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allShortestPaths Find Shortest Paths Between All Nodes in a Directed Graph

Description

allShortestPaths finds all shortest paths in a directed (or undirected) graph using Floyd’s algo-
rithm. extractPath can be used to actually extract the path between a given pair of nodes.

Usage

allShortestPaths(x)
extractPath(obj, start, end)

Arguments

x matrix or distance object

obj return value of allShortestPaths

start integer, starting point of path

end integer, end point of path

Details

If x is a matrix, then x[i,j] has to be the length of the direct path from point i to point j. If no
direct connection from point i to point j exist, then x[i,j] should be either NA or Inf. Note that
the graph can be directed, hence x[i,j] need not be the same as x[j,i]. The main diagonal of
x is ignored. Alternatively, x can be a distance object as returned by dist (corresponding to an
undirected graph).

Value

allShortestPaths returns a list with components

length A matrix with the total lengths of the shortest path between each pair of points.

middlePoints A matrix giving a point in the middle of each shortest path (or 0 if the direct
connection is the shortest path), this is mainly used as input for extractPath.

extractPath returns a vector of node numbers giving with the shortest path between two points.

Author(s)

Friedrich Leisch

References

Kumar, V., Grama, A., Gupta, A. and Karypis, G. Introduction to Parallel Programming - Design
and Analysis of Algorithms, Benjamin Cummings Publishing, 1994, ISBN 0-8053-3170-0
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Examples

## build a graph with 5 nodes
x <- matrix(NA, 5, 5)
diag(x) <- 0
x[1,2] <- 30; x[1,3] <- 10
x[2,4] <- 70; x[2,5] <- 40
x[3,4] <- 50; x[3,5] <- 20
x[4,5] <- 60
x[5,4] <- 10
print(x)

## compute all path lengths
z <- allShortestPaths(x)
print(z)

## the following should give 1 -> 3 -> 5 -> 4
extractPath(z, 1, 4)

bclust Bagged Clustering

Description

Cluster the data in x using the bagged clustering algorithm. A partitioning cluster algorithm such as
kmeans is run repeatedly on bootstrap samples from the original data. The resulting cluster centers
are then combined using the hierarchical cluster algorithm hclust.

Usage

bclust(x, centers=2, iter.base=10, minsize=0,
dist.method="euclidean",
hclust.method="average", base.method="kmeans",
base.centers=20, verbose=TRUE,
final.kmeans=FALSE, docmdscale=FALSE,
resample=TRUE, weights=NULL, maxcluster=base.centers, ...)

hclust.bclust(object, x, centers, dist.method=object$dist.method,
hclust.method=object$hclust.method, final.kmeans=FALSE,
docmdscale = FALSE, maxcluster=object$maxcluster)

## S3 method for class 'bclust'
plot(x, maxcluster=x$maxcluster, main, ...)
centers.bclust(object, k)
clusters.bclust(object, k, x=NULL)

Arguments

x Matrix of inputs (or object of class "bclust" for plot).

centers, k Number of clusters.
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iter.base Number of runs of the base cluster algorithm.

minsize Minimum number of points in a base cluster.

dist.method Distance method used for the hierarchical clustering, see dist for available dis-
tances.

hclust.method Linkage method used for the hierarchical clustering, see hclust for available
methods.

base.method Partitioning cluster method used as base algorithm.

base.centers Number of centers used in each repetition of the base method.

verbose Output status messages.

final.kmeans If TRUE, a final kmeans step is performed using the output of the bagged cluster-
ing as initialization.

docmdscale Logical, if TRUE a cmdscale result is included in the return value.

resample Logical, if TRUE the base method is run on bootstrap samples of x, else directly
on x.

weights Vector of length nrow(x), weights for the resampling. By default all observa-
tions have equal weight.

maxcluster Maximum number of clusters memberships are to be computed for.

object Object of class "bclust".

main Main title of the plot.

... Optional arguments top be passed to the base method in bclust, ignored in
plot.

Details

First, iter.base bootstrap samples of the original data in x are created by drawing with replace-
ment. The base cluster method is run on each of these samples with base.centers centers. The
base.method must be the name of a partitioning cluster function returning a list with the same
components as the return value of kmeans.

This results in a collection of iter.base * base.centers centers, which are subsequently clus-
tered using the hierarchical method hclust. Base centers with less than minsize points in there
respective partitions are removed before the hierarchical clustering.

The resulting dendrogram is then cut to produce centers clusters. Hence, the name of the argument
centers is a little bit misleading as the resulting clusters need not be convex, e.g., when single
linkage is used. The name was chosen for compatibility with standard partitioning cluster methods
such as kmeans.

A new hierarchical clustering (e.g., using another hclust.method) re-using previous base runs can
be performed by running hclust.bclust on the return value of bclust.

Value

bclust and hclust.bclust return objects of class "bclust" including the components

hclust Return value of the hierarchical clustering of the collection of base centers (Ob-
ject of class "hclust").
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cluster Vector with indices of the clusters the inputs are assigned to.

centers Matrix of centers of the final clusters. Only useful, if the hierarchical clustering
method produces convex clusters.

allcenters Matrix of all iter.base * base.centers centers found in the base runs.

Author(s)

Friedrich Leisch

References

Friedrich Leisch. Bagged clustering. Working Paper 51, SFB “Adaptive Information Systems
and Modeling in Economics and Management Science”, August 1999. https://epub.wu.ac.
at/1272/1/document.pdf

See Also

hclust, kmeans, boxplot.bclust

Examples

data(iris)
bc1 <- bclust(iris[,1:4], 3, base.centers=5)
plot(bc1)

table(clusters.bclust(bc1, 3))
centers.bclust(bc1, 3)

bincombinations Binary Combinations

Description

Returns a matrix containing the 2p vectors of length p.

Usage

bincombinations(p)

Arguments

p Length of binary vectors

Author(s)

Friedrich Leisch

https://epub.wu.ac.at/1272/1/document.pdf
https://epub.wu.ac.at/1272/1/document.pdf
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Examples

bincombinations(2)
bincombinations(3)

bootstrap.lca Bootstrap Samples of LCA Results

Description

This function draws bootstrap samples from a given LCA model and refits a new LCA model for
each sample. The quality of fit of these models is compared to the original model.

Usage

bootstrap.lca(l, nsamples=10, lcaiter=30, verbose=FALSE)

Arguments

l An LCA model as created by lca

nsamples Number of bootstrap samples

lcaiter Number of LCA iterations

verbose If TRUE some output is printed during the computations.

Details

From a given LCA model l, nsamples bootstrap samples are drawn. For each sample a new LCA
model is fitted. The goodness of fit for each model is computed via Likelihood Ratio and Pearson’s
Chisquare. The values for the fitted models are compared with the values of the original model l.
By this method it can be tested whether the data to which l was originally fitted come from an LCA
model.

Value

An object of class bootstrap.lca is returned, containing

logl, loglsat The LogLikelihood of the models and of the corresponding saturated models

lratio Likelihood quotient of the models and the corresponding saturated models
lratiomean, lratiosd

Mean and Standard deviation of lratio

lratioorg Likelihood quotient of the original model and the corresponding saturated model

zratio Z-Statistics of lratioorg
pvalzratio, pvalratio

P-Values for zratio, computed via normal distribution and empirical distribu-
tion

chisq Pearson’s Chisq of the models
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chisqmean, chisqsd
Mean and Standard deviation of chisq

chisqorg Pearson’s Chisq of the original model
zchisq Z-Statistics of chisqorg
pvalzchisq, pvalchisq

P-Values for zchisq, computed via normal distribution and empirical distribu-
tion

nsamples Number of bootstrap samples
lcaiter Number of LCA Iterations

Author(s)

Andreas Weingessel

References

Anton K. Formann: “Die Latent-Class-Analysis”, Beltz Verlag 1984

See Also

lca

Examples

## Generate a 4-dim. sample with 2 latent classes of 500 data points each.
## The probabilities for the 2 classes are given by type1 and type2.
type1 <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x <- matrix(runif(4000), nrow = 1000)
x[1:500,] <- t(t(x[1:500,]) < type1) * 1
x[501:1000,] <- t(t(x[501:1000,]) < type2) * 1

l <- lca(x, 2, niter=5)
bl <- bootstrap.lca(l,nsamples=3,lcaiter=5)
bl

boxplot.bclust Boxplot of Cluster Profiles

Description

Makes boxplots of the results of a bagged clustering run.

Usage

## S3 method for class 'bclust'
boxplot(x, n=nrow(x$centers), bycluster=TRUE,

main=deparse(substitute(x)), oneplot=TRUE,
which=1:n, ...)
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Arguments

x Clustering result, object of class "bclust".

n Number of clusters to plot, by default the number of clusters used in the call of
bclust.

bycluster If TRUE (default), a boxplot for each cluster is plotted. If FALSE, a boxplot for
each variable is plotted.

main Main title of the plot, by default the name of the cluster object.

oneplot If TRUE, all boxplots appear on one screen (using an appropriate rectangular
layout).

which Number of clusters which should be plotted, default is all clusters.

... Additional arguments for boxplot.

Author(s)

Friedrich Leisch

Examples

data(iris)
bc1 <- bclust(iris[,1:4], 3, base.centers=5)
boxplot(bc1)

classAgreement Coefficients Comparing Classification Agreement

Description

classAgreement() computes several coefficients of agreement between the columns and rows of
a 2-way contingency table.

Usage

classAgreement(tab, match.names=FALSE)

Arguments

tab A 2-dimensional contingency table.

match.names Flag whether row and columns should be matched by name.
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Details

Suppose we want to compare two classifications summarized by the contingency table T = [tij ]
where i, j = 1, . . . ,K and tij denotes the number of data points which are in class i in the first
partition and in class j in the second partition. If both classifications use the same labels, then
obviously the two classification agree completely if only elements in the main diagonal of the table
are non-zero. On the other hand, large off-diagonal elements correspond to smaller agreement
between the two classifications. If match.names is TRUE, the class labels as given by the row and
column names are matched, i.e. only columns and rows with the same dimnames are used for the
computation.

