Package ‘maps’

May 26, 2025

Title Draw Geographical Maps
Version 3.4.3
Date 2025-05-15

Description Display of maps. Projection code and larger maps are in
separate packages (‘mapproj' and 'mapdata’).

Depends R (>=3.5.0)

Imports graphics, utils

LazyData yes

Suggests mapproj (>= 1.2-0), mapdata (>= 2.3.0), sf, rnaturalearth
License GPL-2

URL https://github.com/adeckmyn/maps

BugReports https://github.com/adeckmyn/maps/issues
NeedsCompilation yes
Repository CRAN

Author Richard A. Becker [aut] (Original S code),
Allan R. Wilks [aut] (Original S code),
Ray Brownrigg [tr], aut] (R version),
Thomas P. Minka [aut] (Enhancements),
Alex Deckmyn [aut, cre] (ORCID:
<https://orcid.org/0009-0002-2010-8310>)

Maintainer Alex Deckmyn <alex.deckmyn@meteo.be>
Date/Publication 2025-05-26 17:40:02 UTC

Contents

ATCAMAD « « « o v e e e e e e e e e e e e e e e e e e e
canada.Cities e
COUNLY o v o ottt e e e e e e e e e e e e e e e
county.fips
france e e

https://github.com/adeckmyn/maps
https://github.com/adeckmyn/maps/issues
https://orcid.org/0009-0002-2010-8310

2 area.map
identifymap e e 7
iso.expand oL L e 8
1S03166 e 9
italy .. e e 10
lakes e e 11
MAD . v v o e 12
MAP.AXES « « v o v e 16
MAP.CILIBS . .« . v v v v e e e e e e e e 17
map.scale e e e e e 19
MapPteXt e e e e e e e e e e e e e e e e e 20
map.where e 21
matchomap e 22
NZ o oo e e e e e e e e e e e e 23
OZONE .+« e e e e e e e e e e e e e e e 24
SmMooth.map e e e e 24
Spatial2map 26
SEALE e e e e 27
StAtE.CAItO L o e e e e e e e 28
state.fips 29
state.vbm L e 29
US.CILES .« . . v v v vt e e e e e e e e 30
USA . v v v e e e e e e e e e e e e e e e e e 31
world . . . L e 32
world.cities e 33
world2 . . . e 34

Index 36

area.map Area of projected map regions

Description

Computes the areas of regions in a projected map.

Usage
area.map(m, regions = ".", sgmi=TRUE, ...)
Arguments
m a map object containing named polygons (created with fill = TRUE).
regions a character vector naming one of more regions, as in map.
sgmi If TRUE, measure area in square miles. Otherwise keep the units of m.

additional arguments to match.map

area.map 3

Details

The area of each matching region in the map is computed, and regions which match the same ele-
ment of regions have their areas combined. Each region is assumed planar, with vertices specified
by the x and y components of the map object.

The correct use of this function is to first use map to create polygons and project the coordinates
onto a plane, then apply area.map to compute the area of the projected regions. If the projection
is area-preserving (such as albers), then these areas will match the area on the globe, up to a
constant. To get an absolute area in square miles, the sqmi option will scale the result, depending
on the projection.

The coordinates from map are affected by its resolution argument, so use resolution=0 for the
most accurate areas.

Value

a named vector of region areas.

NOTE

The sqmi option assumes the coordinates have been projected with the mapproject function.

Author(s)

Tom Minka

See Also

area.polygon, apply.polygon

Examples

because the projection is rectangular, these are not true areas on the globe.
m = map("state”, fill = TRUE, plot = FALSE)

area.map(m)

area.map(m, ".xdakota")

area.map(m, c(”North Dakota”, "South Dakota"))

if(require(mapproj)) {
true areas on the globe
m = map("state"”, proj="bonne"”, param=45, fill=TRUE, plot=FALSE)
North Dakota is listed as 70,704 square miles
area.map(m, "North Dakota")

}

4 county

canada.cities Database of Canadian cities

Description

This database is of Canadian cities of population greater than about 1,000. Also included are
province capitals of any population size.

Format

non non

A list with 6 components, namely "name", "country.etc”, "pop", "lat", "long", and "capital”, contain-
ing the city name, the province abbreviation, approximate population (as at January 2006), latitude,
longitude and capital status indication (0 for non-capital, 1 for capital, 2 for provincial

capital.

NOTE

Some of the city names may be out of date. Please send any corrections to the package maintainer.

See Also

map.cities

county United States County Map

Description

This database produces a map of the counties of the United States mainland generated from US
Department of the Census data (see the reference).

Usage

data(countyMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_LMAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

county.fips 5

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

US Department of Commerce, Census Bureau, County Boundary File, computer tape, available
from Customer Services, Bureau of the Census, Washingdon DC 20233.

See Also

map.

Examples

map('county', 'iowa', fill = TRUE, col = palette())

county.fips FIPS county codes for US County Map

Description

A database matching FIPS codes to maps package county and state names.

Usage

data(county.fips)

Format

A list with 2 components, namely "fips" and "polyname", containing the FIPS number and respec-
tive state or county polygon name. Note that "fips" is represented as an integer, so any leading zero
(which is part of the fips code) is not shown by default.

See Also

state.fips

6 france

france France Map

Description

This france database comes from the NUTS III (Tertiary Administrative Units of the European
Community) database of the United Nations Environment Programme (UNEP) GRID-Geneva data
sets. These were prepared around 1989, and so may be somewhat out of date.

Users of data sets supplied through UNEP/GRID are requested to incorporate in output products
and reports acknowledgements to the originator of the data and to the fact that they were acquired
through UNEP/GRID. Appropriate wording may be "UNESCO (1987) through UNEP/GRID-Geneva".

Usage

data(franceMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

Details

This map database can now easily be replaced by data taken directly from free sources, e.g. Natural
Earth (see example).

