Package ‘loon’

June 19, 2025
Type Package

Title Interactive Statistical Data Visualization
Version 1.4.3
Date 2025-06-18

URL https://great-northern-diver.github.io/loon/
Description An extendable toolkit for interactive data visualization and exploration.
License GPL-2
Depends R (>= 3.5.0), methods, tcltk
Imports tools, graphics, grDevices, utils, stats, gridExtra
Suggests maps, sp, graph, scagnostics, PairViz, RColorBrewer,
loon.data, rworldmap, mgcev, rgl, Rgraphviz, RDRToolbox,
kernlab, scales, MASS, testthat, knitr, rmarkdown, png,
formatR, covr
BugReports https://github.com/great-northern-diver/loon/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
VignetteBuilder knitr
NeedsCompilation no

Author Adrian Waddell [aut],
R. Wayne Oldford [aut, cre, ths],
Zehao Xu [ctb],
Martin Gauch [ctb]

Maintainer R. Wayne Oldford <rwoldford@uwaterloo.ca>
Repository CRAN
Date/Publication 2025-06-19 18:30:08 UTC

https://great-northern-diver.github.io/loon/
https://github.com/great-northern-diver/loon/issues

2 Contents

Contents
as.grapho 8
asdoongraph 9
as_grid_Size 9
as_hex6color e, 10
char2num.data.frame e e 11
color_loon e 12
complement e e e e e e e e e 13
complement.loongraph oL Lo 13
completegraph L. e e 14
condGrob e 15
facet_grid_layout 15
facet_separate_layout e e 17
facet_wrap_layout. e 18
get_display_color 20
get_font_info_from_tk Lo 20
get_layer_states L. e e e 21
get_model_display_order 22
glyph_to_pch 22
graphreduce L e 23
griddoon L e e e 24
hex12tohex6 e e e e e e 25
L2 distance e 25
linegraph L e 26
linegraph.loongraph 27
loon e e 28
loonGlyphGrob e 29
loongraph e e e 29
loonGrob e e e e e 30
loonGroblnstantiation e e e e e e 35
loonGrob_layoutType L 37
loon_palette 38
Lafter_idle e 38
Laspect e 39
Laspect<- e e e e e e e 39
I_basePaths e 40
LbinCut e e e e e e 41
Lbind canvas e s 42
1 bind_canvas_delete e 43
Lbind_canvas_get. e 44
Lbind_canvas_ids e 45
I_bind_canvas_reorder e e e 46
Ibind_context e e e e e e e 46
I_bind_context_delete e 47
Ibind_context_get e e 48
L bind_context_ids e 48

1_bind_context_reorder e e 49

Contents

3
Lbind_glyph e 50
I bind_glyph delete 50
Lbind_glyph_get 51
Lbind_glyph_ids 52
I_bind_glyph_reorder 52
Lbind_item e e 53
I bind_item_delete 54
Lbind_item_get e e e 54
Lbind_item_ids e e 55
I bind_item_reorder e 56
Ibind_layer e e e e e 56
I_bind_layer_delete 57
Lbind_layer_get e e 58
Lbind_layer_ids e 58
I_bind_layer_reorder e 59
Ibind_navigator e e 60
I_bind_navigator_delete 60
I_bind_navigator_get e e 61
I_bind_navigator_ids 62
I_bind_navigator_reorder 62
Lbind_state e 63
I_bind_state_delete e e e 64
Ibind_state_get e e 64
Lbind_state ids e 65
I_bind_state_reorder e e e 66
I_breaks e e e e e 66
Lcget . . o e 67
LcolorName e 68
I_colRemoveAlpha 69
ILcompoundPaths L 70
Leonfigure e 70
l_context_add_context2d e 71
I_context_add_geodesic2d 72
I_context_add_slicing2d 72
Lcontext_delete e e 73
I_context_getLabel 74
Lcontext idS L e 75
I_context_relabel e 75
LcopyStates e e e e e e e e 76
I_createCompoundGrob L 78
L create_handle e 79
LeurrentindeX e e e e 80
Lcurrenttags e e e e e e 81
Ldata e s 82
Lexport 82
Iexport_valid_formats 83
Lfacet e 83

LgetBinData 86

Contents

LgetBinlds e 87
LgetColorList e 88
LgetFromPath 88
LgetGraph e 89
I_getLinkedStates 90
Lgetlocations. e e 90
LgetOption e e 91
L_getOptionNames ittt e e e e e e e 92
LgetPlots e e 92
I_getSavedStates e 93
LgetScaledData 95
I_get_arrangeGrobArgs e 96
L glyphs_inspector 97
I_glyphs_inspector_image e 98
I_glyphs_inspector_pointrange o it e e e e 98
1 glyphs_inspector_serialaxes o 99
Lglyphs_inspector_text e 100
Lglyph_add e 101
I_glyph_add.default 102
Lglyph_add_image 103
I_glyph_add_pointrange e 104
I_glyph_add_polygon 105
I_glyph_add_serialaxes 107
Lglyph_add_text e 108
ILglyph_delete. e e 109
Lglyph_getlabel e 109
Lglyph_getType o . . e 110
Lglyph_ids e 110
Iglyph_relabel e 111
Lgraph e 112
Lgraphswitch 113
I_graphswitch_add 114
I_graphswitch_add.default 114
I_graphswitch_add.graph 115
I_graphswitch_add.loongraph L oo 116
I_graphswitch_delete 117
I_graphswitch_get. 117
I_graphswitch_getlLabelo 118
I_graphswitch_ids e 118
I_graphswitch_move 119
I_graphswitch_relabel 119
I_graphswitch_reorder 120
I_graphswitch_set 120
Lgraph_inspector 121
I_graph_inspector_analysis oo 121
I_graph_inspector_navigators e e e 122
Lhelp o e 123

L hexcolor e 123

Contents

5
Lhist . . e 124
Lhist_inspector L e 128
Lhist_inspector_analysis 129
Limageviewer e e e e 130
Limage_import_array e e e e e e e e e e e e e 130
Limage_import_files L 131
Linfo_states e e 132
LisLoonWidget e e 133
Llayer e e 133
Llayerdensity 136
Llayer.Line e 137
Llayerines. o o e e e 138
Llayermap e 139
Llayer.Polygon 140
I_layer.Polygons. e 141
I layer.SpatialLines L 142
I_layer.SpatialLinesDataFrame 143
I_layer.SpatialPoints e 145
I_layer.SpatialPointsDataFrame 146
I_layer.SpatialPolygons 147
I_layer.SpatialPolygonsDataFrame 148
Llayers_inspector e e e e e e e 149
Llayer_bbox e 150
I_layer_contourLines e 151
Ilayer_delete e e 152
Ilayer_demote e e 153
Llayer_expunge e e e e 154
Ilayer_getChildren e 155
Ilayer_getlLabel e 156
Ilayer_getParent 157
Llayer_getType o o o o o e 157
Llayer_group e e e e e e 158
I layer_groupVisibility L 159
Llayer_heatlmage e 160
Llayer_hide e 162
Llayer_ids. o o e e 163
Llayer_index e e 164
Ilayer_isVisible 165
I_layer_layerVisibility e 166
Llayer_line o e 167
Llayer_lines o . 168
Llayer_lower e 170
Llayer_move e e e e 171
Llayer_oval e 172
Llayer_points e e 173
Ilayer_polygon e e 174
L layer_polygons 176

Llayer_printTree e 178

Contents

Ilayer_promote e e e e e e e 179
Llayer_raise 180
Ilayer_rasterImage L 181
Ilayer_rectangle 182
Ilayer_rectangles e e 184
Ilayer_relabel 185
Llayer_show e 186
ILlayer_smooth e 187
Llayer_text e e e e 190
Llayer texts o e e 192
LloonWidgets e 193
Lloon_inspector e e e e e e 194
Lmake glyphs 195
Lmove_grid 199
I_move_halign 200
LLmove_hdist e 201
Lmove_jitter e e e e 202
LMOVE_TESEL . . . o o o o o e e e e e e 203
LLmove_valign. 204
Lmove vdist 205
Lnavgraph e 206
Inavigator_add 207
Inavigator_delete 208
Inavigator_getLabel 208
I_navigator_getPath 209
Lnavigator_ids 209
Lnavigator_relabel 210
I_navigator_walk_backward 210
I_navigator_walk_forward 211
I_navigator_walk_path 211
L nDimStateNames e e 212
I_nestedTclList2RIist e 212
Lng plots e 213
Lng plots.default 214
Lng plots.measures e e e e e 215
I_ng_plots.scagnostiCs e e e 217
Lng ranges e e 218
Ing_ranges.default 218
[_Ng_ranges.measures v vt e e e e e e e e e e e e e e e 220
l_ng ranges.scagnostiCs i i i e e e e e e e e e e e 221
Lpairs o e 222
Lplot . . e e 224
Lplot3D e e e 230
Lplot_arguments e e 235
Lplotinspector o e e e 238
I_plot_inspector_analysis e 239
Lplot ts . . . o o e e 239

Lpredict e 241

Contents

7
LprimitiveGlyphs e 243
Lredraw e e e e e e e 244
LIesize e 244
L Rlist2nestedTclList o e e e e 245
IsaveStates e e e e e e e e e e e e 246
Iscale3D e 248
Lscaleto_active e e 250
Iscaleto_layer e e 250
Lscaleto_plot e 251
I scaleto_selected 251
Lscaleto_world e 252
I_serialaxes e e e e e e e e e e e e e e e 252
Lserialaxes_inSpector e e 257
LSEtASPECt o o e e 258
LsetColorList e e 259
I_setColorList_baseR e 261
I_setColorList_ColorBrewer e 261
I_setColorList_ggplot2 e 262
I_setColorList_hcl. e e 262
I_setColorList_loon 263
LsetLinkedStates e e e 263
LsetOption e e e e e 264
LsetTitleFont e 265
LSIZE . . e 266
LSIZE<- . . e e e 266
Lstate_names e 267
Lsubwin s, 268
I_throwErrorlfNotLoonWidget o 268
Ltoplevel e 269
LtoR . . e 270
LuserOptionDefault L 271
LuserOptions e e e e e e e e e e 271
Lweb . . e e 272
Lwidget e 273
Lworldview e e 273
1_zoom e e e e e e e 274
measuresld e 275
measures2d L e e e e e e 276
MINOTILY o o o e e e e e e e e e e e e e e e e e e 277
names.Joon e e e 278
ndtransitiongraph L e 278
OliVe e e e e e 279
oliveAcids e e e e 280
oliveLocations e 281
plotloon 281
plotloongraph e e e 282
printl layer 283

print.measuresld L 283

8 as.graph
print.measures2d L. e e e e e 284
scagnostics2d . . . L. L 284
telimg 2 T raster e e e e e e e e e 285
tkeolors L L 286
UsAndThem e 287

Index 288

as.graph Convert a loongraph object to an object of class graph

Description

Loon’s native graph class is fairly basic. The graph package (on bioconductor) provides a more
powerful alternative to create and work with graphs. Also, many other graph theoretic algorithms
such as the complement function and some graph layout and visualization methods are implemented
for the graph objects in the RBGL and Rgraphviz R packages. For more information on packages
that are useful to work with graphs see the gRaphical Models in R CRAN Task View at https:
//cran.r-project.org/web/views/.

Usage

as.graph(loongraph)

Arguments

loongraph object of class loongraph

Details

See https://www.bioconductor.org/packages/release/bioc/html/graph.html for more in-
formation about the graph R package.

Value

graph object of class loongraph

Examples

if (requireNamespace("graph”, quietly = TRUE)) {
g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)
g1 <- as.graph(g)

}

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://www.bioconductor.org/packages/release/bioc/html/graph.html

as.loongraph 9

as.loongraph Convert a graph object to a loongraph object

Description
Sometimes it is simpler to work with objects of class loongraph than to work with object of class
graph.

Usage

as.loongraph(graph)

Arguments

graph object of class graph (defined in the graph library)

Details

See https://www.bioconductor.org/packages/release/bioc/html/graph.html for more in-
formation about the graph R package.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities"”)

Value

graph object of class loongraph

Examples

if (requireNamespace("graph”, quietly = TRUE)) {
graph_graph = graph::randomEGraph(LETTERS[1:15], edges=100)
loon_graph <- as.loongraph(graph_graph)

}

as_grid_size Turn a loon size to a grid size

Description

The size of loon is determined by pixel (px), while, in grid graphics, the size is determined by
pointsize (pt)

https://www.bioconductor.org/packages/release/bioc/html/graph.html

10

Usage

as_grid_size(
size,

as_hex6color

type = c("points”, "texts”, "images"”, "radial”, "parallel”, "polygon"”, "lines"),

adjust =1,

Arguments
size

type

adjust

input loon size

non non: non

glyph type; one of "points", "texts", "images", "radial", "parallel", "polygon",
"lines".

a pixel (px) at 96DPI (dots per inch) is equal to 0.75 point. However, for different
machines, the DPI is slightly different. Argument adjust is used to twist the
size. IT IS A HACK and should be removed in the later version.

some arguments used to specify the size, e.g. pch for "points", ratio for "im-
age" and p for "parallel”.

as_hex6color

Return a 6 hexidecimal digit color representations

Description

Return a 6 hexidecimal digit color representations

Usage

as_hex6color(color)

Arguments

color

Details

input color

Compared with hex12tohex6(), it could accommodate 6 digit code, 12 digit code or real color

names.

See Also

1_hexcolor, hex12tohex6, 1_colorName

char2num.data.frame 11

Examples

color <- c("#FFQQFF", "#999999999999", "red")
return 12 hexidecimal digit color
loon:::1_hexcolor(color)

return 6 hexidecimal digit color
as_hex6color(color)

return color names

1_colorName(color)

Not run: # WRONG COLORS
hex12tohex6(color)
End(Not run)

char2num.data. frame A Character Data Frame to a Numerical Data Frame

Description
Turn a data frame of characters to a data frame of numerical values. If the character cannot be
converted to numerical in direct, it will be turned to factor first, then to numerical data

Usage

char2num.data. frame(chardataframe)

Arguments

chardataframe A char data frame

Examples
data <- data.frame(x = c("1", "2", "3"),
y = c("foo"”, "bar", "foo"),
z = 4:6)
ERROR
data + 1

numData <- char2num.data.frame(data)
numData + 1

if(interactive()) {
s <- 1_serialaxes(iris)
data <- s["data"]
it is a character data frame
datal1,1]
numData <- char2num.data.frame(data)
numDatal1,1]

12 color_loon

color_loon Create a palette with loon’s color mapping

Description

Used to map nominal data to colors. By default these colors are chosen so that the categories can
be well differentiated visually (e.g. to highlight the different groups)

Usage

color_loon()

Details

This is the function that loon uses by default to map values to colors. Loon’s mapping algorithm is
as follows:

1. if all values already represent valid Tk colors (see tkcolors) then those colors are taken

2. if the number of distinct values is less than the number of values in loon’s color mapping list
then they get mapped according to the color list, see 1_setColorList and 1_getColorList.

3. if there are more distinct values than there are colors in loon’s color mapping list then loon’s
own color mapping algorithm is used. See loon_palette and the details section in the docu-
mentation of 1_setColorList.

For other mappings see the col_numeric and col_factor functions from the scales package.

Value

A function that takes a vector with values and maps them to a vector of 6 digit hexadecimal encoded
color representation (strings). Note that loon uses internally 12 digit hexadecimal encoded color
values. If all the values that get passed to the function are valid color names in Tcl then those colors
get returned hexencoded. Otherwise, if there is one or more elements that is not a valid color name
it uses the loons default color mapping algorithm.

See Also

1_setColorList, 1_getColorList, loon_palette, 1_hexcolor, 1_colorName, as_hex6color

Examples

pal <- color_loon()
pal(letters[1:4])
pal(c('a’,'a','b","'c"))
pal(c('green', 'yellow'))

show color choices for different n's
if (requireNamespace("grid”, quietly = TRUE)) {
grid::grid.newpage()

complement

grid: :pushViewport(grid: :plotViewport())
grid::grid.rect()
n <- c(2,4,8,16, 21)
beyond this, colors are generated algorithmically
generating a warning
grid: :pushViewport(grid: :dataViewport(xscale=c(@, max(n)+1),
yscale=c(@, length(n)+1)))
grid::grid.yaxis(at=c(1:1length(n)), label=paste("n =", n))
for (i in rev(seg_along(n))) {
cols <- pal(1:n[i])
grid::grid.points(x = 1:n[i], y = rep(i, n[il),
default.units = "native”, pch=15,
gp=grid: :gpar(col=cols))
}
grid::grid.text("note the first i colors are shared for each n”,
y = grid::unit(1,"npc") + grid::unit(1, "line"))

complement Create the Complement Graph of a Graph

Description

Creates a complement graph of a graph

Usage

complement (x)

Arguments

X graph or loongraph object

Value

graph object

complement.loongraph Create the Complement Graph of a loon Graph

Description

Creates a complement graph of a graph

14 completegraph

Usage
S3 method for class 'loongraph'
complement (x)

Arguments

X loongraph object

Details

This method is currently only implemented for undirected graphs.

Value

graph object of class loongraph

completegraph Create a complete graph or digraph with a set of nodes

Description

From Wikipedia: "a complete graph is a simple undirected graph in which every pair of distinct
vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair
of distinct vertices is connected by a pair of unique edges (one in each direction

Usage
completegraph(nodes, isDirected = FALSE)

Arguments
nodes a character vector with node names, each element defines a node hence the ele-
ments need to be unique
isDirected a boolean scalar to indicate wheter the returned object is a complete graph (undi-
rected) or a complete digraph (directed).
Details

Note that this function masks the completegraph function of the graph package. Hence it is a good
idead to specify the package namespace with ::, i.e. loon::completegraph and graph::completegraph.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

Value

graph object of class loongraph

Examples

g <- loon::completegraph(letters[1:5])

condGrob 15

condGrob Create a named grob or a template grob depending on a test

Description

Creates and returns a grid object using the function given by ‘grobFun‘ when ‘test® is “TRUE’
Otherwise a simple ‘grob()* is produced with the same parameters. All grob parameters are given

33

in ‘.5
Usage
condGrob(test = TRUE, grobFun = grid::grob, name = "grob name", ...)
Arguments
test Either ‘TRUE or ‘FALSE" to indicate whether ‘grobFun‘ is to be used (default
‘TRUE®) or not.
grobFun The function to be used to create the grob when ‘test = TRUE® (e.g. ‘textGrob®,
‘polygonGrob°, etc.).
name The name to be used for the returned grob.
The arguments to be given to the ‘grobFun‘ (or to ‘grob()‘ when ‘test = FALSE"®).
Value

A grob as produced by either the ‘grobFun‘ given or by ‘grob()* using the remaining arguments. If
‘test = FALSE‘ then the name is suffixed by ": ‘grobFun name* arguments".

Examples

myGrob <- condGrob(test = (runif(1) > 0.5),
grobFun = textGrob,

name = "my label”,
label = "Some random text")
myGrob
facet_grid_layout Layout as a grid
Description

Layout as a grid

16

Usage

facet_grid_layout

facet_grid_layout(

plots,

subtitles,
by = NULL,
prop = 10,

parent = NULL,

title = "",

xlabel = "",
ylabel = "",

labellocation = c("top"”, "right"),

byrow = FALSE,

swapAxes = FALSE,

labelBackground = 1_getOption("facetlLabelBackground"”),
labelForeground = 1_getOption("foreground”),
labelBorderwidth = 2,

labelRelief = "ridge",

plotWidth = 200,

plotHeight
sep = II*H’

200,

maxCharInOneRow = 10,
new.toplevel = TRUE,

Arguments

plots
subtitles

by
prop

parent

title
xlabel
ylabel

labellLocation

byrow

A list of 1oon plots

The subtitles of the layout. It is a list and the length is equal to the number of by
variables. Each element in a list is the unique values of such by variable.

an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the plots separated by

The proportion of the label height and widget height

a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

The title of the widget
The xlabel of the widget
The ylabel of the widget
Labels location.

* Length two vector for layout grid. The first one is used to determine the
position of column labels (top’ or ’bottom’). The second one is used to
determine the position of row labels (’right’ or ’left’).

» Length one vector for layout wrap, 'top’ or "bottom’.

Place widget by row or by column

facet_separate_layout 17

swapAxes swap axes, TRUE or FALSE
labelBackground

Label background color
labelForeground

Label foreground color
labelBorderwidth

Label border width
labelRelief Label relief
plotWidth default plot width (in pixel)
plotHeight default plot height (in pixel)
sep The character string to separate or combine a vector
maxCharInOneRow

deprecated

new.toplevel determine whether the parent is a new top level. If it is not a new window, the
widgets will not be packed

named arguments to modify plot states. See 1_info_states of any instantiated
1_plot for examples of names and values.

facet_separate_layout layout separately

Description

layout separately

Usage

facet_separate_layout(
plots,
subtitles,
title = "",
xlabel = ""
ylabel = "",
sep = "x",
maxCharInOneRow = 10,

Arguments
plots A list of 1loon plots
subtitles The subtitles of the layout. It is a list and the length is equal to the number of by

variables. Each element in a list is the unique values of such by variable.

title The title of the widget

18 facet_wrap_layout

xlabel The xlabel of the widget
ylabel The ylabel of the widget
sep The character string to separate or combine a vector
maxCharInOneRow
deprecated

named arguments to modify plot states. See 1_info_states of any instantiated
1_plot for examples of names and values.

facet_wrap_layout Layout as a wrap

Description

Layout as a wrap

Usage

facet_wrap_layout(
plots,
subtitles,
prop = 10,
parent = NULL,
title = "",
xlabel = "",
ylabel = "",
nrow = NULL,
ncol = NULL,
labellocation = "top",
byrow = TRUE,
swapAxes = FALSE,
labelBackground = 1_getOption("facetlLabelBackground"”),
labelForeground = 1_getOption("foreground”),
labelBorderwidth = 2,
labelRelief = "ridge",
plotWidth = 200,
plotHeight = 200,
sep = "x",
maxCharInOneRow = 10,
new.toplevel = TRUE,

facet_wrap_layout 19

Arguments

plots A list of 1oon plots

subtitles The subtitles of the layout. It is a list and the length is equal to the number of by
variables. Each element in a list is the unique values of such by variable.

prop The proportion of the label height and widget height

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

title The title of the widget

xlabel The xlabel of the widget

ylabel The ylabel of the widget

nrow The number of layout rows

ncol The number of layout columns

labellLocation Labels location.

* Length two vector for layout grid. The first one is used to determine the
position of column labels ("top’ or "bottom’). The second one is used to
determine the position of row labels (right’ or ’left’).

* Length one vector for layout wrap, 'top’ or “bottom’.
byrow Place widget by row or by column

swapAxes swap axes, TRUE or FALSE
labelBackground

Label background color
labelForeground

Label foreground color
labelBorderwidth

Label border width

labelRelief Label relief

plotWidth default plot width (in pixel)
plotHeight default plot height (in pixel)
sep The character string to separate or combine a vector
maxCharInOneRow
deprecated

new.toplevel determine whether the parent is a new top level. If it is not a new window, the
widgets will not be packed

named arguments to modify plot states. See 1_info_states of any instantiated
1_plot for examples of names and values.

20 get_font_info_from_tk

get_display_color Return the Displayed Color

Description

Always reflect the current displayed color.

Usage

get_display_color(color, selected)

Arguments
color the loon widget color
selected the selected states
Details

In loon, each element (i.e. point, bin, line) has a "temporary" color and a "permanent” color. If one
element is selected, the color is switched to the "temporary" color to highlight it. If the selection
state is eliminated, the "permanent" color of this element will be displayed. Our function always
gives the "temporary" displayed color.

Value

The color shown on the plot

Examples

if(interactive()) {
p <- 1_plot(1:10)
p['selected'][c(1,3,5)] <- TRUE

displayedColor <- get_display_color(p['color'], p['selected'])
plot(1:10, bg = as_hex6color(displayedColor), pch = 21)
3

get_font_info_from_tk Return Font Information

Description

Return Font Information

Usage

get_font_info_from_tk(tkFont)

get_layer_states 21

Arguments
tkFont A specified tk font character, one of 1_getOption("font-scales”), 1l _getOption("font-title"),
1_getOption("font-xlabel”), 1_getOption("font-ylabel"”)
Value

A list of font information, containing font "family", font "face" and font "size"

Examples

fontscales <- 1_getOption("font-scales")
get_font_info_from_tk(fontscales)

get_layer_states Get Layer States

Description

Return the input widget states

Usage

get_layer_states(target, native_unit = TRUE, omit = NULL)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
native_unit return numerical vectors or unit objects
omit deprecated
Details

get layer states

Examples

if(interactive()){

p <- 1l_plot(x = c(0,1), y = c(0,1))

1 <- 1_layer_rectangle(p, x = ¢c(0,0.5), y = c(@, 0.5))
the coordinates are in “unit”

get_layer_states(p)

the coordinates are numerical

get_layer_states(p, native_unit = FALSE)

get “1_layer™ state

get_layer_states(l)

}

22 glyph_to_pch

get_model_display_order
Get the Order of the Display

Description

In loon, if points (in scatter plot) or lines (in parallel or radial coordinate) are highlighted, the
displayed order will be changed. This function always reflects the current displayed order

Usage

get_model_display_order(widget)

Arguments

widget An1_plot or 1_serialaxes widget

Examples

if(interactive()) {
p <- 1_plot(rnorm(10))
get_model_display_order(p)
p['selected']1[c(1,3,5,7)]1 <- TRUE
The 1st, 3rd, 5th, 7th points will be drawn afterwards
to make sure that they are displayed on top
get_model_display_order(p)

glyph_to_pch Glyph to Pch

Description

turn a loon point glyph to an R graphics plotting ’character’ (pch)

Usage

glyph_to_pch(glyph)

Arguments

non non non non

glyph glyph type in loon, must be "circle", "ocircle", "ccircle", "square", "osquare",

non non non

"csquare”, "triangle", "otriangle", "ctriangle", "diamond", "cdiamond", "odia-
mond". If the input glyph is not valid, NA is returned.

graphreduce 23
Value
a pch type
Examples
glyph_to_pch(c("circle”, "ocircle”, "ccircle”,
"square", "osquare"”, "csquare”,
"triangle"”, "otriangle"”, "ctriangle",
"diamond”, "cdiamond”, "odiamond",
II_FOOII))
graphreduce Make each space in a node apprear only once
Description

Reduce a graph to have unique node names

Usage

graphreduce(graph, separator)

Arguments

graph graph of class loongraph

separator one character that separates the spaces in node names
Details

Note this is a string based operation. Node names must not contain the separator character!

Value

graph object of class loongraph

Examples

G <- completegraph(nodes=LETTERS[1:4])
LG <- linegraph(G)

LLG <- linegraph(LG)

R_LLG <- graphreduce(LLG)

24 grid.loon

grid.loon Create and optionally draw a grid grob from a loon widget handle

Description

Create and optionally draw a grid grob from a loon widget handle

Usage

grid.loon(target, name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
name a character identifier for the grob, or NULL. Used to find the grob on the display
list and/or as a child of another grob.
gp a gpar object, or NULL, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.
draw a logical value indicating whether graphics output should be produced.
vp a grid viewport object (or NULL).
Value

a grid grob of the loon plot

See Also

loonGrob, plot.loon

Examples

Not run:

library(grid)

widget <- with(iris, 1_plot(Sepal.Length, Sepal.Width))
grid.loon(widget)

End(Not run)

hex12tohex6 25

hex12tohex6 Convert 12 hexadecimal digit color representations to 6 hexidecimal
digit color representations

Description

Tk colors must be in 6 hexadecimal format with two hexadecimal digits for each of the red, green,
and blue components. Twelve hexadecimal digit colors have 4 hexadecimal digits for each. This
function converts the 12 digit format to the 6 provided the color is preserved.

Usage

hex12tohex6(x)

Arguments

X a vector with 12 digit hexcolors

Details

Function throws a warning if the conversion loses information. The 1_hexcolor function converts
any Tcl color specification to a 12 digit hexadecimal color representation.

Examples
x <- 1_hexcolor(c("red”, "green”, "blue”, "orange"))
X
hex12tohex6(x)
L2_distance Euclidean distance between two vectors, or between column vectors
of two matrices.
Description

Quickly calculates and returns the Euclidean distances between m vectors in one set and n vectors
in another. Each set of vectors is given as the columns of a matrix.

Usage

L2_distance(a, b, df = @)

26 linegraph

Arguments
a A d by m numeric matrix giving the first set of m vectors of dimension d as the
columns of a.
b A d by n numeric matrix giving the second set of n vectors of dimension d as
the columns of b.
df Indicator whether to force the diagonals of the returned matrix to be zero (df =
1) or not (the default df = 0).
Details

This fully vectorized (VERY FAST!) function computes the Euclidean distance between two vectors
by:

IA-BII = sqrt (IAII*2 + 1IBII*2 - 2*A.B)
Originally written as L2_distance.m for Matlab by Roland Bunschoten of the University of Ams-

terdam, Netherlands.
Value

An m by n matrix containing the Euclidean distances between the column vectors of the matrix a
and the column vectors of the matrix b.

Author(s)
Roland Bunschoten (original), Adrian Waddell, Wayne Oldford

See Also

dist

Examples

A <- matrix(rnorm(400), nrow = 10)

B <- matrix(rnorm(800), nrow = 10)

L2_distance(A[,1, drop = FALSE], B[,1, drop = FALSE])

d_AB <- L2_distance(A,B)

d_BB <- L2_distance(B,B, df = 1) # force diagonal to be zero

linegraph Create a linegraph

Description

The line graph of G, here denoted L(G), is the graph whose nodes correspond to the edges of G
and whose edges correspond to nodes of G such that nodes of L(G) are joined if and only if the
corresponding edges of G are adjacent in G.

linegraph.loongraph

Usage
linegraph(x, ...)
Arguments
X graph of class graph or loongraph
arguments passed on to method
Value
graph object

27

linegraph.loongraph Create a linegraph of a graph

Description

Create a lingraph of a loongraph

Usage
S3 method for class 'loongraph'
linegraph(x, separator = ":", ...)
Arguments
X loongraph object
separator one character - node names in x get concatenated with this character

additional arguments are not used for this methiod

Details

linegraph.loongraph needs the code part for directed graphs (i.e. isDirected=TRUE)

Value

graph object of class loongraph

Examples

g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)

linegraph(g)

28 loon

loon loon: A Toolkit for Interactive Data Visualization and Exploration

Description

Loon is a toolkit for highly interactive data visualization. Interactions with plots are provided with
mouse and keyboard gestures as well as via command line control and with inspectors that provide
graphical user interfaces (GUIs) for modifying and overseeing plots.

Details

Currently, loon implements the following statistical graphs: histogram, scatterplot, serialaxes plot
(star glyphs, parallel coordinates) and a graph display for creating navigation graphs.

Some of the implemented scatterplot features, for example, are zooming, panning, selection and
moving of points, dynamic linking of plots, layering of visual information such as maps and re-
gression lines, custom point glyphs (images, text, star glyphs), and event bindings. Event bindings
provide hooks to evaluate custom code at specific plot state changes or mouse and keyboard inter-
actions. Hence, event bindings can be used to add to or modify the default behavior of the plot
widgets.

Loon’s capabilities are very useful for statistical analysis tasks such as interactive exploratory data
analysis, sensitivity analysis, animation, teaching, and creating new graphical user interfaces.

To get started using loon read the package vignettes or visit the loon website at https://great-northern-diver.
github.io/loon/.

Author(s)

Maintainer: R. Wayne Oldford <rwoldford@uwaterloo.ca> [thesis advisor]

Authors:
¢ Adrian Waddell <adrian@waddell.ch>
Other contributors:

e Zehao Xu <z267xu@uwaterloo.ca> [contributor]

e Martin Gauch <martin.gauch@student.kit.edu> [contributor]

See Also
Useful links:

e https://great-northern-diver.github.io/loon/
* Report bugs at https://github.com/great-northern-diver/loon/issues

https://great-northern-diver.github.io/loon/
https://great-northern-diver.github.io/loon/
https://great-northern-diver.github.io/loon/
https://github.com/great-northern-diver/loon/issues

loonGlyphGrob 29

loonGlyphGrob Create a grob glyph from a loon widget

Description

A generic function used by loonGrob specialized for particular loon widgets. Used to construct
the various point symbol types of the plot. Different S3 methods are implemented for various loon
point glyphs.

Usage

loonGlyphGrob(widget, x, glyph_info)

Arguments
widget the loon widget.
X argument used to dispatch the method — an empty structure of class equal to that
returned by 1_glyph_getType.
glyph_info anamed list of pertinent components of the glyph including its x and y locations
in the plot as well as other information relevant to the particular glyph.
Value
A grob for that glyph.
See Also
loonGrob
loongraph Create a graph object of class loongraph
Description

The loongraph class provides a simple alternative to the graph class to create common graphs that
are useful for use as navigation graphs.

Usage

loongraph(nodes, from = character(@), to = character(@), isDirected = FALSE)

30 loonGrob

Arguments
nodes a character vector with node names, each element defines a node hence the ele-
ments need to be unique
from a character vector with node names, each element defines an edge
to a character vector with node names, each element defines an edge
isDirected boolean scalar, defines whether from and to define directed edges
Details

loongraph objects can be converted to graph objects (i.e. objects of class graph which is defined in
the graph package) with the as.graph function.

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

Value

graph object of class loongraph

See Also

completegraph, linegraph, complement, as.graph

Examples

g <- loongraph(
nodes = c("A", "B", "C", "D"),
f‘rom = C(HA”, IIAM, 1IBII’ IIBII, ”C"),
to c("g", "c", "Cc", "D", "D")
)

Not run:
create a loon graph plot
p <- 1l_graph(g)

End(Not run)

lg <- linegraph(g)

loonGrob Create a grid grob from a loon widget handle

Description

Grid grobs are useful to create publication quality graphics.

loonGrob 31
Usage
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_compound'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_layer_graph'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_layer_histogram'
loonGrob(target, name = NULL, gp = NULL, vp

NULL)

S3 method for class 'l_layer_scatterplot'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_navgraph'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_navigator'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_serialaxes'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

S3 method for class 'l_ts'
loonGrob(target, name = NULL, gp = NULL, vp = NULL)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
name a character identifier for the grob, or NULL. Used to find the grob on the display
list and/or as a child of another grob.
gp a gpar object, or NULL, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.
vp a grid viewport object (or NULL).
Value
a grid grob
See Also

grid.loon

32 loonGrob

Examples

Not run:
widget <- with(iris, 1_plot(Sepal.Length, Sepal.Width))

lgrob <- loonGrob(widget)

library(grid)
grid.1ls(lgrob, viewports=TRUE, fullNames=TRUE)
grid.newpage(); grid.draw(lgrob)

p <- demo("1l_layers"”, ask = FALSE)$value

lgrob <- loonGrob(p)
grid.newpage(); grid.draw(lgrob)

p <- demo("l_glyph_sizes”, ask = FALSE)$value

lgrob <- loonGrob(p)
grid.newpage()
grid.draw(lgrob)

End(Not run)

Not run:

library(grid)
1_pairs (scatterplot matrix) examples

p <- 1l_pairs(iris[,-5], color=iris$Species)

lgrob <- loonGrob(p)
grid.newpage()
grid.draw(lgrob)

Time series decomposition examples

decompose <- decompose(co2)
or decompose <- stl(co2, "per")
p <- 1_plot(decompose, title = "Atmospheric carbon dioxide over Mauna Loa")

To print directly use either
plot(p)

or

grid.loon(p)

or to save structure

lgrob <- loonGrob(p)
grid.newpage()
grid.draw(lgrob)

End(Not run)

loonGrob 33

Not run:
graph examples

G <- completegraph(names(iris[,-51))
LG <- linegraph(G)
g <- 1_graph(LG)

nav@d <- 1_navigator_add(g)
1_configure(nave, label = @)
con@ <- 1_context_add_geodesic2d(navigator=nav@, data=iris[,-5])

navl <- 1_navigator_add(g, from = "Sepal.Length:Petal.Width",

to = "Petal.Length:Petal.Width", proportion = 0.6)
1_configure(navl, label = 1)
conl <- 1_context_add_geodesic2d(navigator=navl, data=iris[,-5])

nav2 <- 1l_navigator_add(g, from = "Sepal.Length:Petal.Length”,
to = "Sepal.Width:Petal.Length”, proportion = 0.5)

1_configure(nav2, label = 2)

con2 <- 1_context_add_geodesic2d(navigator=nav2, data=iris[,-5])

To print directly use either

plot(g)

or

grid.loon(g)

or to save structure

library(grid)

lgrob <- loonGrob(g)

grid.newpage(); grid.draw(lgrob)

End(Not run)

Not run:

histogram examples

h <- 1_hist(iris$Sepal.Length, color=iris$Species)
g <- loonGrob(h)

library(grid)
grid.newpage(); grid.draw(g)

h['showStackedColors'] <- TRUE

g <- loonGrob(h)

grid.newpage(); grid.draw(g)

h['colorStackingOrder'] <- c("selected”, unique(h['color']))

g <- loonGrob(h)

34

grid.newpage(); grid.draw(g)
h['colorStackingOrder'] <- rev(h['colorStackingOrder'])

To print directly use either
plot(h)

or

grid.loon(h)

End(Not run)
if(interactive()) {
1_plot scatterplot examples

p <- 1_plot(x = c(0,1), y = c(0,1))
1_layer_rectangle(p, x = c(0,1), y = c(0,1))

g <- loonGrob(p)

library(grid)
grid.newpage(); grid.draw(g)

p['glyph'] <- "ctriangle"
p['color'] <- "blue”

p['size'] <- c(10, 20)
p['selected'] <- c(TRUE, FALSE)
g <- loonGrob(p)
grid.newpage(); grid.draw(g)

3

Not run:
navgraph examples

ng <- 1l_navgraph(oliveAcids, separator='-', color=olive$Area)

To print directly use either
plot(ng)

or

grid.loon(ng)

or to save structure

lgrob <- loonGrob(ng)
library(grid)

grid.newpage()
grid.draw(lgrob)

End(Not run)

Serial axes (radial and parallel coordinate) examples

if(interactive()) {
s <- 1_serialaxes(data=oliveAcids, color=olive$Area, title="olive data")
sGrob_radial <- loonGrob(s)

loonGrob

loonGroblnstantiation

library(grid)
grid.newpage()

; grid.draw(sGrob_radial)

s['axesLayout'] <- 'parallel'
sGrob_parallel <- loonGrob(s)

grid.newpage()

Not run:

; grid.draw(sGrob_parallel)

Time series decomposition examples

decompose <- decompose(co2)
or decompose <- stl(co2, "per")
p <- 1_plot(decompose, title = "Atmospheric carbon dioxide over Mauna Loa")

To print directly use either

plot(p)
or
grid.loon(p)

or to save structure
lgrob <- loonGrob(p)

grid.newpage()
grid.draw(lgrob)

End(Not run)

35

loonGrobInstantiation Instantiate a Grob

Description

Functions used to instantiate grob descriptions appearing in the gTree produced by loonGrob().

