Using the missForest Package

Daniel J. Stekhoven
stekhoven@stat.math.ethz.ch

Friday, 13*® of May, 2011
Update: Version 1.5, 14.04.22

Contents
1 Introduction 1
1.1 What is this document? (And what it isn’t!) . . ... ... ... ... ... ... 1
1.2 The missForest algorithm . . . . . .. .. .. .. ... ... .. ... ... 2
1.3 Imstallation . . . . . . . . . . e 2
2 Missing value imputation with missForest 2
2.1 Description of the dataused . . . . . . .. ... ... .. .. ... ... ... ... 2
2.2 missForestinamnutshell . . ... ... . ... ... 0L 3
2.3 Additional output using verbose . . . . . . ... ..o 4
2.4 Changing the number of iterations with maxiter . . . .. ... . ... ... ... 5)
2.5 Speed and accuracy trade-off manipulating mtry and ntree . . . . .. ... ... 7
2.5.1 ntree . . . ... 7
252 mtry . ..o 8
2.6 Use subsampling instead of bootstrapping by setting replace to FALSE . . . . . 9
2.7 Imbalanced data, stratified sampling and focussed selection (classwt, cutoff,
Strata, SampSize) . . . . ... ... 9
2.8 Controlling terminal nodes w.r.t. nodesize and maxnodes . . . . . .. ... ... 10
2.9 Testing the appropriateness by supplying xtrue . . . . . . . . ... .. ... ... 11
2.10 Parallel execution of missForest using parallelize . ... ... ... ..... 12
3 Concluding remarks 14

1 Introduction

1.1 What is this document? (And what it isn’t!)

This package vignette is an application focussed user guide for the R package missForest. The
functionality is explained using a couple of real data examples. Argument selection with respect
to feasibility and accuracy issues are discussed and illustrated using these real data sets. Do
not be alarmed by the length of this document which is mainly due to some major R output
included for illustrative reasons.

This document is not a theoretical primer for the fundamental approach of the missForest
algorithm. It also does not contain any simulations or comparative studies with other imputation
methods. For this information we point the interested reader to Stekhoven and Biithlmann [2012].



1.2 The missForest algorithm

missForest is a nonparametric imputation method for basically any kind of data. It can cope
with mixed-type of variables, nonlinear relations, complex interactions and high dimensionality
(p > n). It only requires the observation (i.e. the rows of the data frame supplied to the function)
to be pairwise independent. The algorithm is based on random forest (Breiman [2001]) and is
dependent on its R implementation randomForest by Andy Liaw and Matthew Wiener. Put
simple (for those who have skipped the previous paragraph): for each variable missForest fits a
random forest on the observed part and then predicts the missing part. The algorithm continues
to repeat these two steps until a stopping criterion is met or the user specified maximum of
iterations is reached. For further details see Stekhoven and Biithlmann [2012].

To understand the remainder of this user guide it is important to know that missForest is
running iteratively, continuously updating the imputed matrix variable-wise, and is assessing its
performance between iterations. This assessment is done by considering the difference(s) between
the previous imputation result and the new imputation result. As soon as this difference (in case
of one type of variable) or differences (in case of mixed-type of variables) increase the algorithm
stops.

missForest provides the user with an estimate of the imputation error. This estimate is
based on the out-of-bag (OOB) error estimate of random forest. Stekhoven and Biithlmann [2012]
showed that this estimate produces an appropriate representation of the true imputation error.

1.3 Installation

The R package missForest is available from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/) and as such can be installed in the default way using the in-
stall.packages function:

> install.packages (missForest, dependencies = TRUE)

Make sure to include the dependencies = TRUE argument to install also the randomForest
package unless it is already installed.

2 Missing value imputation with missForest

In this section we describe using the missForest function. We will shed light on all arguments
which can or have to be supplied to the algorithm. Also, we will discuss how to make missForest
faster or more accurate. Finally, an interpretation of the OOB imputation error estimates is
given.

2.1 Description of the data used

Iris data This complete data set contains five variables of which one is categorical with three
levels. It is contained in the R base and can be loaded directly by typing data(iris).
The data were collected by Anderson [1935].

