Package ‘hhh4contacts’

July 17, 2025
Version 0.13.4

Date 2024-10-07

License GPL-2

Title Age-Structured Spatio-Temporal Models for Infectious Disease
Counts

Description Meyer and Held (2017) <doi:10.1093/biostatistics/kxw051> present an
age-structured spatio-temporal model for infectious disease counts. The
approach is illustrated in a case study on norovirus gastroenteritis in
Berlin, 2011-2015, by age group, city district and week, using additional
contact data from the POLYMOD survey. This package contains the data and
code to reproduce the results from the paper, see 'demo(" * hhh4contacts")'.

URL https://codeberg.org/EE-hub/hhh4contacts

BugReports https://codeberg.org/EE-hub/hhh4contacts/issues

Depends R (>=3.2.0), grDevices, graphics, methods, stats, utils,
surveillance (>= 1.14.0)

Imports sp

Suggests MASS, lattice, gridExtra
LazyData yes

RoxygenNote 7.3.2
NeedsCompilation no

Author Sebastian Meyer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1791-9449>),
Leonhard Held [ctb, ths] (ORCID:
<https://orcid.org/0000-0002-8686-5325>)

Maintainer Sebastian Meyer <seb.meyer@fau.de>
Repository CRAN
Date/Publication 2024-10-07 12:10:01 UTC


https://doi.org/10.1093/biostatistics/kxw051
https://codeberg.org/EE-hub/hhh4contacts
https://codeberg.org/EE-hub/hhh4contacts/issues
https://orcid.org/0000-0002-1791-9449
https://orcid.org/0000-0002-8686-5325

2 adaptP

Contents
adaptP . . . e 2
addGroups2ZWFUN . . . . . . . ... e 3
aggregateC . . . L L L e e e e 4
aggregateCoOUNSAITAY . . . . . . o v v it e e e e e 4
C2POP . v o e e e 5
CONACEMALIIX . . . . . . . . o oo 6
dssAggregate . . . . . ... e 9
expandC . . . .. e e e 10
fitC . 10
noroBE . . ... 11
PlotC . e e e 13
plotHHH4 fitted_groups . . . . . . . . . . . . . . e 14
plotHHH4 maps_groups . . . . . . . . . . o o i e 15
plotHHH4_season_groups . . . . . . . . . . . . . i 15
Pop2011 . . . 16
powerC . . . e e e 17
SLAtIONATY . . . v o i e e e e e e e e e e e e e e e e e 18
SIratuM . . . . L L e e e e e e 19
stsplothook . . . . . L. 20

Index 21

adaptP Adapt a Transition Matrix to a Specific Stationary Distribution
Description

Experimental Metropolis-Hastings algorithm, which tries to adjust a transition matrix such that its
stationary distribution becomes approximately equal to a prespecified probability vector.

Usage

adaptP(P, target, niter = 1e+06)

Arguments
P a transition matrix, i.e., a square matrix where all rows sum to 1.
target the stationary probability vector to approximate.
niter the number of iterations of the MCMC algorithm

Value

the adjusted transition matrix.

Author(s)
Leonhard Held



addGroups2WFUN 3

See Also

C2pop for an alternative method.

Examples

## a row-normalized contact matrix
C <- matrix(c(0.8, 0.1, 0.1,

0.2, 0.6, 0.2,

0.1, 0.2, 0.7), byrow=TRUE, ncol=3, nrow=3)
stationary(C)
## population fractions define the target distribution
popfracs <- c(0.4, 0.3, 0.3)
## adapt 'C' to the given population fractions
Cpop <- adaptP(C, popfracs, niter = 50000)
stationary(Cpop)
## this method increases the diagonal values of 'C'
round(C, 3)
round(Cpop, 3)
round(Cpop/C, 3)

addGroups2WFUN Group-Dependent Parametric Weights

Description

This function takes a specification of parametric weights and returns a modified version with group-
dependent parameters. Only single-parameter functions are currently supported.