If the two classification do not use the same set of labels, or if identical labels can have different
meaning (e.g., two outcomes of cluster analysis on the same data set), then the situation is a little
bit more complicated. Let A denote the number of all pairs of data points which are either put into
the same cluster by both partitions or put into different clusters by both partitions. Conversely, let
D denote the number of all pairs of data points that are put into one cluster in one partition, but into
different clusters by the other partition. Hence, the partitions disagree for all pairs D and agree for
all pairs A. We can measure the agreement by the Rand index A/(A +D) which is invariant with
respect to permutations of the columns or rows of T .

Both indices have to be corrected for agreement by chance if the sizes of the classes are not uniform.

Value

A list with components

diag Percentage of data points in the main diagonal of tab.

kappa diag corrected for agreement by chance.

rand Rand index.

crand Rand index corrected for agreement by chance.

Author(s)

Friedrich Leisch

References

J.~Cohen. A coefficient of agreement for nominal scales. Educational and Psychological Measure-
ment, 20, 37–46, 1960.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2, 193–218,
1985.

See Also

matchClasses
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Examples

## no class correlations: both kappa and crand almost zero
g1 <- sample(1:5, size=1000, replace=TRUE)
g2 <- sample(1:5, size=1000, replace=TRUE)
tab <- table(g1, g2)
classAgreement(tab)

## let pairs (g1=1,g2=1) and (g1=3,g2=3) agree better
k <- sample(1:1000, size=200)
g1[k] <- 1
g2[k] <- 1

k <- sample(1:1000, size=200)
g1[k] <- 3
g2[k] <- 3

tab <- table(g1, g2)
## both kappa and crand should be significantly larger than before
classAgreement(tab)

cmeans Fuzzy C-Means Clustering

Description

The fuzzy version of the known kmeans clustering algorithm as well as an on-line variant (Unsu-
pervised Fuzzy Competitive learning).

Usage

cmeans(x, centers, iter.max = 100, verbose = FALSE,
dist = "euclidean", method = "cmeans", m = 2,
rate.par = NULL, weights = 1, control = list())

Arguments

x The data matrix where columns correspond to variables and rows to observa-
tions.

centers Number of clusters or initial values for cluster centers.

iter.max Maximum number of iterations.

verbose If TRUE, make some output during learning.

dist Must be one of the following: If "euclidean", the mean square error, if "manhattan",
the mean absolute error is computed. Abbreviations are also accepted.

method If "cmeans", then we have the c-means fuzzy clustering method, if "ufcl" we
have the on-line update. Abbreviations are also accepted.

m A number greater than 1 giving the degree of fuzzification.
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rate.par A number between 0 and 1 giving the parameter of the learning rate for the
on-line variant. The default corresponds to 0.3.

weights a numeric vector with non-negative case weights. Recycled to the number of
observations in x if necessary.

control a list of control parameters. See Details.

Details

The data given by x is clustered by generalized versions of the fuzzy c-means algorithm, which use
either a fixed-point or an on-line heuristic for minimizing the objective function∑

i

∑
j

wiu
m
ijdij ,

where wi is the weight of observation i, uij is the membership of observation i in cluster j, and dij
is the distance (dissimilarity) between observation i and center j. The dissimilarities used are the
sums of squares ("euclidean") or absolute values ("manhattan") of the element-wise differences.

If centers is a matrix, its rows are taken as the initial cluster centers. If centers is an integer,
centers rows of x are randomly chosen as initial values.

The algorithm stops when the maximum number of iterations (given by iter.max) is reached, or
when the algorithm is unable to reduce the current value val of the objective function by reltol *
(abs(val) * reltol) at a step. The relative convergence tolerance reltol can be specified as the
reltol component of the list of control parameters, and defaults to sqrt(.Machine$double.eps).

If verbose is TRUE, each iteration displays its number and the value of the objective function.

If method is "cmeans", then we have the c-means fuzzy clustering method, see for example Bezdek
(1981). If "ufcl", we have the On-line Update (Unsupervised Fuzzy Competitive Learning) method
due to Chung and Lee (1992), see also Pal et al (1996). This method works by performing an update
directly after each input signal (i.e., for each single observation).

The parameters m defines the degree of fuzzification. It is defined for real values greater than 1 and
the bigger it is the more fuzzy the membership values of the clustered data points are.

Value

An object of class "fclust" which is a list with components:

centers the final cluster centers.

size the number of data points in each cluster of the closest hard clustering.

cluster a vector of integers containing the indices of the clusters where the data points
are assigned to for the closest hard clustering, as obtained by assigning points to
the (first) class with maximal membership.

iter the number of iterations performed.

membership a matrix with the membership values of the data points to the clusters.

withinerror the value of the objective function.

call the call used to create the object.
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Author(s)

Evgenia Dimitriadou and Kurt Hornik

References

J. C. Bezdek (1981). Pattern recognition with fuzzy objective function algorithms. New York:
Plenum.

Fu Lai Chung and Tong Lee (1992). Fuzzy competitive learning. Neural Networks, 7(3), 539–551.

Nikhil R. Pal, James C. Bezdek, and Richard J. Hathaway (1996). Sequential competitive learning
and the fuzzy c-means clustering algorithms. Neural Networks, 9(5), 787–796.

Examples

# a 2-dimensional example
x<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),

matrix(rnorm(100,mean=1,sd=0.3),ncol=2))
cl<-cmeans(x,2,20,verbose=TRUE,method="cmeans",m=2)
print(cl)

# a 3-dimensional example
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),

matrix(rnorm(150,mean=1,sd=0.3),ncol=3),
matrix(rnorm(150,mean=2,sd=0.3),ncol=3))

cl<-cmeans(x,6,20,verbose=TRUE,method="cmeans")
print(cl)

countpattern Count Binary Patterns

Description

Every row of the binary matrix x is transformed into a binary pattern and these patterns are counted.

Usage

countpattern(x, matching=FALSE)

Arguments

x A matrix of binary observations

matching If TRUE an additional vector is returned which stores which row belongs to
which pattern
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Value

A vector of length 2\^ncol(x) giving the number of times each pattern occurs in the rows of x.
The names of this vector are the binary patterns. They are sorted according to their numeric value.
If matching is TRUE, a list of the following two vectors is returned.

pat Numbers of patterns as described above.

matching Vector giving the position of the pattern of each row of x in pat.

Author(s)

Andreas Weingessel

Examples

xx <- rbind(c(1,0,0),c(1,0,0),c(1,0,1),c(0,1,1),c(0,1,1))
countpattern(xx)
countpattern(xx, matching=TRUE)

cshell Fuzzy C-Shell Clustering

Description

The c-shell clustering algorithm, the shell prototype-based version (ring prototypes) of the fuzzy
kmeans clustering method.

Usage

cshell(x, centers, iter.max=100, verbose=FALSE, dist="euclidean",
method="cshell", m=2, radius = NULL)

Arguments

x The data matrix, were columns correspond to the variables and rows to observa-
tions.

centers Number of clusters or initial values for cluster centers

iter.max Maximum number of iterations

verbose If TRUE, make some output during learning

dist Must be one of the following: If "euclidean", the mean square error, if "manhattan",
the mean absolute error is computed. Abbreviations are also accepted.

method Currently, only the "cshell" method; the c-shell fuzzy clustering method

m The degree of fuzzification. It is defined for values greater than 1

radius The radius of resulting clusters
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Details

The data given by x is clustered by the fuzzy c-shell algorithm.

If centers is a matrix, its rows are taken as the initial cluster centers. If centers is an integer,
centers rows of x are randomly chosen as initial values.

The algorithm stops when the maximum number of iterations (given by iter.max) is reached.

If verbose is TRUE, it displays for each iteration the number the value of the objective function.

If dist is "euclidean", the distance between the cluster center and the data points is the Euclidean
distance (ordinary kmeans algorithm). If "manhattan", the distance between the cluster center and
the data points is the sum of the absolute values of the distances of the coordinates.

If method is "cshell", then we have the c-shell fuzzy clustering method.

The parameters m defines the degree of fuzzification. It is defined for real values greater than 1 and
the bigger it is the more fuzzy the membership values of the clustered data points are.

The parameter radius is by default set to 0.2 for every cluster.

Value

cshell returns an object of class "cshell".

centers The final cluster centers.

size The number of data points in each cluster.

cluster Vector containing the indices of the clusters where the data points are assigned
to. The maximum membership value of a point is considered for partitioning it
to a cluster.

iter The number of iterations performed.

membership a matrix with the membership values of the data points to the clusters.

withinerror Returns the sum of square distances within the clusters.

call Returns a call in which all of the arguments are specified by their names.

Author(s)

Evgenia Dimitriadou

References

Rajesh N. Dave. Fuzzy Shell-Clustering and Applications to Circle Detection in Digital Images.
Int. J. of General Systems, Vol. 16, pp. 343-355, 1996.

Examples

## a 2-dimensional example
x <- rbind(matrix(rnorm(50, sd = 0.3), ncol = 2),

matrix(rnorm(50, mean = 1, sd=0.3), ncol = 2))
cl <- cshell(x, 2, 20, verbose = TRUE, method = "cshell", m = 2)
print(cl)
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Discrete Discrete Distribution

Description

These functions provide information about the discrete distribution where the probability of the
elements of values is proportional to the values given in probs, which are normalized to sum up
to 1. ddiscrete gives the density, pdiscrete gives the distribution function, qdiscrete gives the
quantile function and rdiscrete generates random deviates.

Usage

ddiscrete(x, probs, values = 1:length(probs))
pdiscrete(q, probs, values = 1:length(probs))
qdiscrete(p, probs, values = 1:length(probs))
rdiscrete(n, probs, values = 1:length(probs), ...)

Arguments

x, q vector or array of quantiles.

p vector or array of probabilities.

n number of observations.

probs probabilities of the distribution.

values values of the distribution.

... ignored (only there for backwards compatibility)

Details

The random number generator is simply a wrapper for sample and provided for backwards com-
patibility only.

