
Package ‘dsBase’
July 19, 2025

Title 'DataSHIELD' Server Site Base Functions

Description Base 'DataSHIELD' functions for the server side. 'DataSHIELD' is a software pack-
age which allows
you to do non-
disclosive federated analysis on sensitive data. 'DataSHIELD' analytic functions have
been designed to only share non disclosive summary statistics, with built in automated output
checking based on statistical disclosure control. With data sites setting the threshold values for
the automated output checks. For more details, see 'citation(``dsBase'')'.

Version 6.3.3

License GPL-3

Depends R (>= 4.0.0)

Imports RANN, stringr, lme4, dplyr, reshape2, polycor (>= 0.8),
splines, gamlss, gamlss.dist, mice, childsds

Suggests testthat

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation no

Author Paul Burton [aut],
Rebecca Wilson [aut],
Olly Butters [aut],
Patricia Ryser-Welch [aut],
Alex Westerberg [aut],
Leire Abarrategui [aut],
Roberto Villegas-Diaz [aut] (ORCID:
<https://orcid.org/0000-0001-5036-8661>),

Demetris Avraam [aut] (ORCID: <https://orcid.org/0000-0001-8908-2441>),
Yannick Marcon [aut] (ORCID: <https://orcid.org/0000-0003-0138-2023>),
Stuart Wheater [aut, cre] (ORCID:

<https://orcid.org/0009-0003-2419-1964>)

Maintainer Stuart Wheater <stuart.wheater@arjuna.com>

Repository CRAN

Date/Publication 2025-07-19 09:10:07 UTC

1

https://orcid.org/0000-0001-5036-8661
https://orcid.org/0000-0001-8908-2441
https://orcid.org/0000-0003-0138-2023
https://orcid.org/0009-0003-2419-1964


2 Contents

Contents
absDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
asCharacterDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
asDataMatrixDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
asFactorDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
asFactorDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
asFactorSimpleDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
asIntegerDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
asListDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
asLogicalDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
asMatrixDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
asNumericDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
aucDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
blackBoxDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
blackBoxRanksDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
BooleDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
boxPlotGGDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
boxPlotGG_data_TreatmentDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
boxPlotGG_data_Treatment_numericDS . . . . . . . . . . . . . . . . . . . . . . . . . . 18
bp_standardsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
cbindDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
cDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
changeRefGroupDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
checkNegValueDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
checkPermissivePrivacyControlLevel . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
classDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
colnamesDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
completeCasesDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
corDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
corTestDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
covDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
dataFrameDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
dataFrameFillDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
dataFrameSortDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dataFrameSubsetDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
dataFrameSubsetDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
densityGridDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
dimDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
dmtC2SDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
elsplineDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
extractQuantilesDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
extractQuantilesDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
gamlssDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
getWGSRDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
glmDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
glmDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
glmerSLMADS.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents 3

glmerSLMADS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
glmPredictDS.ag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
glmPredictDS.as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
glmSLMADS.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
glmSLMADS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
glmSLMADS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
glmSummaryDS.ag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
glmSummaryDS.as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
heatmapPlotDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
hetcorDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
histogramDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
histogramDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
igb_standardsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
isNaDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
isValidDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
kurtosisDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
kurtosisDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
lengthDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
levelsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
lexisDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
lexisDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
lexisDS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
listDisclosureSettingsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
listDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
lmerSLMADS.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
lmerSLMADS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
lsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
lsplineDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
matrixDetDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
matrixDetDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
matrixDiagDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
matrixDimnamesDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
matrixDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
matrixInvertDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
matrixMultDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
matrixTransposeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
meanDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
meanSdGpDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
mergeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
messageDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
metadataDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
miceDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
minMaxRandDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
namesDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
nsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
numNaDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
qlsplineDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
quantileMeanDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



4 Contents

rangeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ranksSecureDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ranksSecureDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ranksSecureDS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ranksSecureDS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ranksSecureDS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
rbindDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
rBinomDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
recodeLevelsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
recodeValuesDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
repDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
replaceNaDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
reShapeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
rmDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
rNormDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
rowColCalcDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
rPoisDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
rUnifDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
sampleDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
scatterPlotDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
seqDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
setSeedDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
skewnessDS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
skewnessDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
sqrtDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
subsetByClassDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
subsetDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
table1DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
table2DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
tableDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
tableDS.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
tableDS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
tapplyDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
tapplyDS.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
testObjExistsDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
uniqueDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
unListDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
varDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
vectorDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Index 127



absDS 5

absDS Computes the absolute values of the input variable

Description

This function is similar to R function abs.

Usage

absDS(x)

Arguments

x a string character, the name of a numeric or integer vector

Details

The function computes the absolute values of an input numeric or integer vector.

Value

the object specified by the newobj argument of ds.abs (or default name abs.newobj) which is
written to the serverside. The output object is of class numeric or integer.

Author(s)

Demetris Avraam for DataSHIELD Development Team

asCharacterDS Coerces an R object into class character

Description

this function is based on the native R function as.character

Usage

asCharacterDS(x.name)

Arguments

x.name the name of the input object to be coerced to class character. Must be specified
in inverted commas. But this argument is usually specified directly by x.name
argument of the clientside function ds.asCharacter



6 asDataMatrixDS

Details

See help for function as.character in native R

Value

the object specified by the newobj argument (or its default name "ascharacter.newobj") which is
written to the serverside. For further details see help on the clientside function ds.asCharacter

Author(s)

Amadou Gaye, Paul Burton, Demetris Avraam for DataSHIELD Development Team

asDataMatrixDS asDataMatrixDS a serverside assign function called by
ds.asDataMatrix

Description

Coerces an R object into a matrix maintaining original class for all columns in data.frames.

Usage

asDataMatrixDS(x.name)

Arguments

x.name the name of the input object to be coerced to class data.matrix. Must be specified
in inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asDataMatrix

Details

This assign function is based on the native R function data.matrix If applied to a data.frame, the
native R function as.matrix coverts all columns into character class. In contrast, if applied to a
data.frame the native R function data.matrix converts the data.frame to a matrix but maintains all
data columns in their original class

Value

the object specified by the <newobj> argument (or its default name "asdatamatrix.newobj") which
is written to the serverside. For further details see help on the clientside function ds.asDataMatrix

Author(s)

Paul Burton for DataSHIELD Development Team



asFactorDS1 7

asFactorDS1 Determines the levels of the input variable in each single study

Description

This function is an aggregate DataSHIELD function that returns the levels of the input variable from
each single study to the client-side function.

Usage

asFactorDS1(input.var.name = NULL)

Arguments

input.var.name the name of the variable that is to be converted to a factor.

Details

The function encodes the input vector as factor and returns its levels in ascending order if the levels
are numerical or in alphabetical order if the levels are of type character.

Value

the levels of the input variable.

asFactorDS2 Converts a numeric vector into a factor

Description

This function is an assign DataSHIELD function that converts a numeric vector into a factor type
that presented as a vector or as a matrix with dummy variables.

Usage

asFactorDS2(
input.var.name = NULL,
all.unique.levels.transmit = NULL,
fixed.dummy.vars = NULL,
baseline.level = NULL

)



8 asFactorSimpleDS

Arguments

input.var.name the name of the variable that is to be converted to a factor.
all.unique.levels.transmit

the levels that the variable will be transmitted to.
fixed.dummy.vars

a boolean that determines whether the new object will be represented as a vector
or as a matrix of dummy variables indicating the factor level of each data point.
If this argument is set to FALSE (default) then the input variable is converted
to a factor and assigned as a vector. If is set to TRUE then the input variable is
converted to a factor but assigned as a matrix of dummy variables.

baseline.level a number indicating the baseline level to be used in the creation of the matrix of
dummy variables.

Details

The functions converts the input variable into a factor which is presented as a vector if the fixed.dummy.vars
is set to FALSE or as a matrix with dummy variables if the fixed.dummy.vars is set to TRUE (see
the help file of ds.asFactor.b for more details).

Value

an object of class factor

asFactorSimpleDS Converts a numeric vector into a factor

Description

This function is an assign DataSHIELD function that coerces a numeric or character vector into a
factor

Usage

asFactorSimpleDS(input.var.name = NULL)

Arguments

input.var.name the name of the variable that is to be converted to a factor.