Usage
1_updateGrob(grobDesc, grobFun, ...)
1_instantiateGrob(loonGrob, gPath, grobFun, ...)

1_setGrobPlotView(loonGrob, margins)

Arguments

grobDesc

grobFun

loonGrob

A grob description. Generally, it is created by the function grob().
A new grob function. If missing, a best guess (based on gPath) will be tried.
arguments used to set in the new grob function

A loonGrob (a gTree object)

36 loonGroblnstantiation

gPath A grob path object specifing a descendant of the specified gTree
margins plot view margins. If missing, a loon default margin will be used.
Details

* 1_updateGrob: query arguments from a grob description and assign these arguments to a new
grob function.

e 1_instantiateGrob: query a descendant from a LoonGrob, update it via a new grob function,
then return the new editted loonGrob

See Also

loonGrob

Examples

library(grid)
grobDesc <- grob(label = "loon",
gp = gpar(col = "red"))
grid.newpage()
Nothing is displayed
grid.draw(grobDesc)
textDesc <- 1_updateGrob(grobDesc, grid::textGrob)
grid.newpage()
label "loon" is shown
grid.draw(textDesc)

if(interactive()) {

a loon plot with hidden labels

p <- 1_plot(iris, showLabels = FALSE)
lg <- loonGrob(p)

x label and y label are invisible
grid.newpage()

grid.draw(lg)

show x label

lg <- 1_instantiateGrob(lg, "x label: textGrob arguments”)
show y label

lg <- 1_instantiateGrob(lg, "y label: textGrob arguments")
reset margins

lg <- 1_setGrobPlotView(1lg)

grid.newpage()

grid.draw(lg)

show axes
if (packageVersion("loon") < '1.3.8"') {
lg <- 1l_instantiateGrob(lg, "x axis: .xaxisGrob arguments")
lg <- 1l_instantiateGrob(lg, "y axis: .yaxisGrob arguments"”)
} else {
lg <- 1l_instantiateGrob(lg, "x axis: xaxisGrob arguments")
lg <- 1l_instantiateGrob(lg, "y axis: yaxisGrob arguments”)

}

loonGrob_layoutType 37

lg <- 1_setGrobPlotView(lg)
grid.newpage()

the labels are too close to the plot
grid.draw(lg)

reset the labels' positions

lg <- 1_instantiateGrob(lg, "x label: textGrob arguments”,
y = unit(-3.5, "lines"))

lg <- 1_instantiateGrob(lg, "y label: textGrob arguments”,
X = unit(-6.5, "lines"))

grid.newpage()

grid.draw(lg)

3

loonGrob_layoutType A generic function used to distinguish whether only the locations of
plots will be used to arrange them in a grob, or whether all arguments
to ‘gridExtra::arrangeGrob()‘ will be used.

Description

A generic function used to distinguish whether only the locations of plots will be used to arrange
them in a grob, or whether all arguments to ‘gridExtra::arrangeGrob()‘ will be used.

Usage

loonGrob_layoutType(target)

Arguments

target the (compound) loon plot to be laid out.

Value

either the string "locations" (the default) or the string "arrangeGrobArgs". If "locations", then
the generic function ‘1_getLocations()* will be called and only the location arguments of ‘gridEx-
tra::arrangeGrob () used (i.e. a subset of ‘c("ncol", "nrow", "layout_matrix", "heights", "widths")*).
The grobs to be laid out are constructed using the generic function ‘1_getPlots()‘.

38 1 _after_idle

loon_palette Loon’s color generator for creating color palettes

Description

Loon has a color sequence generator implemented creates a color palettes where the first m colors
of a color palette of size m+1 are the same as the colors in a color palette of size m, for all positive
natural numbers m. See the details in the 1_setColorList documentation.

Usage

loon_palette(n)

Arguments

n number of different colors in the palette

Value

vector with hex-encoded color values

See Also

1_setColorList

Examples

loon_palette(12)

1_after_idle Evaluate a function on once the processor is idle

Description

It is possible for an observer to call the configure method of that plot while the plot is still in the
configuration pipeline. In this case, a warning is thrown as unwanted side effects can happen if
the next observer in line gets an outdated notification. In this case, it is recommended to use the
I_after_idle function that evaluates some code once the processor is idle.

Usage
1_after_idle(fun)

Arguments

fun function to be evaluated once tcl interpreter is idle

I_aspect 39

1_aspect Query the aspect ratio of a plot

Description
The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_aspect(widget)

Arguments

widget widget path as a string or as an object handle

Value

aspect ratio

Examples

Not run:
p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_aspect(p) <- 1

End(Not run)

1_aspect<- Set the aspect ratio of a plot

Description
The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_aspect(widget) <- value

Arguments

widget widget path as a string or as an object handle

value aspect ratio

40 1 basePaths

Details

Changing the aspect ratio with 1_aspect<- changes effectively the zoomY state to obtain the desired
aspect ratio. Note that the aspect ratio in loon depends on the plot width, plot height and the
states zoomX, zoomY, deltaX, deltaY and swapAxes. Hence, the aspect aspect ratio can not be set
permanently for a loon plot.

Examples

Not run:
p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_aspect(p) <- 1

End(Not run)

1_basePaths Get the set of basic path types for loon plots.

Description

Loon’s plots are constructed in TCL and identified with a path string appearing in the window
containing the plot. The path string begins with a unique identifier for the plot and ends with a
suffix describing the type of loon plot being displayed.

The path identifying the plot is the string concatenation of both the identifier and the type.

This function returns the set of the base (non-compound) loon path types.

Usage

1_basePaths()

Value

character vector of the base path types.

See Also

1_compoundPaths 1_getFromPath 1_loonWidgets

1 binCut 41

1_binCut Get labels for each observation according to bin cuts in the histogram.

Description

1_binCut divides 1_hist widget x into current histogram intervals and codes values x according
to which interval they fall (if active). It is modelled on cut in base package.

Usage

1_binCut(widget, labels, digits = 2, inactive)

Arguments
widget A loon histogram widget.
labels Labels to identify which bin observations are in. By default, labels are con-
structed using "(a,b]" interval notation. If 1labels = FALSE, simple integer codes
given by the histogram’s bin number are returned instead of a factor. The labels
can also be any vector of length equal to the number of bins; these will be used
to construct a vector identifying the bins.
digits The number of digits used in formatting the breaks for default labels.
inactive The value to use for inactive observations when labels is a vector. Default de-
pends on labels.
Value

A vector of bin identifiers having length equal to the total number of observations in the histogram.
The type of vector depends on the 1abels argument. For default 1abels = NULL, a factor is returned,
for labels = FALSE, a vector of bin numbers, and for arbitrary vector labels a vector of bins
labelled in order of labels will be returned. Inactive cases appear in no bin and so are assigned the
value of active when given. The default active value also depends on labels: when labels =
NULL, the default active is "(-Inf, Inf)"; when labels = FALSE, the default active is -1; and
when labels is a vector of length equal to the number of bins, the default active is NA. The value
of active denotes the bin name for the inactive cases.

See Also

1_getBinData, 1_getBinIds, 1_breaks

Examples

if(interactive()) {

h <- 1_hist(iris)

h["active"] <- iris$Species != "setosa”
binCut <- 1_binCut(h)

h['color'] <- binCut

number of bins

42 1 bind_canvas

nBins <- length(l_getBinIds(h))
ggplot color hue
gg_color_hue <- function(n) {
hues <- seq(15, 375, length = n + 1)
hcl(h = hues, 1 = 65, ¢ = 100)[1:n]
3
h['color'] <- 1_binCut(h, labels = gg_color_hue(nBins), inactive = "firebrick")
h["active”] <- TRUE
3

1_bind_canvas Create a Canvas Binding

Description

Canvas bindings are triggered by a mouse/keyboard gesture over the plot as a whole.

Usage

1_bind_canvas(widget, event, callback)

Arguments
widget widget path as a string or as an object handle
event event patterns as defined for Tk canvas widget https://www.tcl-lang.org/
man/tcl8.6/TkCmd/bind. htm#M5.
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Canvas bindings are used to evaluate callbacks at certain X events on the canvas widget (underlying
widget for all of loon’s plot widgets). Such X events include re-sizing of the canvas and entering
the canvas with the mouse.

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

canvas binding id

See Also

1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_delete, 1_bind_canvas_reorder

https://www.tcl-lang.org/man/tcl8.6/TkCmd/bind.htm#M5
https://www.tcl-lang.org/man/tcl8.6/TkCmd/bind.htm#M5

1 _bind_canvas_delete 43

Examples

binding for when plot is resized
if(interactive()){
p <= 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, is: ',
size[1], 'x', size[2], ' pixels\n', sep='"))

3
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

}

1_bind_canvas_delete Delete a canvas binding

Description

Remove a canvas binding

Usage

1_bind_canvas_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id canvas binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_reorder

44 I_bind_canvas_get

1_bind_canvas_get Get the event pattern and callback Tcl code of a canvas binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage

1_bind_canvas_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id canvas binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")
Value

Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_delete, 1_bind_canvas_reorder

Examples

binding for when plot is resized
if(interactive()){
p <- 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, ' is:
size[1], ' pixels\n', sep='"))

1
’
[

x', size[2],

3
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

1 _bind_canvas_ids 45

1_bind_canvas_ids List canvas binding ids

Description

List all user added canvas binding ids

Usage

1_bind_canvas_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with canvas binding ids

See Also

1_bind_canvas, 1_bind_canvas_get, 1_bind_canvas_delete, 1_bind_canvas_reorder

Examples

binding for when plot is resized
if(interactive()){
p <- 1_plot(iris[,1:2], color=iris$Species)

printSize <- function(p) {
size <- 1_size(p)
cat(paste('Size of widget ', p, ' is: ',

size[1], 'x', size[2], pixels\n', sep=""'))

}
1_bind_canvas(p, event='<Configure>', function(W) {printSize(W)3})

id <- 1_bind_canvas_ids(p)
id

1_bind_canvas_get(p, id)

}

46 1 _bind_context

1_bind_canvas_reorder Reorder the canvas binding evaluation sequence

Description

The order the canvas bindings defines how they get evaluated once an event matches event patterns
of multiple canvas bindings.

Usage

1_bind_canvas_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new canvas binding id evaluation order, this must be a rearrangement of the
elements returned by the 1_bind_canvas_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_canvas, 1_bind_canvas_ids, 1_bind_canvas_get, 1_bind_canvas_delete

1_bind_context Add a context binding

Description
Creates a binding that evaluates a callback for particular changes in the collection of contexts of a
display.

Usage

1_bind_context(widget, event, callback)

1 _bind_context_delete 47

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following events: 'add', 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

context binding id

See Also

1_bind_context_ids,1_bind_context_get,1_bind_context_delete, 1_bind_context_reorder

1_bind_context_delete Delete a context binding

Description

Remove a context binding

Usage

1_bind_context_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id context binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_get, 1_bind_context_reorder

48 1 _bind_context_ids

1_bind_context_get Get the event pattern and callback Tcl code of a context binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage

1_bind_context_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id context binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")
Value

Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_delete, 1_bind_context_reorder

1_bind_context_ids List context binding ids

Description

List all user added context binding ids

Usage

1_bind_context_ids(widget)

Arguments

widget widget path as a string or as an object handle

1 _bind_context_reorder 49

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with context binding ids

See Also

1_bind_context, 1_bind_context_get, 1_bind_context_delete, 1_bind_context_reorder

1_bind_context_reorder

Reorder the context binding evaluation sequence

Description
The order the context bindings defines how they get evaluated once an event matches event patterns
of multiple context bindings.

Usage

1_bind_context_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new context binding id evaluation order, this must be a rearrangement of the
elements returned by the 1_bind_context_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_context, 1_bind_context_ids, 1_bind_context_get, 1_bind_context_delete

50 1_bind_glyph_delete

1_bind_glyph Add a glyph binding

Description

Creates a binding that evaluates a callback for particular changes in the collection of glyphs of a
display.

Usage

1_bind_glyph(widget, event, callback)

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following events: 'add', 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

glyph binding id

See Also

1 _bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_delete, 1_bind_glyph_reorder

1_bind_glyph_delete Delete a glyph binding

Description

Remove a glyph binding

Usage

1 _bind_glyph_delete(widget, id)

I_bind_glyph_get 51

Arguments
widget widget path as a string or as an object handle
id glyph binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_reorder

1_bind_glyph_get Get the event pattern and callback Tcl code of a glyph binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage

1 _bind_glyph_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_delete, 1_bind_glyph_reorder

52 1_bind_glyph_reorder

1_bind_glyph_ids List glyph binding ids

Description

List all user added glyph binding ids

Usage
1_bind_glyph_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with glyph binding ids

See Also

1_bind_glyph, 1_bind_glyph_get, 1_bind_glyph_delete, 1_bind_glyph_reorder

1_bind_glyph_reorder Reorder the glyph binding evaluation sequence

Description
The order the glyph bindings defines how they get evaluated once an event matches event patterns
of multiple glyph bindings.

Usage
1_bind_glyph_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new glyph binding id evaluation order, this must be a rearrangement of the ele-

ments returned by the 1_bind_glyph_ids function.

1 _bind_item 53

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_glyph, 1_bind_glyph_ids, 1_bind_glyph_get, 1_bind_glyph_delete

1_bind_item Create a Canvas Binding

Description

Canvas bindings are triggered by a mouse/keyboard gesture over the plot as a whole.

Usage

1_bind_item(widget, tags, event, callback)

Arguments
widget widget path as a string or as an object handle
tags item tags as as explained in 1_help(”learn_R_bind.html#item-bindings")
event event patterns as defined for Tk canvas widget https://www.tcl-lang.org/
man/tcl8.6/TkCmd/bind. htm#M5.
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Item bindings are used for evaluating callbacks at certain mouse and/or keyboard gestures events
(i.e. X events) on visual items on the canvas. Items on the canvas can have tags and item bindings
are specified to be evaluated at certain X events for items with specific tags.

Note that item bindings get currently evaluated in the order that they are added.

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”"learn_R_bind")

Value

item binding id

https://www.tcl-lang.org/man/tcl8.6/TkCmd/bind.htm#M5
https://www.tcl-lang.org/man/tcl8.6/TkCmd/bind.htm#M5

54 I_bind_item_get

See Also

1 _bind_item_ids, 1_bind_item_get, 1_bind_item_delete, 1_bind_item_reorder

1_bind_item_delete Delete a item binding

Description

Remove a item binding

Usage

1 _bind_item_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id item binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1 _bind_item, 1_bind_item_ids, 1_bind_item_get, 1_bind_item_reorder

1_bind_item_get Get the event pattern and callback Tcl code of a item binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage

1 _bind_item_get(widget, id)

Arguments

widget widget path as a string or as an object handle

id item binding id

1 _bind_item_ids 55

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_item, 1_bind_item_ids, 1_bind_item_delete, 1_bind_item_reorder

1_bind_item_ids List item binding ids

Description

List all user added item binding ids

Usage

1_bind_item_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-

page, i.e. run 1_help(”"learn_R_bind")

Value

vector with item binding ids

See Also

1 _bind_item, 1_bind_item_get, 1_bind_item_delete, 1_bind_item_reorder

56 [bind_layer

1_bind_item_reorder Reorder the item binding evaluation sequence

Description

The order the item bindings defines how they get evaluated once an event matches event patterns of
multiple item bindings.

Reordering item bindings has currently no effect. Item bindings are evaluated in the order in which
they have been added.

Usage

1 _bind_item_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new item binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_item_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_item, 1_bind_item_ids, 1_bind_item_get, 1_bind_item_delete

1_bind_layer Add a layer binding

Description
Creates a binding that evaluates a callback for particular changes in the collection of layers of a
display.

Usage

1_bind_layer(widget, event, callback)

[_bind_layer_delete 57

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following events: 'add', 'delete’, "'move’,
'hide', 'show', 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

layer binding id

See Also

1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_delete Delete a layer binding

Description

Remove a layer binding

Usage
1 _bind_layer_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id layer binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

See Also
1_bind_layer, 1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_reorder

58 [_bind_layer_ids

1_bind_layer_get Get the event pattern and callback Tcl code of a layer binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage
1_bind_layer_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id layer binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")
Value

Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_layer, 1_bind_layer_ids, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_ids List layer binding ids

Description

List all user added layer binding ids

Usage
1_bind_layer_ids(widget)

Arguments

widget widget path as a string or as an object handle

[_bind_layer_reorder 59

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with layer binding ids

See Also

1_bind_layer,1_bind_layer_get, 1_bind_layer_delete, 1_bind_layer_reorder

1_bind_layer_reorder Reorder the layer binding evaluation sequence

Description

The order the layer bindings defines how they get evaluated once an event matches event patterns
of multiple layer bindings.

Usage

1_bind_layer_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new layer binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_layer_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_layer,1_bind_layer_ids, 1_bind_layer_get, 1_bind_layer_delete

60 1_bind_navigator_delete

1_bind_navigator Add a navigator binding

Description

Creates a binding that evaluates a callback for particular changes in the collection of navigators of
a display.

Usage

1_bind_navigator(widget, event, callback)

Arguments
widget widget path as a string or as an object handle
event a vector with one or more of the following events: 'add', 'delete’, 'relabel’
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

navigator binding id

See Also

1_bind_navigator_ids, 1_bind_navigator_get,1_bind_navigator_delete, 1_bind_navigator_reorder

1_bind_navigator_delete

Delete a navigator binding

Description

Remove a navigator binding

Usage

1_bind_navigator_delete(widget, id)

1_bind_navigator_get 61

Arguments
widget widget path as a string or as an object handle
id navigator binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

See Also

1_bind_navigator,1_bind_navigator_ids, 1 _bind_navigator_get, 1 _bind_navigator_reorder

1_bind_navigator_get Get the event pattern and callback Tcl code of a navigator binding

Description
This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage

1_bind_navigator_get(widget, id)

Arguments
widget widget path as a string or as an object handle
id navigator binding id

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_navigator,1_bind_navigator_ids, 1_bind_navigator_delete, 1_bind_navigator_reorder

62 I_bind_navigator_reorder

1_bind_navigator_ids List navigator binding ids

Description

List all user added navigator binding ids

Usage

1_bind_navigator_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”learn_R_bind")

Value

vector with navigator binding ids

See Also

1_bind_navigator,1_bind_navigator_get, 1_bind_navigator_delete,1_bind_navigator_reorder

1_bind_navigator_reorder
Reorder the navigator binding evaluation sequence

Description
The order the navigator bindings defines how they get evaluated once an event matches event pat-
terns of multiple navigator bindings.

Usage

1_bind_navigator_reorder(widget, ids)

Arguments
widget widget path as a string or as an object handle
ids new navigator binding id evaluation order, this must be a rearrangement of the

elements returned by the 1_bind_navigator_ids function.

1 _bind_state 63

Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1_bind_navigator,1_bind_navigator_ids,1_bind_navigator_get, 1 _bind_navigator_delete

1_bind_state Add a state change binding

Description
The callback of a state change binding is evaluated when certain states change, as specified at
binding creation.

Usage

1_bind_state(target, event, callback)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
event vector with state names
callback callback function is an R function which is called by the Tcl interpreter if the
event of interest happens. Note that in loon the callback functions support dif-
ferent optional arguments depending on the binding type, read the details for
more information
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

state change binding id

See Also

1_info_states,1_bind_state_ids,1_bind_state_get,1_bind_state_delete,1_bind_state_reorder

64 1 _bind_state_get

1_bind_state_delete Delete a state binding

Description

Remove a state binding

Usage

1_bind_state_delete(target, id)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
id state binding id
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

See Also

1_bind_state, 1_bind_state_ids, 1_bind_state_get, 1_bind_state_reorder

1_bind_state_get Get the event pattern and callback Tcl code of a state binding

Description

This function returns the registered event pattern and the Tcl callback code that the Tcl interpreter
evaluates after a event occurs that matches the event pattern.

Usage
1_bind_state_get(target, id)

Arguments

target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.

id state binding id

1 _bind_state_ids 65

Details
Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value
Character vector of length two. First element is the event pattern, the second element is the Tcl
callback code.

See Also

1_bind_state, 1_bind_state_ids, 1_bind_state_delete, 1_bind_state_reorder

1_bind_state_ids List state binding ids

Description

List all user added state binding ids

Usage

1_bind_state_ids(target)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help("learn_R_bind")

Value

vector with state binding ids

See Also

1 _bind_state, 1_bind_state_get, 1_bind_state_delete, 1_bind_state_reorder

66 1 breaks

1_bind_state_reorder Reorder the state binding evaluation sequence

Description
The order the state bindings defines how they get evaluated once an event matches event patterns of
multiple state bindings.

Usage

1_bind_state_reorder(target, ids)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
ids new state binding id evaluation order, this must be a rearrangement of the ele-
ments returned by the 1_bind_state_ids function.
Details

Bindings, callbacks, and binding substitutions are described in detail in loon’s documentation web-
page, i.e. run 1_help(”"learn_R_bind")

Value

vector with binding id evaluation order (same as the id argument)

See Also

1 _bind_state, 1_bind_state_ids, 1_bind_state_get, 1_bind_state_delete

1_breaks Gets the boundaries of the histogram bins containing active points.

Description

Queries the histogram and returns the ids of all active points in each bin that contains active points.

Usage
1_breaks(widget)

Arguments

widget A loon histogram widget.

I _cget 67

Value

A named list of the minimum and maximum values of the boundaries for each active bins in the
histogram.

See Also

1_getBinData, 1_getBinIds, 1_binCut

1_cget Query a Plot State

Description

All of loon’s displays have plot states. Plot states specify what is displayed, how it is displayed and
if and how the plot is linked with other loon plots. Layers, glyphs, navigators and contexts have
states too (also refered to as plot states). This function queries a single plot state.

Usage

1_cget(target, state)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
state state name
See Also

1_configure, 1_info_states, 1_create_handle

Examples

if(interactive()){

p <- 1_plot(iris, color = iris$Species)
1_cget(p, "color")

p['selected']

3

68 1 colorName

1_colorName Get Color Names from the Hex Code

Description

Return the built-in color names by the given hex code.

Usage

1_colorName(color, error = TRUE, precise = FALSE)

Arguments
color A vector of 12 digit (tcl) or 6 (8 with transparency) digit color hex code, e.g.
"#FFFF00000000", "#FF0000"
error Suppose the input is not a valid color, if TRUE, an error will be returned; else the
input vector will be returned.
precise Logical; When precise = FALSE, the name of the nearest built-in colour is re-
turned. When precise = TRUE, the name is returned only if the minimum Eu-
clidean distance is zero; otherwise the hex code of the colour is returned. See
details.
Details

Function colors returns the built-in color names which R knows about. To convert a hex code to
a real color name, we first convert these built-in colours and the hex code to RGB (red/green/blue)
values (e.g., "black" —> [0, 0, 0]). Then, using this RGB vector value, the closest (Euclidean
distance) built-in colour is determined.

Matching is "precise" whenever the minimum distance is zero; otherwise it is "approximate", locat-
ing the nearest R colour.

Value

A vector of built-in color names

See Also

1_hexcolor, hex12tohex6, as_hex6color

Examples

1_colorName(c("#FFFFQ0000000", "#FFQOFF", "blue"))

if(require(grid)) {

redGradient is a matrix of 20 different colors

redGradient <- matrix(hcl(@, 80, seq(49, 68, 1)),
nrow=4, ncol=5, byrow = TRUE)

I_colRemoveAlpha 69

a color plate

grid::grid.newpage()

grid::grid.raster(redGradient,
interpolate = FALSE)

a "rough matching”;

r <- 1_colorName(redGradient)

the color name of each row is identical...
r

grid::grid.newpage()

very different from the first plate
grid::grid.raster(r, interpolate = FALSE)

a "precise matching";
p <- 1_colorName(redGradient, precise = TRUE)
no built-in color names can be precisely matched...

p

3

Not run:

an error will be returned
1_colorName(c("foo”, "bar"”, "red"))

c("foo", "bar"”, "red") will be returned

1_colorName(c("foo", "bar", "#FFFFQ0000000"), error = FALSE)

End(Not run)

1_colRemoveAlpha Convert color representations having an alpha transparency level to 6
digit color representations

Description

Colors in the standard tk used by loon do not allow for alpha transparency. This function allows
loon to use color palettes (e.g. 1_setColorList) that produce colors with alpha transparency by
simply using only the rgb.

Usage

1_colRemoveAlpha(col)

Arguments

col a vector of colors (potentially) containing an alpha level

Examples

x <= 1_colRemoveAlpha(rainbow(6))
Also works with ordinary color string representations
since it just extracts the rgb values from the colors.

70 _configure

x <- 1_colRemoveAlpha(c("red”, "blue"”, "green", "orange"))
X
1_compoundPaths Get the set of basic path types for loon plots.
Description

Loon’s plots are constructed in TCL and identified with a path string appearing in the window
containing the plot. The path string begins with a unique identifier for the plot and ends with a
suffix describing the type of loon plot being displayed.

The path identifying the plot is the string concatenation of both the identifier and the type.

This function returns the set of the loon path types for compound loon plots.

Usage
1_compoundPaths()

Value

character vector of the compound path types.

See Also

1_basePathsl_loonWidgets 1_getFromPath

1_configure Modify one or multiple plot states

Description

All of loon’s displays have plot states. Plot states specify what is displayed, how it is displayed and
if and how the plot is linked with other loon plots. Layers, glyphs, navigators and contexts have
states too (also refered to as plot states). This function modifies one or multiple plot states.

Usage
1_configure(target, ...)
Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,

navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.

state=value pairs

1 context_add_context2d 71

See Also

1_cget, 1_info_states, 1_create_handle

Examples

if(interactive()){

p <- 1_plot(iris, color = iris$Species)
1_configure(p, color='red")
pl'size'] <- ifelse(iris$Species == "versicolor”, 2, 8)

}

1_context_add_context2d
Create a context2d navigator context

Description

A context2d maps every location on a 2d space graph to a list of xvars and a list of yvars such that,
while moving the navigator along the graph, as few changes as possible take place in xvars and
yvars.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

Usage
1_context_add_context2d(navigator, ...)
Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

See Also

1_info_states,1_context_ids, 1_context_add_geodesic2d, 1_context_add_slicing2d,1_context_getlLabel,
1_context_relabel

72 I _context_add_slicing2d

1_context_add_geodesic2d
Create a geodesic2d navigator context

Description

Geodesic2d maps every location on the graph as an orthogonal projection of the data onto a two-
dimensional subspace. The nodes then represent the sub-space spanned by a pair of variates and the
edges either a 3d- or 4d-transition of one scatterplot into another, depending on how many variates
the two nodes connected by the edge share (see Hurley and Oldford 2011). The geodesic2d context
inherits from the context2d context.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

Usage
1_context_add_geodesic2d(navigator, ...)
Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

See Also

1_info_states,1_context_ids, 1_context_add_context2d, 1_context_add_slicing2d,1_context_getlLabel,
1_context_relabel

1_context_add_slicing2d
Create a slicind2d navigator context

Description

The slicing2d context implements slicing using navigation graphs and a scatterplot to condition on
one or two variables.

Contexts are in more detail explained in the webmanual accessible with 1_help. Please read the
section on context by running 1_help(”learn_R_display_graph.html#contexts").

1 context_delete 73

Usage
1_context_add_slicing2d(navigator, ...)
Arguments
navigator navigator handle object
arguments passed on to modify context states
Value

context handle

Examples

if(interactive()){

names(oliveAcids) <- c('p','p1','s",'0o",'1",'11","

nodes <- apply(combn(names(oliveAcids),2),2,
function(x)paste(x, collapse=':"))

G <- completegraph(nodes)

g <- 1_graph(G)

nav <- 1_navigator_add(g)

con <- 1_context_add_slicing2d(nav, data=oliveAcids)

a','e")

symmetric range proportion around nav['proportion']
con['proportion'] <- 0.2

con['conditioning4d'] <- "union”
con['conditioning4d'] <- "intersection”

3

1_context_delete Delete a context from a navigator

Description

Navigators can have multiple contexts. This function removes a context from a navigator.

Usage

1_context_delete(navigator, id)

Arguments

navigator navigator hanlde

id context id

74 I_context_getLabel

Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_ids,1_context_add_context2d,1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_getlLabel, 1_context_relabel

1_context_getLabel Query the label of a context

Description

Context labels are eventually used in the context inspector. This function queries the label of a
context.

Usage

1_context_getLabel(navigator, id)

Arguments
navigator navigator hanlde
id context id
Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_getlLabel, 1_context_add_context2d,1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_delete

1 context_ids 75

1_context_ids List context ids of a navigator

Description

Navigators can have multiple contexts. This function list the context ids of a navigator.

Usage

1_context_ids(navigator)

Arguments

navigator navigator hanlde

Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

See Also

1_context_delete, 1_context_add_context2d, 1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_getLabel, 1_context_relabel

1_context_relabel Change the label of a context

Description

Context labels are eventually used in the context inspector. This function relabels a context.

Usage

1_context_relabel(navigator, id, label)

Arguments
navigator navigator hanlde
id context id
label context label shown
Details

For more information run: 1_help("learn_R_display_graph.html#contexts")

76 I_copyStates

See Also

1_context_getlLabel, 1_context_add_context2d, 1_context_add_geodesic2d, 1_context_add_slicing2d,
1_context_delete

1_copyStates A generic function to transfer the values of the states of one ‘loon*
structure to another.

Description

1_copyStates reads the values of the states of the ‘source‘ and assigns them to the states of the
same name on the ‘target’.

Usage

1_copyStates(
source,
target,
states = NULL,
exclude = NULL,
excludeBasicStates = TRUE,
returnNames = FALSE

)
Arguments

source the ‘loon‘ object providing the values of the states.

target the ‘loon‘ object whose states are assigned the values of the ‘sources* states of
the same name.

states a character vector of the states to be copied. If ‘NULL‘ (the default), then
all states in common (excluding those identified by exclusion parameters) are
copied from the ‘source’ to the ‘target’.

exclude a character vector naming those common states to be excluded from copying.
Default is NULL.

excludeBasicStates

a logical indicating whether certain basic states are to be excluded from the copy
(if ‘TRUE", the default). These states include those derived from data variables
(like "x", "xTemp", "zoomX", "panX", "deltaX", "xlabel", and the "y" counter-
parts) since these values determine coordinates in the plot and so are typically
not to be copied. Similarly "swapAxes" is one of these basic states because in
1_compound plots such as 1_pairs() swapping axes can wreak havoc if unin-
tended. Finally, an important pair of basic states to exclude are "linkingKey"
and "linkingGroup" since such changes require proper synchronization.

Setting ‘excludeBasicStates = TRUE® is a simple way to avoid copying the val-
ues of these basic states. Setting ‘excludeBasicStates = FALSE® will allow these
to be copied as well.

I_copyStates 77

returnNames a logical to indicate whether to return the names of all states successfully copied
for all plots. Default is ‘FALSE®

Value
a character vector of the names of the states successfully copied (for each plot whose states were
affected), or NULL if none were copied or ‘returnNames == FALSE".

See Also

1_saveStates 1_info_states saveRDS

Examples

if(interactive()){
Source and target are “1_plots”
p <- with(iris,
1_plot(x = Sepal.Width, y = Petal.Width,

color = Species, glyph = "ccircle”,
size = 10, showGuides = TRUE,

title = "Edgar Anderson's Iris data”
)

)

p2 <- with(iris,
1 _plot(x = Sepal.Length, y = Petal.lLength,
title = "Fisher's Iris data”
)
)
Copy the states of p to p2
First just the size and title
1_copyStates(source = p, target = p2,
states = c("size", "title")
)
Copy all but those associated with the variables
1_copyStates(source = p, target = p2)

Suppose p had a linkingGroup, say "Edgar”
1_configure(p, linkingGroup = "Edgar", sync = "push”)

To force this linkingGroup to be copied to a new plot
p3 <- with(iris,
1_plot(x = Sepal.Length, y = Petal.lLength,
title = "Fisher's Iris data”
)
)
1_copyStates(source = p, target = p3,
states = c("linkingGroup"),
To allow this to happen:
excludeBasicStates = FALSE
)

78 I_createCompoundGrob

h <- with(iris,
1_hist((Petal.Width * Petal.Length),
showStackedColors = TRUE,
yshows = "density")
)
1_copyStates(source = p, target = h)

sa <- 1l_serialaxes(iris, axes = "parallel”)
1_copyStates(p, sa)

pp <- l_pairs(iris, showHistograms = TRUE)
suppressWarnings(1_copyStates(p, pp))

pp2 <- 1_pairs(iris,
color = iris$Species,
showGuides = TRUE,
title ="Iris data”,
glyph = "ctriangle”)
1_copyStates(pp2, pp)
1_copyStates(pp2, p)

1_createCompoundGrob For the target compound loon plot, creates the final grob from the class
of the ‘target’ and the ‘arrangeGrob.args*

Description

For the target compound loon plot, creates the final grob from the class of the ‘target’ and the
‘arrangeGrob.args*

Usage

1_createCompoundGrob(target, arrangeGrob.args)

Arguments

target the (compound) loon plot
arrangeGrob.args
arguments as described by ‘gridExtra::arrangeGrob()*

Value

a grob (or list of grobs) that can be handed to ‘gTree()* as ‘children = gList(returnedValue)* as the
final grob constructed for the compound loon plot. Default for an ‘I_compound" is to simply execute
‘gridExtra::arrangeGrob(arrangeGrob.args)‘.

1 create_handle 79

1_create_handle Create a loon object handle

Description

This function can be used to create the loon object handles from a vector of the widget path name
and the object ids (in the order of the parent-child relationships).

Usage

1_create_handle(target)

Arguments

target loon object specification (e.g. ".10.plot")

Details

loon’s plot handles are useful to query and modify plot states via the command line.

For more information run: 1_help("learn_R_intro.html#re-creating-object-handles")

See Also

1_getFromPath

Examples

if(interactive()){

plot handle

p <- 1_plot(x=1:3, y=1:3)

p_new <- 1_create_handle(unclass(p))
p_new['showScales']

glyph handle

gl <- 1_glyph_add_text(p, text=LETTERS[1:31)

gl_new <- 1_create_handle(c(as.vector(p), as.vector(gl)))
gl_new['text']

layer handle

1 <- 1_layer_rectangle(p, x=c(1,3), y=c(1,3), color="yellow', index='end')
1_new <- 1_create_handle(c(as.vector(p), as.vector(l)))

1_new['color']

navigator handle

g <- 1_graph(linegraph(completegraph(LETTERS[1:3])))

nav <- 1_navigator_add(g)

nav_new <- 1_create_handle(c(as.vector(g), as.vector(nav)))

80 1 _currentindex

nav_new['from']

context handle

con <- 1_context_add_context2d(nav)

con_new <- 1_create_handle(c(as.vector(g), as.vector(nav), as.vector(con)))
con_new['separator']

}

1_currentindex Get layer-relative index of the item below the mouse cursor

Description

Checks if there is a visual item below the mouse cursor and if there is, it returns the index of the
visual item’s position in the corresponding variable dimension of its layer.

Usage

1_currentindex(widget)

Arguments

widget widget path as a string or as an object handle

Details

For more details see 1_help(”learn_R_bind.html#item-bindings")

Value

index of the visual item’s position in the corresponding variable dimension of its layer

See Also

1_bind_item, 1_currenttags

Examples

if(interactive()){
p <- 1_plot(iris[,1:2], color=iris$Species)

printEntered <- function(W) {
cat(paste('Entered point ', 1_currentindex(W), '\n'))

}

printLeave <- function(W) {
cat(paste('Left point ', 1_currentindex(W), '\n'))

I _currenttags 81

}

1 _bind_item(p, tags='model&&point', event='<Enter>',
callback=function(W) {printEntered(W)3})

1 _bind_item(p, tags='model&&point', event='<Leave>',
callback=function(W) {printLeave(W)})

1_currenttags Get tags of the item below the mouse cursor

Description

Retrieves the tags of the visual item that at the time of the function evaluation is below the mouse
CUISOL.

Usage

1_currenttags(widget)

Arguments

widget widget path as a string or as an object handle

Details

For more details see 1_help(”learn_R_bind.html#item-bindings")

Value

vector with item tags of visual

See Also
1_bind_item, 1_currentindex
Examples
if(interactive()){
printTags <- function(W) {
print(l_currenttags(W))
3

p <- 1_plot(x=1:3, y=1:3, title='Query Visual Item Tags')

1 _bind_item(p, 'all', '<ButtonPress>', function(W)printTags(W))
}

82 I_export

1_data Convert an R data.frame to a Tcl dictionary

Description
This is a helper function to convert an R data.frame object to a Tcl data frame object. This function
is useful when changing a data state with 1_configure.

Usage
1_data(data)

Arguments

data a data.frame object

Value

a string that represents with data.frame with a Tcl dictionary data structure.

