Package 'hdi'

April 17, 2025

Type Package Title High-Dimensional Inference Version 0.1-10 Date 2025-05-15 Author Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehlmann [aut] Maintainer Lukas Meier <meier@stat.math.ethz.ch> **Description** Implementation of multiple approaches to perform inference in high-dimensional models. Depends scalreg DependsNote scalreg does not correctly import lars etc, so we need to depend on it Imports grDevices, graphics, stats, parallel, MASS, glmnet, linprog Suggests Matrix SuggestsNote for tests only **Encoding** UTF-8 License GPL NeedsCompilation no **Repository** CRAN Date/Publication 2025-04-17 14:50:02 UTC

Contents

ndi-package	2
poot.lasso.proj	4
clusterGroupBound	6
dr.adjust	9
glm.pval	10

hdi-package

groupBound	 11
hdi	 13
lasso.cv	 15
lasso.firstq	 16
lasso.proj	 17
lm.ci	 19
lm.pval	 20
multi.split	 21
plot.clusterGroupBound	 24
riboflavin	 25
ridge.proj	 26
rXb	 28
stability	 30
	32

Index

hdi-package

hdi

Description

Implementation of multiple approaches to perform inference in high-dimensional models.

Details

The DESCRIPTION file:

Package:	hdi
Туре:	Package
Title:	High-Dimensional Inference
Version:	0.1-10
Date:	2025-05-15
Authors@R:	c(person(given = "Lukas", family = "Meier", role = c("aut", "cre"), email = "meier@stat.math.ethz.ch"), pers
Author:	Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehl
Maintainer:	Lukas Meier <meier@stat.math.ethz.ch></meier@stat.math.ethz.ch>
Description:	Implementation of multiple approaches to perform inference in high-dimensional models.
Depends:	scalreg
DependsNote:	scalreg does not correctly import lars etc, so we need to depend on it
Imports:	grDevices, graphics, stats, parallel, MASS, glmnet, linprog
Suggests:	Matrix
SuggestsNote:	for tests only
Encoding:	UTF-8
License:	GPL

Index of help topics:

hdi-package

boot.lasso.proj	P-values based on the bootstrapped lasso projection method
clusterGroupBound	Hierarchical structure group tests in linear model
fdr.adjust	Function to calculate FDR adjusted p-values
glm.pval	Function to calculate p-values for a generalized linear model.
groupBound	Lower bound on the l1-norm of groups of regression variables
hdi	Function to perform inference in high-dimensional (generalized) linear models
hdi-package	hdi
lasso.cv	Select Predictors via (10-fold)
	Cross-Validation of the Lasso
lasso.firstq	Determine the first q Predictors in the Lasso Path
lasso.proj	P-values based on lasso projection method
lm.ci	Function to calculate confidence intervals for ordinary multiple linear regression.
lm.pval	Function to calculate p-values for ordinary multiple linear regression.
multi.split	Calculate P-values Based on Multi-Splitting Approach
plot.clusterGroupBound	
	Plot output of hierarchical testing of groups of variables
rXb	Generate Data Design Matrix X and Coefficient Vector beta
riboflavin	Riboflavin data set
ridge.proj	P-values based on ridge projection method
stability	Function to perform stability selection

Author(s)

Lukas Meier, Ruben Dezeure, Nicolai Meinshausen, Martin Mächler, Peter Bühlmann, Maintainer: Lukas Meier <meier@stat.math.ethz.ch>

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference: confidence intervals, p-values and R-software hdi. *Statistical Science* **30**, 533–558.

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. *Journal of the American Statistical Association* **104**, 1671–1681.

Meinshausen, N. (2015) Group-bound: confidence intervals for groups of variables in sparse highdimensional regression without assumptions on the design. *Journal of the Royal Statistical Society: Series B*, **77**(5), 923–945.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). *Journal of the Royal Statistical Society: Series B* 72, 417–473.

boot.lasso.proj

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso, using the bootstrap to approximate the distribution of the estimator.

Usage

```
boot.lasso.proj(x, y, family = "gaussian", standardize = TRUE,
    multiplecorr.method = "WY",
    parallel = FALSE, ncores = getOption("mc.cores", 2L),
    betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
    return.Z = FALSE, robust= FALSE,
    B = 1000, boot.shortcut = FALSE,
    return.bootdist = FALSE, wild = FALSE,
    gaussian.stub = FALSE)
```

Arguments

-	
x	Design matrix (without intercept).
У	Response vector.
family	family
standardize	Should design matrix be standardized to unit column standard deviation.
multiplecorr.me	ethod
	Either "WY" or any of p.adjust.methods.
parallel	Should parallelization be used? (logical)
ncores	Number of cores used for parallelization.
betainit	Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
sigma	Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results will not be correct.
Z	user input, also see return.Z below
verbose	A boolean to enable reporting on the progress of the computations. (Only prints out information when Z is not provided by the user)
return.Z	An option to return the intermediate result which only depends on the design matrix x. This intermediate results can be used when calling the function again and the design matrix is the same as before.
robust	Uses a robust variance estimation procedure to be able to deal with model mis- specification.