Details

The functions converts the input variable into a factor. Unlike ds.asFactor and its serverside func-
tions, ds.asFactorSimple does no more than coerce the class of a variable to factor in each study. It
does not check for or enforce consistency of factor levels across sources or allow you to force an
arbitrary set of levels unless those levels actually exist in the sources. In addition, it does not allow
you to create an array of binary dummy variables that is equivalent to a factor. If you need to do
any of these things you will have to use the ds.asFactor function.



asIntegerDS 9

Value

an object of class factor

asIntegerDS Coerces an R object into class integer

Description

This function is based on the native R function as.integer.

Usage

asIntegerDS(x.name)

Arguments

x.name the name of the input object to be coerced to class integer. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asInteger.

Details

See help for function as.integer in native R, and details section in the help file of the clientside
function ds.asInteger.

Value

the object specified by the <newobj> argument (or its default name "asinteger.newobj") which is
written to the serverside. For further details see help on the clientside function ds.asInteger.

Author(s)

Amadou Gaye, Paul Burton, Demetris Avraam, for DataSHIELD Development Team

asListDS asListDS a serverside aggregate function called by ds.asList

Description

Coerces an R object into a list

Usage

asListDS(x.name, newobj)



10 asLogicalDS

Arguments

x.name the name of the input object to be coerced to class data.matrix. Must be specified
in inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asList

newobj is the object hard assigned ’«-’ to be the output of the function written to the
serverside

Details

Unlike most other class coercing functions this is an aggregate function rather than an assign func-
tion. This is because the datashield.assign function in the data repository deals specially with
a created object (newobj) if it is of class list. Reconfiguring the function as an aggregate function
works around this problem. This aggregate function is based on the native R function as.list and
so additional information can be found in the help for as.list

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. In addition, two validity messages are returned. The first confirms an output
object has been created, the second states its class. The way that as.list coerces objects to list
depends on the class of the object, but in general the class of the output object should usually be
’list’

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asLogicalDS Coerces an R object into class numeric

Description

this function is based on the native R function as.numeric

Usage

asLogicalDS(x.name)

Arguments

x.name the name of the input object to be coerced to class numeric. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.aslogical

Details

See help for function as.logical in native R



asMatrixDS 11

Value

the object specified by the <newobj> argument (or its default name <x.name>.logic) which is written
to the serverside. For further details see help on the clientside function ds.asLogical

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asMatrixDS Coerces an R object into a matrix

Description

this function is based on the native R function as.matrix

Usage

asMatrixDS(x.name)

Arguments

x.name the name of the input object to be coerced to class matrix. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asMatrix

Details

See help for function as.matrix in native R

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. For further details see help on the clientside function ds.asMatrix

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team



12 aucDS

asNumericDS Coerces an R object into class numeric

Description

This function is based on the native R function as.numeric.

Usage

asNumericDS(x.name)

Arguments

x.name the name of the input object to be coerced to class numeric. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asNumeric.

Details

See help for function as.numeric in native R, and details section in the help file of the clientside
function ds.asNumeric.

Value

the object specified by the <newobj> argument (or its default name <x.name>.num) which is written
to the serverside. For further details see help on the clientside function ds.asNumeric.

Author(s)

Amadou Gaye, Paul Burton, Demetris Avraam, for DataSHIELD Development Team

aucDS aucDS an aggregate function called by ds.auc

Description

This function calculates the C-statistic or AUC for logistic regression models.

Usage

aucDS(pred = pred, y = y)

Arguments

pred the name of the vector of the predicted values

y the name of the outcome variable. Note that this variable should include the
complete cases that are used in the regression model.



blackBoxDS 13

Details

The AUC determines the discriminative ability of a model.

Value

returns the AUC and its standard error

Author(s)

Demetris Avraam for DataSHIELD Development Team

blackBoxDS Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

The first key serverside function that sets up the V2BR for ranking in the client.

Usage

blackBoxDS(input.var.name = NULL, shared.seedval, synth.real.ratio, NA.manage)

Arguments

input.var.name a character string specifying the name of V2BR. This argument is set by the
argument with the same name in the clientside function ds.ranksSecure

shared.seedval a pseudorandom number seed that ensures that the processes generating the or-
der and parameterisation of the encryption algorithms are the same in each study.
This argument is set by the argument <shared.seed.value> in the clientside func-
tion ds.ranksSecure. For more details, including future plans to share this start-
ing seed in a more secure way, please see the associated document entitled "se-
cure.global.ranking.docx" and the header file for ds.ranksSecure.

synth.real.ratio

an integer value representing the ratio of synthetic (pseudo-data) values to the
real number of values in V2BR. This argument is set by the argument with
the same name in the clientside function ds.ranksSecure. For more details,
please see the associated document entitled "secure.global.ranking.docx" and
the header file for ds.ranksSecure.

NA.manage character string indicating how missing values (NAs) in V2BR should be man-
aged. It takes three possible values: "NA.delete", "NA.low","NA.hi". This ar-
gument is set by the argument with the same name in the clientside function
ds.ranksSecure. For more details, please see the associated document entitled
"secure.global.ranking.docx" and the header file for ds.ranksSecure.



14 blackBoxRanksDS

Details

Severside assign function called by ds.ranksSecure. Creates pseudo-data by using the real distri-
bution of values in V2BR to create a large number of synthetic data with a similar distribution to
the values in V2BR but with a slightly broader distribution at both ends to ensure that any extreme
values in the "combined real+pseudo data vector" are all pseudo-data. Also ensures that the number
of decimal places of the values in the V2BR is reflected by the number of decimal places in the
pseudodata. Finally, takes the "combined real+pseudo data vector" through seven rounds of rank
consistent encryption that involves algorithms themselves generated by a pseudorandom process
that selects which transformation to apply and with what parameters. The encryption algorithms
are the same in each study ensuring that ranks also remain consistent between studies. After encryp-
tion the encrypted "combined real+pseudo data vector" is written to the serverside as a dataframe
also including other key component vectors from the first stage of the ranking procedure. For more
details about the cluster of functions that collectively enable secure global ranking and estimation
of global quantiles see the associated document entitled "secure.global.ranking.docx". Also see the
header file for ds.ranksSecure

Value

writes a data frame object entitled blackbox.output.df to the serverside. In each study this contains
the encrypted "combined real+pseudo data vector" and a range of other key components from the
first stage of the ranking procedure. For more details see the associated document entitled "se-
cure.global.ranking.docx"

Author(s)

Paul Burton 9th November, 2021

blackBoxRanksDS Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

The second key serverside function that prepares the global ranks of the the real data only generated
in the first stage of the ranking procedure and encrypts them in preparation for generating global
ranks that correspond 1 to 1 with only the real data in V2BR.

Usage

blackBoxRanksDS(input.var.name = NULL, shared.seedval)

Arguments

input.var.name a character string specifying the name of the vector holding the global ranks.
This argument is set automatically by the clientside function ds.ranksSecure



BooleDS 15

shared.seedval a pseudorandom number seed that ensures that the processes generating the or-
der and parameterisation of the encryption algorithms are the same in each study.
This argument is set by the argument <shared.seed.value> in the clientside func-
tion ds.ranksSecure. The seed value shared by all studies in setting up the en-
cryption procedures in blackBoxRanksDS is arbitrarily changed from that used
to set up the encryption procedures in blackBoxDS, so the the set of 7 encryption
algorithms is deliberately different. For more details, including future plans to
share this starting seed in a more secure way, please see the associated document
entitled "secure.global.ranking.docx" and the header file for ds.ranksSecure.

Details

Severside assign function called by ds.ranksSecure. It takes the global ranks currently held in sR5.df
which reflect the global ranks based on the "combined real+pseudo data vector" as encrypted by
blackBoxDS but with all pseudo-data stripped out. It then uses these global ranks (of the real data)
as if they were a new variable to be ranked. This is then equivalent to blackBoxDS with the primary
difference that no pseudo-data are needed. This is because the global ranks are fundamentally
non-disclosive and so can be transferred to the clientside with no risk of disclosure. However,
in order to ensure that the client cannot compare the list of global.ranks in sR4.df (after initial
global ranking based on ranking of real and pseudo-data combined) with the global.ranks to be
generated by blackBoxRanksDS (based solely on the real data they are processed through seven
more rounds of encryption as before in blackBoxDS. In consequence the client remains unable to
determine which of the original global ranks corresponded to real data and which to pseudo-data.
In addition, blackBoxRanksDS does not need to determine the number of decimal places in the data
because it is only applied to ranks which are assumed to be integers. For more details about the
cluster of functions that collectively enable secure global ranking and estimation of global quantiles
see the associated document entitled "secure.global.ranking.docx". Also see the header file for
ds.ranksSecure and the header file for blackBoxDS

Value

writes a data frame object entitled blackbox.ranks.df to the serverside. In each study this contains
the encrypted global ranks and a range of other key components from the second stage (ranking of
global ranks for real observations only) of the ranking procedure. For more details see the associated
document entitled "secure.global.ranking.docx"

Author(s)

Paul Burton 9th November, 2021

BooleDS BooleDS

Description

Converts the individual elements of a vector or other object into Boolean indicators.