1_export Export a loon plot as an image

Description

The supported image formats depend on your system and Tcl/Tk configuration. Export to PostScript
(“.ps‘, “.eps‘) always works. Export to PDF (‘.pdf*) works if the command-line tool ‘epstopdf* is
installed. Export to bitmap formats such as ‘.png‘, ‘jpg‘, ‘bmp°, “tiff*, or *.gif* may work if
supported by your Tcl/Tk environment — this often, but not always, requires the Img Tcl extension.

If a selected format fails, use ‘.ps‘ or consider capturing a screenshot.

Usage
1_export(widget, filename, width, height)

Arguments
widget widget path as a string or as an object handle
filename path of output file
width image width in pixels
height image height in pixels
Details

Pressing ‘Ctrl-P* in a loon plot window also opens an interactive export dialog.

I_export_valid_formats 83

Value

The file path of the exported image.

See Also

1_export_valid_formats, plot.loon

1_export_valid_formats

Return a list of the available image formats when exporting a loon plot

Description

The supported image formats are dependent on the system environment. Plots can always be ex-
ported to the Postscript format. Exporting displays as .pdfs is only possible when the command line
tool epstopdf is installed. Finally, exporting to either png, jpg, bmp, tiff or gif requires the Img Tcl
extension. When choosing one of the formats that depend on the Img extension, it is possible to
export any Tk widget as an image including inspectors.

Usage

1_export_valid_formats()

Value

a vector with the image formats available for exporting a loon plot.

1_facet Layout Facets across multiple panels

Description

It takes a loon widget and forms a matrix of loon widget facets.

Usage

1_facet(widget, by, on, layout = c("grid", "wrap"”, "separate"), ...)

S3 method for class 'loon'
1_facet(
widget,
by,
on,
layout = c("grid", "wrap", "separate"”),
connectedScales = c("cross”, "row”, "column”, "both", "x", "y", "none"),

’

84

linkingGroup,
nrow = NULL,
ncol = NULL,

inheritLayers = TRUE,
labellocation = c("top”, "right"),
labelBackground = "gray80",
labelForeground = "black”,
labelBorderwidth = 2,

1 facet

labelRelief = c("groove”, "flat", "raised”, "sunken"”, "ridge", "solid"),

plotWidth = 200,
plotHeight = 200,
parent = NULL,

)
S3 method for class 'l_serialaxes'
1_facet(
widget,
by,
on,
layout = c("grid", "wrap", "separate"”),
linkingGroup,
nrow = NULL,
ncol = NULL,

labellocation = c("top"”, "right"),
labelBackground = "gray80",
labelForeground = "black”,
labelBorderwidth = 2,

labelRelief = c("groove”, "flat", "raised”, "sunken"”, "ridge", "solid"),

plotWidth = 200,
plotHeight = 200,
parent = NULL,

)
Arguments

widget A loon widget

by loon plot can be separated by some variables into mutiple panels. This argument
can take a vector, a list of same lengths or a data. frame as input.

on if the by is a formula, an optional data frame containing the variables in the
by. If variables in by is not found in data, the variables are taken from environ-
ment(formula), typically the environment from which the function is called.

layout layout facets as 'grid', 'wrap' or 'separate’

. named arguments to modify the ‘loon‘ widget states

connectedScales

Determines how the scales of the facets are to be connected depending on which
layout is used. For each value of 1layout, the scales are connected as follows:

1 facet

85

e layout = "wrap"”: Across all facets, when connectedScales is
— "x", then only the "X" scales are connected
— "y", then only the "y" scales are connected

nen

— "both", both "x" and "y" scales are connected

nyn nen

— "none”, neither "x" nor "y" scales are connected. For any other value,

non

only the "y" scale is connected.
e layout = "grid": Across all facets, when connectedScales is

— "cross”, then only the scales in the same row and the same column are
connected

— "row”, then both "x" and "y" scales of facets in the same row are con-
nected

— "column”, then both "x" and "y" scales of facets in the same column
are connected

— "x", then all of the "x" scales are connected (regardless of column)

— "y", then all of the "y" scales are connected (regardless of row)

nen

— "both", both "x" and "y" scales are connected in all facets

— "none”, neither "x" nor "y" scales are connected in any facets.

linkingGroup A linkingGroup for widgets. If missing, default would be a paste of "layout”
and the current tk path number.

nrow The number of layout rows

ncol The number of layout columns

inheritLayers Logical value. Should widget layers be inherited into layout panels?

labellLocation Labels location.

* Length two vector for layout grid. The first one is used to determine the
position of column labels ('top’ or ’bottom’). The second one is used to
determine the position of row labels (’right’ or ’left’).

* Length one vector for layout wrap, "top’ or bottom’.

labelBackground
Label background colour

labelForeground
Label foreground colour

labelBorderwidth
Label border width

labelRelief Label relief

plotWidth default plot width (in pixels)

plotHeight default plot height (in pixels)

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

Value

an ‘1_facet® object (an ‘1_compound‘ object), being a list with named elements, each representing
a separate interactive plot. The names of the plots should be self explanatory and a list of all plots
can be accessed from the ‘1_facet* object via ‘I_getPlots()*.

86

Examples

if(interactive()) {

3

library(maps)

p <- with(quakes, 1_plot(long, lat, linkingGroup = "quakes"))
p["color"][quakes$mag < 5 & quakes$mag >= 4] <- "lightgreen”
p["color”][quakes$mag < 6 & quakes$mag >= 5] <- "lightblue”
p["color”][quakes$mag >= 6] <- "firebrick"”

A Fiji map

1_getBinData

NZFijiMap <- map("world2"”, regions = c("New Zealand”, "Fiji"), plot = FALSE)

1_layer(p, NZFijiMap,
label = "New Zealand and Fiji",
color = "forestgreen”,
index = "end")
fp <- 1_facet(p, by = "color”, layout = "grid",
linkingGroup = "quakes")

size <- c(rep(50, 2), rep(25, 2), rep(50, 2))
color <- c(rep("red”, 3), rep("green”, 3))
p <- 1l _plot(x = 1:6, y = 1:6,
size = size,
color = color)
g <- 1_glyph_add_text(p, text = 1:6)
pL'glyph'] <- g
on <- data.frame(Factor1l = c(rep("A", 3), rep("B", 3)),
Factor2 = rep(c(”"C", "D"), 3))
cbind(on, size = size, color = color)
fp <- 1_facet(p, by = Factor1 ~ Factor2, on = on)

if(interactive()) {

#
s

serialaxes facets
<- 1_serialaxes(iris[, -5], color = iris$Species)

fs <- 1_facet(s, layout = "wrap", by = iris$Species)

#

1_

3

The linkingGroup can be printed or accessed by

configure(s, linkingGroup = fs[[1]]['linkingGroup'], sync = "pull”)

1_getBinData

Get information on current bins from a histogram

Description

Queries the histogram and returns information about all active cases contained by the histogram’s
bins.

Usage

1_getBinData(widget)

1_getBinlds 87

Arguments

widget A loon histogram widget.

Value

A nested list of the bins in the histogram which contain active points. Each bin is a list of the counts,
the point indices, and the minimum (x0) and maximum (x1) of that bin. Loon histogram bins are
open on the left and closed on the right by default, namely "(x0, x1]". The counts and the points
further identify the number and ids of all points, those which are selected, and those of each colour
in that bin (identified by their hex12 colour from tcl).

See Also

1_getBinIds, 1_breaks, 1_binCut

1_getBinIds Gets the ids of the active points in each bin of a histogram

Description

Queries the histogram and returns the ids of all active points in each bin that contains active points.

Usage

1_getBinIds(widget)

Arguments

widget A loon histogram widget.

Value

A named list of the bins in the histogram and the ids of their active points.

See Also

1_getBinData, 1_breaks, 1_binCut

88 I_getFromPath

1_getColorlList Get loon’s color mapping list

Description
The color mapping list is used by loon to convert nominal values to color values, see the documen-
tation for 1_setColorlList.

Usage

1_getColorList()

Value

a vector with hex-encoded colors

See Also

1_setColorList

1_getFromPath Create loon objects from path name

Description

This function can be used to create the loon objects from a valid widget path name. The main
difference from 1_create_handle is that 1_getFromPath can take a loon compound widget path
but 1_create_handle cannot.

Usage

1_getFromPath(target)

Arguments

target loon object specification (e.g. ".10.plot")

Details

For more information run: 1_help("learn_R_intro.html#re-creating-object-handles")

See Also

1_create_handle 1_loonWidgets

1_getGraph 89

Examples

Not run:

1_pairs(iris, showHistogram = TRUE)

The path can be found at the top of tk title

Suppose it is the first loon widget, this path should be ".10.pairs”
p <- l_create_handle("”.10.pairs") # error

p <- 1_getFromPath(".10.pairs")

End(Not run)

1_getGraph Extract a loongraph or graph object from loon’s graph display

Description

The graph display represents a graph with the nodes, from, to, and isDirected plot states. This
function creates a loongraph or a graph object using these states.

Usage

1_getGraph(widget, asloongraph = TRUE)

Arguments
widget a graph widget handle
asloongraph boolean, if TRUE then the function returns a loongraph object, otherwise the
function returns a graph object defined in the graph R package.
Value

a loongraph or a graph object

See Also

1_graph, loongraph

90 I_getLocations

1_getLinkedStates Query the States that are Linked with Loon’s Standard Linking Model

Description
Loon’s standard linking model is based on three levels, the 1inkingGroup and linkingKey states
and the used linkable states. See the details in the documentation for 1_setLinkedStates.

Usage

1_getlLinkedStates(widget)

Arguments

widget widget path as a string or as an object handle

Value

vector with state names that are linked states

See Also

1_setlLinkedStates

1_getlocations For the target compound loon plot, determines location (only and ex-
cluding the grobs) arguments to pass to ‘gridExtra::arrangeGrob()°

Description
For the target compound loon plot, determines location (only and excluding the grobs) arguments
to pass to ‘gridExtra::arrangeGrob()*

Usage

1_getlLocations(target)

S3 method for class 'l_facet'
1_getlLocations(target)

S3 method for class 'l_pairs'
1_getlLocations(target)

S3 method for class 'l_ts'
1_getlLocations(target)

[_getOption 91

Arguments

target the (compound) loon plot whose locations are needed lay it out.

Value

a list of an appropriate subset of the named location arguments ‘c("ncol", "nrow", "layout_matrix",
"heights", "widths")‘. There are as many heights and widths as there are plots returned by 1_getPlots();
these specify the relative height and width of each plot in the display. layout_matrix is an nrow

by ncol matrix whose entries identify the location of each plot in 1_getPlots() by their index.

Examples

if(interactive()) {

pp <- l_pairs(iris, showHistograms = TRUE)

11 <- 1_getlLocations(pp)

nplots <- length(l_getPlots(pp))

the plots returned by 1_getPlots(pp) are positioned
in order by the layout_matrix

11$layout_matrix

3

1_getOption Get the value of a loon display option

Description
All of loon’s displays access a set of common options. This function accesses and returns the current
value of the named option.

Usage

1_getOption(option)

Arguments

option the name of the option being queried.

Value

the value of the named option.

See Also

1_getOptionNames, 1_userOptions, 1_userOptionDefault, 1_setOption

92 1_getPlots

Examples

1_getOption("background”)

1_getOptionNames Get the names of all loon display options

Description
All of loon’s displays access a set of common options. This function accesses and returns the names
of all loon options.

Usage
1_getOptionNames()

Value

a vector of all loon display option names.

See Also

1_getOption, 1_userOptions, 1_userOptionDefault, 1_setOption

Examples

1_getOptionNames()

1_getPlots For the target compound loon plot, determines all the loon plots in that
compound plot.

Description

For the target compound loon plot, determines all the loon plots in that compound plot.

Usage
1_getPlots(target)

S3 method for class 'l_facet'
1_getPlots(target)

S3 method for class 'l_pairs'
1_getPlots(target)

S3 method for class 'l_ts'
1_getPlots(target)

1_getSavedStates 93

Arguments

target the (compound) loon plot to be laid out.

Value

a list of the named arguments and their values to be passed to ‘gridExtra::arrangeGrob()‘.

1_getSavedStates Retrieve saved plot states from the named file.

Description

1_getSavedStates reads a file created by 1_saveStates() containing the saved info states of a
loon plot returning a loon object of class "1_savedStates”. This is helpful, for example, when
using RMarkdown or some other notebooking facility to recreate an earlier saved loon plot so as to
present it in the document.

Note that if the plot saved was an "1_compound” then 1_getSavedStates will return a list of the
plots with each list item being the saved states of the corresponding plots.

Usage
1_getSavedStates(file = stop(”"missing name of file"), ...)
Arguments
file a connection or the name of the file where the "1_savedStates” R object is to
be read from (as in readRDS ().
further arguments passed to readRDS().
Value

3

alist of class ‘I_savedStates‘ containing the states and their values. Also has an attribute ‘1_plot_class
which contains the class vector of the plot ‘p*

See Also

1_getSavedStates 1_copyStates 1_info_states readRDS saveRDS

Examples

if(interactive()){

#

Suppose you have some plot that you created like

p <- 1_plot(iris, showGuides = TRUE)

#

and coloured groups by hand (using the mouse and inspector)
so that you ended up with these colours:

94

I_getSavedStates

p["color”] <- rep(c("lightgreen", "firebrick”,"skyblue"),
each = 50)

#

Having determined the colours you could save them (and other states)

in a file of your choice, here some tempfile:

myFileName <- tempfile("myPlot”, fileext = ".rds")

#

Save the named states of p

1_saveStates(p,
states = c("color”, "active", "selected"),
file = myFileName)

#

These can later be retrieved and used on a new plot

(say in RMarkdown) to set the new plot's values to those

previously determined interactively.

p_new <- 1_plot(iris, showGuides = TRUE)

p_saved_info <- 1_getSavedStates(myFileName)

#

We can tell what kind of plot was saved

attr(p_saved_info, "l_plot_class")

#

The result is a list of class "l_savedStates” which

contains the names of the

p_new["color"] <- p_saved_info$color

#

The result is that p_new looks like p did

(after your interactive exploration)

and can now be plotted as part of the document

plot(p_new)

#

For compound plots, the info_states are saved for each plot

pp <- 1l_pairs(iris)

myPairsFile <- tempfile("myPairsPlot”, fileext = ".rds")

#

Save the names states of pp

1_saveStates(pp,
states = c("color”, "active”, "selected"),
file = myPairsFile)

pairs_info <- 1_getSavedStates(myPairsFile)

#
For compound plots, the info states for all constitutent

plots are saved. The result is a list of class "l_savedStates”
whose elements are the named plots as "l_savedStates”

themselves.

#

#

The names of the plots which were saved
names(pairs_info)
#
And the names of the info states whose values were saved for
the first plot
names(pairs_info$x2y1)
#
While it is generally recommended to access (or assign) saved

I_getScaledData 95

state values using the $ sign accessor, paying attention to the
nested list structure of an "l_savedStates” object (especially for
1_compound plots), R's square bracket notation [] has also been
specialized to allow a syntactically simpler (but less precise)
access to the contents of an 1_savedStates object.

For example,
saved_info["color"]

e R N T

returns the saved "color” as a vector of colours.

#

In contrast,

pairs_info["x2y1"]

returns the l_savedStates object of the states of the plot named "x2y1",
but

pairs_info["color"]

returns a LIST of colour vectors, by plot as they were named in pairs_info
#

As a consequence, the following two are equivalent,
pairs_info["x2y1"]1["color"]

finds the value of "color” from an "l_savedStates” object

whereas

pairs_info["color”1[["x2y1"]]

finds the value of "x2y1" from a "list” object

#

Also, setting a state of an "l_savedStates” is possible

(though not generally recommended; better to save the states again)

#

p_saved_info["color"] <- rep("red”, 150)

changes the saved state "color” on p_saved_info

whereas

pairs_info["color”] <- rep("red”, 150)

will set the red color for any plot within pairs_info having "color” saved.
In this way the assignment function via [] is trying to be clever

for 1_savedStates for compound plots and so may have unintentional

consequences if the user is not careful.

Generally, one does not want/need to change the value of saved states.
Instead, the states would be saved again from the interactive plot
if change is necessary.
Alternatively, more nuanced and careful control is maintained using
the $ selectors for lists.
}
1_getScaledData Data Scaling
Description

Scaling the data set

96 I get_arrangeGrobArgs

Usage
1_getScaledData(
data,
sequence = NULL,
scaling = c("variable"”, "observation”, "data”, "none"),

displayOrder = NULL,
reserve = FALSE,
as.data.frame = FALSE

)
Arguments
data A data frame
sequence vector with variable names that are scaled. If NULL, it will be set as the whole
column names (all data set will be scaled).
scaling one of ’variable’, *data’, ’observation’ or 'none’ to specify how the data is scaled.

See details
displayOrder the order of the display

reserve If TRUE, return the variables not shown in sequence as well; else only return the
variables defined in sequence.

as.data.frame Return a matrix or a data.frame

Details

The scaling state defines how the data is scaled. The axes display O at one end and 1 at the other.
For the following explanation assume that the data is in a nxp dimensional matrix. The scaling
options are then

variable per column scaling
observation per row scaling

data whole matrix scaling
none do not scale

See Also

1_serialaxes

1_get_arrangeGrobArgs For the target (compound) loon plot, determines all arguments (i.e.
including the grobs) to be passed to ‘gridExtra::arrangeGrob()* so as
to determine the layout in ‘grid* graphics.

Description

For the target (compound) loon plot, determines all arguments (i.e. including the grobs) to be passed
to ‘gridExtra::arrangeGrob()‘ so as to determine the layout in ‘grid* graphics.

1_glyphs_inspector

Usage

1_get_arrangeGrobArgs(target)

Arguments

target the (compound) loon plot to be laid out.

Value

a list of the named arguments and their values to be passed to ‘gridExtra::arrangeGrob()‘.

1_glyphs_inspector Create a Glyphs Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector(parent = NULL, ...)

Arguments

parent parent widget path

State arguments

Value

widget handle

See Also

1_create_handle

Examples

if(interactive()){

i <- 1_glyphs_inspector()
3

98 1_glyphs_inspector_pointrange

1_glyphs_inspector_image
Create a Image Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_image(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

if(interactive()){

i <- 1_glyphs_inspector_image()
3

1_glyphs_inspector_pointrange
Create a Pointrange Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_pointrange(parent = NULL, ...)

1_glyphs_inspector_serialaxes

Arguments
parent parent widget path
state arguments
Value
widget handle
See Also

1_create_handle

Examples

if(interactive()){

i <- 1_glyphs_inspector_pointrange()

}

99

1_glyphs_inspector_serialaxes

Create a Serialaxes Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_serialaxes(parent = NULL,

Arguments
parent parent widget path
state arguments
Value
widget handle
See Also

1_create_handle

)

100 1_glyphs_inspector._text

Examples

if(interactive()){

i <- 1_glyphs_inspector_serialaxes()

}

1_glyphs_inspector_text
Create a Text Glyph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_glyphs_inspector_text(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

if(interactive()){

i <- 1_glyphs_inspector_text()
}

1 glyph_add 101

1_glyph_add Add non-primitive glyphs to a scatterplot or graph display

Description

Generic method for adding user-defined glyphs. See details for more information about non-
primitive and primitive glyphs.

Usage
1_glyph_add(widget, type, ...)
Arguments
widget widget path as a string or as an object handle
type object used for method dispatch
arguments passed on to method
Details

The scatterplot and graph displays both have the n-dimensional state 'glyph' that assigns each data
point or graph node a glyph (i.e. a visual representation).

Loon distinguishes between primitive and non-primitive glyphs: the primitive glyphs are always
available for use whereas the non-primitive glyphs need to be first specified and added to a plot
before they can be used.

The primitive glyphs are:

’circle’, ’ocircle’, ’ccircle’
’square’, ’osquare’, ’csquare’
"triangle’, ’otriangle’, ’ctriangle’
’diamond’, ’odiamond’, ’cdiamond’

Note that the letter 'o' stands for outline only, and the letter 'c' stands for contrast and adds an
outline with the 'foreground' color (black by default).

The non-primitive glyph types and their creator functions are:

Type R creator function

Text 1_glyph_add_text
Serialaxes 1_glyph_add_serialaxes
Pointranges 1_glyph_add_pointrange
Images 1_glyph_add_image
Polygon 1_glyph_add_polygon

When adding non-primitive glyphs to a display, the number of glyphs needs to match the dimension
n of the plot. In other words, a glyph needs to be defined for each observations. See in the examples.

102 I_glyph_add.default

Currently loon does not support compound glyphs. However, it is possible to cunstruct an arbitrary
glyph using any system and save it as a png and then re-import them as as image glyphs using
1_glyph_add_image.

For more information run: 1_help("”learn_R_display_plot.html#glyphs")

Value

String with glyph id. Every set of non-primitive glyphs has an id (character).

See Also

1_glyph_add_text, 1_make_glyphs

Other glyph functions: 1_glyph_add.default(), 1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1l_glyph_delete(),
1 _glyph_getLabel (), 1_glyph_getType(),1l_glyph_ids(),1_glyph_relabel(), 1_primitiveGlyphs()

Examples

if(interactive()){

Simple Example with Text Glyphs

p <- with(olive, 1_plot(stearic, eicosenoic, color=Region))
g <- 1_glyph_add_text(p, text=olive$Area, label="Area")
pl'glyph'] <- g

Not run:
demo("1_glyphs", package="loon")

End(Not run)

create a plot that demonstrates the primitive glyphs and the text glyphs
p <- 1_plot(x=1:15, y=rep(0,15), size=10, showlLabels=FALSE)

text_glyph <- 1_glyph_add_text(p, text=letters [1:15])

pL'glyph'] <- c(

'circle', 'ocircle', 'ccircle',
'square', 'osquare' , 'csquare',
"triangle', 'otriangle', 'ctriangle',
'diamond', 'odiamond', 'cdiamond',
rep(text_glyph, 3)

)

}

1_glyph_add.default Default method for adding non-primitive glyphs

Description

Generic function to write new glyph types using loon’s primitive glyphs

I_glyph_add_image 103

Usage
Default S3 method:
1_glyph_add(widget, type, label = "" ...)
Arguments
widget widget path as a string or as an object handle
type loon-native non-primitive glyph type, one of 'text', 'serialaxes’, 'image’,

'[polygon', or 'pointrange’
label label of a glyph (currently shown only in the glyph inspector)

State arguments

See Also

Other glyph functions: 1_glyph_add(), 1_glyph_add_image(), 1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1_glyph_getLabel (), 1_glyph_getType(),1_glyph_ids(),1_glyph_relabel(),1_primitiveGlyphs()

1_glyph_add_image Add an image glyphs

Description

Image glyphs are useful to show pictures or other sophisticated compound glyphs. Note that images
in the Tk canvas support transparancy.

Usage
1_glyph_add_image(widget, images, label = "", ...)
Arguments
widget widget path as a string or as an object handle
images Tk image references, see the 1_image_import_array and 1_image_import_files
helper functions.
label label of a glyph (currently shown only in the glyph inspector)
state arguments
Details

For more information run: 1_help("”learn_R_display_plot.html#images")

104 I_glyph_add_pointrange

See Also

1_glyph_add, 1_image_import_array, 1_image_import_files, 1_make_glyphs

Other glyph functions: 1_glyph_add(), 1_glyph_add.default(), 1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1l_glyph_delete(),
1 _glyph_getLabel (), 1_glyph_getType(),1l_glyph_ids(),1_glyph_relabel(), 1_primitiveGlyphs()

Examples

if(interactive()){

p <- with(olive, 1_plot(palmitic ~ stearic, color = Region))

img_paths <- list.files(file.path(find.package(package = 'loon'), "images"), full.names = TRUE)

imgs <- setNames(l_image_import_files(img_paths),
tools::file_path_sans_ext(basename(img_paths)))

i <- pmatch(gsub("*[[:alpha:]1]+-","", olive$Area), names(imgs), duplicates.ok = TRUE)

g <- 1_glyph_add_image(p, imgs[i], label="Flags")
pL'glyph'] <- g
3

1_glyph_add_pointrange
Add a Pointrange Glyph

Description

Pointrange glyphs show a filled circle at the x-y location and also a y-range.

Usage

1_glyph_add_pointrange(
widget,
ymin,
ymax,
linewidth = 1,
showArea = TRUE,

label = "",
)
Arguments
widget widget path as a string or as an object handle
ymin vector with lower y-yalue of the point range.
ymax vector with upper y-yalue of the point range.

linewidth line with in pixel.

1_glyph_add_polygon 105

showArea boolean, show a filled point or just the outline point
label label of a glyph (currently shown only in the glyph inspector)

state arguments

See Also

1_glyph_add

Other glyph functions: 1_glyph_add(), 1_glyph_add.default(), 1_glyph_add_image(), 1_glyph_add_polygon(),
1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(), 1 _glyph_getLabel(),
1_glyph_getType(), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

Examples

if(interactive()){

p <- 1_plot(x = 1:3, color = c('red', 'blue', 'green'), showScales=TRUE)
g <- 1_glyph_add_pointrange(p, ymin=(1:3)-(1:3)/5, ymax=(1:3)+(1:3)/5)
pl'glyph'] <- g

3

1_glyph_add_polygon Add a Polygon Glyph

Description

Add one polygon per scatterplot point.

Usage

1_glyph_add_polygon(
widget,
X!
Y,
linewidth = 1,
showArea = TRUE,

label = ",
)
Arguments
widget widget path as a string or as an object handle
X nested list of x-coordinates of polygons (relative to), one list element for each
scatterplot point.
y nested list of y-coordinates of polygons, one list element for each scatterplot

point.

106 1_glyph_add_polygon

linewidth linewidth of outline.
showArea boolean, show a filled polygon or just the outline
label label of a glyph (currently shown only in the glyph inspector)

State arguments

Details

A polygon can be a useful point glyph to visualize arbitrary shapes such as airplanes, animals and
shapes that are not available in the primitive glyph types (e.g. cross). The 1_glyphs demo has an
example of polygon glyphs which we reuse here.

See Also

1_glyph_add

Other glyph functions: 1_glyph_add(), 1_glyph_add.default(), 1_glyph_add_image(), 1_glyph_add_pointrange(),
1 _glyph_add_serialaxes(),1_glyph_add_text(),1_glyph_delete(),1_glyph_getLabel(),
1_glyph_getType(), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

Examples

if(interactive()){

x_star <-

c(-0.000864304235090734, 0.292999135695765, 0.949870354364736,
0.474503025064823, 0.586862575626621, -0.000864304235090734,
-0.586430423509075, -0.474070872947277, -0.949438202247191,
-0.29256698357822)

y_star <-

c(-1, -0.403630077787381, -0.308556611927398, 0.153846153846154,
0.808556611927398, 0.499567847882455, 0.808556611927398,
0.153846153846154, -0.308556611927398, -0.403630077787381)

X_Cross <-

c(-0.258931143762604, -0.258931143762604, -0.950374531835206,
-0.950374531835206, -0.258931143762604, -0.258931143762604,
0.259651397291847, ©.259651397291847, 0.948934024776722,
0.948934024776722, ©.259651397291847, 0.259651397291847)

y_cross <-

c(-0.950374531835206, -0.258931143762604, -0.258931143762604,
0.259651397291847, 0.259651397291847, 0.948934024776722,
0.948934024776722, 0.259651397291847, 0.259651397291847,
-0.258931143762604, -0.258931143762604, -0.950374531835206)

x_hexagon <-

c(0.773552290406223, 0, -0.773552290406223, -0.773552290406223,
0, 0.773552290406223)

y_hexagon <-

c(0.446917314894843, 0.894194756554307, 0.446917314894843,

-0.447637568424085, -0.892754249495822, -0.447637568424085)

p <- 1_plot(1:3, 1:3)

1 _glyph_add_serialaxes 107

gl <- 1_glyph_add_polygon(p, x = list(x_star, x_cross, x_hexagon),
y = list(y_star, y_cross, y_hexagon))

p['glyph'] <- gl

gl['showArea'] <- FALSE
}

1_glyph_add_serialaxes
Add a Serialaxes Glyph

Description

Serialaxes glyph show either a star glyph or a parallel coordinate glyph for each point.

Usage

1_glyph_add_serialaxes(
widget,
data,
sequence,
linewidth = 1,
scaling = "variable”,
axesLayout = "radial”,
showAxes = FALSE,
andrews = FALSE,
axesColor = "gray70",
showEnclosing = FALSE,
bboxColor = "gray70",

label = "",
)
Arguments
widget widget path as a string or as an object handle
data a data frame with numerical data only
sequence vector with variable names that defines the axes sequence
linewidth linewidth of outline
scaling one of ’variable’, *data’, ’observation’ or 'none’ to specify how the data is scaled.
See Details and Examples for more information.
axeslLayout either "radial” or "parallel”
showAxes boolean to indicate whether axes should be shown or not

andrews Andrew’s curve (a ’Fourier’ transformation)

108 I_glyph_add_text

axesColor color of axes

showEnclosing boolean, circle (axesLayout=radial) or sqaure (axesLayout=parallel) to show
bounding box/circle of the glyph (or showing unit circle or rectangle with height
1 if scaling=none)

bboxColor color of bounding box/circle
label label of a glyph (currently shown only in the glyph inspector)

State arguments

See Also

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_text(), 1_glyph_delete(), 1_glyph_getlLabel(),1_glyph_getType(),
1 _glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

Examples

if(interactive()){

p <- with(olive, 1_plot(oleic, stearic, color=Area))

gs <- 1_glyph_add_serialaxes(p, data=olive[,-c(1,2)], showArea=FALSE)
pL'glyph'] <- gs

3

1_glyph_add_text Add a Text Glyph

Description

Each text glyph can be a multiline string.

Usage
1_glyph_add_text(widget, text, label = "", ...)
Arguments
widget widget path as a string or as an object handle
text the text strings for each observartion. If the object is a factor then the labels get
extracted with as.character.
label label of a glyph (currently shown only in the glyph inspector)
state arguments
See Also
1_glyph_add

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_delete(), 1_glyph_getlLabel(),
1 _glyph_getType(), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

1 glyph_delete 109

Examples

if(interactive()){

p <- 1_plot(iris, color = iris$Species)

g <- 1_glyph_add_text(p, iris$Species, "test_label"”)
pL'glyph'] <- g

}

1_glyph_delete Delete a Glyph

Description

Delete a glyph from the plot.

Usage
1_glyph_delete(widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph id

See Also
1_glyph_add

Other glyph functions: 1_glyph_add(), 1_glyph_add.default(), 1_glyph_add_image(), 1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(),1l_glyph_add_text(),1l_glyph_getLabel(),
1_glyph_getType(), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

1_glyph_getlLabel Get Glyph Label

Description

Returns the label of a glyph

Usage
1 _glyph_getlLabel (widget, id)

Arguments

widget widget path as a string or as an object handle

id glyph id

110 1_glyph_ids

See Also

1_glyph_add, 1_glyph_ids, 1_glyph_relabel

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1 _glyph_getType(), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

1_glyph_getType Get Glyph Type

Description

Query the type of a glyph

Usage
1 _glyph_getType(widget, id)

Arguments
widget widget path as a string or as an object handle
id glyph id

See Also
1_glyph_add

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1 _glyph_getLabel (), 1_glyph_ids(), 1_glyph_relabel(), 1_primitiveGlyphs()

1_glyph_ids List glyphs ids

Description

List all the non-primitive glyph ids attached to display.

Usage
1_glyph_ids(widget)

Arguments

widget widget path as a string or as an object handle

1_glyph_relabel 111

See Also

1_glyph_add

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1_glyph_getLabel(), 1_glyph_getType(), 1_glyph_relabel(), 1_primitiveGlyphs()

1_glyph_relabel Relabel Glyph

Description

Change the label of a glyph. Note that the label is only displayed in the glyph inspector.

Usage

1_glyph_relabel(widget, id, label)

Arguments
widget widget path as a string or as an object handle
id glyph id
label new label

See Also

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1_glyph_getLabel(), 1_glyph_getType(), 1_glyph_ids(), 1_primitiveGlyphs()

Examples

if(interactive()){

p <- 1_plot(iris, color = iris$Species)

g <- 1_glyph_add_text(p, iris$Species, "test_label"”)
pl'glyph'] <- g

1_glyph_relabel(p, g, "Species")

3

112 I_graph

1_graph Generic funtction to create an interactive graph display

Description

Interactive graphs in loon are currently most often used for navigation graphs.

Usage

1_graph(nodes, ...)

S3 method for class 'graph'
1_graph(nodes, ...)

S3 method for class 'loongraph'
1_graph(nodes, ...)

Default S3 method:

1_graph(nodes = "", from = "", to = "", isDirected = FALSE, parent = NULL, ...)
Arguments

nodes object for method dispatch

arguments passed on to methods

from vector with node names of the from-to pairs for edges

to vector with node names of the from-to pairs for edges

isDirected a boolean state to specify whether these edges have directions

parent parent widget of graph display
Details

For more information run: 1_help("learn_R_display_graph.html#graph")

Value

graph handle

See Also

Other related graph objects, loongraph, completegraph, linegraph, complement, as.graph

Advanced usage 1_navgraph, 1_ng_plots, 1_ng_ranges

1_graphswitch 113

Examples

if(interactive()) {

G <- completegraph(nodes=names(iris))
LG <- linegraph(G, sep=":")

g <- 1l_graph(LG)

3

1_graphswitch Create a graphswitch widget

Description

The graphswitch provides a graphical user interface for changing the graph in a graph display inter-
actively.

Usage

1_graphswitch(activewidget = "", parent = NULL, ...)

Arguments

activewidget widget handle of a graph display
parent parent widget path

widget states

Details

For more information run: 1_help("learn_R_display_graph.html#graph-switch-widget")

See Also

1_graphswitch_add, 1_graphswitch_ids, 1_graphswitch_delete, 1_graphswitch_relabel
1_graphswitch_getLabel, 1_graphswitch_move, 1_graphswitch_reorder, 1_graphswitch_set
1_graphswitch_get

114

1_graphswitch_add.default

1_graphswitch_add Add a graph to a graphswitch widget

Description

This is a generic function to add a graph to a graphswitch widget.

Usage
1_graphswitch_add(widget, graph, ...)
Arguments
widget widget path as a string or as an object handle
graph a graph or a loongraph object
arguments passed on to method
Details

For more information run: 1_help("learn_R_display_graph.html#graph-switch-widget")

Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_add.default

Add a graph that is defined by node names and a from-to edges list

Description

This default method uses the loongraph display states as arguments to add a graph to the graphswitch

widget.

1_graphswitch_add.graph 115

Usage

Default S3 method:
1_graphswitch_add(

widget,
graph,
from,
to,
isDirected,
label = "",
index = "end”,
)
Arguments
widget graphswitch widget handle (or widget path)
graph a vector with the node names, i.e. this argument gets passed on as the nodes
argument to creat a Lloongraph like object
from vector with node names of the from-to pairs for edges
to vector with node names of the from-to pairs for edges
isDirected boolean to indicate whether the from-to-list defines directed or undirected edges
label string with label for graph
index position of graph in the graph list
additional arguments are not used for this methiod
Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_add.graph
Add a graph to the graphswitch widget using a graph object

Description

Graph objects are defined in the graph R package.

Usage

S3 method for class 'graph'
1_graphswitch_add(widget, graph, label = "", index = "end", ...)

116 1_graphswitch_add.loongraph

Arguments
widget graphswitch widget handle (or widget path)
graph a graph object created with the functions in the graph R package.
label string with label for graph
index position of graph in the graph list
additional arguments are not used for this methiod
Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_add.loongraph

Add a graph to the graphswitch widget using a loongraph object

Description

Loongraphs can be created with the loongraph function.

Usage

S3 method for class 'loongraph'

1_graphswitch_add(widget, graph, label = "", index = "end”,
Arguments

widget graphswitch widget handle (or widget path)

graph a loongraph object

label string with label for graph

index position of graph in the graph list

additional arguments are not used for this methiod

Value

id for graph in the graphswitch widget

See Also

1_graphswitch

1_graphswitch_delete 117

1_graphswitch_delete Delete a graph from the graphswitch widget

Description

Remove a a graph from the graphswitch widget

Usage

1_graphswitch_delete(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

1_graphswitch_get Return a Graph as a loongraph Object

Description

Graphs can be extracted from the graphswitch widget as loongraph objects.

Usage

1_graphswitch_get(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch, loongraph

118 1_graphswitch_ids

1_graphswitch_getlLabel
Query Label of a Graph in the Graphswitch Widget

Description

The graphs in the graphswitch widgets have labels. Use this function to query the label of a graph.

Usage

1_graphswitch_getLabel (widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

1_graphswitch_ids List the ids of the graphs in the graphswitch widget

Description

Every graph in the graphswitch widget has an id. This function returns these ids preserving the oder
of how the graphs are listed in the graphswitch.

Usage

1_graphswitch_ids(widget)

Arguments

widget graphswitch widget handle (or widget path)

1_graphswitch_move 119

1_graphswitch_move Move a Graph in the Graph List

Description

Change the postion in of a graph in the graphswitch widget.

Usage

1_graphswitch_move(widget, id, index)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph
index position of the graph as a positive integer, "start” and "end” are also valid
keywords.
See Also

1_graphswitch

1_graphswitch_relabel Relabel a Graph in the Graphswitch Widget

Description

The graphs in the graphswitch widgets have labels. Use this function the relabel a graph.

Usage
1_graphswitch_relabel (widget, id, label)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph
label string with label of graph

See Also

1_graphswitch

120 1_graphswitch_set

1_graphswitch_reorder Reorder the Positions of the Graphs in the Graph List

Description

Define a new graph order in the graph list.

Usage

1_graphswitch_reorder(widget, ids)

Arguments
widget graphswitch widget handle (or widget path)
ids vector with all graph ids from the graph widget. Use 1_graphswitch_ids to
query the ids.
See Also
1_graphswitch
1_graphswitch_set Change the Graph shown in the Active Graph Widget

Description

The activewidget state holds the widget handle of a graph display. This function replaces the
graph in the activewidget with one of the graphs in the graphswitch widget.

