated upon completion of an optimization cycle (in which the variance function
weights are kept fixed). This method function allows a reevaluation of the variance covariate using
the current fitted object and, optionally, other variables in the original data.

Usage

S3 method for class 'varFunc'
update(object, data, ...)

Arguments

object an object inheriting from class "varFunc", representing a variance function
structure.

data a list with a component named "." with the current version of the fitted object
(from which fitted values, coefficients, and residuals can be extracted) and, if
necessary, other variables used to evaluate the variance covariate(s).

... some methods for this generic require additional arguments. None are used in
this method.

Value

if formula(object) includes a "." term, an varFunc object similar to object, but with the vari-
ance covariate reevaluated at the current fitted object value; else object is returned unchanged.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

298 varClasses

See Also

needUpdate, covariate<-.varFunc

varClasses Variance Function Classes

Description

Standard classes of variance function structures (varFunc) available in the nlme package. Covari-
ates included in the variance function, denoted by variance covariates, may involve functions of
the fitted model object, such as the fitted values and the residuals. Different coefficients may be
assigned to the levels of a classification factor.

Value

Available standard classes:

varExp exponential of a variance covariate.

varPower power of a variance covariate.

varConstPower constant plus power of a variance covariate.

varConstProp constant plus proportion of a variance covariate.

varIdent constant variance(s), generally used to allow different variances according to the
levels of a classification factor.

varFixed fixed weights, determined by a variance covariate.

varComb combination of variance functions.

Note

Users may define their own varFunc classes by specifying a constructor function and, at a mini-
mum, methods for the functions coef, coef<-, and Initialize. For examples of these functions,
see the methods for class varPower.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varComb, varConstPower, varConstProp, varExp, varFixed, varIdent, varPower, summary.varFunc

varComb 299

varComb Combination of Variance Functions

Description

This function is a constructor for the varComb class, representing a combination of variance func-
tions. The corresponding variance function is equal to the product of the variance functions of the
varFunc objects listed in

Usage

varComb(...)

Arguments

... objects inheriting from class varFunc representing variance function structures.

Value

a varComb object representing a combination of variance functions, also inheriting from class
varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varClasses, varWeights.varComb, coef.varComb

Examples

vf1 <- varComb(varIdent(form = ~1|Sex), varPower())

300 varConstPower

varConstPower Constant Plus Power Variance Function

Description

This function is a constructor for the varConstPower class, representing a constant plus power
variance function structure. Letting v denote the variance covariate and σ2(v) denote the variance
function evaluated at v, the constant plus power variance function is defined as σ2(v) = (θ1+|v|θ2)2,
where θ1, θ2 are the variance function coefficients. When a grouping factor is present, different
θ1, θ2 are used for each factor level.

Usage

varConstPower(const, power, form, fixed)

Arguments

const, power optional numeric vectors, or lists of numeric values, with, respectively, the coef-
ficients for the constant and the power terms. Both arguments must have length
one, unless a grouping factor is specified in form. If either argument has length
greater than one, it must have names which identify its elements to the levels of
the grouping factor defined in form. If a grouping factor is present in form and
the argument has length one, its value will be assigned to all grouping levels.
Only positive values are allowed for const. Default is numeric(0), which re-
sults in a vector of zeros of appropriate length being assigned to the coefficients
when object is initialized (corresponding to constant variance equal to one).

form an optional one-sided formula of the form ~ v, or ~ v | g, specifying a variance
covariate v and, optionally, a grouping factor g for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
".", representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate
to be updated during the optimization of an object function). When a grouping
factor is present in form, a different coefficient value is used for each of its lev-
els. Several grouping variables may be simultaneously specified, separated by
the * operator, as in ~ v | g1 * g2 * g3. In this case, the levels of each grouping
variable are pasted together and the resulting factor is used to group the obser-
vations. Defaults to ~ fitted(.) representing a variance covariate given by the
fitted values of a fitted model object and no grouping factor.

fixed an optional list with components const and/or power, consisting of numeric
vectors, or lists of numeric values, specifying the values at which some or all of
the coefficients in the variance function should be fixed. If a grouping factor is
specified in form, the components of fixed must have names identifying which
coefficients are to be fixed. Coefficients included in fixed are not allowed to
vary during the optimization of an objective function. Defaults to NULL, corre-
sponding to no fixed coefficients.

varConstProp 301

Value

a varConstPower object representing a constant plus power variance function structure, also inher-
iting from class varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varClasses, varWeights.varFunc, coef.varConstPower

Examples

vf1 <- varConstPower(1.2, 0.2, form = ~age|Sex)

varConstProp Constant Plus Proportion Variance Function

Description

This function is a constructor for the varConstProp class, representing a variance function structure
corresponding to a two-component error model (additive and proportional error). Letting v denote
the variance covariate and σ2(v) denote the variance function evaluated at v, the two-component
variance function is defined as σ2(v) = a2+ b2 ∗ v2, where a is the additive component and b is the
relative error component. In order to avoid overparameterisation of the model, it is recommended
to use the possibility to fix sigma, preferably to a value of 1 (see examples).

Usage

varConstProp(const, prop, form, fixed)

Arguments

const, prop optional numeric vectors, or lists of numeric values, with, respectively, the coef-
ficients for the constant and the proportional error terms. Both arguments must
have length one, unless a grouping factor is specified in form. If either argument
has length greater than one, it must have names which identify its elements to
the levels of the grouping factor defined in form. If a grouping factor is present
in form and the argument has length one, its value will be assigned to all group-
ing levels. Only positive values are allowed for const. Default is 0.1 for both
const and prop.

302 varConstProp

form an optional one-sided formula of the form ~ v, or ~ v | g, specifying a variance
covariate v and, optionally, a grouping factor g for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
".", representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate
to be updated during the optimization of an object function). When a grouping
factor is present in form, a different coefficient value is used for each of its lev-
els. Several grouping variables may be simultaneously specified, separated by
the * operator, as in ~ v | g1 * g2 * g3. In this case, the levels of each grouping
variable are pasted together and the resulting factor is used to group the obser-
vations. Defaults to ~ fitted(.) representing a variance covariate given by the
fitted values of a fitted model object and no grouping factor.

fixed an optional list with components const and/or power, consisting of numeric
vectors, or lists of numeric values, specifying the values at which some or all of
the coefficients in the variance function should be fixed. If a grouping factor is
specified in form, the components of fixed must have names identifying which
coefficients are to be fixed. Coefficients included in fixed are not allowed to
vary during the optimization of an objective function. Defaults to NULL, corre-
sponding to no fixed coefficients.

Value

a varConstProp object representing a constant plus proportion variance function structure, also
inheriting from class varFunc.

Note

The error model underlying this variance function structure can be understood to result from two
uncorrelated sequences of standardized random variables (Lavielle(2015), p. 55) and has been
proposed for use in analytical chemistry (Werner et al. (1978), Wilson et al. (2004)) and chemi-
cal degradation kinetics (Ranke and Meinecke (2019)). Note that the two-component error model
proposed by Rocke and Lorenzato (1995) assumed a log-normal distribution of residuals at high
absolute values, which is not compatible with the varFunc structures in package nlme.

Author(s)

José Pinheiro and Douglas Bates (for varConstPower) and Johannes Ranke (adaptation to varConstProp()).

References

Lavielle, M. (2015) Mixed Effects Models for the Population Approach: Models, Tasks, Methods
and Tools, Chapman and Hall/CRC. doi:10.1201/b17203

Pinheiro, J.C., and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS, Springer. doi:10.1007/
b98882

Ranke, J., and Meinecke, S. (2019) Error Models for the Kinetic Evaluation of Chemical Degrada-
tion Data. Environments 6(12), 124 doi:10.3390/environments6120124

Rocke, David M. and Lorenzato, Stefan (1995) A Two-Component Model for Measurement Error
in Analytical Chemistry. Technometrics 37(2), 176–184. doi:10.1080/00401706.1995.10484302

https://doi.org/10.1201/b17203
https://doi.org/10.1007/b98882
https://doi.org/10.1007/b98882
https://doi.org/10.3390/environments6120124
https://doi.org/10.1080/00401706.1995.10484302

varConstProp 303

Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978) Additive, Multiplicative, and
Mixed Analytical Errors. Clinical Chemistry 24(11), 1895–1898. doi:10.1093/clinchem/24.11.1895

Wilson, M.D., Rocke, D.M., Durbin, B. and Kahn, H.D (2004) Detection Limits and Goodness-
of-Fit Measures for the Two-Component Model of Chemical Analytical Error. Analytica Chimica
Acta 2004, 509, 197–208 doi:10.1016/j.aca.2003.12.047

See Also

varClasses, varWeights.varFunc, coef.varFunc

Examples

Generate some synthetic data using the two-component error model and use
different variance functions, also with fixed sigma in order to avoid
overparameterisation in the case of a constant term in the variance function
times <- c(0, 1, 3, 7, 14, 28, 56, 120)
pred <- 100 * exp(- 0.03 * times)
sd_pred <- sqrt(3^2 + 0.07^2 * pred^2)
n_replicates <- 2

set.seed(123456)
syn_data <- data.frame(

time = rep(times, each = n_replicates),
value = rnorm(length(times) * n_replicates,
rep(pred, each = n_replicates),
rep(sd_pred, each = n_replicates)))

syn_data$value <- ifelse(syn_data$value < 0, NA, syn_data$value)

f_const <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3))

f_varPower <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3),
weights = varPower())

f_varConstPower <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3),
weights = varConstPower())

f_varConstPower_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
control = list(sigma = 1),
start = list(parent_0 = 100, lrc = -3),
weights = varConstPower())

f_varConstProp <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3),
weights = varConstProp())

f_varConstProp_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = syn_data, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3),
control = list(sigma = 1),

https://doi.org/10.1093/clinchem/24.11.1895
https://doi.org/10.1016/j.aca.2003.12.047

304 VarCorr

weights = varConstProp())

AIC(f_const, f_varPower, f_varConstPower, f_varConstPower_sf,
f_varConstProp, f_varConstProp_sf)

The error model parameters 3 and 0.07 are approximately recovered
intervals(f_varConstProp_sf)

VarCorr Extract variance and correlation components

Description

This function calculates the estimated variances, standard deviations, and correlations between the
random-effects terms in a linear mixed-effects model, of class "lme", or a nonlinear mixed-effects
model, of class "nlme". The within-group error variance and standard deviation are also calculated.

