Package 'flimo'

May 15, 2023

Type Package

Title Fixed Landscape Inference Method

Version 0.1.5

Description Likelihood-free inference method for stochastic models. Uses a deterministic optimizer on simple simulations of the model

that are performed with a prior drawn randomness by applying the inverse transform method. Is designed to work on its own and also by using the Julia package 'Jflimo' available on the git page of the project: https://metabarcoding.org/flimo.

Imports compiler, ggplot2, JuliaConnectoR

License CeCILL

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Sylvain Moinard [aut, cre]

Maintainer Sylvain Moinard <sylvain.moinard@univ-grenoble-alpes.fr>

Repository CRAN

Date/Publication 2023-05-14 23:00:02 UTC

R topics documented:

eck_simulator	2
nobjective	3
noptim	4
noptim_Julia	7
noptim_R	9
ia_load	10
ia_setup	11
t.flimo_result	11
t_objective	12

check_simulator

Index		16
	summary.flimo_result	15
	sampleQ	14
	print.flimo_result	14

check_simulator Check if simulator with fixed quantiles is well implemented

Description

Run simulations to catch random variations. Warning : does not check it formally. Warning : does not check if quantiles are used several times.

Usage

```
check_simulator(
   simulatorQ,
   ndraw,
   Theta_lower = 0,
   Theta_upper = 1,
   ntheta = 5,
   nruns = 3
)
```

Arguments

simulatorQ	Function of type simulatorQ(Theta, quantiles) where Theta is the parameter set for the simulations and quantiles are drawn in $U(0,1)$.
ndraw	Integer. Number of random variables to draw for one simulation of the model.
Theta_lower	1D numeric array. Lower bounds of Theta parameters.
Theta_upper	1D numeric array. Upper bounds of Theta parameters.
ntheta	Integer. Number of Theta parameters to test.
nruns	Integer. For each Theta, number of simulations to run.

Value

Boolean. True if no random effect was detected, False else.

```
simulatorQ <- function(Theta, quantiles){
qpois(quantiles, lambda = Theta)
}
check_simulator(simulatorQ, 5,
Theta_lower = 50, Theta_upper = 150)</pre>
```

flimobjective

Description

Computes the summary statistics between simulations w.r.t. Theta and data. This function is to be minimized by flimoptim.

Usage

flimobjective(Theta, quantiles, data, dsumstats, simulatorQ)

Arguments

Theta	1D array. parameters for the simulations.
quantiles	2D array containing values drawn in $U(0,1)$. Row number = number of simulations. Column number = number of random variables to draw in one simulation.
data	1D array containing the observations.
dsumstats	Function computing the distance between simulations and data of form dsum- stats(simulations, data) where simulations : 2D array and data : 1D array. ncol(simulations) = length(data) mandatory.
simulatorQ	Function of type simulatorQ(Theta, quantiles) where Theta is the parameter set for the simulations and quantiles are drawn in $U(0,1)$. See README for details.

Value

Numeric value. Distance between summary statistics of data and simulations w.r.t. Theta.

```
quantiles <- matrix(runif(50), nrow = 10)
data <- rep(100, 5)
dsumstats <- function(simulations, data){
mean_simu <- mean(rowMeans(simulations))
mean_data <- mean(data)
(mean_simu-mean_data)^2
}
simulatorQ <- function(Theta, quantiles){
apois(quantiles, lambda = Theta)
}
flimobjective(100, quantiles, data, dsumstats, simulatorQ)</pre>
```

flimoptim

Description

Computes several parameter inferences with R optimizer or Julia optimizer in a full Julia mode. In R mode (default) : L-BFGS-B optimization or other methods available for the base::optim function. In Julia mode : either IPNewton with or without Automatic Differentiation, Nelder-Mead or Brent optimization. Argument ndraw is mandatory. You need either to provide data, dsumstats AND simulatorQ OR obj.