В	The number of bootstrap samples to be used.
boot.shortcut	A boolean to enable the computational shortcut for the bootstrap. If set to true, the lasso is not re-tuned for each bootstrap iteration, but it uses the tuning parameter computed on the original data instead.
return.bootdis [.]	t
	A boolean specifying if one is to return the computed bootstrap distributions to the estimator. (Matrix size: $ncol(x)^*B$) If the multiple testing method was chosen to be WY, the bootstrap distribution computer under the complete null hypothesis is returned as well. This option is required if one wants to compute confidence intervals afterwards.
wild	Perform the wild bootstrap based on N(0,1) distributed random variables
gaussian.stub	DEVELOPER OPTION. Only enable if you know what you are doing. A boolean to run stub code instead of actually bootstrapping the estimator. It generates a finite sample distribution for each estimate by sampling B samples from $N(0,hat\{s.e.\}_j^2)$. (Note: we do not sample from the multivariate gaussian with the covariance matrix. Therefore, no dependencies are modelled at all.) Useful for debugging and for checking if the bootstrap is way off for some reason.

Value

pval	Individual p-values for each parameter.	
pval.corr	Multiple testing corrected p-values for each parameter.	
sigmahat	$\hat{\sigma}$ coming from the scaled lasso.	
Z	Only different from NULL if the option return.Z is on. This is an intermediate result from the computation which only depends on the design matrix x. These are the residuals of the nodewise regressions.	
В	The number of bootstrap samples used.	
boot.shortcut	If the bootstrap shortcut has been used or not.	
lambda	What tuning parameter was used for the bootstrap shortcut. NULL if no shortcut was used or if no valid lambda was available to use for the shortcut.	
cboot.dist	Only different from NULL if the option return.bootdist is on. This is a $ncol(x)$ *B matrix where each row contains the computed centered bootstrap distribution for that estimate.	
cboot.dist.underH0		
	Only different from NULL if the option return.bootdist is on and if the multiple testing method is WY. This is a $ncol(x)$ *B matrix where each row contains the computed centered bootstrap distribution for that estimate. These bootstrap distributions were computed under the complete null hypothesis (b_1 = = b_p = 0).	

Author(s)

Ruben Dezeure

References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. *Annals of Statistics* **42**, 1166–1202._

Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. *Journal of the Royal Statistical Society: Series B* **76**, 217–242.

Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models. *Electronic Journal of Statistics* **9**, 1449–1473.

Dezeure, R., Bühlmann, P. and Zhang, C. (2016) High-dimensional simultaneous inference with the bootstrap *http://arxiv.org/abs/1606.03940*

Examples

```
x <- matrix(rnorm(100 * 10), nrow = 100, ncol = 10)</pre>
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- boot.lasso.proj(x, y)</pre>
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
## Use the computational shortcut for the bootstrap to speed up
## computations
fit.lasso.shortcut <- boot.lasso.proj(x, y, boot.shortcut = TRUE)</pre>
which(fit.lasso.shortcutpval.corr < 0.05) # typically: '1' and '2' and no other
## Return the bootstrap distribution as well and compute confidence intervals based on it
fit.lasso.allinfo <- boot.lasso.proj(x, y, return.bootdist = TRUE)</pre>
confint(fit.lasso.allinfo, level = 0.95)
confint(fit.lasso.allinfo, parm = 1:3)
## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- boot.lasso.proj(x, y, betainit = "scaled lasso")</pre>
which(fit.lasso.scaled$pval.corr < 0.05)</pre>
## Use a robust estimate for the standard error
fit.lasso.robust <- boot.lasso.proj(x, y, robust = TRUE)</pre>
which(fit.lasso.robust$pval.corr < 0.05)</pre>
```

clusterGroupBound *Hierarchical structure group tests in linear model*

Description

Computes confidence intervals for the 11-norm of groups of linear regression coefficients in a hierarchical clustering tree.

Usage

Arguments

x	numeric design matrix of the regression $n \times p$ with p columns for p predictor variables and n rows corresponding to n observations.
У	numeric response variable of length n .
method	a character string; the method used for constructing the hierarchical cluster- ing tree (default: "average" for "average linkage") via hclust. Alternatively, you can provide your own hierarchical clustering through the optional argument hcloutput.
dist	a distance matrix can be specified on which the hierarchical clustering will be based (see dist). The default option is that the distance between variables will be calculated as 1 less the absolute correlation matrix. Alternatively, you can provide your own hierarchical clustering through the optional argument hcloutput.
alpha	numeric level in $\left(0,1\right)$ at which the test / confidence intervals are to be constructed.
eps	a level of eps*alpha is used and the values of different splits are aggregated using the (1-eps) quantile. See reference below for more details.
hcloutput	optionally, the value of a hclust() call. If it is provided, the arguments dist and method are ignored.
nsplit	the number of data splits used.
S	the dimensionality of the projection that is used. Lower values lead to faster computation and if $n > 50$, then s is set to 50 if left unspecified, to avoid lengthy computations.
silent	logical enabling progress output.
setseed	a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.
lpSolve	logical; only set it to false if lpSolve() is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.