Usage

VarCorr(x, sigma = 1, ...)
S3 method for class 'lme'
VarCorr(x, sigma = x$sigma, rdig = 3, ...)

S3 method for class 'pdMat'
VarCorr(x, sigma = 1, rdig = 3, ...)
S3 method for class 'pdBlocked'
VarCorr(x, sigma = 1, rdig = 3, ...)

Arguments

x a fitted model object, usually an object inheriting from class "lme".

sigma an optional numeric value used as a multiplier for the standard deviations. The
default is x$sigma or 1 depending on class(x).

rdig an optional integer value specifying the number of digits used to represent cor-
relation estimates. Default is 3.

... further optional arguments passed to other methods (none for the methods doc-
umented here).

Value

a matrix with the estimated variances, standard deviations, and correlations for the random effects.
The first two columns, named Variance and StdDev, give, respectively, the variance and the stan-
dard deviations. If there are correlation components in the random effects model, the third column,
named Corr, and the remaining unnamed columns give the estimated correlations among random
effects within the same level of grouping. The within-group error variance and standard deviation
are included as the last row in the matrix.

varExp 305

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) Mixed-Effects Models in S and S-PLUS, Springer, esp. pp.
100, 461.

See Also

lme, nlme

Examples

fm1 <- lme(distance ~ age, data = Orthodont, random = ~age)
VarCorr(fm1)

varExp Exponential Variance Function

Description

This function is a constructor for the varExp class, representing an exponential variance function
structure. Letting v denote the variance covariate and σ2(v) denote the variance function evaluated
at v, the exponential variance function is defined as σ2(v) = exp(2θv), where θ is the variance
function coefficient. When a grouping factor is present, a different θ is used for each factor level.

Usage

varExp(value, form, fixed)

Arguments

value an optional numeric vector, or list of numeric values, with the variance function
coefficients. Value must have length one, unless a grouping factor is specified
in form. If value has length greater than one, it must have names which identify
its elements to the levels of the grouping factor defined in form. If a grouping
factor is present in form and value has length one, its value will be assigned to
all grouping levels. Default is numeric(0), which results in a vector of zeros of
appropriate length being assigned to the coefficients when object is initialized
(corresponding to constant variance equal to one).

form an optional one-sided formula of the form ~ v, or ~ v | g, specifying a variance
covariate v and, optionally, a grouping factor g for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
".", representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate
to be updated during the optimization of an object function). When a grouping

306 varFixed

factor is present in form, a different coefficient value is used for each of its
levels. Several grouping variables may be simultaneously specified, separated
by the * operator, like in ~ v | g1 * g2 * g3. In this case, the levels of each
grouping variable are pasted together and the resulting factor is used to group
the observations. Defaults to ~ fitted(.) representing a variance covariate
given by the fitted values of a fitted model object and no grouping factor.

fixed an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed. If
a grouping factor is specified in form, fixed must have names identifying which
coefficients are to be fixed. Coefficients included in fixed are not allowed to
vary during the optimization of an objective function. Defaults to NULL, corre-
sponding to no fixed coefficients.

Value

a varExp object representing an exponential variance function structure, also inheriting from class
varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varClasses, varWeights.varFunc, coef.varExp

Examples

vf1 <- varExp(0.2, form = ~age|Sex)

varFixed Fixed Variance Function

Description

This function is a constructor for the varFixed class, representing a variance function with fixed
variances. Letting v denote the variance covariate defined in value, the variance function σ2(v) for
this class is σ2(v) = |v|. The variance covariate v is evaluated once at initialization and remains
fixed thereafter. No coefficients are required to represent this variance function.

Usage

varFixed(value)

varFunc 307

Arguments

value a one-sided formula of the form ~ v specifying a variance covariate v. Grouping
factors are ignored.

Value

a varFixed object representing a fixed variance function structure, also inheriting from class varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varClasses, varWeights.varFunc, varFunc

Examples

vf1 <- varFixed(~age)

varFunc Variance Function Structure

Description

If object is a one-sided formula, it is used as the argument to varFixed and the resulting object is
returned. Else, if object already inherits from class "varFunc", such as all standard ‘varClasses’,
it is returned unchanged.

Usage

varFunc(object)

Arguments

object either an one-sided formula specifying a variance covariate, or an object inher-
iting from class "varFunc", representing a variance function structure.

Value

an object from class "varFunc", representing a variance function structure.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

308 varIdent

See Also

summary.varFunc, varFixed, varWeights.varFunc, coef.varFunc

Examples

vf1 <- varFunc(~age)

varIdent Constant Variance Function

Description

This function is a constructor for the varIdent class, representing a constant variance function
structure. If no grouping factor is present in form, the variance function is constant and equal
to one, and no coefficients required to represent it. When form includes a grouping factor with
M > 1 levels, the variance function allows M different variances, one for each level of the factor.
For identifiability reasons, the coefficients of the variance function represent the ratios between
the variances and a reference variance (corresponding to a reference group level). Therefore, only
M − 1 coefficients are needed to represent the variance function. By default, if the elements in
value are unnamed, the first group level is taken as the reference level.

Usage

varIdent(value, form, fixed)

Arguments

value an optional numeric vector, or list of numeric values, with the variance function
coefficients. If no grouping factor is present in form, this argument is ignored,
as the resulting variance function contains no coefficients. If value has length
one, its value is repeated for all coefficients in the variance function. If value
has length greater than one, it must have length equal to the number of group-
ing levels minus one and names which identify its elements to the levels of the
grouping factor. Only positive values are allowed for this argument. Default is
numeric(0), which results in a vector of zeros of appropriate length being as-
signed to the coefficients when object is initialized (corresponding to constant
variance equal to one).

form an optional one-sided formula of the form ~ v, or ~ v | g, specifying a variance
covariate v and, optionally, a grouping factor g for the coefficients. The vari-
ance covariate is ignored in this variance function. When a grouping factor is
present in form, a different coefficient value is used for each of its levels less
one reference level. Several grouping variables may be simultaneously spec-
ified, separated by the * operator, like in ~ v | g1 * g2 * g3. In this case, the
levels of each grouping variable are pasted together and the resulting factor is
used to group the observations. Defaults to ~ 1.

Variogram 309

fixed an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed.
It must have names identifying which coefficients are to be fixed. Coefficients
included in fixed are not allowed to vary during the optimization of an objective
function. Defaults to NULL, corresponding to no fixed coefficients.

Value

a varIdent object representing a constant variance function structure, also inheriting from class
varFunc.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varClasses, varWeights.varFunc, coef.varIdent

Examples

vf1 <- varIdent(c(Female = 0.5), form = ~ 1 | Sex)

Variogram Calculate Semi-variogram

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include "gls" and "lme"; there is also a
default method for arbitrary vectors (of residuals). See the appropriate method documentation for a
description of the arguments.

Usage

Variogram(object, distance, ...)

Arguments

object a numeric vector with the values to be used for calculating the semi-variogram,
usually a residual vector from a fitted model.

distance a numeric vector with the pairwise distances corresponding to the elements of
object. The order of the elements in distance must correspond to the pairs
(1,2), (1,3), ..., (n-1,n), with n representing the length of object, and
must have length n(n-1)/2.

... some methods for this generic function require additional arguments.

310 Variogram.corExp

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

Variogram.corExp, Variogram.corGaus, Variogram.corLin, Variogram.corRatio, Variogram.corSpatial,
Variogram.corSpher, Variogram.default, Variogram.gls, Variogram.lme, plot.Variogram

Variogram.corExp Calculate Semi-variogram for a corExp Object

Description

This method function calculates the semi-variogram values corresponding to the Exponential cor-
relation model, using the estimated coefficients corresponding to object, at the distances defined
by distance.

Usage

S3 method for class 'corExp'
Variogram(object, distance, sig2, length.out, ...)

Arguments

object an object inheriting from class "corExp", representing an exponential spatial
correlation structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.

length.out an optional integer specifying the length of the sequence of distances to be used
for calculating the semi-variogram, when distance = NULL. Defaults to 50.

... some methods for this generic require additional arguments. None are used in
this method.

Variogram.corGaus 311

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corExp, plot.Variogram, Variogram

Examples

stopifnot(require("stats", quietly = TRUE))
cs1 <- corExp(3, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

Variogram.corGaus Calculate Semi-variogram for a corGaus Object

Description

This method function calculates the semi-variogram values corresponding to the Gaussian correla-
tion model, using the estimated coefficients corresponding to object, at the distances defined by
distance.

Usage

S3 method for class 'corGaus'
Variogram(object, distance, sig2, length.out, ...)

Arguments

object an object inheriting from class "corGaus", representing an Gaussian spatial cor-
relation structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.
length.out an optional integer specifying the length of the sequence of distances to be used

for calculating the semi-variogram, when distance = NULL. Defaults to 50.
... some methods for this generic require additional arguments. None are used in

this method.