Usage

```
flimoptim(
  ndraw,
  data = NULL,
  dsumstats = NULL,
  simulatorQ = NULL,
  obj = NULL,
  nsim = 10,
  ninfer = 1,
  lower = 0,
  upper = 1,
  Theta0 = (lower + upper)/2,
  randomTheta0 = FALSE,
 mode = c("R", "Julia"),
 AD = TRUE,
 method = ""
  obj_threshold = Inf,
  number_tries = 1,
 maxit = 1000,
  time_limit = NaN,
  factr = 1e+07,
  pgtol = 0,
  xtol = 0,
  ftol = 0,
  gtol = 1e-08,
  reltol = sqrt(.Machine$double.eps),
  abstol = .Machine$double.eps,
  show_trace = FALSE,
  store_trace = FALSE,
  store_quantiles = FALSE,
  par_names = NULL,
  load_julia = FALSE
)
```

flimoptim

ndraw	Integer. Number of random variables to draw for one simulation of the model.
data	1D array containing the observations.
dsumstats	Summary statistics to measure distance between simulations and data. In R mode : R function of type dsumstats(simulations, data) where simulations : 2D array and data : 1D array. ncol(simulations) = length(data) mandatory. In Julia mode : a string containing the script of the Julia function dsumstats(simulations, data). The name "dsumstats" is mandatory.
simulatorQ	Simulator of the stochastic process with fixed quantiles (see README). or a string (in mode "Julia") containing the script of the Julia function simulatorQ(Theta, quantiles). In Julia mode, the name "simulatorQ" is mandatory. Theta is the parameter set for the simulations and quantiles are drawn in U(0,1).
obj	Objective function to minimize. Default : is directly computed from dsum- stats and simulatorQ. Either an R function of type objective(Theta, quantiles) (in mode "R") or a string (in mode "Julia") containing the script of the Julia function julia_obj(Theta, quantiles). Warning : could be tricky if mode = "Ju- lia" to call data. In Julia mode, the name "julia_obj" is mandatory.
nsim	Integer. Number of simulations to run for each step of the optimization algo- rithm. Computation time grows linearly with this number. Default to 10.
ninfer	Integer. Number of independent inferences to run. Default to 1.
lower	1D array. Lower bounds for parameters. Same length as upper. With Nelder-Mead in Julia mode: only used for starting point.
upper	1D array. Upper bounds for parameters. Same length as lower. With Nelder-Mead in Julia mode: only used for starting point.
Theta0	1D array. Initial values of the parameters. Default : mean(lower, upper).
randomTheta0	Boolean. If True, Theta0 is randomly drawn between lower and upper bounds.
mode	String. "R" (default) or "Julia". See README.
AD	Boolean. Only in Julia mode, uses Automatic Differentiation with IPNewton method. Default to true.
method	String. In Julia mode, allows to choose the optimization method : "IPNewton", "Brent" or "NelderMead". Default : IPNewton. In R mode, allows to choose any of the optimization methods used by base::optim. Default is L-BFGS-B. Random methods do not work with flimo. Bounded methods are L-BFGS-B and Brent.
obj_threshold	Float. Threshold score. If final value of objective is bigger, relaunch the in- ference if number_tries is not reached. The purpose is to avoid local minima. Default to Inf (no threshold).
number_tries	Integer. Number of tries (inferences) for the objective value to reach a point lower than obj_threshold. Default to 1.
maxit	Integer. Max number of iterations during optimization. Default to 1000.
time_limit	Float. Time limit in second for each inference. Default to no limit. Not available for R mode and Brent method in Julia mode.

factr	Float. In R-mode : control parameter for L-BFGS-B method in stats::optim. Default to 1e7.	
pgtol	Float. In R-mode : control parameter for L-BFGS-B method in stats::optim. Default to 0.	
xtol	Float. In Julia mode with IPNewton method : xtol option in Optim.Options. Default to 0.	
ftol	Float. In Julia mode with IPNewton method : ftol option in Optim.Options.	
gtol	Float. In Julia mode with IPNewton method : gtol option in Optim.Options. Default to 1e-8.	
reltol	Float. In Julia mode with Brent method : reltol of Optim.optimize. Default is sqrt(.Machine\$double.eps), about 1e-8.	
abstol	Float. In Julia mode with Brent method : abstol of Optim.optimize. Default is .Machine\$double.eps, about 1e-16.	
show_trace	Boolean. If true, shows standard trace. Default to false.	
store_trace	Boolean. If true, stores standard trace as an array of strings. Default to false. Not available for R mode.	
store_quantiles		
	Boolean. If true, stores every quantiles used for inference, to reproduce the results. Default to false.	
par_names	vector of names for parameters. Default is "par1",, "parn".	
load_julia	Boolean. If true, run julia_load. It can take few seconds. Default to False.	