Author(s)

Andreas Weingessel and Friedrich Leisch

Examples

## a vector of length 30 whose elements are 1 with probability 0.2
## and 2 with probability 0.8.
rdiscrete (30, c(0.2, 0.8))

## a vector of length 100 whose elements are A, B, C, D.
## The probabilities of the four values have the relation 1:2:3:3
rdiscrete (100, c(1,2,3,3), c("A","B","C","D"))
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e1071-deprecated Deprecated Functions in Package e1071

Description

These functions are provided for compatibility with older versions of package e1071 only, and may
be defunct as soon as of the next release.

See Also

Deprecated

element Extract Elements of an Array

Description

Returns the element of x specified by i.

Usage

element(x, i)

Arguments

x Array of arbitrary dimensionality.

i Vector of the same length as x has dimension.

Author(s)

Friedrich Leisch

See Also

Extract

Examples

x <- array(1:20, dim=c(2,5,2))
element(x, c(1,4,2))
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fclustIndex Fuzzy Cluster Indexes (Validity/Performance Measures)

Description

Calculates the values of several fuzzy validity measures. The values of the indexes can be indepen-
dently used in order to evaluate and compare clustering partitions or even to determine the number
of clusters existing in a data set.

Usage

fclustIndex(y, x, index = "all")

Arguments

y An object of a fuzzy clustering result of class "fclust"

x Data matrix

index The validity measures used: "gath.geva", "xie.beni", "fukuyama.sugeno",
"partition.coefficient", "partition.entropy", "proportion.exponent",
"separation.index" and "all" for all the indexes.

Details

The validity measures and a short description of them follows, where N is the number of data
points, uij the values of the membership matrix, vj the centers of the clusters and k te number of
clusters.

gath.geva: Gath and Geva introduced 2 main criteria for comparing and finding optimal partitions
based on the heuristics that a better clustering assumes clear separation between the clus-
ters, minimal volume of the clusters and maximal number of data points concentrated in the
vicinity of the cluster centroids. These indexes are only for the cmeans clustering algorithm
valid. For the first, the “fuzzy hypervolume” we have: FHV =

∑c
j=1 [det(Fj)]

1/2, where

Fj =
∑N

i=1 uij(xi−vj)(xi−vj)
T∑N

i=1 uij
, for the case when the defuzzification parameter is 2. For the

second, the “average partition density”: DPA = 1
k

∑k
j=1

Sj

[det(Fj)]
1/2 , where Sj =

∑N
i=1 uij .

Moreover, the “partition density” which expresses the general partition density according to
the physical definition of density is calculated by: PD = S

FHV
, where S =

∑k
j=1

∑N
i=1 uij .

xie.beni: This index is a function of the data set and the centroids of the clusters. Xie and Beni
explained this index by writing it as a ratio of the total variation of the partition and the
centroids $(U,V)$ and the separation of the centroids vectors. The minimum values of this

index under comparison support the best partitions. uXB(U, V ;X) =
∑k

j=1

∑N
i=1 u2

ij ||xi−vj ||2

N(minj ̸=l{||vj−vl||2})

fukuyama.sugeno: This index consists of the difference of two terms, the first combining the fuzzi-
ness in the membership matrix with the geometrical compactness of the representation of the
data set via the prototypes, and the second the fuzziness in its row of the partition matrix with
the distance from the $i$th prototype to the grand mean of the data. The minimum values of
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this index also propose a good partition. uFS(U, V ;X) =
∑N

i=1

∑k
j=1(u

2
ij)

q(||xi − vj ||2 −
||vj − v̄||2)

partition.coefficient: An index which measures the fuzziness of the partition but without consid-
ering the data set itself. It is a heuristic measure since it has no connection to any property
of the data. The maximum values of it imply a good partition in the meaning of a least fuzzy
clustering. F (U ; k) = tr(UUT )

N = <U,U>
N = ||U ||2

N

• F (U ; k) shows the fuzziness or the overlap of the partition and depends on kN elements.
• 1/k ≤ F (U ; k) ≤ 1, where if F (U ; k) = 1 then U is a hard partition and if F (U ; k) =
1/k then U = [1/k] is the centroid of the fuzzy partion space Pfk. The converse is also
valid.

partition.entropy: It is a measure that provides information about the membership matrix without
also considering the data itself. The minimum values imply a good partition in the meaning of
a more crisp partition. H(U ; k) =

∑N
i=1 h(ui)/N , where h(u) = −

∑k
j=1 uj loga(uj) the

Shannon’s entropy.
• H(U ; k) shows the uncertainty of a fuzzy partition and depends also on kN elements.

Specifically, h(ui) is interpreted as the amount of fuzzy information about the member-
ship of xi in k classes that is retained by column uj . Thus, at U = [1/k] the most
information is withheld since the membership is the fuzziest possible.

• 0 ≤ H(U ; k) ≤ loga(k), where for H(U ; k) = 0 U is a hard partition and for H(U ; k) =
loga(k) U = [1/k].

proportion.exponent: It is a measure P (U ; k) of fuzziness adept to detect structural variations in
the partition matrix as it becomes more fuzzier. A crisp cluster in the partition matrix can
drive it to infinity when the partition coefficient and the partition entropy are more sensitive
to small changes when approaching a hard partition. Its evaluation does not also involve the
data or the algorithm used to partition them and its maximum implies the optimal partition but
without knowing what maximum is a statistically significant maximum.

• 0 ≤ P (U ; k) < ∞, since the [0, 1] values explode to [0,∞) due to the natural logarithm.
Specifically, P = 0 when and only when U = [1/k], while P → ∞ when any column of
U is crisp.

• P (U ; k) can easily explode and it is good for partitions with large column maximums
and at detecting structural variations.

separation.index (known as CS Index): This index identifies unique cluster structure with well-
defined properties that depend on the data and a measure of distance. It answers the question if
the clusters are compact and separated, but it rather seems computationally infeasible for big
data sets since a distance matrix between all the data membership values has to be calculated.
It also presupposes that a hard partition is derived from the fuzzy one.
D1(U ; k;X, d) = mini+1≤ l≤ k−1

{
min1≤ j ≤ k

{
dis(uj ,ul)

max1≤m≤k{dia(um)}

}}
, where dia is the

diameter of the subset, dis the distance of two subsets, and d a metric. U is a CS partition of
X ⇔ D1 > 1. When this holds then U is unique.

Value

Returns a vector with the validity measures values.

Author(s)

Evgenia Dimitriadou



20 gknn

References

James C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press,
1981, NY.
L. X. Xie and G. Beni, Validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 3, n. 8, p. 841-847, 1991.
I. Gath and A. B. Geva, Unsupervised Optimal Fuzzy Clustering, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, n. 7, p. 773-781, 1989.
Y. Fukuyama and M. Sugeno, A new method of choosing the number of clusters for the fuzzy $c$-
means method, Proc. 5th Fuzzy Syst. Symp., p. 247-250, 1989 (in japanese).

See Also

cmeans

Examples

# a 2-dimensional example
x<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),

matrix(rnorm(100,mean=1,sd=0.3),ncol=2))
cl<-cmeans(x,2,20,verbose=TRUE,method="cmeans")
resultindexes <- fclustIndex(cl,x, index="all")
resultindexes

gknn Generalized k-Nearest Neighbors Classification or Regression

Description

gknn is an implementation of the k-nearest neighbours algorithm making use of general distance
measures. A formula interface is provided.

Usage

## S3 method for class 'formula'
gknn(formula, data = NULL, ..., subset, na.action = na.pass, scale = TRUE)
## Default S3 method:
gknn(x, y, k = 1, method = NULL,

scale = TRUE, use_all = TRUE,
FUN = mean, ...)

## S3 method for class 'gknn'
predict(object, newdata,

type = c("class", "votes", "prob"),
...,
na.action = na.pass)
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Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘gknn’ is called from.

x a data matrix.

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for regression).

k number of neighbours considered.

scale a logical vector indicating the variables to be scaled. If scale is of length 1,
the value is recycled as many times as needed. By default, numeric matrices are
scaled to zero mean and unit variance. The center and scale values are returned
and used for later predictions. Note that the default metric for data frames is the
Gower metric which standardizes the values to the unit interval.

method Argument passed to dist() from the proxy package to select the distance met-
ric used: a function, or a mnemonic string referencing the distance measure.
Defaults to "Euclidean" for metric matrices, to "Jaccard" for logical matrices
and to "Gower" for data frames.

use_all controls handling of ties. If true, all distances equal to the kth largest are in-
cluded. If false, a random selection of distances equal to the kth is chosen to use
exactly k neighbours.

FUN function used to aggregate the k nearest target values in case of regression.

object object of class gknn.

newdata matrix or data frame with new instances.

type character specifying the return type in case of class predictions: for "class", the
class labels; for "prob", the class distribution for all k neighbours considered;
for "votes", the raw counts.

... additional parameters passed to dist()

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is na.pass. (NOTE: If given, this argument must be named.)

Value

For gknn(), an object of class "gknn" containing the data and the specified parameters. For
predict.gknn(), a vector of predictions, or a matrix with votes for all classes. In case of an
overall class tie, the predicted class is chosen by random.

Author(s)

David Meyer (<David.Meyer@R-project.org>)

See Also

dist (in package proxy)
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Examples

data(iris)

model <- gknn(Species ~ ., data = iris)
predict(model, iris[c(1, 51, 101),])

test = c(45:50, 95:100, 145:150)

model <- gknn(Species ~ ., data = iris[-test,], k = 3, method = "Manhattan")
predict(model, iris[test,], type = "votes")

model <- gknn(Species ~ ., data = iris[-test], k = 3, method = "Manhattan")
predict(model, iris[test,], type = "prob")

hamming.distance Hamming Distances of Vectors

Description

If both x and y are vectors, hamming.distance returns the Hamming distance (number of different
elements) between this two vectors. If x is a matrix, the Hamming distances between the rows of x
are computed and y is ignored.

Usage

hamming.distance(x, y)

Arguments

x a vector or matrix.

y an optional vector.

Examples

x <- c(1, 0, 0)
y <- c(1, 0, 1)
hamming.distance(x, y)
z <- rbind(x,y)
rownames(z) <- c("Fred", "Tom")
hamming.distance(z)

hamming.distance(1:3, 3:1)
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hamming.window Computes the Coefficients of a Hamming Window.