Usage

1_graphswitch_set(widget, id)

Arguments
widget graphswitch widget handle (or widget path)
id of the graph

See Also

1_graphswitch

1_graph_inspector

121

1_graph_inspector Create a Graph Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage
1_graph_inspector(parent = NULL, ...)

Arguments

parent parent widget path

State arguments

Value

widget handle

See Also

1_create_handle
Examples
if(interactive()){

i <- 1_graph_inspector()

}

1_graph_inspector_analysis
Create a Graph Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_graph_inspector_analysis(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

122 1_graph_inspector_navigators

Value

widget handle

See Also

1_create_handle
Examples
if(interactive()){

i <= 1_graph_inspector_analysis()

}

1_graph_inspector_navigators
Create a Graph Navigator Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_graph_inspector_navigators(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

if(interactive()){

i <- 1_graph_inspector_navigators()

}

1_help 123

1_help Open a browser with loon’s combined (TCL and R) documentation
website

Description

1_help opens a browser with the relevant page on the official combined loon documentation website
at https://great-northern-diver.github.io/loon/1_help/.

Usage
1_help(page = "index", ...)
Arguments
page relative path to a page, the .html part may be omitted
arguments forwarded to browseURL, e.g. to specify a browser
See Also

help, 1_web for R manual or web R manual

Examples

Not run:

1_help()

1_help("learn_R_intro")

1_help("learn_R_display_hist")

1_help(”"learn_R_bind")

jump to a section
1_help("learn_R_bind.html#list-reorder-delete-bindings")

End(Not run)

1_hexcolor Convert color names to their 12 digit hexadecimal color representa-
tion

Description

Color names in loon will be mapped to colors according to the Tk color specifications and are
normalized to a 12 digit hexadecimal color representation.

Usage

1_hexcolor(color)

https://great-northern-diver.github.io/loon/l_help/

124 1 _hist

Arguments

color a vector with color names

Value

a character vector with the 12 digit hexadecimal color strings.

See Also

as_hex6color, hex12tohex6, 1_colorName

Examples
if(interactive()){
p <- 1_plot(1:2)

p['color'] <- 'red'
pL'color']

1_hexcolor('red")

}

1_hist Create an interactive histogram

Description

1_hist is a generic function for creating interactive histogram displays that can be linked with
loon’s other displays.

Usage
1_hist(x, ...)

Default S3 method:

1_hist(
X,
yshows = c("frequency”, "density"),
by = NULL,
on,
layout = c("grid", "wrap", "separate"),
connectedScales = c("cross”, "row
origin = NULL,
binwidth = NULL,
showStackedColors = TRUE,
showBinHandle = FALSE,
color = 1_getOption("”color"),
active = TRUE,

n nyn non

, "column”, "both”, "x", "y", "none"),

1 _hist

selected = FALSE,
xlabel = NULL,

showLabels =
showScales =
showGuides

TRUE,
FALSE,
TRUE,

parent = NULL,

)

S3 method for class 'factor'

1_hist(
X,
showFactors = length(unique(x)) < 25L,
factorLabelAngle,

factorLabelSize = 12,
factorLabelColor = 1_getOption("foreground”),

factorLabelY = 0,
)
S3 method for class 'character'
1_hist(
X’
showFactors = length(unique(x)) < 25L,
factorLabelAngle,

factorLabelSize = 12,
factorLabelColor = 1_getOption("foreground”),

factorLabelY

)

:Q,

S3 method for class 'data.frame'

1_hist(x, ...)

S3 method for class 'matrix'

1_hist(x, ...)

S3 method for class 'list'

1_hist(x, ...)

S3 method for class 'table'

1_hist(x, ...)

S3 method for class 'array'

1_hist(x, ...)

Arguments

X

vector with numerical data to perform the binning on X,

125

126

yshows

by

on

layout

connectedScales

origin
binwidth

1 _hist

named arguments to modify the histogram plot states or layouts, see details.
one of "frequency" (default) or "density"

loon plot can be separated by some variables into multiple panels. This argument
can take a formula, n dimensional state names (see 1_nDimStateNames) an n-
dimensional vector and data.frame or a 1ist of same lengths n as input.

if the x or by is a formula, an optional data frame containing the variables in the
x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.

layout facets as 'grid', 'wrap' or 'separate’

Determines how the scales of the facets are to be connected depending on which
layout is used. For each value of 1layout, the scales are connected as follows:

e layout = "wrap"”: Across all facets, when connectedScales is

nyn

— "x", then only the "x" scales are connected

nen

— "y", then only the "y" scales are connected
— "both”, both "x" and "y" scales are connected

nyn nen

— "none”, neither "x" nor "y" scales are connected. For any other value,
only the "y" scale is connected.

e layout = "grid": Across all facets, when connectedScales is

— "cross”, then only the scales in the same row and the same column are
connected

nen

— "row”, then both "x" and "y" scales of facets in the same row are con-
nected

— "column”, then both "x" and "y" scales of facets in the same column
are connected
— "x", then all of the "x" scales are connected (regardless of column)

"o n

— "y", then all of the "y" scales are connected (regardless of row)

nyn nen

— "both”, both "x" and "y" scales are connected in all facets

— "none”, neither "x" nor "y" scales are connected in any facets.
numeric scalar to define the binning origin
a numeric scalar to specify the binwidth If NULL binwidth is set using David
Scott’s rule when x is numeric (namely 3.49 * sd(x)/(n ~(1/3)) if sd(x) > 0 and

1 if sd(x) == 0) and using the minumum numerical difference between factor
levels when x is a factor or a character vector (coerced to factor).

showStackedColors

showBinHandle

color

active

if TRUE (default) then bars will be coloured according to colours of the points;
if FALSE, then the bars will be a uniform colour except for highlighted points.

If TRUE, then an interactive "bin handle" appears on the plot whose movement
resets the origin and the binwidth. Default is FALSE

colour fills of bins; colours are repeated until matching the number x. Default is
found using 1_getOption(”color™).

alogical determining whether points appear or not (default is TRUE for all points).
If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

1 hist 127

selected alogical determining whether points appear selected at first (default is FALSE for
all points). If a logical vector is given of length equal to the number of points,
then it identifies which points are (TRUE) and which are not (FALSE).

xlabel label to be used on the horizontal axis. If NULL, an attempt at a meaningful
label inferred from x will be made.

showLabels logical to determine whether axes label (and title) should be presented.

showScales logical to determine whether numerical scales should be presented on both axes.

showGuides logical to determine whether to present background guidelines to help determine
locations.

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not

NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.
showFactors whether to show the factor labels (unique strings in x) as a layer on the plot. If
FALSE, the factor labels are hidden and can be turned on from the "layers" tab
on the inspector.
factorLabelAngle
is the angle of rotation (in degrees) for the factor labels. If not specified, an angle
of 0 is chosen if there are fewer than 10 labels; labels are rotated 90 degrees if
there are 10 or more. This can also be a numeric vector of length equal to the

number of factor labels.
factorLabelSize

is the font size for the factor labels (default 12).

factorLabelColor
is the colour to be used for the factor labels. (defaultis 1_getOption(”foreground”)).
Can also be a vector equal to that of the number of factor labels.

factorLabelY either a single number, or a numeric vector of length equal to the number of
factor labels, determining the y coordinate(s) for the factor labels.
Details

For more information run: 1_help("learn_R_display_hist")

* Note that when changing the yshows state from 'frequency' to 'density' you might have
touse 1_scaleto_world to show the complete histogram in the plotting region.

e Some arguments to modify layouts can be passed through, e.g. "separate", "byrow", etc.
Check 1_facet to see how these arguments work.
Value
if the argument by is not set, a loon widget will be returned; else an 1_facet object (a list) will be
returned and each element is a 1oon widget displaying a subset of interest.
See Also

Turn interactive loon plot static loonGrob, grid.loon, plot.loon.

Other loon interactive states: 1_info_states(), 1_plot(), 1_serialaxes(), 1_state_names(),
names. loon()

128 _hist_inspector

Examples

if(interactive()){
h <- 1_hist(iris$Sepal.Length)

names(h)
h["xlabel”] <- "Sepal length”
h["showOutlines"”] <- FALSE

h["yshows"]
h["yshows"] <- "density"
1_scaleto_plot(h)

h["showStackedColors”] <- TRUE
h['color'] <- iris$Species
h["showStackedColors"] <- FALSE
h["showOutlines"”] <- TRUE
h["showGuides"] <- FALSE

link another plot with the previous plot

h['linkingGroup'] <- "iris_data”

h2 <- with(iris, 1_hist(Petal.Width,
linkingGroup="iris_data",
showStackedColors = TRUE))

Get an R (grid) graphics plot of the current loon plot
plot(h)

or with more control about grid parameters

grid.loon(h)

or to save the grid data structure (grob) for later use
hg <- loonGrob(h)

}

1_hist_inspector Create a Histogram Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_hist_inspector(parent = NULL, ...)
Arguments

parent parent widget path

state arguments

1 _hist_inspector_analysis

Value

widget handle

See Also

1_create_handle
Examples
if(interactive()){

i <- 1_hist_inspector()

}

129

1_hist_inspector_analysis
Create a Histogram Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_hist_inspector_analysis(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle
Examples
if(interactive()){

i <- 1_hist_inspector_analysis()

}

130 |_image_import_array

1_imageviewer Display Tcl Images in a Simple Image Viewer

Description

Loon provides a simple image viewer to browse through the specified tcl image objects.

The simple GUI supports either the use of the mouse or left and right arrow keys to switch the
images to the previous or next image in the specified image vector.

The images are resized to fill the viewer window.

Usage

1_imageviewer (tclimages)

Arguments

tclimages Vector of tcl image object names.

Value

the tclimages vector is returned

Examples

if(interactive()){

img2 <- tkimage.create('photo', width=200, height=150)

tcl(img2, 'put', 'yellow', '-to', @, @, 199, 149)
tcl(img2, 'put', 'green', '-to', 40, 20, 130, 40)
img3 <- tkimage.create('photo', width=500, height=100)
tcl(img3, 'put', 'orange', '-to', @, 0, 499, 99)
tcl(img3, 'put', 'green', '-to', 40, 80, 350, 95)

1_imageviewer(c(tclvalue(img2), tclvalue(img3)))

}

1_image_import_array Import Greyscale Images as Tcl images from an Array

Description

Import image grayscale data (0-255) with each image saved as a row or column of an array.

I_image_import_files

Usage

1_image_import_array(

array,
width,
height,

img_in_row =

TRUE,

invert = FALSE,

rotate = @

Arguments

array
width
height
img_in_row
invert

rotate

Details

of 0-255 grayscale value data.

of images in pixels.

of images in pixels.

logical, TRUE if every row of the array represents an image
logical, for “invert=FALSE’ O=withe, for ’invert=TRUE’ O=black
the image: one of 0, 90, 180, or 270 degrees.

131

Images in tcl are managed by the tcl interpreter and made accessible to the user via a handle, i.e. a

function name of the form imagel, image2, etc.

For more information run: 1_help("learn_R_display_plot.html#images")

Value

vector of image object names

Examples

Not run:
see

demo("1_ng_images_frey_LLE")

End(Not run)

1_image_import_files

Import Image Files as Tk Image Objects

Description

Note that the supported image file formats depend on whether the Img Tk extension is installed.

Usage

1_image_import_files(paths)

132 1 _info_states

Arguments

paths vector with paths to image files that are supported

Details

For more information run: 1_help("learn_R_display_plot.html#load-images")

Value

vector of image object names

See Also

1_image_import_array, 1_imageviewer

1_info_states Retrieve Information about the States of a Loon Widget

Description

Loon’s built-in object documentation. Can be used with every loon object that has plot states in-
cluding plots, layers, navigators, contexts. This is a generic function.

Usage

1_info_states(target, states = "all")

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.1@.plot"), the remaining objects by their ids.
states vector with names of states. 'all’ is treated as a keyword and results in return-
ing information on all plot states
Value

a named nested list with one element per state. The list elements are also named lists with type,
dimension, defaultvalue, and description elements containing the respective information.

See Also

Other loon interactive states: 1_hist (), 1_plot(), 1_serialaxes(),1_state_names(), names.loon()

[_isLoonWidget 133

Examples

if(interactive()){

p <- 1_plot(iris, linkingGroup="iris")
i <- 1_info_states(p)

names (p)

names (i)

i$selectBy

1 <- 1_layer_rectangle(p, x=range(iris[,1]), y=range(iris[,2]), color="")
1_info_states(1l)
h <- 1_hist(iris$Sepal.Length, linkingGroup="iris")

1_info_states(h)

}

1_islLoonWidget Check if a widget path is a valid loon widget

Description

This function can be useful to check whether a loon widget is has been closed by the user.

Usage

1_isloonWidget(widget)

Arguments

widget widget path as a string or as an object handle

Value

boolean, TRUE if the argument is a valid loon widget path, FALSE otherwise

1_layer Loon layers

Description

Loon supports layering of visuals and groups of visuals. The 1_layer function is a generic method.

Usage

1_layer(widget, x, ...)

134 I _layer

Arguments
widget widget path as a string or as an object handle
X for UseMethod: an object whose class will determine the method to be dis-
patched.
additional arguments, often state definition for the basic layering function
Details

loon’s displays that use the main graphics model (i.e. histogram, scatterplot and graph displays)
support layering of visual information. The following table lists the layer types and functions for
layering on a display.

Type Description Creator Function
group a group can be a parent of other layers 1_layer_group
polygon one polygon 1_layer_polygon

text one text string 1_layer_text

line one line (i.e. connected line segments) 1_layer_line
rectangle one rectangle 1_layer_rectangle
oval one oval 1_layer_oval

points n points (filled) circle 1_layer_points

texts n text strings 1_layer_text
polygons n polygons 1_layer_polygons
rectangles n rectangles 1_layer_rectangles
lines n sets of connected line segments 1_layer_lines
smooth fitted smooth line 1_layer_smooth
rasterImage one raster image 1_layer_rasterImage
heatImage one heat image 1_layer_heatImage
contourLines contour lines 1_layer_contourLines

Every layer within a display has a unique id. The visuals of the data in a display present the default
layer of that display and has the layer id 'model’. For example, the 'model' layer of a scatterplot
display visualizes the scatterplot glyphs. Functions useful to query layers are

Function Description
1_layer_ids List layer ids
1_layer_getType Get layer type

Layers are arranged in a tree structure with the tree root having the layer id 'root'. The rendering
order of the layers is according to a depth-first traversal of the layer tree. This tree also maintains a
label and a visibility flag for each layer. The layer tree, layer ids, layer labels and the visibility of
each layer are visualized in the layers inspector. If a layer is set to be invisible then it is not rendered
on the display. If a group layer is set to be invisible then all its children are not rendered; however,
the visibility flag of the children layers remain unchanged. Relevant functions are:

Function Description
1_layer_getParent Get parent layer id of a layer

I _layer 135

1_layer_getChildren Get children of a group layer

1_layer_index Get the order index of a layer among its siblings
1_layer_printTree Print out the layer tree

1_layer_move Move a layer

1_layer_lower Switch the layer place with its sibling to the right
1_layer_raise Switch the layer place with its sibling to the left
1_layer_demote Moves the layer up to be a left sibling of its parent
1_layer_promote Moves the layer to be a child of its right group layer sibling
1_layer_hide Set the layers visibility flag to FALSE
1_layer_show Set the layers visibility flag to TRUE
1_layer_isVisible Return visibility flag of layer

1_layer_layerVisibility Returns logical value for whether layer is actually seen
1_layer_groupVisibility Returns all, part or none for expressing which part of the layers children are visible.

1_layer_delete Delete a layer. If the layer is a group move all its children layers to the layers parent.
1_layer_expunge Delete layer and all its children layer.

1_layer_getlLabel Get layer label.

1_layer_relabel Change layer label.

1_layer_bbox Get the bounding box of a layer.

All layers have states that can be queried and modified using the same functions as the ones used
for displays (i.e. 1_cget, 1_configure, *[~ and "~ [<-"). The last group of layer types in the above
table have n-dimensional states, where the actual value of n can be different for every layer in a
display.

The difference between the model layer and the other layers is that the model layer has a selected
state, responds to selection gestures and supports linking.

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_info_states, 1_scaleto_layer, 1_scaleto_world;

some 1_layer S3 methods: 1_layer.density, 1_layer.map, 1_layer.SpatialPolygonsDataFrame,
1_layer.SpatialPolygons, 1_layer.Polygons,1_layer.Polygon,1l_layer.SpatiallinesDataFrame,
1_layer.Spatiallines, 1_layer.Lines, 1_layer.Line, 1_layer.SpatialPointsDataFrame
1_layer.SpatialPoints

Examples

if(interactive()){

1_layer is a generic method
newFoo <- function(x, vy, ...) {
r <- list(x=x, y=y, ...)
class(r) <- 'foo'
return(r)

136 I layer.density

}
1_layer.foo <- function(widget, x) {
x$widget <- widget
id <- do.call('l_layer_polygon', x)
return(id)
}
p <- 1_plot()
obj <- newFoo(x=c(1:6,6:2), y=c(3,1,0,0,1,3,3,5,6,6,5), color="'yellow')

id <- 1_layer(p, obj)

1_scaleto_world(p)
3

1_layer.density Layer Method for Kernel Density Estimation

Description

Layer a line that represents a kernel density estimate.

Usage
S3 method for class 'density'
1_layer(widget, x, ...)
Arguments
widget widget path as a string or as an object handle
X object from density of class "density”

additional arguments, often state definition for the basic layering function

Value

layer object handle, layer id

See Also

density

I _layer.Line

Examples

if(interactive()){
d <- density(faithful$eruptions, bw = "sj")
h <- 1_hist(x = faithful$eruptions, yshows="density")
1 <- 1_layer.density(h, d, color="steelblue”, linewidth=3)
or 1 <- 1_layer(h, d, color="steelblue”, linewidth=3)
3

137

1_layer.Line Layer line in Line object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Line'
1_layer(widget, x, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio

and Virgilio

See Also

sp, 1_layer

138 I _layer.Lines

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layer.Lines Layer lines in Lines object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'Lines'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

I layer.map

Examples
if (interactive()) {
if (requireNamespace("rworldmap”, quietly =

world <- rworldmap::getMap(resolution =
p <- 1_plot()

lmap <- 1_layer(p, world, asSinglelLayer=

1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, '"NAME')

139

TRUE)) {
"coarse”

TRUE)

1_layer.map

Add a Map of class map as Drawings to Loon plot

Description

The maps library provides some map data in polygon which can be added as drawings (currently
with polygons) to Loon plots. This function adds map objects with class map from the maps library

as background drawings.

Usage
S3 method for class 'map'
1_layer(
widget,
X’
color = "",
linecolor = "black”,
linewidth = 1,
label,
parent = "root",
index = 0,
asSingleLayer = TRUE,
)
Arguments
widget widget path as a string or as an object handle
X a map object of class map as defined in the maps R package
color fill color, if empty string "", then the fill is transparant
linecolor outline color
linewidth linewidth of outline
label label used in the layers inspector

140 I _layer.Polygon

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

index position among its siblings. valid values are 0, 1, 2, ..., ’end’

asSingleLayer if TRUE then all the polygons get placed in a n-dimension layer of type polygons.
Otherwise, if FALSE, each polygon gets its own layer.

additional arguments are not used for this methiod

Value

If asSinglelLayer=TRUE then returns layer id of polygons layer, otherwise group layer that contains
polygon children layers.

Examples

if(interactive()){

if (requireNamespace("maps”, quietly = TRUE)) {
canada <- maps::map(”"world”, "Canada”,
fill=TRUE, plot=FALSE)
p <- 1_plot()
1_map <- 1_layer(p, canada,
asSinglelLayer=TRUE, color = "cornsilk")
1_map['color'] <- ifelse(grepl(”lake”, canada$names, TRUE),
"lightblue”, "cornsilk")
1_scaleto_layer(p, 1l_map)
1_map['active'] <- FALSE
1_map['active'] <- TRUE
1 _map['tag']

1_layer.Polygon Layer polygon in Polygon object

Description

Methods to plot map data defined in the sp package

Usage

S3 method for class 'Polygon'
1_layer(widget, x, ...)

I _layer.Polygons 141

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class
arguments forwarded to the relative 1_layer function
Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layer.Polygons Layer polygons in Polygons object

Description

Methods to plot map data defined in the sp package

Usage

S3 method for class 'Polygons'
1_layer(widget, x, asSingleLayer = TRUE, ...)

142 I_layer.SpatialLines

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layer.SpatiallLines Layer lines in SpatialLines object

Description

Methods to plot map data defined in the sp package

Usage

S3 method for class 'Spatiallines'
1_layer(widget, x, asSinglelLayer = TRUE, ...)

I_layer.SpatialLinesDataFrame 143

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layer.SpatiallLinesDataFrame
Layer lines in SpatialLinesDataFrame object

Description

Methods to plot map data defined in the sp package

144 I layer.SpatialLinesDataFrame

Usage
S3 method for class 'SpatiallLinesDataFrame'
1_layer(widget, x, asSinglelLayer = TRUE, ...)

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

I_layer.SpatialPoints 145

1_layer.SpatialPoints Layer points in SpatialPoints object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPoints'
1_layer(widget, x, asMainLayer = FALSE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class
asMainLayer if TRUE and the widget is a scatterplot widget, then points can be chosen to be

added to the 'model’ layer

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

146 _layer.SpatialPointsDataFrame

1_layer.SpatialPointsDataFrame
Layer points in SpatialPointsDataFrame object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPointsDataFrame'’
1 _layer(widget, x, asMainLayer = FALSE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class
asMainLayer if TRUE and the widget is a scatterplot widget, then points can be chosen to be

added to the 'model’ layer

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References
Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

[_layer.SpatialPolygons 147

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layer.SpatialPolygons
Layer polygons in SpatialPolygons object

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPolygons'
1_layer(widget, x, asSinglelLayer = TRUE, ...)
Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

148 I_layer.SpatialPolygonsDataFrame

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, '"NAME')

1_layer.SpatialPolygonsDataFrame
Layer polygons in SpatialPolygonDataFrame

Description

Methods to plot map data defined in the sp package

Usage
S3 method for class 'SpatialPolygonsDataFrame'
1_layer(widget, x, asSinglelLayer = TRUE, ...)

Arguments
widget widget widget path as a string or as an object handle
X an object defined in the sp class

asSinglelLayer If TRUE then prefer a single layer over groups with nested 1-dimensinal layers

arguments forwarded to the relative 1_layer function

Details

Note that currently loon does neither support holes and ring directions.

Value

layer id

_layers_inspector 149

References

Applied Spatial Data Analysis with R by Bivand, Roger S. and Pebesma, Edzer and Gomez-Rubio
and Virgilio

See Also

sp, 1_layer

Examples

if (interactive()) {

if (requireNamespace("rworldmap”, quietly = TRUE)) {
world <- rworldmap::getMap(resolution = "coarse")
p <- 1_plot()
Imap <- 1_layer(p, world, asSinglelLayer=TRUE)
1_scaleto_world(p)
attr(lmap, 'hole')
attr(lmap, 'NAME')

1_layers_inspector Create a Layers Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_layers_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

150 I _layer_bbox

Examples

if(interactive()){

i <- 1_layers_inspector()

3

1_layer_bbox Get the bounding box of a layer.

Description

The bounding box of a layer returns the coordinates of the smallest rectangle that encloses all the
elements of the layer.

Usage

1_layer_bbox(widget, layer = "root")

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

Numeric vector of length 4 with (xmin, ymin, xmax, ymax) of the bounding box

Examples

if(interactive()){

p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))
1_layer_bbox(p, layer='model')

1 <- 1_layer_rectangle(p, x=0:1, y=30:31)
1_layer_bbox(p, 1)

1_layer_bbox(p, 'root')

}

[_layer_contourLines

151

1_layer_contourLines Layer Contour Lines

Description

This function is a wrapper around contourLines that adds the countourlines to a loon plot which
is based on the cartesian coordinate system.

length.out = nrow(z)),
ncol(z)),

length.out

Usage
1_layer_contourLines(
widget,
x = seq(o, 1,
y = seq(o, 1,
Z)

nlevels = 10,

levels = pretty(range(z, na.rm = TRUE), nlevels),

asSingleLayer = TRUE,
parent = "root”,
index = "end”,

)

Arguments

widget widget path as a string or as an object handle

X,y As described in grDevices: :contourLines: locations of grid lines at which
the values in z are measured. These must be in ascending order. By default,
equally spaced values from O to 1 are used. If x is a list, its components x$x and
x$y are used for x and y, respectively. If the list has component z this is used
for z.

z As described in grDevices: :contourLines: a matrix containing the values to
be plotted (NAs are allowed). Note that x can be used instead of z for conve-
nience.

nlevels As described in grDevices: : contourLines: number of contour levels desired
iff levels is not supplied.

levels As described in grDevices: : contourLines: numeric vector of levels at which
to draw contour lines.

asSinglelLayer if TRUE a lines layer is used for the line, otherwise if FALSE a group with nested
line layers for each line is created

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

index position among its siblings. valid values are 0, 1, 2, ..., ’end’

arguments forwarded to 1_layer_line

152 I _layer_delete

Details

For more information run: 1_help(”learn_R_layer.html#countourlines-heatimage-rasterimage")

Value

layer id of group or lines layer

Examples

if(interactive()){

p <- 1_plot()

X <= 10*1:nrow(volcano)

y <= 10*1:ncol(volcano)

lcl <- 1_layer_contourLines(p, X, y, volcano)
1_scaleto_world(p)

if (requireNamespace("MASS"”, quietly = TRUE)) {

pl <- with(iris, 1_plot(Sepal.Length~Sepal.Width, color=Species))
lcl <- with(iris, 1_layer_contourLines(p1, MASS::kde2d(Sepal.Width,Sepal.Length)))

p2 <- with(iris, 1_plot(Sepal.Length~Sepal.Width, color=Species))
layers <- sapply(split(cbind(iris, color=p2['color']), iris$Species), function(dat) {
kest <- with(dat, MASS::kde2d(Sepal.Width,Sepal.Length))
1_layer_contourLines(p2, kest, color=as.character(dat$color[1]), linewidth=2,
label=paste@(as.character(dat$Species[1]), " contours”))
D)

1_layer_delete Delete a layer

Description
All but the 'model’ and the 'root' layer can be dynamically deleted. If a group layer gets deleted
with 1_layer_delete then all its children layers get moved into their grandparent group layer.
Usage

1_layer_delete(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

I_layer_demote 153

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_info_states

Examples

if(interactive()){

p <- 1_plot()
11 <- 1_layer_rectangle(p, x
1_layer_delete(11)

0:1, y = 0:1, color="red")

12 <- 1_layer_rectangle(p, x = @0:1, y = 0:1, color="yellow")
1_layer_delete(p,12)

3

1_layer_demote Moves the layer to be a child of its right group layer sibling

Description

Moves the layer up the layer tree (away from the root layer) if there is a sibling group layer to the
right of the layer.

Usage

1_layer_demote(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

154 I _layer_expunge

Examples

if(interactive()){
p <- 1_plot()

gl <- 1_layer_group(p)
g2 <- 1_layer_group(p, parent=gl)
11 <- 1_layer_oval(p, x=0:1, y=0:1)

1_layer_printTree(p)
1_layer_demote(p, 11)
1_layer_printTree(p)
1_layer_demote(p, 11)
1_layer_printTree(p)

}

1_layer_expunge Delete a layer and all its descendants

Description

Delete a group layer and all it’s descendants. Note that the 'model' layer cannot be deleted.

Usage

1_layer_expunge(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_delete

I_layer_getChildren 155

Examples

if(interactive()){

p <- 1_plot()

g <- 1_layer_group(p)

11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g, color="", linecolor="orange"”, linewidth=2)
12 <- 1_layer_line(p, x=c(90,.5,1), y=c(0,1,0), parent=g, color="blue")

nn

1_layer_expunge(p, g)
or 1_layer_expunge(g)

}

1_layer_getChildren Get children of a group layer

Description

Returns the ids of a group layer’s children.

Usage

1 _layer_getChildren(widget, layer = "root")

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

Character vector with ids of the childrens. To create layer handles (i.e. objects of class '1_layer')
use the 1_create_handle function.

See Also

1_layer, 1_layer_getParent
Examples

if(interactive()){

p <- 1_plot()

g <- 1_layer_group(p)
11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g)

156 I _layer_getLabel

12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle', parent=g)
1_layer_getChildren(p, g)

}

1_layer_getlLabel Get layer label.

Description
Layer labels are useful to identify layer in the layer inspector. The layer label can be initially set at
layer creation with the label argument.

Usage

1_layer_getlLabel (widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Note that the layer label is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

Named vector of length 1 with layer label as value and layer id as name.

See Also

1_layer,1_layer_relabel

Examples

if(interactive()){
p <- 1_plot()
11 <- 1_layer_rectangle(p, x=0:1, y=0:1, label="a rectangle")

1_layer_getlLabel(p, 'model')
1_layer_getlLabel(p, 11)

}

I _layer_getParent 157

1_layer_getParent Get parent layer id of a layer

Description

The toplevel parent is the 'root' layer.

Usage

1_layer_getParent(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
See Also

1_layer,1_layer_getChildren
Examples
if(interactive()){
p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))
1_layer_getParent(p, 'model')

}

1_layer_getType Get layer type

Description

To see the manual page of 1_layer for all the primitive layer types.

Usage
1 _layer_getType(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument

is not used

158 I _layer_group

Details

For more information run: 1_help("learn_R_layer")

Value
Oneof: 'group', 'polygon', 'text', 'line', 'rectangle’, 'oval', 'points', 'texts', 'polygons’,
'rectangles’', 'lines' and 'scatterplot’', 'histogram', 'serialaxes' and 'graph'.

See Also

1_layer

Examples

if(interactive()){

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1)
1_layer_getType(p, 1)
1_layer_getType(p, 'model')

}

1_layer_group layer a group node

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

A group layer can contain other layers. If the group layer is invisible, then so are all its children.

Usage

1_layer_group(widget, label = "group”, parent = "root”, index = @)

Arguments

widget widget path name as a string

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group
Details

For more information run: 1_help("learn_R_layer")

I_layer_group Visibility 159

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if (interactive()){

p <- 1_plot(x=c(1,10,1.5,7,4.3,9,5,2,8),
y=c(1,10,7,3,4,3.3,8,3,4),
title="Demo Layers")

id.g <- 1_layer_group(p, "A Layer Group")

id.pts <- 1_layer_points(p, x=c(3,6), y=c(4,7), color="red", parent=id.g)
1_scaleto_layer(p, id.pts)

1_configure(id.pts, x=c(-5,5,12), y=c(-2,-5,18), color="lightgray")

}

1_layer_groupVisibility
Queries visibility status of decendants

Description

Query whether all, part or none of the group layers descendants are visible.

Usage

1_layer_groupVisibility(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

160 I_layer_heatImage

Value

'all', 'part' or 'none' depending on the visibility status of the descendants.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_isVisible, 1_layer_layerVisibility

Examples

if(interactive()){
p <- 1_plot()

g <- 1_layer_group(p)
11 <- 1_layer_rectangle(p, x=0:1, y=0:1, parent=g)
12 <- 1_layer_oval(p, x=0:1, y=0:1, parent=g)

1_layer_groupVisibility(p, g)
1_layer_hide(p, 12)
1_layer_groupVisibility(p, g)
1_layer_hide(p, 11)
1_layer_groupVisibility(p, g)
1_layer_hide(p, g)
1_layer_groupVisibility(p, g)

}

1_layer_heatImage Display a Heat Image

Description

This function is very similar to the image function. It works with every loon plot which is based on
the cartesian coordinate system.

Usage

1_layer_heatImage(
widget,
x = seq(@, 1, length.out = nrow(z)),

y = seq(@, 1, length.out = ncol(z)),
27

zlim = range(zl[is.finite(z)]),

xlim = range(x),

ylim = range(y),

col = grDevices: :heat.colors(12),
breaks,

oldstyle = FALSE,

I _layer_heatImage 161

useRaster,
index = "end",
parent = "root",
)
Arguments
widget widget path as a string or as an object handle
X locations of grid lines at which the values in z are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from O to 1 are used. If x is a list, its components x$x and x$y are used
for x and y, respectively. If the list has component z this is used for z.
y see description for the x argument above
a numeric or logical matrix containing the values to be plotted (NAs are allowed).
Note that x can be used instead of z for convenience.
zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted.
x1lim range for the plotted x values, defaulting to the range of x
ylim range for the plotted y values, defaulting to the range of y
col a list of colors such as that generated by hcl.colors, gray.colors or similar
functions.
breaks a set of finite numeric breakpoints for the colours: must have one more break-
point than colour and be in increasing order. Unsorted vectors will be sorted,
with a warning.
oldstyle logical. If true the midpoints of the colour intervals are equally spaced, and
z1im[1] and z1im[2] were taken to be midpoints. The default is to have colour
intervals of equal lengths between the limits.
useRaster logical; if TRUE a bitmap raster is used to plot the image instead of polygons. The
grid must be regular in that case, otherwise an error is raised. For the behaviour
when this is not specified, see ‘Details’.
index position among its siblings. valid values are 0, 1, 2, ..., ’end’
parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.
argumnets forwarded to 1_layer_line
Details

For more information run: 1_help("learn_R_layer.html#countourlines-heatimage-rasterimage")

Value

layer id of group or rectangles layer

162 I _layer_hide

Examples

if(interactive()){

if (requireNamespace("MASS", quietly = TRUE)) {
kest <- with(iris, MASS::kde2d(Sepal.Width,Sepal.Length))
image (kest)
contour(kest, add=TRUE)

p <- 1l_plot()
lcl <- 1_layer_contourLines(p, kest, label='contour lines')
limg <- 1_layer_heatImage(p, kest, label='heatmap')
1_scaleto_world(p)

}

from examples(image)

X <=y <- seq(-4*pi, 4*pi, len = 27)

r <- sgrt(outer(x*2, y*2, "+"))

pl <= 1_plot()

1_layer_heatImage(pl, z = z <- cos(r*2)*exp(-r/6), col = gray((0:32)/32))
1_scaleto_world(p1)

image(z = z <- cos(r*2)*exp(-r/6), col = gray((0:32)/32))

3

1_layer_hide Hide a Layer

Description
A hidden layer is not rendered. If a group layer is set to be hidden then all its descendants are not
rendered either.

Usage
1_layer_hide(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

[layer_ids 163

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_show, 1_layer_isVisible, 1_layer_layerVisibility, 1_layer_groupVisibility

Examples

if(interactive()){
p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
1_layer_hide(p, 1)

}

1_layer_ids List ids of layers in Plot

Description

Every layer within a display has a unique id. This function returns a list of all the layer ids for a
widget.

Usage

1_layer_ids(widget)

Arguments

widget widget path as a string or as an object handle

Details

For more information run: 1_help("learn_R_layer.html#add-move-delete-layers")

Value

vector with layer ids in rendering order. To create a layer handle object use 1_create_handle.

See Also

1_layer,1_info_states

164 I _layer_index

Examples

if (interactive()){

set.seed(500)

x <= rnorm(30)

y <= 4 + 3*%x + rnorm(30)

fit <= 1Im(y~x)

xseq <- seq(min(x)-1, max(x)+1, length.out = 50)

fit_line <- predict(fit, data.frame(x=range(xseq)))

ci <- predict(fit, data.frame(x=xseq),
interval="confidence"”, level=0.95)

pi <- predict(fit, data.frame(x=xseq),
interval="prediction”, level=0.95)

p <- 1_plot(y~x, color='black', showScales=TRUE, showGuides=TRUE)
glayer <- 1_layer_group(
p, label="simple linear regression”,
parent="root", index="end"
)
fitLayer <- 1_layer_line(
p, x=range(xseq), y=fit_line, color="#04327F",
linewidth=4, label="fit", parent=glLayer

)

cilLayer <- 1_layer_polygon(
P,
x = c(xseq, rev(xseq)),
y = c(cil, '1wr'], rev(cil,'upr'D)),
color = "#96BDFF", linecolor="",
label = "95 % confidence interval”,
parent = glLayer, index='end'

)

piLayer <- 1_layer_polygon(
p,
x = c(xseq, rev(xseq)),
y = c(pil, 'Iwr'], rev(pil, 'upr'l)),
color = "#E2EDFF", linecolor="",
label = "95 % prediction interval”,
parent = glLayer, index='end'

)

1_info_states(piLayer)

1_layer_index Get the order index of a layer among its siblings

Description

The index determines the rendering order of the children layers of a parent. The layer with index=0
is rendered first.

I layer_isVisible 165

Usage

1_layer_index(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Note that the index for layers is 0 based.

Value

numeric value

See Also

1_layer,1_layer_move

1_layer_isVisible Return visibility flag of layer

Description
Hidden or invisible layers are not rendered. This function queries whether a layer is visible/rendered
or not.

Usage

1_layer_isVisible(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

166 I layer_layerVisibility

Value

TRUE or FALSE depending whether the layer is visible or not.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_layerVisibility, 1_layer_groupVisibility

Examples

if(interactive()){

p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1)
1_layer_isVisible(p, 1)
1_layer_hide(p, 1)
1_layer_isVisible(p, 1)

}

1_layer_layerVisibility
Returns logical value for whether layer is actually seen

Description

Although the visibility flag for a layer might be set to TRUE it won’t be rendered as on of its ancestor
group layer is set to be invisible. The 1_layer_visibility returns TRUE if the layer and all its
ancestor layers have their visibility flag set to true and the layer is actually rendered.

Usage

1_layer_layerVisibility(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

[layer_line 167

Value

TRUE if the layer and all its ancestor layers have their visibility flag set to true and the layer is
actually rendered, otherwise FALSE.