Oesophageal cancer data This complete data set comes from a case-control study of oesophageal
cancer in Ile-et-Vilaine, France. It is contained in the R base and can be loaded directly
by typing data(esoph). The data were collected by Breslow and Day [1980].

Musk data This data set describes the shapes of 92 molecules of which 47 are musks and 45 are
non-musks. Since a molecule can have many conformations due to rotating bonds, there
are n = 476 different conformations in the set. The classification into musk and non-musk
molecules is removed. For further details see Frank and Asuncion [2010].



2.2 missForest in a nutshell

After you have properly installed missForest you can load the package in your R session:
> library(missForest)

We will load now the famous Iris data set and artificially remove 10% of the entries in the
data completely at random using the prodNA function from the missForest package:

> data(iris)
> iris.mis <- prodNA(iris, noNA = 0.1)
> summary(iris.mis)

Sepal.Length Sepal.Width Petal.Length  Petal.Width
Min. :4.300 Min. :2.000 Min. :1.00 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.60 1st Qu.:0.300
Median :5.750 Median :3.000 Median :4.40 Median :1.300
Mean :5.826 Mean :3.055 Mean :3.78 Mean :1.147
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.10 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.90 Max. :2.500
NA's :10 NA's 118 NA's 117 NA's 117

Species
setosa 146

versicolor:47
virginica :44
NA's :13

We can see that there is an evenly distributed amount of missing values over the variables
in the data set. With completely at random we mean that the process of deleting entries is not
influenced by the data or the data generating process.

The missing data is now imputed by simply handing it over to missForest :

> iris.imp <- missForest(iris.mis)

Except for the iteration numbering no additional print-out is given. The results are stored
in the R object iris.imp which is a list. We can call upon the imputed data matrix by typing
iris.imp$ximp. Note: A common mistake is to use iris.imp instead of iris.imp$ximp for
subsequent analyses.

Additionally, missForest provides an OOB imputation error estimate which can be ex-
tracted using the same $ notation as with the imputed data matrix:

> iris.imp$00Berror

NRMSE PFC
0.13905909 0.05109489

As mentioned before the Iris data set contains two types of variables, continuous and categor-
ical. This is why the OOB imputation error supplies two values for the result of the imputation
(default setting). The first value is the normalized root mean squared error (NRMSE, see Oba
et al. [2003]) for the continuous part of the imputed data set, e.g., Sepal.Length, Sepal.Width,
Petal.Length and Petal.Width. The second value is the proportion of falsely classified en-
tries (PFC) in the categorical part of the imputed data set, e.g., Species. In both cases good
performance of missForest leads to a value close to 0 and bad performance to a value around
1.



If you are interested in assessing the reliability of the imputation for single variables, e.g., to
decide which variables to use in a subsequent data analysis, missForest can return the OOB
errors for each variable separately instead of aggregating over the whole data matrix. This can
be done using the argument variablewise = TRUE when calling the missForest function.

> iris.imp <- missForest(iris.mis, variablewise = TRUE)
> iris.imp$00Berror

MSE MSE MSE MSE PFC
0.11448711 0.09672087 0.07276558 0.03075024 0.04379562

We can see that the output has the same length as there are variables in the data. For each
variable the resulting error and the type of error measure, i.e., mean squared error (MSE) or
PFC, is returned. Note that we are not using the NRMSE here.

2.3 Additional output using verbose

In 2.2 the print-out of missForest showed only which iteration is taking place at the moment.
Anyhow, if you are imputing a large data set or choose to use ridiculously large mtry and/or
ntree arguments (see 2.5) you might be interested in getting additional information on how
missForest is performing.

By setting the logical verbose argument to TRUE the print-out is extended threefold:

estimated error(s) The OOB imputation error estimate for the continuous and categorical
parts of the imputed data set. Note: If there is only one type of variable there will be only
one value with the corresponding error measure.

difference(s) The difference between the previous and the new imputed continuous and cat-
egorical parts of the data set. The difference for the set of continuous variables N in the
data set is computed by

S en(Xneh — XUp)?2
> jen (Xieh)?

and for the set of categorical variables the difference corresponds to the PFC.