Description

The filter coefficients wi of a Hamming window of length n are computed according to the formula

wi = 0.54− 0.46 cos
2πi

n− 1

Usage

hamming.window(n)

Arguments

n The length of the window.

Value

A vector containing the filter coefficients.

Author(s)

Andreas Weingessel

References

For a definition of the Hamming window, see for example
Alan V. Oppenheim and Roland W. Schafer: "Discrete-Time Signal Processing", Prentice-Hall,
1989.

See Also

stft, hanning.window

Examples

hamming.window(10)

x<-rnorm(500)
y<-stft(x, wtype="hamming.window")
plot(y)
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hanning.window Computes the Coefficients of a Hanning Window.

Description

The filter coefficients wi of a Hanning window of length n are computed according to the formula

wi = 0.5− 0.5 cos
2πi

n− 1

Usage

hanning.window(n)

Arguments

n The length of the window.

Value

A vector containing the filter coefficients.

Author(s)

Andreas Weingessel

References

For a definition of the Hanning window, see for example
Alan V. Oppenheim and Roland W. Schafer: "Discrete-Time Signal Processing", Prentice-Hall,
1989.

See Also

stft, hamming.window

Examples

hanning.window(10)

x<-rnorm(500)
y<-stft(x, wtype="hanning.window")
plot(y)
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hsv_palette Sequential color palette based on HSV colors

Description

Computes a sequential color palette based on HSV colors by varying the saturation, given hue and
value.

Usage

hsv_palette(h = 2/3, from = 0.7, to = 0.2, v = 1)

Arguments

h hue

from lower bound for saturation

to upper bound for saturation

v value

Value

A function with one argument: the size of the palette, i.e., the number of colors.

Author(s)

David Meyer <David.Meyer@R-project.org>

See Also

hsv

Examples

pie(rep(1, 10), col = hsv_palette()(10))
pie(rep(1, 10), col = hsv_palette(h = 0)(10))
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ica Independent Component Analysis

Description

This is an R-implementation of the Matlab-Function of Petteri.Pajunen@hut.fi.

For a data matrix X independent components are extracted by applying a nonlinear PCA algorithm.
The parameter fun determines which nonlinearity is used. fun can either be a function or one of the
following strings "negative kurtosis", "positive kurtosis", "4th moment" which can be abbreviated to
uniqueness. If fun equals "negative (positive) kurtosis" the function tanh (x-tanh(x)) is used which
provides ICA for sources with negative (positive) kurtosis. For fun == "4th moments" the signed
square function is used.

Usage

ica(X, lrate, epochs=100, ncomp=dim(X)[2], fun="negative")

Arguments

X The matrix for which the ICA is to be computed

lrate learning rate

epochs number of iterations

ncomp number of independent components

fun function used for the nonlinear computation part

Value

An object of class "ica" which is a list with components

weights ICA weight matrix

projection Projected data

epochs Number of iterations

fun Name of the used function

lrate Learning rate used

initweights Initial weight matrix

Note

Currently, there is no reconstruction from the ICA subspace to the original input space.

Author(s)

Andreas Weingessel
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References

Oja et al., “Learning in Nonlinear Constrained Hebbian Networks”, in Proc. ICANN-91, pp. 385–
390.

Karhunen and Joutsensalo, “Generalizations of Principal Component Analysis, Optimization Prob-
lems, and Neural Networks”, Neural Networks, v. 8, no. 4, pp. 549–562, 1995.

impute Replace Missing Values

Description

Replaces missing values of a matrix or dataframe with the medians (what="median") or means
(what="mean") of the respective columns.

Usage

impute(x, what = c("median", "mean"))

Arguments

x A matrix or dataframe.

what What to impute.

Value

A matrix or dataframe.

Author(s)

Friedrich Leisch

Examples

x<- matrix(1:10, ncol=2)
x[c(1,3,7)] <- NA
print(x)
print(impute(x))
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interpolate Interpolate Values of Array

Description

For each row in matrix x, the hypercube of a containing this point is searched. The corners of the
hypercube are linearly interpolated. By default, dimnames(a) is taken to contain the coordinate
values for each point in a. This can be overridden using adims. If method=="constant", the value
of the “lower left” corner of the hypercube is returned.

Usage

interpolate(x, a, adims=lapply(dimnames(a), as.numeric),
method="linear")

Arguments

x Matrix of values at which interpolation shall take place.

a Array of arbitrary dimension.

adims List of the same structure as dimnames(a).

method Interpolation method, one of "linear" or "constant".

Author(s)

Friedrich Leisch

See Also

approx, spline

Examples

x <- seq(0,3,0.2)
z <- outer(x,x, function(x,y) sin(x*y))
dimnames(z) <- list(x,x)
sin(1.1*2.1)
interpolate(c(1.1, 2.1),z)
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kurtosis Kurtosis

Description

Computes the kurtosis.

Usage

kurtosis(x, na.rm = FALSE, type = 3)

Arguments

x a numeric vector containing the values whose kurtosis is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

type an integer between 1 and 3 selecting one of the algorithms for computing kurto-
sis detailed below.

Details

If x contains missings and these are not removed, the kurtosis is NA.

Otherwise, write xi for the non-missing elements of x, n for their number, µ for their mean, s for
their standard deviation, and mr =

∑
i(xi − µ)r/n for the sample moments of order r.

Joanes and Gill (1998) discuss three methods for estimating kurtosis:

Type 1: g2 = m4/m
2
2 − 3. This is the typical definition used in many older textbooks.

Type 2: G2 = ((n+ 1)g2 + 6) ∗ (n− 1)/((n− 2)(n− 3)). Used in SAS and SPSS.

Type 3: b2 = m4/s
4 − 3 = (g2 + 3)(1− 1/n)2 − 3. Used in MINITAB and BMDP.

Only G2 (corresponding to type = 2) is unbiased under normality.

Value

The estimated kurtosis of x.

References

D. N. Joanes and C. A. Gill (1998), Comparing measures of sample skewness and kurtosis. The
Statistician, 47, 183–189.

Examples

x <- rnorm(100)
kurtosis(x)
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lca Latent Class Analysis (LCA)

Description

A latent class analysis with k classes is performed on the data given by x.

Usage

lca(x, k, niter=100, matchdata=FALSE, verbose=FALSE)

Arguments

x Either a data matrix of binary observations or a list of patterns as created by
countpattern

k Number of classes used for LCA

niter Number of Iterations

matchdata If TRUE and x is a data matrix, the class membership of every data point is
returned, otherwise the class membership of every pattern is returned.

verbose If TRUE some output is printed during the computations.

Value

An object of class "lca" is returned, containing

w Probabilities to belong to each class

p Probabilities of a ‘1’ for each variable in each class

matching Depending on matchdata either the class membership of each pattern or of each
data point

logl, loglsat The LogLikelihood of the model and of the saturated model

bic, bicsat The BIC of the model and of the saturated model

chisq Pearson’s Chisq

lhquot Likelihood quotient of the model and the saturated model

n Number of data points.

np Number of free parameters.

Author(s)

Andreas Weingessel

References

Anton K. Formann: “Die Latent-Class-Analysis”, Beltz Verlag 1984
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See Also

countpattern, bootstrap.lca

Examples

## Generate a 4-dim. sample with 2 latent classes of 500 data points each.
## The probabilities for the 2 classes are given by type1 and type2.
type1 <- c(0.8, 0.8, 0.2, 0.2)
type2 <- c(0.2, 0.2, 0.8, 0.8)
x <- matrix(runif(4000), nrow = 1000)
x[1:500,] <- t(t(x[1:500,]) < type1) * 1
x[501:1000,] <- t(t(x[501:1000,]) < type2) * 1

l <- lca(x, 2, niter=5)
print(l)
summary(l)
p <- predict(l, x)
table(p, c(rep(1,500),rep(2,500)))

matchClasses Find Similar Classes in Two-way Contingency Tables

Description

Try to find a mapping between the two groupings, such that as many cases as possible are in one of
the matched pairs.

Usage

matchClasses(tab, method="rowmax", iter=1, maxexact=9, verbose=TRUE)
compareMatchedClasses(x, y, method="rowmax", iter=1,

maxexact=9, verbose=FALSE)

Arguments

tab Two-way contingency table of class memberships

method One of "rowmax", "greedy" or "exact".

iter Number of iterations used in greedy search.

verbose If TRUE, display some status messages during computation.

maxexact Maximum number of variables for which all possible permutations are com-
puted.

x, y Vectors or matrices with class memberships.
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Details

If method="rowmax", then each class defining a row in the contingency table is mapped to the
column of the corresponding row maximum. Hence, some columns may be mapped to more than
one row (while each row is mapped to a single column).

If method="greedy" or method="exact", then the contingency table must be a square matrix and
a unique mapping is computed. This corresponds to a permutation of columns and rows, such that
sum of the main diagonal, i.e., the trace of the matrix, gets as large as possible. For both methods,
first all pairs where row and columns maxima correspond and are bigger than the sum of all other
elements in the corresponding columns and rows together are located and fixed (this is a necessary
condition for maximal trace).

If method="exact", then for the remaining rows and columns, all possible permutations are com-
puted and the optimum is returned. This can get computationally infeasible very fast. If more than
maxexact rows and columns remain after applying the necessary condition, then method is reset to
"greedy". If method="greedy", then a greedy heuristic is tried iter times. Repeatedly a row is
picked at random and matched to the free column with the maximum value.

compareMatchedClasses() computes the contingency table for each combination of columns from
x and y and applies matchClasses to that table. The columns of the table are permuted accordingly
and then the table is passed to classAgreement. The resulting agreement coefficients (diag, kappa,
. . . ) are returned. The return value of compareMatchedClasses() is a list containing a matrix for
each coefficient; with element (k,l) corresponding to the k-th column of x and l-th column of y. If y
is missing, then the columns of x are compared with each other.

