Package ‘geosphere’

October 4, 2024

Type Package

Title Spherical Trigonometry

Version 1.5-20

Date 2024-10-02

LinkingTo Rcpp

Imports Rcpp, sp

Depends R (>=3.0.0)

Suggests methods, raster, terra

Description Spherical trigonometry for geographic applications. That is, compute distances and re-
lated measures for angular (longitude/latitude) locations.

BugReports https://github.com/rspatial/geosphere/issues/

License GPL (>=3)

LazyLoad yes

NeedsCompilation yes

Author Robert J. Hijmans [cre, aut],
Charles Karney [ctb] (GeographicLib),
Ed Williams [ctb],
Chris Vennes [ctb]

Maintainer Robert J. Hijmans <r.hijmans@gmail .com>
Repository CRAN
Date/Publication 2024-10-04 06:40:06 UTC

Contents

geosphere-package L e
alongTrackDistance L
antipode e e e e
areaPolygon L e
bearing
bearingRhumb

https://github.com/rspatial/geosphere/issues/

Index

Contents

centroid L L e 9
daylength e e 10
destPoint 11
destPointRhumb 12
dist2gC e e 13
dist2Line e 14
distCosine e 15
distGeo e 16
distHaversine 17
distm e e 18
distMeeus e e e 19
distRhumb 20
distVincentyEllipsoid 21
distVincentySphere 23
finalBearing L 24
gelntersect L. e 25
gelntersectBearing L. L 26
gelat ..o e 27
gclon . . . e 28
gcMaxLat 29
geOdeSIC e 30
GEOMEAN . .« . o v v e e e e e e e e e e e e e e e 31
greatCircle L e e e 32
greatCircleBearing e 33
horizon L e 34
intermediate e 34
lengthLine e 35
makePoly e 36
METCALOT . .« . o v vt v e e e e e e e e e e e e e e e 37
midPoint 38
onGreatCircle e e e 38
OSGB . . . e 39
PEIIMELEro e e 40
PIOAITOWS o o e e e e e e 41
randomCoordinates Lo e 42
refEllipsoids L. 43
] 072 o L 43
wrld .. 44
46

geosphere-package 3

geosphere-package Geosphere

Description

This package implements functions that compute various aspects of distance, direction, area, etc.
for geographic (geodetic) coordinates. Some of the functions are based on an ellipsoid (spheroid)
model of the world, other functions use a (simpler, but less accuarate) spherical model. Functions
using an ellipsoid can be recognized by having arguments to specify the ellipsoid’s radius and
flattening (a and f). By setting the value for f to zero, the ellipsoid becomes a sphere.

There are also functions to compute intersections of of rhumb lines. There are also functions to
compute the distance between points and polylines, and to characterize spherical polygons; for ran-
dom sampling on a sphere, and to compute daylength. See the vignette vignette('geosphere')
for examples.

Geographic locations must be specified in latitude and longitude in degrees (NOT radians). Degrees
are (obviously) in decimal notation. Thus 12 degrees, 30 minutes, 10 seconds = 12 + 30/60 +
10/3600 = 12.50278 degrees. The Southern and Western hemispheres have a negative sign.

The default unit of distance is meter; but this can be adjusted by supplying a different radius r to
functions.

Directions are expressed in degrees (North = 0 and 360, East = 90, South = 180, and West = 270
degrees).

Acknowledgements

David Purdy, Bill Monahan and others for suggestions to improve the package.

Author(s)

Robert Hijmans, using code by C.EF. Karney and Chris Veness; formulas by Ed Williams; and
with contributions from George Wang, Elias Pipping and others. Maintainer: Robert J. Hijmans
<r.hijmans @gmail.com>

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

https://www.edwilliams.org/avform147.htm
https://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Great_circle_distance

https://mathworld.wolfram.com/SphericalTrigonometry.html

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/
https://www.edwilliams.org/avform147.htm
https://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Great_circle_distance
https://mathworld.wolfram.com/SphericalTrigonometry.html

4 alongTrackDistance

alongTrackDistance Along Track Distance

Description

The "along track distance" is the distance from the start point (p1) to the closest point on the path
to a third point (p3), following a great circle path defined by points pl and p2. See dist2gc for the
"cross track distance"

Usage

alongTrackDistance(pl1, p2, p3, r=6378137)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
p3 as above
r radius of the earth; default = 6378137m
Value

A distance in units of r (default is meters)

Author(s)

Ed Williams and Robert Hijmans

See Also

dist2gc

Examples

alongTrackDistance(c(0,0),c(60,60),c(50,40))

antipode 5

antipode Antipodes

Description

Compute an antipode, or check whether two points are antipodes. Antipodes are places on Earth
that are diametrically opposite to one another; and could be connected by a straight line through the
centre of the Earth.

Antipodal points are connected by an infinite number of great circles (e.g. the meridians connecting
the poles), and can therefore not be used in some great circle based computations.
Usage

antipode(p)
antipodal(p1, p2, tol=1e-9)

Arguments
p Longitude/latitude of a single point, in degrees; can be a vector of two numbers,
a matrix of 2 columns (first one is longitude, second is latitude) or a Spatial-
Points* object
p1 as above
p2 as above
tol tolerance for equality
Value

antipodal points or a logical value (TRUE if antipodal)

Author(s)

Robert Hijmans

References

https://en.wikipedia.org/wiki/Antipodes

Examples

antipode(rbind(c(5,52), c(-120,37), c(-60,0), c(0,70)))
antipodal(c(0,0), c(180,0))

https://en.wikipedia.org/wiki/Antipodes

6 areaPolygon

areaPolygon Area of a longitude/latitude polygon

Description

Compute the area of a polygon in angular coordinates (longitude/latitude) on an ellipsoid.

Usage

S4 method for signature 'matrix’
areaPolygon(x, a=6378137, f=1/298.257223563, ...)

S4 method for signature 'SpatialPolygons'

areaPolygon(x, a=6378137, f=1/298.257223563, ...)
Arguments
X longitude/latitude of the points forming a polygon; Must be a matrix or data.frame
of 2 columns (first one is longitude, second is latitude) or a SpatialPolygons* ob-
ject
a major (equatorial) radius of the ellipsoid
f ellipsoid flattening. The default value is for WGS84

Additional arguments. None implemented

Value

area in square meters

Note

Use raster::area for polygons that have a planar (projected) coordinate reference system.

Author(s)

This function calls GeographicLib code by C.F.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

centroid, perimeter

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

bearing 7

Examples

p <- rbind(c(-180,-20), c(-140,55), c(10, @), c(-140,-60), c(-180,-20))
areaPolygon(p)

Be careful with very large polygons, as they may not be what they seem!