312 Variogram.corLin

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corGaus, plot.Variogram, Variogram

Examples

cs1 <- corGaus(3, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

Variogram.corLin Calculate Semi-variogram for a corLin Object

Description

This method function calculates the semi-variogram values corresponding to the Linear correla-
tion model, using the estimated coefficients corresponding to object, at the distances defined by
distance.

Usage

S3 method for class 'corLin'
Variogram(object, distance, sig2, length.out, ...)

Arguments

object an object inheriting from class "corLin", representing an Linear spatial corre-
lation structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.
length.out an optional integer specifying the length of the sequence of distances to be used

for calculating the semi-variogram, when distance = NULL. Defaults to 50.
... some methods for this generic require additional arguments. None are used in

this method.

Variogram.corRatio 313

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corLin, plot.Variogram, Variogram

Examples

cs1 <- corLin(15, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

Variogram.corRatio Calculate Semi-variogram for a corRatio Object

Description

This method function calculates the semi-variogram values corresponding to the Rational Quadratic
correlation model, using the estimated coefficients corresponding to object, at the distances defined
by distance.

Usage

S3 method for class 'corRatio'
Variogram(object, distance, sig2, length.out, ...)

Arguments

object an object inheriting from class "corRatio", representing an Rational Quadratic
spatial correlation structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.
length.out an optional integer specifying the length of the sequence of distances to be used

for calculating the semi-variogram, when distance = NULL. Defaults to 50.
... some methods for this generic require additional arguments. None are used in

this method.

314 Variogram.corSpatial

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corRatio, plot.Variogram Variogram

Examples

cs1 <- corRatio(7, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

Variogram.corSpatial Calculate Semi-variogram for a corSpatial Object

Description

This method function calculates the semi-variogram values corresponding to the model defined in
FUN, using the estimated coefficients corresponding to object, at the distances defined by distance.

Usage

S3 method for class 'corSpatial'
Variogram(object, distance, sig2, length.out, FUN, ...)

Arguments

object an object inheriting from class "corSpatial", representing spatial correlation
structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.
length.out an optional integer specifying the length of the sequence of distances to be used

for calculating the semi-variogram, when distance = NULL. Defaults to 50.
FUN a function of two arguments, the distance and the range corresponding to object,

specifying the semi-variogram model.
... some methods for this generic require additional arguments. None are used in

this method.

Variogram.corSpher 315

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corSpatial, Variogram, Variogram.default, Variogram.corExp, Variogram.corGaus, Variogram.corLin,
Variogram.corRatio, Variogram.corSpher, plot.Variogram

Examples

cs1 <- corExp(3, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1, FUN = function(x, y) (1 - exp(-x/y)))[1:10,]

Variogram.corSpher Calculate Semi-variogram for a corSpher Object

Description

This method function calculates the semi-variogram values corresponding to the Spherical correla-
tion model, using the estimated coefficients corresponding to object, at the distances defined by
distance.

Usage

S3 method for class 'corSpher'
Variogram(object, distance, sig2, length.out, ...)

Arguments

object an object inheriting from class "corSpher", representing an Spherical spatial
correlation structure.

distance an optional numeric vector with the distances at which the semi-variogram is to
be calculated. Defaults to NULL, in which case a sequence of length length.out
between the minimum and maximum values of getCovariate(object) is used.

sig2 an optional numeric value representing the process variance. Defaults to 1.
length.out an optional integer specifying the length of the sequence of distances to be used

for calculating the semi-variogram, when distance = NULL. Defaults to 50.
... some methods for this generic require additional arguments. None are used in

this method.

316 Variogram.default

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

corSpher, plot.Variogram, Variogram

Examples

cs1 <- corSpher(15, form = ~ Time | Rat)
cs1 <- Initialize(cs1, BodyWeight)
Variogram(cs1)[1:10,]

Variogram.default Calculate Semi-variogram

Description

This method function calculates the semi-variogram for an arbitrary vector object, according to the
distances in distance. For each pair of elements x, y in object, the corresponding semi-variogram
is (x− y)2/2. The semi-variogram is useful for identifying and modeling spatial correlation struc-
tures in observations with constant expectation and constant variance.

Usage

Default S3 method:
Variogram(object, distance, ...)

Arguments

object a numeric vector with the values to be used for calculating the semi-variogram,
usually a residual vector from a fitted model.

distance a numeric vector with the pairwise distances corresponding to the elements of
object. The order of the elements in distance must correspond to the pairs
(1,2), (1,3), ..., (n-1,n), with n representing the length of object, and
must have length n(n-1)/2.

... some methods for this generic require additional arguments. None are used in
this method.

Variogram.gls 317

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram values
and the corresponding distances. The returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

Variogram, Variogram.gls, Variogram.lme, plot.Variogram

Examples

fm1 <- lm(follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time), Ovary,
subset = Mare == 1)

Variogram(resid(fm1), dist(1:29))[1:10,]

Variogram.gls Calculate Semi-variogram for Residuals from a gls Object

Description

This method function calculates the semi-variogram for the residuals from a gls fit. The semi-
variogram values are calculated for pairs of residuals within the same group level, if a grouping
factor is present. If collapse is different from "none", the individual semi-variogram values are
collapsed using either a robust estimator (robust = TRUE) defined in Cressie (1993), or the average
of the values within the same distance interval. The semi-variogram is useful for modeling the error
term correlation structure.

Usage

S3 method for class 'gls'
Variogram(object, distance, form, resType, data,

na.action, maxDist, length.out, collapse, nint, breaks,
robust, metric, ...)

Arguments

object an object inheriting from class "gls", representing a generalized least squares
fitted model.

318 Variogram.gls

distance an optional numeric vector with the distances between residual pairs. If a group-
ing variable is present, only the distances between residual pairs within the same
group should be given. If missing, the distances are calculated based on the
values of the arguments form, data, and metric, unless object includes a
corSpatial element, in which case the associated covariate (obtained with the
getCovariate method) is used.

form an optional one-sided formula specifying the covariate(s) to be used for calcu-
lating the distances between residual pairs and, optionally, a grouping factor
for partitioning the residuals (which must appear to the right of a | operator in
form). Default is ~1, implying that the observation order within the groups is
used to obtain the distances.

resType an optional character string specifying the type of residuals to be used. If
"response", the "raw" residuals (observed - fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if "normalized", the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to "pearson".

data an optional data frame in which to interpret the variables in form. By default,
the same data used to fit object is used.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes an error message to be printed and the function
to terminate, if there are any incomplete observations.

maxDist an optional numeric value for the maximum distance used for calculating the
semi-variogram between two residuals. By default all residual pairs are in-
cluded.

length.out an optional integer value. When object includes a corSpatial element, its
semi-variogram values are calculated and this argument is used as the length.out
argument to the corresponding Variogram method. Defaults to 50.

collapse an optional character string specifying the type of collapsing to be applied to the
individual semi-variogram values. If equal to "quantiles", the semi-variogram
values are split according to quantiles of the distance distribution, with equal
number of observations per group, with possibly varying distance interval lengths.
Else, if "fixed", the semi-variogram values are divided according to distance
intervals of equal lengths, with possibly different number of observations per in-
terval. Else, if "none", no collapsing is used and the individual semi-variogram
values are returned. Defaults to "quantiles".

nint an optional integer with the number of intervals to be used when collapsing the
semi-variogram values. Defaults to 20.

robust an optional logical value specifying if a robust semi-variogram estimator should
be used when collapsing the individual values. If TRUE the robust estimator is
used. Defaults to FALSE.

breaks an optional numeric vector with the breakpoints for the distance intervals to
be used in collapsing the semi-variogram values. If not missing, the option
specified in collapse is ignored.

Variogram.lme 319

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

... some methods for this generic require additional arguments. None are used in
this method.

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram val-
ues and the corresponding distances. If the semi-variogram values are collapsed, an extra column,
n.pairs, with the number of residual pairs used in each semi-variogram calculation, is included
in the returned data frame. If object includes a corSpatial element, a data frame with its cor-
responding semi-variogram is included in the returned value, as an attribute "modelVariog". The
returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

gls, Variogram, Variogram.default, Variogram.lme, plot.Variogram

Examples

fm1 <- gls(weight ~ Time * Diet, BodyWeight)
Vm1 <- Variogram(fm1, form = ~ Time | Rat)
print(head(Vm1), digits = 3)

Variogram.lme Calculate Semi-variogram for Residuals from an lme Object

Description

This method function calculates the semi-variogram for the within-group residuals from an lme fit.
The semi-variogram values are calculated for pairs of residuals within the same group. If collapse
is different from "none", the individual semi-variogram values are collapsed using either a robust
estimator (robust = TRUE) defined in Cressie (1993), or the average of the values within the same
distance interval. The semi-variogram is useful for modeling the error term correlation structure.

320 Variogram.lme

Usage

S3 method for class 'lme'
Variogram(object, distance, form, resType, data,

na.action, maxDist, length.out, collapse, nint, breaks,
robust, metric, ...)

Arguments

object an object inheriting from class "lme", representing a fitted linear mixed-effects
model.

distance an optional numeric vector with the distances between residual pairs. If a group-
ing variable is present, only the distances between residual pairs within the same
group should be given. If missing, the distances are calculated based on the
values of the arguments form, data, and metric, unless object includes a
corSpatial element, in which case the associated covariate (obtained with the
getCovariate method) is used.

form an optional one-sided formula specifying the covariate(s) to be used for calcu-
lating the distances between residual pairs and, optionally, a grouping factor
for partitioning the residuals (which must appear to the right of a | operator in
form). Default is ~1, implying that the observation order within the groups is
used to obtain the distances.

resType an optional character string specifying the type of residuals to be used. If
"response", the "raw" residuals (observed - fitted) are used; else, if "pearson",
the standardized residuals (raw residuals divided by the corresponding standard
errors) are used; else, if "normalized", the normalized residuals (standardized
residuals pre-multiplied by the inverse square-root factor of the estimated error
correlation matrix) are used. Partial matching of arguments is used, so only the
first character needs to be provided. Defaults to "pearson".

data an optional data frame in which to interpret the variables in form. By default,
the same data used to fit object is used.