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

See Also

map

Examples

map('france', fill = TRUE, col = 1:10)

replace by a public domain map at higher resolution:

fr1 <- rnaturalearth::ne_states("france")

this still includes overseas domains, so we remove those:

france2 <- map(fri1, xlim=c(-20, 20), ylim=c(30, 60), lforce="e",
fill=TRUE, plot=FALSE)

identify.map 7

identify.map Identify regions on a map

Description

Identifies the map regions clicked by the user.

Usage
S3 method for class 'map'
identify(x, n = 1, index = FALSE, ...)
Arguments
X a map object containing named polygons.
n the number of clicks to wait for.
index If TRUE, returns the index of the polygon, rather than its name.

additional arguments passed to identify.default.

Details

The current algorithm is somewhat crude — selects the region whose centroid is closest to the click.
A more sophisticated approach would use map.where.

Value

a character vector of length n, naming the selected regions.

Author(s)

Tom Minka

See Also

identify, map.where

Examples

identify(map(”"state”, fill = TRUE, col = @))
if(require(mapproj))
identify(map("world”, proj = "lagrange”, fill = TRUE, col = @, wrap=c(-180,180,-90)))

8 iso.expand

iso.expand Identify countries by ISO 3166 codes (2 or 3 letters) or by Sovereignty.

Description

This data set and the simple look-up functions allow to build lists of counrtries for the world map.

Usage

iso.expand(a, regex=TRUE)
sov.expand(sov, regex=TRUE)
iso.alpha(x, n=2)

Arguments
a A vector of ISO codes. All elements should have the same length, either 2 or 3
letters. Not case sensitive.
sov A vector of country names. The result is a list of all countries that fall under
their sovereignty. Case sensitive, must fit completeley.
regex If TRUE (default), the return vector has the same length as the input (a or sov),
but the entries may be regular expressions. If FALSE, the result is a vector of
polygon names. This may be more readable, but the return vector may be longer
than the input.
X Vector of country names, may include colons.
n An integer identitying which ISO code is required. Allowed values are 2 and 3.
Details

The ISO 3166-1 standard identifies countries by a 2 and 3 letter codes. iso.expand translates
these codes into the country names as used by the world data base. iso.alpha does the reverse.
Some countries have different ISO codes for different regions (e.g. China:Hong Kong has ISO code
HK). In such cases, iso.alpha will return the main code, but iso.expand will return a regular
expression that excludes some parts.

Value

iso.expand returns vector of country names. When used as input for map it will plot all the coun-
tries as identified either by their sovereignty or by ISO codes. If regex=FALSE the length of the
vector may be shorter or longer than the input. If regex=TRUE, the results are concatenated in
regular expressions. This format is less readable, but can be used as input e.g. for match.map.
iso.alpha always returns a vector of the same length as the input, containing the 2- or 3-letter
codes.

NOTE

These functions use regular expressions and the results will often not work well withmap(. . . ,exact=TRUE).

is03166 9

References

https://en.wikipedia.org/wiki/IS0_3166-1_alpha-2

See Also

match.map,map. text,iso03166

Examples

France and all its overseas departments, territories etc.
sov.expand("France”) # France and all its overseas departments, territories etc.

Canary Islands are not included in map("”Spain”)
iso.expand("ES")
map (regions=sov.expand("Spain"))

draw a map with ISO codes as labels:

wm <- map("world”, fill=TRUE, col=0, xlim=c(-10,40), ylim=c(30,60))

take out islands, but you loose e.g. UK, New Zealand, small island states
nam <- grep(”:", wm$names, inv=TRUE, val=TRUE)

ad ISO codes as label

map.text(wm, regions=nam, label=iso.alpha(nam), col=2, exact=TRUE, add=TRUE)

is03166 ISO 3166 country codes (2 or 3 letters) and sovereignty.

Description

This data set lists all ISO3166 country codes and the sovereignty for each country in the list. Some
entries are regular expressions.

Format

non non

A data frame with 5 columns: "a2", "a3", "name", "mapname", "sovereignty". These contain the 2-
and 3-letter ISO code, the official name, the (possibly shorter) name used in the map data base, and
the sovereign country.

Details

The ISO 3166-1 standard identifies countries by a 2 and 3 letter codes. This table listst these for all
countries on the world map. This data set also serves as basis for the function iso.expand() and its
siblings.

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

10 italy

NOTE

Some countries have different ISO codes for some regions. To deal with such particular cases, the
"mapname" column may sometimes contain (perl-style) regular expressions rather than simply a
country name. For instance, "FI" has mapname "Finland(?!:Aland)", because the Aland islands
have a different ISO code. Other codes may appear in two rows if certain parts of countries are not
written with the main country as base name. Usually, that is for compatibility with the legacy world
data base.

References

https://en.wikipedia.org/wiki/IS0O_3166-1_alpha-2

See Also

iso.expand

italy Italy Map

Description

This italy database comes from the NUTS III (Tertiary Administrative Units of the European Com-
munity) database of the United Nations Environment Programme (UNEP) GRID-Geneva data sets.
These were prepared around 1989, and so may be somewhat out of date.

Users of data sets supplied through UNEP/GRID are requested to incorporate in output products
and reports acknowledgements to the originator of the data and to the fact that they were acquired
through UNEP/GRID. Appropriate wording may be "UNESCO (1987) through UNEP/GRID-Geneva".

Usage

data(italyMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

lakes 11

See Also

map

Examples

map('italy', fill = TRUE, col = 1:10)

lakes World lakes database

Description

This database contains a selection of large lakes (and islands within) taken from the Natural Earth
1:50m map, the same data source as the (v3.0) world map. The lake boundaries are consistent with
the world’ database.

Usage

data(lakesMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_LMAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

Source

The data in this data base is derived from the public domain GIS project Natural Earth, the file
"ne_50m_lakes". The Natural Earth data set is available from https://www.naturalearthdata.
com.