Value

Returns a list with components

groupNumber	The index of the group tested in the original hierarchical clustering tree
members	A list containing the variables that belong into each testes group

noMembers	A vector containing the number of members in each group
lowerBound	The lower bound on the 11-norm in each group
position	The position on the x-axis of each group (used for plotting)
leftChild	Gives the index of the group that corresponds to the left child node in the tested tree (negative values correspond to leaf nodes)
rightChild	Same as leftCHild for the right child of each node
isLeaf	Logical vector. Is TRUE for a group if it is a leaf node in the tested tree or if both child nodes have a zero lower bound on their group 11-norm

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015); JRSS B, see groupBound.

See Also

Use groupBound to compute the lower bound for selected groups of variables whereas you use this clusterGroupBound to test all groups in a hierarchical clustering tree.

```
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99
set.seed(29)
   <- 3
р
n <- 10
Sigma <- diag(p)</pre>
Sigma[1,2] <- Sigma[2,1] <- 0.99
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)</pre>
## Create response with active variable 1
beta <- rep(0, p)</pre>
beta[1] <- 5
y <- as.numeric(x %*% beta + rnorm(n))</pre>
out <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!</pre>
## Plot and print the hierarchical group-test
plot(out)
print(out)
out$members
out$lowerBound
```

fdr.adjust

Description

Calculates FDR adjusted p-values similar to R-function p.adjust but *without* adjustment for multiplicity.

Usage

fdr.adjust(p)

Arguments

р

Vector of p-values.

Details

It is assumed that the p-values are already corrected for multiplicity. P-values with a value of 1 are currently ignored.

Value

Vector of p-values.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009), *P-values for high-dimensional regression*, Journal of the American Statistical Association 104, 1671-1681.

See Also

p.adjust

glm.pval

Description

Calculates (classical) p-values for an ordinary generalized linear model in the n > p situation.

Usage

```
glm.pval(x, y, family = "binomial", verbose = FALSE, ...)
```

Arguments

x	Design matrix (without intercept).
У	Response vector.
family	As in glm.
verbose	Logical. Should information be printed out if algorithm did not converge?
	Additional arguments to be passed to glm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

...

groupBound

Description

Computes a lower bound that forms a one-sided confidence interval for the group 11-norm of a specified group of regression parameters. It is assumed that errors have a Gaussian distribution with unknown noise level. The underlying vector that inference is made about is the 11-sparsest approximation to the noiseless data.

Usage

```
groupBound(x, y, group, alpha = 0.05, eps = 0.1, nsplit = 11,
    s = min(10, ncol(x) - 1), setseed = TRUE,
    silent = FALSE, lpSolve = TRUE, parallel = FALSE,
    ncores = getOption("mc.cores", 2L))
```

Arguments

x	numeric design matrix of the regression $n \times p$ with p columns for p predictor variables and n rows corresponding to n observations.
у	numeric response variable of length n .
group	either a numeric vector with entries in $\{1,, p\}$ or a list with such numeric vectors. If group is a numeric vector, this is the group of variables for which a lower bound is computed. If group is a list, the lower bound is computed for each group in the list.
alpha	numeric level in $(0,1)$ at which the test / confidence interval is computed.
eps	a level of eps $*$ alpha is used and the values of different splits are aggregated using the $(1 - eps)$ quantile. See reference below for more details.
nsplit	the number of data splits used.
S	the dimensionality of the projection that is used. Lower values lead to faster computation and if $n>50$, then s is set to 50 if left unspecified, to avoid lengthy computations.
setseed	a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.
silent	logical enabling progress output.
lpSolve	logical; only set it to false if lpSolve() is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.
parallel	should parallelization be used? (logical)
ncores	number of cores used for parallelization.

Details

The data are split since the noise level is unknown. On the first part of the random split, a cross-validated lasso solution is computed, using the **glmnet** implementation. This estimator is used as an initial estimator on the second half of the data. Results at level alpha are aggregated over nsplit splits via the median of results at levels alpha/2.

Value

If group is a single numeric vector, a scalar containg the lower bound for this group of variables is returned. If group is a list, a numeric vector is retuned where each entry corresponds to the group of variables defined in the same order in group.

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015) Group bound: confidence intervals for groups of variables in sparse high dimensional regression without assumptions on the design. *Journal of the Royal Statistical Society: Series B*, **77**, 923–945; doi:10.1111/rssb.12094.