Author(s)

Friedrich Leisch

See Also

classAgreement

Examples

## a stupid example with no class correlations:
g1 <- sample(1:5, size=1000, replace=TRUE)
g2 <- sample(1:5, size=1000, replace=TRUE)
tab <- table(g1, g2)
matchClasses(tab, "exact")

## let pairs (g1=1,g2=4) and (g1=3,g2=1) agree better
k <- sample(1:1000, size=200)
g1[k] <- 1
g2[k] <- 4

k <- sample(1:1000, size=200)
g1[k] <- 3
g2[k] <- 1

tab <- table(g1, g2)
matchClasses(tab, "exact")
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## get agreement coefficients:
compareMatchedClasses(g1, g2, method="exact")

matchControls Find Matched Control Group

Description

Finds controls matching the cases as good as possible.

Usage

matchControls(formula, data = list(), subset, contlabel = "con",
caselabel = NULL, dogrep = TRUE, replace = FALSE)

Arguments

formula A formula indicating cases, controls and the variables to be matched. Details
are described below.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which matchControls is called from.

subset an optional vector specifying a subset of observations to be used in the matching
process.

contlabel A string giving the label of the control group.

caselabel A string giving the labels of the cases.

dogrep If TRUE, then contlabel and contlabel are matched using grep, else string
comparison (exact equality) is used.

replace If FALSE, then every control is used only once.

Details

The left hand side of the formula must be a factor determining whether an observation belongs to
the case or the control group. By default, all observations where a grep of contlabel matches,
are used as possible controls, the rest is taken as cases. If caselabel is given, then only those
observations are taken as cases. If dogrep = TRUE, then both contlabel and caselabel can be
regular expressions.

The right hand side of the formula gives the variables that should be matched. The matching is
done using the daisy distance from the cluster package, i.e., a model frame is built from the
formula and used as input for daisy. For each case, the nearest control is selected. If replace =
FALSE, each control is used only once.
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Value

Returns a list with components

cases Row names of cases.

controls Row names of matched controls.

factor A factor with 2 levels indicating cases and controls (the rest is set to NA.

Author(s)

Friedrich Leisch

Examples

Age.case <- 40 + 5 * rnorm(50)
Age.cont <- 45 + 10 * rnorm(150)
Age <- c(Age.case, Age.cont)

Sex.case <- sample(c("M", "F"), 50, prob = c(.4, .6), replace = TRUE)
Sex.cont <- sample(c("M", "F"), 150, prob = c(.6, .4), replace = TRUE)
Sex <- as.factor(c(Sex.case, Sex.cont))

casecont <- as.factor(c(rep("case", 50), rep("cont", 150)))

## now look at the group properties:
boxplot(Age ~ casecont)
barplot(table(Sex, casecont), beside = TRUE)

m <- matchControls(casecont ~ Sex + Age)

## properties of the new groups:
boxplot(Age ~ m$factor)
barplot(table(Sex, m$factor))

moment Statistical Moment

Description

Computes the (optionally centered and/or absolute) sample moment of a certain order.

Usage

moment(x, order=1, center=FALSE, absolute=FALSE, na.rm=FALSE)
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Arguments

x a numeric vector containing the values whose moment is to be computed.

order order of the moment to be computed, the default is to compute the first moment,
i.e., the mean.

center a logical value indicating whether centered moments are to be computed.

absolute a logical value indicating whether absolute moments are to be computed.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Details

When center and absolute are both FALSE, the moment is simply sum(x ^ order) / length(x).

Author(s)

Kurt Hornik and Friedrich Leisch

See Also

mean, var

Examples

x <- rnorm(100)

## Compute the mean
moment(x)
## Compute the 2nd centered moment (!= var)
moment(x, order=2, center=TRUE)

## Compute the 3rd absolute centered moment
moment(x, order=3, center=TRUE, absolute=TRUE)

naiveBayes Naive Bayes Classifier

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule.
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Usage

## S3 method for class 'formula'
naiveBayes(formula, data, laplace = 0, ..., subset, na.action = na.pass)
## Default S3 method:
naiveBayes(x, y, laplace = 0, ...)

## S3 method for class 'naiveBayes'
predict(object, newdata,
type = c("class", "raw"), threshold = 0.001, eps = 0, ...)

Arguments

x A numeric matrix, or a data frame of categorical and/or numeric variables.

y Class vector.

formula A formula of the form class ~ x1 + x2 + .... Interactions are not allowed.

data Either a data frame of predictors (categorical and/or numeric) or a contingency
table.

laplace positive double controlling Laplace smoothing. The default (0) disables Laplace
smoothing.

... Currently not used.

subset For data given in a data frame, an index vector specifying the cases to be used
in the training sample. (NOTE: If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
not to count them for the computation of the probability factors. An alternative
is na.omit, which leads to rejection of cases with missing values on any required
variable. (NOTE: If given, this argument must be named.)

object An object of class "naiveBayes".

newdata A dataframe with new predictors (with possibly fewer columns than the training
data). Note that the column names of newdata are matched against the training
data ones.

type If "raw", the conditional a-posterior probabilities for each class are returned,
and the class with maximal probability else.

threshold Value replacing cells with probabilities within eps range.

eps double for specifying an epsilon-range to apply laplace smoothing (to replace
zero or close-zero probabilities by theshold.)

Details

The standard naive Bayes classifier (at least this implementation) assumes independence of the
predictor variables, and Gaussian distribution (given the target class) of metric predictors. For
attributes with missing values, the corresponding table entries are omitted for prediction.
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Value

An object of class "naiveBayes" including components:

apriori Class distribution for the dependent variable.
tables A list of tables, one for each predictor variable. For each categorical variable a

table giving, for each attribute level, the conditional probabilities given the target
class. For each numeric variable, a table giving, for each target class, mean and
standard deviation of the (sub-)variable.

Author(s)

David Meyer <David.Meyer@R-project.org>. Laplace smoothing enhancement by Jinghao Xue.

Examples

## Categorical data only:
data(HouseVotes84, package = "mlbench")
model <- naiveBayes(Class ~ ., data = HouseVotes84)
predict(model, HouseVotes84[1:10,])
predict(model, HouseVotes84[1:10,], type = "raw")

pred <- predict(model, HouseVotes84)
table(pred, HouseVotes84$Class)

## using laplace smoothing:
model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)
pred <- predict(model, HouseVotes84[,-1])
table(pred, HouseVotes84$Class)

## Example of using a contingency table:
data(Titanic)
m <- naiveBayes(Survived ~ ., data = Titanic)
m
predict(m, as.data.frame(Titanic))

## Example with metric predictors:
data(iris)
m <- naiveBayes(Species ~ ., data = iris)
## alternatively:
m <- naiveBayes(iris[,-5], iris[,5])
m
table(predict(m, iris), iris[,5])

permutations All Permutations of Integers 1:n

Description

Returns a matrix containing all permutations of the integers 1:n (one permutation per row).
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Usage

permutations(n)

Arguments

n Number of element to permute.

Author(s)

Friedrich Leisch

Examples

permutations(3)

plot.stft Plot Short Time Fourier Transforms

Description

An object of class "stft" is plotted as a gray scale image. The x-axis corresponds to time, the
y-axis to frequency. If the default colormap is used, dark regions in the plot correspond to high
values at the particular time/frequency location.

Usage

## S3 method for class 'stft'
plot(x, col = gray(63:0/63), ...)

Arguments

x An object of class "stft" as obtained by the function stft.

col An optional colormap. By default 64 gray values are used, where white corre-
sponds to the minimum value and black to the maximum.

... further arguments to be passed to or from methods.

Value

No return value. This function is only for plotting.

Author(s)

Andreas Weingessel

See Also

stft
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Examples

x<-rnorm(500)
y<-stft(x)
plot(y)

plot.svm Plot SVM Objects

Description

Generates a scatter plot of the input data of a svm fit for classification models by highlighting the
classes and support vectors. Optionally, draws a filled contour plot of the class regions.

Usage

## S3 method for class 'svm'
plot(x, data, formula, fill = TRUE, grid = 50, slice = list(),
symbolPalette = palette(), svSymbol = "x", dataSymbol = "o", ...)

Arguments

x An object of class svm

data data to visualize. Should be the same used for fitting.

formula formula selecting the visualized two dimensions. Only needed if more than two
input variables are used.

fill switch indicating whether a contour plot for the class regions should be added.

grid granularity for the contour plot.

slice a list of named values for the dimensions held constant (only needed if more
than two variables are used). The defaults for unspecified dimensions are 0 (for
numeric variables) and the first level (for factors). Factor levels can either be
specified as factors or character vectors of length 1.

symbolPalette Color palette used for the class the data points and support vectors belong to.

svSymbol Symbol used for support vectors.

dataSymbol Symbol used for data points (other than support vectors).

... additional graphics parameters passed to filled.contour and plot.

Author(s)

David Meyer
<David.Meyer@R-project.org>

See Also

svm
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Examples

## a simple example
data(cats, package = "MASS")
m <- svm(Sex~., data = cats)
plot(m, cats)

## more than two variables: fix 2 dimensions
data(iris)
m2 <- svm(Species~., data = iris)
plot(m2, iris, Petal.Width ~ Petal.Length,

slice = list(Sepal.Width = 3, Sepal.Length = 4))

## plot with custom symbols and colors
plot(m, cats, svSymbol = 1, dataSymbol = 2, symbolPalette = rainbow(4),
color.palette = terrain.colors)

plot.tune Plot Tuning Object

Description

Visualizes the results of parameter tuning.

Usage

## S3 method for class 'tune'
plot(x, type = c("contour", "perspective"), theta = 60,

col = "lightblue", main = NULL, xlab = NULL, ylab = NULL,
swapxy = FALSE, transform.x = NULL, transform.y = NULL,
transform.z = NULL, color.palette = hsv_palette(),
nlevels = 20, ...)

Arguments

x an object of class tune

type choose whether a contour plot or a perspective plot is used if two parameters are
to be visualized. Ignored if only one parameter has been tuned.

theta angle of azimuthal direction.

col the color(s) of the surface facets. Transparent colors are ignored.

main main title

xlab, ylab titles for the axes. N.B. These must be character strings; expressions are not
accepted. Numbers will be coerced to character strings.

swapxy if TRUE, the parameter axes are swaped (only used in case of two parameters).
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transform.x, transform.y, transform.z
functions to transform the parameters (x and y) and the error measures (z). Ig-
nored if NULL.

color.palette color palette used in contour plot.

nlevels number of levels used in contour plot.

