Package ‘farver’

May 13, 2024
Type Package

Title High Performance Colour Space Manipulation
Version 2.1.2

Description The encoding of colour can be handled in many different ways,
using different colour spaces. As different colour spaces have
different uses, efficient conversion between these representations are
important. The 'farver' package provides a set of functions that gives
access to very fast colour space conversion and comparisons
implemented in C++, and offers speed improvements over the
'convertColor' function in the 'grDevices' package.

License MIT + file LICENSE

URL https://farver.data-imaginist.com,
https://github.com/thomasp85/farver

BugReports https://github.com/thomasp85/farver/issues
Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>),
Berendea Nicolae [aut] (Author of the ColorSpace C++ library),
Romain Francois [aut] (<https://orcid.org/0000-0002-2444-4226>),
Posit, PBC [cph, fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>
Repository CRAN
Date/Publication 2024-05-13 09:33:09 UTC

https://farver.data-imaginist.com
https://github.com/thomasp85/farver
https://github.com/thomasp85/farver/issues
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-2444-4226

2 compare_colour

R topics documented:

compare_ColoUr e e e e e e 2
convert_colour L e e 3
decode colour e 5
encode_colour e 6
manip_channel 7
native-encoding e e e e e e 10

Index 11

compare_colour Calculate the distance between colours
Description

There are many ways to measure the distance between colours. farver provides 5 different al-
gorithms, ranging from simple euclidean distance in RGB space, to different perceptual measures
such as CIE2000.

Usage
compare_colour(
from,
to = NULL,
from_space,
to_space = from_space,
method = "euclidean”,

white_from = "D65",
white_to = white_from,
lightness = 2,

chroma = 1

Arguments

from, to Numeric matrices with colours to compare - the format is the same as that for
convert_colour(). If to is not set from will be compared with itself and only
the upper triangle will get calculated

from_space, to_space
The colour space of from and to respectively. to_space defaults to be the same
as from_space.

method The method to use for comparison. Either 'euclidean', 'cie1976', 'cie94’,
'cie2000', or 'cmc'

white_from, white_to
The white reference of the from and to colour space. Will only have an ef-
fect for relative colour spaces such as Lab and luv. Any value accepted by
as_white_ref () allowed.

convert_colour 3

lightness, chroma
Weight of lightness vs chroma when using CMC. Common values are 2 and 1
(default) for acceptability and 1 and 1 for imperceptibility

Value

A numeric matrix with the same number of rows as colours in from and the same number of columns
as colours in to. If to is not given, only the upper triangle will be returned.

Handling of non-finite and out of bounds values

NA, NaN, -Inf, and Inf are treated as invalid input and will result in NA values for the colour. If
a given colourspace has finite bounds in some of their channels, the input will be capped before
conversion, and the output will be capped before returning, so that both input and output colours
are valid colours in their respective space. This means that converting back and forth between two
colourspaces may result in a change in the colour if the gamut of one of the spaces is less than the
other.

Examples

r <- decode_colour(rainbow(10))
h <- decode_colour(heat.colors(15))

Compare two sets of colours
compare_colour(r, h, 'rgb', method = 'cie2000')

Compare a set of colours with itself
compare_colour(r, from_space = 'rgb', method = 'cmc')

Compare colours from different colour spaces

h_luv <- convert_colour(h, 'rgb', 'luv')
compare_colour(r, h_luv, 'rgb', 'luv')
convert_colour Convert between colour spaces
Description

This function lets you convert between different representations of colours. The API is reminis-
cent of grDevices: :convertColor(), but the performance is much better. It is not assured that
grDevices: :convertColor() and convert_colour () provide numerically equivalent conversion
at 16bit level as the formula used are potentially slightly different. For all intend and purpose, the
resulting colours will be equivalent though.