Usage

addGroups2WFUN(WFUN, groups, initial = rep.int(WFUN$initial, nlevels(groups)))

Arguments
WFUN a list specification of parametric weights, e.g., as returned by the constructor
functions W_powerlaw and W_np.
groups a vector of length nUnits determining to which group each unit belongs to. The
supplied vector is converted to a factor using as. factor.
initial (named) vector of initial parameters.
Value

a list specifying group-dependent parametric weights for hhh4.

Author(s)

Sebastian Meyer



4 aggregateCountsArray

Examples

data("measlesWeserEms")
WPLgroups <- addGroups2WFUN(
W_powerlaw(maxlag = 5, normalize = FALSE, log = FALSE),
groups = factor(sample(2, ncol(measlesWeserEms), replace = TRUE)))

aggregateC Aggregate a Contact Matrix

Description

The (age) groups of a contact matrix can be joined together by the grouping argument, which first
sums over contact groups (columns) and then averages over the corresponding participant groups
(rows), optionally using weights such as the age distribution of the study participants.

Usage
aggregateC(C, grouping, ..., weights = NULL)
Arguments
C a square numeric contact matrix such as contactmatrix_POLYMOD.
grouping, ... specification of how to aggregate groups. grouping can be a named list of vec-
tors of group labels, or an integer vector of sequential group sizes. Alternatively,
if grouping is missing, the elements of the list representation can be passed di-
rectly as further arguments (. . .).
weights a named numeric vector containing the weights for the rows of C, typically the
age distribution of the participants. The names are matched against rownames(C).
A value of NULL is interpreted as uniform weights.
Author(s)

Sebastian Meyer

aggregateCountsArray  Aggregate an Array of Counts wrt One Dimension (Stratum)

Description

Aggregate an Array of Counts wrt One Dimension (Stratum)

Usage

aggregateCountsArray(counts, dim, grouping, ..., sort = TRUE)



C2pop 5

Arguments
counts an (integer) array of counts with dimnames, e.g., counts or pop2011.
dim the dimension index of the stratum defining groups.
grouping, ... how the groups should be built.
sort logical indicating if the resulting array should be ordered by the grouping levels
in the dim dimension.
Value

an array with similar dimensions as the input counts except for the dim dimension, which will be
smaller due to the aggregation as specified by the grouping argument.

Author(s)

Sebastian Meyer

Examples

## works for matrices
aggregateCountsArray(pop2011, dim = 2, grouping = c(2,1,3,2,4))

aggregateCountsArray(pop2011, dim = 1, grouping = list(
IlaVI = C("ChWi",“Span",”Zehl”),
"b" = c("neuk”,"scho”)

)

## and of course for arrays
str(aggregateCountsArray(counts, dim = 3, grouping = c(1, 3, 4)))

C2pop Adapt a Contact Matrix to Population Fractions

Description

Experimental function, which tries to adjust a given contact matrix such that the stationary distri-
bution of its row-normalized version (i.e., the transition matrix) becomes approximately equal to a
prespecified probability vector.

Usage

C2pop(C, target, eps = 0.001, iter.max = 100)

Arguments
C a square numeric (contact) matrix.
target the stationary probability vector to approximate.
eps the tolerated mean absolute difference between the target probabilities and the

stationary distribution of the adapted, normalized contact matrix.

iter.max maximum number of iterations (guard against infinite loop).



6 contactmatrix

Value

the adapted, normalized contact matrix.

Author(s)

Leonhard Held (original) and Sebastian Meyer (this implementation)

See Also

adaptP for an alternative method.

Examples

GROUPING <- c(1, 2, 2, 4, 4, 2)

C <- contactmatrix(grouping = GROUPING)

popBErbyg <- aggregateCountsArray(pop2011, dim = 2, grouping = GROUPING)

popfracs <- prop.table(colSums(popBErbyg))

## adapt 'C' to the given population fractions

Cpop <- C2pop(C, popfracs)

## compare the stationary distributions

compstat <- cbind(before = stationary(C/rowSums(C)), popBE = popfracs,

after = stationary(Cpop))
matplot(compstat, type="b", 1lty=1, ylim=c(@, max(compstat)),
xlab="age group”, ylab="population fraction”)

## compare the normalized contact matrices

print(plotC(C/rowSums(C), main="original”, at=seq(@,0.6,length.out=17)),
split=c(1,1,2,1), more=TRUE)

print(plotC(Cpop, main="adapted”, at=seq(0,0.6,length.out=17)),
split=c(2,1,2,1), more=FALSE)

contactmatrix POLYMOD Contact Matrices for Germany

Description

The function contactmatrix retrieves various social contact matrices for Germany from the POLY-
MOD survey (Mossong et al., 2008). Such a matrix contains the average numbers of reported con-
tacts by participant age group. The original age groups (5-year intervals) can be joined together by
the grouping argument, which first sums over contact groups (columns) and then averages over the
corresponding participant groups (rows) using the corresponding age distribution as weights.