See Also

Use clusterGroupBound to test all groups in a hierarchical clustering tree.

```
## Create a regression problem with correlated design: p = 6, n = 50,
## block size B = 3 and within-block correlation of rho = 0.99
   <- 6
р
   <- 50
n
В
   <- 3
rho <- 0.99
ind <- rep(1:ceiling(p / B), each = B)[1:p]</pre>
Sigma <- diag(p)</pre>
for (ii in unique(ind)){
  id <- which(ind == ii)</pre>
  Sigma[id, id] <- rho</pre>
}
diag(Sigma) <- 1</pre>
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)</pre>
## Create response with active variable 1
       <- rep(0, p)
beta
beta[1] <- 5
  <- as.numeric(x %*% beta + rnorm(n))
```

```
## Compute lower bounds:
```

hdi

Function to perform inference in high-dimensional (generalized) linear models

Description

Perform inference in high-dimensional (generalized) linear models using various approaches.

Usage

```
hdi(x, y, method = "multi.split", B = NULL, fraction = 0.5,
model.selector = NULL, EV = NULL, threshold = 0.75,
gamma = seq(0.05, 0.99, by = 0.01),
classical.fit = NULL,
args.model.selector = NULL, args.classical.fit = NULL,
verbose = FALSE, ...)
```

Arguments

x	Design matrix (without intercept).
У	Response vector.
method	Multi-splitting ("multi.split") or stability-selection ("stability").
В	Number of sample-splits (for "multi.split") or sub-sample iterations (for "stabil- ity"). Default is 50 ("multi.split") or 100 ("stability"). Ignored otherwise.
fraction	Fraction of data used at each of the B iterations.
model.selector	Function to perform model selection. Default is lasso.cv ("multi.split") and lasso.firstq ("stability"). Function must have at least two arguments: x (the design matrix) and y (the response vector). Return value is the index vector of selected columns. See lasso.cv and lasso.firstq for examples. Additional arguments can be passed through args.model.selector.

(only for "stability"). Bound(s) for expected number of false positives . Can be a vector.		
(only for "stability"). Bound on selection frequency.		
(only for "multi.split"). Vector of gamma-values.		
(only for "multi.split"). Function to calculate (classical) p-values. Default is $lm.pval$. Function must have at least two arguments: x (the design matrix) and y (the response vector). Return value is the vector of p-values. See $lm.pval$ for an example. Additional arguments can be passed through args.classical.fit.		
args.model.selector		
Named list of further arguments for function model.selector.		
args.classical.fit		
Named list of further arguments for function classical.fit.		
Should information be printed out while computing (logical).		
Other arguments to be passed to the underlying functions.		

Value

pval	(only for "multi.split"). Vector of p-values.
gamma.min	(only for "multi.split"). Value of gamma where minimal p-values was attained.
select	(only for "stability"). List with selected predictors for the supplied values of EV.
EV	(only for "stability"). Vector of corresponding values of EV.
thresholds	(only for "stability"). Used thresholds.
freq	(only for "stability"). Vector of selection frequencies.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. *Journal of the American Statistical Association* **104**, 1671–1681.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). *Journal of the Royal Statistical Society: Series B* **72**, 417–473.

See Also

stability, multi.split

```
x <- matrix(rnorm(100 * 200), nrow = 100, ncol = 200)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
## Multi-splitting with lasso.firstq as model selector function
```

```
fit.multi <- hdi(x, y, method = "multi.split",</pre>
```

lasso.cv

lasso.cv

Select Predictors via (10-fold) Cross-Validation of the Lasso

Description

Performs (n-fold) cross-validation of the lasso (via cv.glmnet) and determines the prediction optimal set of parameters.

Usage

Arguments

Х	numeric design matrix (without intercept) of dimension $n \times p$.
У	response vector of length n .
nfolds	the number of folds to be used in the cross-validation
grouped	corresponds to the grouped argument to cv.glmnet. This has a smart default such that glmnet does not give a warning about too small sample size.
	further arguments to be passed to cv.glmnet.

Details

The function basically only calls cv.glmnet, see source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi which uses lasso.cv() by default; cv.glmnet. An alternative for hdi(): lasso.firstq.

Examples

```
x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.cv(x, y)
sel</pre>
```

lasso.firstq	Determine the first q Predictors in the Lasso Path

Description

Determines the q predictors that enter the lasso path first.

Usage

```
lasso.firstq(x, y, q, ...)
```

Arguments

х	numeric design matrix (without intercept) of dimension $n \times p$.
У	response vector of length n .
q	number of predictors that should be selected, a positive integer.
	optional additional arguments to be passed to glmnet.

Details

The lasso.firstq function calls glmnet in a special way and simply postprocesses its nonzero predictor list, see its source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi; the default choice for hdi(), lasso.cv. glmnet

16

lasso.proj

Examples

```
x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.firstq(x, y, q = 5)
sel # 5 integers from {1,2, ..., 1000}, including '1' and '2', typically
```

```
lasso.proj
```

P-values based on lasso projection method

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso, using an asymptotic gaussian approximation to the distribution of the estimator.