Usage

convert_colour(colour, from, to, white_from = "D65", white_to = white_from)

4 convert_colour

Arguments
colour A numeric matrix (or an object coercible to one) with colours encoded in the
rows and the different colour space values in the columns. For all colourspaces
except 'cmyk' this will mean a matrix with three columns - for 'cmyk' it means
four columns.
from, to The input and output colour space. Allowed values are: "cmy”, "cmyk”, "hsl”,

"hsb”, "hsv", "1ab" (CIE L*ab), "hunterlab” (Hunter Lab), "oklab", "1ch”

(CIE Lch(ab) / polarLAB), "1uv”, "rgb"” (sRGB), "xyz", "yxy" (CIE xyY),

"hcl” (CIE Lch(uv) / polarLuv), or "oklch"” (Polar form of oklab)
white_from, white_to

The white reference of the from and to colour space. Will only have an ef-

fect for relative colour spaces such as Lab and luv. Any value accepted by

as_white_ref () allowed.

Value

A numeric matrix with the same number of rows as colour and either 3 or 4 columns depending
on the value of to. If colour is given as a data. frame the output will be a data.frame as well

Handling of non-finite and out of bounds values

NA, NaN, -Inf, and Inf are treated as invalid input and will result in NA values for the colour. If
a given colourspace has finite bounds in some of their channels, the input will be capped before
conversion, and the output will be capped before returning, so that both input and output colours
are valid colours in their respective space. This means that converting back and forth between two
colourspaces may result in a change in the colour if the gamut of one of the spaces is less than the
other.

Note
This function and convertColor () are not numerically equivalent due to rounding errors, but for
all intend and purpose they give the same results.

See Also

grDevices: :convertColor(), grDevices: :col2rgb()

Examples

spectrum <- decode_colour(rainbow(10))
spec_lab <- convert_colour(spectrum, 'rgb', 'lab"')
spec_lab

Convert between different white references
convert_colour(spec_lab, 'lab', 'lab', white_from = 'D65', white_to = 'F10')

decode_colour

decode_colour

Decode RGB hex-strings into colour values

Description

This is a version of grDevices::col2rgb() that returns the colour values in the standard form
expected by farver (matrix with a row per colour). As with encode_colour() it can do colour
conversion on the fly, meaning that you can decode a hex string directly into any of the supported

colour spaces.

Usage

decode_colour(colour, alpha = FALSE, to = "rgb", white = "D65", na_value = NA)

Arguments

colour

alpha

to

white

na_value

Value

A character vector of hex-encoded values or a valid colour name as given in
grDevices: :colours().

If TRUE the alpha channel will be returned as well (scaled between 0 and 1). If
no alpha channel exists in the colour it will be assumed 1. If FALSE any alpha
channel is ignored.

The output colour space. Allowed values are: "cmy”, "cmyk”, "hsl”, "hsb",
"hsv", "lab" (CIE L*ab), "hunterlab” (Hunter Lab), "oklab”, "1ch"” (CIE
Lch(ab) / polarLAB), "1uv”, "rgb"” (sRGB), "xyz", "yxy" (CIE xyY), "hcl”
(CIE Lch(uv) / polarLuv), or "oklch” (Polar form of oklab)

The white reference of the output colour space. Will only have an effect for rela-
tive colour spaces such as Lab and luv. Any value accepted by as_white_ref ()
allowed.

A valid colour string or NA to use when colour contains NA elements. The gen-
eral approach in farver is to carry NA values over, but if you want to mimick
col2rgb() you should set na_value = 'transparent’, i.e. treat NA as trans-
parent white.

A numeric matrix with a row for each element in colour and either 3, 4, or 5 columns depending
on the value of alpha and to.

Handling of non-finite and out of bounds values

NA, NaN, -Inf, and Inf are treated as invalid input and will result in NA values for the colour. If
a given colourspace has finite bounds in some of their channels, the input will be capped before
conversion, and the output will be capped before returning, so that both input and output colours
are valid colours in their respective space. This means that converting back and forth between two
colourspaces may result in a change in the colour if the gamut of one of the spaces is less than the

other.