Usage

contactmatrix(
which = c("corrected”, "mossong”, "reciprocal”),
type = c("all”, "physical”),
grouping = c(1, 2, 2, 4, 4, 2),
normalize = FALSE



contactmatrix 7

contactmatrix_mossong
contactmatrix_mossong_physical
contactmatrix_POLYMOD
contactmatrix_POLYMOD_physical
contactmatrix_wallinga

contactmatrix_wallinga_physical

Arguments

which character string indicating which contact matrix to return. "mossong"” uses the
average numbers of reported contacts as published in Table S5 of Mossong et al.
(2008), available as contactmatrix_mossong or contactmatrix_mossong_physical.
"corrected” (from contactmatrix_POLYMOD or contactmatrix_POLYMOD_physical)
fixes an error in these numbers related to the age group 70+ (see the Examples)
and is the default. If which="reciprocal” (corresponding to contactmatrix_wallinga
or contactmatrix_wallinga_physical asused by Meyer and Held, 2017), the
returned social contact matrix fulfils reciprocity of contacts with respect to the
age distribution of Berlin, pop2@11, via the method of Wallinga et al. (2006).

type a character string to select the type of contacts to use: either "all” contacts,
i.e., count both physical and pure conversational contacts, or only "physical”
contacts.

grouping specification of how to aggregate groups using aggregateC, i.e., a named list
of vectors of group labels, or an integer vector of sequential group sizes. The
"agedistri” attribute of the contact matrix is used as weights. If grouping=NULL,
aggregation is skipped and the original (5-year) age groups are returned. The de-
fault setting produces the six age groups of Meyer and Held (2017).

normalize a logical indicating whether to normalize the matrix such that each row sums to
1.

Format

The dataset contactmatrix_POLYMOD and its variants are all square numeric matrices with 15 rows
(participants) and 15 columns (contacts), labelled with the corresponding age groups. There is
an attribute "agedistri”, a named numeric vector of length 15, which for the “_mossong_" and
“_POLYMOD_” variants gives the age distribution of the German POLYMOD sample, and for the
_wallinga_ variants gives the age distribution of Berlin, i.e., prop. table(colSums(pop2011)).

Value

a square numeric matrix containing the average numbers of contact persons recorded per day per
survey participant in Germany, potentially averaged over multiple row (participant) age groups and
aggregated over the corresponding column (contact) age groups.



8 contactmatrix

Author(s)

Sebastian Meyer

Source

contactmatrix_mossong and contactmatrix_mossong_physical are taken from the Supporting
Information in Mossong et al. (2008): the matrices from Table S5 (8.2), and the attached age
distribution from Table S2 (3.2).

The corrected versions contactmatrix_POLYMOD and contactmatrix_POLYMOD_physical were
constructed from the raw POLYMOD data initially made available at https: //www.researchgate.
net/publication/232701632_POLYMOD_contact_survey_for_researchers (areformatted and
better documented version is nowadays available at doi:10.5281/zenodo.1043437). The reciprocal
contact matrices contactmatrix_wallinga and contactmatrix_wallinga_physical were esti-
mated from these raw data via the method of Wallinga et al. (2006).