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.fail) causes an error message to be printed and the function
to terminate, if there are any incomplete observations.

maxDist an optional numeric value for the maximum distance used for calculating the
semi-variogram between two residuals. By default all residual pairs are in-
cluded.

length.out an optional integer value. When object includes a corSpatial element, its
semi-variogram values are calculated and this argument is used as the length.out
argument to the corresponding Variogram method. Defaults to 50.

collapse an optional character string specifying the type of collapsing to be applied to the
individual semi-variogram values. If equal to "quantiles", the semi-variogram
values are split according to quantiles of the distance distribution, with equal
number of observations per group, with possibly varying distance interval lengths.
Else, if "fixed", the semi-variogram values are divided according to distance
intervals of equal lengths, with possibly different number of observations per in-
terval. Else, if "none", no collapsing is used and the individual semi-variogram
values are returned. Defaults to "quantiles".

Variogram.lme 321

nint an optional integer with the number of intervals to be used when collapsing the
semi-variogram values. Defaults to 20.

robust an optional logical value specifying if a robust semi-variogram estimator should
be used when collapsing the individual values. If TRUE the robust estimator is
used. Defaults to FALSE.

breaks an optional numeric vector with the breakpoints for the distance intervals to
be used in collapsing the semi-variogram values. If not missing, the option
specified in collapse is ignored.

metric an optional character string specifying the distance metric to be used. The cur-
rently available options are "euclidean" for the root sum-of-squares of dis-
tances; "maximum" for the maximum difference; and "manhattan" for the sum
of the absolute differences. Partial matching of arguments is used, so only the
first three characters need to be provided. Defaults to "euclidean".

... some methods for this generic require additional arguments. None are used in
this method.

Value

a data frame with columns variog and dist representing, respectively, the semi-variogram val-
ues and the corresponding distances. If the semi-variogram values are collapsed, an extra column,
n.pairs, with the number of residual pairs used in each semi-variogram calculation, is included
in the returned data frame. If object includes a corSpatial element, a data frame with its cor-
responding semi-variogram is included in the returned value, as an attribute "modelVariog". The
returned value inherits from class Variogram.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Cressie, N.A.C. (1993), "Statistics for Spatial Data", J. Wiley & Sons.

See Also

lme, Variogram, Variogram.default, Variogram.gls, plot.Variogram

Examples

fm1 <- lme(weight ~ Time * Diet, data=BodyWeight, ~ Time | Rat)
Variogram(fm1, form = ~ Time | Rat, nint = 10, robust = TRUE)

322 varPower

varPower Power Variance Function

Description

This function is a constructor for the varPower class, representing a power variance function struc-
ture. Letting v denote the variance covariate and σ2(v) denote the variance function evaluated at v,
the power variance function is defined as σ2(v) = |v|2θ, where θ is the variance function coefficient.
When a grouping factor is present, a different θ is used for each factor level.

Usage

varPower(value, form, fixed)

Arguments

value an optional numeric vector, or list of numeric values, with the variance function
coefficients. Value must have length one, unless a grouping factor is specified
in form. If value has length greater than one, it must have names which identify
its elements to the levels of the grouping factor defined in form. If a grouping
factor is present in form and value has length one, its value will be assigned to
all grouping levels. Default is numeric(0), which results in a vector of zeros of
appropriate length being assigned to the coefficients when object is initialized
(corresponding to constant variance equal to one).

form an optional one-sided formula of the form ~ v, or ~ v | g, specifying a variance
covariate v and, optionally, a grouping factor g for the coefficients. The variance
covariate must evaluate to a numeric vector and may involve expressions using
".", representing a fitted model object from which fitted values (fitted(.))
and residuals (resid(.)) can be extracted (this allows the variance covariate
to be updated during the optimization of an object function). When a grouping
factor is present in form, a different coefficient value is used for each of its
levels. Several grouping variables may be simultaneously specified, separated
by the * operator, like in ~ v | g1 * g2 * g3. In this case, the levels of each
grouping variable are pasted together and the resulting factor is used to group
the observations. Defaults to ~ fitted(.) representing a variance covariate
given by the fitted values of a fitted model object and no grouping factor.

fixed an optional numeric vector, or list of numeric values, specifying the values at
which some or all of the coefficients in the variance function should be fixed. If
a grouping factor is specified in form, fixed must have names identifying which
coefficients are to be fixed. Coefficients included in fixed are not allowed to
vary during the optimization of an objective function. Defaults to NULL, corre-
sponding to no fixed coefficients.

Value

a varPower object representing a power variance function structure, also inheriting from class
varFunc.

varWeights 323

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varWeights.varFunc, coef.varPower

Examples

vf1 <- varPower(0.2, form = ~age|Sex)

varWeights Extract Variance Function Weights

Description

The inverse of the standard deviations corresponding to the variance function structure represented
by object are returned.

Usage

varWeights(object)

Arguments

object an object inheriting from class varFunc, representing a variance function struc-
ture.

Value

if object has a weights attribute, its value is returned; else NULL is returned.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

logLik.varFunc, varWeights

324 varWeights.glsStruct

Examples

vf1 <- varPower(form=~age)
vf1 <- Initialize(vf1, Orthodont)
coef(vf1) <- 0.3
varWeights(vf1)[1:10]

varWeights.glsStruct Variance Weights for glsStruct Object

Description

If object includes a varStruct component, the inverse of the standard deviations of the variance
function structure represented by the corresponding varFunc object are returned; else, a vector of
ones of length equal to the number of observations in the data frame used to fit the associated linear
model is returned.

Usage

S3 method for class 'glsStruct'
varWeights(object)

Arguments

object an object inheriting from class "glsStruct", representing a list of linear model
components, such as corStruct and "varFunc" objects.

Value

if object includes a varStruct component, a vector with the corresponding variance weights; else,
or a vector of ones.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varWeights

varWeights.lmeStruct 325

varWeights.lmeStruct Variance Weights for lmeStruct Object

Description

If object includes a varStruct component, the inverse of the standard deviations of the variance
function structure represented by the corresponding varFunc object are returned; else, a vector of
ones of length equal to the number of observations in the data frame used to fit the associated linear
mixed-effects model is returned.

Usage

S3 method for class 'lmeStruct'
varWeights(object)

Arguments

object an object inheriting from class "lmeStruct", representing a list of linear mixed-
effects model components, such as reStruct, corStruct, and varFunc objects.

Value

if object includes a varStruct component, a vector with the corresponding variance weights; else,
or a vector of ones.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

References

Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.

See Also

varWeights

326 Wheat

Wafer Modeling of Analog MOS Circuits

Description

The Wafer data frame has 400 rows and 4 columns.

Format

This data frame contains the following columns:

Wafer a factor with levels 1 2 3 4 5 6 7 8 9 10

Site a factor with levels 1 2 3 4 5 6 7 8

voltage a numeric vector

current a numeric vector

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

Wheat Yields by growing conditions

Description

The Wheat data frame has 48 rows and 4 columns.

Format

This data frame contains the following columns:

Tray an ordered factor with levels 3 < 1 < 2 < 4 < 5 < 6 < 8 < 9 < 7 < 12 < 11 < 10

Moisture a numeric vector

fertilizer a numeric vector

DryMatter a numeric vector

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

Wheat2 327

Wheat2 Wheat Yield Trials

Description

The Wheat2 data frame has 224 rows and 5 columns.

Format

This data frame contains the following columns:

Block an ordered factor with levels 4 < 2 < 3 < 1

variety a factor with levels ARAPAHOE BRULE BUCKSKIN CENTURA CENTURK78 CHEYENNE CODY COLT
GAGE HOMESTEAD KS831374 LANCER LANCOTA NE83404 NE83406 NE83407 NE83432 NE83498
NE83T12 NE84557 NE85556 NE85623 NE86482 NE86501 NE86503 NE86507 NE86509 NE86527
NE86582 NE86606 NE86607 NE86T666 NE87403 NE87408 NE87409 NE87446 NE87451 NE87457
NE87463 NE87499 NE87512 NE87513 NE87522 NE87612 NE87613 NE87615 NE87619 NE87627
NORKAN REDLAND ROUGHRIDER SCOUT66 SIOUXLAND TAM107 TAM200 VONA

yield a numeric vector

latitude a numeric vector

longitude a numeric vector

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York.

[.pdMat Subscript a pdMat Object

Description

This method function extracts sub-matrices from the positive-definite matrix represented by x.

Usage

S3 method for class 'pdMat'
x[i, j, drop = TRUE]
S3 replacement method for class 'pdMat'
x[i, j] <- value

328 [.pdMat

Arguments

x an object inheriting from class "pdMat" representing a positive-definite matrix.

i, j optional subscripts applying respectively to the rows and columns of the positive-
definite matrix represented by object. When i (j) is omitted, all rows (columns)
are extracted.

drop a logical value. If TRUE, single rows or columns are converted to vectors. If
FALSE the returned value retains its matrix representation.

value a vector, or matrix, with the replacement values for the relevant piece of the
matrix represented by x.

Value

if i and j are identical, the returned value will be pdMat object with the same class as x. Otherwise,
the returned value will be a matrix. In the case a single row (or column) is selected, the returned
value may be converted to a vector, according to the rules above.