For example, if you wanted a polygon to compute the area equal to about 1/4 of the ellipsoid
this won't work:

b <- matrix(c(-180, @, 90, 90, @0, @, -180, @), ncol=2, byrow=TRUE)

areaPolygon(b)

Becausee the shortest path between (-180,0) and (0,0) is

over one of the poles, not along the equator!

Inserting a point along the equator fixes that

b <- matrix(c(-180, @, 0, 0, -90,0, -180, @), ncol=2, byrow=TRUE)

areaPolygon(b)

bearing Direction of travel

Description

Get the initial bearing (direction; azimuth) to go from point p1 to point p2 (in longitude/latitude)
following the shortest path on an ellipsoid (geodetic). Note that the bearing of travel changes
continuously while going along the path. A route with constant bearing is a rhumb line (see
bearingRhumb).

Usage
bearing(p1, p2, a=6378137, f=1/298.257223563)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above. Can also be missing, in which case the bearing is computed going
from the first point to the next and continuing along the following points
a major (equatorial) radius of the ellipsoid. The default value is for WGS84
f ellipsoid flattening. The default value is for WGS84
Value

Bearing in degrees

Note

use =0 to get a bearing on a sphere (great circle)

8 bearingRhumb

Author(s)

Robert Hijmans

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

bearingRhumb

Examples

bearing(c(10,10),c(20,20))

bearingRhumb Rhumbline direction

Description

Bearing (direction of travel; true course) along a rhumb line (loxodrome) between two points.

Usage

bearingRhumb(p1, p2)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
Value

A direction (bearing) in degrees

Note

Unlike most great circles, a thumb line is a line of constant bearing (direction), i.e. tracks of
constant true course. The meridians and the equator are both rhumb lines and great circles. Rhumb
lines approaching a pole become a tightly wound spiral.

Author(s)

Chris Veness and Robert Hijmans, based on formulae by Ed Williams

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

centroid 9

References

https://www.edwilliams.org/avform147.htm#Rhumb
https://en.wikipedia.org/wiki/Rhumb_line

See Also

bearing, distRhumb

Examples

bearingRhumb(c(10,10),c(20,20))

centroid Centroid of spherical polygons

Description

Compute the centroid of longitude/latitude polygons. Unlike other functions in this package, there
is no spherical trigonometry involved in the implementation of this function. Instead, the function
projects the polygon to the (conformal) Mercator coordinate reference system, computes the cen-
troid, and then inversely projects it to longitude and latitude. This approach fails for polygons that
include one of the poles (and is rather biased for anything close to the poles). The function should
work for polygons that cross the -180/180 meridian (date line).

Usage
centroid(x, ...)
Arguments
X SpatialPolygons* object, or a 2-column matrix or data.frame reprenting a single
polgyon (longitude/latitude)
Additional arguments. None implemented
Value

A matrix (longitude/latitude)

Note

For multi-part polygons, the centroid of the largest part is returned.

Author(s)

Robert J. Hijmans

https://www.edwilliams.org/avform147.htm#Rhumb
https://en.wikipedia.org/wiki/Rhumb_line

10 daylength

See Also

area, perimeter

Examples

pol <- rbind(c(-180,-20), c(-160,5), c(-60, 0), c(-160,-60), c(-180,-20))
centroid(pol)

daylength Daylength

Description

Compute daylength (photoperiod) for a latitude and date.

Usage
daylength(lat, doy)

Arguments
lat latitude, in degrees. L.e. between -90.0 and 90.0
doy integer, day of the year (1..365) for common (non-leap) years; or an object of
class Date; or a character that can be coerced into a date, using ’yyyy-mm-dd’
format, e.g. *1982-11-23’
Value
Daylength in hours
Author(s)

Robert J. Hijmans

References

Forsythe, William C., Edward J. Rykiel Jr., Randal S. Stahl, Hsin-i Wu and Robert M. Schoolfield,
1995. A model comparison for daylength as a function of latitude and day of the year. Ecological
Modeling 80:87-95.

Examples
daylength(-25, '2010-10-10')

daylength(45, 1:365)

average monthly daylength
dl <- daylength(45, 1:365)
tapply(dl, rep(1:12, c(31,28,31,30,31,30,31,31,30,31,30,31)), mean)

destPoint 11

destPoint Destination given bearing (direction) and distance

Description

Given a start point, initial bearing (direction), and distance, this function computes the destination
point travelling along a the shortest path on an ellipsoid (the geodesic).

Usage
destPoint(p, b, d, a=6378137, f=1/298.257223563, ...)
Arguments
p Longitude and Latitude of point(s), in degrees. Can be a vector of two numbers,
a matrix of 2 columns (first one is longitude, second is latitude) or a Spatial-
Points* object
b numeric. Bearing (direction) in degrees
d numeric. Distance in meters
a major (equatorial) radius of the ellipsoid. The default value is for WGS84
f ellipsoid flattening. The default value is for WGS84
additional arguments. If an argument 1’ is supplied, this is taken as the radius
of the earth (e.g. 6378137 m) and computations are for a sphere (great circle)
instead of an ellipsoid (geodetic). This is for backwards compatibility only
Value

A pair of coordinates (longitude/latitude)

Note

Direction changes continuously when travelling along a geodesic. Therefore, the final direction is
not the same as the initial direction. You can compute the final direction with finalBearing (see
examples, below)

Author(s)

This function calls GeographicLib code by C.F.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

12 destPointRhumb

Examples

p <- cbind(5,52)
d <- destPoint(p,30,10000)
d

#final direction, when arriving at endpoint:
finalBearing(d, p)

destPointRhumb Destination along a rhumb line

Description

Calculate the destination point when travelling along a ‘rhumb line’ (loxodrome), given a start point,
direction, and distance.

Usage
destPointRhumb(p, b, d, r = 6378137)

Arguments
p longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
b bearing (direction) in degrees
d distance; in the same unit as r (default is meters)
r radius of the earth; default = 6378137 m
Value

Coordinates (longitude/latitude) of a point

Author(s)

Chris Veness; ported to R by Robert Hijmans

References

https://www.edwilliams.org/avform147.htm#Rhumb
https://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Rhumb_line

See Also

destPoint

https://www.edwilliams.org/avform147.htm#Rhumb
https://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Rhumb_line

dist2gc 13

Examples

destPointRhumb(c(0,0), 30, 100000, r = 6378137)

dist2gc Cross Track Distance

Description

Compute the distance of a point to a great-circle path (also referred to as the cross track distance
or cross track error). The great circle is defined by p1 and p2, while p3 is the point away from the
path.