6 encode_colour

See Also

Other encoding and decoding functions: encode_colour (), manip_channel

Examples

basic use
decode_colour(c('#43e1f6', 'steelblue', '#67ce9fe4'))

Return alpha as well (no alpha value is interpreted as 1)
decode_colour(c('#43e1f6', 'steelblue', '#67ce9fe4'), alpha = TRUE)

Decode directly into specific colour space
decode_colour(c('#43e1f6', 'steelblue', '#67ce9fe4'), to = 'lch')

encode_colour Encode colours into RGB hex-strings

Description

This is a version of grDevices: :rgb() that works with the standard colour format used in farver
(matrix or data.frame with colours in rows). It further support taking input from any colour space.

Usage

encode_colour(colour, alpha = NULL, from = "rgb", white = "D65")

Arguments
colour A numeric matrix (or an object coercible to one) with colours encoded in the
rows and the different colour space values in the columns. For all colourspaces
except 'cmyk' this will mean a matrix with three columns - for 'cmyk' it means
four columns.
alpha A numeric vector between 0 and 1. Will be recycled to the number of rows in
colour. If NULL or a single NA it will be ignored.
from The input colour space. Allowed values are: "cmy”, "cmyk”, "hsl"”, "hsb",
"hsv", "lab" (CIE L*ab), "hunterlab” (Hunter Lab), "oklab"”, "1ch" (CIE
Lch(ab) / polarLAB), "1uv"”, "rgb" (sRGB), "xyz", "yxy" (CIE xyY), "hcl”
(CIE Lch(uv) / polarLuv), or "oklch" (Polar form of oklab)
white The white reference of the input colour space. Will only have an effect for rela-
tive colour spaces such as Lab and luv. Any value accepted by as_white_ref ()
allowed.
Value

A character vector with colours encoded as #RRGGBB (AA)

manip_channel 7

Handling of non-finite and out of bounds values

NA, NaN, -Inf, and Inf are treated as invalid input and will result in NA values for the colour. If
a given colourspace has finite bounds in some of their channels, the input will be capped before
conversion, and the output will be capped before returning, so that both input and output colours
are valid colours in their respective space. This means that converting back and forth between two
colourspaces may result in a change in the colour if the gamut of one of the spaces is less than the
other.
Note

The output may differ slightly from that of grDevices: :rgbh() since rgb() doesn’t round numeric
values correctly.

See Also

Other encoding and decoding functions: decode_colour(), manip_channel
Examples

spectrum <- decode_colour(rainbow(10))

encode_colour (spectrum)

Attach alpha values
encode_colour(spectrum, alpha = c(0.5, 1))

Encode from a different colour space

spectrum_hcl <- convert_colour(spectrum, 'rgb', 'hcl')
encode_colour(spectrum_hcl, from = 'hcl')
manip_channel Modify colour space channels in hex-encoded colour strings
Description

This set of functions allows you to modify colours as given by strings, whithout first decoding them.
For large vectors of colour values this should provide a considerable speedup.

Usage
set_channel(
colour,
channel,
value,
space = "rgb”,
white = "D65",

na_value = NA

8 manip_channel

)
add_to_channel(
colour,
channel,
value,
space = "rgb",
white = "D65",
na_value = NA
)
multiply_channel(
colour,
channel,
value,
space = "rgb",
white = "D65",
na_value = NA
)
raise_channel(
colour,
channel,
value,
space = "rgb",
white = "D65",
na_value = NA
)
cap_channel(
colour,
channel,
value,
space = "rgb",
white = "D65",
na_value = NA
)
get_channel(colour, channel, space = "rgb", white = "D65", na_value = NA)
Arguments
colour A character string giving colours, either as hexadecimal strings or accepted
colour names.
channel The channel to modify or extract as a single letter, or 'alpha’ for the alpha
channel.
value The value to modify with