Author(s)

José Pinheiro and Douglas Bates <bates@stat.wisc.edu>

See Also

[, pdMat

Examples

pd1 <- pdSymm(diag(3))
pd1[1, , drop = FALSE]
pd1[1:2, 1:2] <- 3 * diag(2)

Index

∗ attribute
groupedData, 125

∗ datasets
Alfalfa, 11
Assay, 21
bdf, 26
BodyWeight, 27
Cefamandole, 28
Dialyzer, 73
Earthquake, 77
ergoStool, 78
Fatigue, 79
Gasoline, 93
Glucose, 118
Glucose2, 118
Gun, 129
IGF, 129
Machines, 170
MathAchieve, 170
MathAchSchool, 171
Meat, 174
Milk, 174
Muscle, 176
Nitrendipene, 183
Oats, 197
Orthodont, 198
Ovary, 199
Oxboys, 199
Oxide, 200
PBG, 205
Phenobarb, 225
Pixel, 227
Quinidine, 258
Rail, 260
RatPupWeight, 265
Relaxin, 270
Remifentanil, 270
Soybean, 284
Spruce, 285

Tetracycline1, 295
Tetracycline2, 296
Wafer, 326
Wheat, 326
Wheat2, 327

∗ data
balancedGrouped, 25
gapply, 92
isBalanced, 140

∗ hplot
plot.lme, 233

∗ manip
asTable, 22
groupedData, 125
gsummary, 127

∗ models
[.pdMat, 327
ACF, 8
ACF.gls, 9
ACF.lme, 10
allCoef, 12
anova.gls, 13
anova.lme, 15
as.matrix.corStruct, 18
as.matrix.pdMat, 19
as.matrix.reStruct, 20
asOneFormula, 21
augPred, 23
Coef, 29
coef.corStruct, 30
coef.gnls, 31
coef.lme, 32
coef.lmList, 33
coef.modelStruct, 35
coef.pdMat, 36
coef.reStruct, 37
coef.varFunc, 38
collapse, 39
collapse.groupedData, 40

329

330 INDEX

compareFits, 42
comparePred, 43
corAR1, 44
corARMA, 46
corCAR1, 47
corClasses, 49
corCompSymm, 50
corExp, 51
corFactor, 53
corFactor.corStruct, 54
corGaus, 55
corLin, 57
corMatrix, 58
corMatrix.corStruct, 59
corMatrix.pdMat, 61
corMatrix.reStruct, 62
corNatural, 63
corRatio, 64
corSpatial, 66
corSpher, 67
corSymm, 69
Covariate, 71
Covariate.varFunc, 72
Dim, 74
Dim.corSpatial, 74
Dim.corStruct, 75
Dim.pdMat, 77
fdHess, 80
fitted.glsStruct, 81
fitted.gnlsStruct, 82
fitted.lme, 83
fitted.lmeStruct, 84
fitted.lmList, 85
fitted.nlmeStruct, 86
fixed.effects, 87
fixef.lmList, 88
formula.pdBlocked, 89
formula.pdMat, 90
formula.reStruct, 91
getCovariate, 94
getCovariate.corStruct, 95
getCovariate.data.frame, 96
getCovariate.varFunc, 97
getCovariateFormula, 98
getData, 98
getData.gls, 99
getData.lme, 100
getData.lmList, 101

getGroups, 102
getGroups.corStruct, 103
getGroups.data.frame, 104
getGroups.gls, 105
getGroups.lme, 106
getGroups.lmList, 107
getGroups.varFunc, 108
getGroupsFormula, 109
getResponse, 110
getResponseFormula, 110
getVarCov, 111
gls, 112
glsControl, 114
glsObject, 116
glsStruct, 117
gnls, 119
gnlsControl, 121
gnlsObject, 122
gnlsStruct, 124
Initialize, 130
Initialize.corStruct, 131
Initialize.glsStruct, 132
Initialize.lmeStruct, 132
Initialize.reStruct, 133
Initialize.varFunc, 134
intervals, 135
intervals.gls, 136
intervals.lme, 137
intervals.lmList, 139
isInitialized, 141
LDEsysMat, 142
lme, 143
lme.groupedData, 146
lme.lmList, 148
lmeControl, 150
lmeObject, 152
lmeStruct, 154
lmList, 155
lmList.groupedData, 156
logDet, 157
logDet.corStruct, 158
logDet.pdMat, 159
logDet.reStruct, 160
logLik.corStruct, 161
logLik.glsStruct, 162
logLik.gnls, 163
logLik.gnlsStruct, 164
logLik.lme, 165

INDEX 331

logLik.lmeStruct, 166
logLik.lmList, 167
logLik.reStruct, 168
logLik.varFunc, 169
Matrix, 171
Matrix.pdMat, 172
Matrix.reStruct, 173
model.matrix.reStruct, 175
Names, 177
Names.formula, 178
Names.pdBlocked, 179
Names.pdMat, 180
Names.reStruct, 181
needUpdate, 182
needUpdate.modelStruct, 182
nlme, 184
nlme.nlsList, 187
nlmeControl, 189
nlmeObject, 191
nlmeStruct, 193
nlsList, 194
nlsList.selfStart, 196
pairs.compareFits, 201
pairs.lme, 202
pairs.lmList, 203
pdBlocked, 205
pdClasses, 207
pdCompSymm, 208
pdConstruct, 209
pdConstruct.pdBlocked, 210
pdDiag, 212
pdFactor, 214
pdFactor.reStruct, 215
pdIdent, 216
pdLogChol, 217
pdMat, 219
pdMatrix, 220
pdMatrix.reStruct, 221
pdNatural, 222
pdSymm, 223
phenoModel, 226
plot.ACF, 227
plot.augPred, 228
plot.compareFits, 229
plot.gls, 230
plot.intervals.lmList, 232
plot.lme, 233
plot.lmList, 235

plot.nffGroupedData, 236
plot.nfnGroupedData, 238
plot.nmGroupedData, 240
plot.ranef.lme, 242
plot.ranef.lmList, 244
plot.Variogram, 245
pooledSD, 246
predict.gls, 247
predict.gnls, 248
predict.lme, 249
predict.lmList, 250
predict.nlme, 252
print.summary.pdMat, 253
print.varFunc, 254
qqnorm.gls, 255
qqnorm.lme, 256
quinModel, 259
random.effects, 261
ranef.lme, 261
ranef.lmList, 263
recalc, 265
recalc.corStruct, 266
recalc.modelStruct, 267
recalc.reStruct, 268
recalc.varFunc, 269
residuals.gls, 272
residuals.glsStruct, 273
residuals.gnlsStruct, 274
residuals.lme, 275
residuals.lmeStruct, 276
residuals.lmList, 277
residuals.nlmeStruct, 278
reStruct, 279
simulate.lme, 281
solve.pdMat, 282
solve.reStruct, 283
splitFormula, 284
summary.corStruct, 286
summary.gls, 287
summary.lme, 288
summary.lmList, 289
summary.modelStruct, 291
summary.nlsList, 292
summary.pdMat, 293
summary.varFunc, 294
update.modelStruct, 296
update.varFunc, 297
varClasses, 298

332 INDEX

varComb, 299
varConstPower, 300
varConstProp, 301
VarCorr, 304
varExp, 305
varFixed, 306
varFunc, 307
varIdent, 308
Variogram, 309
Variogram.corExp, 310
Variogram.corGaus, 311
Variogram.corLin, 312
Variogram.corRatio, 313
Variogram.corSpatial, 314
Variogram.corSpher, 315
Variogram.default, 316
Variogram.gls, 317
Variogram.lme, 319
varPower, 322
varWeights, 323
varWeights.glsStruct, 324
varWeights.lmeStruct, 325

[, 328
[.groupedData (groupedData), 125
[.pdBlocked ([.pdMat), 327
[.pdMat, 327
[.reStruct (reStruct), 279
[<-.pdMat ([.pdMat), 327

ACF, 8, 228
ACF.gls, 8, 9, 11
ACF.lme, 8, 10, 10, 45
AIC, 14, 17, 287, 289
Alfalfa, 11
all.vars, 21
allCoef, 12
anova.gls, 13
anova.lme, 15
as.data.frame.groupedData

(groupedData), 125
as.matrix, 172
as.matrix.corStruct, 18
as.matrix.pdMat, 19, 20, 61, 207, 209, 212,

213, 217, 218, 221, 223, 224
as.matrix.reStruct, 20, 62, 221
asOneFormula, 21
Assay, 21
asTable, 22, 25
augPred, 23, 44, 229

balancedGrouped, 23, 25
bdf, 26
BIC, 14, 17, 287, 289
BodyWeight, 27
bwplot, 232, 234, 236

Cefamandole, 28
class, 304
Coef, 29
coef, 29, 42, 49, 113, 144, 207, 288, 298
coef.corAR1 (coef.corStruct), 30
coef.corARMA (corARMA), 46
coef.corARMAd (coef.corStruct), 30
coef.corCAR1 (coef.corStruct), 30
coef.corCompSymm (coef.corStruct), 30
coef.corLin (coef.corStruct), 30
coef.corNatural (coef.corStruct), 30
coef.corSpatial (coef.corStruct), 30
coef.corSpher (coef.corStruct), 30
coef.corStruct, 30
coef.corSymm (coef.corStruct), 30
coef.gnls, 31
coef.lme, 32, 263
coef.lmList, 33
coef.modelStruct, 35
coef.pdBlocked (coef.pdMat), 36
coef.pdCompSymm (coef.pdMat), 36
coef.pdDiag (coef.pdMat), 36
coef.pdIdent (coef.pdMat), 36
coef.pdMat, 36, 38, 207, 209, 212, 213, 217,

218, 223, 224
coef.pdNatural (coef.pdMat), 36
coef.pdSymm (coef.pdMat), 36
coef.reStruct, 37
coef.summary.nlsList (coef.corStruct),