... Further graphics parameters.

Author(s)

David Meyer (based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin)
<David.Meyer@R-project.org>

See Also

tune

Examples

data(iris)
obj <- tune.svm(Species~., data = iris, sampling = "fix",

gamma = 2^c(-8,-4,0,4), cost = 2^c(-8,-4,-2,0))
plot(obj, transform.x = log2, transform.y = log2)
plot(obj, type = "perspective", theta = 120, phi = 45)

predict.svm Predict Method for Support Vector Machines

Description

This function predicts values based upon a model trained by svm.

Usage

## S3 method for class 'svm'
predict(object, newdata, decision.values = FALSE,
probability = FALSE, ..., na.action = na.omit)

Arguments

object Object of class "svm", created by svm.

newdata An object containing the new input data: either a matrix or a sparse matrix (ob-
ject of class Matrix provided by the Matrix package, or of class matrix.csr
provided by the SparseM package, or of class simple_triplet_matrix pro-
vided by the slam package). A vector will be transformed to a n x 1 matrix.

decision.values

Logical controlling whether the decision values of all binary classifiers com-
puted in multiclass classification shall be computed and returned.
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probability Logical indicating whether class probabilities should be computed and returned.
Only possible if the model was fitted with the probability option enabled.

na.action A function to specify the action to be taken if ‘NA’s are found. The default
action is na.omit, which leads to rejection of cases with missing values on any
required variable. An alternative is na.fail, which causes an error if NA cases
are found. (NOTE: If given, this argument must be named.)

... Currently not used.

Value

A vector of predicted values (for classification: a vector of labels, for density estimation: a logical
vector). If decision.value is TRUE, the vector gets a "decision.values" attribute containing a n
x c matrix (n number of predicted values, c number of classifiers) of all c binary classifiers’ decision
values. There are k * (k - 1) / 2 classifiers (k number of classes). The colnames of the matrix
indicate the labels of the two classes. If probability is TRUE, the vector gets a "probabilities"
attribute containing a n x k matrix (n number of predicted values, k number of classes) of the class
probabilities.

Note

If the training set was scaled by svm (done by default), the new data is scaled accordingly using
scale and center of the training data.

Author(s)

David Meyer (based on C++-code by Chih-Chung Chang and Chih-Jen Lin)
<David.Meyer@R-project.org>

See Also

svm

Examples

data(iris)
attach(iris)

## classification mode
# default with factor response:
model <- svm(Species ~ ., data = iris)

# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- Species
model <- svm(x, y, probability = TRUE)

print(model)
summary(model)

# test with train data
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pred <- predict(model, x)
# (same as:)
pred <- fitted(model)

# compute decision values and probabilites
pred <- predict(model, x, decision.values = TRUE, probability = TRUE)
attr(pred, "decision.values")[1:4,]
attr(pred, "probabilities")[1:4,]

## try regression mode on two dimensions

# create data
x <- seq(0.1, 5, by = 0.05)
y <- log(x) + rnorm(x, sd = 0.2)

# estimate model and predict input values
m <- svm(x, y)
new <- predict(m, x)

# visualize
plot (x, y)
points (x, log(x), col = 2)
points (x, new, col = 4)

## density-estimation

# create 2-dim. normal with rho=0:
X <- data.frame(a = rnorm(1000), b = rnorm(1000))
attach(X)

# traditional way:
m <- svm(X, gamma = 0.1)

# formula interface:
m <- svm(~., data = X, gamma = 0.1)
# or:
m <- svm(~ a + b, gamma = 0.1)

# test:
newdata <- data.frame(a = c(0, 4), b = c(0, 4))
predict (m, newdata)

# visualize:
plot(X, col = 1:1000 %in% m$index + 1, xlim = c(-5,5), ylim=c(-5,5))
points(newdata, pch = "+", col = 2, cex = 5)

probplot Probability Plot
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Description

Generates a probability plot for a specified theoretical distribution, i.e., basically a qqplot where
the y-axis is labeled with probabilities instead of quantiles. The function is mainly intended for
teaching the concept of quantile plots.

Usage

probplot(x, qdist=qnorm, probs=NULL, line=TRUE,
xlab=NULL, ylab="Probability in %", ...)

## S3 method for class 'probplot'
lines(x, h=NULL, v=NULL, bend=FALSE, ...)

Arguments

x A data vector for probplot, an object of class probplot for the lines method.

qdist A character string or a function for the quantiles of the target distribution.

probs Vector of probabilities at which horizontal lines should be drawn.

line Add a line passing through the quartiles to the plot?

xlab, ylab Graphical parameters.

h The y-value for a horizontal line.

v The x-value for a vertical line.

bend If TRUE, lines are “bent” at the quartile line, else regular ablines are added. See
examples.

... Further arguments for qdist and graphical parameters for lines.

Author(s)

Friedrich Leisch

See Also

qqplot

Examples

## a simple example
x <- rnorm(100, mean=5)
probplot(x)

## the same with horizontal tickmarks at the y-axis
opar <- par("las")
par(las=1)
probplot(x)

## this should show the lack of fit at the tails
probplot(x, "qunif")

## for increasing degrees of freedom the t-distribution converges to
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## normal
probplot(x, qt, df=1)
probplot(x, qt, df=3)
probplot(x, qt, df=10)
probplot(x, qt, df=100)

## manually add the line through the quartiles
p <- probplot(x, line=FALSE)
lines(p, col="green", lty=2, lwd=2)

## Make the line at prob=0.5 red
lines(p, h=0.5, col="red")

### The following use the estimted distribution given by the green
### line:

## What is the probability that x is smaller than 7?
lines(p, v=7, bend=TRUE, col="blue")

## Median and 90% confidence interval
lines(p, h=.5, col="red", lwd=3, bend=TRUE)
lines(p, h=c(.05, .95), col="red", lwd=2, lty=3, bend=TRUE)

par(opar)

rbridge Simulation of Brownian Bridge

Description

rwiener returns a time series containing a simulated realization of the Brownian bridge on the
interval [0,end]. If W(t) is a Wiener process, then the Brownian bridge is defined as W(t) - t W(1).

Usage

rbridge(end = 1, frequency = 1000)

Arguments

end the time of the last observation.

frequency the number of observations per unit of time.

See Also

rwiener
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Examples

# simulate a Brownian bridge on [0,1] and plot it

x <- rbridge()
plot(x,type="l")

read.matrix.csr Read/Write Sparse Data

Description

reads and writes a file in sparse data format.

Usage

read.matrix.csr(file, fac = TRUE, ncol = NULL)
write.matrix.csr(x, file = "out.dat", y = NULL, fac = TRUE)

Arguments

x An object of class matrix.csr

y A vector (either numeric or a factor)

file The filename.

fac If TRUE, the y-values (if any) are interpreted as factor levels.

ncol Number of columns, detected automatically. Can be used to add empty columns
(possibly not stored in the sparse format).

Value

If the data file includes no y variable, read.matrix.csr returns an object of class matrix.csr,
else a list with components:

x object of class matrix.csr

y vector of numeric values or factor levels, depending on fac.

Author(s)

David Meyer
<David.Meyer@R-project.org>

See Also

matrix.csr
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Examples

## Not run:
library(methods)
if (require(SparseM)) {

data(iris)
x <- as.matrix(iris[,1:4])
y <- iris[,5]
xs <- as.matrix.csr(x)
write.matrix.csr(xs, y = y, file = "iris.dat")
xs2 <- read.matrix.csr("iris.dat")$x
if (!all(as.matrix(xs) == as.matrix(xs2)))

stop("Error: objects are not equal!")
}

## End(Not run)

rectangle.window Computes the Coefficients of a Rectangle Window.

Description

Returns the filter coefficients of a rectangle window. That is a vector of n 1.

The purpose of this function is just to have a name for the R command rep (1, n).

Usage

rectangle.window(n)

Arguments

n The length of the window.

Value

A vector of length n filled with 1.

Author(s)

Andreas Weingessel

See Also

stft

Examples

x<-rnorm(500)
y<-stft(x, wtype="rectangle.window")
plot(y)
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rwiener Simulation of Wiener Process

Description

rwiener returns a time series containing a simulated realization of the Wiener process on the inter-
val [0,end]

Usage

rwiener(end = 1, frequency = 1000)

Arguments

end the time of the last observation.

frequency the number of observations per unit of time.

Examples

# simulate a Wiener process on [0,1] and plot it

x <- rwiener()
plot(x,type="l")

scale_data_frame Scaling and Centering of Data Frames

Description

scale_data_frame centers and/or scales the columns of a data frame (or matrix).

Usage

scale_data_frame(x, center = TRUE, scale = TRUE)

Arguments

x a data frame or a numeric matrix (or vector). For matrices or vectors, scale()
is used.

center either a logical value or numeric-alike vector of length equal to the number of
columns of x, where ‘numeric-alike’ means that as.numeric(.) will be applied
successfully if is.numeric(.) is not true.

scale either a logical value or a numeric-alike vector of length equal to the number of
columns of x.
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Details

The value of center determines how column centering is performed. If center is a numeric-alike
vector with length equal to the number of numeric/logical columns of x, then each column of x
has the corresponding value from center subtracted from it. If center is TRUE then centering is
done by subtracting the column means (omitting NAs) of x from their corresponding columns, and
if center is FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scale is a
numeric-alike vector with length equal to the number of numeric/logiocal columns of x, then each
column of x is divided by the corresponding value from scale. If scale is TRUE then scaling is
done by dividing the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise. If scale is FALSE, no scaling is done.

The root-mean-square for a (possibly centered) column is defined as
√∑

(x2)/(n− 1), where x is
a vector of the non-missing values and n is the number of non-missing values. In the case center
= TRUE, this is the same as the standard deviation, but in general it is not. (To scale by the standard
deviations without centering, use scale(x, center = FALSE, scale = apply(x, 2, sd, na.rm =
TRUE)).)