16 boxPlotGGDS

Usage

BooleDS(
V1.name = NULL,
V2.name = NULL,
Boolean.operator.n = NULL,
na.assign.text,
numeric.output = TRUE

)

Arguments

V1.name A character string specifying the name of the vector to which the Boolean oper-
ator is to be applied

V2.name A character string specifying the name of the vector or scalar to which <V1> is
to be compared.

Boolean.operator.n

An integer value (1 to 6) providing a numeric coding for the character string
specifying one of six possible Boolean operators: ’==’, ’!=’, ’>’, ’>=’,’<’, ’<=’
that could legally be passed from client to server via DataSHIELD parser

na.assign.text A character string taking values ’NA’, ’1’ or ’0’. If ’NA’ then any NA values in
the input vector remain as NAs in the output vector. If ’1’ or ’0’ NA values in
the input vector are all converted to 1 or 0 respectively.

numeric.output a TRUE/FALSE indicator defaulting to TRUE determining whether the final
output variable should be of class numeric (1/0) or class logical (TRUE/FALSE).

Details

The function converts the input vector into Boolean indicators.

Value

the levels of the input variable.

Author(s)

DataSHIELD Development Team

boxPlotGGDS Create the identity stats and necessary data to draw a plot on the client

Description

In order to create a non disclosive box plot, the data that is passed to the client is purely geometrical
aspects of the plot, as a ggplot object contains all the data inside, only the graphical parameters are
passed. There are three different cases depending if there are grouping variables. The outliers are
also removed from the graphical parameters.



boxPlotGG_data_TreatmentDS 17

Usage

boxPlotGGDS(data_table, group = NULL, group2 = NULL)

Arguments

data_table data frame Table that holds the information to be plotted, arranged as:

Column ’x’: Names on the X axis of the boxplot, aka variables to plot
Column ’value’: Values for that variable (raw data of columns rbinded)
Column ’group’: (Optional) Values of the grouping variable
Column ’group2’: (Optional) Values of the second grouping variable

group character (default NULL) Name of the first grouping variable.

group2 character (default NULL) Name of the second grouping variable.

Value

list with:
-data frame Geometrical parameters (identity stats of ggplot)
-character Type of plot (single_group, double_group or no_group)

boxPlotGG_data_TreatmentDS

Arrange data frame to pass it to the boxplot function

Description

Arrange data frame to pass it to the boxplot function

Usage

boxPlotGG_data_TreatmentDS(table, variables, group = NULL, group2 = NULL)

Arguments

table data frame Table that holds the information to be plotted later

variables character vector Name of the column(s) of the data frame to include on the
boxplot

group character (default NULL) Name of the first grouping variable.

group2 character (default NULL) Name of the second grouping variable.



18 bp_standardsDS

Value

data frame with the following structure:

Column ’x’: Names on the X axis of the boxplot, aka variables to plot
Column ’value’: Values for that variable (raw data of columns rbinded)
Column ’group’: (Optional) Values of the grouping variable
Column ’group2’: (Optional) Values of the second grouping variable

boxPlotGG_data_Treatment_numericDS

Arrange vector to pass it to the boxplot function

Description

Arrange vector to pass it to the boxplot function

Usage

boxPlotGG_data_Treatment_numericDS(vector)

Arguments

vector numeric vector Vector to arrange to be plotted later

Value

data frame with the following structure:

Column ’x’: Names on the X axis of the boxplot, aka name of the vector (vector argument)
Column ’value’: Values for that variable

bp_standardsDS Calculates Blood pressure z-scores

Description

The function calculates blood pressure z-scores in two steps: Step 1. Calculates z-score of height
according to CDC growth chart (Not the WHO growth chart!). Step 2. Calculates z-score of BP
according to the fourth report on BP management, USA



cbindDS 19

Usage

bp_standardsDS(
sex = sex,
age = age,
height = height,
bp = bp,
systolic = systolic

)

Arguments

sex the name of the sex variable. The variable should be coded as 1 for males
and 2 for females. If it is coded differently (e.g. 0/1), then you can use the
ds.recodeValues function to recode the categories to 1/2 before the use of ds.bp_standards

age the name of the age variable in years.

height the name of the height variable in cm

bp the name of the blood pressure variable.

systolic logical. If TRUE (default) the function assumes conversion of systolic blood
pressure. If FALSE the function assumes conversion of diastolic blood pressure.

Value

assigns a new object on the server-side. The assigned object is a list with two elements: the ’Zbp’
which is the zscores of the blood pressure and ’perc’ which is the percentiles of the BP zscores.

Note

The z-scores of height based on CDC growth charts are calculated by the sds function from the
childsds R package.

Author(s)

Demetris Avraam for DataSHIELD Development Team

cbindDS cbindDS called by ds.cbind

Description

serverside assign function that takes a sequence of vector, matrix or data-frame arguments and
combines them by column to produce a data-frame.

Usage

cbindDS(x.names.transmit = NULL, colnames.transmit = NULL)



20 cDS

Arguments

x.names.transmit

This is a vector of character strings representing the names of the elemental com-
ponents to be combined converted into a transmittable format. This argument is
fully specified by the x argument of the client-side ds.cbind function.

colnames.transmit

This is a vector of character strings representing column names for the output
object converted into a transmittable format.

Details

A sequence of vector, matrix or data-frame arguments is combined column by column to produce
a data-frame which is written to the serverside. A critical requirement is that the length of all
component variables, and the number of rows of the component data.frames or matrices must all
be the same. The output data.frame will then have this same number of rows. For more details see
help for ds.cbind and the native R function cbind.

Value

the object specified by the newobj argument of ds.cbind (or default name cbind.newobj) which
is written to the serverside. The output object is of class data.frame.

Author(s)

Paul Burton and Demetris Avraam for DataSHIELD Development Team

cDS Concatenates objects into a vector or list

Description

This function is similar to the R base function ’c’.

Usage

cDS(objs)

Arguments

objs a list which contains the the objects to concatenate.

Details

Unlike the R base function ’c’ on vector or list of certain length are allowed as output

Value

a vector or list



changeRefGroupDS 21

Author(s)

Gaye, A.

changeRefGroupDS Changes a reference level of a factor

Description

This function is similar to R function relevel,

Usage

changeRefGroupDS(xvect, ref = NULL, reorderByRef = NULL)

Arguments

xvect a factor vector

ref a character, the reference level

reorderByRef a boolean that tells whether or not the new vector should be ordered by the
reference group.

Details

In addition to what the R function does, this function allows for the user to re-order the vector,
putting the reference group first. If the user chooses the re-order a warning is issued as this can
introduce a mismatch of values if the vector is put back into a table that is not reordered in the same
way. Such mismatch can render the results of operations on that table invalid.

Value

a factor of the same length as xvect

Author(s)

Isaeva, J., Gaye, A.



22 checkPermissivePrivacyControlLevel

checkNegValueDS Checks if a numeric variable has negative values

Description

this function is only called by the client function ds.glm.

Usage

checkNegValueDS(weights)

Arguments

weights a numeric vector

Details

if a user sets the parameter ’weights’ on the client site function ds.glm this server side function
is called to verify that the ’weights’ vector does not have negative values because no negative are
allowed in weights.

Value

a boolean; TRUE if the vector has one or more negative values and FALSE otherwise

Author(s)

Gaye, A.

checkPermissivePrivacyControlLevel

checkPermissivePrivacyControlLevel

Description

This server-side function check that the server is running in "permissive" privacy control level.

Usage

checkPermissivePrivacyControlLevel(privacyControlLevels)

Arguments

privacyControlLevels

is a vector of strings which contains the privacy control level names which are
permitted by the calling method.



classDS 23

Details

Tests whether the R option "datashield.privacyControlLevel" is set to "permissive", if it isn’t will
cause a call to stop() with the message "BLOCKED: The server is running in ’non-permissive’
mode which has caused this method to be blocked".