30
coef.varComb, 299
coef.varComb (coef.varFunc), 38
coef.varConstPower, 301
coef.varConstPower (coef.varFunc), 38
coef.varConstProp (coef.varFunc), 38
coef.varExp, 306
coef.varExp (coef.varFunc), 38
coef.varFixed (coef.varFunc), 38
coef.varFunc, 38, 303, 308
coef.varIdent, 309
coef.varIdent (coef.varFunc), 38
coef.varPower, 323
coef.varPower (coef.varFunc), 38

INDEX 333

coef<- (Coef), 29
coef<-.corAR1 (coef.corStruct), 30
coef<-.corARMA (coef.corStruct), 30
coef<-.corCAR1 (coef.corStruct), 30
coef<-.corCompSymm (coef.corStruct), 30
coef<-.corLin (coef.corStruct), 30
coef<-.corNatural (coef.corStruct), 30
coef<-.corSpatial (coef.corStruct), 30
coef<-.corSpher (coef.corStruct), 30
coef<-.corStruct (coef.corStruct), 30
coef<-.corSymm (coef.corStruct), 30
coef<-.modelStruct (coef.modelStruct),

35
coef<-.pdBlocked (coef.pdMat), 36
coef<-.pdMat (coef.pdMat), 36
coef<-.reStruct (coef.reStruct), 37
coef<-.varComb (coef.varFunc), 38
coef<-.varConstPower (coef.varFunc), 38
coef<-.varConstProp (coef.varFunc), 38
coef<-.varExp (coef.varFunc), 38
coef<-.varFixed (coef.varFunc), 38
coef<-.varIdent (coef.varFunc), 38
coef<-.varPower (coef.varFunc), 38
coefficients<- (Coef), 29
collapse, 39
collapse.groupedData, 40, 40, 241
compareFits, 42, 201, 230
comparePred, 42, 43
contrasts, 176
corAR1, 31, 44, 47, 49
corARMA, 31, 45, 46, 49
corCAR1, 31, 47, 49
corClasses, 19, 45, 47, 48, 49, 50, 52, 53, 58,

105, 113, 114, 117, 119, 121, 124,
144–146, 148, 154, 185, 186, 188,
193, 286

corCompSymm, 31, 49, 50
corExp, 31, 49, 51, 67, 310, 311
corFactor, 53, 54, 267
corFactor.corAR1 (corFactor.corStruct),

54
corFactor.corARMA

(corFactor.corStruct), 54
corFactor.corCAR1

(corFactor.corStruct), 54
corFactor.corCompSymm

(corFactor.corStruct), 54
corFactor.corNatural

(corFactor.corStruct), 54
corFactor.corSpatial

(corFactor.corStruct), 54
corFactor.corStruct, 54, 54, 60
corFactor.corSymm

(corFactor.corStruct), 54
corGaus, 31, 49, 55, 67, 311, 312
corLin, 31, 49, 57, 67, 312, 313
corMatrix, 19, 20, 49, 58, 62, 221
corMatrix.corAR1 (corMatrix.corStruct),

59
corMatrix.corARMA

(corMatrix.corStruct), 59
corMatrix.corCAR1

(corMatrix.corStruct), 59
corMatrix.corCompSymm

(corMatrix.corStruct), 59
corMatrix.corNatural

(corMatrix.corStruct), 59
corMatrix.corSpatial

(corMatrix.corStruct), 59
corMatrix.corStruct, 54, 59, 59, 158
corMatrix.corSymm

(corMatrix.corStruct), 59
corMatrix.pdBlocked (corMatrix.pdMat),

61
corMatrix.pdCompSymm (corMatrix.pdMat),

61
corMatrix.pdDiag (corMatrix.pdMat), 61
corMatrix.pdIdent (corMatrix.pdMat), 61
corMatrix.pdMat, 59, 61
corMatrix.pdSymm (corMatrix.pdMat), 61
corMatrix.reStruct, 59, 62
corNatural, 63, 286
corRatio, 31, 49, 64, 67, 313, 314
corSpatial, 31, 66, 74, 75, 314, 315
corSpher, 31, 49, 67, 67, 315, 316
corStruct, 18, 29, 30, 35, 54, 59, 74, 76, 113,

131, 144, 158, 161, 266, 286
corStruct (corClasses), 49
corSymm, 31, 49, 69
Covariate, 71
Covariate.varFunc, 72
covariate<- (Covariate), 71
covariate<-.varFunc

(Covariate.varFunc), 72

Dialyzer, 73
Dim, 74, 75–77

334 INDEX

Dim.corSpatial, 45, 74, 74, 76
Dim.corStruct, 74, 75, 75, 131
Dim.pdCompSymm (Dim.pdMat), 77
Dim.pdDiag (Dim.pdMat), 77
Dim.pdIdent (Dim.pdMat), 77
Dim.pdMat, 74, 77
Dim.pdNatural (Dim.pdMat), 77
Dim.pdSymm (Dim.pdMat), 77
dist, 52, 56, 58, 65, 67, 69
dotplot, 230, 232, 233, 238, 242, 243, 245

Earthquake, 77
ergoStool, 78

factor, 271
Fatigue, 79
fdHess, 80
fitted, 113, 144
fitted.glsStruct, 81, 273
fitted.gnlsStruct, 82, 274
fitted.lme, 83, 85, 250, 253, 276
fitted.lmeStruct, 84, 277
fitted.lmList, 85, 278
fitted.nlmeStruct, 86, 279
fixed.effects, 87, 144
fixed.effects.lmList, 35, 264
fixed.effects.lmList (fixef.lmList), 88
fixef (fixed.effects), 87
fixef.lmList, 87, 88
formula, 21, 91, 127, 153, 178, 285
formula.pdBlocked, 89
formula.pdMat, 90
formula.reStruct, 91, 176
function, 232, 243

gapply, 92, 127
Gasoline, 93
getCovariate, 71, 94, 95, 98
getCovariate.corSpatial

(getCovariate.corStruct), 95
getCovariate.corStruct, 94, 95
getCovariate.data.frame, 94, 96
getCovariate.varFunc, 72, 94, 97
getCovariateFormula, 94, 96, 98
getData, 98, 99–101
getData.gls, 99, 99
getData.gnls (getData.gls), 99
getData.lme, 99, 100
getData.lmList, 99, 101

getData.nlme (getData.lme), 100
getData.nls (getData.lme), 100
getGroups, 24, 44, 102, 103, 109, 128
getGroups.corStruct, 102, 103
getGroups.data.frame, 102, 104
getGroups.gls, 102, 105
getGroups.lme, 102, 106
getGroups.lmList, 102, 107
getGroups.varFunc, 102, 108
getGroupsFormula, 102, 104, 109
getGroupsFormula.gls, 109
getGroupsFormula.lme, 109
getGroupsFormula.lmList, 109
getGroupsFormula.reStruct, 109
getOption, 195
getResponse, 110, 111
getResponseFormula, 110, 110
getVarCov, 111
gls, 9, 13, 14, 17, 81, 99, 105, 111, 112, 112,

115–117, 132, 136, 137, 162, 165,
231, 232, 247, 248, 255, 256, 272,
273, 287, 317, 319

glsControl, 113, 114, 114
glsObject, 113, 114, 116, 287
glsStruct, 81, 114, 117, 117, 132, 162, 273,

324
Glucose, 118
Glucose2, 118
gnls, 14, 17, 31, 82, 119, 122–124, 163, 164,

248, 249, 274
gnlsControl, 121, 121
gnlsObject, 121, 122
gnlsStruct, 82, 121, 124, 164, 274
groupedData, 23, 25, 41, 125, 128, 140, 143,

144, 146, 148, 157, 196, 197, 238,
239, 241, 270, 280

gsummary, 33, 35, 92, 127, 127, 263
Gun, 129

histogram, 232, 234, 236

IGF, 129
Initialize, 31, 36, 130, 132–135, 141, 298
Initialize.corAR1

(Initialize.corStruct), 131
Initialize.corARMA

(Initialize.corStruct), 131
Initialize.corCAR1

(Initialize.corStruct), 131

INDEX 335

Initialize.corCompSymm
(Initialize.corStruct), 131

Initialize.corLin
(Initialize.corStruct), 131

Initialize.corNatural, 63
Initialize.corNatural

(Initialize.corStruct), 131
Initialize.corSpatial

(Initialize.corStruct), 131
Initialize.corSpher

(Initialize.corStruct), 131
Initialize.corStruct, 45, 47, 48, 50, 52,

54, 56, 58, 60, 65, 67, 69, 131, 131,
132, 133, 286

Initialize.corSymm, 70
Initialize.corSymm

(Initialize.corStruct), 131
Initialize.glsStruct, 131, 132
Initialize.gnlsStruct (gnlsStruct), 124
Initialize.lmeStruct, 131, 132
Initialize.reStruct, 131, 133, 133
Initialize.varComb

(Initialize.varFunc), 134
Initialize.varConstPower

(Initialize.varFunc), 134
Initialize.varConstProp

(Initialize.varFunc), 134
Initialize.varExp (Initialize.varFunc),

134
Initialize.varFixed

(Initialize.varFunc), 134
Initialize.varFunc, 131–133, 134
Initialize.varIdent

(Initialize.varFunc), 134
Initialize.varPower

(Initialize.varFunc), 134
intervals, 135, 137–139
intervals.gls, 136, 136
intervals.lme, 136, 137
intervals.lmList, 136, 139, 232, 233
isBalanced, 23, 25, 140
isInitialized, 131, 141

LDEsysMat, 142
list, 150
lm, 156, 157, 247
lme, 10, 14, 16, 17, 32, 33, 83–85, 100, 106,