)

time The runtime of the iteration in seconds.
If we rerun the previous imputation of the Iris data ! setting verbose = TRUE we get:

> set.seed(81)
> iris.imp <- missForest(iris.mis, verbose = TRUE)

missForest iteration 1 in progress...done!
estimated error(s): 0.1524815 0.05109489
difference(s): 0.006466743 0.06666667
time: 0.084 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.1399639 0.04379562

!Since random forest — as its name suggests — is using a random number generator (RNG) the result for two
trials on the same missing data set will be different. To avoid this from happening in the given illustrative example
we use the set.seed function before applying missForest on the iris.mis data set. This causes the RNG to
be reset to the same state as before (where we invisibly called set.seed(81) already but did not want to trouble
the concerned reader with technical details).



difference(s): 2.314766e-05 0
time: 0.082 seconds

missForest iteration 3 in progress...done!
estimated error(s): 0.1408201 0.05109489
difference(s): 1.907026e-05 0
time: 0.078 seconds

missForest iteration 4 in progress...done!
estimated error(s): 0.140568 0.05109489
difference(s): 1.456924e-05 0
time: 0.084 seconds

missForest iteration 5 in progress...done!
estimated error(s): 0.1390591 0.05109489
difference(s): 1.157991e-05 0
time: 0.079 seconds

missForest iteration 6 in progress...done!
estimated error(s): 0.1404867 0.04379562
difference(s): 1.689285e-05 0
time: 0.076 seconds

The above print-out shows that missForest needs four iterations to finish. If we check the
final OOB imputation error estimate:

> iris.imp$00Berror

NRMSE PFC
0.13905909 0.05109489

we can see that it used the result from the second last iteration, i.e., the third instead
of the last one. This is because the stopping criterion was triggered and the fact that the
differences increase indicate that the new imputation is probably a less accurate imputation
than the previous one. However, we can also see that the estimated error(s) is lower for the last
imputation than for the one before. But we will show later on that the true imputation error is
lower for iteration 3 (the impatient reader can jump to section 2.9).

2.4 Changing the number of iterations with maxiter

Depending on the composition and structure of the data it is possible that missForest needs
more than the typical four to five iterations (see 2.3) until the stopping criterion kicks in. From
an optimality point of view we do want missForest to stop due to the stopping criterion and not
due to the limit of iterations. However, if the difference between iterations is seriously shrinking
towards nought and the estimated error is in a stalemate the only way to keep computation time
at a reasonable level is to limit the number of iterations using the argument maxiter.

We show this using the esoph data. First, we run missForest on a data set where we
removed 5% of the entries at random:

> data(esoph)

> esoph.mis <- prodNA(esoph, 0.05)

> set.seed(96)

> esoph.imp <- missForest(esoph.mis, verbose = TRUE)



missForest iteration 1 in progress...done!
estimated error(s): 0.5829447 0.7600658
difference(s): 0.00657907 0.04545455
time: 0.044 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.6324057 0.7912311
difference(s): 0.0003081604 0.02272727
time: 0.034 seconds

missForest iteration 3 in progress...done!
estimated error(s): 0.6047978 0.7834882
difference(s): 0.0002369853 0.007575758
time: 0.034 seconds

missForest iteration 4 in progress...done!
estimated error(s): 0.612139 0.7753581
difference(s): 0.0002492164 0
time: 0.04 seconds

missForest iteration 5 in progress...done!
estimated error(s): 0.6296159 0.775842
difference(s): 6.539235e-05 0
time: 0.035 seconds

missForest iteration 6 in progress...done!
estimated error(s): 0.6045446 0.7473868
difference(s): 0.0002302742 0.007575758
time: 0.037 seconds

We can see that it takes missForest nine iterations to come to a stop. The returned impu-
tation result was reached in iteration 8 having estimated errors of 0.55 and 0.73 and differences
of 3-107° and 0. In iteration 6 the estimated errors are smaller (i.e. 0.53 and 0.70) and the
differences are 1-10~* and 4-1073. So why is missForest not simply taking the sixth iteration
and calls it a day? Because the difference in the continuous part of the data set is still reduced
in each iteration up until iteration 9. This stopping strategy is on average (taking all possible
data sets into account) quite good but can have its caveats at specific data sets. In the above
case of the esoph data we can get the result of the sixth iteration by doing the following:

> set.seed(96)
> esoph.imp <- missForest(esoph.mis, verbose = TRUE, maxiter = 6)

missForest iteration 1 in progress...done!
estimated error(s): 0.5829447 0.7600658
difference(s): 0.00657907 0.04545455
time: 0.045 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.6324057 0.7912311
difference(s): 0.0003081604 0.02272727
time: 0.038 seconds



missForest iteration 3 in progress...done!
estimated error(s): 0.6047978 0.7834882
difference(s): 0.0002369853 0.007575758
time: 0.038 seconds

missForest iteration 4 in progress...done!
estimated error(s): 0.612139 0.7753581
difference(s): 0.0002492164 0
time: 0.048 seconds

missForest iteration 5 in progress...done!
estimated error(s): 0.6296159 0.775842
difference(s): 6.539235e-05 0
time: 0.037 seconds

missForest iteration 6 in progress...done!
estimated error(s): 0.6045446 0.7473868
difference(s): 0.0002302742 0.007575758
time: 0.037 seconds

The returned result is now given by iteration 6. Quintessentially, there are two uses for the
maxiter argument:

1. Controlling the run time in case of stagnating performance;

2. extract a preferred iteration result not supplied by the stopping criterion.

2.5 Speed and accuracy trade-off manipulating mtry and ntree

missForest grows in each iteration for each variable a random forest to impute the missing
values. With a large number of variables p this can lead to computation times beyond today’s
perception of feasibility. There are two ways to speed up the imputation process of missForest:

1. Reducing the number of trees grown in each forest using the argument ntree;

2. reducing the number of variables randomly sampled at each split using the argument mtry.
It is imperative to know that reducing either of these numbers will probably result in reduced
accuracy. This is why we speak of a speed and accuracy trade-off.
2.5.1 ntree

The effect of reducing ntree on the computation time is linear, e.g., halving ntree will half
computation time for a single iteration. The default value in missForest is set to 100 which is
fairly large. Smaller values in the tens can give appropriate results already. We show this using
the Musk data:

> musk.mis <- prodNA(musk, 0.05)
> musk.imp <- missForest(musk.mis, verbose = TRUE, maxiter = 3)

missForest iteration 1 in progress...done!
estimated error(s): 0.1491825
difference(s): 0.02383702



time: 280.739 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.1367353
difference(s): 0.0001208087
time: 277.011 seconds

missForest iteration 3 in progress...done!
estimated error(s): 0.137418
difference(s): 3.836082e-05
time: 278.287 seconds

The computation time is about 14 minutes and we end up with an estimated NRMSE of 0.14.
Note: The response was removed from the Musk data, that is why there is only the estimated
NRMSE and also only the difference for the continuous part of the data set.

If we repeat the imputation using the ntree argument and setting it to 20 we get:

> musk.imp <- missForest(musk.mis, verbose = TRUE, maxiter = 3, ntree = 20)

missForest iteration 1 in progress...done!
estimated error(s): 0.1724939
difference(s): 0.02383371
time: 56.705 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.1576795
difference(s): 0.0002417658
time: 55.833 seconds

missForest iteration 3 in progress...done!
estimated error(s): 0.1591702
difference(s): 0.0001966117
time: 56.053 seconds

The computation time is now around 3 minutes which is approximately a fifth of the previous
computation time using 100 trees (as a matter of fact, taking the floor values of the iteration
times in seconds then the former imputation took ezactly five times longer than the latter). The
estimated NRMSE has increased to 0.16 — an increase of 14% compared to before. In some
application this might seem as an unacceptable increase of imputation error. However, if the
number of variables is large enough, e.g., in the thousands like in gene expression data, the
amount of computation time saved will surpass the amount of imputation error increased.

2.5.2 mtry

The effect on computation time when changing mtry is not as straight forward as with ntree.
It is however more pronounced in settings with high-dimensionality (e.g. p > n, where n is
the number of observations) and complex structures. The default setting in missForest is /p.
This choice qualifies for a quite nice trade-off between imputation error and computation time.
Anyhow, certain data might demand different choices either putting a focus on better imputation
error or better computation time. We leave this delicate choice to the user of these certain data
sets.