Usage
dist2gc(pl, p2, p3, r=6378137, sign=FALSE)

Arguments
pl Start of great circle path. longitude/latitude of point(s). Can be a vector of two
numbers, a matrix of 2 columns (first one is longitude, second is latitude) or a
SpatialPoints* object
p2 End of great circle path. As above
p3 Point away from the great cricle path. As for p2
r radius of the earth; default = 6378137
sign logical. If TRUE, a negative sign is used to indicated that the points are to the left
of the great circle
Value

A distance in units of r (default is meters) If sign=TRUE, the sign indicates which side of the path
p3 is on. Positive means right of the course from p1 to p2, negative means left.

Author(s)
Ed Williams and Robert Hijmans

References

https://www.movable-type.co.uk/scripts/latlong.html
https://www.edwilliams.org/ftp/avsig/avform.txt

See Also

dist2Line, alongTrackDistance

Examples

dist2gc(c(0,0),c(90,90),c(80,80))

https://www.movable-type.co.uk/scripts/latlong.html
https://www.edwilliams.org/ftp/avsig/avform.txt

14 dist2Line

dist2Line Distance between points and lines or the border of polygons.

Description

The shortest distance between points and polylines or polygons.

Usage

dist2Line(p, line, distfun=distGeo)

Arguments
p longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
line longitude/latitude of line as a matrix of 2 columns (first one is longitude, second
is latitude) or a SpatialLines* or SpatialPolygons* object
distfun A distance function, such as distGeo
Value

matrix with distance and lon/lat of the nearest point on the line. Distance is in the same unit as
r in the distfun(default is meters). If line is a Spatial* object, the ID (index) of (one of) the
nearest objects is also returned. Thus if the objects are polygons and the point is inside a polygon
the function may return the ID of a neighboring polygon that shares the nearest border. You can use
the intersect function in packages terra.

Author(s)

George Wang and Robert Hijmans

See Also

dist2gc, alongTrackDistance

Examples

line <- rbind(c(-180,-20), c(-150,-10), c(-140,55), c(10, @), c(-140,-60))

pnts <- rbind(c(-170,0), c(-75,0), c(-70,-10), c(-80,20), c(-100,-50),
c(-100,-60), c(-100,-40), c(-100,-20), c(-100,-10), c(-100,0))

d = dist2Line(pnts, line)

plot(makeLine(line), type='l")

points(line)

points(pnts, col='blue', pch=20)

points(d[,2], d[,3], col='red', pch='x")

for (i in 1:nrow(d)) lines(gcIntermediate(pnts[i,], d[i,2:3], 10), lwd=2)

distCosine 15

distCosine "Law of cosines’ great circle distance

Description
The shortest distance between two points (i.e., the ’great-circle-distance’ or ’as the crow flies’),
according to the ’law of the cosines’. This method assumes a spherical earth, ignoring ellipsoidal
effects.

Usage

distCosine(pl, p2, r=6378137)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
r radius of the earth; default = 6378137 m
Value

Vector of distances in the same unit as r (default is meters)

Author(s)

Robert Hijmans

References

https://en.wikipedia.org/wiki/Great_circle_distance

See Also

distGeo, distHaversine, distVincentySphere, distVincentyEllipsoid, distMeeus

Examples

distCosine(c(0,0),c(90,90))

https://en.wikipedia.org/wiki/Great_circle_distance

16

distGeo

distGeo

Distance on an ellipsoid (the geodesic)

Description

Highly accurate estimate of the shortest distance between two points on an ellipsoid (default is
WGS84 ellipsoid). The shortest path between two points on an ellipsoid is called the geodesic.

Usage

distGeo(pl, p2, a=6378137, f=1/298.257223563)

Arguments

pl

p2

Details

longitude/latitude of point(s). Can be a vector of two numbers, a matrix of
2 columns (first column is longitude, second column is latitude) or a Spatial-
Points* object

as above; or missing, in which case the sequential distance between the points
in pl is computed

numeric. Major (equatorial) radius of the ellipsoid. The default value is for
WGS84

numeric. Ellipsoid flattening. The default value is for WGS84

Parameters from the WGS84 ellipsoid are used by default. It is the best available global ellipsoid,
but for some areas other ellipsoids could be preferable, or even necessary if you work with a printed
map that refers to that ellipsoid. Here are parameters for some commonly used ellipsoids. Also see
the refEllipsoids function.

ellipsoid a f

WGS84 6378137 1/298.257223563
GRS80 6378137 1/298.257222101
GRS67 6378160 1/298.25

Airy 1830 6377563.396 1/299.3249646
Bessel 1841 6377397.155 1/299.1528434
Clarke 1880 6378249.145 1/293.465
Clarke 1866 6378206.4 1/294.9786982
International 1924 6378388 1/297

Krasovsky 1940 6378245 1/298.2997381

more info: https://en.wikipedia.org/wiki/Reference_ellipsoid

Value

Vector of distances in meters

https://en.wikipedia.org/wiki/Reference_ellipsoid

distHaversine 17

Author(s)

This function calls GeographicLib code by C.F.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

distCosine, distHaversine, distVincentySphere, distVincentyEllipsoid, distMeeus

Examples

distGeo(c(@,0),c(90,90))

distHaversine "Haversine’ great circle distance

Description

The shortest distance between two points (i.e., the ’great-circle-distance’ or ’as the crow flies’),
according to the "haversine method’. This method assumes a spherical earth, ignoring ellipsoidal
effects.

Usage

distHaversine(pl1, p2, r=6378137)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above; or missing, in which case the sequential distance between the points
in pl is computed
r radius of the earth; default = 6378137 m
Details

The Haversine ("half-versed-sine’) formula was published by R.W. Sinnott in 1984, although it
has been known for much longer. At that time computational precision was lower than today (15
digits precision). With current precision, the spherical law of cosines formula appears to give
equally good results down to very small distances. If you want greater accuracy, you could use
the distVincentyEllipsoid method.

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

18 distm

Value

Vector of distances in the same unit as r (default is meters)

Author(s)

Chris Veness and Robert Hijmans

References

Sinnott, R.W, 1984. Virtues of the Haversine. Sky and Telescope 68(2): 159
https://www.movable-type.co.uk/scripts/latlong.html

https://en.wikipedia.org/wiki/Great_circle_distance

See Also

distGeo, distCosine, distVincentySphere, distVincentyEllipsoid, distMeeus

Examples

distHaversine(c(@,0),c(90,90))

distm Distance matrix

Description

Distance matrix of a set of points, or between two sets of points

Usage

distm(x, y, fun=distGeo)

Arguments
X longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
y Same as x. If missing, y is the same as x
fun A function to compute distances (e.g., distCosine or distGeo)
Value

Matrix of distances

Author(s)

Robert Hijmans

https://www.movable-type.co.uk/scripts/latlong.html
https://en.wikipedia.org/wiki/Great_circle_distance

distMeeus 19

References

https://en.wikipedia.org/wiki/Great_circle_distance

See Also

distGeo, distCosine, distHaversine, distVincentySphere, distVincentyEllipsoid

Examples

xy <- rbind(c(0,0),c(90,90),c(10,10),c(-120,-45))
distm(xy)

xy2 <- rbind(c(0,0),c(10,-10))

distm(xy, xy2)

distMeeus "Meeus’ great circle distance

Description

The shortest distance between two points on an ellipsoid (the ’geodetic’), according to the "Meeus’
method. distGeo should be more accurate.