References

Meyer S and Held L (2017): Incorporating social contact data in spatio-temporal models for infec-
tious disease spread. Biostatistics, 18 (2), 338-351. doi:10.1093/biostatistics/kxw051

Mossong et al. (2008): Social contacts and mixing patterns relevant to the spread of infectious
diseases. PLoS Medicine, 5 (3), €74. doi:10.1371/journal.pmed.0050074

Wallinga J, Teunis P and Kretzschmar M (2006): Using data on social contacts to estimate age-
specific transmission parameters for respiratory-spread infectious agents. American Journal of Epi-
demiology, 164 (10), 936-944. doi:10.1093/aje/kwj317

Examples

## contact matrix reported in Mossong et al (2008, Table S5)
(C_original <- contactmatrix(which = "mossong”, grouping = NULL))
## this simply returns the dataset 'contactmatrix_mossong'
stopifnot(identical(C_original, contactmatrix_mossong))

## with corrected numbers for the 70+ age group (the default)
C_corrected <- contactmatrix(which = "corrected”, grouping = NULL)
## this simply returns the dataset 'contactmatrix_POLYMOD'
stopifnot(identical (C_corrected, contactmatrix_POLYMOD))

## check for differences

C_original == round(C_corrected, 2)

## compare entries of last row and last column

round(rbind(original = C_original[15,], corrected = C_corrected[15,]), 2)
round(cbind(original = C_original[,15], corrected = C_corrected[,15]), 2)

## contact matrix estimated to be reciprocal on the population level

C_reciprocal <- contactmatrix(which = "reciprocal”, grouping = NULL)

## this simply returns the dataset 'contactmatrix_wallinga'

## (without its "overdisp” attribute)

stopifnot(all.equal(C_reciprocal, contactmatrix_wallinga, check.attributes=FALSE))

## check reciprocity


https://www.researchgate.net/publication/232701632_POLYMOD_contact_survey_for_researchers
https://www.researchgate.net/publication/232701632_POLYMOD_contact_survey_for_researchers
https://doi.org/10.5281/zenodo.1043437
https://doi.org/10.1093/biostatistics/kxw051
https://doi.org/10.1371/journal.pmed.0050074
https://doi.org/10.1093/aje/kwj317

dssAggregate 9

agedistriBE <- attr(C_reciprocal, "agedistri")
stopifnot(identical (agedistriBE, prop.table(colSums(pop2011))))
stopifnot(isSymmetric(C_reciprocal * agedistriBE, check.attributes=FALSE))

## visually compare raw to reciprocal contact matrix
if (require("gridExtra"))

grid.arrange(plotC(C_corrected, main = "raw"),
plotC(C_reciprocal, main = "reciprocal”),
nrow = 1)

## select physical contacts and aggregate into 5 age groups
contactmatrix(type = "physical”, grouping = c(1, 2, 7, 3, 2))

## the default 6 age groups, normalized to a transition matrix
contactmatrix(normalize = TRUE)

## reciprocity also holds for this grouping
(C6 <- contactmatrix(which = "reciprocal”))
stopifnot(isSymmetric(C6 * attr(C6, "agedistri”), check.attributes=FALSE))

dssAggregate Compute the DSS on Aggregated Predictions and Observations

Description

The expectation and variance of aggregated predictions is just a sum if the predictions are (condi-
tionally) independent. This function computes the DSS for a matrix of observations and a matrix of
predictions where the columns are to be summed according to a given factor.

Usage
dssAggregate(observed, pred, psi, groups)

Arguments
observed a numeric matrix of observed counts.
pred a numeric matrix of predicted counts.
psi a numeric vector or matrix of overdispersion parameters such that pred * (1 +
pred/exp(psi)) is the prediction’s variance. Alternatively, psi = NULL indi-
cated Poisson predictions.
groups a factor variable of length ncol (observed) indicating which columns should
be aggregated.
Value

a matrix of DSS values



10 fitC

expandC Expand the Contact Matrix over Regions

Description

This is simply the Kronecker product of the contact matrix C with a matrix of ones of dimension n
X n.

Usage
expandC(C, n)

Arguments

C a contactmatrix.

n the size of the secondary dimension to expand to.
Value

a square matrix with nxncol (C) rows and columns.

Examples

expandC(contactmatrix(), 2)

fitC Estimate the Power of the Contact Matrix in a "hhh4" Model

Description

The profile log-likelihood of the log(power) parameter of the contact matrix (see powerC) is maxi-
mized using optim. The hhh4 fit for the optimal power value is returned with an additional element
logpower which holds information on the result of the optimization.