111, 112, 127, 133, 138, 143, 148,
150, 152–154, 165, 166, 186, 202,

203, 233, 234, 242, 243, 249, 250,
257, 258, 262, 263, 268, 275–277,
280–282, 288, 289, 304, 305, 320,
321

lme.formula, 146, 148
lme.groupedData, 143, 145, 146
lme.lmList, 143, 145, 148, 156, 157
lmeControl, 144, 145, 150
lmeObject, 144, 145, 148, 150, 152, 288
lmeStruct, 13, 84, 133, 145, 154, 166, 276,

325
lmList, 34, 35, 85, 88, 101, 107, 139, 143,

145, 148, 150, 155, 157, 167, 189,
203, 204, 233, 235, 236, 245, 247,
251, 257, 263, 264, 277, 278, 289,
290

lmList.formula, 156, 157
lmList.groupedData, 155, 156
loess, 246
logDet, 157, 158–160
logDet.corStruct, 158, 158, 161
logDet.pdBlocked (logDet.pdMat), 159
logDet.pdCompSymm (logDet.pdMat), 159
logDet.pdDiag (logDet.pdMat), 159
logDet.pdIdent (logDet.pdMat), 159
logDet.pdMat, 158, 159
logDet.pdNatural (logDet.pdMat), 159
logDet.pdSymm (logDet.pdMat), 159
logDet.reStruct, 158, 160
logical, 151, 156, 157, 195, 196
logLik, 158, 268
logLik.corStruct, 158, 161, 165, 267
logLik.gls, 14
logLik.gls (logLik.lme), 165
logLik.glsStruct, 162, 165
logLik.gnls, 163, 164
logLik.gnlsStruct, 164
logLik.lme, 17, 161–163, 165, 166–169
logLik.lmeStruct, 165, 166
logLik.lmeStructInt (logLik.lmeStruct),

166
logLik.lmList, 165, 167
logLik.reStruct, 165, 168
logLik.varComb (logLik.varFunc), 169
logLik.varFunc, 165, 169, 269, 323

Machines, 170
MathAchieve, 170
MathAchSchool, 171

336 INDEX

Matrix, 171
Matrix.pdMat, 172
Matrix.reStruct, 173
matrix<- (Matrix), 171
matrix<-.pdBlocked (Matrix.pdMat), 172
matrix<-.pdMat (Matrix.pdMat), 172
matrix<-.reStruct (Matrix.reStruct), 173
Meat, 174
Milk, 174
model.matrix, 176, 178
model.matrix.default, 144
model.matrix.reStruct, 175
Muscle, 176

na.fail, 113, 144
Names, 177, 178–180
Names.formula, 177, 178
Names.listForm (Names.formula), 178
Names.pdBlocked, 177, 179, 180
Names.pdMat, 177, 179, 180, 181
Names.reStruct, 177, 181
Names<- (Names), 177
Names<-.pdBlocked (Names.pdBlocked), 179
Names<-.pdMat (Names.pdMat), 180
Names<-.reStruct (Names.reStruct), 181
napredict, 83
naresid, 275
needUpdate, 182, 183, 298
needUpdate.corStruct

(needUpdate.modelStruct), 182
needUpdate.modelStruct, 182, 182
needUpdate.reStruct

(needUpdate.modelStruct), 182
Nitrendipene, 183
nlm, 190, 191, 281
nlme, 14, 17, 87, 184, 189, 191–193, 252, 253,

279, 304, 305
nlme.formula, 187
nlme.nlsList, 184, 186, 187, 195, 197
nlmeControl, 186, 189
nlmeObject, 186, 189, 191
nlmeStruct, 13, 86, 186, 191, 193, 278
nlminb, 115, 122, 151, 152, 190, 281
nls, 195, 197
nlsList, 186, 187, 194, 196, 197, 292, 293
nlsList.formula, 197
nlsList.selfStart, 194, 195, 196
numeric, 270

Oats, 197
offset, 113, 144
optim, 115, 122, 151, 152, 191
ordered, 270
Orthodont, 198
Ovary, 199
Oxboys, 199
Oxide, 200

pairs.compareFits, 42, 201, 203, 204, 230
pairs.lme, 201, 202, 204
pairs.lmList, 201, 203, 203
PBG, 205
pdBlocked, 89, 179, 205, 208, 212
pdClasses, 145, 185, 186, 207, 207, 209, 212,

213, 217, 218, 220, 221, 223, 224,
281

pdCompSymm, 208, 208, 210, 220
pdConstruct, 207, 209, 212
pdConstruct.pdBlocked, 210
pdDiag, 208, 210, 212, 220
pdFactor, 208, 214, 215, 221
pdFactor.pdMat, 215
pdFactor.reStruct, 215
pdIdent, 208, 210, 216, 220
pdLogChol, 208, 217
pdMat, 19, 20, 29, 36–38, 61, 62, 77, 89, 90,

134, 143, 144, 159, 160, 168, 172,
173, 180, 181, 208, 219, 221, 254,
280–283, 293, 294, 328

pdMatrix, 61, 207, 208, 214, 220, 221
pdMatrix.pdMat, 221
pdMatrix.reStruct, 215, 221, 221
pdNatural, 63, 138, 208, 210, 220, 222
pdSymm, 208, 210, 220, 223
Phenobarb, 225, 226
phenoModel, 226
Pixel, 227
plot.ACF, 8, 10, 11, 227
plot.augPred, 24, 228
plot.compareFits, 42, 201, 229
plot.gls, 114, 230, 256
plot.intervals.lmList, 139, 232
plot.lme, 145, 233, 258
plot.lmList, 156, 235
plot.nffGroupedData, 127, 236, 241
plot.nfnGroupedData, 127, 238, 241
plot.nls (plot.lme), 233
plot.nmGroupedData, 41, 127, 240

INDEX 337

plot.pdMat (pdMat), 219
plot.ranef.lme, 33, 242, 263
plot.ranef.lmList, 35, 244
plot.simulate.lme (simulate.lme), 281
plot.Variogram, 245, 310–317, 319, 321
pooledSD, 156, 246
predict, 24
predict.gls, 114, 247
predict.gnls, 121, 248
predict.lm, 236, 251
predict.lme, 145, 249
predict.lmList, 156, 250
predict.nlme, 252
print, 288
print.anova.lme, 14, 17
print.anova.lme (anova.lme), 15
print.compareFits (compareFits), 42
print.corNatural (corNatural), 63
print.intervals.gls, 137
print.intervals.gls (intervals.gls), 136
print.intervals.lme, 138
print.intervals.lme (intervals.lme), 137
print.intervals.lmList

(intervals.lmList), 139
print.lmList (lmList), 155
print.ranef.lme (ranef.lme), 261
print.reStruct (reStruct), 279
print.simulate.lme (simulate.lme), 281
print.summary.lme (summary.lme), 288
print.summary.pdMat, 253, 294
print.varComb (print.varFunc), 254
print.VarCorr.lme (VarCorr), 304
print.VarCov (getVarCov), 111
print.varFunc, 254

qqnorm.gls, 114, 255
qqnorm.lm (qqnorm.lme), 256
qqnorm.lme, 145, 256
qqnorm.lmList (qqnorm.lme), 256
qqnorm.nls (qqnorm.lme), 256
Quinidine, 258, 260
quinModel, 259

Rail, 260
random.effects, 42, 144, 261, 263, 264
random.effects.lme (ranef.lme), 261
random.effects.lmList, 88
random.effects.lmList (ranef.lmList),

263

ranef, 242
ranef (random.effects), 261
ranef.lme, 33, 242, 243, 261, 261
ranef.lmList, 35, 244, 261, 263
RatPupWeight, 265
recalc, 265, 268, 269
recalc.corAR1 (recalc.corStruct), 266
recalc.corARMA (recalc.corStruct), 266
recalc.corCAR1 (recalc.corStruct), 266
recalc.corCompSymm (recalc.corStruct),

266
recalc.corNatural (recalc.corStruct),

266
recalc.corSpatial (recalc.corStruct),

266
recalc.corStruct, 54, 266, 266, 267
recalc.corSymm (recalc.corStruct), 266
recalc.modelStruct, 266, 267
recalc.reStruct, 266, 267, 268
recalc.varFunc, 266, 267, 269
recalc.varIdent (recalc.varFunc), 269
Relaxin, 270
Remifentanil, 270
resid, 113, 144
residuals.gls, 114, 272, 273
residuals.glsStruct, 81, 117, 273
residuals.gnls, 274
residuals.gnls (residuals.gls), 272
residuals.gnlsStruct, 82, 124, 274
residuals.lme, 84, 145, 275, 277
residuals.lmeStruct, 85, 154, 276
residuals.lmList, 85, 156, 277
residuals.nlmeStruct, 87, 193, 278
reStruct, 20, 29, 37, 38, 62, 91, 127, 134,

144, 145, 154, 160, 168, 173, 175,
176, 181, 186, 193, 215, 220, 221,
268, 279, 283, 291, 297

selfStart, 196, 197
set.seed, 282
simulate.lme, 145, 281
solve.pdBlocked (solve.pdMat), 282
solve.pdDiag (solve.pdMat), 282
solve.pdIdent (solve.pdMat), 282
solve.pdLogChol (solve.pdMat), 282
solve.pdMat, 220, 282, 283
solve.pdNatural (solve.pdMat), 282
solve.pdSymm (solve.pdMat), 282
solve.reStruct, 280, 283

338 INDEX

Soybean, 284
splitFormula, 284
splom, 201, 203, 204
Spruce, 285
stop, 122, 151
summary, 128, 254, 286, 287, 290, 291, 293
summary.corAR1 (summary.corStruct), 286
summary.corARMA (summary.corStruct), 286
summary.corCAR1 (summary.corStruct), 286
summary.corCompSymm