See Also

1_layer,1_layer_show, 1_layer_hide, 1_layer_isVisible, 1_layer_groupVisibility

1_layer_line Layer a line

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage
1_layer_line(
widget,
X ’
y = NULL,
color = "black”,
linewidth = 1,
dash = "",
label = "line",
parent = "root",
index = 0,
)
Arguments
widget widget path name as a string
X the coordinates of line. Alternatively, a single plotting structure, function or
any R object with a plot method can be provided as x and y are passed on to
Xy .coords
y the y coordinates of the line, optional if X is an appropriate structure.
color color of line
linewidth linewidth of outline
dash dash pattern of line, see https://www. tcl-lang.org/man/tcl8.6/TkCmd/canvas.
htm#M26
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

https://www.tcl-lang.org/man/tcl8.6/TkCmd/canvas.htm#M26
https://www.tcl-lang.org/man/tcl8.6/TkCmd/canvas.htm#M26

168 I _layer_lines

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){

p <- 1_plot()
1 <- 1_layer_line(p, x=c(1,2,3,4), y=c(1,3,2,4), color="red', linewidth=2)
1_scaleto_world(p)

object

p <- 1_plot()

1 <- 1_layer_line(p, x=nhtemp)
1_scaleto_layer(l)

}

1_layer_lines Layer lines

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage
1_layer_lines(

widget,
X,
Y,
color = "black”,
linewidth = 1,
label = "lines"”,
parent = "root”,
index = 0,
group = NULL,

active = TRUE,

I_layer_lines

Arguments
widget
X
y
color
linewidth
label
parent
index
group

active

Details

169

widget path name as a string

list with vectors with x coordinates

list with vectors with y coordinates

color of lines

vector with line widths

label used in the layers inspector

group layer

of the newly added layer in its parent group

separate X vector or y vector into a list by group.

a logical determining whether objects appear or not (default is TRUE for all).

additional state initialization arguments, see 1_info_states

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){

s <- Filter(function(df)nrow(df) > 1, split(UsAndThem, UsAndThem$Country))
sUaT <- Map(function(country){country[order(country$Year),]} , s)

xcoords <- Map(function(x)x$Year, sUaT)

ycoords <- Map(function(x)x$LifeExpectancy, sUaT)

region <- sapply(sUaT, function(x)as.character(x$Geographic.Region[1]))

p <- 1_plot(showItemLabels=TRUE)
1 <- 1_layer_lines(p, xcoords, ycoords, itemLabel=names(sUaT), color=region)
1_scaleto_layer(1l)

Set groups

p <- 1_plot(showItemLabels=TRUE)
1 <- 1_layer_lines(p,

x = c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),
y = c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
group = rep(1:5, 4),

linewidth = 4,

col = 1_getColorList()[1:5])

170 I _layer_lower

1_scaleto_layer(l)

}

1_layer_lower Switch the layer place with its sibling to the right

Description

Change the layers position within its parent layer group by increasing the index of the layer by one
if possible. This means that the raised layer will be rendered before (or on below) of its sibling layer
to the right.

Usage

1_layer_lower(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_raise, 1_layer_move

Examples

if(interactive()){
p <- 1_plot()

11 <- 1_layer_rectangle(p, x=0:1, y=0:1)
12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle')

1_aspect(p) <- 1
1_layer_lower(p, 12)

3

I _layer_move 171

1_layer_move Move a layer

Description

The postition of a layer in the layer tree determines the rendering order. That is, the non-group
layers are rendered in order of a Depth-first traversal of the layer tree. The toplevel group layer is
called 'root"'.

Usage
1_layer_move(widget, layer, parent, index = "@")
Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
parent if parent layer is not specified it is set to the current parent layer of the layer
index position among its siblings. valid values are 0, 1, 2, ..., ’end’
Value

0 if success otherwise the function throws an error

See Also
1_layer,1_layer_printTree, 1_layer_index
Examples
if(interactive()){
p <- 1_plot()
1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
g <- 1_layer_group(p)

1_layer_printTree(p)

1_layer_move(l, parent=g)
1_layer_printTree(p)

1_layer_move(p, 'model', parent=g)
1_layer_printTree(p)

}

172

I _layer_oval

1_layer_oval

Layer a oval

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-

play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_oval(

widget,
X’
Y,

color = "gray80",

linecolor = "black”,
linewidth = 1,
label = "oval”,
parent = "root”,
index = 0,
)
Arguments
widget widget path name as a string
X x coordinates
y y coordinates
color fill color, if empty string "", then the fill is transparant
linecolor outline color
linewidth linewidth of outline
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group
additional state initialization arguments, see 1_info_states
Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

I_layer_points 173

See Also
1_layer,1_info_states
Examples
if(interactive()){
<- 1_plot()

p
1 <- 1_layer_oval(p, c(1,5), c(2,12), color="steelblue')
1_configure(p, panX=0, panY=0, deltaX=20, deltaY=20)

}

1_layer_points Layer points

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Scatter points layer

Usage

1_layer_points(
widget,
X,
y = NULL,
color = "gray60”,
size = 6,
label = "points”,
parent = "root”,
index = 0,
active = TRUE,

)
Arguments

widget widget path name as a string

X the coordinates of line. Alternatively, a single plotting structure, function or
any R object with a plot method can be provided as x and y are passed on to
Xy .coords

y the y coordinates of the line, optional if X is an appropriate structure.

color color of points

size size point, as for scatterplot model layer

174 I _layer_polygon

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

active a logical determining whether objects appear or not (default is TRUE for all).

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

1_layer_polygon Layer a polygon

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage
1_layer_polygon(
widget,
X!
Y,
color = "gray80",
linecolor = "black",

linewidth = 1,
label = "polygon”,
parent = "root",
index = 0,

I _layer_polygon 175

Arguments

widget widget path name as a string

X x coordinates

y y coordinates

color fill color, if empty string "", then the fill is transparant

linecolor outline color

linewidth linewidth of outline

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if (interactive()){

set.seed(500)

x <= rnorm(30)

y <= 4 + 3%*x + rnorm(30)

fit <= Im(y~x)

xseq <- seq(min(x)-1, max(x)+1, length.out = 50)

fit_line <- predict(fit, data.frame(x=range(xseq)))

ci <- predict(fit, data.frame(x=xseq),
interval="confidence"”, level=0.95)

pi <- predict(fit, data.frame(x=xseq),
interval="prediction”, level=0.95)

p <- 1_plot(y~x, color='black', showScales=TRUE, showGuides=TRUE)
glayer <- 1_layer_group(
p, label="simple linear regression”,
parent="root", index="end"
)
fitLayer <- 1_layer_line(
p, x=range(xseq), y=fit_line, color="#04327F",
linewidth=4, label="fit", parent=gLayer

176

cilLayer <- 1_layer_polygon(

)

P,

x = c(xseq, rev(xseq)),

y = c(cil, 'lwr'], rev(cil, 'upr'l)),
color = "#96BDFF", linecolor="",
label = "95 % confidence interval”,
parent = glayer, index='end'

piLayer <- 1_layer_polygon(

)

p,

x = c(xseq, rev(xseq)),

y = c(pil, "Iwr'], rev(pil, 'upr'l)),
color = "#E2EDFF", linecolor="",
label = "95 % prediction interval”,
parent = glLayer, index='end'

1_info_states(piLayer)

}

I_layer_polygons

1_layer_polygons Layer polygons

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_

layer_polygons(

widget,

X)

Y,

color = "gray80",
linecolor = "black”,

linewidth = 1,
label = "polygons”,

parent = "root”,
index = 0,
group = NULL,

active = TRUE,

I _layer_polygons 177
Arguments
widget widget path name as a string
X list with vectors with x coordinates
y list with vectors with y coordinates
color vector with fill colors, if empty string "", then the fill is transparant
linecolor vector with outline colors
linewidth vector with line widths
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group
group separate X vector or y vector into a list by group.
active a logical determining whether objects appear or not (default is TRUE for all).
additional state initialization arguments, see 1_info_states
Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){
p <- 1_plot()

1 <- 1_layer_polygons(
pY
x = list(c(1,2,1.5), c(3,4,6,5,2), c(1,3,5,3)),
y = list(c(1,1,2), c(1,1.5,1,4,2), c(3,5,6,4)),
color = c('red', 'green', 'blue'),
linecolor = ""

)
1_scaleto_world(p)

1_info_states(l, "color")
Set groups

p <- 1_plot()
1_layer_polygons(p,

178 [layer_printTree

x =c(, 2, 1.5, 3, 4, 6, 5, 2,1, 3, 5, 3),

y=c(, 1, 2,1, 1.5, 1, 4, 2, 3, 5, 6, 4),

group = c(rep(1,3), rep(2,5), rep(3, 4)))
1_scaleto_world(p)

}

1_layer_printTree Print the layer tree

Description

Prints the layer tree (i.e. the layer ids) to the prompt. Group layers are prefixed with a '+'. The
"root' layer is not listed.

Usage

1_layer_printTree(widget)

Arguments

widget widget path as a string or as an object handle

Value

empty string

See Also

1_layer,1_layer_getChildren, 1_layer_getParent

Examples

if(interactive()){

p <- 1_plot()

1_layer_rectangle(p, x=0:1, y=0:1)
g <- 1_layer_group(p)
1_layer_oval(p, x=0:1,
1_layer_line(p, x=0:1,
1_layer_printTree(p)

, parent=g)

y=0:1
y=0:1, parent=g)

}

I _layer_promote 179

1_layer_promote Moves the layer up to be a left sibling of its parent

Description

Moves the layer down the layer tree (towards the root layer) if the parent layer is not the root layer.

Usage

1_layer_promote(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

Examples
if(interactive()){
p <- 1_plot()

gl <- 1_layer_group(p)
g2 <- 1_layer_group(p, parent=gl)
11 <- 1_layer_oval(p, x=0:1, y=0:1, parent=g2)

1_layer_printTree(p)
1_layer_promote(p, 11)
1_layer_printTree(p)
1_layer_promote(p, 11)
1_layer_printTree(p)

}

180 [layer_raise

1_layer_raise Switch the layer place with its sibling to the left

Description

Change the layers position within its parent layer group by decreasing the index of the layer by one
if possible. This means that the raised layer will be rendered after (or on top) of its sibling layer to
the left.

Usage

1_layer_raise(widget, layer)

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer"' then the layer argument
is not used
Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_lower, 1_layer_move

Examples

if(interactive()){
p <- 1_plot()

11 <- 1_layer_rectangle(p, x=0:1, y=0:1)
12 <- 1_layer_oval(p, x=0:1, y=0:1, color="thistle')

1_aspect(p) <- 1
1_layer_raise(p, 11)

}

I _layer_rasterImage 181

1_layer_rasterImage Layer a Raster Image

Description

This function is very similar to the rasterImage function. It works with every loon plot which is
based on the cartesian coordinate system.

Usage
1_layer_rasterImage(
widget,
image,
xleft,
ybottom,
xright,
ytop,
angle = 0,
interpolate = FALSE,
parent = "root”,
index = "end”,
)
Arguments
widget widget path as a string or as an object handle
image a raster object, or an object that can be coerced to one by as.raster.
xleft a vector (or scalar) of left x positions.
ybottom a vector (or scalar) of bottom y positions.
xright a vector (or scalar) of right X positions.
ytop a vector (or scalar) of top y positions.
angle angle of rotation (in degrees, anti-clockwise from positive x-axis, about the
bottom-left corner).
interpolate a logical vector (or scalar) indicating whether to apply linear interpolation to the
image when drawing.
parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.
index position among its siblings. valid values are 0, 1, 2, ..., ’end’
argumnets forwarded to 1_layer_line
Details

For more information run: 1_help(”learn_R_layer.html#countourlines-heatimage-rasterimage")

182 I _layer_rectangle

Value

layer id of group or rectangles layer

Examples

if(interactive()){

plot(1,1, xlim = c(0,1), ylim=c(0,1))
mat <- matrix(c(0,90,0,0, 1,1), ncol=2)
rasterImage(mat, 0,0,1,1, interpolate = FALSE)

p <- 1_plot()
1_layer_rasterImage(p, mat, 0,0,1,1)
1_scaleto_world(p)

image <- as.raster(matrix(@:1, ncol =5, nrow = 3))
p <- 1_plot(showScales=TRUE, background="thistle", uselLoonInspector=FALSE)
1_layer_rasterImage(p, image, 100, 300, 150, 350, interpolate = FALSE)
1_layer_rasterImage(p, image, 100, 400, 150, 450)
1_layer_rasterImage(p, image, 200, 300, 200 + 10, 300 + 10,

interpolate = FALSE)
1_scaleto_world(p)

from examples(rasterImage)

set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab = "", ylab = "")
rasterImage(image, 100, 300, 150, 350, interpolate = FALSE)
rasterImage(image, 100, 400, 150, 450)
rasterImage(image, 200, 300, 200 + 10, 300 + 10,

interpolate = FALSE)

1_layer_rectangle Layer a rectangle

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_rectangle(
widget,
X)
Y,

I _layer_rectangle

color = "gray80",

additional state initialization arguments, see 1_info_states

, then the fill is transparant

linecolor = "black”,
linewidth = 1,
label = "rectangle”,
parent = "root”,
index = 0,
)
Arguments
widget widget path name as a string
X x coordinates
y y coordinates
color fill color, if empty string ""
linecolor outline color
linewidth linewidth of outline
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group
Details

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){

<- 1_plot()

p
1 <- 1_layer_rectangle(p, x=c(2,3), y=c(1,10), color='steelblue')
1_scaleto_layer(1l)

}

183

184 I_layer_rectangles

1_layer_rectangles Layer rectangles

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Usage

1_layer_rectangles(
widget,
X)
Y,
color = "gray80",
linecolor = "black"”,
linewidth = 1,
label = "rectangles”,
parent = "root”,
index = 0,
group = NULL,

active = TRUE,

)
Arguments

widget widget path name as a string

X list with vectors with x coordinates

y list with vectors with y coordinates

color vector with fill colors, if empty string "", then the fill is transparant

linecolor vector with outline colors

linewidth vector with line widths

label label used in the layers inspector

parent group layer

index of the newly added layer in its parent group

group separate X vector or y vector into a list by group.

active a logical determining whether objects appear or not (default is TRUE for all).

additional state initialization arguments, see 1_info_states

Details

For more information run: 1_help("learn_R_layer")

I _layer_relabel 185

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){
p <- 1_plot()

1 <- 1_layer_rectangles(
P,
x = list(c(0,1), c(1,2), c(2,3), c(5,6)),
y = list(c(0,1), c(1,2), c(0,1), c(3,4)),
color = c('red', 'blue', 'green', 'orange'),
linecolor = "black”

)

1_scaleto_world(p)

1_info_states(1l)

Set groups

pp <- 1l_plot(x = c(0,1,1,2,2,3,5,6
y = ¢c(0,1,1,2,0,1,3,4

x and y are inherited from pp

11 <- 1_layer_rectangles(

)'
)

PP,
group = rep(1:4, each = 2),
color = c('red', 'blue', 'green', 'orange'),
linecolor = "black”

)

1_scaleto_world(pp)

3

1_layer_relabel Change layer label
Description

Layer labels are useful to identify layer in the layer inspector. The layer label can be initially set at
layer creation with the label argument.

Usage
1_layer_relabel(widget, layer, label)

186 I_layer_show

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
label new label of layer
Details

Note that the layer label is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_getlLabel

Examples

if(interactive()){
p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, label="A rectangle")
1_layer_getlLabel(p, 1)

1_layer_relabel(p, 1, label="A relabelled rectangle”)
1_layer_getlLabel(p, 1)

}

1_layer_show Show or unhide a Layer

Description
Hidden or invisible layers are not rendered. This function unhides invisible layer so that they are
rendered again.

Usage

1_layer_show(widget, layer)

I _layer_smooth 187

Arguments
widget widget path or layer object of class '1_layer'
layer layer id. If the widget argument is of class '1_layer' then the layer argument
is not used
Details

Visibile layers are rendered, invisible ones are not. If any ancestor of a layer is set to be invisible then
the layer is not rendered either. The layer visibility flag can be checked with 1_layer_isVisible
and the actual visibility (i.e. are all the ancesters visibile too) can be checked with 1_layer_layerVisibility.

Note that layer visibility is not a state of the layer itself, instead is information that is part of the
layer collection (i.e. its parent widget).

Value

0 if success otherwise the function throws an error

See Also

1_layer,1_layer_hide,1_layer_isVisible, 1_layer_layerVisibility, 1_layer_groupVisibility

Examples
if(interactive()){
p <- 1_plot()

1 <- 1_layer_rectangle(p, x=0:1, y=0:1, color="steelblue")
1_layer_hide(p, 1)

1_layer_show(p, 1)

}

1_layer_smooth Layer a smooth line for loon

Description

Display a smooth line layer

188

I_layer_smooth

Usage

1_layer_smooth(
widget,
x = NULL,
y = NULL,
method = "loess",
group = "",
formula =y ~ x,
interval = c("none”, "confidence”, "prediction”),
n = 80,
span = 0.75,
level = 0.95,

methodArgs = list(),
linecolor = "steelblue”,
linewidth = 2,

nn

linedash =

’

confidencelntervalArgs = list(linecolor = "gray80", linewidth = 4, linedash =""),

predictionIntervalArgs = list(linecolor

"gray50"”, linewidth = 3, linedash =1),

label = "smooth”,

parent = "root",
index = 0,
)
Arguments

widget widget path name as a string

X The x coordinates of line. If it is not provided, x will be inherited from widget

y The y coordinates of line. If it is not provided, y will be inherited from widget

method Smoothing method (function) to use, accepts either a character vector, e.g. "lm",
"glm", "loess" or a function, e.g. MASS::rlm or mgcv::gam, stats::Im, or stats::loess.

group Data can be grouped by n dimensional aesthetics attributes, e.g. "color", "size".
In addition, any length n vector or data.frame is accommodated.

formula Formula to use in smoothing function, eg. y ~ x, y ~ poly(Xx, 2), y ~ log(x)

interval type of interval, could be "none", "confidence" or "prediction" (not for glm)

n Number of points at which to evaluate smoother.

span Controls the amount of smoothing for the default loess smoother. Smaller num-
bers produce wigglier lines, larger numbers produce smoother lines.

level Level of confidence interval to use (0.95 by default).

methodArgs List of additional arguments passed on to the modelling function defined by
method.

linecolor fitted line color.

linewidth fitted line width

linedash fitted line dash

I _layer_smooth 189

confidencelntervalArgs

the line color, width and dash for confidence interval
predictionIntervalArgs

the line color, width and dash for prediction interval

label label used in the layers inspector
parent group layer
index index of the newly added layer in its parent group

additional state initialization arguments, see 1_info_states

Examples

if(interactive()) {

loess fit
p <- 1l_plot(iris, color = iris$Species)
11 <- 1_layer_smooth(p, interval = "confidence")

1_layer_hide(11)

the fits are grouped by points color
12 <- 1_layer_smooth(p, group = "color”,
method = "1m")

so far, all intervals are hidden

ls <- 1_layer_getChildren(12)

intervals <- 1_layer_getChildren(l_create_handle(c(p,1s[31)))
ci <- 1_create_handle(c(p,intervals[3]))

1_layer_show(ci)

show prediction interval

pi <- 1l_create_handle(c(p,intervals[2]))

1_layer_show(pi)

hide all

1_layer_hide(12)

Draw a fitted line based on a new data set
shortSepalLength <- (iris$Sepal.Length < 5)
13 <- 1_layer_smooth(p,
x = iris$Sepal.Length[shortSepallLength],
y = iris$Sepal.Width[shortSepallLength],
method = "1m",
linecolor = "firebrick"”,
interval = "prediction”)
1_layer_hide(13)

if(require(mgcv)) {
a full tensor product smooth
linecolor is the same with the points color
14 <- 1_layer_smooth(p,
method = "gam”,
formula = y~te(x))
1_layer_hide(14)
3

190

facets

fp <- 1_facet(p, by = iris$Species, inheritlLayers = FALSE)

15 <- 1_layer_smooth(fp, method = "1Im")

generalized linear model
if(require(”loon.data"”)) {

data("SAheart")

logit regression

chd <- as.numeric(SAheart$chd) - 1

age <- SAheart$age

pl <- 1_plot(age, chd,

title = "logit regression”)
gl1 <- 1_layer_smooth(p1,
method = "glm",

methodArgs = list(family = binomial()),

interval = "conf")

log linear regression

counts <- c(18,17,15,20,10,20,25,13,12)
age <- c¢(40,35,53,46,20,33,48,25,23)
p2 <- 1_plot(age, counts,

title = "log-linear regression”)

gl2 <- 1_layer_smooth(p2,
method = "glm",

methodArgs = list(family = poisson()),

I _layer_text

interval = "conf")
}
3
1_layer_text Layer a text
Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-

play) allow for layering visual information including polygons, text and rectangles.

layer a single character string

Usage

1 _layer_text(
widget,
X7
Y,
text,
color = "gray60",
size = 6,
angle = 0,
label = "text",

I _layer_text 191

parent = "root",
index = 0,
)
Arguments
widget widget path name as a string
X coordinate
y coordinate
text character string
color color of text
size size of the font
angle rotation of text
label label used in the layers inspector
parent group layer
index of the newly added layer in its parent group
additional state initialization arguments, see 1_info_states
Details

As a side effect of Tcl’s text-based design, it is best to use 1_layer_text if one would like to layer
a single character string (and not 1_layer_texts with n=1).

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){

<- 1_plot()
<- 1_layer_text(p, @, @, "Hello World")

192 I _layer_texts

1_layer_texts Layer texts

Description

Loon’s displays that are based on Cartesian coordinates (i.e. scatterplot, histogram and graph dis-
play) allow for layering visual information including polygons, text and rectangles.

Layer a vector of character strings.

Usage
1_layer_texts(

widget,
X)
Y,
text,
color = "gray60",
size = 6,
angle = 0,
anchor = "center”,
justify = "center",
label = "texts",
parent = "root",
index = 0,

active = TRUE,

)
Arguments

widget widget path name as a string

X vector of x coordinates

y vector of y coordinates

text vector with text strings

color color of text

size font size

angle text rotation

anchor specifies how the information in a text is to be displayed in the widget. Must
be one of the values c("n", "ne", "e", "se", "s", "sw", "w", "nw", "center"). For
example, "nw" means display the information such that its top-left corner is at
the top-left corner of the widget.

justify when there are multiple lines of text displayed in a widget, this option deter-

non

mines how the lines line up with each other. Must be one of c("left", "center",
"right"). "Left" means that the lines’ left edges all line up, "center" means that

1_loonWidgets

label
parent
index

active

Details

193

the lines’ centers are aligned, and "right" means that the lines’ right edges line
up.

label used in the layers inspector

group layer

of the newly added layer in its parent group

a logical determining whether objects appear or not (default is TRUE for all).

additional state initialization arguments, see 1_info_states

As a side effect of Tc1’s text-based design, it is best to use 1_layer_text if one would like to layer
a single character string (and not 1_layer_texts with n=1).

For more information run: 1_help("learn_R_layer")

Value

layer object handle, layer id

See Also

1_layer,1_info_states

Examples

if(interactive()){

p <- 1_plot()

1 <- 1_layer_texts(p, x=1:3, y=3:1, text=c("This is"”, "a", "test"), size=20)
1_scaleto_world(p)

}

1_loonWidgets

Get all active top level loon plots.

Description

Loon’s plots are constructed in TCL and identified with a path string appearing in the window

containing the plot.

If the plots were not saved on a variable, this function will look for all loon plots displayed and
return their values in a list whose elements may then be assigned to R variables.

Usage

1_loonWidgets(pathTypes, inspector = FALSE)

194 _loon_inspector

Arguments
pathTypes an optional argument identifying the collection of path types that are to be re-
turned (if displayed).
inspector whether to return the loon inspector widget or not
This must be a subset of the union of 1_basePaths() and 1_compoundPaths().
If it is missing, all 1_basePaths() and 1_compoundPaths() will be returned.
Value

list whose elements are named by, and contain the values of, the loon plot widgets. The list can
be nested when loon plots (like 1_pairs) are compound in that they consist of more than one base
loon plot.

See Also

1_basePathsl_compoundPaths 1_getFromPath

Examples

if(interactive()){

1 _plot(iris)

1_hist(iris)

1_hist(mtcars)

1_pairs(iris)

The following will not be loonWidgets (neither is the inspector)

tt <- tktoplevel()

tkpack (11 <- tklabel(tt, text = "Heave"), 12<- tklabel(tt, text = "Ho"))

#

This will return loon widgets corresponding to plots

loonPlots <- 1_loonWidgets()

names(loonPlots)

firstPlot <- loonPlots[[1]1]

firstPlot["color”] <- "red”

histograms <- 1_loonWidgets("hist")

lapply(histograms,

FUN = function(hist) {

hist["binwidth"] <- hist["binwidth"]/2
1_scaleto_world(hist)

1_loon_inspector Create a loon inspector

I _make_glyphs 195

Description

The loon inspector is a singleton widget that provids an overview to view and modify the active
plot.

Usage
1_loon_inspector(parent = NULL, ...)
Arguments
parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.
state arguments, see 1_info_states.
Details

For more information run: 1_help("learn_R_display_inspectors”)

Value

a loon widget

Examples

if(interactive()){
i <= 1_loon_inspector()

3

1_make_glyphs Make arbitrary glyphs with R graphic devices

Description

Loon’s primitive glyph types are limited in terms of compound shapes. With this function you can
create each point glyph as a png and re-import it as a tk img object to be used as point glyphs in
loon. See the examples.

Usage

1_make_glyphs(data, draw_fun, width = 50, height = 50, ...)

196 1_make_glyphs

Arguments
data list where each element contains a data object used for the draw_fun
draw_fun function that draws a glyph using R base graphics or the grid (including ggplot2
and lattice) engine
width width of each glyph in pixel
height height of each glyph in pixel
additional arguments passed on to the png function Note: type is not allowed in
this list.
Value

vector with tk img object references

Examples

if(interactive()){

Not run:

if (requireNamespace("maps”, quietly = TRUE)) {
data(minority)
p <- 1l_plot(minority$long, minority$lat)

canada <- maps::map(”"world”, "Canada”, fill=TRUE, plot=FALSE)
1_map <- 1_layer(p, canada, asSinglelLayer=TRUE)
1_scaleto_world(p)

img <- 1_make_glyphs(lapply(1:nrow(minority), function(i)minority[i,]), function(m) {
par(mar=c(1,1,1,1)*.5)
mat <- as.matrix(m[1,1:10]/max(m[1:10]))
barplot(height = mat,
beside = FALSE,
ylim = c(0,1),
axes= FALSE,
axisnames=FALSE)
}, width=120, height=120)

1_imageviewer(img)

g <- 1_glyph_add_image(p, img, "barplot")
pl'glyph'] <- g

3

with grid
if (requireNamespace("grid”, quietly = TRUE)) {

1i <- 1_make_glyphs(runif(6), function(x) {
if(any(x>1 | x<@))
stop("out of range")
grid: :pushViewport(grid: :plotViewport(grid::unit(c(1,1,1,1)*0, "points")))

I _make_glyphs 197

grid::grid.rect(gp=grid: :gpar(fill=NA))
grid::grid.rect(@, 0, height = grid::unit(x, "npc"”), just = c("left”, "bottom"),
gp=grid: :gpar(col=NA, fill="steelblue"))
b))

1_imageviewer(1li)

p <- 1_plot(1:6)
g <- 1_glyph_add_image(p, 1li, "bars")
pl'glyph'] <- g

End(Not run)

A more familiar example?
The periodic table

data("elements”, package = "loon.data")

A draw function for each element
draw_element_box <- function(symbol,
name, number,
mass_number,
mass, col) {
if (missing(col)) col <- "white"
oldPar <- par(bg = col, mar = rep(1, 4))

plot(NA, xlim = c(0,1), ylim = c(@, 1), axes=FALSE, ann = FALSE)
text(0.5, 0.6, labels = symbol, cex = 18)

text(0.15, 1, labels = number, cex = 6, adj= c(0.5,1))

text (0.5, 0.25, labels = name, cex = 6)

text(0.5, 0.11, labels = mass_number, cex = 3)

text(0.5, 0.01, labels = mass, cex = 3)

box ()

par(oldPar)
}

Get the categories

colIDs <- paste(elements$Category, elements$Subcategory)
Get a loon palette function

colFn <- color_loon()

Get colors identified with categories

tableCols <- colFn(colIDs)

#

A function to an element box image for each element.

make_element_boxes <- function(elements, cols, width = 500, height = 500) {
if (missing(cols)) cols <- rep("white"”, nrow(elements))
listOfElements <- lapply(1:nrow(elements),
FUN = function(i) {
list(vals = elements[i,],

198

col = cols[i])
1))
glyphs created here
1_make_glyphs(listOfElements,
draw_fun = function(element){
x <- element$vals
col <- element$col
draw_element_box(symbol = x$Symbol,
name = x$Name,
number = x$Number,
mass_number = x$Mass_number,
mass = x$Mass,
col = col)
+
width = width,
height = height)
}

Construct the glyphs
boxGlyphs <- make_element_boxes(elements, cols = tableCols)

Get a couple of plots
periodicTable <- 1_plot(x = elements$x, y = elements$y,

xlabel = "", ylabel = "",
title = "Periodic Table of the Elements”,
linkingGroup = "elements”,

color = tableCols)
Add the images as possible glyphs

bg <- 1_glyph_add_image(periodicTable,
images = boxGlyphs,
label = "Symbol boxes™)

Set this to be the glyph
periodicTable['glyph'] <- bg

#

Get a second plot that shows the periodicity
#

First some itemlabels

elementLabels <- with(elements,

paste(” ", Number, Symbol, "\n",
" ", Name, "\n",
" ", Mass
)

)

periodicPlot <- 1l_plot(x = elements$Mass, y = elements$Density,
xlabel = "Mass"”, ylabel = "Density",
itemLabel = elementlLabels,
showItemLabels = TRUE,
linkingGroup = "elements”,
color = tableCols)

1_make_glyphs

1_move_grid 199

Add the images as possible glyphs to this plot as well

bg2 <- 1_glyph_add_image(periodicPlot,
images = boxGlyphs,
label = "Symbol boxes”)

Could set this to be the glyph
periodicPlot['glyph'] <- bg2

1_move_grid Arrange Points or Nodes on a Grid

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_grid(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in X or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a

200 I_move_halign

and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1 _move_hdist,1_move_grid,1_move_jitter,
1_move_reset

1_move_halign Horizontally Align Points or Nodes

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_halign(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in X or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

1_move_hdist 201

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

1_move_hdist Horizontally Distribute Points or Nodes

Description
Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage

1_move_hdist(widget, which = "selected")

Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all', or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

202 I_move_jitter

1_move_jitter Jitter Points Or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_jitter(widget, which = "selected”, factor = 1, amount = "")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = @ the default is
factor x z/50.
Default (NULL): factor x d/5 where d is about the smallest difference between
x values.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either @ or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in X or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shift keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist, 1 _move_hdist,1_move_grid, 1_move_jitter,
1_move_reset

1 move_reset 203

1_move_reset Reset Temporary Point or Node Locations to the x and y states

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_reset(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either ® or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shif't keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist,1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

204 I_move_valign

1_move_valign Vertically Align Points or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_valign(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either ® or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shif't keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist,1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

1_move_vdist 205

1_move_vdist Vertically Distribute Points or Nodes

Description

Scatterplot and graph displays support interactive temporary relocation of single points (nodes for
graphs).

Usage
1_move_vdist(widget, which = "selected")
Arguments
widget plot or graph widget handle or widget path name
which either one of 'selected', 'active', 'all’, or a boolean vector with a value
for each point.
Details

Moving the points temporarily saves the new point coordinates to the states xTemp and yTemp. The
dimension of xTemp and yTemp is either ® or n. If xTemp or yTemp are not of length @ then they
are required to be of length n, and the scatterplot will display those coordinates instead of the
coordinates in x or y.

Note that the points can also be temporally relocated using mouse and keyboard gestures. That is,
to move a single point or node press the CTRL key wile dragging a the point. To move the selected
points press down the CTRL and Shif't keys while dragging one of the selected points.

When distributing points horizontally or vertically, their order remains the same. When distributing
points horizontally or vertically, their order remains the same. For example, when you distribute
the point both horizontally and vertically, then the resulting scatterplot will be a plot of the y ranks
versus the x ranks. The correlation on that plot will be Spearman’s rho. When arranging points on
a grid, some of the spatial ordering is preserved by first determining a grid size (i.e. a x b where a
and b are the same or close numbers) and then by taking the a smallest values in the y direction and
arrange them by their x order in the first row, then repeat for the remaining points.

Also note the the loon inspector also has buttons for these temporary points/nodes movements.

See Also

1_move_valign,1_move_halign, 1_move_vdist,1_move_hdist, 1_move_grid, 1_move_jitter,
1_move_reset

206 I_navgraph

1_navgraph Explore a dataset with the canonical 2d navigation graph setting

Description

Creates a navigation graph, a graphswitch, a navigator and a geodesic2d context added, and a scat-
terplot.

Usage
1_navgraph(data, separator = ":", graph = NULL, ...)
Arguments
data a data.frame with numeric variables only
separator string the separates variable names in 2d graph nodes
graph optional, graph or loongraph object with navigation graph. If the graph argument
is not used then a 3d and 4d transition graph and a complete transition graph is
added.
arguments passed on to modify the scatterplot plot states
Details

For more information run: 1_help("learn_R_display_graph.html#1_navgraph")

Value

named list with graph handle, plot handle, graphswitch handle, navigator handle, and context
handle.

Examples

if(interactive()){

ng <- l_navgraph(oliveAcids, color=olive$Area)
ng2 <- 1_navgraph(oliveAcids, separator='-', color=olive$Area)

}

I_navigator_add 207

1_navigator_add Add a Navigator to a Graph

Description

To turn a graph into a navigation graph you need to add one or more navigators. Navigator have
their own set of states that can be queried and modified.

Usage
1_navigator_add(
widget,
from = ""
tO = nn R
proportion = @,
color = "orange”,
)
Arguments
widget graph widget
from The position of the navigator on the graph is defined by the states from, to and
proportion. The states from and to hold vectors of node names of the graph.
The proportion state is a number between and including @ and 1 and defines
how far the navigator is between the last element of from and the first element
of to. The to state can also be an empty string ' ' if there is no further node to
go to. Hence, the concatenation of from and to define a path on the graph.
to see descriptoin above for from
proportion see descriptoin above for from
color of navigator
named arguments passed on to modify navigator states
Details

For more information run: 1_help("learn_R_display_graph.html#navigators")

Value

navigator handle with navigator id

See Also

1_navigator_delete, 1_navigator_ids, 1_navigator_walk_path, 1_navigator_walk_forward,
1_navigator_walk_backward, 1_navigator_relabel, 1_navigator_getLabel

208

I_navigator_getLabel

1_navigator_delete Delete a Navigator

Description

Removes a navigator from a graph widget

Usage

1_navigator_delete(widget, id)

Arguments

widget graph widget

id navigator handle or navigator id
See Also

1_navigator_add

1_navigator_getLabel Query the Label of a Navigator

Description

Returns the label of a navigator

Usage

1_navigator_getLabel(widget, id)

Arguments
widget graph widget handle
id navigator id

See Also

1_navigator_add

I_navigator_getPath

209

1_navigator_getPath Get the sequence of nodes of a navigator’s current path

Description

Determines and returns the current path of the navigator.

Usage

1_navigator_getPath(navigator)

Arguments

navigator navigator handle

Value

a vector of node names for the current path of the navigator

1_navigator_ids List Navigators

Description

Lists all navigators that belong to a graph

Usage

1_navigator_ids(widget)

Arguments

widget graph widget

See Also

1_navigator_add

210

I_navigator_walk_backward

1_navigator_relabel Modify the Label of a Navigator

Description

Change the navigator label

Usage

1_navigator_relabel(widget, id, label)

Arguments
widget graph widget handle
id navigator id
label new label of navigator
See Also

1_navigator_add

1_navigator_walk_backward

Have the Navigator Walk Backward on the Current Path

Description

Animate a navigator by having it walk on a path on the graph

Usage
1_navigator_walk_backward(navigator, to = "")
Arguments
navigator navigator handle
to node name that is part of the active path backward where the navigator should
stop.
Details

Note that navigators have the states animationPause and animationProportionIncrement to
control the animation speed. Further, you can stop the animation when clicking somewhere on the

graph display or by using the mouse scroll wheel.

I_navigator_walk_forward 211

See Also

1_navigator_add

1_navigator_walk_forward
Have the Navigator Walk Forward on the Current Path

Description

Animate a navigator by having it walk on a path on the graph

Usage
1_navigator_walk_forward(navigator, to = "")
Arguments
navigator navigator handle
to node name that is part of the active path forward where the navigator should
stop.
Details

Note that navigators have the states animationPause and animationProportionIncrement to
control the animation speed. Further, you can stop the animation when clicking somewhere on the
graph display or by using the mouse scroll wheel.

See Also

1_navigator_add

1_navigator_walk_path Have the Navigator Walk a Path on the Graph

Description

Animate a navigator by having it walk on a path on the graph

Usage

1_navigator_walk_path(navigator, path)

Arguments

navigator navigator handle

path vector with node names of the host graph that form a valid path on that graph

212

See Also

1_navigator_add

1 _nestedTclList2Rlist

1_nDimStateNames N dimensional state names access

Description

Get all n dimensional state names

Usage

1_nDimStateNames(loon_plot)

Arguments

loon_plot A loon widget or the class name of a loon plot
Examples

if(interactive()){

p <- 1_plot()

1_nDimStateNames(p)
1_nDimStateNames("1_plot")

3

1_nestedTclList2Rlist Convert a Nested Tcl List to an R List

Description

Helper function to work with R and Tcl

Usage

1_nestedTclList2Rlist(
tclobj,
transform = function(x) {
as.numeric(x)

1_ng_plots 213

Arguments

tclobj a tcl object as returned by tcl or . Tcl.

transform a function to transfrom the string output to another data type
Value

anested R list

See Also

1_Rlist2nestedTclList

Examples

tclobj <- .Tcl('set a {{1 2 3} {2 3 4 4} {3 53 3}}")
1_nestedTclList2Rlist(tclobj)

1_ng_plots 2d navigation graph setup with with dynamic node fitering using a
scatterplot matrix

Description

Generic function to create a navigation graph environment where user can filter graph nodes by
selecting 2d spaces based on 2d measures displayed in a scatterplot matrix.