2.6 Use subsampling instead of bootstrapping by setting replace to FALSE

Like in the original paper by Breiman [2001] missForest uses bootstrap samples to grow its trees
on. Another possibility would be to use subsamples instead. Randomly selected observations are
replaced in the data when bootstrapping is performed, i.e., a single observation can be selected
several times. In subsampling these observations are not replaced and thus a single observation
can only be selected once. If replace=FALSE then sampsize (controlling the size of the sample
drawn from the data to grow a tree) is reduced from n to 0.632n. This is because otherwise
there would be no more OOB observations and an error prediction would be impossible. The
number 0.632 is the expected proportion of observations selected when using bootstrapping, i.e.,
selecting with replacements n observations.

> set.seed(81)
> iris.imp.sub <- missForest(iris.mis, verbose = TRUE, replace = FALSE)

missForest iteration 1 in progress...done!
estimated error(s): 0.1524185 0.06569343
difference(s): 0.006462631 0.06666667
time: 0.064 seconds

missForest iteration 2 in progress...done!
estimated error(s): 0.1392069 0.04379562
difference(s): 2.145735e-05 0
time: 0.061 seconds

missForest iteration 3 in progress...done!
estimated error(s): 0.1402611 0.04379562
difference(s): 1.684402e-05 0
time: 0.063 seconds

missForest iteration 4 in progress...done!
estimated error(s): 0.1428319 0.05109489
difference(s): 2.691763e-05 0
time: 0.069 seconds

> iris.imp.sub$00Berror

NRMSE PFC
0.14026112 0.04379562

We can see that there is no substantial improvement compared to bootstrapping in the
previous example in section 2.3 for the iris data. However, in some cases subsampling can be
superior to bootstrapping. Therefore, if time allows explore both strategies and settle for the
better performing one.

2.7 Imbalanced data, stratified sampling and focussed selection (classwt, cutoff,
strata, sampsize)

From version 1.3 on missForest offers the possibility to pass more arguments to the randomForest
function at its core. These include:

classwt adding priors to the classes in categorical variables;



cutoff setting cutoffs for each class in categorical variables;
strata perform stratified sampling for categorical variables;
sampsize define size of samples drawn from a variable.

For each of these arguments the user has to generate a list containing the appropriate object for
each variable at the corresponding list entry, i.e., the third entry of the list corresponds to the
third variable in the data, etc. The first three arguments in the above list do only make sense
when used with categorical variables. However, the generated list has to have an entry for each
variable - include for continuous variables NULL (for cutoff use 1). The sampsize argument
can be used for both types of data. In case of continuous variables a single integer and in case
of categorical variables a vector of the same length as there are classes in the variable.

> iris.sampsize <- list(12, 12, 12, 12, c(10, 15, 10))
> iris.imp.sampsize <- missForest(iris.mis, sampsize = iris.sampsize)

Note how we set the list entry for sampsize in case of the fifth variable Species to a vector
with three entries. An example for the use of cutoff could be:

> iris.cutoff <- 1ist(1, 1, 1, 1, c(0.3, 0.6, 0.1))
> iris.imp.cutoff <- missForest(iris.mis, cutoff = iris.cutoff)

we set the cutoff for setosa to 0.3, for versicolor to 0.6 and for virginica to 0.1 (not
that this would make any sense - it is simply to show how the arguments have to be generated).
Equivalently, using a NULL instead of 1 for the continuous variables the input for classwt looks
as:

> iris.classwt <- 1ist(NULL, NULL, NULL, NULL, c(10, 30, 20))
> iris.imp.classwt <- missForest(iris.mis, classwt = iris.classwt)
2.8 Controlling terminal nodes w.r.t. nodesize and maxnodes
We can control the structural tree growing process two fold:
e by setting the maximum number of terminal nodes in the tree;
e by defining the minimum number of observations in a terminal node.

The default setting for the maximum number of nodes is given by the maximum possible in the
tree growing process, subject to the limits of nodesize, which in turn has the default setting
of 1 for continuous and 5 for categorical variables. The maxnodes argument is simply specified
by an integer. For nodesize the user needs to supply a vector of length 2 where the first entry
corresponds to continuous and the second entry to categorical variables:

> iris.imp.term <- missForest(iris.mis, nodesize = c(3, 7))

In the above call to missForest we set the number of observations in terminal nodes to 3
for continuous variables and 7 for categorical variables. Especially, the maxnodes argument can
have a strong effect on computation time.