Usage
distMeeus(pl, p2, a=6378137, f=1/298.257223563)

Arguments
p1 longitude/latitude of point(s), in degrees 1; can be a vector of two numbers, a
matrix of 2 columns (first one is longitude, second is latitude) or a SpatialPoints*
object
p2 as above; or missing, in which case the sequential distance between the points
in pl is computed
a numeric. Major (equatorial) radius of the ellipsoid. The default value is for
WGS84
f numeric. Ellipsoid flattening. The default value is for WGS84
Details

Parameters from the WGS84 ellipsoid are used by default. It is the best available global ellipsoid,
but for some areas other ellipsoids could be preferable, or even necessary if you work with a printed
map that refers to that ellipsoid. Here are parameters for some commonly used ellipsoids:

ellipsoid a f
WGS84 6378137 1/298.257223563
GRS80 6378137 1/298.257222101

https://en.wikipedia.org/wiki/Great_circle_distance

20

GRS67

Airy 1830

Bessel 1841

Clarke 1880

Clarke 1866
International 1924
Krasovsky 1940

6378160
6377563
6377397
6378249

6378206.

6378388
6378245

.396
.155
.145

1/298.
1/299.
1/299.
1/293.
1/294.
1/297

1/298.

25
3249646
1528434
465
9786982

2997381

more info: https://en.wikipedia.org/wiki/Reference_ellipsoid

Value

Distance value in the same units as parameter a of the ellipsoid (default is meters)

Note

This algorithm is also used in the spDists function in the sp package

Author(s)

Robert Hijmans, based on a script by Stephen R. Schmitt

References

Meeus, J., 1999 (2nd edition). Astronomical algoritms. Willman-Bell, 477p.

See Also

distRhumb

distGeo, distVincentyEllipsoid, distVincentySphere, distHaversine, distCosine

Examples

distMeeus(c(0,0),c(90,90))
on a 'Clarke 1880' ellipsoid

distMeeus(c(0,0),c(90,90), a=6378249.145, f=1/293.465)

distRhumb Distance along a rhumb line

Description

A rhumb line (loxodrome) is a path of constant bearing (direction), which crosses all meridians at

the same angle.

Usage
distRhumb(pl1, p2, r=6378137)

https://en.wikipedia.org/wiki/Reference_ellipsoid

distVincentyEllipsoid 21

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above; or missing, in which case the sequential distance between the points
in pl is computed
r radius of the earth; default = 6378137 m
Details

Rhumb (from the Spanish word for course, 'rumbo’) lines are straight lines on a Mercator projection
map. They were used in navigation because it is easier to follow a constant compass bearing than
to continually adjust the bearing as is needed to follow a great circle, even though rhumb lines
are normally longer than great-circle (orthodrome) routes. Most thumb lines will gradually spiral
towards one of the poles.

Value

distance in units of r (default=meters)

Author(s)

Robert Hijmans and Chris Veness

References

https://www.movable-type.co.uk/scripts/latlong.html

See Also

distCosine, distHaversine, distVincentySphere, distVincentyEllipsoid

Examples

distRhumb(c(10,10),c(20,20))

distVincentyEllipsoid ’Vincenty’ (ellipsoid) great circle distance

Description

The shortest distance between two points (i.e., the ’great-circle-distance’ or ’as the crow flies’),
according to the ’Vincenty (ellipsoid)’ method. This method uses an ellipsoid and the results are
very accurate. The method is computationally more intensive than the other great-circled methods
in this package.

Usage
distVincentyEllipsoid(pl, p2, a=6378137, b=6356752.3142, f=1/298.257223563)

https://www.movable-type.co.uk/scripts/latlong.html

22 distVincentyEllipsoid

Arguments
pl longitude/latitude of point(s), in degrees 1; can be a vector of two numbers, a
matrix of 2 columns (first one is longitude, second is latitude) or a SpatialPoints*
object
p2 as above; or missing, in which case the sequential distance between the points
in pl is computed
a Equatorial axis of ellipsoid
Polar axis of ellipsoid
f Inverse flattening of ellipsoid
Details

The WGS84 ellipsoid is used by default. It is the best available global ellipsoid, but for some areas
other ellipsoids could be preferable, or even necessary if you work with a printed map that refers to
that ellipsoid. Here are parameters for some commonly used ellipsoids:

ellipsoid a b f

WGS84 6378137 6356752.3142 1/298.257223563
GRS80 6378137 6356752.3141 1/298.257222101
GRS67 6378160 6356774.719 1/298.25

Airy 1830 6377563.396 6356256.909 1/299.3249646
Bessel 1841 6377397.155 6356078.965 1/299.1528434
Clarke 1880 6378249.145 6356514.86955 1/293.465
Clarke 1866 6378206.4 6356583.8 1/294.9786982
International 1924 6378388 6356911.946 1/297

Krasovsky 1940 6378245 6356863 1/298.2997381

a is the ’semi-major axis’, and b is the ’semi-minor axis’ of the ellipsoid. f is the flattening. Note
that f = (a-b)/a

more info: https://en.wikipedia.org/wiki/Reference_ellipsoid

Value

Distance value in the same units as the ellipsoid (default is meters)

Author(s)

Chris Veness and Robert Hijmans

References

Vincenty, T. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of
nested equations. Survey Review Vol. 23, No. 176, pp88-93. Available here:

https://www.movable-type.co.uk/scripts/latlong-vincenty.html

https://en.wikipedia.org/wiki/Great_circle_distance

https://en.wikipedia.org/wiki/Reference_ellipsoid
https://www.movable-type.co.uk/scripts/latlong-vincenty.html
https://en.wikipedia.org/wiki/Great_circle_distance

distVincentySphere 23

See Also

distGeo, distVincentySphere, distHaversine, distCosine, distMeeus

Examples

distVincentyEllipsoid(c(@,9),c(90,90))
on a 'Clarke 1880' ellipsoid
distVincentyEllipsoid(c(0,0),c(90,90), a=6378249.145, b=6356514.86955, f=1/293.465)

distVincentySphere "Vincenty’ (sphere) great circle distance

Description

The shortest distance between two points (i.e., the ’great-circle-distance’ or ’as the crow flies’),
according to the ’Vincenty (sphere)’ method. This method assumes a spherical earth, ignoring
ellipsoidal effects and it is less accurate then the distVicentyEllipsoid method.