Usage
1_ng_plots(measures, ...)
Arguments
measures object with measures are stored
argument passed on to methods
Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

See Also

1 _ng_plots.default,1_ng_plots.measures,1l_ng_plots.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

214 1_ng_plots.default

1_ng_plots.default Select 2d spaces with variable associated measures displayed in scat-
terplot matrix

Description

Measures object is a matrix or data.frame with measures (columns) for variable pairs (rows) and
rownames of the two variates separated by separator

Usage
Default S3 method:
1 _ng_plots(measures, data, separator = ":", ...)
Arguments
measures matrix or data.frame with measures (columns) for variable pairs (rows) and row-
names of the two variates separated by separator
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_plots,1_ng_plots.measures,1_ng_plots.scagnostics, measuresld, measures2d, scagnostics2d
1_ng_ranges

Examples

if(interactive()){

Not run:

n <- 100

dat <- data.frame(
A = rnorm(n), B = rnorm(n), C = rnorm(n),
D = rnorm(n), E = rnorm(n)

)

m2d <- data.frame(
cov = with(dat, c(cov(A,B), cov(A,C), cov(B,D), cov(D,E), cov(A,E))),

1_ng_plots.measures 215

measure_1 = c(1, 3, 2, 1, 4),
row.names = c('A:B', 'A:C', 'B:D', 'D:E', 'A:E")
)

or m2d <- as.matrix(m2d)
nav <- 1_ng_plots(measures=m2d, data=dat)

only one measure

m <- m2d[,1]

names(m) <- row.names(m2d)

nav <- 1_ng_plots(measures=m, data=dat)

m2dLc(1,2),1]

one d measures

mld <- data.frame(
mean = sapply(dat, mean),
median = sapply(dat, median),
sd = sapply(dat, sd),
gl = sapply(dat, function(x)quantile(x, probs=0.25)),
g3 = sapply(dat, function(x)quantile(x, probs=0.75)),
row.names = names(dat)

)
nav <- 1_ng_plots(mid, dat)

more involved
gl <- function(x)as.vector(quantile(x, probs=0.25))

be careful that the vector names are correct
nav <- 1_ng_plots(sapply(oliveAcids, q1), oliveAcids)

End(Not run)

1_ng_plots.measures 2d Navigation Graph Setup with dynamic node fitering using a scat-
terplot matrix

Description
Measures object is of class measures. When using measure objects then the measures can be dy-
namically re-calculated for a subset of the data.

Usage

S3 method for class 'measures'
1 _ng_plots(measures, ...)

216 I_ng_plots.measures

Arguments
measures object of class measures, see measuresid, measures2d.
arguments passed on to configure the scatterplot
Details

Note that we provide the scagnostics2d function to create a measures object for the scagnostics
measures.

For more information run: 1_help("learn_R_display_graph.html#l_ng_plots")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

measuresld, measures2d, scagnostics2d, 1_ng_plots, 1_ng_ranges

Examples

if(interactive()){

Not run:

2d measures

scags <- scagnostics2d(oliveAcids, separator='xx*"')
scags()

ng <- 1_ng_plots(scags, color=olive$Area)

1d measures

scale@1 <- function(x){(x-min(x))/diff(range(x))}

mld <- measuresld(sapply(iris[,-5], scale01l),
mean=mean, median=median, sd=sd,
gl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

m1d()
nav <- 1_ng_plots(mld, color=iris$Species)

with only one measure
nav <- 1_ng_plots(measuresid(oliveAcids, sd))

with two measures
nav <- 1_ng_plots(measuresld(oliveAcids, sd=sd, mean=mean))

End(Not run)

1_ng_plots.scagnostics 217

1 _ng_plots.scagnostics

2d Navigation Graph Setup with dynamic node fitering based on
scagnostic measures and by using a scatterplot matrix

Description

This method is useful when working with objects from the scagnostics function from the scagnos-
tics R package. In order to dynamically re-calcultate the scagnostic measures for a subset of the
data use the scagnostics2d measures creature function.

Usage
S3 method for class 'scagnostics'
1_ng_plots(measures, data, separator = ":", ...)
Arguments
measures objects from the scagnostics function from the scagnostics R package
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also
1 _ng_plots,1_ng_plots.default,1_ng_plots.measures, measuresld, measures2d, scagnostics2d,

1_ng_ranges

Examples

if(interactive()){

Not run:

library(scagnostics)
scags <- scagnostics::scagnostics(oliveAcids)
1_ng_plots(scags, oliveAcids, color=olive$Area)

End(Not run)

}

218 I_ng_ranges.default

1_ng_ranges 2d navigation graph setup with with dynamic node fitering using a
slider

Description

Generic function to create a navigation graph environment where user can filter graph nodes using
as slider to select 2d spaces based on 2d measures.

Usage
1_ng_ranges(measures, ...)
Arguments
measures object with measures are stored
argument passed on to methods
Details

For more information run: 1_help("learn_R_display_graph.html#1l_ng_ranges")

See Also

1_ng_ranges.default, 1_ng_ranges.measures, 1_ng_ranges.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

1_ng_ranges.default Select 2d spaces with variable associated measures using a slider

Description

Measures object is a matrix or data.frame with measures (columns) for variable pairs (rows) and
rownames of the two variates separated by separator

Usage
Default S3 method:
1_ng_ranges(measures, data, separator = ":", ...)
Arguments
measures matrix or data.frame with measures (columns) for variable pairs (rows) and row-
names of the two variates separated by separator
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

I_ng_ranges.default 219

Details

For more information run: 1_help("learn_R_display_graph.html#1_ng_ranges")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_ranges, 1_ng_ranges.measures, 1_ng_ranges.scagnostics, measuresld, measures2d,
scagnostics2d, 1_ng_ranges

Examples

if (interactive()){

Simple example with generated data
n <- 100
dat <- data.frame(
A = rnorm(n), B = rnorm(n), C = rnorm(n),
D = rnorm(n), E = rnorm(n)
)
m2d <- data.frame(
cor = with(dat, c(cor(A,B), cor(A,C), cor(B,D), cor(D,E), cor(A,E))),
my_measure = c(1, 3, 2, 1, 4),
row.names = c('A:B', 'A:C', 'B:D', 'D:E', 'A:E")

)

or m2d <- as.matrix(m2d)
nav <- 1_ng_ranges(measures=m2d, data=dat)

With 1d measures

mld <- data.frame(
mean = sapply(dat, mean),
median = sapply(dat, median),
sd = sapply(dat, sd),
ql = sapply(dat, function(x)quantile(x, probs=0.25)),
g3 = sapply(dat, function(x)quantile(x, probs=0.75)),
row.names = names(dat)

)

nav <- 1_ng_ranges(mid, dat)

}

220 I _ng_ranges.measures

1_ng_ranges.measures 2d Navigation Graph Setup with dynamic node fitering using a slider

Description

Measures object is of class measures. When using measure objects then the measures can be dy-
namically re-calculated for a subset of the data.

Usage
S3 method for class 'measures'
1_ng_ranges(measures, ...)
Arguments
measures object of class measures, see measuresid, measures2d.

arguments passed on to configure the scatterplot

Details

Note that we provide the scagnostics2d function to create a measures object for the scagnostics
measures.

For more information run: 1_help("learn_R_display_graph.html#l_ng_ranges")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

measuresld, measures2d, scagnostics2d, 1_ng_ranges, 1_ng_plots

Examples

if (interactive()){

2d measures
s <- scagnostics2d(oliveAcids)
nav <- 1_ng_ranges(s, color=olive$Area)

1d measures

scale@dl <- function(x){(x-min(x))/diff(range(x))}

mld <- measuresld(sapply(iris[,-5], scale0l),
mean=mean, median=median, sd=sd,
gl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

1_ng_ranges.scagnostics 221

mid()

nav <- 1_ng_ranges(mld, color=iris$Species)

}

1_ng_ranges.scagnostics

2d Navigation Graph Setup with dynamic node fitering based on
scagnostic measures and using a slider

Description

This method is useful when working with objects from the scagnostics function from the scagnos-
tics R package. In order to dynamically re-calcultate the scagnostic measures for a subset of the
data use the scagnostics2d measures creature function.

Usage
S3 method for class 'scagnostics'
1_ng_ranges(measures, data, separator = ":", ...)
Arguments
measures objects from the scagnostics function from the scagnostics R package
data data frame for scatterplot
separator a string that separates the variable pair string into the individual variables

arguments passed on to configure the scatterplot

Details

For more information run: 1_help("learn_R_display_graph.html#l_ng_ranges")

Value

named list with plots-, graph-, plot-, navigator-, and context handle. The list also contains the
environment of the the function call in env.

See Also

1_ng_ranges,1_ng_ranges.default, 1_ng_ranges.measures, measuresld, measures2d, scagnostics2d,
1_ng_ranges

222 _pairs

Examples

Not run:

if (requireNamespace("scagnostics”, quietly = TRUE)) {
s <- scagnostics::scagnostics(oliveAcids)
ng <- 1_ng_ranges(s, oliveAcids, color=olive$Area)

}

End(Not run)

1_pairs An interactive scatterplot matrix

Description

Function creates a scatterplot matrix using loon’s scatterplot widgets

Usage

1_pairs(
data,
connectedScales = c("cross”, "none"),
linkingGroup,
linkingKey,
showItemLabels
itemLabel,
showHistograms = FALSE,
histLocation = c("edge", "diag"),
histHeightProp = 1,
histArgs = list(),
showSerialAxes = FALSE,
serialAxesArgs = list(),
parent = NULL,
plotWidth = 100,
plotHeight = 100,
span = 10L,
showProgressBar = TRUE,

TRUE,

Arguments

data a data.frame with numerical data to create the scatterplot matrix
connectedScales
Determines how the scales of the panels are to be connected.

* "cross”: only the scales in the same row and the same column are con-
nected;

nyn nen

* "none”: neither "x" nor "y" scales are connected in any panels.

_pairs

linkingGroup

linkingKey

showItemlLabels

itemLabel

showHistograms
histLocation

histHeightProp

histArgs

showSerialAxes

serialAxesArgs

parent

plotWidth
plotHeight

span

showProgressBar

Value

223

string giving the linkingGroup for all plots. If missing, a default 1inkingGroup
will be determined from deparsing the data.

a vector of strings to provide a linking identity for each row of the data data.frame.
If missing, a default 1inkingKey will be @: (nrows(data)-1).

TRUE, logical indicating whether its itemLabel pops up over a point when the
mouse hovers over it.

a vector of strings to be used as pop up information when the mouse hovers over
a point. If missing, the default itemLabel will be the row.names(data).

logical (default FALSE) to show histograms of each variable or not
one "edge" or "diag", when showHistograms = TRUE

a positive number giving the height of the histograms as a proportion of the
height of the scatterplots

additional arguments to modify the ‘1_hist states

logical (default FALSE) indication of whether to show a serial axes plot in the
bottom left of the pairs plot (or not)

additional arguments to modify the ‘1_serialaxes® states

a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

default plot width (in pixel)
default plot height (in pixel)

How many column/row occupies for each widget

Logical; show progress bar or not

named arguments to modify the ‘I_plot* states of the scatterplots

an ‘I_pairs‘ object (an ‘1_compound‘ object), being a list with named elements, each representing
a separate interactive plot. The names of the plots should be self explanatory and a list of all plots
can be accessed from the ‘1_pairs® object via ‘1_getPlots()‘. All plots are linked by default (name
taken from data set if not provided). Panning and zooming are constrained to work together within
the scatterplot matrix (and histograms).

See Also

1_plot and 1_getPlots

Examples

if(interactive()){

p <- 1_pairs(iris[,-5], color=iris$Species, linkingGroup = "iris")

p <- 1_pairs(iris[,-5], color=iris$Species, linkingGroup = "iris",

224 I plot

showHistograms = TRUE, showSerialAxes = TRUE)
plot names
names (p)

Each plot must be accessed to make changes not managed through
linking.
E.g. to change the glyph on all scatterplots to open circles
for (plot in 1_getPlots(p)) {
if (is(plot, "l_plot")) {
plot["glyph"] <- "ocircle"}

1_plot Create an interactive loon plot widget

Description

1_plot is a generic function for creating an interactive visualization environments for R objects.

Usage
1 _plot(x, vy, ...)

Default S3 method:

1 _plot(
X,
y = NULL,
by = NULL,
on,
layout = c("grid", "wrap", "separate"”),
connectedScales = c("cross”, "row”, "column”, "both", "x", "y", "none"),

color = 1_getOption("”color"),

glyph = 1_getOption("glyph"),

size = 1_getOption("size"),

active = TRUE,

selected = FALSE,

xlabel,

ylabel,

title,

showLabels = TRUE,

showScales = FALSE,

showGuides = TRUE,

guidelines = 1_getOption("“guidelines”),
guidesBackground = 1_getOption("guidesBackground”),
foreground = 1_getOption("foreground”),
background = 1_getOption("background”),

I _plot

parent = NULL,

)

S3 method for class 'decomposed.ts'
1_plot(

X,

y = NULL,

xlabel = NULL,

ylabel = NULL,

title = NULL,

tk_title = NULL,

color = 1_getOption("”color"),

size = 1_getOption("size"),

linecolor = 1_getOption("”color"),
linewidth = 1_getOption(”linewidth"),

linkingGroup,

showScales = TRUE,

showGuides = TRUE,

showLabels = TRUE,
)
S3 method for class 'density'
1_plot(

X,

y = NULL,

xlabel = NULL,

ylabel = NULL,

title = NULL,

linewidth = 1_getOption(”linewidth"),
linecolor = 1_getOption("”color"),

)

S3 method for class 'map'
1 _plot(x, y = NULL, ...)

S3 method for class 'stl'

1_plot(
X’
y = NULL,

xlabel = NULL,

ylabel = NULL,

title = NULL,

tk_title = NULL,

color = 1_getOption("”color"),
size = 1_getOption("size"),

225

226

I plot

linecolor = 1_getOption("“color"),
linewidth = 1_getOption("linewidth"),
linkingGroup,
showScales = TRUE,
showGuides = TRUE,
showLabels = TRUE,
)
Arguments
X the coordinates of points in the 1_plot. Alternatively, a single plotting struc-
ture (see the function xy.coords for details), formula, or any R object (e.g.
density,stl, etc) is accommodated.
y the y coordinates of points in the 1_plot, optional if x is an appropriate struc-
ture.
named arguments to modify plot states. See 1_info_states of any instantiated
1_plot for examples of names and values.
by loon plot can be separated by some variables into multiple panels. This argument
can take a formula, n dimensional state names (see 1_nDimStateNames) an n-
dimensional vector and data.frame or a 1ist of same lengths n as input.
on if the x or by is a formula, an optional data frame containing the variables in the
x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.
layout layout facets as 'grid', 'wrap' or 'separate’
connectedScales

Determines how the scales of the facets are to be connected depending on which
layout is used. For each value of layout, the scales are connected as follows:

e layout = "wrap": Across all facets, when connectedScales is

nyn

— "x", then only the "x" scales are connected
— "y", then only the "y" scales are connected

ny "

— "both"”, both "x" and "y" scales are connected

nen

— "none”, neither "Xx" nor "y" scales are connected. For any other value,
only the "y" scale is connected.

e layout = "grid": Across all facets, when connectedScales is

— "cross”, then only the scales in the same row and the same column are
connected

nen

— "row”, then both "x" and "y" scales of facets in the same row are con-
nected

nyn

— "column”, then both "x" and "y" scales of facets in the same column
are connected

— "x", then all of the "x" scales are connected (regardless of column)
— "y", then all of the "y" scales are connected (regardless of row)

nen

— "both", both "x" and "y" scales are connected in all facets

— "none”, neither "x" nor "y" scales are connected in any facets.

I _plot 227

color colours of points; colours are repeated until matching the number points. Default
is found using 1_getOption(”color™).

glyph the visual representation of the point. Argument values can be any of

* the string names of primitive glyphs:

"non non

— circles: "circle", "ccircle", "ocircle";

non

— squares or boxes: "square", "csquare”, "osquare";

non non

triangles: "triangle", "ctriangle", "otriangle";

diamonds: "diamond", "cdiamond", or "odiamond".

Note that prefixes "c" and "o" may be thought of as closed and open, re-
spectively. The set of values are returned by 1_primitiveGlyphs().

¢ the string names of constructed glyphs:
— text as glyphs: see 1_glyph_add_text()
— point ranges: see 1_glyph_add_pointrange()
— polygons: see 1_glyph_add_polygon()
— parallel coordinates: see 1_glyph_add_serialaxes()
— star or radial axes: see 1_glyph_add_serialaxes()
— or any plot created using R: see 1_make_glyphs()
Note that glyphs are constructed and given a stringname to be used in the

inspector.
size size of the symbol (roughly in terms of area). Default is found using 1_getOption("size").
active alogical determining whether points appear or not (default is TRUE for all points).

If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

selected alogical determining whether points appear selected at first (default is FALSE for
all points). If a logical vector is given of length equal to the number of points,
then it identifies which points are (TRUE) and which are not (FALSE).

xlabel Label for the horizontal (x) axis. If missing, one will be inferred from x if
possible.

ylabel Label for the vertical (y) axis. If missing, one will be inferred from y (or x) if
possible.

title Title for the plot, default is an empty string.

showlLabels logical to determine whether axes label (and title) should be presented.

showScales logical to determine whether numerical scales should be presented on both axes.

showGuides logical to determine whether to present background guidelines to help determine
locations.

guidelines colour of the guidelines shown when showGuides = TRUE. Default is found using
1_getOption("guidelines™).

guidesBackground

colour of the background to the guidelines shown when showGuides = TRUE.
Default is found using 1_getOption("guidesBackground"”).

foreground foreground colour used by all other drawing. Default is found using 1_getOption("foreground”).

background background colour used for the plot. Default is found using 1_getOption("background™).

228 I plot

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

tk_title provides an alternative window name to Tk’s wm title. If NULL, stl will be
used.

linecolor line colour of all time series. Default given by 1_getOption("color").

linewidth line width of all time series (incl. original and decomposed components. Default

given by 1_getOption("linewidth").

linkingGroup string giving the linkingGroup for all plots. If missing, a default 1inkingGroup
will be determined from deparsing the input x.

Details

Like plot in R, 1_plot is the generic plotting function for objects in loon. The default method
1_plot.default produces the interactive scatterplot in loon. This is the workhorse of ‘loon‘ and
is often a key part of many other displays (e.g. 1_pairs and 1_navgraph).

For example, the methods include 1_plot.default (the basic interactive scatterplot), 1_plot.density
(layers output of density in an empty scatterplot), 1_plot.map (layers a map in an empty scatter-
plot), and 1_plot.stl (a compound display of the output of stl).

A complete list is had from methods(1_plot).

To get started with loon it is recommended to follow the introductory loon vignette vignette(topic
="introduction”, package = "loon") and to explore loon’s website accessible via 1_help().

The general direct manipulation and interaction gestures are outlined in the following figures.
Zooming and Panning

Selecting Points/Objects

Moving Points on the Scatterplot Display

The scatterplot displays a number of direct interactions with the mouse and keyboard, these include:
zooming towards the mouse cursor using the mouse wheel, panning by right-click dragging and
various selection methods using the left mouse button such as sweeping, brushing and individual
point selection. See the documentation for 1_plot for more details about the interaction gestures.

"non

Some arguments to modify layouts can be passed through, e.g. "separate", "ncol", "nrow", etc.
Check 1_facet to see how these arguments work.

Value

» The inputis a stl or a decomposed. ts object, a structure of class "1_ts" containing four loon
plots each representing a part of the decomposition by name: "original", "trend", "seasonal",
and "remainder"

e The input is a vector, formula, data.frame, ...

— by =NULL: a 1loon widget will be returned

— by is not NULL: an 1_facet object (a list) will be returned and each element is a loon
widget displaying a subset of interest.

I _plot 229

See Also

Turn interactive loon plot static loonGrob, grid.loon, plot.loon.
Density layer 1_layer.density
Map layer 1_layer, 1_layer.map, map

Other loon interactive states: 1_hist(), 1_info_states(), 1_serialaxes(), 1_state_names(),
names.loon()

Examples

if(interactive()) {
HIHHEHHHAHA A 1 _plot.default HHHHHHHEHHHAHHHEEHHA A
default use as scatterplot

pl <- with(iris, 1_plot(Sepal.Length, Sepal.Width, color=Species,
title = "First plot"”))

The names of the info states that can be

accessed or set. They can also be given values as
arguments to 1_plot.default()

names(p1)

p1["size"] <- 10

p2 <- with(iris, 1_plot(Petal.Length ~ Petal.Width,
linkingGroup="iris_data",
title = "Second plot”,
showGuides = FALSE))
p2["showScales”] <- TRUE

link first plot with the second plot requires
1_configure to coordinate the synchroniztion
1_configure(pl, linkingGroup = "iris_data”, sync = "push”)

p1['selected'] <- iris$Species == "versicolor”
p2["glyph"1[p1['selected'1] <- "cdiamond”

gridExtra::grid.arrange(loonGrob(p1), loonGrob(p2), nrow = 1)

Layout facets

facet wrap

p3 <- with(mtcars, 1l_plot(wt, mpg, by = cyl, layout = "wrap"))
it is equivalent to

p3 <- 1_plot(mpg~wt, by = ~cyl, layout = "wrap”, on = mtcars)

#i## facet grid

p4 <- 1_plot(x = 1:6, y = 1:6,
by = size ~ color,
size = c(rep(50, 2), rep(25, 2), rep(50, 2)),
color = c(rep("red”, 3), rep("green”, 3)))

Use with other tk widgets
tt <- tktoplevel()

230 I plot3D

tktitle(tt) <- "Loon plots with custom layout”

pl <- 1_plot(parent=tt, x=c(1,2,3), y=c(3,2,1))
p2 <- 1_plot(parent=tt, x=c(4,3,1), y=c(6,8,4))

tkgrid(pl, row=0, column=0, sticky="nesw")
tkgrid(p2, row=0, column=1, sticky="nesw")

tkgrid.columnconfigure(tt, @, weight=1)
tkgrid.columnconfigure(tt, 1, weight=1)

tkgrid.rowconfigure(tt, 0, weight=1)

AR 1 plot. decomposed. ts #iHHHEHHHHEHAHHEHREHEHAHHE
decompose <- decompose(co2)

p <- 1_plot(decompose, title = "Atmospheric carbon dioxide over Mauna Loa")
names of plots in the display

names(p)

names of states associated with the seasonality plot

names (p$seasonal)

which can be set

p$seasonall'color'] <- "steelblue”

HHHHEHHHHHEHEEHEH A 1 plot. stl #HHHHEHEHEHHHEHERHEHAHEHEH

co2_stl <- stl(co2, "per")

p <- 1_plot(co2_stl, title = "Atmospheric carbon dioxide over Mauna Loa")

names of plots in the display

names(p)

names of states associated with the seasonality plot

names(p$seasonal)

which can be set

p$seasonall'color'] <- "steelblue”

HHHEHHHEHEHEEHAH A 1 _plot. density #HHEHEHHHHHERHEHAHEHHHEHE

plot a density estimate

set.seed(314159)

ds <- density(rnorm(1000))

p <- 1 _plot(ds, title = "density estimate”,
xlabel = "x", ylabel = "density”,
showScales = TRUE)

HIHEHHHAHEHE A 1 _plot. map HHEHHHEHHHEHHHEHHHEHHHE
if (requireNamespace("maps”, quietly = TRUE)) {
p <- 1_plot(maps::map('world', fill=TRUE, plot=FALSE))

1_plot3D Create an interactive loon 3d plot widget

Description

1_plot3D is a generic function for creating interactive visualization environments for R objects.

1_plot3D

Usage
1_

plot3D(x, vy, z, ...)

Default S3 method:

1_

plot3D(

X!

y = NULL,

z = NULL,

axisScaleFactor =1,

by = NULL,

on,

layout = c("grid", "wrap", "separate"”),

n n

connectedScales = c("cross”, "row
color = 1_getOption("”color"),
glyph = 1_getOption("glyph"),
size = 1_getOption("size"),
active = TRUE,

selected = FALSE,

xlabel,

ylabel,

zlabel,

title,

showLabels = TRUE,

showScales = FALSE,

showGuides = TRUE,

guidelines = 1_getOption(“"guidelines”),

guidesBackground = 1_getOption("guidesBackground”),

foreground = 1_getOption("foreground”),
background = 1_getOption("background”),
parent = NULL,

, "column”, "both",

231

nyn non

X, Yy, “nOne”),

)
Arguments

X the x, y and z arguments provide the x, y and z coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xyz.coords for details.
If supplied separately, they must be of the same length.

y the y coordinates of points in the plot, optional if x is an appropriate structure.

z the z coordinates of points in the plot, optional if x is an appropriate structure.
named arguments to modify plot states.

axisScaleFactor

the amount to scale the axes at the centre of the rotation. Default is 1. All
numerical values are acceptable (0 removes the axes, < 0 inverts the direction of

all axes.)

232

1_plot3D

by loon plot can be separated by some variables into multiple panels. This argument
can take a formula, n dimensional state names (see 1_nDimStateNames) an n-
dimensional vector and data.frame or a 1ist of same lengths n as input.

on if the x or by is a formula, an optional data frame containing the variables in the
x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.

layout layout facets as 'grid', 'wrap' or 'separate’
connectedScales

Determines how the scales of the facets are to be connected depending on which
layout is used. For each value of 1layout, the scales are connected as follows:

e layout = "wrap"”: Across all facets, when connectedScales is

nyn

— "x", then only the "x" scales are connected

nen

— "y", then only the "y" scales are connected

nen

— "both”, both "x" and "y" scales are connected

nyn nen

— "none”, neither "x" nor "y" scales are connected. For any other value,
only the "y" scale is connected.

e layout = "grid": Across all facets, when connectedScales is

— "cross”, then only the scales in the same row and the same column are
connected

nen

— "row”, then both "x" and "y" scales of facets in the same row are con-
nected

nyn

— "column”, then both "x" and "y" scales of facets in the same column
are connected

— "x", then all of the "x" scales are connected (regardless of column)

— "y", then all of the "y" scales are connected (regardless of row)

— "both"”, both "x" and "y" scales are connected in all facets

— "none”, neither "x" nor "y" scales are connected in any facets.

color colours of points; colours are repeated until matching the number points. Default
is found using 1_getOption(”color™).

glyph the visual representation of the point. Argument values can be any of

* the string names of primitive glyphs:

"non non

— circles: "circle", "ccircle", "ocircle";

non non

squares or boxes: "square", "csquare", "osquare";

"non "non

triangles: "triangle", "ctriangle", "otriangle";

diamonds: "diamond", "cdiamond", or "odiamond".

Note that prefixes "c" and "o" may be thought of as closed and open, re-
spectively. The set of values are returned by 1_primitiveGlyphs().

* the string names of constructed glyphs:

text as glyphs: see 1_glyph_add_text ()

point ranges: see 1_glyph_add_pointrange()

polygons: see 1_glyph_add_polygon()
parallel coordinates: see 1_glyph_add_serialaxes()

star or radial axes: see 1_glyph_add_serialaxes()

I plot3D 233

— or any plot created using R: see 1_make_glyphs()
Note that glyphs are constructed and given a stringname to be used in the

inspector.
size size of the symbol (roughly in terms of area). Default is found using 1_getOption(“size").
active alogical determining whether points appear or not (default is TRUE for all points).

If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

selected alogical determining whether points appear selected at first (default is FALSE for
all points). If a logical vector is given of length equal to the number of points,
then it identifies which points are (TRUE) and which are not (FALSE).

xlabel Label for the horizontal (x) axis. If missing, one will be inferred from x if
possible.

ylabel Label for the vertical (y) axis. If missing, one will be inferred from y (or x) if
possible.

zlabel Label for the third (perpendicular to the screen) (z) axis. If missing, one will be
inferred from z (or x) if possible.

title Title for the plot, default is an empty string.

showLabels logical to determine whether axes label (and title) should be presented.

showScales logical to determine whether numerical scales should be presented on both axes.

showGuides logical to determine whether to present background guidelines to help determine
locations.

guidelines colour of the guidelines shown when showGuides = TRUE. Default is found using
1_getOption("guidelines").

guidesBackground

colour of the background to the guidelines shown when showGuides = TRUE.
Default is found using 1_getOption("guidesBackground™).

foreground foreground colour used by all other drawing. Default is found using 1_getOption("foreground”).
background background colour used for the plot. Default is found using 1_getOption("background™).
parent a valid Tk parent widget path. When the parent widget is specified (i.e. not

NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

Details
To get started with loon it is recommended to read loons website which can be accessed via the
1_help() function call.
The general direct manipulation and interaction gestures are outlined in the following figures.
Rotating

Press 'R’ to toggle rotation mode. When rotation mode is active, either use the below mouse
gestures or arrow keys to rotate the plot.

The centre of the rotation can be changed by panning the plot. To reset the rotation, use the tripod
icon in the plot inspector.

Zooming and Panning

234 I plot3D

Selecting Points/Objects
Moving Points on the Scatterplot Display

NOTE: Although it is possible to programmatically add layers to an 1_plot3D, these will not appear
as part of the 3D plot’s display. There is no provision at present to incorporate rotation of 3D
geometric objects other than point glyphs.

The scatterplot displays a number of direct interactions with the mouse and keyboard, these include:
rotating, zooming towards the mouse cursor using the mouse wheel, panning by right-click dragging
and various selection methods using the left mouse button such as sweeping, brushing and individual
point selection. See the documentation for 1_plot3D for more details about the interaction gestures.

Value
if the argument by is not set, a loon widget will be returned; else an 1_facet object (a list) will be
returned and each element is a 1oon widget displaying a subset of interest.

See Also

Turn interactive loon plot static loonGrob, grid.loon, plot.loon.

Other three-dimensional plotting functions: 1_scale3D()
Examples
if(interactive()){

with(quakes,
1_plot3D(long, lat, depth, linkingGroup = "quakes")

)

with(1l_scale3D(quakes),
1_plot3D(long, lat, depth, linkingGroup = "quakes")

)

scaled_quakes <- 1_scale3D(quakes)
with(scaled_quakes,

1_plot3D(long, lat, depth, linkingGroup = "quakes")
)

with(scaled_quakes,
1_plot3D(mag, stations, depth, linkingGroup = "quakes")
)

Or together:

with(scaled_quakes,{
1_plot3D(long, lat, depth, linkingGroup = "quakes")
1_plot3D(mag, stations, depth, linkingGroup = "quakes")
}

I_plot_arguments 235

if(interactive()){
default use as scatterplot

p1 <- with(quakes,
1_plot3D(long, lat, depth)
)

p2 <- with(quakes,
1_plot3D(mag, stations, depth)
)

link the two plots pl1 and p2

1_configure(pl, linkingGroup = "quakes"”, sync = "push")
1_configure(p2, linkingGroup = "quakes”, sync = "push")

}

1_plot_arguments Arguments common to I_plot functions

Description

Like plot in R, 1_plot is the generic plotting function for objects in loon.

This is the workhorse of loon and is often a key part of many other displays (e.g. 1_pairs and
1_navgraph)

Because plots in loon are interactive, the functions which create them have many arguments in
common. The value of these arguments become ‘infostates once the plot is instantiated. These can
be accessed and set using the usual R square bracket operators ‘[]* and ‘[]<-° using the statename as
a string. The state names can be found from an instantiated loon plot either via 1_info_states()
or, more in keeping with the R programming style, via names() (uses the method names. loon()
for loon objects).

The same state names can be passed as arguments with values to a 1_plot() call. As arguments
many of the common ones are desribed below.

Arguments

X the x and y arguments provide the x and y coordinates for the plot. Any reason-
able way of defining the coordinates is acceptable. See the function xy . coords
for details. If supplied separately, they must be of the same length.

y argument description is as for the x argument above.

by loon plots can be separated by some variables into multiple panels. This argu-
ment can take a formula, n dimensional state names (see 1_nDimStateNames)
an n-dimensional vector and data.frame or a list of same lengths n as input.

on if the x or y is a formula, an optional data frame containing the variables in the

x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.

236 I_plot_arguments

layout layout facets as "grid’, *wrap’ or ’separate’

connectedScales
Determines how the scales of the facets are to be connected depending on which
layout is used.

linkingGroup astring naming a group of plots to be linked. All plots with the same 1inkingGroup
will have the same values of their linked states (see 1_getlLinkedStates() and
1_setLinkedStates()).

linkingKey an n-dimensional character vector of unique entries. The entries identify which
points match other points in other plots. Default is c("0", "1", ..., "n=-1")
(for numerical n).

itemLabel an n-dimensional character vector whose values are displayed in a pop-up box
over any point whenever the mouse hovers over that point (provided showItemLabels
= TRUE).
This action is commonly known as providing a "tool tip". Note that all objects
drawn in any layer of a plot (e.g. maps) will have an itemLabel.

showItemLabels alogical (default FALSE) which indicates whether the "tool tip" itemLabel is to
be displayed whenever the mouse hovers over it.

color colours of points (default "grey60"); colours are repeated until matching the
number points,
glyph the visual representation of the point. Argument values can be any of

non non

the string names of primitive glyphixcles "circle", "ccircle", "ocircle",

"non non

squares or boxes "square", "csquare", "osquare",

triangles "triangle", "ctriangle", "otriangle",

diamonds "diamond", "cdiamond", or "odiamond".Note that prefixes "c"
and "o" may be thought of as closed and open, respectively. The set of
values are returned by 1_primitiveGlyphs().

the string names of constructed glyphs text as glyphs see 1_glyph_add_text()

point ranges see 1_glyph_add_pointrange()

polygons see 1_glyph_add_polygon()

parallel coordinates see 1_glyph_add_serialaxes()

star or radial axes see 1_glyph_add_serialaxes()

or any plot created using R see 1_make_glyphs()
Note that glyphs are constructed and given a stringname to be used in
the inspector.

size size of the symbol (roughly in terms of area)

active a logical determining whether points appear or not (default is TRUE for all
points). If a logical vector is given of length equal to the number of points,
then it identifies which points appear (TRUE) and which do not (FALSE).

selected a logical determining whether points appear selected at first (default is FALSE
for all points). If a logical vector is given of length equal to the number of points,
then it identifies which points are (TRUE) and which are not (FALSE).

xlabel Label for the horizontal (x) axis. If missing, one will be inferred from x if
possible.

I_plot_arguments

237

ylabel Label for the vertical (y) axis. If missing, one will be inferred from y (or x) if
possible.

title Title for the plot, default is an empty string.

minimumMargins the minimal size (in pixels) of the margins around the plot (bottom, left, top,
right)

showLabels logical to determine whether axes label (and title) should be presented.

showScales logical to determine whether numerical scales should be presented on both axes.

showGuides logical to determine whether to present background guidelines to help determine
locations.

guidelines colour of the guidelines shown when showGuides = TRUE (default "white").

guidesBackground
colour of the background to the guidelines shown when showGuides = TRUE
(default "grey92").

foreground foreground colour used by all other drawing (default "black").

background background colour used for the plot (default "white")

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.
named arguments to modify plot states.

Details

The interactive displays permit a number of direct interactions using the mouse and keyboard, these
include: zooming towards the mouse cursor using the mouse wheel, panning by right-click dragging
and various selection methods using the left mouse button such as sweeping, brushing and individual
point selection. See the documentation for 1_plot for more details about the interaction gestures.

See Also

the demos demo(1_glyph_sizes, package = "loon"), demo(1_glyphs, package = "loon"), and
demo(1_make_glyphs, package = "loon").

Examples

Not run:

default use as scatterplot

pl <- with(iris, 1_plot(x = Sepal.Length,

y = Sepal.Width,
color=Species,
title = "Sepal sizes"))

The names of the info states that can be
accessed or set. They can also be given values as
arguments to 1_plot.default()

names(p1)

versicolor <- (iris$Species == "versicolor")

238

p1["size"] <- 10
p1["glyph”1[versicolor]<- "csquare”
p1["minimumMargins”][1] <- 100

End(Not run)

I_plot_inspector

1_plot_inspector Create a Scatterplot Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_plot_inspector(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples
if(interactive()){

i <- 1_plot_inspector()

}

I _plot_inspector_analysis 239

1_plot_inspector_analysis
Create a Scatterplot Analysis Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_plot_inspector_analysis(parent = NULL, ...)

Arguments

parent parent widget path

state arguments

Value

widget handle

See Also

1_create_handle

Examples

if(interactive()){

i <- 1_plot_inspector_analysis()

}

1_plot_ts Draw a decomposed time series loon plot

Description

1_plot_ts is a generic function for creating a decomposed time series plot. It is mainly used in
1_plot.decomposed.ts and 1_plot.stl

240 I _plot_ts

Usage

1_plot_ts(
X,
color = 1_getOption("”color"),
size = 1_getOption("size"),
linecolor = 1_getOption("“color"),
linewidth = 1_getOption(”linewidth"),

xlabel = NULL,
ylabel = NULL,

title =

NULL,

tk_title = NULL,

linkingGroup,

showScales
showGuides
showLabels

call = match.

Arguments

X
color
size
linecolor

linewidth

xlabel

ylabel

title

tk_title

linkingGroup

showScales

showGuides

showLabels

TRUE,
TRUE,
TRUE,
call(),

Either an st1 object or a decomposed. ts object.

points colour of all time series. Default is given by 1_getOption(”color”).
points size of all time series. Default is given by 1_getOption(”size").
line colour of all time series. Default is given by 1_getOption("color”).

line width of all time series (incl. original and decomposed components. Default
is given by 1_getOption("linewidth").
the labels for the x axes. This is a length four character vector one for each: of

the original time series, the trend component, the seasonality component, and
the remainder. If of length 1, the label is repeated; if NULL, x1abel is "time".

the labels for the vertical axes. This is a length four character vector one for
each: of the original time series, the trend component, the seasonality com-
ponent, and the remainder. If NULL, the default, ylabel will be c("data"”,
"trend”, "seasonality”, "remainder"); if a character vector of length 1,
the label is repeated four times.

an overall title for the entire display. If NULL (the default), the title will be
"Seasonal Trend Analysis".

provides an alternative window name to Tk’s wm title. If NULL, stl will be
used.

name of linking group. If missing, one is created from the data name and class
associated with st10rDecomposedTS.

a logical as to whether to display the scales on all axes, default is TRUE.

a logical as to whether to display background guide lines on all plots, default is
TRUE.

a logical as to whether to display axes labels on all plots, default is TRUE.