(summary.corStruct), 286
summary.corExp (summary.corStruct), 286
summary.corGaus (summary.corStruct), 286
summary.corLin (summary.corStruct), 286
summary.corNatural, 63
summary.corNatural (summary.corStruct),

286
summary.corRatio (summary.corStruct),

286
summary.corSpher (summary.corStruct),

286
summary.corStruct, 45, 47–50, 52, 56, 58,

65, 67, 69, 286
summary.corSymm, 70
summary.corSymm (summary.corStruct), 286
summary.gls, 114, 287
summary.lme, 145, 288
summary.lmList, 156, 289
summary.modelStruct, 291
summary.nlsList, 195, 292
summary.pdBlocked (summary.pdMat), 293
summary.pdCompSymm (summary.pdMat), 293
summary.pdDiag (summary.pdMat), 293
summary.pdIdent (summary.pdMat), 293
summary.pdLogChol (summary.pdMat), 293
summary.pdMat, 220, 254, 293
summary.pdNatural (summary.pdMat), 293
summary.pdSymm (summary.pdMat), 293
summary.reStruct, 280
summary.reStruct (summary.modelStruct),

291
summary.varComb (summary.varFunc), 294
summary.varConstPower

(summary.varFunc), 294
summary.varConstProp (summary.varFunc),

294
summary.varExp (summary.varFunc), 294
summary.varFixed (summary.varFunc), 294

summary.varFunc, 255, 294, 298, 308
summary.varIdent (summary.varFunc), 294
summary.varPower (summary.varFunc), 294

table, 140
terms, 153, 178
terms.object, 153
Tetracycline1, 295
Tetracycline2, 296
try, 195
tryCatch, 156, 195

update.corStruct (update.modelStruct),
296

update.formula, 112, 143, 194
update.gls (gls), 112
update.groupedData (groupedData), 125
update.lme (lme), 143
update.lmList (lmList), 155
update.modelStruct, 296
update.nlsList (nlsList), 194
update.reStruct, 280
update.reStruct (update.modelStruct),

296
update.varComb (update.varFunc), 297
update.varConstPower (update.varFunc),

297
update.varConstProp (update.varFunc),

297
update.varExp (update.varFunc), 297
update.varExpon (update.varFunc), 297
update.varFunc, 297
update.varPower (update.varFunc), 297

varClasses, 71, 113, 114, 120, 121, 144–146,
149, 185, 186, 188, 295, 298, 299,
301, 303, 306, 307, 309

varComb, 298, 299
varConstPower, 298, 300, 302
varConstProp, 298, 301
VarCorr, 304
varExp, 298, 305
varFixed, 113, 144, 298, 306, 307, 308
varFunc, 29, 35, 38, 39, 71, 72, 81, 113, 114,

117, 121, 124, 135, 144, 145, 154,
162, 169, 186, 193, 254, 269, 273,
294, 295, 297, 302, 307, 307, 324

varIdent, 298, 308
Variogram, 245, 246, 309, 311–317, 319, 321

INDEX 339

Variogram.corExp, 310, 310, 315
Variogram.corGaus, 310, 311, 315
Variogram.corLin, 310, 312, 315
Variogram.corRatio, 310, 313, 315
Variogram.corSpatial, 310, 314
Variogram.corSpher, 310, 315, 315
Variogram.default, 310, 315, 316, 319, 321
Variogram.gls, 310, 317, 317, 321
Variogram.lme, 310, 317, 319, 319
varPower, 298, 322
varWeights, 269, 323, 323, 324, 325
varWeights.glsStruct, 324
varWeights.lmeStruct, 325
varWeights.varComb, 299
varWeights.varFunc, 301, 303, 306–309,

323

Wafer, 326
warning, 122, 151, 156, 190, 195
Wheat, 326
Wheat2, 327

xyplot, 201, 203, 204, 228, 229, 232, 234,
236, 239, 242, 243, 246

	ACF
	ACF.gls
	ACF.lme
	Alfalfa
	allCoef
	anova.gls
	anova.lme
	as.matrix.corStruct
	as.matrix.pdMat
	as.matrix.reStruct
	asOneFormula
	Assay
	asTable
	augPred
	balancedGrouped
	bdf
	BodyWeight
	Cefamandole
	Coef
	coef.corStruct
	coef.gnls
	coef.lme
	coef.lmList
	coef.modelStruct
	coef.pdMat
	coef.reStruct
	coef.varFunc
	collapse
	collapse.groupedData
	compareFits
	comparePred
	corAR1
	corARMA
	corCAR1
	corClasses
	corCompSymm
	corExp
	corFactor
	corFactor.corStruct
	corGaus
	corLin
	corMatrix
	corMatrix.corStruct
	corMatrix.pdMat
	corMatrix.reStruct
	corNatural
	corRatio
	corSpatial
	corSpher
	corSymm
	Covariate
	Covariate.varFunc
	Dialyzer
	Dim
	Dim.corSpatial
	Dim.corStruct
	Dim.pdMat
	Earthquake
	ergoStool
	Fatigue
	fdHess
	fitted.glsStruct
	fitted.gnlsStruct
	fitted.lme
	fitted.lmeStruct
	fitted.lmList
	fitted.nlmeStruct
	fixed.effects
	fixef.lmList
	formula.pdBlocked
	formula.pdMat
	formula.reStruct
	gapply
	Gasoline
	getCovariate
	getCovariate.corStruct
	getCovariate.data.frame
	getCovariate.varFunc
	getCovariateFormula
	getData
	getData.gls
	getData.lme
	getData.lmList
	getGroups
	getGroups.corStruct
	getGroups.data.frame
	getGroups.gls
	getGroups.lme
	getGroups.lmList
	getGroups.varFunc
	getGroupsFormula
	getResponse
	getResponseFormula
	getVarCov
	gls
	glsControl
	glsObject
	glsStruct
	Glucose
	Glucose2
	gnls
	gnlsControl
	gnlsObject
	gnlsStruct
	groupedData
	gsummary
	Gun
	IGF
	Initialize
	Initialize.corStruct
	Initialize.glsStruct
	Initialize.lmeStruct
	Initialize.reStruct
	Initialize.varFunc
	intervals
	intervals.gls
	intervals.lme
	intervals.lmList
	isBalanced
	isInitialized
	LDEsysMat
	lme
	lme.groupedData
	lme.lmList
	lmeControl
	lmeObject
	lmeStruct
	lmList
	lmList.groupedData
	logDet
	logDet.corStruct
	logDet.pdMat
	logDet.reStruct
	logLik.corStruct
	logLik.glsStruct
	logLik.gnls
	logLik.gnlsStruct
	logLik.lme
	logLik.lmeStruct
	logLik.lmList
	logLik.reStruct
	logLik.varFunc
	Machines
	MathAchieve
	MathAchSchool
	Matrix
	Matrix.pdMat
	Matrix.reStruct
	Meat
	Milk
	model.matrix.reStruct
	Muscle
	Names
	Names.formula
	Names.pdBlocked
	Names.pdMat
	Names.reStruct
	needUpdate
	needUpdate.modelStruct
	Nitrendipene
	nlme
	nlme.nlsList
	nlmeControl
	nlmeObject
	nlmeStruct
	nlsList
	nlsList.selfStart
	Oats
	Orthodont
	Ovary
	Oxboys
	Oxide
	pairs.compareFits
	pairs.lme
	pairs.lmList
	PBG
	pdBlocked
	pdClasses
	pdCompSymm
	pdConstruct
	pdConstruct.pdBlocked
	pdDiag
	pdFactor
	pdFactor.reStruct
	pdIdent
	pdLogChol
	pdMat
	pdMatrix
	pdMatrix.reStruct
	pdNatural
	pdSymm
	Phenobarb
	phenoModel
	Pixel
	plot.ACF
	plot.augPred
	plot.compareFits
	plot.gls
	plot.intervals.lmList
	plot.lme
	plot.lmList
	plot.nffGroupedData
	plot.nfnGroupedData
	plot.nmGroupedData
	plot.ranef.lme
	plot.ranef.lmList
	plot.Variogram
	pooledSD
	predict.gls
	predict.gnls
	predict.lme
	predict.lmList
	predict.nlme
	print.summary.pdMat
	print.varFunc
	qqnorm.gls
	qqnorm.lme
	Quinidine
	quinModel
	Rail
	random.effects
	ranef.lme
	ranef.lmList
	RatPupWeight
	recalc
	recalc.corStruct
	recalc.modelStruct
	recalc.reStruct
	recalc.varFunc
	Relaxin
	Remifentanil
	residuals.gls
	residuals.glsStruct
	residuals.gnlsStruct
	residuals.lme
	residuals.lmeStruct
	residuals.lmList
	residuals.nlmeStruct
	reStruct
	simulate.lme
	solve.pdMat
	solve.reStruct
	Soybean
	splitFormula
	Spruce
	summary.corStruct
	summary.gls
	summary.lme
	summary.lmList
	summary.modelStruct
	summary.nlsList
	summary.pdMat
	summary.varFunc
	Tetracycline1
	Tetracycline2
	update.modelStruct
	update.varFunc
	varClasses
	varComb
	varConstPower
	varConstProp
	VarCorr
	varExp
	varFixed
	varFunc
	varIdent
	Variogram
	Variogram.corExp
	Variogram.corGaus
	Variogram.corLin
	Variogram.corRatio
	Variogram.corSpatial
	Variogram.corSpher
	Variogram.default
	Variogram.gls
	Variogram.lme
	varPower
	varWeights
	varWeights.glsStruct
	varWeights.lmeStruct
	Wafer
	Wheat
	Wheat2
	[.pdMat
	Index