Value

No return value, called for side effects

Author(s)

Wheater, Dr SM., DataSHIELD Development Team.

classDS Returns the class of an object

Description

This function is similar to R function class.

Usage

classDS(x)

Arguments

x a string character, the name of an object

Details

The function returns the class of an object

Value

the class of the input object

Author(s)

Stuart Wheater, for DataSHIELD Development Team



24 completeCasesDS

colnamesDS Returns the column names of a data frame or matrix

Description

This function is similar to R function colnames.

Usage

colnamesDS(x)

Arguments

x a string character, the name of a dataframe or matrix

Details

The function returns the column names of the input dataframe or matrix

Value

the column names of the input object

Author(s)

Demetris Avraam, for DataSHIELD Development Team

completeCasesDS completeCasesDS: an assign function called by ds.completeCases

Description

Identifies and strips out all rows of a data.frame, matrix or vector that contain NAs.

Usage

completeCasesDS(x1.transmit)

Arguments

x1.transmit This argument determines the input data.frame, matrix or vector from which
rows with NAs are to be stripped. The <x1.transmit> argument is fully specified
by the <x1> argument of the ds.completeCases function.



corDS 25

Details

In the case of a data.frame or matrix, completeCasesDS identifies all rows containing one or more
NAs and deletes those rows altogether. Any one variable with NA in a given row will lead to
deletion of the whole row. In the case of a vector, completeCasesDS acts in an equivalent manner
but there is no equivalent to a ’row’ and so it simply strips out all observations recorded as NA.
ds.completeCASES is analogous to the complete.cases function in native R. Limited additional
information can therefore be found under help("complete.cases") in native R.

Value

a modified data.frame, matrix or vector from which all rows containing at least one NA have been
deleted. This modified object is written to the serverside in each source. In addition, two validity
messages are returned indicating whether <newobj> has been created in each data source and if
so whether it is in a valid form. If its form is not valid in at least one study - e.g. because a
disclosure trap was tripped and creation of the full output object was blocked - ds.completeCases
also returns any studysideMessages that can help explain the error in creating the full output object.
As well as appearing on the screen at run time,if you wish to see the relevant studysideMessages at
a later date you can use the ds.message function. If you type ds.message("newobj") it will print
out the relevant studysideMessage from any datasource in which there was an error in creating
<newobj> and a studysideMessage was saved. If there was no error and <newobj> was created
without problems no studysideMessage will have been saved and ds.message("newobj") will return
the message: "ALL OK: there are no studysideMessage(s) on this datasource".

Author(s)

Paul Burton for DataSHIELD Development Team

corDS Computes the sum of each variable and the sum of products for each
pair of variables

Description

This function computes the sum of each vector of variable and the sum of the products of each two
variables (i.e. the scalar product of each two vectors).

Usage

corDS(x = NULL, y = NULL)

Arguments

x a character, the name of a vector, matrix or dataframe of variables(s) for which
the correlation(s) is (are) going to calculated for.

y NULL (default) or the name of a vector, matrix or dataframe with compatible
dimensions to x.



26 corTestDS

Details

computes the sum of each vector of variable and the sum of the products of each two variables

Value

a list that includes a matrix with elements the sum of products between each two variables, a matrix
with elements the sum of the values of each variable, a matrix with elements the number of complete
cases in each pair of variables, a list with the number of missing values in each variable separately
(columnwise) and the number of missing values casewise, and a vector with elements the sum of
squares of each variable. The first disclosure control checks that the number of variables is not
bigger than a percentage of the individual-level records (the allowed percentage is pre-specified by
the ’nfilter.glm’). The second disclosure control checks that none of them is dichotomous with a
level having fewer counts than the pre-specified ’nfilter.tab’ threshold.

Author(s)

Paul Burton, and Demetris Avraam for DataSHIELD Development Team

corTestDS Tests for correlation between paired samples

Description

This function is similar to R function cor.test.

Usage

corTestDS(x, y, method, exact, conf.level)

Arguments

x a character string providing the name of a numerical vector.

y a character string providing the name of a numerical vector.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

exact a logical indicating whether an exact p-value should be computed. Used for
Kendall’s tau and Spearman’s rho.

conf.level confidence level for the returned confidence interval. Currently only used for the
Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

Details

The function runs a two-sided correlation test



covDS 27

Value

the results of the correlation test.

Author(s)

Demetris Avraam, for DataSHIELD Development Team

covDS Computes the sum of each variable and the sum of products for each
pair of variables

Description

This function computes the sum of each vector of variable and the sum of the products of each two
variables (i.e. the scalar product of each two vectors).

Usage

covDS(x = NULL, y = NULL, use = NULL)

Arguments

x a character, the name of a vector, matrix or dataframe of variable(s) for which
the covariance(s) and the correlation(s) is (are) going to calculated for.

y NULL (default) or the name of a vector, matrix or dataframe with compatible
dimensions to x.

use a character string giving a method for computing covariances in the presence of
missing values. This must be one of the strings "casewise.complete" or "pair-
wise.complete". If use is set to ’casewise.complete’ then any rows with missing
values are omitted from the vector, matrix or dataframe before the calculations
of the sums. If use is set to ’pairwise.complete’ (which is the default case set on
the client-side), then the sums of products are computed for each two variables
using only the complete pairs of observations on the two variables.

Details

computes the sum of each vector of variable and the sum of the products of each two variables

Value

a list that includes a matrix with elements the sum of products between each two variables, a ma-
trix with elements the sum of the values of each variable, a matrix with elements the number of
complete cases in each pair of variables, a list with the number of missing values in each variable
separately (columnwise) and the number of missing values casewise or pairwise depending on the
argument use, and an error message which indicates whether or not the input variables pass the
disclosure controls. The first disclosure control checks that the number of variables is not bigger
than a percentage of the individual-level records (the allowed percentage is pre-specified by the



28 dataFrameDS

’nfilter.glm’). The second disclosure control checks that none of them is dichotomous with a level
having fewer counts than the pre-specified ’nfilter.tab’ threshold. If any of the input variables do
not pass the disclosure controls then all the output values are replaced with NAs.

Author(s)

Amadou Gaye, Paul Burton, and Demetris Avraam for DataSHIELD Development Team

dataFrameDS dataFrameDS called by ds.dataFrame

Description

The serverside function that creates a data frame from its elemental components. That is: pre-
existing data frames; single variables; and/or matrices

Usage

dataFrameDS(
vectors = NULL,
r.names = NULL,
ch.rows = FALSE,
ch.names = TRUE,
clnames = NULL,
strAsFactors = TRUE,
completeCases = FALSE

)

Arguments

vectors a list which contains the elemental components to combine. These correspond to
the vector of character strings specified in argument x of the clientside function
ds.dataFrame()

r.names NULL or a character vector specifying the names of the rows. Default NULL.
ch.rows logical, if TRUE then the rows are checked for consistency of length and names.

Default FALSE.
ch.names logical, if TRUE then the names of the variables in the data frame are checked

to ensure that they are syntactically valid variable names and are not duplicated.
Default TRUE. In fact, the clientside function ensures no duplicated names can
be presented to dataFrameDS but this argument is kept to check for other forms
of syntactic validity.

clnames a list of characters, the column names of the output data frame. These are gener-
ated by the clientside function from the names of vectors, and the column names
of data.frames and matrices being combined in producing the output data.frame

strAsFactors logical, if TRUE determines whether character vectors should automatically be
converted to factors? Default TRUE.

completeCases logical. If TRUE indicates that only complete cases should be included: any
rows with missing values in any component will be excluded. Default FALSE.



dataFrameFillDS 29

Details

A data frame is a list of variables all with the same number of rows with unique row names, which
is of class ’data.frame’. ds.dataFrame will create a data frame by combining a series of elemental
components which may be pre-existing data.frames, matrices or variables. A critical requirement
is that the length of all component variables, and the number of rows of the component data.frames
or matrices must all be the same. The output data.frame will then have this same number of rows.
The serverside function dataFrameDS() calls the native R function data.frame() and several of its
arguments are precisely the same as for data.frame(). In consequence, additional information can
be sought from the help() for data.frame().

Value

a dataframe composed of the specified elemental components will be created on the serverside and
named according to the <newobj> argument of the clientside function ds.dataFrame()

Author(s)

DataSHIELD Development Team

dataFrameFillDS dataFrameFillDS

Description

An assign function called by the clientside ds.dataFrameFill function.