References

Natural Earth project https://www.naturalearthdata.com

See Also

map.

Examples

map('world")
map('lakes', add=TRUE, fill=TRUE, col='white', boundary='black')

https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com

12

map

map

Draw Geographical Maps

Description

Draw lines and polygons as specified by a map database.

Usage
map(database = "world”, regions = ".", exact = FALSE, boundary = TRUE,
interior = TRUE, projection = "", parameters = NULL, orientation = NULL,
fill = FALSE, col = 1, plot = TRUE, add = FALSE, namesonly = FALSE,

xlim = NULL, ylim = NULL, wrap = FALSE, resolution = if (plot) 1 else 0,
type = "1", bg = par("bg"), mar = c(4.1, 4.1, par("mar")[3], 0.1),

myborder =

Arguments

database

regions

exact

boundary

interior

0.01, namefield="name", 1force="n", ...)

character string naming a geographical database, a list of x, y, and names ob-
tained from a previous call to map or a spatial object of class SpatialPolygons
or Spatiallines. The string choices include a world map, three USA databases
(usa, state, county), and more (type help(package="maps") to see the pack-
age index). If the required database is in a different package that has not been
attached, the string may be started with "packagename::". The location of the
map databases may be overridden by setting the R_MAP_DATA_DIR environment
variable.

character vector that names the polygons to draw. Each database is composed of
a collection of polygons, and each polygon has a unique name. When a region
is composed of more than one polygon, the individual polygons have the name
of the region, followed by a colon and a qualifier, as in michigan:north and
michigan:south. Each element of regions is matched against the polygon
names in the database and, according to exact, a subset is selected for drawing.
The regions may also be defined using (perl) regular expressions. This makes
it possible to use 'negative’ expressions like "Norway (?!:Svalbard)”, which
means Norway and all islands except Svalbard. All entries are case insensitive.
The default selects all polygons in the database.

If TRUE, only exact matches with regions are selected for drawing. If FALSE,
each element of regions is matched as a regular expression against the polygon
names in the database and all matches are selected for drawing.

If FALSE, boundary segments are not drawn. A boundary segment is a line seg-
ment of the map that bounds only one of the polygons to be drawn. This argu-
ment is ignored if fill is TRUE.

If FALSE, interior segments are not drawn. An interior segment is a line segment
of the map that bounds two of the polygons to be drawn. This argument is
ignored if fill is TRUE.

map

projection

parameters

orientation

fill

col

plot

add

namesonly

xlim

ylim

wrap

13

character string that names a map projection to use. See mapproject (in the
mapproj library). The default is to use a rectangular projection with the aspect
ratio chosen so that longitude and latitude scales are equivalent at the center of
the picture.

numeric vector of parameters for use with the projection argument. This ar-
gument is optional only in the sense that certain projections do not require addi-
tional parameters. If a projection does require additional parameters, these must
be given in the parameters argument.

avector c(latitude, longitude, rotation) describing where the map should
be centered and a clockwise rotation (in degrees) about this center.

logical flag that says whether to draw lines or fill areas. If FALSE, the lines
bounding each region will be drawn (but only once, for interior lines). If TRUE,
each region will be filled using colors from the col = argument, and bounding
lines are drawn by default using par("fg"). To hide the bounding lines, use
border=NA (see ...).

vector of colors. If fill is FALSE, the first color is used for plotting all lines,
and any other colors are ignored. Otherwise, the colors are matched one-one
with the polygons that get selected by the region argument (and are reused
cyclically, if necessary). If fill = TRUE, the default boundary line colour is
given by par(”"fg"). To change this, you can use the border argument (see
’...7). A color of NA causes the corresponding region to be deleted from the list
of polygons to be drawn. Polygon colors are assigned after polygons are deleted
due to values of the x1im and ylim arguments.

logical flag that specifies whether plotting should be done. If plot is TRUE the
return value of map will not be printed automatically .

logical flag that specifies whether to add to the current plot. If FALSE, a new plot
is begun, and a new coordinate system is set up.

If TRUE, the return value will be a character vector of the names of the selected
polygons. See the Value section below.

two element numeric vector giving a range of longitudes, expressed in degrees,
to which drawing should be restricted. Longitude is measured in degrees east of
Greenwich, so that, in particular, locations in the USA have negative longitude.
If fill = TRUE, polygons selected by region must be entirely inside the x1im
range. The default value of this argument spans the entire longitude range of the
database.

two element numeric vector giving a range of latitudes, expressed in degrees,
to which drawing should be restricted. Latitude is measured in degrees north of
the equator, so that, in particular, locations in the USA have positive latitude.
If fill = TRUE, polygons selected by region must be entirely inside the ylim
range. The default value of this argument spans the entire latitude range of the
database.

Boolean or a numeric vector. If TRUE, lines that cross too far across the map
(due to a strange projection) are omitted. If wrap is a vector of length 2 or
more, it is interpreted as the longitude range to be used for a global map, e.g.
c(-180,180) or c(0,360). This wrapping even works when fill=TRUE and
is performed before any projection (so the range must always be in degrees).

14 map

However, the wrapping is performed after x1im, ylim are applied, so these op-
tions should probably never be combined. If there is a third component, this
signifies the latitude at which Antarctica will be "closed". The default value is
-89.9. Special values are NA (don’t draw Antarctica at all) and 0 (draw the line
at the latitude of the extremal points, not at a fixed lower latitude).

resolution number that specifies the resolution with which to draw the map. Resolution 0
is the full resolution of the database. Otherwise, just before polylines are plot-
ted they are thinned: roughly speaking, successive points on the polyline that
are within resolution device pixels of one another are collapsed to a single
point (see the Reference for further details). Thinning is not performed if plot
= FALSE or when polygons are drawn (fill = TRUE or database is a list of poly-
gons).

type character string that controls drawing of the map. Aside from the default type
="1", the value type = "n" can be used to set up the coordinate system and
projection for a map that will be added to in later calls.

bg background color.
mar margins, as in par. Defaults allow for map.axes().
myborder scalar or vector of length 2 specifying the porportion of the plot to add to the

defined or computed limits as borders.

namefield A vector of column names to be used as region name if database is a SpatialPolygonsDataFrame.
Ignored in all other cases.