Usage

fitC(object, C, normalize = TRUE, truncate = TRUE, optim.args = list(), ...)
Arguments

object a model fit of class "hhh4".

C the contact matrix to use.

normalize, truncate

see powercC.
optim.args a list to modify the default optimization parameters.

additional arguments for each run of update.hhh4.



noroBE 11

Value

an object of class "fitC", which is an "hhh4" object with an additional element logpower.

Author(s)

Sebastian Meyer

noroBE Create "sts" Objects from the Berlin Norovirus Data

Description

The function noroBE () creates an "sts" object based on the array of norovirus surveillance counts,
the map of Berlin’s city district, and the pop2011 data stored in the package. This is the data analysed
by Meyer and Held (2017).

Usage

noroBE (
by = c("districts"”, "agegroups”, "all"”, "none"),
agegroups = c(1, 2, 2, 4, 4, 2),
timeRange = c("2011-w27", "2015-w26"),
flatten = FALSE

)
counts
map
Arguments
by character string determining the stratification, i.e., which units the resulting

"sts"” object should represent:

"districts'': aggregates counts and pop2011 over the age groups and stores the
matrix of adjacency orders from the map in the neighbourhood slot. The
latter is obtained via nbOrder (poly2adjmat(map), maxlag =5).

""agegroups'': aggregates counts and pop2011 over the districts and stores the
contactmatrix() in the neighbourhood slot, potentially also combining
some age groups via the agegroups argument.

"all"': retains both dimensions, either as a list of spatial "sts" objects per age
group, or in a single "sts" object (see flatten below).

""nmone'': creates the overall (univariate) time series of rowSums (counts).

agegroups how the age groups in counts (and pop2@11) should be aggregated. Will be used

as the grouping argument in aggregateCountsArray and contactmatrix.
The default setting uses the six age groups of Meyer and Held (2017).



12 noroBE

timeRange character vector of length two determining the time range of the "sts" object
to generate. The two strings are matched against dimnames(counts)[[1]1],
which ranges from "2011-w@1" until "2016-w30". The default value extracts
four seasons (years) starting at "2011-w27".

flatten logical indicating whether for by = "all” a single "sts" object should be re-
turned where the observation unit is the interaction of district and age group
(“flattened” counts array, see as.data.frame.array). By default (flatten =
FALSE), a list of district-based "sts" objects is returned, one for each age group.

Format

counts: an integer-valued array of norovirus surveillance counts with labelled dimensions of size
290 ("week") x 12 ("district”) x 15 ("agegroup”).

map: a"SpatialPolygonsDataFrame” of length 12 with row.names(map) matching colnames(counts),
representing Berlin’s city districts in longlat coordinates (WGS84). The data slot contains the
full "NAME"s of the city districts as well as their "POPULATION", i.e., rowSums (pop2011).

The function noroBE () returns an "sts" object generated from these data (and pop2011).

Author(s)

Sebastian Meyer

Source

counts: based on norovirus surveillance counts retrieved from the SurvStat@RKI 2.0 online ser-
vice (https://survstat.rki.de) of Germany’s public health institute, the Robert Koch In-
stitute, as of 2016-09-08.

map: based on a KML file of Berlin’s 97 local centres (“Ortsteile”) downloaded from the Berlin
Open Data repository athttps://daten.berlin.de/datensaetze/geometrien-der-ortsteile-von-berlin-jul
as of 2014-11-12, published by Amt fuer Statistik Berlin-Brandenburg (Statistical Office of
Berlin-Brandenburg) under the ‘CC BY 3.0 DE’ license (https://creativecommons.org/
licenses/by/3.0/de/). The map included here aggregates these local centres by city district.