Usage

dataFrameFillDS(
df.name,
allNames.transmit,
class.vect.transmit,
levels.vec.transmit

)

Arguments

df.name a character string representing the name of the input data frame that will be filled
with extra columns with missing values if a number of variables is missing from
it compared to the data frames of the other studies used in the analysis.

allNames.transmit

unique names of all the variables that are included in the input data frames from
all the used datasources.

class.vect.transmit

the classes of all the variables that are included in the vector allNames.transmit.
levels.vec.transmit

the levels of all factor variables. The classes supported are ’numeric’, ’integer’,
’character’, ’factor’ and ’logical’.



30 dataFrameSortDS

Details

This function checks if each study has all the variables compared to the other studies in the analysis.
If a study does not have some of the variables, the function generates those variables as vectors of
missing values and combines them as columns to the input data frame. Then, the "complete" in
terms of the columns dataframe is saved in each server with a name specified by the argument
newobj on the clientside.

Value

Nothing is returned to the client. The generated object is written to the serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team

dataFrameSortDS Sorting and reordering data frames, vectors or matrices

Description

Sorts a data frame using a specified alphanumeric or numeric sort key

Usage

dataFrameSortDS(
df.name = NULL,
sort.key.name = NULL,
sort.descending,
sort.method

)

Arguments

df.name a character string providing the name for the serverside data.frame to be sorted.
This parameter is fully specified by the equivalent argument in ds.dataFrameShort
and further details can be found at help("ds.dataFrameSort").

sort.key.name a character string providing the name for the sort key. This will be a serverside
vector which may sit inside the data frame to be sorted or independently in the
serverside analysis environment. But, if it sits outside the data frame it must
then be the same length as the data frame. This parameter is fully specified by
the equivalent argument in ds.dataFrameShort and further details can be found
at help("ds.dataFrameSort").

sort.descending

logical, if TRUE the data.frame will be sorted by the sort key in descending
order. Default = FALSE (sort order ascending). This parameter is fully speci-
fied by the equivalent argument in ds.dataFrameShort and further details can be
found at help("ds.dataFrameSort").



dataFrameSubsetDS1 31

sort.method A character string taking one of the values: "default", "d", "alphabetic", "a",
"numeric", "n", or NULL. Default value is "default". This parameter is fully
specified by the equivalent argument in ds.dataFrameShort and further details
can be found at help("ds.dataFrameSort").

Details

Serverside assign function dataFrameSortDS is called by clientside function ds.dataFrameSort. A
vector or a matrix can be added to, or coerced into, a data frame (using function [ds.dataFrame])
and this means that they too can be sorted/reordered using ds.dataFrameSort. Fundamentally, the
function [ds.dataFrameSort] will sort a specified data frame on the serverside using a sort key also
on the serverside. For more details see help for the clientside function: [ds.dataFrameShort]

Value

the appropriately re-sorted data.frame will be written to the serverside R environment as a data.frame
named according to the <newobj> argument(or with default name ’dataframesort.newobj’) if no
name is specified

Author(s)

Paul Burton, with critical error identification by Leire Abarrategui-Martinez, for DataSHIELD De-
velopment Team, 2/4/2020

dataFrameSubsetDS1 dataFrameSubsetDS1 an aggregate function called by
ds.dataFrameSubset

Description

First serverside function for subsetting a data frame by row or by column.

Usage

dataFrameSubsetDS1(
df.name = NULL,
V1.name = NULL,
V2.name = NULL,
Boolean.operator.n = NULL,
keep.cols = NULL,
rm.cols = NULL,
keep.NAs = NULL

)



32 dataFrameSubsetDS1

Arguments

df.name a character string providing the name for the data.frame to be sorted. <df.name>
argument generated and passed directly to dataFrameSubsetDS1 by ds.dataFrameSubset

V1.name A character string specifying the name of a subsetting vector to which a Boolean
operator will be applied to define the subset to be created. <V1.name> argument
generated and passed directly to dataFrameSubsetDS1 by ds.dataFrameSubset

V2.name A character string specifying the name of the vector or scalar to which the
values in the vector specified by the argument <V1.name> is to be compared.
<V2.name> argument generated and passed directly to dataFrameSubsetDS1 by
ds.dataFrameSubset

Boolean.operator.n

A character string specifying one of six possible Boolean operators: ’==’, ’!=’,
’>’, ’>=’, ’<’, ’<=’ <Boolean.operator.n> argument generated and passed di-
rectly to dataFrameSubsetDS1 by ds.dataFrameSubset

keep.cols a numeric vector specifying the numbers of the columns to be kept in the final
subset when subsetting by column. For example: keep.cols=c(2:5,7,12) will
keep columns 2,3,4,5,7 and 12. <keep.cols> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

rm.cols a numeric vector specifying the numbers of the columns to be removed before
creating the final subset when subsetting by column. For example: rm.cols=c(2:5,7,12)
will remove columns 2,3,4,5,7 and 12. <rm.cols> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

keep.NAs logical, if TRUE any NAs in the vector holding the final Boolean vector indi-
cating whether a given row should be included in the subset will be converted
into 1s and so they will be included in the subset. Such NAs could be caused by
NAs in either <V1.name> or <V2.name>. If FALSE or NULL NAs in the final
Boolean vector will be converted to 0s and the corresponding row will there-
fore be excluded from the subset. <keep.NAs> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

Details

A data frame is a list of variables all with the same number of rows, which is of class ’data.frame’.
For all details see the help header for ds.dataFrameSubset

Value

This first serverside function called by ds.dataFrameSubset provides first level traps for a compre-
hensive series of disclosure risks which can be returned directly to the clientside because dataFrame-
SubsetDS1 is an aggregate function. The second serverside function called by ds.dataFrameSubset
(dataFrameSubsetDS2) carries out most of the same disclosure tests, but it is an assign function be-
cause it writes the subsetted data.frame to the serverside. In consequence, it records error messages
as studysideMessages which can only be retrieved using ds.message

Author(s)

Paul Burton



dataFrameSubsetDS2 33

dataFrameSubsetDS2 dataFrameSubsetDS2 an assign function called by
ds.dataFrameSubset

Description

Second serverside function for subsetting a data frame by row or by column.

Usage

dataFrameSubsetDS2(
df.name = NULL,
V1.name = NULL,
V2.name = NULL,
Boolean.operator.n = NULL,
keep.cols = NULL,
rm.cols = NULL,
keep.NAs = NULL

)

Arguments

df.name a character string providing the name for the data.frame to be sorted. <df.name>
argument generated and passed directly to dataFrameSubsetDS2 by ds.dataFrameSubset

V1.name A character string specifying the name of a subsetting vector to which a Boolean
operator will be applied to define the subset to be created. <V1.name> argument
generated and passed directly to dataFrameSubsetDS2 by ds.dataFrameSubset

V2.name A character string specifying the name of the vector or scalar to which the
values in the vector specified by the argument <V1.name> is to be compared.
<V2.name> argument generated and passed directly to dataFrameSubsetDS2 by
ds.dataFrameSubset

Boolean.operator.n

A character string specifying one of six possible Boolean operators: ’==’, ’!=’,
’>’, ’>=’, ’<’, ’<=’ <Boolean.operator.n> argument generated and passed di-
rectly to dataFrameSubsetDS2 by ds.dataFrameSubset

keep.cols a numeric vector specifying the numbers of the columns to be kept in the final
subset when subsetting by column. For example: keep.cols=c(2:5,7,12) will
keep columns 2,3,4,5,7 and 12. <keep.cols> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

rm.cols a numeric vector specifying the numbers of the columns to be removed before
creating the final subset when subsetting by column. For example: rm.cols=c(2:5,7,12)
will remove columns 2,3,4,5,7 and 12. <rm.cols> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

keep.NAs logical, if TRUE any NAs in the vector holding the final Boolean vector indi-
cating whether a given row should be included in the subset will be converted



34 densityGridDS

into 1s and so they will be included in the subset. Such NAs could be caused by
NAs in either <V1.name> or <V2.name>. If FALSE or NULL NAs in the final
Boolean vector will be converted to 0s and the corresponding row will there-
fore be excluded from the subset. <keep.NAs> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

Details

A data frame is a list of variables all with the same number of rows, which is of class ’data.frame’.
For all details see the help header for ds.dataFrameSubset

Value

the object specified by the <newobj> argument (or default name ’<df.name>_subset’) initially
specified in calling ds.dataFrameSubset. The output object (the required subsetted data.frame
called <newobj> is written to the serverside. In addition, two validity messages are returned via
ds.dataFrameSubset indicating whether <newobj> has been created in each data source and if so
whether it is in a valid form. If its form is not valid in at least one study - e.g. because a
disclosure trap was tripped and creation of the full output object was blocked - dataFrameSub-
setDS2 (via ds.dataFrame()) also returns any studysideMessages that can explain the error in cre-
ating the full output object. As well as appearing on the screen at run time,if you wish to see
the relevant studysideMessages at a later date you can use the ds.message function. If you type
ds.message("newobj") it will print out the relevant studysideMessage from any datasource in which
there was an error in creating <newobj> and a studysideMessage was saved. If there was no er-
ror and <newobj> was created without problems no studysideMessage will have been saved and
ds.message("newobj") will return the message: "ALL OK: there are no studysideMessage(s) on
this datasource".