1force Limit enforcement. Only taken into account if x1im and/or ylim are defined
and (for "s" and "1") a projection is used. Possible values are "n" (none) "e"
(exact),”s"” (small),"1" (large). If 1force="e", map data is restricted exactly
to the given limits prior to projection. This option affects the output value of
the map, not only the plot window. If 1force="s", the four corners defined
by x1im and ylim are projected and the plot window is restricted to the largest
rectangle inside this region. "1" will result in a larger rectangle that includes the
four corners. However, the parts that fall outside the original limits may not be
complete (only polygons that partially fall inside the boundaries are included).
This will also work with fi11=TRUE. In this case the output value of the data is
not changed, only the plot window is affected. These options are only useful for
some projections.

Extra arguments passed to polygon or lines. Of particular interest may be
the options border andlty that control the color and line type of the polygon
borders when fill = TRUE.

Details

The simplest form of use of this function is:

map (mymap)

where mymap is the returned value from a previous call to map ().

map 15

Value

If plot = TRUE, a plot is made where the polygons selected from database, through the regions,
x1im, and ylim arguments, are outlined (fill is FALSE) or filled (fill is TRUE) with the colors in
col.

The return value is a list with x, y, range, and names components. This object can be used as a
database for successive calls to map and functions. If fill is FALSE, the x and y vectors are the
coordinates of successive polylines, separated by NAs. If fill is TRUE, the x and y vectors have
coordinates of successive polygons, again separated by NAs. Thus the return value can be handed
directly to lines or polygon, as appropriate.

When namesonly is TRUE, only the names component is returned.

After a call to map for which the projection argument was specified there will be a global variable
.Last.projection containing information about the projection used. This will be consulted in
subsequent calls to map which use projection=""

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Re-
search Report [93.2], 1993. https://web.archive.org/web/20050825145143/http://www.
research.att.com/areas/stat/doc/93.2.ps

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Labo-
ratories Statistics Research Report [95.2], 1995. https://web.archive.org/web/20050825145143/
http://www.research.att.com/areas/stat/doc/95.2.ps

See Also

map.text, map.axes, map.scale, map.grid (in the mapproj library), polygon, SpatialPolygons2map

Examples

map() # low resolution map of the world

map(wrap = c(0,360), fill = TRUE, col = 2) # pacific-centered map of the world
map(wrap = c(@, 360, NA), fill = TRUE, col = 2) # idem, without Antarctica
map('usa') # national boundaries

map('county', 'new jersey') # county map of New Jersey
map('state', region = c('new york', 'new jersey', 'penn')) # map of three states
map("state”, ".xdakota”, myborder = @) # map of the dakotas
map.axes() # show the effect of myborder = @
if(require(mapproj))
map('state', proj = 'bonne', param = 45) # Bonne equal-area projection of states

names of the San Juan islands in Washington state
map('county', 'washington,san', names = TRUE, plot = FALSE)

national boundaries in one linetype, states in another
(figure 5 in the reference)

map("state”, interior = FALSE)

map("state”, boundary = FALSE, 1ty = 2, add = TRUE)

plot the ozone data on a base map

https://web.archive.org/web/20050825145143/http://www.research.att.com/areas/stat/doc/93.2.ps
https://web.archive.org/web/20050825145143/http://www.research.att.com/areas/stat/doc/93.2.ps
https://web.archive.org/web/20050825145143/http://www.research.att.com/areas/stat/doc/95.2.ps
https://web.archive.org/web/20050825145143/http://www.research.att.com/areas/stat/doc/95.2.ps

16 map.axes

(figure 4 in the reference)
data(ozone)
map("state”, xlim = range(ozone$x), ylim = range(ozone$y))
text(ozone$x, ozone$y, ozone$median)
box ()
if(require(mapproj)) { # mapproj is used for projection="polyconic"”
color US county map by 2009 unemployment rate
match counties to map using FIPS county codes
Based on J's solution to the "Choropleth Challenge”
http://blog.revolutionanalytics.com/2009/11/choropleth-challenge-result.html

load data

unemp includes data for some counties not on the "lower 48 states” county
map, such as those in Alaska, Hawaii, Puerto Rico, and some tiny Virginia
cities

data(unemp)

data(county.fips)

define color buckets

colors = c("#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B@", "#DD1C77", "#980043")
unemp$colorBuckets <- as.numeric(cut(unemp$unemp, c(@, 2, 4, 6, 8, 10, 100)))
leg.txt <- c("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%")

align data with map definitions by (partial) matching state,county

names, which include multiple polygons for some counties

cnty.fips <- county.fips$fips[match(map(”county”, plot=FALSE)$names,
county.fips$polyname)]

colorsmatched <- unemp$colorBuckets [match(cnty.fips, unemp$fips)]

draw map

map("”county”, col = colors[colorsmatched], fill = TRUE, resolution
1ty = @, projection = "polyconic")

map("state”, col = "white"”, fill = FALSE, add = TRUE, 1ty =1, 1lwd = 0.2,
projection="polyconic")

title("unemployment by county, 2009")

legend("topright”, leg.txt, horiz = TRUE, fill = colors)

1
(S

Choropleth Challenge example, based on J's solution, see:
http://blog.revolutionanalytics.com/2009/11/choropleth-challenge-result.html
To see the faint county boundaries, use RGui menu: File/SaveAs/PDF

map.axes Draw Axes on Geographical Maps

Description

Draws a set of axes on an existing map.

map.cities 17

Usage

map.axes(...)