Usage

```
lasso.proj(x, y, family = "gaussian", standardize = TRUE,
    multiplecorr.method = "holm", N = 10000,
    parallel = FALSE, ncores = getOption("mc.cores", 2L),
    betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
    return.Z = FALSE, suppress.grouptesting = FALSE, robust = FALSE,
    do.ZnZ = FALSE)
```

Arguments

x	Design matrix (without intercept).	
У	Response vector.	
family	family	
standardize	Should design matrix be standardized to unit column standard deviation.	
multiplecorr.me	thod	
	Either "WY" or any of p.adjust.methods.	
Ν	Number of empirical samples (only used if multiplecorr.method == "WY")	
parallel	Should parallelization be used? (logical)	
ncores	Number of cores used for parallelization.	
betainit	Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".	
sigma	Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results will not be correct.	
Z	user input, also see return.Z below	
verbose	A boolean to enable reporting on the progress of the computations. (Only prints out information when Z is not provided by the user)	

return.Z	An option to return the intermediate result which only depends on the design matrix x. This intermediate results can be used when calling the function again and the design matrix is the same as before.
suppress.groupt	esting
	A boolean to optionally suppress the preparations made for testing groups. This will avoid quite a bit of computation and memory usage. The output will also be smaller.
robust	Uses a robust variance estimation procedure to be able to deal with model mis- specification.
do . ZnZ	Use a slightly different way of choosing tuning parameters to compute Z, called Z&Z based on Zhang and Zhang (2014). This choice of tuning parameter results in a slightly higher variance of the estimator. More concretely, it achieves a 25 variance of the estimator (over $j=1ncol(x)$) in comparison to tuning with cross-validation.

Value

pval	Individual p-values for each parameter.	
pval.corr	Multiple testing corrected p-values for each parameter.	
groupTest	Function to perform groupwise tests. Groups are indicated using an index vector with entries in {1,,p} or a list thereof.	
clusterGroupTest		
	Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.	
sigmahat	$\widehat{\sigma}$ coming from the scaled lasso.	
Z	Only different from NULL if the option return.Z is on. This is an intermediate result from the computation which only depends on the design matrix x. These are the residuals of the nodewise regressions.	

Author(s)

Ruben Dezeure

References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. *Annals of Statistics* **42**, 1166–1202._

Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. *Journal of the Royal Statistical Society: Series B* **76**, 217–242.

Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models. *Electronic Journal of Statistics* **9**, 1449–1473.

lm.ci

Examples

```
x <- matrix(rnorm(100 * 10), nrow = 100, ncol = 10)</pre>
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- lasso.proj(x, y)</pre>
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
## Group-wise testing of the first two coefficients
fit.lasso$groupTest(1:2)
##Compute confidence intervals
confint(fit.lasso, level = 0.95)
## Hierarchical testing using distance matrix based on
## correlation matrix
out.clust <- fit.lasso$clusterGroupTest()</pre>
plot(out.clust)
## Fit the lasso projection method without doing the preparations
## for group testing (saves time and memory)
fit.lasso.faster <- lasso.proj(x, y, suppress.grouptesting = TRUE)
## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- lasso.proj(x, y, betainit = "scaled lasso")</pre>
which(fit.lasso.scaled$pval.corr < 0.05)</pre>
## Use a robust estimate for the standard error
fit.lasso.robust <- lasso.proj(x, y, robust = TRUE)</pre>
which(fit.lasso.robust$pval.corr < 0.05)</pre>
## Perform the Z&Z version of the lasso projection method
fit.lasso <- lasso.proj(x, y, do.ZnZ = TRUE)</pre>
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
```

lm.ci

Function to calculate confidence intervals for ordinary multiple linear regression.

Description

Calculates (classical) confidence intervals for an ordinary multiple linear regression model in the n > p situation.

Usage

lm.ci(x, y, level = 0.95, ...)

lm.pval

Arguments

х	Design matrix (without intercept).
У	Response vector.
level	Coverage level.
	Additional arguments to be passed to lm .

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Matrix of confidence interval bounds (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

```
x <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
ci <- lm.ci(x, y)
ci
```

lm.pval

Function to calculate p-values for ordinary multiple linear regression.

Description

Calculates (classical) p-values for an ordinary multiple linear regression in the n > p situation.

Usage

lm.pval(x, y, exact = TRUE, ...)

Arguments

х	Design matrix (without intercept).
У	Response vector.
exact	Logical. TRUE if p-values based on t-distribution should be calculated. FALSE if normal distribution should be used as approximation.
	Additional arguments to be passed to 1m.

multi.split

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

```
x <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
pval <- lm.pval(x, y)
pval</pre>
```

multi.split

Calculate P-values Based on Multi-Splitting Approach

Description

Calculate p-values and confidence intervals based on the multi-splitting approach

Usage

```
multi.split(x, y, B = 100, fraction = 0.5, ci = TRUE, ci.level = 0.95,
    model.selector = lasso.cv,
    classical.fit = lm.pval, classical.ci = lm.ci,
    parallel = FALSE, ncores = getOption("mc.cores", 2L),
    gamma = seq(ceiling(0.05 * B) / B, 1 - 1 / B, by = 1 / B),
    args.model.selector = NULL, args.classical.fit = NULL,
    args.classical.ci = NULL,
    return.nonaggr = FALSE, return.selmodels = FALSE,
    repeat.max = 20,
    verbose = FALSE)
```