References

Meyer S and Held L (2017): Incorporating social contact data in spatio-temporal models for infec-
tious disease spread. Biostatistics, 18 (2), 338-351. doi:10.1093/biostatistics/kxw051

Examples

## the raw data
str(counts)
summary (map)

## district-specific time series
noroBEr <- noroBE(by = "districts”)

plot(noroBEr)

## age group-specific time series


https://survstat.rki.de
https://daten.berlin.de/datensaetze/geometrien-der-ortsteile-von-berlin-juli-2012
https://creativecommons.org/licenses/by/3.0/de/
https://creativecommons.org/licenses/by/3.0/de/
https://doi.org/10.1093/biostatistics/kxw051

plotC 13

noroBEg <- noroBE(by = "agegroups")
plot(noroBEg)

## list of spatio-temporal surveillance counts, one for each age group
noroBErbyg <- noroBE(by = "all"”, flatten = FALSE)
plot(noroBErbyg[[1L]], par.list = list(oma=c(0,0,2,0)))

title(main = names(noroBErbyg)[1], outer = TRUE, line = -1)

## flattened "sts” object (the 'neighbourhood' only reflects spatial info)
noroBEall <- noroBE(by = "all"”, flatten = TRUE)

dev.new(width = 16, height = 7)

plot(noroBEall, par.list = list(

xaxt = "n", mar = ¢(1,4,1,1), mfrow = c(ncol(noroBEg), ncol(noroBEr))
)
plotC Generate an Image of a Contact Matrix
Description

Generate an Image of a Contact Matrix

Usage
plotC(
C)
grouping = NULL,
xlab = "age group of contact”,
ylab = "age group of participant”,
at = 15,

col.regions = rev(heat.colors(length(at) - 1)),

L

contour = FALSE

)
Arguments

C a square numeric matrix.

grouping numeric vector of sizes of aggregated groups, e.g., grouping = c(1, 3), to draw
separation lines after the first and the forth subgroup. This is ignored if contour
= TRUE.

xlab, ylab axis labels.

at numeric vector of break points of the color levels, or a single integer specifying
the number of cuts (which defaults to 15 as in levelplot).

col.regions vector of color levels.
further arguments passed to levelplot or filled. contour (if contour = TRUE).

contour logical indicating if a filled. contour should be drawn instead of a levelplot

(the default).



14 plotHHH4._fitted_groups

Examples

## contour plot
plotC(contactmatrix_POLYMOD, contour = TRUE)

## level plots illustrating aggregation of age groups
if (require("gridextra”)) {
grid.arrange(plotC(contactmatrix_POLYMOD, grouping = c(1,2,2,4,4,2)),
plotC(contactmatrix(grouping = c(1,2,2,4,4,2))),
nrow = 1)

plotHHH4_fitted_groups
Plot Mean Components of a hhh4 Fit by Group

Description

Fitted mean components for age-structured, areal time series hhh4 models can be aggregated over
districts or age groups.

Usage
plotHHH4_fitted_groups(x, groups, total = FALSE, decompose = NULL, ...)
Arguments
X an object of class "hhh4".
groups a factor of grouping the units in the model, i.e., it must be of length x$nUnit.
There will be one plot for each factor level.
total a logical indicating if the group-wise mean components should be subsequently
summed up over all groups for an overall plot.
decompose, ... see plotHHH4_fitted.
Value

see plotHHH4_fitted.



plotHHH4_maps_groups 15

plotHHH4_maps_groups  Plot Mean Components of a hhh4 Fit by District Averaged Over Time

Description

This is a wrapper for plotHHH4_maps with prior aggregation over different (age) groups.

Usage
plotHHH4_maps_groups(x, map, districts, ...)
Arguments
X an object of class "hhh4".
map an object inheriting from "SpatialPolygons”.
districts a factor of length x$nUnit with as many levels as there are districts and names
according to row.names(map).
arguments passed to plotHHH4_maps.
Value

see plotHHH4_maps

plotHHH4_season_groups
Plot Seasonality of a hhh4 Fit by Group

Description

A plot method for models with group-specific seasonality terms that are not handled correctly by
plotHHH4_season.