Arguments

Extra arguments passed to axis or box.

Side Effects

x- and y-axes are drawn for the currently displayed map. These will display in longitude and latitude
(if no projection= has been specified in the map() call).

Examples

map("state")
map.axes(cex.axis=0.8)

map.cities Add Cities to Existing Map

Description

Adds city locations and (optionally) names to an existing map using a specified database.

Usage
map.cities(x = world.cities, country = "", label = NULL, minpop = 0,
maxpop = Inf, capitals = @, cex = par(”cex"), projection = FALSE,
parameters = NULL, orientation = NULL, pch =1, ...)
Arguments
X Name of database. See world.cities to determine the structure of the database.
country If the string country is specified, limit the displayed cities to be from within the
specified country, province or state (depending on how the database has been
constructed).
label If TRUE, label all cities. If NULL, the cities will be labelled unless there are 20 or
more.
minpop The minimum value of population below which a particular city will not be
shown.
maxpop The maximum value of population above which a particular city will not be
shown.
capitals Selection of capitals-only display. Capitals may be 1 (country capital), 2 (provin-
cial, state, or regional capital) or 3 (local capital). See world. cities for further
information.

cex The value of cex acts to override the current value of character size expansion.

18 map.cities

projection Boolean or character value. If FALSE (the default), no projection is assumed, if
TRUE, the previous projection is used, otherwise a character string that names a
map projection to use. See mapproject (in the mapproj library).

parameters numeric vector of parameters for use with the projection argument. This ar-
gument is optional only in the sense that certain projections do not require addi-
tional parameters. If a projection does require additional parameters, these must
be given in the parameters argument.

orientation avector c(latitude, longitude, rotation) describing where the map should
be centered and a clockwise rotation (in degrees) about this center.

pch plotting character to use for marking city location. See points for options.

Further plotting parameters may be specified as for the commands points and
text.

Details

The database is searched for all cities matching the specified criteria and fitting within the limits of
the plot currently displayed. The default database is of all cities that have a population greater than
a certain threshold or which are capital cities of a country or island territory. The threshold varies
from country to country, but in general is no higher than about 40,000. The data were originally
obtained from Stefan Helders” website (http://www.world-gazetteer.com), which no longer exists.
There are no recent updates available.

There are three supplied databases, world.cities (the default), us.cities and canada.cities. The latter
two, which need to be made available by using a 'data() ' call, include the state or province name
with the city name (thanks to John Woodruff <jpwoodruff@irisinternet.net> for the state and
province information).

Note that if the underlying map is "Pacific-centric", i.e. longitudes exceed 180 degrees, and a
projection is used, then the map.cities data must be transformed appropriately.
Value

No value is returned from map.cities.

Side Effects

All cities within the boundaries of the plot containing the current map are added to the plot. Note
that it is possible that the boundaries of the plot exceed the boundaries of the map requested, and so
more cities than were expected might be shown.

See Also

world.cities, canada.cities, us.cities

Examples

map("world”, "China")

map.cities(country = "China"”, capitals = 2)
map("state”, "New Jersey")

data(us.cities)

map.cities(us.cities, country="NJ")

map.scale 19

map.scale Add Scale to Existing Unprojected Map

Description

Adds a scale to an existing map, both as a ratio and a distance gauge.

Usage
map.scale(x, y, relwidth = 0.15, metric = TRUE, ratio = TRUE, ...)
Arguments
X Horizontal location of left end of distance gauge. If not specified, this will be
taken to be near the lower left corner of the map.
y Vertical location of left end of distance gauge. If not specified, this will be taken
to be near the lower left corner of the map.
relwidth Proportion of width of display to be used for the scale. The default is 0.15
(15%).
metric If TRUE, the distance gauge will be in km, otherwise miles.
ratio If FALSE, the scale ratio of the map is not displayed.
Further plotting parameters may be specified as for the command text().
Details

The scale is calculated from the displayed graph’s plotting parameters, and the latitude of the loca-
tion at which the distance gauge will be displayed.

Value

The exact calculated scale is returned.

NOTE

This function is meaningful only if no projection= has been specified in the call to map().

Side Effects

A scale is added to the currently displayed map. This takes the form of an approximate 1:n scale
(containing 2-3 significant digits), above a distance gauge which is reasonably accurate for the
latitude at which it appears. The circumference at the given latitude is interpolated from a radius of
6356.78 km at the pole and 6378.16 km at the equator.

See Also

map.axes

20 map.text

Examples

map("world", "China")
map.scale()

map.text Draw a map with labeled regions

Description

Like map, but labels the regions.

Usage
map.text(database, regions = ".", exact = FALSE, labels, cex = 0.75,
add = FALSE, move = FALSE, ...)
Arguments
database character string naming a geographical database, or a list of x, y, and names
obtained from a previous call to map.
regions character vector that names the polygons to draw.
exact If "'TRUE’, only exact matches with 'regions’ are selected for drawing.
labels character vector of labels, one for each region selected. Defaults to the names in
the database.
cex character expansion factor.
add If FALSE, a map is drawn, then labels placed on top. If TRUE, labels are added to
the existing map.
move If TRUE, labels are moved so that they don’t overlap. Requires the mining library
(not in CRAN, contact tpminka@media.mit.edu).
Other arguments are the same as in map.
Value

If add = FALSE, a map is drawn by calling map. Then the label for each region is placed at the
centroid of the region polygon.

The return value is a map object, as from map.

Author(s)
Tom Minka
Examples
map.text("world”, "ira") # iran and iraq
map.text("state”, "penn")
map.text("county”, "penn"”) # Pennsylvania counties

map.text("county”, "new jersey”) # New Jersey counties

map.where 21

map.where Locate points on a map

Description

Returns the region names containing given locations.