I_predict 241

call a call in which all of the specified arguments are specified by their full names

keyword value pairs passed off to 1_plot() which constructs each loon scatter-
plot component.
Value

A structure of class "1_ts" containing four loon plots each representing a part of the decomposition
by name: "original", "trend", "seasonal”, and "remainder".

See Also

1_plot.stl, 1_plot.decomposed.ts, stl, or decompose.

1_predict Model Prediction

Description

It is entirely for the purpose of plotting fits and intervals on a scatterplot (or histogram). It is
a generic function to predict models for loon smooth layer (a wrap of the function predict).
However, the output is unified.

Usage
1_predict(model, ...)

Default S3 method:
1_predict(model, ...)

S3 method for class 'lm'

1_predict(
model,
newdata = NULL,
interval = c("none”, "confidence”, "prediction”),
level = 0.95,
)
S3 method for class 'nls'
1_predict(
model,
newdata = NULL,
interval = c("none”, "confidence"”, "prediction"),
level = 0.95,

242 I _predict

S3 method for class 'glm'

1_predict(
model,
newdata = NULL,
interval = c("none"”, "confidence"),
level = 0.95,
)
S3 method for class 'loess'
1_predict(
model,
newdata = NULL,
interval = c("none”, "confidence”, "prediction"),
level = 0.95,
)
Arguments
model a model object for which prediction is desired
arguments passed in predict
newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.
interval type of interval, could be "none", "confidence" or "prediction" (not for glm)
level confidence level
Value

A data frame is returned with x (if newdata is given) and y. If the interval is not none, two more
columns, lower (lower interval) and upper (upper interval) will be returned.

Examples

y <= rnorm(10)

x <= rnorm(10)

modell <- Im(y ~ x)

formal output

pre <- 1_predict(modell, newdata = data.frame(x = sort(x)),
interval = "conf")

head(pre)

if(interactive()) {
p <- with(cars, 1l_plot(speed, dist))

Example taken from

https://stackoverflow.com/questions/23852505/how-to-get-confidence-interval-for-smooth-spline
#

1_predict.smooth.spline <- function(model, interval = c("confidence”, "none"),

1_primitiveGlyphs 243

level = 0.95, ...) {
confidence interval of ~smooth.spline”
interval <- match.arg(interval)

res <- (model$yin - model$y)/(1 - model$lev) # jackknife residuals
sigma <- sqrt(var(res)) # estimate sd

std <- stats::gnorm(level / 2 + 0.5)

upper <- model$y + std * sigma * sqrt(model$lev) # upper 95% conf. band
lower <- model$y - std x sigma * sqrt(model$lev) # lower 95% conf. band

data.frame(y = model$yin, lower = lower, upper = upper)

}
1 <- 1_layer_smooth(p, method = "smooth.spline”, interval = "confidence")
3
1_primitiveGlyphs The primitive glyphs available to a scatterplot or graph display
Description

Returns a vector of the available primitive glyphs.

Usage
1_primitiveGlyphs()

Details
The scatterplot and graph displays both have the n-dimensional state 'glyph' that assigns each data
point or graph node a glyph (i.e. a visual representation).

Loon distinguishes between primitive and non-primitive glyphs: the primitive glyphs are always
available for use whereas the non-primitive glyphs need to be first specified and added to a plot
before they can be used.

The primitive glyphs are:
’circle’, ’ocircle’, ’ccircle’
’square’, ’osquare’, ’csquare’

’triangle’, ’otriangle’, ’ctriangle’
>diamond’, ’odiamond’, ’cdiamond’

Note that the letter 'o' stands for outline only, and the letter 'c' stands for contrast and adds an
outline with the 'foreground' color (black by default).

For more information run: 1_help("learn_R_display_plot.html#glyphs")

Value

A character vector of the names of all primitive glyphs in loon.

244 1 resize

See Also

Other glyph functions: 1_glyph_add(),1_glyph_add.default(),1_glyph_add_image(),1_glyph_add_pointrange(),
1_glyph_add_polygon(),1_glyph_add_serialaxes(), 1_glyph_add_text(),1_glyph_delete(),
1_glyph_getLabel(), 1_glyph_getType(), 1_glyph_ids(), 1_glyph_relabel()

1_redraw Force a Content Redraw of a Plot

Description

Force redraw the plot to make sure that all the visual elements are placed correctly.

Usage

1_redraw(widget)

Arguments

widget widget path as a string or as an object handle

Details

Note that this function is intended for debugging. If you find that the display does not display the
data according to its plot states then please contact loon’s package maintainer.

Examples
if(interactive()){

p <- 1_plot(iris)
1_redraw(p)

3

1_resize Resize Plot Widget

Description

Resizes the toplevel widget to a specific size.

Usage

1 _resize(widget, width, height)

1_Rlist2nestedTclList 245

Arguments
widget widget path as a string or as an object handle
width width in pixels
height in pixels

See Also

1_size, 1_size<-
Examples

if(interactive()){

p <- 1_plot(iris)

1_resize(p, 300, 300)
1_size(p) <- c(500, 500)

}

1_Rlist2nestedTclList Convert an R list to a nested Tcl list

Description

This is a helper function to create a nested Tcl list from an R list (i.e. a list of vectors).

Usage

1_Rlist2nestedTclList(x)

Arguments

X a list of vectors

Value

a string that represents the tcl nested list

See Also

1_nestedTclList2Rlist

Examples

x <- list(c(1,3,4), c(4,3,2,1), c(4,3,2,5,6))
1_Rlist2nestedTclList(x)

246 1 _saveStates

1_saveStates Save the info states of a loon plot widget in a file

Description

1_saveStates uses saveRDS() to save the info states of a loon plot as an R object to the named
file. This is helpful, for example, when using RMarkdown or some other notebooking facility to
recreate an earlier saved loon plot so as to present it in the document.

Usage
1_saveStates(
P,
states = c("color"”, "active”, "selected”, "linkingKey"”, "linkingGroup"),

file = stop("missing name of file"),

)
Arguments
p the ‘I_plot* object whose info states are to be saved.
states either the logical ‘“TRUE’ or a character vector of info states to be saved. Default
value ‘c("color", "active", "selected”, "linkingKey", "linkingGroup")‘ consists
of ‘n‘ dimensional states that are common to many ‘1_plot‘s and which are most
important to reconstruct the plot’s display in any summary. If ‘states is the
logical “TRUE’, by ‘names(p)‘ are saved.
file is a string giving the file name where the saved information’ will be written
(custom suggests this file name end in the suffix ‘.rds°.
further arguments passed to saveRDS().
Value

alist of class ‘I_savedStates‘ containing the states and their values. Also has an attribute ‘I_plot_class*
which contains the class vector of the plot ‘p*

See Also
1_getSavedStates 1_copyStates 1_info_states readRDS saveRDS

Examples

if(interactive()){

#

Suppose you have some plot that you created like

p <- 1_plot(iris, showGuides = TRUE)

#

and coloured groups by hand (using the mouse and inspector)

1 saveStates 247

so that you ended up with these colours:
p["color”] <- rep(c("lightgreen", "firebrick”,"skyblue"),
each = 50)

#

Having determined the colours you could save them (and other states)

in a file of your choice, here some tempfile:

myFileName <- tempfile("myPlot”, fileext = ".rds")

#

Save the named states of p

1_saveStates(p,
states = c("color”, "active”, "selected"),
file = myFileName)

#

These can later be retrieved and used on a new plot

(say in RMarkdown) to set the new plot's values to those

previously determined interactively.

p_new <- 1_plot(iris, showGuides = TRUE)

p_saved_info <- 1_getSavedStates(myFileName)

#

We can tell what kind of plot was saved

attr(p_saved_info, "l_plot_class”)

#

The result is a list of class "l_savedStates” which

contains the names of the

p_new["color"”] <- p_saved_info$color

#

The result is that p_new looks like p did

(after your interactive exploration)

and can now be plotted as part of the document

plot(p_new)

#

For compound plots, the info_states are saved for each plot

pp <- l_pairs(iris)

myPairsFile <- tempfile("myPairsPlot"”, fileext = ".rds")

#

Save the names states of pp

1_saveStates(pp,
states = c("color”, "active”, "selected"),
file = myPairsFile)

pairs_info <- 1_getSavedStates(myPairsFile)

#
For compound plots, the info states for all constitutent

plots are saved. The result is a list of class "l_savedStates”
whose elements are the named plots as "l_savedStates”

themselves.

#

#

The names of the plots which were saved
names(pairs_info)
#
And the names of the info states whose values were saved for
the first plot
names(pairs_info$x2y1)
#

248

While it is generally recommended to access (or assign) saved
state values using the $ sign accessor, paying attention to the
nested list structure of an "l_savedStates” object (especially for
1_compound plots), R's square bracket notation [] has also been
specialized to allow a syntactically simpler (but less precise)
access to the contents of an 1_savedStates object.

For example,
_saved_info["color"]

T o o M E H M

returns the saved "color"” as a vector of colours.

#

In contrast,

pairs_info["x2y1"]

returns the 1l_savedStates object of the states of the plot named "x2y1",
but

pairs_info["color"]

returns a LIST of colour vectors, by plot as they were named in pairs_info
#

As a consequence, the following two are equivalent,
pairs_info["x2y1"]1["color"]

finds the value of "color” from an "l_savedStates” object

whereas

pairs_info["color"]1[["x2y1"]1]

finds the value of "x2y1" from a "list” object

#

Also, setting a state of an "l_savedStates” is possible

(though not generally recommended; better to save the states again)

#

p_saved_info["color"] <- rep("red”, 150)

changes the saved state "color” on p_saved_info

whereas

pairs_info["color”] <- rep("red”, 150)

will set the red color for any plot within pairs_info having "color"” saved.
In this way the assignment function via [] is trying to be clever

for 1_savedStates for compound plots and so may have unintentional

consequences if the user is not careful.

Generally, one does not want/need to change the value of saved states.
Instead, the states would be saved again from the interactive plot

if change is necessary.

Alternatively, more nuanced and careful control is maintained using

the $ selectors for lists.

3

1 scale3D

1_scale3D Scale for 3d plotting

Description

1_scale3D scales its argument in a variety of ways used for 3D visualization.

1 scale3D

Usage

249

1_scale3D(x, center = TRUE, method = c("box", "sphere"))

Arguments

X

center

method

Value

the matrix or data.frame whose columns are to be scaled. Any NA entries will be
preserved but ignored in calculations. x must have exactly 3 columns for method
= "sphere”.

either a logical value or numeric-alike vector of length equal to the number of
columns of x, where ‘numeric-alike’ means that as.numeric(.) will be applied
successfully if is.numeric(.) is not true.

the scaling method to use. If method = "box" (the default) then the columns
are scaled to have equal ranges and, when center = TRUE, to be centred by the
average of the min and max; If method = "sphere” then x must be three di-
mensional. For sphering, on each of the original 3 dimensions x is first centred
(mean centred when center = TRUE) and scaled to equal standard deviation on.
The V matrix of the singular value decomposition (svd) is applied to the right
resulting in uncorrelated variables. Coordinates are then divided by (non-zero as
tested by 'all.equal (@, .)) singular values. If x contains no NAs, the resulting
coordinates are simply the U matrix of the svd.

a data.frame whose columns are centred and scaled according to the given arguments. For method
= "sphere"), the three variable names are x1, x2, and x3.

See Also

1_plot3D, scale, and prcomp.

Other three-dimensional plotting functions: 1_plot3D()

Examples

Iris data
#

All variables (including Species as a factor)
result_box <- 1_scale3D(iris)

head(result_box,

n = 3)

apply(result_box, 2, FUN = range)
Note mean is not zero.
apply(result_box, 2, FUN = mean)

Sphering only on 3D data.

result_sphere <-

1_scale3D(iris[, 1:3], method = "sphere")

head(result_sphere, n = 3)
apply(result_sphere, 2, FUN = range)
Note mean is numerically zero.
apply(result_sphere, 2, FUN = mean)

250 I_scaleto_layer

With NAs

X <- iris

x[c(1, 3), 1] <- NA
x[2, 3] <= NA

result_box <- 1_scale3D(x)
head(result_box, n = 5)
apply(result_box, 2, FUN = function(x) {range(x, na.rm = TRUE)})

Sphering only on 3D data.

result_sphere <- 1_scale3D(x[, 1:3], method = "sphere")

Rows having had any NA are all NA after sphering.
head(result_sphere, n = 5)

Note with NAs mean is no longer numerically zero.

because centring was based on all non-NAs in each column
apply(result_sphere, 2, FUN = function(x) {mean(x, na.rm = TRUE)})

1_scaleto_active Change Plot Region to Display All Active Data

Description

The function modifies the zoomX, zoomY, panX, and panY so that all active data points are displayed.

Usage

1_scaleto_active(widget)

Arguments
widget widget path as a string or as an object handle
1_scaleto_layer Change Plot Region to Display All Elements of a Particular Layer
Description

The function modifies the zoomX, zoomY, panX, and panY so that all elements of a particular layer
are displayed.

Usage

1_scaleto_layer(target, layer)

I _scaleto_plot 251

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
layer layer id
See Also
1_layer_ids
1_scaleto_plot Change Plot Region to Display the All Data of the Model Layer
Description

The function modifies the zoomX, zoomY, panX, and panY so that all elements in the model layer of
the plot are displayed.

Usage

1_scaleto_plot(widget)

Arguments

widget widget path as a string or as an object handle

1_scaleto_selected Change Plot Region to Display All Selected Data

Description
The function modifies the zoomX, zoomY, panX, and panY so that all selected data points are dis-
played.

Usage

1_scaleto_selected(widget)

Arguments

widget widget path as a string or as an object handle

252 1 serialaxes

1_scaleto_world Change Plot Region to Display All Plot Data

Description
The function modifies the zoomX, zoomY, panX, and panY so that all elements in the plot are dis-
played.

Usage

1_scaleto_world(widget)

Arguments
widget widget path as a string or as an object handle
1_serialaxes Create an interactive serialaxes (parallel axes or radial axes) plot
Description

1_serialaxes is a generic function for displaying multivariate data either as a stacked star glyph
plot, or as a parallel coordinate plot.

Usage

1_serialaxes(data, ...)

Default S3 method:
1_serialaxes(
data,
sequence,
scaling = "variable”,
axesLayout = "radial”,
by = NULL,
on,
layout = c("grid", "wrap", "separate”),
andrews = FALSE,
showAxes = TRUE,
color = 1_getOption("”color"),
active = TRUE,
selected = FALSE,
linewidth = 1_getOption(”linewidth"),
parent = NULL,

1 serialaxes

Arguments

data

sequence

scaling

axeslLayout

by

on

layout
andrews
showAxes
color

active

selected

linewidth

parent

Details

253

a data frame with numerical data only
named arguments to modify the serialaxes states or layouts, see details.
vector with variable names that defines the axes sequence

one of ’variable’, ’data’, ’observation’ or 'none’ to specify how the data is scaled.
See Details and Examples for more information.

either "radial” or "parallel”

loon plot can be separated by some variables into multiple panels. This argument
can take a formula, n dimensional state names (see 1_nDimStateNames) an n-
dimensional vector and data.frame or a 1ist of same lengths n as input.

if the x or by is a formula, an optional data frame containing the variables in the
x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.

layout facets as 'grid', 'wrap' or 'separate’

Andrew’s plot (a "Fourier’ transformation)

boolean to indicate whether axes should be shown or not

vector with line colors. Default is given by 1_getOption("”color™).

alogical determining whether points appear or not (default is TRUE for all points).
If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

a logical determining whether points appear selected at first (default is FALSE for
all points). If a logical vector is given of length equal to the number of points,
then it identifies which points are (TRUE) and which are not (FALSE).

vector with line widths. Default is given by 1_getOption("linewidth").

a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

For more information run: 1_help("learn_R_display_hist")

» The scaling state defines how the data is scaled. The axes display O at one end and 1 at the
other. For the following explanation assume that the data is in a nxp dimensional matrix. The
scaling options are then

variable per column scaling
observation per row scaling

data whole matrix scaling
none do not scale

* Some arguments to modify layouts can be passed through, e.g. "separate", "byrow", etc.
Check 1_facet to see how these arguments work.

254

Value

1 serialaxes

if the argument by is not set, a Loon widget will be returned; else an 1_facet object (a list) will be
returned and each element is a 1oon widget displaying a subset of interest.

See Also

Turn interactive loon plot static loonGrob, grid.loon, plot.loon.

Other loon interactive states: 1_hist(), 1_info_states(), 1_plot(),1_state_names(), names.loon()

Examples

if(interactive()){

A

S

#

Effect of the choice of the argument "scaling”
To illustrate we will look at the four measurements of
150 iris flowers from the iris data of Edgar Anderson made

famous by R.A. Fisher.

First separate the measurements

irisFlowers <- iris[, 1:4]

#

from their species

species <- iris[,5]

#

and get some identifiers for the individual flowers

flowerIDs <- paste(species, 1:50)

#
#
#

T E R E E E E E E E E E E R E

Now create parallel axes plots of the measurements
using different scaling values.

scaling = "variable”

This is the standard scaling of most serial axes plots,
scaling each axis from the minimum to the maximum of that variable.
Hence it is the default scaling.

More precisely, it maps the minimum value in each column (variable) to
zero and the maximum to one. The result is every parallel
axis will have a point at @ and a point at 1.

This scaling highlights the relationships (e.g. correlations)
between the variables (removes the effect of the location and scale of
each variable).

For the iris data, ignoring species we see for example that
Sepal.Length and Sepal.Width are negatively correlated (lots of
crossings) across species but more positively correlated (mostly
parallel lines) within each species (colour).

1 serialaxes 255

sa_var <- 1_serialaxes(irisFlowers,

S E E E E E E E E E E E E E R Y

scaling = "variable”, # scale within column
axeslLayout = "parallel”,

color = species,

linewidth = 2,

itemLabel = flowerlIDs,

showItemLabels = TRUE,

title = "scaling = variable (initially)”,
linkingGroup = "irisFlowers data”)

scaling = "observation”

This maps the minimum value in each row (observation) to
zero and the maximum value in each row to one.

The result is that every observation (curve in the parallel
coordinate plot) will touch @ on at least one axis and touch
1 on another.

This scaling highlights the differences between observations (rows)
in terms of the relative measurements across the variables for each
observation.

For example, for the iris data we can see that for every flower (row)
the Sepal.Length is the largest measurement and the Petal.Width

is the smallest. Each curve gives some sense of the *shape* of each
flower without regard to its size. Two species (versicolor and
virginica) have similar shaped flowers (relatively long but narrow
sepals and petals), whereas the third (setosa) has relatively large
sepals compared to small petals.

sa_obs <- 1_serialaxes(irisFlowers,

N E E EEE

scaling = "observation”, # scale within row
axeslLayout = "parallel”,

color = species,

linewidth = 2,

itemLabel = flowerlIDs,

showItemLabels = TRUE,

title = "scaling = observation (initially)",
linkingGroup = "irisFlowers data”)

scaling = "data”

This maps the minimum value in the whole dataset (over all elements)
to zero and the maximum value in the whole dataset to one.

The result is that every measurement is on the same numeric (if not
measurement) scale. Highlighting the relative magnitudes of all

numerical values in the data set, each curve shows the relative magnitudes
without rescaling by variable.

256

1 serialaxes

This is most sensible data such as the iris flower where all four measurements
appear to have been taken on the same measuring scale.
#
For example, for the iris data full data scaling preserves the size
and shape of each flower. Again virginica is of roughly the same
shape as versicolor but has distinctly larger petals.
Setosa in contrast is quite differently shaped in both sepals and petals
but with sepals more similar in size to the two other flowers and
with significantly smaller petals.
sa_dat <- 1_serialaxes(irisFlowers,
scaling = "data", # scale using all data
axeslLayout = "parallel”,

color = species,

linewidth = 2,

itemLabel = flowerlIDs,

showItemLabels = TRUE,

title = "scaling = data (initially)",
linkingGroup = "irisFlowers data”)

scaling = "none”
Sometimes we might wish to choose a min and max to use

for the whole data set; or perhaps a separate min and max
for each variable.

% o H W

This would be done outside of the construction of the plot
and displayed by having scaling = "none” in the plot.

For example, for the iris data, we might choose scales so that
the minimum and the maximum values within the data set do not
appear at the end points @ and 1 of the axes but instead inside.

e E EEE R

Suppose we choose the following limits for all variables
lower_lim <- -3 ; upper_lim <- max(irisFlowers) + 1

These are the limits we want to use to define the end points of
the axes for all variables.
We need only scale the data as
irisFlowers_0_1 <- (irisFlowers - lower_lim)/(upper_lim - lower_lim)
Or alternatively using the built-in scale function
(which allows different scaling for each variable)
irisFlowers_0_1 <- scale(irisFlowers,

center = rep(lower_lim, 4),

scale = rep((upper_lim - lower_lim), 4))

Different scales for different
And instruct the plot to not scale the data but plot it on the 0-1 scale
for all axes. (Note any rescaled date outside of [0,1] will not appear.)
#
sa_none <- 1_serialaxes(irisFlowers_0_1,

scaling = "none”, # do not scale

axesLayout = "parallel”,

1_serialaxes_inspector

This is particularly useful for "radial” axes to keep the polygons away from

color = species,
linewidth = 2,
itemLabel = flowerlIDs,
showItemLabels = TRUE,

title = "scaling = none (initially)"”,

linkingGroup = "irisFlowers data")

the centre of the display.

For example

sa_none["axesLayout”] <- "radial”

now displays each flower as a polygon where shapes and sizes are easily
compared.

#

#
#
#
#

NOTE:

rescaling the data so that all values are within [0,1] is perhaps
the best way to proceed (especially if there are natural lower and
upper limits for each variable).
Then scaling can always be changed via the inspector.

257

1_serialaxes_inspector

Create a Serialaxes Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_serialaxes_inspector(parent = NULL, ...)

Arguments

parent

Value

widget handle

See Also

1_create_handle

parent widget path

State arguments

258 I_setAspect

Examples
if(interactive()){

i <- 1_serialaxes_inspector()

}

1_setAspect Set the aspect ratio of a plot

Description

The aspect ratio is defined by the ratio of the number of pixels for one data unit on the y axis and
the number of pixels for one data unit on the x axes.

Usage

1_setAspect(widget, aspect, x, y)

Arguments
widget widget path as a string or as an object handle
aspect aspect ratio, optional, if omitted then the x and y arguments have to be specified.
X optional, if the aspect argument is missing then x and y can be specified and
the aspect ratio is calculted usding y/x.
y see description for x argument above
Examples
Not run:

p <- with(iris, 1_plot(Sepal.Length ~ Sepal.Width, color=Species))

1_aspect(p)
1_setAspect(p, x =1, y = 2)

End(Not run)

1 _setColorList 259

1_setColorList Use custom colors for mapping nominal values to distinct colors

Description

Modify loon’s color mapping list to a set of custom colors.

Usage

1_setColorList(colors)

Arguments

colors vector with valid color names or hex-encoded colors

Details

There are two commonly used mapping schemes of data values to colors: one scheme maps numeric
values to colors on a color gradient and the other maps nominal data to colors that can be well
differentiated visually (e.g. to highlight the different groups). Presently, loon always uses the latter
approach for its color mappings. You can use specialized color pallettes to map continuous values
to color gradients as shown in the examples below.

When assigning values to a display state of type color then loon maps those values using the fol-
lowing rules

1. if all values already represent valid Tk colors (see tkcolors) then those colors are taken.

2. if the number of distinct values are less than number of values in loon’s color mapping list
then they get mapped according to the color list, see 1_setColorList and 1_getColorList.

3. if there are more distinct values as there are colors in loon’s color mapping list then loon’s own
color mapping algorithm is used. See loon_palette and for more details about the algorithm
below in this documentation.

Loon’s default color list is composed of the first 11 colors from the &cl color wheel (displayed
below in the html version of the documentation). The letters in hcl stand for hue, chroma and
luminance, and the hcl wheel is useful for finding "balanced colors" with the same chroma (radius)
and luminance but with different hues (angles), see Ross Thaka (2003) "Colour for presentation
graphics”, Proceedings of DSC, p. 2 (https://www.stat.auckland.ac.nz/~ihaka/courses/
787/color.pdf).

The colors in loon’s internal color list are also the default ones listed as the "modify color ac-
tions" in the analysis inspectors. To query and modify loon’s color list use 1_getColorList and
1_setColorList.

In the case where there are more unique data values than colors in loon’s color list then the colors
for the mapping are taken from different locations distributed on the hcl color wheel (see above).

One of the advantages of using the hcl color wheel is that one can obtain any number of "balanced
colors" with distinct hues. This is useful in encoding data with colors for a large number of groups;

https://www.stat.auckland.ac.nz/~ihaka/courses/787/color.pdf
https://www.stat.auckland.ac.nz/~ihaka/courses/787/color.pdf

260 1 _setColorList

however, it should be noted that the more groups we have the closer the colors sampled from the
wheel become and, therefore, the more similar in appearance.

A common way to sample distinct "balanced colors" on the hcl wheel is to choose evenly spaced
hues distributed on the wheel (i.e. angles on the wheel). However, this approach leads to color sets
where most colors change when the sample size (i.e. the number of sampled colors from the wheel)
increases by one. For loon, it is desirable to have the first m colors of a color sample of size m+1 to
be the same as the colors in a color sample of size m, for all positive natural numbers m. Hence, we
prefer to have a sequence of colors. This way, the colors on the inspectors stay relevant (i.e. they
match with the colors of the data points) when creating plots that encode with color a data variable
with different number of groups.

We implemented such a color sampling scheme (or color sequence generator) that also makes sure
that neighboring colors in the sequence have different hues. In you can access this color sequence
generator with loon_palette. The color wheels below show the color generating sequence twice,
once for 16 colors and once for 32 colors.

Note, for the inspector: If there are more unique colors in the data points than there are on the
inspectors then it is possible to add the next five colors in the sequence of the colors with the +5
button. Alternatively, the + button on the modify color part of the analysis inspectors allows the
user to pick any additional color with a color menu. Also, if you change the color mapping list and
close and re-open the loon inspector these new colors show up in the modify color list.

When other color mappings of data values are required (e.g. numerical data to a color gradient) then
the functions in the scales R package provide various mappings including mappings for qualitative,
diverging and sequential values.

See Also

1_setColorList,1_getColorList,1_setColorList_ColorBrewer,1_setColorList_hcl,1_setColorList_baseR

Examples

if(interactive()){

1 _plot(1:3, color=1:3) # loon's default mapping

cols <- 1_getColorList()
1_setColorList(c("red"”, "blue", "green"”, "orange"))

close and reopen inspector

1 _plot(1:3, color=1:3) # use the new color mapping
1_plot(1:10, color=1:10) # use loons default color mapping as color list is too small

reset to default
1_setColorList(cols)
3

Not run:
you can also perform the color mapping yourself, for example with
the col_numeric function provided in the scales package

1 _setColorList_baseR 261

if (requireNamespace("scales”, quietly = TRUE)) {
p_custom <- with(olive, 1_plot(stearic ~ oleic,
color = scales::col_numeric("Greens”, domain = NULL)(palmitic)))

}

End(Not run)

1_setColorList_baseR Setloon’s color mapping list to the colors from base R

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage
1_setColorList_baseR()

See Also

1_setColorList,1_setColorList_loon,1_setColorList_ColorBrewer,1_setColorList_hcl,
1_setColorList_baseR, 1_setColorList_ggplot2

1_setColorList_ColorBrewer
Set loon’s color mapping list to the colors from ColorBrewer

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_ColorBrewer(
palette = c("Set1”, "Set2", "Set3", "Pastell”, "Pastel2"”, "Paired”, "Dark2"”, "Accent"”)

)

Arguments
palette one of the following RColorBrewer palette name: Setl, Set2, Set3, Pastell,
Pastel2, Paired, Dark2, or Accent
Details

Only the following palettes in ColorBrewer are available: Setl, Set2, Set3, Pastell, Pastel2, Paired,
Dark2, and Accent. See the examples below.

262 1 setColorList_hcl

See Also

1_setColorList,1_setColorList_loon,1_setColorList_ColorBrewer,1_setColorList_hcl,
1_setColorList_baseR, 1_setColorList_ggplot2

Examples

if (interactive()){
Not run:
if (requireNamespace("RColorBrewer”, quietly = TRUE)) {

RColorBrewer: :display.brewer.all()
3

End(Not run)

1_setColorList_ColorBrewer("Set1")
p <- 1l_plot(iris)

}

1_setColorList_ggplot2
Set loon’s color mapping list to the colors from ggplot2

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_ggplot2()

See Also

1_setColorList,1_setColorList_loon,1_setColorList_ColorBrewer,1_setColorList_hcl,
1_setColorList_baseR, 1_setColorList_ggplot2

1_setColorList_hcl Set loon’s color mapping list to the colors from hcl color wheen

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_hcl(chroma = 56, luminance = 51, hue_start = 231)

1 _setColorList_loon 263

Arguments
chroma The chroma of the color. The upper bound for chroma depends on hue and
luminance.
luminance A value in the range [0,100] giving the luminance of the colour. For a given
combination of hue and chroma, only a subset of this range is possible.
hue_start The start hue for sampling. The hue of the color specified as an angle in the
range [0,360]. O yields red, 120 yields green 240 yields blue, etc.
Details
Samples equally distant colors from the hcl color wheel. See the documentation for hcl for more
information.
See Also

1_setColorList,1_setColorList_loon,1_setColorList_ColorBrewer,1_setColorList_hcl,
1_setColorList_baseR, 1_setColorList_ggplot2

1_setColorList_loon Set loon’s color mapping list to the colors from loon defaults

Description

Loon’s color list is used to map nominal values to colors. See the documentation for 1_setColorList.

Usage

1_setColorList_loon()

See Also

1_setColorList,1_setColorList_loon, 1_setColorList_ColorBrewer,1_setColorList_hcl,
1_setColorList_baseR, 1_setColorList_ggplot2

1_setLinkedStates Modify States of a Plot that are Linked in Loon’s Standard Linking
Model

Description
Loon’s standard linking model is based on three levels, the 1inkingGroup and 1inkingKey states
and the used linkable states. See the details below.

Usage

1_setlLinkedStates(widget, states)

264 I_setOption

Arguments
widget widget path as a string or as an object handle
states used linkable state names, see in details below
Details

Loon’s standard linking model is based on two states, linkingGroup and linkingKey. The full
capabilities of the standard linking model are described here. However, setting the 1inkingGroup
states for two or more displays to the same string is generally all that is needed for linking displays
that plot data from the same data frame. Changing the linking group of a display is also the only
linking-related action available on the analysis inspectors.

The first linking level is as follows: loon’s displays are linked if they share the same string in their
linkingGroup state. The default linking group 'none' is a keyword and leaves a display un-linked.

The second linking level is as follows. All n-dimensional states can be linked between displays. We
call these states linkable. Further, only linkable states with the same name can be linked between
displays. One consequence of this shared state name rule is that, with the standard linking model,
the linewidth state of a serialaxes display cannot be linked with the size state of a scatterplot
display. Also, each display maintains a list that defines which of its linkable states should be used
for linking; we call these states the used linkable states. The default used linkable states are as
follows

Display Default used linkable states
scatterplot selected, color, active, size
histogram selected, color, active
serialaxes selected, color, active
graph selected, color, active, size

If any two displays are set to be linked (i.e. they share the same linking group) then the intersection
of their used linkable states are actually linked.

The third linking level is as follows. Every display has a n-dimensional 1inkingKey state. Hence,
every data point has an associated linking key. Data points between linked plots are linked if they
share the same linking key.

1_setOption Set the value of a loon display option

Description
All of loon’s displays access a set of common options. This function assigns the value to the named
option.

Usage

1_setOption(option, value)

1_setTitleFont 265

Arguments
option the name of the option being set
value the value to be assigned to the option. If value == "default", then the option is
set to loon’s default value for it.
Value

the new value

See Also

1_getOption, 1_getOptionNames, 1_userOptions, 1_userOptionDefault

Examples

1_setOption("select-color”, "red")
1_setOption("select-color”, "default")

1_setTitleFont Set the title font of all loon displays

Description
All of loon’s displays access a set of common options. This function sets the font for the title bar of
the displays.

Usage

1_setTitleFont(size = "16", weight = "bold"”, family = "Helvetica")

Arguments
size the font size.
weight the font size.
family the font family.
Value

the value of the named option.

See Also

1_getOptionNames, 1_userOptions, 1_userOptionDefault, 1_setOption

266 1 size<-

1_size Query Size of a Plot Display

Description

Get the width and height of a plot in pixels

Usage

1_size(widget)

Arguments

widget widget path as a string or as an object handle

Value

Vector width width and height in pixels

See Also

1_resize, 1_size<-

1_size<- Resize Plot Widget

Description

Resizes the toplevel widget to a specific size. This setter function uses 1_resize.

Usage

1_size(widget) <- value

Arguments

widget widget path as a string or as an object handle

value numeric vector of length 2 with width and height in pixels
See Also

1_resize, 1_size

1 state_names 267

Examples
if(interactive()){
p <- 1_plot(iris)

1_resize(p, 300, 300)
1_size(p) <- c(500, 500)

}

1_state_names Get State Names of Loon Object

Description

States of loon objects can be accessed [~ and 1_cget and modified with 1_configure.

Usage

1_state_names(target)

Arguments
target either an object of class loon or a vector that specifies the widget, layer, glyph,
navigator or context completely. The widget is specified by the widget path
name (e.g. '.10.plot"), the remaining objects by their ids.
Details

In order to access values of a states use 1_info_states.

Value

state names

See Also

1_info_states, 1_cget, 1_configure

Other loon interactive states: 1_hist(), 1_info_states(), 1_plot(), 1l_serialaxes(), names.loon()

268 I_throwErrorlfNotLoonWidget

1_subwin Create a child widget path

Description

This function is similar to . Tk.subwin except that does not the environment of the "tkwin" object
to keep track of numbering the subwidgets. Instead it creates a widget path (parent).looni, where i
is the smallest integer for which no widget exists yet.

Usage
1_subwin(parent, name = "w")
Arguments
parent parent widget path
name child name
Value

widget path name as a string

1_throwErrorIfNotLoonWidget
Throw an error if string is not associated with a loon widget

Description

Helper function to ensure that a widget path is associated with a loon widget.

Usage

1_throwErrorIfNotLoonWidget (widget)

Arguments

widget widget path name as a string

Value

TRUE if the string is associated with a loon widget, otherwise an error is thrown.

1 toplevel 269

1_toplevel loon tk top level

Description

Create a loon tk top-level window

Usage
1_toplevel(path)

Arguments
path A valid path name (character); if missing, a valid path will be generated auto-
matically
Value

a tk top level widget

Examples

if(interactive()) {

tt <- 1_toplevel(".test")

subwin <- 1_subwin(tt, 'ts')

tktitle(tt) <- paste("”path:", subwin)

parent <- as.character(tcl('frame', subwin))

a loon widget
p <- 1_plot(rnorm(10@), rnorm(100), parent = parent)
pack a refresh button (generate new data set)
refresh_button <- as.character(
tcltk::tcl('button',
as.character(l_subwin(parent, 'refresh button')),

text = "refresh”,
bg = "grey80",
fg = "black”,
borderwidth = 2,
relief = "raised”))
layout
tcltk: :tkgrid(p,
row = 0,
column = 0,

rowspan = 10,
columnspan = 10,
sticky="nesw")

tcltk: :tkgrid(refresh_button,

270 I toR

row = 10,
column = 0,
rowspan = 1,
columnspan = 1,
sticky="nesw")
for(i in 0:10) {
tcltk: :tkgrid.rowconfigure(parent, i, weight=1)
}
for(i in 0:9) {
tcltk: :tkgrid.columnconfigure(parent, i, weight=1)
}

update <- function(...) {
1_configure(p,
X = rnorm(100),
y = rnorm(100))
1_scaleto_world(p)
}

configure button (callback function)
tcltk: :tkconfigure(refresh_button,
command = update)
configure canvas size
tcltk: :tkconfigure(paste(p,”.canvas”, sep='"'), width=500, height=500)

pack widgets
tkpack(parent, fill="both"”, expand=TRUE)

1_toR Convert a Tcl Object to some other R object

Description
Return values from .Tcl and tcl are of class tc1Obj and often need to be mapped to a different
data structure in R. This function is a helper class to do this mapping.

Usage

1_toR(x, cast = as.character)

Arguments

X a tclObj object

cast a function to conver the object to some other R object
Value

A object that is returned by the function specified with the cast argument.

I_userOptionDefault 271

1_userOptionDefault Get loon’s system default value for the named display option.

Description
All of loon’s displays access a set of common options. This function accesses and returns the default
value for the named option.

Usage

1_userOptionDefault(option)

Arguments
option the name of the user changeable loon display option whose default value is to
be determined.
Value

the default value for the named option

See Also

1_getOptionNames, 1_getOption, 1_userOptionDefault, 1_userOptions

Examples

1_userOptionDefault("background”)

1_userOptions Get the names of all loon display options that can be set by the user.

Description
All of loon’s displays access a set of common options. This function accesses and returns the names
of the subset of loon options which can be changed by the user.

Usage

1_userOptions()

Value

a vector of all user settable option names.

272 1 web

See Also

1_getOptionNames, 1_getOption, 1_userOptionDefault, 1_setOption

Examples

1_userOptions()

1_web Open a browser with loon’s R documentation webpage

Description

1_web opens a browser with the relevant page on the official loon documentation website. This is
constructed by joining together the information provided by the arguments site/package/directory/page.

Default would be the documentation found at https: //great-northern-diver.github.io/loon/.