“Cmy n’ n

space The colour space the channel pertains to. Allowed values are: cmyk”,

manip_channel 9

"hsl"”, "hsb"”, "hsv", "lab" (CIE L*ab), "hunterlab” (Hunter Lab), "oklab"
, "1ch" (CIE Lch(ab) / polarLAB), "1uv”, "rgb" (sRGB), "xyz", "yxy" (CIE
xyY), "hcl” (CIE Lch(uv) / polarLuv), or "oklch"” (Polar form of oklab)

white The white reference of the channel colour space. Will only have an effect for rel-
ative colour spaces such as Lab and luv. Any value accepted by as_white_ref ()
allowed.

na_value A valid colour string or NA to use when colour contains NA elements. The gen-

eral approach in farver is to carry NA values over, but if you want to mimick
col2rgb() you should set na_value = 'transparent’, i.e. treat NA as trans-
parent white.

Value

A character vector of the same length as colour (or a numeric vector in the case of get_channel())

See Also

Other encoding and decoding functions: decode_colour(), encode_colour ()

Examples
spectrum <- rainbow(10)

set a specific channel
set_channel(spectrum, 'r', c(10, 50))
set_channel (spectrum, '1l', 50, space = 'lab')
set_channel (spectrum, 'alpha', c(0.5, 1))

Add value to channel
add_to_channel (spectrum, 'r', c(10, 50))
add_to_channel(spectrum, 'l', 50, space = 'lab')

Multiply a channel
multiply_channel(spectrum, 'r', c(10, 50))
multiply_channel(spectrum, 'l', 50, space = 'lab')

set a lower bound on a channel
raise_channel(spectrum, 'r', c(10, 50))
raise_channel(spectrum, 'l', 20, space = 'lab')

set an upper bound on a channel
cap_channel(spectrum, 'r', c(100, 50))
cap_channel(spectrum, 'l', 20, space = 'lab')

10 native-encoding

native-encoding Convert to and from the R native colour representation

Description

Colours in R are internally encoded as integers when they are passed around to graphics devices.
The encoding splits the 32 bit in the integer between red, green, blue, and alpha, so that each get
8 bit, equivalent to 256 values. It is very seldom that an R user is subjected to this representation,
but it is present in the nativeRaster format which can be obtained from e.g. capturing the content
of a graphic device (using dev.capture()) or reading in PNG files using png: : readPNG(native
= TRUE). It is very rare that you might need to convert back and forth between this format, but it is
provided here for completeness.

Usage

encode_native(colour, ...)

decode_native(colour)

Arguments
colour For encode_native either a vector of hex-encoded colours/colour names or a
matrix encoding colours in any of the supported colour spaces. If the latter,
the colours will be encoded to a hex string using encode_colour() first. For
decode_native it is a vector of integers.
Arguments passed on to encode_colour()
Value

encode_native() returns an integer vector and decode_native() returns a character vector, both
matching the length of the input.

Examples

Get native representation of navyblue and #228B22
native_col <- encode_native(c('navyblue', '#228B22'))
native_col

Convert back
decode_native(native_col)

Index

* encoding and decoding functions
decode_colour, 5
encode_colour, 6
manip_channel, 7

add_to_channel (manip_channel), 7
as_white_ref(), 2,4-6,9

cap_channel (manip_channel), 7
col2rgh(), 5,9
compare_colour, 2
convert_colour, 3
convert_colour(), 2
convertColor(), 4

decode_colour, 5,7, 9
decode_native (native-encoding), 10

encode_colour, 6, 6, 9
encode_colour(), 5, 10
encode_native (native-encoding), 10

get_channel (manip_channel), 7
grDevices::col2rgb(),4, 5
grDevices::colours(), 5

grDevices: :convertColor(), 3, 4
grDevices::rgb(), 6, 7

manip_channel, 6, 7,7
multiply_channel (manip_channel), 7

native-encoding, 10
raise_channel (manip_channel), 7

set_channel (manip_channel), 7

11

	compare_colour
	convert_colour
	decode_colour
	encode_colour
	manip_channel
	native-encoding
	Index