Value

For scale.default, the centered, scaled data frame. Non-numeric columns are ignored. Note
that logicals are treated as 0/1-numerics to be consistent with scale(). The numeric centering and
scalings used (if any) are returned as attributes "scaled:center" and "scaled:scale" - but only
for the numeric/logical columns.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

Examples

require(stats)
data(iris)
summary(scale_data_frame(iris))

sigmoid The Logistic Function and Derivatives

Description

Sigmoid 1/(1 + exp(−x)), first and second derivative.
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Usage

sigmoid(x)
dsigmoid(x)
d2sigmoid(x)

Arguments

x a numeric vector

Author(s)

Friedrich Leisch

Examples

plot(sigmoid, -5, 5, ylim = c(-.2, 1))
plot(dsigmoid, -5, 5, add = TRUE, col = 2)
plot(d2sigmoid, -5, 5, add = TRUE, col = 3)

skewness Skewness

Description

Computes the skewness.

Usage

skewness(x, na.rm = FALSE, type = 3)

Arguments

x a numeric vector containing the values whose skewness is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

type an integer between 1 and 3 selecting one of the algorithms for computing skew-
ness detailed below.

Details

If x contains missings and these are not removed, the skewness is NA.

Otherwise, write xi for the non-missing elements of x, n for their number, µ for their mean, s for
their standard deviation, and mr =

∑
i(xi − µ)r/n for the sample moments of order r.

Joanes and Gill (1998) discuss three methods for estimating skewness:

Type 1: g1 = m3/m
3/2
2 . This is the typical definition used in many older textbooks.
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Type 2: G1 = g1
√
n(n− 1)/(n− 2). Used in SAS and SPSS.

Type 3: b1 = m3/s
3 = g1((n− 1)/n)3/2. Used in MINITAB and BMDP.

All three skewness measures are unbiased under normality.

Value

The estimated skewness of x.

References

D. N. Joanes and C. A. Gill (1998), Comparing measures of sample skewness and kurtosis. The
Statistician, 47, 183–189.

Examples

x <- rnorm(100)
skewness(x)

stft Computes the Short Time Fourier Transform of a Vector

Description

This function computes the Short Time Fourier Transform of a given vector X.

First, time-slices of length win are extracted from the vector. The shift of one time-slice to the
next one is given by inc. The values of these time-slices are smoothed by mulitplying them with a
window function specified in wtype. For the thus obtained windows, the Fast Fourier Transform is
computed.

Usage

stft(X, win=min(80,floor(length(X)/10)), inc=min(24,
floor(length(X)/30)), coef=64, wtype="hanning.window")

Arguments

X The vector from which the stft is computed.

win Length of the window. For long vectors the default window size is 80, for short
vectors the window size is chosen so that 10 windows fit in the vector.

inc Increment by which the window is shifted. For long vectors the default incre-
ment is 24, for short vectors the increment is chosen so that 30 increments fit in
the vector.

coef Number of Fourier coefficients

wtype Type of window used
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Value

Object of type stft. Contains the values of the stft and information about the parameters.

values A matrix containing the results of the stft. Each row of the matrix contains the
coef Fourier coefficients of one window.

windowsize The value of the parameter win

increment The value of the parameter inc

windowtype The value of the parameter wtype

Author(s)

Andreas Weingessel

See Also

plot.stft

Examples

x<-rnorm(500)
y<-stft(x)
plot(y)

svm Support Vector Machines

Description

svm is used to train a support vector machine. It can be used to carry out general regression and
classification (of nu and epsilon-type), as well as density-estimation. A formula interface is pro-
vided.

Usage

## S3 method for class 'formula'
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
## Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)
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Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘svm’ is called from.

x a data matrix, a vector, or a sparse matrix (object of class Matrix provided by
the Matrix package, or of class matrix.csr provided by the SparseM package,
or of class simple_triplet_matrix provided by the slam package).

y a response vector with one label for each row/component of x. Can be either a
factor (for classification tasks) or a numeric vector (for regression).

scale A logical vector indicating the variables to be scaled. If scale is of length 1, the
value is recycled as many times as needed. Per default, data are scaled internally
(both x and y variables) to zero mean and unit variance. The center and scale
values are returned and used for later predictions.

type svm can be used as a classification machine, as a regression machine, or for
novelty detection. Depending of whether y is a factor or not, the default setting
for type is C-classification or eps-regression, respectively, but may be
overwritten by setting an explicit value.
Valid options are:

• C-classification

• nu-classification

• one-classification (for novelty detection)
• eps-regression

• nu-regression

kernel the kernel used in training and predicting. You might consider changing some
of the following parameters, depending on the kernel type.

linear: u′v

polynomial: (γu′v + coef0)degree

radial basis: e( − γ|u− v|2)
sigmoid: tanh(γu′v + coef0)

degree parameter needed for kernel of type polynomial (default: 3)

gamma parameter needed for all kernels except linear (default: 1/(data dimension))

coef0 parameter needed for kernels of type polynomial and sigmoid (default: 0)

cost cost of constraints violation (default: 1)—it is the ‘C’-constant of the regular-
ization term in the Lagrange formulation.

nu parameter needed for nu-classification, nu-regression, and one-classification

class.weights a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All com-
ponents have to be named. Specifying "inverse" will choose the weights in-
versely proportional to the class distribution.

cachesize cache memory in MB (default 40)

tolerance tolerance of termination criterion (default: 0.001)
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epsilon epsilon in the insensitive-loss function (default: 0.1)

shrinking option whether to use the shrinking-heuristics (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data is
performed to assess the quality of the model: the accuracy rate for classification
and the Mean Squared Error for regression

fitted logical indicating whether the fitted values should be computed and included in
the model or not (default: TRUE)

probability logical indicating whether the model should allow for probability predictions.

... additional parameters for the low level fitting function svm.default

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is
na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)

Details

For multiclass-classification with k levels, k>2, libsvm uses the ‘one-against-one’-approach, in
which k(k-1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme.

libsvm internally uses a sparse data representation, which is also high-level supported by the pack-
age SparseM.

If the predictor variables include factors, the formula interface must be used to get a correct model
matrix.

plot.svm allows a simple graphical visualization of classification models.

The probability model for classification fits a logistic distribution using maximum likelihood to
the decision values of all binary classifiers, and computes the a-posteriori class probabilities for
the multi-class problem using quadratic optimization. The probabilistic regression model assumes
(zero-mean) laplace-distributed errors for the predictions, and estimates the scale parameter using
maximum likelihood.

For linear kernel, the coefficients of the regression/decision hyperplane can be extracted using the
coef method (see examples).

Value

An object of class "svm" containing the fitted model, including:

SV The resulting support vectors (possibly scaled).

index The index of the resulting support vectors in the data matrix. Note that this index
refers to the preprocessed data (after the possible effect of na.omit and subset)

coefs The corresponding coefficients times the training labels.

rho The negative intercept.

sigma In case of a probabilistic regression model, the scale parameter of the hypothe-
sized (zero-mean) laplace distribution estimated by maximum likelihood.



svm 55

probA, probB numeric vectors of length k(k-1)/2, k number of classes, containing the parame-
ters of the logistic distributions fitted to the decision values of the binary classi-
fiers (1 / (1 + exp(a x + b))).

Note

Data are scaled internally, usually yielding better results.

Parameters of SVM-models usually must be tuned to yield sensible results!

Author(s)

David Meyer (based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin)
<David.Meyer@R-project.org>

References

• Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Exact formulations of models, algorithms, etc. can be found in the document:
Chang, Chih-Chung and Lin, Chih-Jen:
LIBSVM: a library for Support Vector Machines
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

• More implementation details and speed benchmarks can be found on: Rong-En Fan and Pai-
Hsune Chen and Chih-Jen Lin:
Working Set Selection Using the Second Order Information for Training SVM
https://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf

See Also

predict.svm plot.svm tune.svm matrix.csr (in package SparseM)

Examples

data(iris)
attach(iris)

## classification mode
# default with factor response:
model <- svm(Species ~ ., data = iris)

# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- Species
model <- svm(x, y)

print(model)
summary(model)

# test with train data

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf
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pred <- predict(model, x)
# (same as:)
pred <- fitted(model)

# Check accuracy:
table(pred, y)

# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)
attr(pred, "decision.values")[1:4,]

# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(iris[,-5])),

col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])

## try regression mode on two dimensions

# create data
x <- seq(0.1, 5, by = 0.05)
y <- log(x) + rnorm(x, sd = 0.2)

# estimate model and predict input values
m <- svm(x, y)
new <- predict(m, x)

# visualize
plot(x, y)
points(x, log(x), col = 2)
points(x, new, col = 4)

## density-estimation

# create 2-dim. normal with rho=0:
X <- data.frame(a = rnorm(1000), b = rnorm(1000))
attach(X)

# traditional way:
m <- svm(X, gamma = 0.1)

# formula interface:
m <- svm(~., data = X, gamma = 0.1)
# or:
m <- svm(~ a + b, gamma = 0.1)

# test:
newdata <- data.frame(a = c(0, 4), b = c(0, 4))
predict (m, newdata)

# visualize:
plot(X, col = 1:1000 %in% m$index + 1, xlim = c(-5,5), ylim=c(-5,5))
points(newdata, pch = "+", col = 2, cex = 5)
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## weights: (example not particularly sensible)
i2 <- iris
levels(i2$Species)[3] <- "versicolor"
summary(i2$Species)
wts <- 100 / table(i2$Species)
wts
m <- svm(Species ~ ., data = i2, class.weights = wts)

## extract coefficients for linear kernel

# a. regression
x <- 1:100
y <- x + rnorm(100)
m <- svm(y ~ x, scale = FALSE, kernel = "linear")
coef(m)
plot(y ~ x)
abline(m, col = "red")

# b. classification
# transform iris data to binary problem, and scale data
setosa <- as.factor(iris$Species == "setosa")
iris2 = scale(iris[,-5])

# fit binary C-classification model
m <- svm(setosa ~ Petal.Width + Petal.Length,

data = iris2, kernel = "linear")

# plot data and separating hyperplane
plot(Petal.Length ~ Petal.Width, data = iris2, col = setosa)
(cf <- coef(m))
abline(-cf[1]/cf[3], -cf[2]/cf[3], col = "red")

# plot margin and mark support vectors
abline(-(cf[1] + 1)/cf[3], -cf[2]/cf[3], col = "blue")
abline(-(cf[1] - 1)/cf[3], -cf[2]/cf[3], col = "blue")
points(m$SV, pch = 5, cex = 2)

tune Parameter Tuning of Functions Using Grid Search

Description

This generic function tunes hyperparameters of statistical methods using a grid search over supplied
parameter ranges.