Usage
1_web(
page = "index",
directory = c("home"”, "reference", "articles"),
package = c("loon”, "loon.data”, "loon.ggplot”, "loon.tourr”, "ggmulti”, "zenplots”,

"loon.shiny”, "diveR"),
site = "https://great-northern-diver.github.io",

)
Arguments
page relative path to a page (the ".html" part may be omitted)
directory if "home" (the default) then page is ignored and the browser will open at the
home page of the official documentation website. If page refers to a package
manual reference, then directory must be "reference”; if page refers to the
name of a vignette file, then directory should be "articles”
package a string identifying the package name having an online documentation (default
"loon").
site the URL of the site (default "https://great-northern-diver.github.io")
prefixing the path to the requested documentation.
arguments forwarded to browseURL (), e.g. to specify a browser
See Also

1_help,help, vignette

https://great-northern-diver.github.io/loon/

1_widget 273

Examples

Not run:

1_web()

#

vignette("introduction”, package = "loon")

or

1_web(page = "introduction”, directory = "articles")
or

1_web(package = "loon.data", directory = "reference”)
#

help(l_hist)

1_web(page = "1_hist"”, directory = "reference")

End(Not run)

1_widget Dummy function to be used in the Roxygen documentation

Description

Dummy function to be used in the Roxygen documentation

Usage
1_widget(widget)

Arguments

widget widget path name as a string

Value

widget path name as a string

1_worldview Create a Worldview Inspector

Description

Inpectors provide graphical user interfaces to oversee and modify plot states

Usage

1_worldview(parent = NULL, ...)

274 1 zoom

Arguments
parent parent widget path
state arguments
Value
widget handle
See Also

1_create_handle

Examples

if(interactive()){
i <= 1_worldview()

}

1_zoom Zoom from and towards the center

Description

This function changes the plot states panX, panY, zoomX, and zoomY to zoom towards or away from
the center of the current view.

Usage

1_zoom(widget, factor = 1.1)

Arguments

widget widget path as a string or as an object handle

factor a zoom factor

measuresld 275

measuresid Closure of One Dimensional Measures

Description

Function creates a 1d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage
measuresld(data, ...)
Arguments
data a data.frame with the data used to calculate the measures
named arguments, name is the function name and argument is the function to
calculate the measure for each variable.
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

Value

a measures object

See Also

1_ng_plots, 1_ng_ranges, measures2d

Examples

ml <- measuresld(oliveAcids, mean=mean, median=median,
sd=sd, gl=function(x)as.vector(quantile(x, probs=0.25)),
g3=function(x)as.vector(quantile(x, probs=0.75)))

ml

m1 ()
m1(olive$palmitoleic>100)
ml('data')

m1('measures’')

276 measures2d

measures2d Closure of Two Dimensional Measures

Description

Function creates a 2d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage
measures2d(data, ...)
Arguments
data a data.frame with the data used to calculate the measures
named arguments, name is the function name and argument is the function to
calculate the measure for each variable.
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

Value

a measures object

See Also

1 _ng_plots, 1_ng_ranges, measures2d

Examples

m <- measures2d(oliveAcids, separator='x', cov=cov, cor=cor)
m

m()

m(keep=olive$palmitic>1360)

m('data')

m('grid")

m('measures')

minority 277

minority Canadian Visible Minority Data 2006

Description
Population census count of various named visible minority groups in each of 33 major census
metropolitan areas of Canada in 2006.

These data are from the 2006 Canadian census, publicly available from Statistics Canada.

Usage

minority

Format
A data frame with 33 rows and 18 variates

Arab Number identifying as ‘Arab‘.

Black Number identifying as ‘Black".

Chinese Number identifying as ‘Chinese .

Filipino Number identifying as ‘Filipino“.

Japanese Number identifying as ‘Japanese".

Korean Number identifying as ‘Korean®.

Latin.American Number identifying as ‘Latin American®.

Multiple.visible.minority Number identifying as being a member of more than one visible minor-
1ty.

South.Asian Number identifying as ‘South Asian‘.

Southeast.Asian Number identifying as ‘Southeast Asian‘.

Total.population Total population of the metropolitan census area.

Visible.minority.not.included.elsewhere Number identifying as a member of a visible minority
that was not included elsewhere.

Visible.minority.population Total number identifying as a member of some visible minority.

West.Asian Number identifying as “West Asian".

lat, long Latitude and longitude (in degrees) of the metropolitan census area.

googleLat, googleLong Latitude and longitude in degrees determined using the Google Maps
Geocoding APIL.

rownames(minority) are the names of the metropolitan areas or cities.

Source

Statistics Canada

278 ndtransitiongraph

names.loon Get State Names of Loon Object

Description

States of loon objects can be accessed ~ [~ and 1_cget and modified with 1_configure.

Usage
S3 method for class 'loon'
names (x)

Arguments

X loon object

Value

state names

See Also

Other loon interactive states: 1_hist(),1_info_states(),1_plot(), 1_serialaxes(), 1l_state_names()

ndtransitiongraph Create a n-d transition graph

Description

A n-d transition graph has k-d nodes and all edges that connect two nodes that from a n-d subspace

Usage

ndtransitiongraph(nodes, n, separator = ":")
Arguments

nodes node names of graph

n integer, dimension an edge should represent

separator character that separates spaces in node names
Details

For more information run: 1_help("learn_R_display_graph.html.html#graph-utilities")

olive 279

Value

graph object of class loongraph

Examples

g <- ndtransitiongraph(nodes=c('A:B', 'A:F', 'B:C', 'B:F'), n=3, separator=':")

olive Fatty Acid Composition of Italian Olive Oils

Description

This data set records the percentage composition of 8 fatty acids found in the lipid fraction of 572
Italian olive oils. The oils are samples taken from three Italian regions varying number of areas
within each region. The regions and their areas are recorded as shown in the following table:

Region Area

North North-Apulia, South-Apulia, Calabria, Sicily
South East-Liguria, West-Liguria, Umbria

Sardinia Coastal-Sardinia, Inland-Sardinia

Usage

olive

Format

A data frame containing 572 cases and 10 variates.

Region Italian olive oil general growing region: North, South, or Sardinia

Area These are "Administrative Regions" of Italy (e.g. Sicily, or Umbria), or parts of such a
region like "Coastal-Sardinia" and "Inland-Sardinia" or "North-Apulia" and "South-Apulia".
Administrative regions are larger than, and contain, Italian provinces.

palmitic Percentage (in hundredths of a percent) of Palmitic acid, or hexadecanoic acid in the olive
oil. It is the most common saturated fatty acid found in animals, plants and micro-organisms.

palmitoleic Percentage (in hundredths of a percent) of Palmitoleic acid, an omega-7 monounsatu-
rated fatty acid.

stearic Percentage (in hundredths of a percent) of Stearic acid, a saturated fatty acid. It is a waxy
solid and its name comes from the Greek word for tallow. Like palmitic acid, it is one of the
most common saturated fatty acids found in nature.

oleic Percentage (in hundredths of a percent) of Oleic acid, the most common fatty acid occurring
in nature found in various animal and vegetable fats and oils.

linoleic Percentage (in hundredths of a percent) of Linoleic acid, a polyunsaturated omega-6 fatty
acid. It is one of two essential fatty acids for humans.

280 oliveAcids

linolenic Percentage (in hundredths of a percent) of Linolenic acid, a type of fatty acid. It can refer
to one of two types of fatty acids or a mixture of both. One is an omega-3 essential fatty acid;
the other an omega-6.

arachidic Percentage (in hundredths of a percent) of Arachidic acid, also known as eicosanoic acid,
a saturated fatty acid that is used for the production of detergents, photographic materials and
lubricants.

eicosenoic Percentage (in hundredths of a percent) of Eicosenoic acid, which may refer to one
of three closely related fatty acids: gadoleic acid (omega-11), gondoic acid (omega-9), or
paullinic acid (omega-7).

Note that the percentages (in hundredths of a percent) should sum to approximately 10,000 for each
oil (row).
References

Forina, M., Armanino, C., Lanteri, S., and Tiscornia, E. (1983) "Classification of Olive Qils from
their Fatty Acid Composition", in Food Research and Data Analysis (Martens, H., Russwurm, H.,
eds.), p. 189, Applied Science Publ., Barking.

See Also

olivelLocations

oliveAcids Just the Fatty Acid Composition of Italian Olive Oils

Description

This is the olive data set minus the Region and Area variables.

Usage

oliveAcids

Format

A data frame containing 572 cases and 8 variates.

See Also

olive

oliveLocations 281

olivelocations Geographic location of each Italian olive growing area named in the
olive data.

Description

A longitude and latitude for each Area named in the olive data set.

Usage

olivelLocations

Format
A data frame containing 9 cases and 3 variates.

Area name of the Italian growing area of the olive oil.

lat, long latitude and longitude in degrees of the approximate centre of the named growing area

Source

https://www.latlong.net

See Also

olive

plot.loon Plot the current view of any loon plot in the current device.

Description

This is a wrapper for grid.loon() to simplify the plotting of loon plots on any device. Frequent
users are recommended to use grid. loon() for more control.

Usage
S3 method for class 'loon'
plot(x, y = NULL, ...)
Arguments
X the loon plot to be plotted on the current device
y NULL, will be ignored.

parameters passed to loonGrob

https://www.latlong.net

282 plot.loongraph

Value

invisible()

See Also

loonGrob, grid.loon, 1_export

Examples

if(interactive()) {
loonPlot <- with(iris, 1_plot(Sepal.Length, Sepal.Width))
loonPlot['color'] <- iris$Species
loonPlot['selected'] <- iris$Species == "versicolor”
1_scaleto_selected(loonPlot)
loonPlot['showGuides'] <- TRUE
plot(loonPlot)

plot.loongraph Plot a loon graph object with base R graphics

Description

This function converts the loongraph object to one of class graph and the plots it with its respective
plot method.

Usage
S3 method for class 'loongraph'
plot(x, ...)
Arguments
X object of class loongraph
arguments forwarded to method
Examples

g <- loongraph(letters[1:4], letters[1:3], letters[2:4], FALSE)

print.1_layer

283

print.1_layer Print a summary of a loon layer object

Description

Prints the layer label and layer type

Usage
S3 method for class 'l_layer'
print(x, ...)

Arguments

X an 1_layer object

additional arguments are not used for this methiod

See Also

1_layer

print.measuresid Print function names from measureld object

Description

Prints the function names of a measureld object using print.default.

Usage
S3 method for class 'measuresid’
print(x, ...)

Arguments
X measures 1d object

arguments passed on to print.default

284 scagnostics2d

print.measures2d Print function names from measure2d object

Description

Prints the function names of a measure2d object using print.default.

Usage

S3 method for class 'measures2d’

print(x, ...)
Arguments

X measures2d object

arguments passed on to print.default
scagnostics2d Closure of Two Dimensional Scagnostic Measures

Description

Function creates a 2d measures object that can be used with 1_ng_plots and 1_ng_ranges.

Usage

scagnostics2d(
data,
scagnostics = c("Clumpy”, "Monotonic”, "Convex”, "Stringy"”, "Skinny”, "Outlying”,
"Sparse”, "Striated”, "Skewed"),

separator = ":"
)
Arguments
data a data.frame with the data used to calculate the measures
scagnostics vector with valid scanostics meausure names, i.e "Clumpy", "Monotonic", "Con-
vex", "Stringy", "Skinny", "Outlying", "Sparse", "Striated", "Skewed". Also the
prefix "Not" can be added to each measure which equals 1-measure.
separator string the separates variable names in 2d graph nodes
Details

For more information run: 1_help("learn_R_display_graph.html#measures")

tcl_img_2_r_raster

Value

a measures object

See Also

1_ng_plots, 1_ng_ranges, measures2d

Examples

Not run:

m <- scagnostics2d(oliveAcids, separator='xx')
m

m()

m(olive$palmitoleic > 80)

m('data')

m('grid")

m('measures')

End(Not run)

285

tcl_img_2_r_raster A tk Image Object to a Raster Object

Description

Turn a tk image object to an R raster object

Usage

tcl_img_2_r_raster(img)

Arguments

img a tk image object

Examples

if(requireNamespace("grid”)) {

puglia <- list.files(file.path(find.package(package = 'loon'), "images"),

full.names = TRUE)[1L]
~img" is a tk image object
img <- setNames(l_image_import_files(puglia),
tools::file_path_sans_ext(basename(puglia)))
raster <- tcl_img_2_r_raster(img)
grid::grid.newpage()
grid::grid.raster(raster)

}

286 tkcolors

tkcolors List the valid Tk color names

Description

The core of Loon is implemented in Tcl and Tk. Hence, when defining colors using color names,
Loon uses the Tcl color representation and not those of R. The colors are taken from the Tk sources:
doc/colors.n.

If you want to make sure that the color names are represented exactly as they are in R then you can
convert the color names to hexencoded color strings, see the examples below.

Usage

tkcolors()

Examples

check if R colors names and TK color names are the same
setdiff(tolower(colors()), tolower(tkcolors()))
setdiff(tolower(tkcolors()), tolower(colors()))

hence there are currently more valid color names in Tk
than there are in R

Let's compare the colors of the R color names in R and Tk
tohex <- function(x) {
sapply(x, function(xi) {
crgb <- as.vector(col2rgh(xi))
rgb(crgb[1], crgb[2], crgbl[3], maxColorValue = 255)
»
3

df <- data.frame(
R_col = tohex(colors()),
Tcl_col = hex12tohex6(1_hexcolor(colors())),
row.names = colors(),
stringsAsFactors = FALSE
)

df_diff <- df[df$R_col != df$Tcl_col,]

if (requireNamespace("grid”, quietly = TRUE)) {
grid::grid.newpage()
grid: :pushViewport(grid: :plotViewport())

x_col <- grid::unit(@, "npc")
X_R <- grid::unit(6, "lines")
x_Tcl <- grid::unit(10, "lines")

UsAndThem 287

grid::grid.text('color', x=x_col, y=grid::unit(1, "npc"),
just="left', gp=grid::gpar(fontface='bold"))
grid::grid.text('R', x=x_R, y=grid::unit(1, "npc"), just='center',
gp=grid: :gpar(fontface="bold"))
grid::grid.text('Tcl', x=x_Tcl, y=grid::unit(1, "npc"), just='center',
gp=grid: :gpar(fontface="'bold"))
for (i in 1:nrow(df_diff)) {
y <- grid::unit(1, "npc”) - grid::unit(ix1.2, "lines")
grid::grid.text(rownames(df_diff)[i], x=x_col, y=y, just='left')
grid::grid.rect(x=x_R, y=y, width=grid::unit(3, "line"),
height=grid::unit(1, "line"), gp=grid::gpar(fill=df_diff[i,1]))
grid::grid.rect(x=x_Tcl, y=y, width=grid::unit(3, "line"),
height=grid::unit(1, "line"), gp=grid::gpar(fill=df_diff[i,2]1))

UsAndThem Data to re-create Hans Rosling’s famous "Us and Them" animation

Description

This data was sourced from https://www.gapminder.org/ and contains Population, Life Ex-
pectancy, Fertility, Income, and Geographic.Region information between 1962 and 2013 for 198
countries.

Usage
UsAndThem

Format

A data frame with 9855 rows and 8 variables

Country country name

Year year of recorded measurements

Population country’s population

LifeExpectancy average life expectancy in years at birth
Fertility in number of babies per woman

Income Gross domestic product per person adjusted for inflation and purchasing power (in inter-
national dollars)

Geographic.Region one of six large global regions

Geographic.Region.ID two letter identification of country

Source

https://www.gapminder.org/

https://www.gapminder.org/
https://www.gapminder.org/

Index

* datasets
minority, 277
olive, 279
oliveAcids, 280
olivelocations, 281
UsAndThem, 287

* glyph functions
1_glyph_add, 101
1_glyph_add.default, 102
1_glyph_add_image, 103
1_glyph_add_pointrange, 104
1_glyph_add_polygon, 105
1_glyph_add_serialaxes, 107
1_glyph_add_text, 108
1_glyph_delete, 109
1_glyph_getlLabel, 109
1_glyph_getType, 110
1_glyph_ids, 110
1_glyph_relabel, 111
1_primitiveGlyphs, 243

* loon interactive states
1_hist, 124
1_info_states, 132
1 _plot, 224
1_plot_arguments, 235
1_serialaxes, 252
1_state_names, 267
names.loon, 278

* three-dimensional plotting functions
1_plot3D, 230
1_scale3D, 248

* time series decomposition plotting

functions

1_plot_ts, 239

* two-dimensional plotting functions
1 _plot, 224
1_plot_arguments, 235

.Tcl, 213,270

[.loon (1_cget), 67

288

[<-.loon (1_configure), 70

as.character, 108
as.graph, 8, 30, 112
as.loongraph, 9
as.raster, 181
as_grid_size, 9
as_hex6color, 10, 12, 68, 124

char2num.data.frame, 11
col_factor, 12
col_numeric, 12
color_loon, 12

colors, 68
complement, 13, 30, 112
complement.loongraph, 13
completegraph, 14, 30, 112
condGrob, 15
contourlLines, 151

cut, 41

decompose, 241
density, 136, 226, 228
dist, 26

facet_grid_layout, 15
facet_separate_layout, 17
facet_wrap_layout, 18
formula, 126, 226, 232, 235, 253

get_display_color, 20
get_font_info_from_tk, 20
get_layer_states, 21
get_model_display_order, 22
glyph_to_pch, 22
graphreduce, 23
gray.colors, 161

grid.loon, 24, 31, 127, 229, 234, 254, 282

hel, 263
hcl.colors, 161

INDEX

help, 123,272
hex12tohex6, 10, 25, 68, 124

image, 160

L2_distance, 25

1_after_idle, 38

1_aspect, 39

1_aspect<-, 39
1_basePaths, 40, 70, 194
1_binCut, 41, 67, 87
1_bind_canvas, 42, 4346
1_bind_canvas_delete, 42, 43, 44-46
1_bind_canvas_get, 42, 43, 44, 45, 46
1_bind_canvas_ids, 4244, 45, 46
1_bind_canvas_reorder, 42—45, 46
1_bind_context, 46, 4749

1_bind_context_delete, 47, 47, 48, 49

1_bind_context_get, 47, 48, 49
1_bind_context_ids, 47, 48, 48, 49
1_bind_context_reorder, 4749, 49
1_bind_glyph, 50, 51-53
1_bind_glyph_delete, 50, 50, 51-53
1_bind_glyph_get, 50, 51, 51, 52, 53
1_bind_glyph_ids, 50-52, 52, 53
1_bind_glyph_reorder, 50-52, 52
1_bind_item, 53, 54-56, 80, 81
1_bind_item_delete, 54, 54, 55, 56
1_bind_item_get, 54, 54, 55, 56
1_bind_item_ids, 54, 55, 55, 56
1_bind_item_reorder, 54, 55, 56
1_bind_layer, 56, 57-59
1_bind_layer_delete, 57, 57, 58, 59
1_bind_layer_get, 57, 58, 59
1_bind_layer_ids, 57, 58, 58, 59
1_bind_layer_reorder, 57-59, 59
1_bind_navigator, 60, 61-63

1_bind_navigator_delete, 60, 60, 61-63
1_bind_navigator_get, 60, 61, 61, 62, 63

1_bind_navigator_ids, 60-62, 62, 63

1_bind_navigator_reorder, 60-62, 62

1_bind_state, 63, 64-66
1_bind_state_delete, 63, 64, 65, 66
1_bind_state_get, 63, 64, 64, 65, 66
1_bind_state_ids, 63-65, 65, 66
1_bind_state_reorder, 6365, 66
1_breaks, 41, 66, 87
1_cget, 67,71, 135,267,278
1_colorName, 10, 12, 68, 124

289

1_colRemoveAlpha, 69
1_compoundPaths, 40, 70, 194
1_configure, 67, 70, 82, 135, 267, 278
1_context_add_context2d, 71, 72, 74-76
1_context_add_geodesic2d, 71, 72, 74-76
1_context_add_slicing2d, 71, 72, 72,
74-76
1_context_delete, 73, 74-76
1_context_getlLabel, 71, 72, 74,74, 75, 76
1_context_ids, 71, 72, 74,75
1_context_relabel, 71, 72, 74, 75,75
1_copyStates, 76, 93, 246
1_create_handle, 67, 71,79, 88, 97-100,
121, 122, 129, 149, 155, 163, 238,
239,257,274
1_createCompoundGrob, 78
1_currentindex, 80, 8/
1_currenttags, 80, 81
1_data, 82
1_export, 82, 282
1_export_valid_formats, 83, 83
1_facet, 83, 127, 228, 253
1_get_arrangeGrobArgs, 96
1_getBinData, 41, 67, 86, 87
1_getBinlds, 41, 67,87, 87
1_getColorList, 12, 88, 259, 260
1_getFromPath, 40, 70, 79, 88, 194
1_getGraph, 89
1_getlLinkedStates, 90, 236
1_getlLocations, 90
1_getOption, 91, 92, 126, 227, 228, 232, 233,
240, 253, 265, 271, 272
1_getOptionNames, 91, 92, 265, 271, 272
1_getPlots, 92, 223
1_getSavedStates, 93, 93, 246
1_getScaledData, 95
1_glyph_add, 101, 103106, 108-111, 244
1_glyph_add.default, 102, 102, 104-106,
108-111, 244
1_glyph_add_image, 101-103, 103, 105, 106,
108-111, 244
1_glyph_add_pointrange, 101-104, 104,
106, 108-111, 227,232, 236, 244
1_glyph_add_polygon, 101-105, 105,
108-111, 227,232, 236, 244
1_glyph_add_serialaxes, 101-106, 107,
108-111, 227,232, 236, 244
1_glyph_add_text, 101-106, 108, 108,

290

109-111, 227,232, 236, 244
1_glyph_delete, 102-106, 108, 109, 110,
111,244
1_glyph_getlLabel, 102-106, 108, 109, 109,
110, 111, 244
1_glyph_getType, 102-106, 108110, 110,
111,244
1_glyph_ids, 102-106, 108-110, 110, 111,
244
1_glyph_relabel, 102-106, 108-111, 111,
244
1_glyphs_inspector, 97
1_glyphs_inspector_image, 98
1_glyphs_inspector_pointrange, 98
1_glyphs_inspector_serialaxes, 99
1_glyphs_inspector_text, 100
1_graph, 89, 112
1_graph_inspector, 121
1_graph_inspector_analysis, 121
1_graph_inspector_navigators, 122
1_graphswitch, 113, 114-120
1_graphswitch_add, 773, 114
1_graphswitch_add.default, 114
1_graphswitch_add.graph, 115
1_graphswitch_add.loongraph, 116
1_graphswitch_delete, /713, 117
1_graphswitch_get, 1713, 117
1_graphswitch_getlLabel, /13, 118
1_graphswitch_ids, 113,118, 120
1_graphswitch_move, 7113, 119
1_graphswitch_relabel, /713,119
1_graphswitch_reorder, 7113, 120
1_graphswitch_set, 113, 120
1_help, 71, 72,123,272
1_hexcolor, 10, 12, 25, 68, 123
1_hist, 124, 132, 229, 254, 267, 278
1_hist_inspector, 128
1_hist_inspector_analysis, 129
1_image_import_array, 103, 104, 130, 132
1_image_import_files, 103, 104, 131
1_imageviewer, 130, 132
1_info_states, 17-19,63,67,71, 72,77, 93,
127,132, 135, 153, 159, 163,
167-169, 172-175, 177, 183-1835,
189, 191, 193, 195, 226, 229, 235,
246, 254, 267, 278
1_instantiateGrob
(loonGrobInstantiation), 35

INDEX

1_isLoonWidget, 133
1_layer, 133, 137, 138, 141-149, 153—160,
163, 165-171,173-175,177, 178,
180, 183, 185-187, 191, 193, 229,
283
1_layer.density, 135, 136, 229
1_layer.Line, 135, 137
1_layer.Lines, 135, 138
1_layer.map, 135,139, 229
1_layer.Polygon, 135, 140
1_layer.Polygons, 135, 141
1_layer.Spatiallines, 135, 142
1_layer.SpatiallLinesDataFrame, 135, 143
1_layer.SpatialPoints, 135, 145
1_layer.SpatialPointsDataFrame, 135,
146
1_layer.SpatialPolygons, 135, 147
1_layer.SpatialPolygonsDataFrame, 135,
148
1_layer_bbox, 135, 150
1_layer_contourLines, 134, 151
1_layer_delete, 135, 152, 154
1_layer_demote, 135, 153
1_layer_expunge, 135, 154
1_layer_getChildren, 135, 155, 157,178
1_layer_getlabel, 135, 156, 186
1_layer_getParent, 134, 155,157, 178
1_layer_getType, 134, 157
1_layer_group, 134, 158
1_layer_groupVisibility, 135, 159, 163,
166, 167, 187
1_layer_heatImage, 134, 160
1_layer_hide, 135, 160, 162, 166, 167, 187
1_layer_ids, 134,163, 251
1_layer_index, 135,164, 171
1_layer_isVisible, 135, 159, 160, 162, 163,
165, 165, 166, 167, 187
1_layer_layerVisibility, 135, 159, 160,
162, 163, 165, 166, 166, 187
1_layer_line, 134,151, 161,167, 181
1_layer_lines, 134, 168
1_layer_lower, 135, 170, 180
1_layer_move, 135, 165, 170, 171, 180
1_layer_oval, 134,172
1_layer_points, 134, 173
1_layer_polygon, 134, 174
1_layer_polygons, 134, 176
1_layer_printTree, 135,171,178

INDEX

1_layer_promote, 135, 179
1_layer_raise, 135, 170, 180
1_layer_rasterImage, 134, 181
1_layer_rectangle, 134, 182
1_layer_rectangles, 134, 184
1_layer_relabel, 135, 156, 185
1_layer_show, 135, 160, 163, 166, 167, 186
1_layer_smooth, 134, 187
1_layer_text, 134, 190
1_layer_texts, 191,192, 193
1_layers_inspector, 149
1_loon_inspector, 194
1_loonWidgets, 40, 70, 88, 193
1_make_glyphs, 102, 104, 195, 227, 233, 236
1_move_grid, 199, 200-205
1_move_halign, 200, 200, 201-205
1_move_hdist, 200, 201, 201, 202-205
1_move_jitter, 200-202, 202, 203-205
1_move_reset, 200-203, 203, 204, 205
1_move_valign, 200-204, 204, 205
1_move_vdist, 200-205, 205
1_navgraph, 112, 206, 228, 235
1_navigator_add, 207, 208-212
1_navigator_delete, 207, 208
1_navigator_getLabel, 207, 208
1_navigator_getPath, 209
1_navigator_ids, 207, 209
1_navigator_relabel, 207, 210
1_navigator_walk_backward, 207, 210
1_navigator_walk_forward, 207, 211
1_navigator_walk_path, 207, 211
1_nDimStateNames, 126, 212, 226, 232, 235,
253
1_nestedTclList2Rlist, 212, 245
1_ng_plots, 112,213,214, 216, 217, 220,
275, 276, 284, 285
1_ng_plots.default, 213,214,217
1_ng_plots.measures, 213, 214, 215,217
1_ng_plots.scagnostics, 213, 214,217
1_ng_ranges, 112,213, 214,216-218, 218,
219-221, 275, 276, 284, 285
1_ng_ranges.default, 218, 218, 221
1_ng_ranges.measures, 218, 219, 220, 221
1_ng_ranges.scagnostics, 218, 219, 221
1_pairs, 194,222,228, 235
1_plot, 127,132, 223,224, 226, 228, 235,
237,254, 267,278
1_plot.decomposed.ts, 241

291

1_plot.default, 228
1_plot.stl, 241
1_plot3D, 230, 234, 249
1_plot_arguments, 235
1_plot_inspector, 238
1_plot_inspector_analysis, 239
1_plot_ts, 239
1_predict, 241
1_primitiveGlyphs, 102-106, 108-111, 227,
232,236,243
1_redraw, 244
1_resize, 244, 266
1_Rlist2nestedTclList, 273, 245
1_saveStates, 77, 246
1_scale3D, 234, 248
1_scaleto_active, 250
1_scaleto_layer, 135, 250
1_scaleto_plot, 251
1_scaleto_selected, 251
1_scaleto_world, 127, 135,252
1_serialaxes, 96, 127, 132, 229, 252, 267,
278
1_serialaxes_inspector, 257
1_setAspect, 258
1_setColorList, 12, 38, 69, 88, 259, 259,
260-263
1_setColorList_baseR, 260, 261, 261, 262
263
1_setColorList_ColorBrewer, 260, 261,
261, 262, 263
1_setColorList_ggplot2, 261, 262, 262,
263
1_setColorList_hcl, 260-262, 262, 263
1_setColorList_loon, 261-263, 263
1_setGrobPlotView
(loonGrobInstantiation), 35
1_setlLinkedStates, 90, 236, 263
1_setOption, 91, 92,264, 265, 272
1_setTitleFont, 265
1_size, 245, 266, 266
1_size<-, 266
1_state_names, 127, 132,229, 254, 267, 278
1_subwin, 268
1_throwErrorIfNotLoonWidget, 268
1_toplevel, 269
1_toR, 270
1_updateGrob (loonGrobInstantiation), 35
1_userOptionDefault, 91, 92, 265, 271, 271,

292

272
1_userOptions, 91, 92, 265, 271, 271
1_web, 123,272
1_widget, 273
1_worldview, 273
1_zoom, 274
linegraph, 26, 30, 112
linegraph.loongraph, 27
loon, 28
loon-package (loon), 28
loon_palette, 12, 38, 259, 260
loonGlyphGrob, 29
loongraph, 29, 89, 112, 115-117
loonGrob, 24, 29, 30, 36, 127, 229, 234, 254,

282
loonGrob_layoutType, 37
loonGrobInstantiation, 35

map, 139, 229

measuresld, 213, 214, 216-221, 275

measures2d, 213, 214, 216-221, 275, 276,
276, 285

minority, 277

names, 235
names.loon, 127, 132,229, 235, 254, 267, 278
ndtransitiongraph, 278

olive, 279, 280, 281
oliveAcids, 280
olivelocations, 280, 281

pch, 23

plot, 228, 235
plot.loon, 24, 83, 127, 229, 234, 254, 281
plot.loongraph, 282

png, 196

prcomp, 249

print.1_layer, 283
print.measuresid, 283
print.measures2d, 284

rasterImage, 181
readRDS, 93, 246

saveRDS, 77, 93, 246

scagnostics, 217,221
scagnostics2d, 213, 214,216-221, 284
scale, 249

scales, 260

INDEX

sp, 137, 138, 140-149
stl, 226, 228, 241

tcl, 213,270

tcl_img_2_r_raster, 285

tkcolors, 12, 259, 286

tkpack, 16, 19, 85, 127, 140, 151, 161, 181,
195,223,228, 233,237,253

tkplace, 16, 19, 85, 127, 140, 151, 161, 181,
195, 223,228, 233,237,253

unit, 21

UsAndThem, 287
UseMethod, /34
vignette, 272

Xy.coords, 167, 173, 226, 235

	as.graph
	as.loongraph
	as_grid_size
	as_hex6color
	char2num.data.frame
	color_loon
	complement
	complement.loongraph
	completegraph
	condGrob
	facet_grid_layout
	facet_separate_layout
	facet_wrap_layout
	get_display_color
	get_font_info_from_tk
	get_layer_states
	get_model_display_order
	glyph_to_pch
	graphreduce
	grid.loon
	hex12tohex6
	L2_distance
	linegraph
	linegraph.loongraph
	loon
	loonGlyphGrob
	loongraph
	loonGrob
	loonGrobInstantiation
	loonGrob_layoutType
	loon_palette
	l_after_idle
	l_aspect
	l_aspect<-
	l_basePaths
	l_binCut
	l_bind_canvas
	l_bind_canvas_delete
	l_bind_canvas_get
	l_bind_canvas_ids
	l_bind_canvas_reorder
	l_bind_context
	l_bind_context_delete
	l_bind_context_get
	l_bind_context_ids
	l_bind_context_reorder
	l_bind_glyph
	l_bind_glyph_delete
	l_bind_glyph_get
	l_bind_glyph_ids
	l_bind_glyph_reorder
	l_bind_item
	l_bind_item_delete
	l_bind_item_get
	l_bind_item_ids
	l_bind_item_reorder
	l_bind_layer
	l_bind_layer_delete
	l_bind_layer_get
	l_bind_layer_ids
	l_bind_layer_reorder
	l_bind_navigator
	l_bind_navigator_delete
	l_bind_navigator_get
	l_bind_navigator_ids
	l_bind_navigator_reorder
	l_bind_state
	l_bind_state_delete
	l_bind_state_get
	l_bind_state_ids
	l_bind_state_reorder
	l_breaks
	l_cget
	l_colorName
	l_colRemoveAlpha
	l_compoundPaths
	l_configure
	l_context_add_context2d
	l_context_add_geodesic2d
	l_context_add_slicing2d
	l_context_delete
	l_context_getLabel
	l_context_ids
	l_context_relabel
	l_copyStates
	l_createCompoundGrob
	l_create_handle
	l_currentindex
	l_currenttags
	l_data
	l_export
	l_export_valid_formats
	l_facet
	l_getBinData
	l_getBinIds
	l_getColorList
	l_getFromPath
	l_getGraph
	l_getLinkedStates
	l_getLocations
	l_getOption
	l_getOptionNames
	l_getPlots
	l_getSavedStates
	l_getScaledData
	l_get_arrangeGrobArgs
	l_glyphs_inspector
	l_glyphs_inspector_image
	l_glyphs_inspector_pointrange
	l_glyphs_inspector_serialaxes
	l_glyphs_inspector_text
	l_glyph_add
	l_glyph_add.default
	l_glyph_add_image
	l_glyph_add_pointrange
	l_glyph_add_polygon
	l_glyph_add_serialaxes
	l_glyph_add_text
	l_glyph_delete
	l_glyph_getLabel
	l_glyph_getType
	l_glyph_ids
	l_glyph_relabel
	l_graph
	l_graphswitch
	l_graphswitch_add
	l_graphswitch_add.default
	l_graphswitch_add.graph
	l_graphswitch_add.loongraph
	l_graphswitch_delete
	l_graphswitch_get
	l_graphswitch_getLabel
	l_graphswitch_ids
	l_graphswitch_move
	l_graphswitch_relabel
	l_graphswitch_reorder
	l_graphswitch_set
	l_graph_inspector
	l_graph_inspector_analysis
	l_graph_inspector_navigators
	l_help
	l_hexcolor
	l_hist
	l_hist_inspector
	l_hist_inspector_analysis
	l_imageviewer
	l_image_import_array
	l_image_import_files
	l_info_states
	l_isLoonWidget
	l_layer
	l_layer.density
	l_layer.Line
	l_layer.Lines
	l_layer.map
	l_layer.Polygon
	l_layer.Polygons
	l_layer.SpatialLines
	l_layer.SpatialLinesDataFrame
	l_layer.SpatialPoints
	l_layer.SpatialPointsDataFrame
	l_layer.SpatialPolygons
	l_layer.SpatialPolygonsDataFrame
	l_layers_inspector
	l_layer_bbox
	l_layer_contourLines
	l_layer_delete
	l_layer_demote
	l_layer_expunge
	l_layer_getChildren
	l_layer_getLabel
	l_layer_getParent
	l_layer_getType
	l_layer_group
	l_layer_groupVisibility
	l_layer_heatImage
	l_layer_hide
	l_layer_ids
	l_layer_index
	l_layer_isVisible
	l_layer_layerVisibility
	l_layer_line
	l_layer_lines
	l_layer_lower
	l_layer_move
	l_layer_oval
	l_layer_points
	l_layer_polygon
	l_layer_polygons
	l_layer_printTree
	l_layer_promote
	l_layer_raise
	l_layer_rasterImage
	l_layer_rectangle
	l_layer_rectangles
	l_layer_relabel
	l_layer_show
	l_layer_smooth
	l_layer_text
	l_layer_texts
	l_loonWidgets
	l_loon_inspector
	l_make_glyphs
	l_move_grid
	l_move_halign
	l_move_hdist
	l_move_jitter
	l_move_reset
	l_move_valign
	l_move_vdist
	l_navgraph
	l_navigator_add
	l_navigator_delete
	l_navigator_getLabel
	l_navigator_getPath
	l_navigator_ids
	l_navigator_relabel
	l_navigator_walk_backward
	l_navigator_walk_forward
	l_navigator_walk_path
	l_nDimStateNames
	l_nestedTclList2Rlist
	l_ng_plots
	l_ng_plots.default
	l_ng_plots.measures
	l_ng_plots.scagnostics
	l_ng_ranges
	l_ng_ranges.default
	l_ng_ranges.measures
	l_ng_ranges.scagnostics
	l_pairs
	l_plot
	l_plot3D
	l_plot_arguments
	l_plot_inspector
	l_plot_inspector_analysis
	l_plot_ts
	l_predict
	l_primitiveGlyphs
	l_redraw
	l_resize
	l_Rlist2nestedTclList
	l_saveStates
	l_scale3D
	l_scaleto_active
	l_scaleto_layer
	l_scaleto_plot
	l_scaleto_selected
	l_scaleto_world
	l_serialaxes
	l_serialaxes_inspector
	l_setAspect
	l_setColorList
	l_setColorList_baseR
	l_setColorList_ColorBrewer
	l_setColorList_ggplot2
	l_setColorList_hcl
	l_setColorList_loon
	l_setLinkedStates
	l_setOption
	l_setTitleFont
	l_size
	l_size<-
	l_state_names
	l_subwin
	l_throwErrorIfNotLoonWidget
	l_toplevel
	l_toR
	l_userOptionDefault
	l_userOptions
	l_web
	l_widget
	l_worldview
	l_zoom
	measures1d
	measures2d
	minority
	names.loon
	ndtransitiongraph
	olive
	oliveAcids
	oliveLocations
	plot.loon
	plot.loongraph
	print.l_layer
	print.measures1d
	print.measures2d
	scagnostics2d
	tcl_img_2_r_raster
	tkcolors
	UsAndThem
	Index