Usage
distVincentySphere(pl, p2, r=6378137)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above; or missing, in which case the sequential distance between the points
in pl is computed
r radius of the earth; default = 6378137 m
Value

Distance value in the same unit as r (default is meters)

Author(s)

Robert Hijmans

References

https://en.wikipedia.org/wiki/Great_circle_distance

See Also

distGeo, distVincentyEllipsoid, distHaversine, distCosine, distMeeus

Examples

distVincentySphere(c(0,0),c(90,90))

https://en.wikipedia.org/wiki/Great_circle_distance

24 finalBearing

finalBearing Final direction

Description

Get the final direction (bearing) when arriving at p2 after starting from p1 and following the shortest
path on an ellipsoid (following a geodetic) or on a sphere (following a great circle).

Usage
finalBearing(p1, p2, a=6378137, f=1/298.257223563, sphere=FALSE)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of
2 columns (first column is longitude, second column is latitude) or a Spatial-
Points* object
p2 as above
a major (equatorial) radius of the ellipsoid. The default value is for WGS84
f ellipsoid flattening. The default value is for WGS84
sphere logical. If TRUE, the bearing is computed for a sphere, instead of for an ellipsoid
Value

A vector of directions (bearings) in degrees

Author(s)

This function calls GeographicLib code by C.F.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

bearing

Examples

bearing(c(10,10),c(20,20))
finalBearing(c(10,10),c(20,20))

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

gclntersect 25

gclntersect Intersections of two great circles

Description
Get the two points where two great cricles cross each other. Great circles are defined by two points
on it.

Usage

gcIntersect(pl, p2, p3, p4)

Arguments
p1 Longitude/latitude of a single point, in degrees; can be a vector of two numbers,
a matrix of 2 columns (first one is longitude, second is latitude) or a Spatial-
Points* object
p2 As above
p3 As above
p4 As above
Value

two points for each pair of great circles

Author(s)

Robert Hijmans, based on equations by Ed Williams (see reference)

References

https://www.edwilliams.org/intersect.htm

See Also

gcIntersectBearing

Examples

pl <- ¢(5,52); p2 <- ¢(-120,37); p3 <- c(-60,0); p4 <- c(0,70)
gclntersect(pl,p2,p3,p4)

https://www.edwilliams.org/intersect.htm

26 gclntersectBearing

gclntersectBearing Intersections of two great circles

Description

Get the two points where two great cricles cross each other. In this function, great circles are defined
by a points and an initial bearing. In function gcIntersect they are defined by two sets of points.

Usage

gclntersectBearing(pl1, brngl, p2, brng2)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
brngi Bearing from pl
p2 As above. Should have same length as p1, or a single point (or vice versa when
pl is a single point
brng2 Bearing from p2
Value

a matrix with four columns (two points)

Author(s)

Chris Veness and Robert Hijmans based on code by Ed Williams

References

https://www.edwilliams.org/avform147.htm#Intersection

https://www.movable-type.co.uk/scripts/latlong.html

See Also

gclntersect

Examples

gclntersectBearing(c(10,0), 10, c(-10,0), 10)

https://www.edwilliams.org/avform147.htm#Intersection
https://www.movable-type.co.uk/scripts/latlong.html

gcLat 27

gclat Latitude on a Great Circle

Description

Latitude at which a great circle crosses a longitude

Usage

gcLat(pl, p2, lon)

Arguments
pl Longitude/latitude of a single point, in degrees; can be a vector of two numbers,
a matrix of 2 columns (first one is longitude, second is latitude) or a Spatial-
Points* object
p2 As above
lon Longitude
Value

A numeric (latitude)

Author(s)

Robert Hijmans based on a formula by Ed Williams

References

https://www.edwilliams.org/avform147.htm#Int

See Also

gcLon, gcMaxLat

Examples

gcLat(c(5,52), c(-120,37), lon=-120)

https://www.edwilliams.org/avform147.htm#Int

28 gcLon

gclon Longitude on a Great Circle

Description

Longitudes at which a great circle crosses a latitude (parallel)

Usage

gcLon(pl, p2, lat)

Arguments
pl longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
lat a latitude
Value

vector of two numbers (longitudes)

Author(s)

Robert Hijmans based on code by Ed Williams

References

https://www.edwilliams.org/avform147.htm#Intersection

See Also

gcLat, gcMaxLat

Examples

gclLon(c(5,52), c(-120,37), 40)

https://www.edwilliams.org/avform147.htm#Intersection

gcMaxLat 29

gcMaxLat Highest latitude on a great circle

Description

What is northern most point that will be reached when following a great circle? Computed with
Clairaut’s formula. The southern most point is the antipode of the northern-most point. This does
not seem to be very precise; and you could use optimization instead to find this point (see examples)

Usage

gcMaxLat(pl, p2)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
Value

A matrix with coordinates (longitude/latitude)

Author(s)

Ed Williams, Chris Veness, Robert Hijmans

References

https://www.edwilliams.org/ftp/avsig/avform.txt
https://www.movable-type.co.uk/scripts/latlong.html

See Also

gcLat, gclLon

Examples

gcMaxLat(c(5,52), c(-120,37))

Another way to get there:
f <- function(lon){gcLat(c(5,52), c(-120,37), lon)}
optimize(f, interval=c(-18@, 180), maximum=TRUE)

https://www.edwilliams.org/ftp/avsig/avform.txt
https://www.movable-type.co.uk/scripts/latlong.html

30 geodesic

geodesic geodesic and inverse geodesic problem

Description

Highly accurate estimate of the *geodesic problem’ (find location and azimuth at arrival when de-
parting from a location, given an direction (azimuth) at departure and distance) and the ’inverse
geodesic problem’ (find the distance between two points and the azimuth of departure and arrival
for the shortest path. Computations are for an ellipsoid (default is WGS84 ellipsoid).

This is a direct implementation of the the GeographicLib code by C.F.F. Karney that is also used in
several other functions in this package (for example, in distGeo and areaPolygon).