10



2.9 Testing the appropriateness by supplying xtrue

Whenever imputing data with real missing values the question arises how good the imputation
was. In missForest the estimated OOB imputation error gives a nice indication at what you
have to expect. A wary user might want to make an additional assessment (or back the OOB
estimate up) by performing cross-validation or — in the optimal case — testing missForest
previously on complete data. For both cases missForest offers the xtrue argument which
simply takes in the same data matrix as xmis but with no missing values present. The strategy
for testing the performance is the same as shown in the previous examples using prodNA:

1. Generate a data matrix with missing values;
2. impute this artificially generated data matrix;
3. compare the complete and imputed data matrices.

The functions to use for this strategy are prodNA, missForest and mixError. Using again the
Iris data this would look like:

> iris.mis <- prodNA(iris, noNA = 0.1)
> iris.imp <- missForest(iris.mis)

> iris.err <- mixError(iris.imp$ximp, iris.mis, iris)
> print(iris.err)

NRMSE PFC
0.1398983 0.0000000

Note: We want to point out once more that the user has to extract the imputed matriz from
the missForest output using the $ list notation. Not doing so will generate the following error:

> iris.err <- mixError(iris.imp, iris.mis, iris)

Error in mixError(iris.imp, iris.mis, iris)
Wrong input for 'xmis' - you probably forgot to point at the
list element $ximp from the missForest output object.

We can simplify the above strategy by using xtrue. If combined with verbose = TRUE the
user even gets additional information on the performance of missForest between iterations:

> iris.imp <- missForest(iris.mis, xtrue = iris, verbose = TRUE)

missForest iteration 1 in progress...done!
error(s): 0.1417971 0
estimated error(s): 0.1524815 0.05109489
difference(s): 0.006466743 0.06666667
time: 0.082 seconds

missForest iteration 2 in progress...done!
error(s): 0.1430175 0
estimated error(s): 0.1399639 0.04379562
difference(s): 2.314766e-05 0
time: 0.087 seconds

11



missForest iteration 3 in progress...done!
error(s): 0.1449979 0
estimated error(s): 0.1408201 0.05109489
difference(s): 1.907026e-05 0
time: 0.083 seconds

missForest iteration 4 in progress...done!
error(s): 0.1394827 0
estimated error(s): 0.140568 0.05109489
difference(s): 1.456924e-05 0
time: 0.086 seconds

missForest iteration 5 in progress...done!
error(s): 0.1398983 0
estimated error(s): 0.1390591 0.05109489
difference(s): 1.157991e-05 0
time: 0.084 seconds

missForest iteration 6 in progress...done!
error(s): 0.1396147 0
estimated error(s): 0.1404867 0.04379562
difference(s): 1.689285e-05 0
time: 0.083 seconds

Supplying xtrue adds the line error(s) to the missForest output. We can observe that
the true imputation error really is lower for the second last iteration as mentioned in section 2.2.
Additionally, the output object (in the above example iris.imp) contains now a list element
error which can be called directly:

> iris.imp$error

NRMSE PFC
0.1398983 0.0000000

2.10 Parallel execution of missForest using parallelize

The argument parallelize allows to run missForest on multiple cores in parallel to save com-
putational time. The parallel computation is achieved using the packages foreach (Revolution
Analytics and Weston [2013b]) and itertools (Weston and Wickham [2010]). There are two
possible ways to parallelize the algorithm of missForest :

1. Create random forest objects parallel.
In each random forest grown divide ntree in k parts, where k equals the number of
available cores. Each core computes the % trees and finally the results are combined.
This parallelization is most useful, if the random forest objects take long to compute and
not too many variables with missing values are in the data. There are no consequences on
the theoretical aspects of missForest regarding this parallelization (see Stekhoven and
Biithlmann [2012]).