Value

Object of class flimo_result (list) (converted from Julia object in Julia mode) containing every information about convergence results.

```
data <- rep(100, 5)
simulatorQ <- function(Theta, quantiles){
qpois(quantiles, lambda = Theta)
}
dsumstats <- function(simulations, data){
mean_simu <- mean(rowMeans(simulations))
mean_data <- mean(data)
(mean_simu-mean_data)^2
}
flimoptim(5, data, dsumstats, simulatorQ,
lower = 50,
upper = 150)</pre>
```

flimoptim_Julia

Description

Computes several parameter inferences with Julia optimizer and either IPNewton with or without Automatic Differentiation, Nelder-Mead or Brent method.

Usage

```
flimoptim_Julia(
  ndraw,
  data = NULL,
  dsumstats = NULL,
  simulatorQ = NULL,
  julia_obj = NULL,
  nsim = 10,
  ninfer = 1,
  lower = 0,
  upper = 1,
  Theta0 = (lower + upper)/2,
  randomTheta0 = FALSE,
  AD = TRUE,
 method = ""
  obj_threshold = Inf,
  number_tries = 1,
 maxit = 1000,
  time_limit = NULL,
  xtol = 0,
  ftol = 0,
  gtol = 1e-08,
  reltol = sqrt(.Machine$double.eps),
  abstol = .Machine$double.eps,
  show_trace = FALSE,
  store_trace = FALSE,
  store_quantiles = FALSE,
  par_names = NULL,
  load_julia = FALSE
)
```

ndraw	Integer. Number of random variables to draw for one simulation of the model.
data	1D array containing the observations.
dsumstats	Summary statistics to measure distance between simulations and data. String containing the script of the Julia function dsumstats(simulations, data). The name "dsumstats" is mandatory.

simulatorQ	Simulator of the stochastic process with fixed quantiles (see README). simulatorQ(Theta, quantiles). The name "simulatorQ" is mandatory. Theta is the parameter set for the simulations and quantiles are drawn in $U(0,1)$.	
julia_obj	Objective function to minimize. Default : is directly computed from dsumstats and simulatorQ. String containing the script of the Julia function julia_obj(Theta, quantiles). Warning : can be tricky to call data. The name "julia_obj" is manda- tory.	
nsim	Integer. Number of simulations to run for each step of the optimization algo- rithm. Computation time grows linearly with this number. Default to 10.	
ninfer	Integer. Number of independent inferences to run. Default to 1.	
lower	1D array. Lower bounds for parameters. Same length as upper.	
upper	1D array. Upper bounds for parameters. Same length as lower.	
Theta0	1D array. Initial values of the parameters. Default : mean(lower, upper).	
randomTheta0	Boolean. If True, Theta0 is randomly drawn between lower and upper bounds.	
AD	Boolean. Only in Julia mod, uses Automatic Differentiation with IPNewton method. Default to true.	
method	String. Allows to choose the optimization method : "Brent", "IPNewton" or "NelderMead". Default : IPNewton.	
obj_threshold	Float. Threshold score. If Final value of objective is bigger, relaunch the in- ference if number_tries is not reached. The purpose is to avoid local minima. Default to Inf (no threshold).	
number_tries	Integer. Number of tries (inferences) for the objective value to reach a point lower than obj_threshold. Default to 1.	
maxit	Integer. Max number of iterations during optimization. Default to 1000.	
time_limit	Float. Time limit in second for each inference. Default to no limit. Not available for Brent method.	
xtol	Float. With IPNewton method : xtol option in Optim.Options. Default to 0.	
ftol	Float. With IPNewton method : ftol option in Optim.Options. Default to 0.	
gtol	Float. With IPNewton method : gtol option in Optim.Options. Default to 1e-8.	
reltol	Float. With Brent method : reltol of Optim.optimize. Default is sqrt(.Machine\$double.eps), about 1e-8.	
abstol	Float. With Brent method : abstol of Optim.optimize. Default is .Machine\$double.eps, about 1e-16.	
show_trace	Boolean. If true, shows standard trace. Default to false.	
store_trace	Boolean. If true, stores standard trace as an array of strings. Default to false. Not available for R mod.	
store_quantiles		
	Boolean. If true, stores every quantiles used for inference, to reproduce the results. Default to false.	
par_names	vector of names for parameters. Default is "par1",, "parn".	
load_julia	Boolean. If true, run julia_load. It can take few seconds. Default to False.	

flimoptim_R

Value

Object of class flimo_result (list) converted from Julia object containing every information about convergence results.

flimoptim_R

Internal flimoptim function in R mode

Description

Computes several parameter inferences with R optimizer.