Usage
geodesic(p, azi, d, a=6378137, f=1/298.257223563, ...)
geodesic_inverse(pl, p2, a=6378137, f=1/298.257223563, ...)
Arguments
p longitude/latitude of point(s). Can be a vector of two numbers, a matrix of
2 columns (first column is longitude, second column is latitude) or a Spatial-
Points* object
p1 as above
p2 as above
azi numeric. Azimuth of departure in degrees
d numeric. Distance in meters
a numeric. Major (equatorial) radius of the ellipsoid. The default value is for
WGS84
f numeric. Ellipsoid flattening. The default value is for WGS84
additional arguments (none implemented)
Details

Parameters from the WGS84 ellipsoid are used by default. It is the best available global ellipsoid,
but for some areas other ellipsoids could be preferable, or even necessary if you work with a printed
map that refers to that ellipsoid. Here are parameters for some commonly used ellipsoids.

ellipsoid a f

WGS84 6378137 1/298.257223563
GRS80 6378137 1/298.257222101
GRS67 6378160 1/298.25

Airy 1830 6377563.396 1/299.3249646

Bessel 1841 6377397.155 1/299.1528434

geomean 31

Clarke 1880 6378249.145 1/293.465
Clarke 1866 6378206.4 1/294.9786982
International 1924 6378388 1/297
Krasovsky 1940 6378245 1/298.2997381

more info: https://en.wikipedia.org/wiki/Reference_ellipsoid

Value

Three column matrix with columns ’longitude’, ’latitude’, *azimuth’ (geodesic); or ’distance’ (in
meters), "azimuth1’ (of departure), azimuth2’ (of arrival) (geodesic_inverse)

Author(s)

This function calls GeographicLib code by C.F.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

distGeo

Examples

geodesic(cbind(0,0), 30, 1000000)
geodesic_inverse(cbind(0,0), cbind(90,90))

geomean Mean location of sperhical coordinates

Description

mean location for spherical (longitude/latitude) coordinates that deals with the angularity. Le., the
mean of longitudes -179 and 178 is 179.5

Usage

geomean(xy, Ww)

https://en.wikipedia.org/wiki/Reference_ellipsoid
https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

32 greatCircle

Arguments
Xy matrix with two columns (longitude/latitude), or a SpatialPoints or SpatialPoly-
gons object with a longitude/latitude CRS
w weights (vector of numeric values, with a length that is equal to the number of
spatial features in x
Value

Ccoordinate pair (numeric)

Author(s)

Robert J. Hijmans

Examples

xy <= cbind(x=c(-179,179, 177), y=c(12,14,16))

Xy
geomean(xy)

greatCircle Great circle

Description

Get points on a great circle as defined by the shortest distance between two specified points

Usage
greatCircle(p1, p2, n=360, sp=FALSE)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 as above
n The requested number of points on the Great Circle
sp Logical. Return a SpatialLines object?
Value

A matrix of points, or a list of such matrices (e.g., if multiple bearings are supplied)

Author(s)

Robert Hijmans, based on a formula provided by Ed Williams

greatCircleBearing 33

References

https://www.edwilliams.org/avform147.htm#Int

Examples

greatCircle(c(5,52), c(-120,37), n=36)

greatCircleBearing Great circle

Description

Get points on a great circle as defined by a point and an initial bearing

Usage

greatCircleBearing(p, brng, n=360)

Arguments
p longitude/latitude of a single point. Can be a vector of two numbers, a matrix of
2 columns (first one is longitude, second is latitude) or a SpatialPoints* object
brng bearing
n The requested number of points on the great circle
Value

A matrix of points, or a list of matrices (e.g., if multiple bearings are supplied)

Author(s)

Robert Hijmans based on formulae by Ed Williams

References

https://www.edwilliams.org/avform147.htm#Int

Examples

greatCircleBearing(c(5,52), 45, n=12)

https://www.edwilliams.org/avform147.htm#Int
https://www.edwilliams.org/avform147.htm#Int

34 intermediate

horizon Distance to the horizon

Description
Empirical function to compute the distance to the horizon from a given altitude. The earth is as-
sumed to be smooth, i.e. mountains and other obstacles are ignored.

Usage
horizon(h, r=6378137)

Arguments
h altitude, numeric >= 0. Should have the same unit as r
r radius of the earth; default value is 6378137 m

Value

Distance in units of h (default is meters)

Author(s)

Robert J. Hijmans

References

https://www.edwilliams.org/avform147.htm#Horizon
Bowditch, 1995. American Practical Navigator. Table 12.

Examples

horizon(1.80) # me
horizon(324) # Eiffel tower

intermediate Intermediate points on a great circle (sphere)

Description
Get intermediate points (way points) between the two locations with longitude/latitude coordinates.
gclntermediate is based on a spherical model of the earth and internally uses distCosine.

Usage
gcIntermediate(pl, p2, n=50, breakAtDatelLine=FALSE, addStartEnd=FALSE, sp=FALSE, sepNA)

https://www.edwilliams.org/avform147.htm#Horizon

lengthLine 35

Arguments
pl longitude/latitude of a single point, in degrees. This can be a vector of two
numbers, a matrix of 2 columns (first one is longitude, second is latitude) or a
SpatialPoints* object
p2 as for p1
n integer. The desired number of intermediate points
breakAtDatelLine

logical. Return two matrices if the dateline is crossed?
addStartEnd logical. Add pl and p2 to the result?
sp logical. Return a SpatialLines object?

sepNA logical. Rather than as a list, return the values as a two column matrix with lines
seperated by a row of NA values? (for use in "plot’)

Value

matrix or list with intermediate points

Author(s)

Robert Hijmans based on code by Ed Williams (great circle)

References

https://www.edwilliams.org/avform147.htm#Intermediate

Examples

gcIntermediate(c(5,52), c(-120,37), n=6, addStartEnd=TRUE)

lengthLine Length of lines

Description

Compute the length of lines

Usage
lengthLine(line)
Arguments
line longitude/latitude of line as a matrix of 2 columns (first one is longitude, second

is latitude) or a SpatialLines* or SpatialPolygons* object

https://www.edwilliams.org/avform147.htm#Intermediate

36 makePoly

Value

length (in meters) for each line

See Also

For planar coordinates, see the terra or sf packages

Examples

line <- rbind(c(-180,-20), c(-150,-10), c(-140,55), c(10, @), c(-140,-60))
d <- lengthLine(line)

makePoly Add vertices to a polygon or line

Description

Make a polygon or line by adding intermedate points (vertices) on the great circles inbetween the
points supplied. This can be relevant when vertices are relatively far apart. It can make the shape of
the object to be accurate, when plotted on a plane. makePoly will also close the polygon if needed.