Author(s)

DataSHIELD Development Team

densityGridDS Generates a density grid with or without a priori defined limits

Description

Generates a density grid that can then be used for heatmap or countour plots.

Usage

densityGridDS(
xvect,
yvect,
limits = FALSE,
x.min = NULL,
x.max = NULL,
y.min = NULL,



dimDS 35

y.max = NULL,
numints = 20

)

Arguments

xvect a numerical vector

yvect a numerical vector

limits a logical expression for whether or not limits of the density grid are defined by
a user. If limits is set to "FALSE", min and max of xvect and yvect are used as
a range. If limits is set to "TRUE", limits defined by x.min, x.max, y.min and
y.max are used.

x.min a minimum value for the x axis of the grid density object, if needed

x.max a maximum value for the x axis of the grid density object, if needed

y.min a minimum value for the y axis of the grid density object, if needed

y.max a maximum value for the y axis of the grid density object, if needed

numints a number of intervals for the grid density object, by default is 20

Details

Invalid cells (cells with count < to the set filter value for the minimum allowed counts in table cells)
are turn to 0.

Value

a grid density matrix

Author(s)

Julia Isaeva, Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

dimDS Returns the dimension of a data frame or matrix

Description

This function is similar to R function dim.

Usage

dimDS(x)

Arguments

x a string character, the name of a dataframe or matrix



36 dmtC2SDS

Details

The function returns the dimension of the input dataframe or matrix

Value

the dimension of the input object

Author(s)

Demetris Avraam, for DataSHIELD Development Team

dmtC2SDS Copy a clientside data.frame, matrix or tibble (DMT) to the serverside.

Description

Creates a data.frame, matrix or tibble on the serverside that is equivalent to that same data.frame,
matrix or tibble (DMT) on the clientside.

Usage

dmtC2SDS(
dfdata.mat.transmit,
inout.object.transmit,
from,
nrows.transmit,
ncols.transmit,
colnames.transmit,
colclass.transmit,
byrow

)

Arguments

dfdata.mat.transmit

a character string in a format that can pass through the DataSHIELD R parser
which specifies the name of the DMT to be copied from the clientside to the
serverside. Value fully specified by <dfdata> argument of ds.dmtC2S.

inout.object.transmit

a character string taking values "DF", "MAT" or "TBL". The value of this ar-
gument is automatically set by ds.dmtC2S depending on whether the clientside
DMT is a data.frame, matrix or tibble. Correspondingly, its value determines
whether the object created on the serverside is a data.frame, matrix or tibble.
This is unlikely to always work (some class misspecifications may occur) but it
works in all the test cases.

from a character string specifying the source of <dfdata>. Fixed by clientside function
as "clientside.matdftbl".



elsplineDS 37

nrows.transmit specifies the number of rows in the matrix to be created. Fixed by the clientside
function as equal to the number of rows in the clientside DMT to be transferred.

ncols.transmit specifies the number of columns in the matrix to be created. Fixed by the
clientside function as equal to the number of columns in the clientside DMT
to be transferred.

colnames.transmit

a parser-transmissable vector specifying the name of each column in the DMT
being transferred from clientside to serverside. Generated automatically by
clientside function from colnames of clientside DMT.

colclass.transmit

a parser-transmissable vector specifying the class of the vector representing each
individual column in the DMT to be transferred. Generated automatically by
clientside function. This allows the transmission of DMTs containing columns
with different classes.If something is going to go wrong with class misspecifi-
cation (see inout.object.transmit) it is a DMT with a complex combination of
data/column types that will most likely be the cause. This suggests that you al-
ways check the class of the serverside DMT and its individual columns (if the
latter is important). If a situation arises where the class of the columns is cru-
cial and the function cannot do what is needed please contact the DataSHIELD
forum and we can try to remedy the problem.

byrow a logical value specifying whether the DMT created on the serverside should be
filled row by row or column by column. This is fixed by the clientside function
as FALSE (fill column by column).

Details

dmtC2SDS is a serverside assign function called by ds.dmtC2S. For more information about how it
works see help for ds.dmtC2S

Value

the object specified by the <newobj> argument (or default name "matdftbl.copied.C2S") which is
written as a data.frame, matrix or tibble to the serverside.

Author(s)

Paul Burton for DataSHIELD Development Team - 3rd June, 2021

elsplineDS Basis for a piecewise linear spline with meaningful coefficients

Description

This function is based on the native R function elspline from the lspline package. This function
computes the basis of piecewise-linear spline such that, depending on the argument marginal, the
coefficients can be interpreted as (1) slopes of consecutive spline segments, or (2) slope change at
consecutive knots.



38 extractQuantilesDS1

Usage

elsplineDS(x = x, n = n, marginal = FALSE, names = NULL)

Arguments

x the name of the input numeric variable

n integer greater than 2, knots are computed such that they cut n equally-spaced
intervals along the range of x

marginal logical, how to parametrize the spline, see Details

names character, vector of names for constructed variables

Details

If marginal is FALSE (default) the coefficients of the spline correspond to slopes of the consecutive
segments. If it is TRUE the first coefficient correspond to the slope of the first segment. The
consecutive coefficients correspond to the change in slope as compared to the previous segment.
Function elspline wraps lspline and computes the knot positions such that they cut the range of x
into n equal-width intervals.

Value

an object of class "lspline" and "matrix", which its name is specified by the newobj argument (or
its default name "elspline.newobj"), is assigned on the serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team

extractQuantilesDS1 Secure ranking of "V2BR" (vector to be ranked) across all sources and
use of these ranks to estimate global quantiles across all studies

Description

identify the global values of V2BR (i.e. the values across all studies) that relate to a set of quantiles
to be evaluated.

Usage

extractQuantilesDS1(extract.quantiles, extract.summary.output.ranks.df)



extractQuantilesDS1 39

Arguments

extract.quantiles

one of a restricted set of character strings that fix the set of quantile values for
which the corresponding values across all studies are to be estimated. For more
details see the associated document entitled "secure.global.ranking.docx", the
header for ds.ranksSecure and ds.extractQuantiles functions. The value of this
argument is set in choosing the value of the argument <quantiles.for.estimation>
in ds.ranksSecure.

extract.summary.output.ranks.df

character string specifying optional name for the data.frame written to the server-
side on each data source that contains 5 of the key output variables from the
ranking procedure pertaining to that particular data source. This data frame
represents the key source of information - including global ranks - that deter-
mines the values of V2BR that are identified as corresponding to the particular
set of quantiles to be estimated as specified by the <quantiles.for.estimation>
argument of function ds.ranksSecure (and the <extract.quantiles> argument of
ds.extractQuantiles).

Details

Severside aggregate function called by ds.extractQuantiles via ds.ranksSecure. As well as estimat-
ing the key values of V2BR that correspond to the selected quantiles, this function also implements
a disclosure control trap. If the ratio of the total number of all observations across all studies divided
by the number of quantile values to be estimated is less than or equal to nfilter.subset (which spec-
ifies the minimum size of a subset) the process stops and an error message is returned suggesting
that you might try selecting a narrower range of quantiles with less quantile values to be estimated
as specified by the argument <quantiles.for.estimation> of the function ds.ranksSecure. For more
details about the cluster of functions that collectively enable secure global ranking and estimation
of global quantiles see the associated document entitled "secure.global.ranking.docx"

Value

as a first step in creating the vector of values of values of V2BR that correspond to each quantile
value, extractQuantilesDS1 identifies the two closest quantile values across all studies that span each
key quantile value. These are saved as the data frame "closest.bounds.df" on the clientside and then
saved on the serverside by ds.dmtC2S into the data frame "global.bounds.df". Also if the number of
observations across all studies is too small, and a disclosure risk exists if the final.quantile.vector is
made available via the client, this function stops the processing and returns a warning/error message.