Usage

tune(METHOD, train.x, train.y = NULL, data = list(), validation.x =
NULL, validation.y = NULL, ranges = NULL, predict.func = predict,
tunecontrol = tune.control(), ...)

best.tune(...)



58 tune

Arguments

METHOD either the function to be tuned, or a character string naming such a function.

train.x either a formula or a matrix of predictors.

train.y the response variable if train.x is a predictor matrix. Ignored if train.x is a
formula.

data data, if a formula interface is used. Ignored, if predictor matrix and response are
supplied directly.

validation.x an optional validation set. Depending on whether a formula interface is used
or not, the response can be included in validation.x or separately specified
using validation.y. Only used for bootstrap and fixed validation set (see
tune.control)

validation.y if no formula interface is used, the response of the (optional) validation set. Only
used for bootstrap and fixed validation set (see tune.control)

ranges a named list of parameter vectors spanning the sampling space. The vectors will
usually be created by seq.

predict.func optional predict function, if the standard predict behavior is inadequate.

tunecontrol object of class "tune.control", as created by the function tune.control().
If omitted, tune.control() gives the defaults.

... Further parameters passed to the training functions.

Details

As performance measure, the classification error is used for classification, and the mean squared
error for regression. It is possible to specify only one parameter combination (i.e., vectors of length
1) to obtain an error estimation of the specified type (bootstrap, cross-classification, etc.) on the
given data set. For convenience, there are several tune.foo() wrappers defined, e.g., for nnet(),
randomForest(), rpart(), svm(), and knn().

Cross-validation randomizes the data set before building the splits which—once created—remain
constant during the training process. The splits can be recovered through the train.ind component
of the returned object.

Value

For tune, an object of class tune, including the components:

best.parameters

a 1 x k data frame, k number of parameters.
best.performance

best achieved performance.

performances if requested, a data frame of all parameter combinations along with the corre-
sponding performance results.

train.ind list of index vectors used for splits into training and validation sets.

best.model if requested, the model trained on the complete training data using the best pa-
rameter combination.

best.tune() returns the best model detected by tune.
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Author(s)

David Meyer
<David.Meyer@R-project.org>

See Also

tune.control, plot.tune, tune.svm, tune.wrapper

Examples

data(iris)
## tune `svm' for classification with RBF-kernel (default in svm),
## using one split for training/validation set

obj <- tune(svm, Species~., data = iris,
ranges = list(gamma = 2^(-1:1), cost = 2^(2:4)),
tunecontrol = tune.control(sampling = "fix")
)

## alternatively:
## obj <- tune.svm(Species~., data = iris, gamma = 2^(-1:1), cost = 2^(2:4))

summary(obj)
plot(obj)

## tune `knn' using a convenience function; this time with the
## conventional interface and bootstrap sampling:
x <- iris[,-5]
y <- iris[,5]
obj2 <- tune.knn(x, y, k = 1:5, tunecontrol = tune.control(sampling = "boot"))
summary(obj2)
plot(obj2)

## tune `gknn' using the formula interface.
## (Use Euclidean distances instead of Gower metric)
obj3 <- tune.gknn(Species ~ ., data = iris, k = 1:5, method = "Euclidean")
summary(obj3)
plot(obj3)

## tune `rpart' for regression, using 10-fold cross validation (default)
data(mtcars)
obj4 <- tune.rpart(mpg~., data = mtcars, minsplit = c(5,10,15))
summary(obj4)
plot(obj4)

## simple error estimation for lm using 10-fold cross validation
tune(lm, mpg~., data = mtcars)
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tune.control Control Parameters for the Tune Function

Description

Creates an object of class tune.control to be used with the tune function, containing various
control parameters.

Usage

tune.control(random = FALSE, nrepeat = 1, repeat.aggregate = mean,
sampling = c("cross", "fix", "bootstrap"), sampling.aggregate = mean,
sampling.dispersion = sd,
cross = 10, fix = 2/3, nboot = 10, boot.size = 9/10, best.model = TRUE,
performances = TRUE, error.fun = NULL)

Arguments

random if an integer value is specified, random parameter vectors are drawn from the
parameter space.

nrepeat specifies how often training shall be repeated.
repeat.aggregate

function for aggregating the repeated training results.

sampling sampling scheme. If sampling = "cross", a cross-times cross validation is
performed. If sampling = "boot", nboot training sets of size boot.size (part)
are sampled (with replacement) from the supplied data. If sampling = "fix", a
single split into training/validation set is used, the training set containing a fix
part of the supplied data. Note that a separate validation set can be supplied via
validation.x and validation.y. It is only used for sampling = "boot" and
sampling = "fix"; in the latter case, fix is set to 1.

sampling.aggregate, sampling.dispersion
functions for aggregating the training results on the generated training samples
(default: mean and standard deviation).

cross number of partitions for cross-validation.

fix part of the data used for training in fixed sampling.

nboot number of bootstrap replications.

boot.size size of the bootstrap samples.

best.model if TRUE, the best model is trained and returned (the best parameter set is used for
training on the complete training set).

performances if TRUE, the performance results for all parameter combinations are returned.

error.fun function returning the error measure to be minimized. It takes two arguments:
a vector of true values and a vector of predicted values. If NULL, the misclassi-
fication error is used for categorical predictions and the mean squared error for
numeric predictions.
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Value

An object of class "tune.control" containing all the above parameters (either the defaults or the
user specified values).

Author(s)

David Meyer
<David.Meyer@R-project.org>

See Also

tune

tune.wrapper Convenience Tuning Wrapper Functions

Description

Convenience tuning wrapper functions, using tune.

Usage

tune.svm(x, y = NULL, data = NULL, degree = NULL, gamma = NULL, coef0 = NULL,
cost = NULL, nu = NULL, class.weights = NULL, epsilon = NULL, ...)

best.svm(x, tunecontrol = tune.control(), ...)

tune.nnet(x, y = NULL, data = NULL, size = NULL, decay = NULL,
trace = FALSE, tunecontrol = tune.control(nrepeat = 5),
...)

best.nnet(x, tunecontrol = tune.control(nrepeat = 5), ...)

tune.rpart(formula, data, na.action = na.omit, minsplit = NULL,
minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL,
usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth =
NULL, predict.func = NULL, ...)

best.rpart(formula, tunecontrol = tune.control(), ...)

tune.randomForest(x, y = NULL, data = NULL, nodesize = NULL,
mtry = NULL, ntree = NULL, ...)

best.randomForest(x, tunecontrol = tune.control(), ...)

tune.gknn(x, y = NULL, data = NULL, k = NULL, ...)

best.gknn(x, tunecontrol = tune.control(), ...)

tune.knn(x, y, k = NULL, l = NULL, ...)
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Arguments

formula, x, y, data
formula and data arguments of function to be tuned.

predict.func predicting function.

na.action function handling missingness.

minsplit, minbucket, cp, maxcompete, maxsurrogate, usesurrogate, xval,
surrogatestyle, maxdepth

rpart parameters.

degree, gamma, coef0, cost, nu, class.weights, epsilon
svm parameters.

k, l (g)knn parameters.

mtry, nodesize, ntree
randomForest parameters.

size, decay, trace
parameters passed to nnet.

tunecontrol object of class "tune.control" containing tuning parameters.

... Further parameters passed to tune.

Details

For examples, see the help page of tune().

Value

tune.foo() returns a tuning object including the best parameter set obtained by optimizing over
the specified parameter vectors. best.foo() directly returns the best model, i.e. the fit of a new
model using the optimal parameters found by tune.foo.

Author(s)

David Meyer
<David.Meyer@R-project.org>

See Also

tune
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write.svm Write SVM Object to File

Description

This function exports an SVM object (trained by svm) to two specified files. One is in the format
that the function ’svm_load_model()’ of libsvm can read. The other is for scaling data, containing
a data with centers and scales for all variables.

Usage

write.svm(object, svm.file = "Rdata.svm",
scale.file = "Rdata.scale", yscale.file = "Rdata.yscale")

Arguments

object Object of class "svm", created by svm.

svm.file filename to export the svm object to.

scale.file filename to export the scaling data of the explanatory variables to.

yscale.file filename to export the scaling data of the dependent variable to, if any.

Details

This function is useful when SVM models trained in R shall be used in other environments. The
SVM model is saved in the standard format of libsvm. The scaling data are written to separate
files because scaling data are not included in the standard format of libsvm. The format of the
scaling data file is a n times 2 matrix: the n-th row corresponds to the n-th dimension of the data,
the columns being formed of the corresponding mean and scale. If scaling information for the
dependent variable exists (in case of regression models), it is stored in yet another file (1 times 2
matrix).

Author(s)

Tomomi TAKASHINA (based on ’predict.svm’ by David Meyer) <t.takashina@computer.org>

See Also

svm

Examples

data(iris)
attach(iris)

## classification mode
# default with factor response:
model <- svm (Species~., data=iris)
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# export SVM object to (temporary) files
svm_file <- tempfile()
scale_file <- tempfile()

write.svm(model, svm.file = svm_file, scale.file = scale_file)

# read scale file
# the n-th row is corresponding to n-th dimension. The 1st column contains the
# center value, the 2nd column is the scale value.
read.table(scale_file)

# clean up
unlink(svm_file)
unlink(scale_file)
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summary.tune (tune), 57
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sweep, 49
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tune.knn (tune.wrapper), 61
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write.matrix.csr (read.matrix.csr), 46
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