Usage

```
flimoptim_R(
 ndraw,
 data = NULL,
 dsumstats = NULL,
  simulatorQ = NULL,
 obj = NULL,
 nsim = 10,
 ninfer = 1,
  lower = 0,
 upper = 1,
 Theta0 = (lower + upper)/2,
  randomTheta0 = FALSE,
 obj_threshold = Inf,
 method = "L-BFGS-B",
 number_tries = 1,
 maxit = 1000,
  factr = 1e+07,
 pgtol = 0,
  show_trace = FALSE,
  store_quantiles = FALSE,
 par_names = NULL
)
```

ndraw	Integer. Number of random variables to draw for one simulation of the model.
data	1D array containing the observations.
dsumstats	Summary statistics to measure distance between simulations and data. R func- tion of type dsumstats(simulations, data) where simulations : 2D array and data : 1D array. ncol(simulations) = length(data) mandatory.
simulatorQ	Simulator of the stochastic process with fixed quantiles (see README). Theta is the parameter set for the simulations and quantiles are drawn in $U(0,1)$.

obj	Objective function to minimize. Default : is directly computed from dsumstats and simulatorQ. R function of type objective(Theta, quantiles)	
nsim	Integer. Number of simulations to run for each step of the optimization algorithm. Computation time grows linearly with this number. Default to 10.	
ninfer	Integer. Number of independent inferences to run. Default to 1.	
lower	1D array. Lower bounds for parameters. Same length as upper.	
upper	1D array. Upper bounds for parameters. Same length as lower.	
Theta0	1D array. Initial values of the parameters. Default : mean(lower, upper).	
randomTheta0	Boolean. If True, Theta0 is randomly drawn between lower and upper bounds.	
obj_threshold	Float. Threshold score. If Final value of objective is bigger, relaunch the in- ference if number_tries is not reached. The purpose is to avoid local minima. Default to Inf (no threshold).	
method	String. Either "L-BFGS-B" (default) or any other method used by the base func- tion optim. Stochastic methods do not work with flimo. If you want to provide bounds, you need to use L-BFGS-B or Brent.	
number_tries	Integer. Number of tries (inferences) for the objective value to reach a point lower than obj_threshold. Default to 1.	
maxit	Integer. Max number of iterations during optimization. Default to 1000.	
factr	Float. Control parameter for L-BFGS-B method in stats::optim. Default to 1e7.	
pgtol	Float. Control parameter for L-BFGS-B method in stats::optim. Default to 0.	
<pre>show_trace store_quantiles</pre>	Boolean. If true, shows standard trace. Default to false.	
	Boolean. If true, stores every quantiles used for inference, to reproduce the results.	
par_names	vector of names for parameters. Default is "par1",, "parn".	

Value

Object of class flimo_result (list) containing every information about convergence results.

julia_load

Load Julia

Description

Load needed Julia packages. Run to use Jflimo.

Usage

```
julia_load()
```

Value

Boolean. True if load is done correctly

julia_setup

Description

Checks installation of Julia and install the needed packages. May take little time to run.Only run the first time you use Jflimo.

Usage

julia_setup()

Value

Boolean. True if correct setup, False else.

plot.flimo_result Plot main flimo results

Description

Shows the plots for most important inference results. Default only shows normalized boxplots for each inferred parameter.

Usage

```
## S3 method for class 'flimo_result'
plot(
    x,
    y,
    ...,
    hist = FALSE,
    bins = 1 + as.integer(nrow(x$minimizer)^(1/3)),
    par_minimum = FALSE,
    pairwise_par = FALSE,
    boxplot = TRUE,
    par_names = NULL
)
```

x	Object of class flimo_result.
У	unused generic argument.
	optional args for generic method

hist	Boolean. If True, plots the histogram of each inferred parameter. Default to false.
bins	Integer. Number of bins if hist is True.
par_minimum	Boolean. If True, plots each inferred parameter by reached minimum. Default to false.
pairwise_par	Boolean. If True, plots each pairs of inferred parameters.Default to false.
boxplot	Boolean. If True, plots the boxplots of each inferred parameter scaled by their mean. Default to true.
par_names	Vector of names for parameters. Default is "par1",, "parn".

Value

Nothing. Prints the asked ggplot objects.

plot_objective

Plot the objective to be minimized using flimo

Description

Plot of the objective function with one parameter moving (objective = $f(\text{theta_index})$). You need either to provide data, dsumstats AND simulatorQ OR obj.