Usage
plotHHH4_season_groups(
X’
component = "end”,

seasonStart = 1,
conf.level = 0.95,

conf.B = 999,
col = 1:6,
xlab = "time",

ylab = "multiplicative effect”,

refline.args = list(),



16 pop2011
yearline.args = list(),
legend.args = list()
)
Arguments
X an object of class "hhh4".
component character string indicating from which component seasonality terms should be
extracted.
seasonStart an integer defining the epochInYear that starts a new season (by default the
first).
conf.level, conf.B
a confidence level for the pointwise confidence intervals around the group-specific
seasonal effects. The confidence intervals are based on quantiles of conf.B
samples from the asymptotic multivariate normal distribution of the maximum
likelihood estimate. Alternatively, if conf.level = NA, the individual samples
are drawn instead of the confidence lines. Set conf.level = NULL to disable
confidence intervals.
col a vector of group-specific colors, recycled as necessary and passed to matplot.
xlab, ylab, ... arguments passed to matplot.
refline.args a list of arguments for abline to change the style of the horizontal reference
line at 1. This line is omitted if refline.args is not a list.
yearline.args a list of arguments for abline to change the style of the line marking the end
of the year at x$stsObj@freq if seasonStart is not 1. This line is omitted if
yearline.args is not a list.
legend.args a list of arguments for legend modifying the internal defaults. If legend.args
is not a list, the legend is omitted.
Value
a matrix of the plotted point estimates of the multiplicative seasonal effect by group.
pop2011 Berlin and German Population by Age Group, 2011
Description

Population numbers from Berlin are available in the city district x age group (5-year intervals)
matrix pop2@11. The corresponding age distribution for whole Germany is stored in the vector

popDE.



powerC 17

Usage

## Berlin population by city district and age group, 2011
pop2011

## German population by age group, 2011
popDE

Format

pop2011: a named, integer-valued 12 (city districts) x 15 (age groups) matrix.
popDE: a named integer vector of length 15 (age groups).

Author(s)

Sebastian Meyer

Source

pop2011: numbers extracted from https://www.statistik-berlin-brandenburg.de/ (origi-
nally: ‘webapi/opendatabase?id=BevBBBE’) as of 2011-12-31 (before census), published
by Amt fuer Statistik Berlin-Brandenburg (Statistical Office of Berlin-Brandenburg) under the
‘CC BY 3.0 DE’ license (https://creativecommons.org/licenses/by/3.0/de/).

popDE: numbers extracted from https://www-genesis.destatis.de/genesis/online/link/
tabellen/12411-0005 as of 2010-12-31, published by Statistisches Bundesamt (Destatis,
Federal Statistical Office of Germany) under the ‘Data licence Germany - attribution - Version
2.0’ (https://www.govdata.de/d1-de/by-2-0).

powerC Exponentiate a Matrix via Eigendecomposition

Description

Based on a (contact) matrix C, the function make_powerC generates a function with a single argu-
ment power that returns the input matrix raised to that power. Matrix exponentiation is thereby
defined via the eigendecomposition of C as CPOWe" := EAPOwer B,

Usage

make_powerC(C, normalize = FALSE, truncate = FALSE)

Arguments
C a square numeric matrix.
normalize a logical indicating if C should be normalized in advance such that all rows sum
to 1 (becomes a transition matrix).
truncate a logical indicating whether to force entries in the resulting matrix to be non-

negative (by truncation at 0).


https://www.statistik-berlin-brandenburg.de/
https://creativecommons.org/licenses/by/3.0/de/
https://www-genesis.destatis.de/genesis/online/link/tabellen/12411-0005
https://www-genesis.destatis.de/genesis/online/link/tabellen/12411-0005
https://www.govdata.de/dl-de/by-2-0

18 stationary

Value

a function of the power that returns the exponentiated matrix.

Examples

Cnorm <- contactmatrix(normalize = TRUE)
powerC <- make_powerC(Cnorm)
powerC(1)
zapsmall(powerC(@))
powers <- c(@, 0.5, 1, 2)
Cp <- lapply(powers, powerC)
if (require(”gridextra”))
grid.arrange(

grobs = mapply(plotC, C = Cp, main = paste("power =", powers),
SIMPLIFY = FALSE),
nrow = 2, ncol = 2)
## truncation to enforce non-negative entries
powerC(0.2) # some entries become negative for small powers
powerC@ <- make_powerC(Cnorm, truncate = TRUE)
powerCo(@.2)
stationary Stationary Distribution of a Transition Matrix

Description

This auxiliary function determines the stationary distribution from a transition matrix.

Usage

stationary(P)

Arguments

P a transition matrix, i.e., a square matrix where all rows sum to 1.

Value

the stationary probability vector.