Usage
map.where(database = "world”, x, y, ...)
Arguments
database character string naming a geographical database, or a list of x, y, and names.
See the documentation for map for more details.
X vector of longitudes.
y vector of latitudes.
Options for SpatialPolygons2map, only used if database is of type SpatialPolygonsDataF rame
Value

A list of character strings, naming the map region that each (longitude, latitude) pair falls into.

Note

For points close to a border (polygon boundary), the result may be wrong if the resolution of the
database is insufficient. This function may also give erroneous results if the database contains
enclaves. For instance, a point in San Marino may also be identified as being in Italy.

Author(s)
Tom Minka

See Also

in.polygon

Examples

NYC

map.where("state”, -73.8, 41)

Auckland

map.where("nz", 174.6, -36.92)

find both in the world

map.where(x = c(174.6, -73.8), y = c(-36.92, 41))

with a map object:

m = map("state”, "new york"”, fill = TRUE, plot = FALSE)
map.where(m, -73.8, 41)

22 match.map

match.map Index map regions

Description

Assigns an index to each map region, useful for map coloring.

Usage

match.map(database, regions, exact = FALSE, warn = TRUE)

Arguments
database character string naming a geographical database, or a map object. See the doc-
umentation for map for more details.
regions a vector of names, or more generally regular expressions to match against the
map region names.
exact If TRUE, only exact matches with regions are considered. Otherwise each el-
ement of regions is assumed to be a regular expression. Matches are always
case-insensitive.
warn If TRUE, a warning is printed when an element of regions matches nothing in
the map.
Value

Returns an integer vector giving an index to each region in the database. The index is the index of the
string in regions which matches the region name. Matching is done as in map. More specifically,
all regions r whose name matches regions[i] will have index i. Unmatched regions will have
index NA. Overlapping matches cause an error.

This behavior differs from pmatch because a single entry in regions may match several entries in
the map.

Author(s)

Tom Minka

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report, 1991.

See Also

grep

nz 23

Examples

filled map showing Republican vote in 1900

(figure 6 in the reference)

data(state, package = "datasets")

data(votes.repub)

state.to.map <- match.map(”state"”, state.name)

x <- votes.repub[state.to.map, "1900"]

gray.colors <- function(n) gray(rev(@:(n - 1))/n)

color <- gray.colors(100)[floor(x)]

map("state”, fill = TRUE, col = color); map("state”, add = TRUE)

nz New Zealand Basic Map

Description

"s

This database produce a map of New Zealand at a basic level of detail. The ‘"nz"’ database includes

the 3 main Islands and 19 smaller coastal islands.

Usage

data(nzMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

See Also

map

Examples

map('nz")
map('nz', xlim = c(166, 179), ylim = c(-48, -34))

24 smooth.map

ozone Sample datasets

Description

Datasets used to illustrate map functions.

ozone contains the median of daily maxima ozone concentration in 41 US cities for June 1974
through August 1974. Concentrations are in parts per billion (ppb).

unemp Has population and unemployment percentage for US counties.

votes. repub contains the percentage republican votes in the 1900 election.

Usage

data(ozone)
data(unemp)
data(votes.repub)

References

Cleveland, W.S., Kleiner, B., McRae, J.E., Warner, J.L., and Pasceri, P.E. , "The Analysis of
Ground-Level Ozone Data from New Jersey, New York, Connecticut, and Massachusetts: Data

Quality Assessment and Temporal and Geographical Properties", Bell Laboratories Memorandum,
1975.

smooth.map Smooth out aggregated data

Description
Increases the resolution of data aggregated over map regions, by either smoothing or interpolation.
Also fills in missing values.

Usage

smooth.map(m, z, res = 50, span = 1/10, averages = FALSE, type = c("smooth"”,
"interp"), merge = FALSE)

Arguments
m a map object
z a named vector
res a vector of length two, specifying the resolution of the sampling grid in each

dimension. If a single number, it is taken as the vertical resolution, with double
taken as the horizontal resolution.

smooth.map 25

span kernel parameter (larger = smoother). span = Inf is a special case which invokes
the cubic spline kernel. span is automatically scaled by the map size, and is
independent of res.

averages If TRUE, the values in z are interpreted as averages over the regions. Otherwise
they are interpreted as totals.

type see details.

merge If TRUE, a region named in z includes all matching regions in the map (according

to match.map). If FALSE, a region named in z is assumed to refer to exactly one
region on the map.

Details

For type = "smooth”, the region totals are first converted into point measurements on the sampling
grid, by dividing the total for a region among all sample points inside it. Then it is a regular kernel
smoothing problem. Note that the region totals are not preserved.

The prediction z, for location x,, (a vector) is the average of z for nearby sample points:

>y B, 20)2(2)
Zo = TE————
? Zx k(l’, SUO)
k(z, 20) = exp(=Allz — o)
A is determined from span. Note that z, is over the same sampling grid as x, but z,, is not necessarily
the same as z(z,).

For type = "interp”, the region totals are preserved by the higher-resolution function. The func-
tion is assumed to come from a Gaussian process with kernel k. The measurement z[r] is assumed
to be the sum of the function over the discrete sample points inside region r. This leads to a simple
formula for the covariance matrix of z and the cross-covariance between zo and z. The prediction is
the cross-covariance times the inverse covariance times z. Unlike Tobler’s method, the predictions
are not constrained to live within the original data range, so there tends to be "ringing" effects.

See the references for more details.

Value
A data frame with columns x, y, and z giving the smoothed value z for locations (X, y). Currently
the (x, y) values form a grid, but this is not guaranteed in the future.