Usage
makePoly(p, interval=10000, sp=FALSE, ...)
makeLine(p, interval=10000, sp=FALSE, ...)
Arguments
p a 2-column matrix (longitude/latitude) or a SpatialPolygons or SpatialLines ob-
ject
interval maximum interval of points, in units of r
sp Logical. If TRUE, a SpatialPolygons object is retunred (depends on the ’sp’ pack-
age)
additional arguments passed to distGeo
Value
A matrix
Author(s)

Robert J. Hijmans

mercator 37

Examples

pol <- rbind(c(-180,-20), c(-160,5), c(-60, @), c(-160,-60), c(-180,-20))
plot(pol)

lines(pol, col='red', 1lwd=3)

pol2 = makePoly(pol, interval=100000)

lines(pol2, col='blue', lwd=2)

mercator Mercator projection

Description

Transform longitude/latiude points to the Mercator projection. The main purpose of this function is
to compute centroids, and to illustrate rhumb lines in the vignette.

Usage

mercator(p, inverse=FALSE, r=6378137)

Arguments

p longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object

inverse Logical. If TRUE, do the inverse projection (from Mercator to longitude/latitude

r Numeric. Radius of the earth; default = 6378137 m

Value

matrix

Author(s)

Robert Hijmans

Examples

a = mercator(c(5,52))
a
mercator(a, inverse=TRUE)

38 onGreatCircle

midPoint Mid-point

Description

Find the point half-way between two points along an ellipsoid

Usage
midPoint(p1, p2, a=6378137, f = 1/298.257223563)

Arguments
p1 longitude/latitude of point(s). Can be a vector of two numbers, a matrix of 2
columns (first one is longitude, second is latitude) or a SpatialPoints* object
p2 As above
a major (equatorial) radius of the ellipsoid
f ellipsoid flattening. The default value is for WGS84
Value

matrix with coordinate pairs

Author(s)

Elias Pipping and Robert Hijmans

Examples

midPoint(c(@,0),c(90,90))
midPoint(c(0,0),c(90,90), f=0)

onGreatCircle Is a point on a given great circle?

Description

Test if a point is on a great circle defined by two other points.

Usage

onGreatCircle(pl, p2, p3, tol=0.0001)

OSGB 39

Arguments
pl Longitude/latitude of the first point defining a great circle, in degrees; can be a
vector of two numbers, a matrix of 2 columns (first one is longitude, second is
latitude) or a SpatialPoints* object
p2 as above for the second point
p3 the point(s) to be tested if they are on the great circle or not
tol numeric. maximum distance from the great circle (in degrees) that is tolerated
to be considered on the circle
Value
logical
Author(s)
Robert Hijmans
Examples

onGreatCircle(c(@,0), c(30,30), rbind(c(-10 -11.33812), c(10,20)))

0SGB Ordnance Survey for Great Britain grid reference system

Description
Convert coordinates to the grid reference system used by the Ordnance Survey for Great Britain. Or
do the inverse operation to get coordinates for a grid code.

Usage

0SGB(xy, precision, geo=FALSE, inverse=FALSE)

Arguments

Xy x coordinate pairs (vector, matrix, data.frame

; or grid codes if inverse=TRUE.

precision character. One of "Im", "5Sm", "10m", "50m", "100m", "5S00m", "1km", "Skm",
"10km", "50km", "100km", "500km"
geo If TRUE the input coordinates are in longitude/latitude (on the airy ellipsoid!). If

FALSE they must be in the "OSGB36 / British National Grid" coordinate refer-
ence system ("EPSG:27700" or "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717
+x_0=400000 +y_0=-100000 +ellps=airy +units=m"

inverse If TRUE, coordinates are computed for the grid codes in x

40 perimeter

Value

character

Examples

pnts <- rbind(cbind(93555 , 256188),
cbind (210637, 349798),
cbind (696457, 481704))

g <- 0SGB(pnts, "1km", geo=FALSE)
g

0SGB(g, inverse=TRUE)

perimeter Compute the perimeter of a longitude/latitude polygon

Description

Compute the perimeter of a polygon (or the length of a line) with longitude/latitude coordinates, on
an ellipsoid (WGS84 by default)

Usage

S4 method for signature 'matrix’
perimeter(x, a=6378137, f=1/298.257223563, ...)

S4 method for signature 'SpatialPolygons'
perimeter(x, a=6378137, f=1/298.257223563, ...)

S4 method for signature 'Spatiallines'

perimeter(x, a=6378137, f=1/298.257223563, ...)
Arguments
X Longitude/latitude of the points forming a polygon or line; Must be a matrix of

2 columns (first one is longitude, second is latitude) or a SpatialPolygons* or
SpatialLines* object

a major (equatorial) radius of the ellipsoid. The default value is for WGS84
f ellipsoid flattening. The default value is for WGS84

Additional arguments. None implemented

Value

Numeric. The perimeter or length in m.

plotArrows 41

Author(s)

This function calls GeographicLib code by C.E.F. Karney

References

C.FF. Karney, 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190012-
0578z. Addenda: https://geographiclib.sourceforge.io/geod-addenda.html. Also see
https://geographiclib.sourceforge.io/

See Also

areaPolygon, centroid

Examples

xy <= rbind(c(-180,-20), c(-140,55), c(10, @), c(-140,-60), c(-180,-20))
perimeter(xy)

plotArrows Plot

Description

Plot polygons with arrow heads on each line segment, pointing towards the next vertex. This shows
the direction of each line segment.

Usage
plotArrows(p, fraction=0.9, length=0.15, first='"', add=FALSE, ...)
Arguments
p Polygons (either a 2 column matrix or data.frame; or a SpatialPolygons* object
fraction numeric between 0 and 1. When smaller then 1, interrupted lines are drawn
length length of the edges of the arrow head (in inches)
first Character to plot on first (and last) vertex
add Logical. If TRUE, the plot is added to an existing plot
Additional arguments, see Details
Note

Based on an example in Software for Data Analysis by John Chambers (pp 250-251) but adjusted
such that the line segments follow great circles between vertices.

Author(s)

Robert J. Hijmans

https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://geographiclib.sourceforge.io/geod-addenda.html
https://geographiclib.sourceforge.io/

42 randomCoordinates

Examples

pol <- rbind(c(-180,-20), c(-160,5), c(-60, @), c(-160,-60), c(-180,-20))
plotArrows(pol)

randomCoordinates Random or regularly distributed coordinates on the globe

Description

randomCoordinates returns a "uniform random sample’ in the sense that the probability that a point
is drawn from any region is equal to the area of that region divided by the area of the entire sphere.
This would not happen if you took a random uniform sample of longitude and latitude, as the sample
would be biased towards the poles.

regularCoordiaates returns a set of coordinates that are regularly distributed on the globe.