Arguments

x	numeric design matrix (without intercept).	
у	numeric response vector.	
В	the number of sample-splits, a positive integer.	
fraction	a number in $(0, 1)$, the fraction of data used at each sample split for the model selection process. The remaining data is used for calculating the p-values.	
ci	logical indicating if a confidence interval should be calculated for each parame- ter.	
ci.level	(if ci is true:) a number in $(0, 1)$, typically close to 1, the desired coverage level of the confidence intervals.	
model.selector	a function to perform model selection, with default lasso.cv. The function must have at least two arguments, x (the design matrix) and y (the response vector). Return value is the index vector of selected columns. See lasso.cv and lasso.firstq for an example. Additional arguments can be passed via args.model.selector.	
classical.fit	a function to calculate (classical) p-values. Default is lm.pval. The function must have at least two arguments, x (the design matrix) and y (the response vector), and return the vector of p-values. See lm.pval for an example. Additional arguments can be passed through args.classical.fit.	
classical.ci	a function to calculate (classical) confidence intervals. Default is lm.ci. The function must have at least 3 arguments, x (the design matrix), y (the response vector) and level (the coverage level), and return the matrix of confidence intervals. See lm.ci for an example. Additional arguments can be passed through args.classical.ci.	
parallel	logical indicating if parallelization via mclapply should be used.	
ncores	number of cores used for parallelization as mc.cores in mclapply().	
gamma	vector of gamma-values. In case gamma is a scalar, the value Q_j instead of P_j is being calculated (see reference below).	
args.model.sel		
	named list of further arguments for function model.selector.	
args.classical	named list of further arguments for function classical.fit.	
args.classical.ci		
	named list of further arguments for function classical.ci.	
return.nonaggr	logical indicating if the unadjusted p-values be returned.	
return.selmodels		
	<pre>logical indicating if the selected models (at each split) should be returned. Necessary for the clusterGroupTest() part of the result.</pre>	
repeat.max	positive integer indicating the maximal number of split trials. Should not matter in regular cases, but necessary to prevent infinite loops in borderline cases.	
verbose	should information be printed out while computing? (logical).	

multi.split

Value

pval.corr	Vector of multiple testing corrected p-values.
gamma.min	Value of gamma where minimal p-values was attained.
clusterGroupTe	st
	Function to perform groupwise tests based on hierarchical clustering. You can
	either provide a distance matrix and clustering method or the output of hierarchi-
	cal clustering from the function hclust as for clusterGroupBound. P-values

Author(s)

Lukas Meier, Ruben Dezeure, Jacopo Mandozzi

are adjusted for multiple testing.

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. *Journal of the American Statistical Association* **104**, 1671–1681.

Mandozzi, J. and Bühlmann, P. (2015) A sequential rejection testing method for high-dimensional regression with correlated variables. To appear in the International Journal of Biostatistics. Preprint arXiv:1502.03300

See Also

lasso.cv, lasso.firstq; lm.pval, lm.ci.

```
n <- 40 # a bit small, to keep example "fast"
p <- 256
x <- matrix(rnorm(n * p), nrow = n, ncol = p)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(n)</pre>
```

```
## Use default 'lasso.cv' (slower!!) -- incl cluster group testing:
system.time(fit.m2 <- multi.split(x, y, return.selmodels = TRUE))# 9 sec (on "i7")
head(fit.m2$pval.corr) ## the first 6 p-values
head(confint(fit.m2)) ## the first 6 95% conf.intervals
```

```
## Now do clustergroup testing
```

plot.clusterGroupBound

Plot output of hierarchical testing of groups of variables

Description

The plot() method for "clusterGroupBound" objects plots the outcome of applying a lower bound on the l1-norm on groups of variables in a hierarchical clustering tree.

Usage

Arguments

х	an object of class "clusterGroupBound", as resulting from clusterGroupBound().
cexfactor	numeric expansion factor for the size of the node symbols.
yaxis	a string; for the default "members", the hierarchical tree is shown as function of cluster size on the y-axis, whereas the node sizes are proportional to the lower 11-norm of the respective groups of variables. If yaxis takes any different value, then this is reversed and the tree is shown against the lower 11-norm on the y-axis, while node sizes are now proportional to the number of elements in each cluster.
xlab	label used for the x-axis; by default none.
col	the colour of the symbols for the nodes.
pch	the plot symbol (see points) of the symbols for the nodes.
	optional additional arguments passed to plot.default.

Value

Nothing is returned

24

riboflavin

Author(s)

Nicolai Meinshausen <meinshausen@stat.math.ethz.ch>

See Also

Use clusterGroupBound() to test all groups in a hierarchical clustering tree. Use groupBound() to compute the lower bound for selected groups of variables.