2. Compute multiple iterations of missForest parallel.
An iteration of missForest consists of growing a random forest on the observed parts of
a variable and subsequently predicting the missing parts using this forest. Partitioning

12



the variables containing missing values into subsets of size k, where k equals the number
of available cores, allows for the parallel computation of k iterations. When each of the k
iterations is finished the missing values in the first k£ variables are updated and the next
block of k variables is started. This parallelization is most useful if the data consists of
many variables and the random forest objects do not take long to compute?. However, the
methodology of this procedure deviates from the original missForest algorithm, where
the missing values were updated after each iteration. Now, the values are only updated
after the separate computation of the k iterations. This seems to have no negative effect
on the performance of missForest .

The use of parallel computing with R requires an appropriate parallel backend telling R
where the cores are and how many of them. There are several packages available offering this
functionality. Here, we give a short example taken from Revolution Analytics and Weston [2013a]
on how this can be achieved using the package doParallel. It is recommended to carefully read
the documentation of doParallel (especially the Section "Registering the doParallel parallel
backend”).

The following code is loading the doParallel package and registers a (default) parallel
backend. The function getDoParWorkers () returns the number of available cores. The package
doRNG provides an operator which ensures consisten results across foreach loops with respect
to random numbers. This is important as you may know using random forests. The command
registerDoRNG subsequently allows to set a seed.

> require(doParallel)
> registerDoParallel (cores=2)
> getDoParWorkers ()

(1] 2

> require (doRNG)
> registerDoRNG(seed = 1.618)
> foreach(i=1:3) Jdorng/ sqrt(i)

[[1]1]
(1] 1

[[2]1]
[1] 1.414214

[[3]1]
[1] 1.732051

attr(,"rng")

attr(,"rng") [[1]]

[1] 10407 -1535484873 1222746892 1963142301 158053050
[6] -1240755981 -292394600

attr(,"rng") [[2]]
[1] 10407 -301255468 -1034264016 959782055 -1015092498
[6] -999580337 459156296

2This can be achieved artificially by setting ntree or mtry relatively low, see Section 2.5

13



attr(,"rng") [[3]]
[1] 10407 -754318448 -1267835184 106221966 -1446449372
[6] -453071442 113485020

attr(,"doRNG_version")
[1] "1.7.4"

If the foreach loop returns the above output the backend is registered and can be used by
missForest .

If the data has neither many variables nor the random forests take very long to compute,
but the need for parallel computing is given, we recommend to try both parallelizations and see
which improves the performance best.

3 Concluding remarks

Imputation using missForest can be done very easily. The OOB imputation error estimate
facilitates the interpretation of such imputation results. However, it should always be kept in
mind that imputing data with missing values does not increase the information contained within
this data. It is only a way to have completeness for further data analysis. Many methods of data
analysis require complete observations. In such complete case analyses observations missing only
a single entry will be completely removed from the data and therefore the information content
is reduced. Imputing the data beforehand prevents this reduction. For further details on the
effect of imputation on the subsequent data analysis we suggest the books of Schafer [1997] and
Little and Rubin [1987].

Acknowledgments

We thank Steve Weston for the input on the parallel computation approach.

References

E. Anderson. The irises of the gaspe peninsula. Bulletin of the American Iris Society, 59:2-5,
1935.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001. ISSN 0885-6125.

N. E. Breslow and N. E. Day. Statistical methods in cancer research. 1: The analysis of case-
control studies. TARC Lyon / Oxford University Press, 1980.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.ics.
uci.edu/ml.

R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. Wiley New York, 1987.
ISBN 0-471-80254-9.

S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii. A Bayesian missing
value estimation method for gene expression profile data. Bioinformatics, 19(16):2088-2096,
2003. ISSN 1367-4803.

Revolution Analytics and Steve Weston. doParallel: Foreach parallel adaptor for the parallel
package, 2013a. URL http://CRAN.R-project.org/package=doParallel. R package version
1.0.6.

14



Revolution Analytics and Steve Weston. foreach: Foreach looping construct for R, 2013b. URL
http://CRAN.R-project.org/package=foreach. R package version 1.4.1.

J.L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, 1997. ISBN 0-412-
04061-1.

D.J. Stekhoven and P. Bithlmann. MissForest - nonparametric missing value imputation for
mixed-type data. Bioinformatics, 2012. doi: 10.1093/bioinformatics/btr597.

Steve Weston and Hadley Wickham. itertools: Iterator Tools, 2010. URL http://CRAN.
R-project.org/package=itertools. R package version 0.1-1.

15