Author(s)
Tom Minka

References

W.F. Eddy and A. Mockus. An example of the estimation and display of a smoothly varying function
of time and space - the incidence of disease mumps. Journal of the American Society for Informa-
tion Science, 45(9):686-693, 1994. https://web.eecs.utk.edu/~audris/papers/jasis.pdf

W. R. Tobler. Smooth pycnophylactic interpolation for geographical regions. Journal of the Ameri-
can Statistical Association 74:519-530, 1979.

https://web.eecs.utk.edu/~audris/papers/jasis.pdf

26 Spatial2map

Examples

compare to the example for match.map

data(state, package = "datasets")

data(votes.repub)

z = votes.repub[, "1900"]

m = map("state”, fill = TRUE, plot = FALSE)

use a small span to fill in, but not smooth, the data

increase the resolution to get better results

fit = smooth.map(m, z, span = 1/100, merge = TRUE, ave = TRUE)
mat = tapply(fit$z, fit[1:2], mean)

gray.colors <- function(n) gray(rev(@:(n - 1))/n)

par(bg = "blue")

filled.contour(mat, color.palette = gray.colors, nlev = 32, asp = 1)
another way to visualize:

image(mat, col = gray.colors(100))

for a higher degree of smoothing:

fit = smooth.map(m, z, merge = TRUE, ave = TRUE)

interpolation, state averages are preserved:

fit = smooth.map(m, z, merge = TRUE, ave = TRUE, type = "interp")

Spatial2map Read sf, SpatialPolygons and SpatialLines objects

Description

These functions transform some classes provided by the packages sp and sf into a simple list that
can be used by map().

Usage

SpatialPolygons2map(database, namefield=NULL)
SpatiallLines2map(database, namefield=NULL)
sf2map(database, namefield="name")

Arguments
database A SpatialPolygons, SpatiallLines or sf object.
namefield The name of a data column in database to be used for naming the polygons (or
lines). If it is a vector of names, these are all used and separated by a colon ’:’.
Not case sensitive. So if the database contains columns that only differ by case,
you get a warning and namefield is not used at all.
Details

The *map’ list object only preserves co-ordinates and polygon names. All other information avail-
able in the original data is lost. For instance, plotting order for enclaves may be wrong, resulting in
invisible polygons when setting fi11=TRUE.

state 27

The option namefield is only taken into account if database is class Spatial[JDataFrame.
namefield may be a vector of column names, e.g. to get polygons named as ’country:state’.

Value

A list with four components: x, y, names, range, similar to the return value of map(). This data
can be used as a database for map (). The lines and polygons are separated by NA.

See Also

map,SpatialPolygons (in the sp library).

state United States State Boundaries Map

Description

This database produces a map of the states of the United States mainland generated from US De-
partment of the Census data (see the reference).

Usage

data(stateMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

US Department of Commerce, Census Bureau, County Boundary File, computer tape, available
from Customer Services, Bureau of the Census, Washingdon DC 20233.

See Also

map.

Examples

map('state', fill = TRUE, col = palette())

28 state.carto

state.carto United States State Population Cartogram Map

Description

This database produces a cartogram of the states of the United States mainland based on CartoDraw,
roughly proportional to population (see references).

state.carto.center are coordinates of the state centers for annotation purposes.

Usage

data(stateMapEnv)
data(state.carto.center)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

CartoDraw, http://www.computer.org/csdl/trans/tg/2004/01/v0095-abs.html

See Also

map.

Examples

map('state.carto', fill = TRUE, col = palette())

http://www.computer.org/csdl/trans/tg/2004/01/v0095-abs.html

state.fips 29

state.fips FIPS state codes for US 48 State Map

Description

A database matching FIPS codes to maps package state names.

Usage

data(state.fips)

Format

non non

A list with 6 components, namely "fips", "ssa", "region", "division", "abb" and "polyname", con-
taining the US Census Bureau FIPS, SSA, REGION and DIVISION numbers, the standard state
abbreviation and the respective state polygon name. Note that "fips" is represented as an integer, so
any leading zero (which is part of the fips code) is not shown by default.

See Also

county.fips

state.vbm United States State Visibility Base Map

Description

This database produces a map of the states of the United States mainland. The Visibility Base Map
was created by Mark Monmonier to provide simplified state shapes with sufficient areas to allow
annotations in even the small states.

state.vbm.center are coordinates of the state centers for annotation purposes. The states are
alphabetically ordered, in the same order as the map. So state names can be matched via e.g.
map(state.vbm, plot=FALSE)$name.

Usage

data(state.vbmMapEnv)
data(state.vbm.center)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

30 us.cities

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

Mark Monmonier and George Schnell, "The Study of Population", Elements, Patterns, Processes.
Charles E. Merrill. Columbus, OH. 1982.

See Also

map.

Examples

map('state.vbm', fill = TRUE, col = palette())

us.cities Database of US cities

Description

This database is of us cities of population greater than about 40,000. Also included are state capitals
of any population size.

Format

non non

A list with 6 components, namely "name", "country.etc”, "pop", "lat", "long", and "capital", con-
taining the city name, the state abbreviation, approximate population (as at January 2006), latitude,
longitude and capital status indication (0 for non-capital, 1 for capital, 2 for state capital.

NOTE

Some of the city names may be out of date. Please send any corrections to the package maintainer.

See Also

map.cities

usa 31

usa United States Coast Map

Description

This database produces a map of the United States mainland generated from US Department of the
Census data (see the reference).

Usage

data(usaMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR for the datasets in the maps package) is set at package load time if it does
not already exist. Hence setting the environment variable before loading the package can override
the default location of the binary datasets.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

US Department of Commerce, Census Bureau, County Boundary File, computer tape, available
from Customer Services, Bureau of the Census, Washingdon DC 20233.

See Also

map.

Examples

map('usa')

32 world

world Low (mid) resolution World Map

Description

This world map (updated in 2013) is imported from the public domain Natural Earth project (the
1:50m resolution version). It replaces a much older version based on the CIA World Data Bank II
data. The old legacy data is still available in the package mapdata (v2.3.0).