Examples

```
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99
set.seed(29)
p <- 3
   <- 10
n
Sigma <- diag(p)</pre>
Sigma[1,2] <- Sigma[2,1] <- 0.99
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)</pre>
## Create response with active variable 1
beta <- rep(0, p)</pre>
beta[1] <- 5
y <- as.numeric(x %*% beta + rnorm(n))</pre>
## Compute the lower bound for all groups in a hierarchical clustering tree
cgb5 <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!</pre>
## Plot the tree with y-axis proportional to the (log) of the number of
## group members and node sizes proportional to the lower l1-norm bound.
plot(cgb5)
## Show the lower bound on the y-axis and node sizes proportional to
## number of group members
plot(cgb5, yaxis = "")
```

riboflavin

Riboflavin data set

Description

Dataset of riboflavin production by Bacillus subtilis containing n = 71 observations of p = 4088 predictors (gene expressions) and a one-dimensional response (riboflavin production).

Usage

data(riboflavin)

Format

- y Log-transformed riboflavin production rate (original name: q_RIBFLV).
- x (Co-)variables measuring the logarithm of the expression level of 4088 genes.

Details

Data kindly provided by DSM (Switzerland).

References

Bühlmann, P., Kalisch, M. and Meier, L. (2014) *High-dimensional statistics with a view towards applications in biology*. Annual Review of Statistics and its Applications 1, 255–278

Examples

data(riboflavin)

ridge.proj

P-values based on ridge projection method

Description

Compute p-values for lasso-type regression coefficients based on the ridge projection method.

Usage

Arguments

x	design matrix (without intercept).
У	response vector.
family	family
standardize	Should design matrix be standardized to unit column standard deviation (logical)?
lambda	Value of penalty parameter lambda (ridge regression).
betainit	Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".

26

ridge.proj

sigma	Estimate of the standard deviation of the error term. This estimate needs to be
	compatible with the initial estimate (see betainit) provided or calculated. Other-
	wise, results won't be correct.
suppress.groupt	cesting
	A boolean to optionally suppress the preparations made for testing groups. This
	will avoid quite a bit of computation and memory usage. The output will also
	be smaller.
multiplecorr.me	ethod
	Either "WY" or any of p.adjust.methods.
Ν	number of empirical samples (only used if multiplecorr.method = "WY").

Value

pval	Individual p-values for each parameter.
pval.corr	Multiple testing corrected p-values for each parameter.
groupTest	Function to perform groupwise tests. Groups are indicated using an index vector with entries in $1, \ldots, p$ or a list thereof.
clusterGroupTest	
	Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.
sigmahat	$\widehat{\sigma}$ coming from the scaled lasso.

Author(s)

Peter Buehlmann, Ruben Dezeure, Lukas Meier

References

Bühlmann, P. (2013) Statistical significance in high-dimensional linear models. *Bernoulli* **19**, 1212–1242.

```
x <- matrix(rnorm(100 * 100), nrow = 100, ncol = 100)
y <- x[,1] + x[,2] + rnorm(100)
fit.ridge <- ridge.proj(x, y)
which(fit.ridge$pval.corr < 0.05)</pre>
```

```
## Use the scaled lasso for the initial estimate
fit.ridge.scaled <- ridge.proj(x, y, betainit = "scaled lasso")
which(fit.ridge.scaled$pval.corr < 0.05)</pre>
```

```
## Group-wise testing of the first two coefficients
fit.ridge$groupTest(1:2)
```

```
## Hierarchical testing using distance matrix based on
## correlation matrix
```

```
out.clust <- fit.ridge$clusterGroupTest()
plot(out.clust)
## Fit the method without doing the preparations
## for group testing (saves time and memory)
fit.ridge.faster <- ridge.proj(x, y, suppress.grouptesting = TRUE)</pre>
```

Generate Data Design Matrix X and Coefficient Vector β

Description

rXb

Generate a random design matrix X and coefficient vector β useful for simulations of (high dimensional) linear models. In particular, the function rXb() can be used to exactly recreate the reference linear model datasets of the hdi paper.

Usage

Arguments

n	integer; the sample size n (paper had always n = 100).
р	integer; the number of coefficients in the linear model. (paper had always $p = 500$).
s0	integer number of nonzero coefficients desired in the model; hence at most p.
xtype	a character string specifying the type of design matrix one wants to generate. Must be one of "toeplitz", "equi.corr" or "exp.decay".
btype	a character string specifying the type of nonzero coefficients ("beta") one wants to generate. In the hdi paper, this has been one of "U[-2,2]", "U[0,2]", "U[0,4]", "bfix1", "bfix2" and "bfix10". In general, any string of the form "U[a,b]" or "bfix <c>" is allowed, where a, b, and <c> must be numbers (with $a \le b$).</c></c>

28

permuted	logical specifying if the columns of the design matrix should be permuted.
iteration	integer or NA specifying if seeds should be set to generate reproducible real- izations of the design type and coefficients type. NA corresponds to not setting seeds. Iteration numbers 1 to 50 correspond to the setups from the paper. If a seed is set, the original .Random.seed at the point of entering the function is saved and is restored upon exit of the data generation. If NA, the current .Random.seed is taken as usual in R.
do2S	logical indicating if in the case of xtypes "toeplitz" or "equi.corr", the $p \times p$ covariance matrix should be inverted twice. Must be true, to regenerate the X matrices from the hdi paper exactly "to the last bit".
x.par,par	the parameters to be used for the design matrix. Must be a numeric vector of length one or two. The default uses the parameters also used in the hdi paper.
verbose	should the function give a message if seeds are being set? (logical).