Author(s)

Paul Burton 11th November, 2021



40 extractQuantilesDS2

extractQuantilesDS2 Secure ranking of "V2BR" (vector to be ranked) across all sources and
use of these ranks to estimate global quantiles across all studies

Description

identify the global values of V2BR (i.e. the values across all studies) that relate to a set of quantiles
to be evaluated.

Usage

extractQuantilesDS2(extract.summary.output.ranks.df)

Arguments

extract.summary.output.ranks.df

character string specifies an optional name for the data.frame written to the
serverside on each data source that contains 5 of the key output variables from
the ranking procedure pertaining to that particular data source. This data frame
represents the key source of information - including global ranks - that deter-
mines the values of V2BR that are identified as corresponding to the particular
set of quantiles to be estimated as specified by the <quantiles.for.estimation>
argument of function ds.ranksSecure (and the <extract.quantiles> argument of
ds.extractQuantiles).

Details

Severside aggregate function called by ds.extractQuantiles via ds.ranksSecure. This takes the "global.bounds.df"
data frame saved on the serverside following construction by extractQuantilesDS1. This data frame
includes the two quantile values that most closely span each quartile value to be estimated. If either
of the values had been the correct value for a given quantile, both the bounding values would have
taken that value in global.bounds.df. This is because the upper bound was defined as the lowest
value that was equal to or greater than the true value for that quantile while the lower bound was
defined as the highest value that was equal to or lower than the true value. Next, the function extrac-
tQuantileDS2 goes round study by study to identify the values of V2BR that actually correspond
to each of the spanning values around each quantile. Then the function goes quantile by quantile
and estimates the mean of the two values of V2BR that correspond to the the spanning quantiles. If
these two values are the same it means that that value of V2BR is the "true" value and the mean of
two (or potentially several) instances of that value is inevitably also equal to that true value. If the
upper and lower bounding values of V2BR differ, neither can be the precisely correct single value
of V2BR for that quantile (see above for explanation) and so the mean of the two is a reasonable
interpolated summary.

Value

the single value of V2BR which best corresponds to each key quantile value to be estimated as
specified by the argument <quantiles.for.estimation> A data frame (final.quantile.df)summarising



gamlssDS 41

the results of this analysis is written to the clientside. This data frame consists of two vectors.
The first is named "evaluation.quantiles". It lists the full set of quantiles you have requested for
evaluation as specified by the argument "quantiles.for.estimation" The second vector which is called
"final.quantile.vector" details the values of V2BR that correspond to the the key quantiles listed in
vector 1.

Author(s)

Paul Burton 11th November, 2021

gamlssDS gamlssDS an aggregate function called by ds.galmss

Description

This function calls the gamlssDS that is a wrapper function from the gamlss R package. The func-
tion returns an object of class "gamlss", which is a generalized additive model for location, scale
and shape (GAMLSS). The function also saves the residuals as an object on the server-side with a
name specified by the newobj argument. In addition, if the argument centiles is set to TRUE, the
function calls the centiles function from the gamlss package and returns the sample percentages
below each centile curve.

Usage

gamlssDS(
formula = formula,
sigma.formula = sigma.formula,
nu.formula = nu.formula,
tau.formula = tau.formula,
family = family,
data = data,
method = method,
mu.fix = mu.fix,
sigma.fix = sigma.fix,
nu.fix = nu.fix,
tau.fix = tau.fix,
control = control,
i.control = i.control,
centiles = centiles,
xvar = xvar,
newobj = newobj

)

Arguments

formula a formula object, with the response on the left of an ~ operator, and the terms,
separated by + operators, on the right. Nonparametric smoothing terms are in-
dicated by pb() for penalised beta splines, cs for smoothing splines, lo for loess
smooth terms and random or ra for random terms, e.g. y~cs(x,df=5)+x1+x2*x3.



42 gamlssDS

sigma.formula a formula object for fitting a model to the sigma parameter, as in the formula
above, e.g. sigma.formula=~cs(x,df=5).

nu.formula a formula object for fitting a model to the nu parameter, e.g. nu.formula=~x

tau.formula a formula object for fitting a model to the tau parameter, e.g. tau.formula=~cs(x,df=2)

family a gamlss.family object, which is used to define the distribution and the link func-
tions of the various parameters. The distribution families supported by gamlss()
can be found in gamlss.family. Functions such as BI() (binomial) produce a fam-
ily object. Also can be given without the parentheses i.e. BI. Family functions
can take arguments, as in BI(mu.link=probit).

data a data frame containing the variables occurring in the formula. If this is missing,
the variables should be on the parent environment.

method a character indicating the algorithm for GAMLSS. Can be either ’RS’, ’CG’
or ’mixed’. If method=’RS’ the function will use the Rigby and Stasinopou-
los algorithm, if method=’CG’ the function will use the Cole and Green al-
gorithm, and if method=’mixed’ the function will use the RS algorithm twice
before switching to the Cole and Green algorithm for up to 10 extra iterations.

mu.fix logical, indicate whether the mu parameter should be kept fixed in the fitting
processes.

sigma.fix logical, indicate whether the sigma parameter should be kept fixed in the fitting
processes.

nu.fix logical, indicate whether the nu parameter should be kept fixed in the fitting
processes.

tau.fix logical, indicate whether the tau parameter should be kept fixed in the fitting
processes.

control this sets the control parameters of the outer iterations algorithm using the gamlss.control
function. This is a vector of 7 numeric values: (i) c.crit (the convergence crite-
rion for the algorithm), (ii) n.cyc (the number of cycles of the algorithm), (iii)
mu.step (the step length for the parameter mu), (iv) sigma.step (the step length
for the parameter sigma), (v) nu.step (the step length for the parameter nu), (vi)
tau.step (the step length for the parameter tau), (vii) gd.tol (global deviance tol-
erance level). The default values for these 7 parameters are set to c(0.001, 20, 1,
1, 1, 1, Inf).

i.control this sets the control parameters of the inner iterations of the RS algorithm us-
ing the glim.control function. This is a vector of 4 numeric values: (i) cc (the
convergence criterion for the algorithm), (ii) cyc (the number of cycles of the
algorithm), (iii) bf.cyc (the number of cycles of the backfitting algorithm), (iv)
bf.tol (the convergence criterion (tolerance level) for the backfitting algorithm).
The default values for these 4 parameters are set to c(0.001, 50, 30, 0.001).

centiles logical, indicating whether the function centiles() will be used to tabulate the
sample percentages below each centile curve. Default is set to FALSE.

xvar the unique explanatory variable used in the centiles() function. This variable is
used only if the centiles argument is set to TRUE. A restriction in the centiles
function is that it applies to models with one explanatory variable only.

newobj a character string that provides the name for the output object that is stored on
the data servers. Default gamlss_residuals.



getWGSRDS 43

Details

For additional details see the help header of gamlss and centiles functions in native R gamlss pack-
age.

Value

a gamlss object with all components as in the native R gamlss function. Individual-level information
like the components y (the response response) and residuals (the normalised quantile residuals of
the model) are not disclosed to the client-side.

Author(s)

Demetris Avraam for DataSHIELD Development Team

getWGSRDS Computes the WHO Growth Reference z-scores of anthropometric
data

Description

Calculate WHO Growth Reference z-score for a given anthropometric measurement This function
is similar to R function getWGSR from the zscorer package.

Usage

getWGSRDS(sex, firstPart, secondPart, index, standing = NA, thirdPart = NA)

Arguments

sex the name of the binary variable that indicates the sex of the subject. This must be
coded as 1 = male and 2 = female. If in your project the variable sex has different
levels, you should recode the levels to 1 for males and 2 for females using the
ds.recodeValues DataSHIELD function before the use of the ds.getWGSR.

firstPart Name of variable specifying:
Weight (kg) for BMI/A, W/A, W/H, or W/L
Head circumference (cm) for HC/A
Height (cm) for H/A
Length (cm) for L/A
MUAC (cm) for MUAC/A
Sub-scapular skinfold (mm) for SSF/A
Triceps skinfold (mm) for TSF/A
Give a quoted variable name as in (e.g.) "weight". Be careful with units (weight
in kg; height, length, head circumference, and MUAC in cm, skinfolds in mm).