Usage

data(worldMapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR_WORLD) is set at package load time if it does not already exist. Hence
setting the environment variable before loading the package can override the default location of the
binary datasets.

Details

As of version 3.1, the world database no longer contains any lakes. These have been moved to
a separate database called lakes. The legacy world map (dating from around 1990) has been re-
moved from the package and is now available from the mapdata package in two different resolutions
(worldHires and worldLores).

Source

The Natural Earth data set is in the public domain and available from https://www.naturalearthdata.
com.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

See Also

map,lakes

https://www.naturalearthdata.com
https://www.naturalearthdata.com

world.cities 33

Examples

notice how some polygons extend beyond the [-180,180] interval:
map('world', fill = TRUE, col = 1:10)

if you wrap at [-180,180], you also can get a clean closure of Antarctica
map('world', fill = TRUE, col = 1:10, wrap=c(-180,180))

world.cities Database of world cities

Description

This database is primarily of world cities of population greater than about 40,000. Also included
are capital cities of any population size, and many smaller towns.

Usage

data(world.cities)

Format

non non

A list with 6 components, namely "name", "country.etc", "pop", "lat", "long", and "capital", con-
taining the city name, the country name, approximate population (as at January 2006), latitude,
longitude and capital status indication (0 for non-capital, 1 for capital, 2 for China Municipalities,
and 3 for China Provincial capitals)

NOTE
Some of the country names and city names may be out of date. Please send any corrections to the
package maintainer.

Source
The data were originally obtained from Stefan Helders’ website (http://www.world-gazetteer.com),
which no longer exists. There are no recent updates available.

See Also

map.cities

34 world2

world2 Pacific Centric Low resolution World Map

Description

This is an alternative version of the world database based on latitudes [0, 360), which then has the
Pacific Ocean in the centre of the map.

Usage

data(world2MapEnv)

Format

The data file is merely a character string which specifies the name of an environment variable which
contains the base location of the binary files used by the map drawing functions. This environment
variable (R_MAP_DATA_DIR_WORLD for the datasets in the maps package) is set at package load time
if it does not already exist. Hence setting the environment variable before loading the package can
override the default location of the binary datasets.

NOTE

This data set is in fact largely obsolete. Often the same (more general) result can be obtained by
using wrapping:

map("world", wrap=c(0,360))
This will also work fine with fi11=TRUE or any other appropriate longitude interval (e.g. c(-99,270)).

However, world2 is useful when setting x1im to an interval crossing the 180 meridian.

Source

The public domain Natural Earth data set is available from https: //www.naturalearthdata.com.

References

Richard A. Becker, and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistics Research
Report [93.2], 1993.

Richard A. Becker, and Allan R. Wilks, "Constructing a Geographical Database", AT&T Bell Lab-
oratories Statistics Research Report [95.2], 1995.

See Also

map, world

https://www.naturalearthdata.com

world2

Examples

map('world2', xlim = c(100, 300))

map.axes()

xlim is performed before wrapping:

map('world', wrap=c(0,360), xlim = c(100, 300))

so to emulate "world2":

ww2 <- map('world', wrap=c(0,360), plot=FALSE, fill=TRUE)
map(ww2, xlim = c(100, 300), fill=TRUE)

35

Index

* datasets france, 6
canada.cities, 4 franceMapEnv (france), 6
county, 4
county.fips, 5 grep, 22
france, 6
1503166, 9 identify, 7
italy, 10 identify.default, 7
lakes, 11 identify.map, 7
nz. 23 iso.alpha (iso.expand), 8
oz;ne,24 iso.expand, 8, 10
state. 27 is03166, 9,9

’ italy, 10

state.carto, 28

state. fips, 29 italyMapEnv (italy), 10

state.vbm, 29 lakes, 11, 32
us.cities, 30 lakesMapEnv (lakes), 11
usa, 31
world, 32 map, 2, 3,5, 6, 11,12, 20-23, 27, 28, 30-32, 34
world.cities, 33 map.axes, 15, 16, 19
world2, 34 map.cities, 4, 17, 30, 33
* dplot map.grid, 15
area.map, 2 map.scale, 15, 19
match.map, 22 map.text, 9, 15, 20
smooth.map, 24 map.where, 7, 21
* hplot mapproject, 3, 13, 18
map, 12 match.map, 2, 9, 22, 25
map.axes, 16
map.cities, 17 nz, 23
map.scale, 19 nzMapEnv (nz), 23
map. text, 20
« iplot ozone, 24
identify.map, 7 par, 14
map.where, 21 pmatch, 22
points, I8
area.map, 2 polygon, 15
canada.cities, 4, I8 sf2map (Spatial2map), 26
county, 4, 12 smooth.map, 24
county. fips, 5, 29 sov.expand (iso.expand), 8
countyMapEnv (county), 4 Spatial2map, 26

36

INDEX 37

SpatiallLines2map (Spatial2map), 26
SpatialPolygons, 27
SpatialPolygons2map, 15
SpatialPolygons2map (Spatial2map), 26
state, 12,27

state.carto, 28

state.cartoMapEnv (state.carto), 28
state.fips, 5, 29

state.vbm, 29

state.vbmMapEnv (state.vbm), 29
stateMapEnv (state), 27

text, I8

unemp (ozone), 24
us.cities, /8, 30
usa, 12, 31
usaMapEnv (usa), 31

votes.repub (ozone), 24

world, 12,32, 34
world.cities, 17, 18, 33
world2, 34

world2MapEnv (world2), 34
worldMapEnv (world), 32

	area.map
	canada.cities
	county
	county.fips
	france
	identify.map
	iso.expand
	iso3166
	italy
	lakes
	map
	map.axes
	map.cities
	map.scale
	map.text
	map.where
	match.map
	nz
	ozone
	smooth.map
	Spatial2map
	state
	state.carto
	state.fips
	state.vbm
	us.cities
	usa
	world
	world.cities
	world2
	Index