Usage

randomCoordinates(n)
regularCoordinates(N)

Arguments
n Sample size (number of points (coordinate pairs))
N Number of ’parts’ in which the earth is subdived)
Value

Matrix of lon/lat coordiantes

Author(s)

Robert Hijmans, based on code by Nils Haeck (regularCoordinates) and on suggstions by Michael
Orion (randomCoordinates)

Examples

randomCoordinates(3)
regularCoordinates(1)

refEllipsoids 43

refEllipsoids Reference ellipsoids

Description

This function returns a data.frame with parameters a (semi-major axis) and 1/f (inverse flattening)
for a set of reference ellipsoids.

Usage
refEllipsoids()

Value

data.frame

Note

To compute parameter b you can do

Author(s)

Robert J. Hijmans

See Also

area, perimeter

Examples

e <- refEllipsoids()
e[e$code=="WE',]

#to compute semi-minor axis b:
e$hb <- e$a - ea / einvf

span Span of polygons

Description

Compute the approximate surface span of polygons in longitude and latitude direction. Span is
computed by rasterizing the polygons; and precision increases with the number of ’scan lines’. You
can either use a fixed number of scan lines for each polygon, or a fixed band-width.

44 wrld

Usage
span(x, ...)
Arguments
X a SpatialPolygons* object or a 2-column matrix (longitude/latitude)
Additional arguments, see Details
Details

The following additional arguments can be passed, to replace default values for this function

b}

nbands Character. Method to determine the number of bands to ’scan’ the polygon. Either ’fixed’ or ’variable

n Integer >= 1. If nbands="f1ixed’, how many bands should be used
res Numeric. If nbands="variable’, what should the bandwidth be (in degrees)?
fun Logical. A function such as mean or min. Mean computes the average span

further additional arguments passed to distGeo

Value

A list, or a matrix if a function fun is specified. Values are in the units of r (default is meter)

Author(s)

Robert J. Hijmans

Examples

pol <- rbind(c(-180,-20), c(-160,5), c(-60, @), c(-160,-60), c(-180,-20))
plot(pol)

lines(pol)

lon and lat span in m

span(pol, fun=max)

x <- span(pol)

max (x$latspan)

mean(x$latspan)

plot(x$longitude, x$lonspan)

wrld World countries

Description

world coastline and country outlines in longitude/latitude (wrld) and in Mercator projection (merc).

wrld

Usage
data(wrld)
data(merc)

Source

Derived from the wrld_simpl data set in package maptools

45

Index

+ datasets
wrld, 44

+x methods
centroid, 9
geomean, 31

makePoly, 36
plotArrows, 41
refEllipsoids, 43
span, 43

x package
geosphere-package, 3

* spatial
alongTrackDistance, 4
antipode, 5
areaPolygon, 6
bearing, 7
bearingRhumb, 8
centroid, 9
daylength, 10
destPoint, 11
destPointRhumb, 12
dist2gc, 13
dist2Line, 14
distCosine, 15
distGeo, 16
distHaversine, 17
distm, 18
distMeeus, 19
distRhumb, 20
distVincentyEllipsoid, 21
distVincentySphere, 23
finalBearing, 24
gclntersect, 25
gclntersectBearing, 26
gclLat, 27
gclon, 28
gcMaxLat, 29
geodesic, 30
geomean, 31

46

geosphere-package, 3
greatCircle, 32
greatCircleBearing, 33
horizon, 34
intermediate, 34
lengthLine, 35
makePoly, 36
mercator, 37
midPoint, 38
onGreatCircle, 38
0SGB, 39

perimeter, 40
plotArrows, 41
randomCoordinates, 42
refEllipsoids, 43
span, 43

alongTrackDistance, 4, 13, 14
antipodal (antipode), 5
antipode, 5, 29
area, 10,43
areaPolygon, 6, 30, 41
areaPolygon,data. frame-method
(areaPolygon), 6
areaPolygon,matrix-method
(areaPolygon), 6
areaPolygon, SpatialPolygons-method
(areaPolygon), 6

bearing, 7, 9, 24
bearingRhumb, 7, 8, 8

centroid, 6,9, 41

centroid,data.frame-method (centroid), 9

centroid,matrix-method (centroid), 9

centroid, SpatialPolygons-method
(centroid), 9

daylength, 10
destPoint, 11, /2

INDEX

destPointRhumb, 12
dist2gc, 4, 13, 14

dist2Line, 13, 14
distCosine, 15, [7-21, 23, 34
distGeo, 14, 15, 16, 18-20, 23, 30, 31
distHaversine, 15, 17,17, 19-21,23
distm, 18

distMeeus, 15,17, 18,19, 23
distRhumb, 9, 20
distVincentyEllipsoid, 15, 17-21,21, 23
distVincentySphere, 15, 17-21, 23,23

finalBearing, 11,24

gcIntermediate (intermediate), 34
gclntersect, 25, 26
gcIntersectBearing, 25, 26
gclat, 27, 28, 29

gclon, 27, 28, 29
gcMaxLat, 27, 28, 29

geodesic, 30

geodesic_inverse (geodesic), 30
geomean, 31

geosphere (geosphere-package), 3
geosphere-package, 3
greatCircle, 32
greatCircleBearing, 33

horizon, 34
intermediate, 34
lengthLine, 35

makeLine (makePoly), 36
makePoly, 36

merc (wrld), 44
mercator, 37
midPoint, 38

onGreatCircle, 38
0SGB, 39

perimeter, 6, 10, 40, 43

perimeter,data.frame-method
(perimeter), 40

perimeter,matrix-method (perimeter), 40

perimeter,SpatiallLines-method
(perimeter), 40

47

perimeter,SpatialPolygons-method
(perimeter), 40
plotArrows, 41

randomCoordinates, 42

refEllipsoids, 16,43

regularCoordinates (randomCoordinates),
42

span, 43
span,matrix-method (span), 43
span, SpatialPolygons-method (span), 43

wrld, 44

	geosphere-package
	alongTrackDistance
	antipode
	areaPolygon
	bearing
	bearingRhumb
	centroid
	daylength
	destPoint
	destPointRhumb
	dist2gc
	dist2Line
	distCosine
	distGeo
	distHaversine
	distm
	distMeeus
	distRhumb
	distVincentyEllipsoid
	distVincentySphere
	finalBearing
	gcIntersect
	gcIntersectBearing
	gcLat
	gcLon
	gcMaxLat
	geodesic
	geomean
	greatCircle
	greatCircleBearing
	horizon
	intermediate
	lengthLine
	makePoly
	mercator
	midPoint
	onGreatCircle
	OSGB
	perimeter
	plotArrows
	randomCoordinates
	refEllipsoids
	span
	wrld
	Index