Author(s)

Leonhard Held



stratum 19

Examples

Cgrouped_norm <- contactmatrix(normalize = TRUE)
Cgrouped_norm

(p <- stationary(Cgrouped_norm))

(Cpowered <- make_powerC(Cgrouped_norm) (1e6))
stopifnot(all.equal(Cpowered[1,], p))

stratum Extract Strata

Description

Methods to extract strata information from an object. Here we only define a method for class "sts".

Usage

stratum(x, ...)

## S4 method for signature 'sts'

stratum(x, which = NULL, ...)
Arguments
X an object of class "sts".

further arguments passed to methods.

which an integer (strata dimension) or NULL (to get the plain colnames, the default).

Value

a character vector of strata names of length ncol(x).

Methods (by class)

e stratum(sts): Extract the names of the units, i.e., the colnames, from a multivariate "sts”
object. If the units result from the interaction of multiple strata separated by dots, e.g.,
"region.group”, the function can also extract the names corresponding to a specific strata
dimension, e.g., which = 2 to get the group names.

Examples

noroBEall <- noroBE(by = "all", flatten = TRUE)
stratum(noroBEall) # just colnames(noroBEall)
stratum(noroBEall, which = 2) # the age groups



20 stsplothook

stsplothook Hook functions for stsplot_time1l

Description

Hook functions can be passed to stsplot_time1, which are evaluated after all the plotting has been
done, and with the hook function environment set to the evaluation environment of stsplot_time1l
such that local variables can be accessed. They are not intended to be called directly.

Usage
stsplothook_highlight(christmas = FALSE, epochInYear = NULL, col = 2, 1lwd = 2)

Arguments
christmas logical indicating if Christmas should be highlighted.
epochInYear integer vector of epochs to highlight.
col, 1wd graphical parameters for the highlighting lines.
Author(s)

Sebastian Meyer

Examples

plot(noroBE("agegroups”), hookFunc = stsplothook_highlight(epochInYear=51))



Index

+ datasets
contactmatrix, 6
noroBE, 11
pop2011, 16

* manip
aggregateC, 4
aggregateCountsArray, 4

abline, 16

adaptP, 2,6
addGroups2WFUN, 3
aggregateC, 4,7
aggregateCountsArray, 4, 11
as.data.frame.array, 12
as.factor, 3

C2pop, 3,5

contactmatrix, 6, 10, 11

contactmatrix_mossong (contactmatrix), 6

contactmatrix_mossong_physical
(contactmatrix), 6

contactmatrix_POLYMOD, 4

contactmatrix_POLYMOD (contactmatrix), 6

contactmatrix_POLYMOD_physical
(contactmatrix), 6

contactmatrix_wallinga (contactmatrix),
6

contactmatrix_wallinga_physical
(contactmatrix), 6

counts, 5

counts (noroBE), 11

dssAggregate, 9

epochInYear, 16
expandC, 10

filled.contour, I3
fitC, 10

hhh4, 10, 11, 14

21

legend, 16
levelplot, /13

make_powerC (powerC), 17
map (noroBE), 11
matplot, 16

nbOrder, 11
noroBE, 11

optim, 10

plotC, 13
plotHHH4_fitted, 14
plotHHH4_fitted_groups, 14
plotHHH4_maps, 15
plotHHH4_maps_groups, 15
plotHHH4_season, 15
plotHHH4_season_groups, 15
poly2adjmat, 11
pop2011,5,7,11, 12,16
popDE (pop2011), 16
powercC, 10, 17

SpatialPolygonsDataFrame, /2
stationary, 18

stratum, 19

stratum,sts-method (stratum), 19

sts, 11, 12

stsplot_timel, 20

stsplothook, 20

stsplothook_highlight (stsplothook), 20

update.hhh4, 10

W_np, 3
W_powerlaw, 3



	adaptP
	addGroups2WFUN
	aggregateC
	aggregateCountsArray
	C2pop
	contactmatrix
	dssAggregate
	expandC
	fitC
	noroBE
	plotC
	plotHHH4_fitted_groups
	plotHHH4_maps_groups
	plotHHH4_season_groups
	pop2011
	powerC
	stationary
	stratum
	stsplothook
	Index