Usage

```
plot_objective(
  ndraw,
  data = NULL,
  dsumstats = NULL,
  simulatorQ = NULL,
  obj = NULL,
  quantiles = NULL,
  index = NULL,
  other_param = NULL,
  nsim = 10,
  lower = 0,
  upper = 1,
  dim2 = TRUE,
  visualize_min = TRUE,
  plot_legend = TRUE,
 npoints = 300,
  add_to_plot = NULL
)
```

plot_objective

Arguments

-	
ndraw	Integer.Number of random variables to draw for one simulation of the model.
data	1D array containing the observations.
dsumstats	Function computing the distance between simulations and data of form dsum- stats(simulations, data) where simulations : 2D array and data : 1D array. ncol(simulations) = length(data) mandatory.
simulatorQ	Function of type simulatorQ(Theta, quantiles) where Theta is the parameter set for the simulations and quantiles are drawn in $U(0,1)$.
obj	objective function of type objective(Theta, quantiles). Default : directly computed with "dsumstats" and "simulatorQ".
quantiles	2D array containing values drawn in $U(0,1)$. Row number = number of simulations. Default: simulated within the function. Column number = number of random variables to draw in one simulation.
index	Integer. Index of the moving parameter.
other_param	Other parameters of the model. If NULL : assume 1D-model. If numeric : 2D- model, one curve. If 1D-array and dim2 is True (default) : 2D-model, one curve by value in other_param. If 1D-array and dim2 is False or 2D-array : (n>2)D- model, one curve by row in other_param. If your model has n>2 dimensions, you should define other_param as a matrix even if you have only one parameter set to test (with as.matrix(t(vect_param)) where vect_param is a 1D-array).
nsim	Integer. Number of simulations to run for each step of the optimization algo- rithm. Computation time grows linearly with this number. Default to 10.
lower	Numeric. Lower value of the plot.
upper	Numeric. Upper value of the plot.
dim2	Boolean. True if model is 2-dimensional.
visualize_min	Boolean. If True, show explicitly the minimum point.
plot_legend	Boolean. If True (default), plots the legend.
npoints	Integer. Number of points evaluated. Default = 300.
add_to_plot	ggplot object. If not NULL, will add all curves/points on previous plot instead of creating a new one. Does not change title/labels/limits defined in previous plot.

Value

ggplot object representing the objective function to be minimized.

```
data <- rep(100, 5)
dsumstats <- function(simulations, data){
mean_simu <- mean(rowMeans(simulations))
mean_data <- mean(data)
(mean_simu-mean_data)^2</pre>
```

sampleQ

```
}
simulatorQ <- function(Theta, quantiles){
qpois(quantiles, lambda = Theta)
}
plot_objective(5, data, dsumstats, simulatorQ,
lower = 0, upper = 200)</pre>
```

print.flimo_result Print flimo results

Description

Prints most important information about inference results.

Usage

14

```
## S3 method for class 'flimo_result'
print(x, ...)
```

Arguments

х	Object of class flimo_result from any mod/method algorithm of the flimo pack-
	age.
	optional args for generic method

Value

String containing most important information about argument of class flimo_result.

sampleQ

Sample function with fixed quantiles

Description

Replace the sample function in the context of fixed quantiles. Warning : first argument has less features.

Usage

```
sampleQ(x, size, quantiles, replace = FALSE, prob = NULL)
```

Arguments

х	a vector of one or more elements from which to choose.
size	a non-negative integer giving the number of items to choose.
quantiles	1D array containing values drawn in $U(0,1)$. Length has to be equal to size.
replace	should sampling be with replacement ?
prob	a vector of probability weights for obtaining the elements of the vector being sampled.

Value

a vector of length size with elements drawn from x.

Examples

```
set.seed(1)
quantiles <- runif(40)
sampleQ(1:10, 10, quantiles[1:10])
sampleQ(1:10, 10, quantiles[11:20])
sampleQ(11:20, 10, quantiles[1:10])
sampleQ(1:10, 20, quantiles[21:40], replace = TRUE)</pre>
```

summary.flimo_result Summary of flimo results

Description

Most important information about inference results.

Usage

```
## S3 method for class 'flimo_result'
summary(object, ...)
```

Arguments

object	Object of class flimo_result from any mode/method algorithm of the Jflimo
	package.
	optional args for generic method summary

Value

List containing most important information about argument of class flimo_result.

Index

 $\texttt{check_simulator, 2}$

flimobjective, 3
flimoptim, 4
flimoptim_Julia, 7
flimoptim_R, 9

julia_load,10 julia_setup,11

plot.flimo_result, 11
plot_objective, 12
print.flimo_result, 14

sampleQ, 14
summary.flimo_result, 15