Details

Generation of the design matrix X:

For all xtype's, the X matrix will be multivariate normal, with mean zero and (co)variance matrix $\Sigma = C$ determined from xtype, x.par and p as follows:

```
xtype = "toeplitz": C <- par ^ abs(toeplitz(0:(p-1)))
xtype = "equi.corr": \Sigma_{i,j} = par for i \neq j, and = 1 for i = j, i.e., on the diagonal.
xtype = "exp.decay": C <- solve(par[1] ^ abs(toeplitz(0:(p-1)) / par[2]))
```

Value

For rXb(): A list with components

x the generated $n \times p$ design matrix X.

beta the generated coefficient vector β ('beta').

For rX(): the generated $n \times p$ design matrix X.

Author(s)

Ruben Dezeure <dezeure@stat.math.ethz.ch>

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference: confidence intervals, p-values and R-software hdi. *Statistical Science* **30**, 533–558.

```
stability
```

Function to perform stability selection

Description

Function to perform stability selection

Usage

```
stability(x, y, EV, threshold = 0.75, B = 100, fraction = 0.5,
    model.selector = lasso.firstq, args.model.selector = NULL,
    parallel = FALSE, ncores = getOption("mc.cores", 2L),
    verbose = FALSE)
```

Arguments

x	Design matrix (without intercept).
У	Response vector.
EV	Bound for expected number of false positives.
threshold	Threshold for selection frequency. Must be in $(0.5, 1)$.
В	Number of sub-sample iterations.
fraction	Fraction of data used at each of the B sub-samples.
model.selector	Function to perform model selection. Default is lasso.firstq. User supplied function must have at least three arguments: x (the design matrix), y (the response vector) and q (the maximal model size). Return value is the index vector of selected columns. See lasso.firstq for an example. Additional arguments can be passed through args.model.selector.
args.model.sele	ector

Named list of further arguments for function model.selector.

30

stability

parallel	Should parallelization be used? (logical)
ncores	Number of cores used for parallelization.
verbose	Should information be printed out while computing (logical).

Value

selected	Vector of selected predictors.
freq	Vector of selection frequencies.
q	Size of fitted models in order to control error rate at desired level.

Author(s)

Lukas Meier

References

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). *Journal of the Royal Statistical Society: Series B* **72**, 417–473.

Bühlmann, P., Kalisch, M. and Meier, L. (2014) *High-dimensional statistics with a view towards applications in biology*. Annual Review of Statistics and its Applications 1, 255–278

```
x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
fit.stab <- stability(x, y, EV = 1)
fit.stab
fit.stab$freq[1:10] ## selection frequency of the first 10 predictors</pre>
```

Index

* confidence intervals clusterGroupBound, 6 groupBound, 11 plot.clusterGroupBound, 24 * datagen rXb, 28 * datasets riboflavin, 25 * generate datasets rXb, 28 * hierarchical clustering clusterGroupBound, 6 plot.clusterGroupBound, 24 * htest plot.clusterGroupBound, 24 * models boot.lasso.proj,4 fdr.adjust,9 glm.pval, 10 hdi, 13 lasso.cv, 15 lasso.firstq, 16 lasso.proj, 17 lm.ci, 19 lm.pval, 20 multi.split, 21 ridge.proj, 26 stability, 30 * package hdi-package, 2 * regression boot.lasso.proj,4 clusterGroupBound, 6 fdr.adjust,9 glm.pval, 10 groupBound, 11 hdi, 13 lasso.cv, 15 lasso.firstq, 16

lasso.proj, 17 lm.ci, 19 lm.pval, 20 multi.split, 21 plot.clusterGroupBound, 24 ridge.proj, 26 rXb, 28 stability, 30 .Random.seed, 29 boot.lasso.proj,4 character, 7, 28 class, 24 clusterGroupBound, 6, 12, 18, 23-25, 27 cv.glmnet, 15, 16 dist.7 fdr.adjust, 9 function, 22glm, 10 glm.pval, 10 glmnet, 16 groupBound, 8, 11, 25 hclust, 7, 18, 23, 27 hdi, 10, 13, 16, 20, 21 hdi-package, 2 lasso.cv, 13, 15, 16, 22, 23 lasso.firstq, 13, 16, 16, 22, 23, 30 lasso.proj, 17 list, *11*, 22, 29 lm, 20 lm.ci, 19, 22, 23 lm.pval, 14, 20, 22, 23 logical, 22 mclapply, 22

INDEX

multi.split, 14, 21
p.adjust, 9
p.adjust.methods, 4, 17, 27
plot, 24
plot.clusterGroupBound, 24
plot.default, 24
points, 24

riboflavin, 25
ridge.proj, 26
rX(rXb), 28
rXb, 28

stability, *14*, 30