44 getWGSRDS

secondPart Name of variable specifying:
Age (days) for H/A, HC/A, L/A, MUAC/A, SSF/A, or TSF/A
Height (cm) for BMI/A, or W/H
Length (cm) for W/L
Give a quoted variable name as in (e.g.) "age". Be careful with units (age in
days; height and length in cm).

index The index to be calculated and added to data. One of:
bfa BMI for age
hca Head circumference for age
hfa Height for age
lfa Length for age
mfa MUAC for age
ssa Sub-scapular skinfold for age
tsa Triceps skinfold for age
wfa Weight for age
wfh Weight for height
wfl Weight for length
Give a quoted index name as in (e.g.) "wfh".

standing Variable specifying how stature was measured. If NA (default) then age (for
"hfa" or "lfa") or height rules (for "wfh" or "wfl") will be applied. This must
be coded as 1 = Standing; 2 = Supine; 3 = Unknown. Missing values will be
recoded to 3 = Unknown. Give a single value (e.g."1"). If no value is specified
then height and age rules will be applied.

thirdPart Name of variable specifying age (in days) for BMI/A. Give a quoted variable
name as in (e.g.) "age". Be careful with units (age in days).

Details

The function computes the WHO Growth Reference z-scores of anthropometric data for weight,
height or length, MUAC, head circumference, sub-scapular skinfold and triceps skinfold. Note that
the function might fail or return NAs when the variables are outside the ranges given in the WGS
(WHO Child Growth Standards) reference (i.e. 45 to 120 cm for height and 0 to 60 months for age).
It is up to the user to check the ranges and the units of their data.

Value

ds.getWGSR assigns a numeric vector that includes the z-scores for the specified index.

Author(s)

Demetris Avraam for DataSHIELD Development Team



glmDS1 45

glmDS1 glmDS1 called by ds.glm

Description

This is the first server-side aggregate function called by ds.glm

Usage

glmDS1(formula, family, weights, offset, data)

Arguments

formula a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
x,y and Z

family a glm() family consistent with R syntax eg "gaussian", "poisson", "binomial"

weights an optional variable providing regression weights

offset the offset

data an optional character string specifying a data.frame object holding the data to be
analysed under the specified model

Details

It is an aggregation function that sets up the model structure and creates the starting beta.vector that
feeds, via ds.glm, into glmDS2 to enable iterative fitting of the generalized linear model that has
been been specified. For more details please see the extensive header for ds.glm.

Value

List with values from GLM model.

Author(s)

Burton PR for DataSHIELD Development Team



46 glmDS2

glmDS2 glmDS2 called by ds.glm

Description

This is the second server-side aggregate function called by ds.glm.

Usage

glmDS2(formula, family, beta.vect, offset, weights, dataName)

Arguments

formula a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
x, y and Z

family a glm() family consistent with R syntax eg "gaussian", "poisson", "binomial"

beta.vect a numeric vector created by the clientside function specifying the vector of re-
gression coefficients at the current iteration

offset an optional variable providing a regression offset

weights an optional variable providing regression weights

dataName an optional character string specifying a data.frame object holding the data to be
analysed under the specified model same

Details

It is an aggregate function that uses the model structure and starting beta.vector constructed by
glmDS1 to iteratively fit the generalized linear model that has been specified. The function glmDS2
also carries out a series of disclosure checks and if the arguments or data fail any of those tests,
model construction is blocked and an appropriate serverside error message is created and returned
to ds.glm on the clientside. For more details please see the extensive header for ds.glm.

Value

List with values from GLM model

Author(s)

Paul Burton, for DataSHIELD Development Team



glmerSLMADS.assign 47

glmerSLMADS.assign Fitting generalized linear mixed effect models - serverside function

Description

glmerSLMADS.assign is the same as glmerSLMADS2 which fits a generalized linear mixed effects
model (glme) per study and saves the outcomes in each study

Usage

glmerSLMADS.assign(
formula,
offset,
weights,
dataName,
family,
control_type = NULL,
control_value.transmit = NULL,
nAGQ = 1L,
verbose = 0,
theta = NULL,
fixef = NULL

)

Arguments

formula see help for ds.glmerSLMA

offset see help for ds.glmerSLMA

weights see help for ds.glmerSLMA

dataName see help for ds.glmerSLMA

family see help for ds.glmerSLMA

control_type see help for ds.glmerSLMA
control_value.transmit

see help for argument <control_value> for function ds.glmerSLMA

nAGQ integer scalar, defaulting to 1L. IN PRACTICE, IT MAY BE NECESSARY TO
SET nAGQ TO 0L when the model appears to converge perfectly well (e.g.
verbose=2 demonstrates good initial convergence of both the log-likelihood and
regression coefficients) but formal convergence does not get declared - so no
output is produced - despite running the model for many iterations. The nAGQ
argument is set by the nAGQ argument for ds.glmerSLMA and further details
can be found in help(ds.glmerSLMA) and in the native R help for glmer()

verbose see help for ds.glmerSLMA

theta see help for argument <start_theta> for function ds.glmerSLMA

fixef see help for argument <start_fixef> for function ds.glmerSLMA



48 glmerSLMADS2

Details

glmerSLMADS.assign is a serverside function called by ds.glmerSLMA on the clientside. The ana-
lytic work engine is the glmer function in R which sits in the lme4 package. glmerSLMADS.assign
fits a generalized linear mixed effects model (glme) - e.g. a logistic or Poisson regression model
including both fixed and random effects - on data from each single data source and saves the regres-
sion outcomes on the serveside.

Value

writes glmerMod object summarising the fitted model to the serverside. For more detailed informa-
tion see help for ds.glmerSLMA.

Author(s)

Demetris Avraam for DataSHIELD Development Team

glmerSLMADS2 Fitting generalized linear mixed effect models - serverside function

Description

glmerSLMADS2 fits a generalized linear mixed effects model (glme) - e.g. a logistic or Poisson
regression model including both fixed and random effects - on data from one or multiple sources
with pooling via SLMA (study level meta-analysis)

Usage

glmerSLMADS2(
formula,
offset,
weights,
dataName,
family,
control_type = NULL,
control_value.transmit = NULL,
nAGQ = 1L,
verbose = 0,
theta = NULL,
fixef = NULL

)

Arguments

formula see help for ds.glmerSLMA

offset see help for ds.glmerSLMA

weights see help for ds.glmerSLMA



glmPredictDS.ag 49

dataName see help for ds.glmerSLMA

family see help for ds.glmerSLMA

control_type see help for ds.glmerSLMA
control_value.transmit

see help for argument <control_value> for function ds.glmerSLMA

nAGQ integer scalar, defaulting to 1L. IN PRACTICE, IT MAY BE NECESSARY TO
SET nAGQ TO 0L when the model appears to converge perfectly well (e.g.
verbose=2 demonstrates good initial convergence of both the log-likelihood and
regression coefficients) but formal convergence does not get declared - so no
output is produced - despite running the model for many iterations. The nAGQ
argument is set by the nAGQ argument for ds.glmerSLMA and further details
can be found in help(ds.glmerSLMA) and in the native R help for glmer()

verbose see help for ds.glmerSLMA

theta see help for argument <start_theta> for function ds.glmerSLMA

fixef see help for argument <start_fixef> for function ds.glmerSLMA

Details

glmerSLMADS2 is a serverside function called by ds.glmerSLMA on the clientside. The analytic
work engine is the glmer function in R which sits in the lme4 package. ds.glmerSLMA fits a
generalized linear mixed effects model (glme) - e.g. a logistic or Poisson regression model including
both fixed and random effects - on data from a single or multiple sources. When there are multiple
data sources, the glme is fitted to convergence in each data source independently and the estimates
and standard errors returned to the client thereby enabling cross-study pooling using study level
meta-analysis (SLMA). By default the SLMA is undertaken using the metafor package, but as
the SLMA occurs on the clientside which, as far as the user is concerned is just a standard R
environment, the user can choose to use any approach to meta-analysis they choose. Additional
information about fitting glmes using the glmer engine can be obtained using R help for glmer and
the lme4 package

Value

all key model components see help for ds.glmerSLMA

Author(s)

Tom Bishop, with some additions by Paul Burton

glmPredictDS.ag predict regression responses from a glm object

Description

identify and return key components/summaries of a serverside glm_predict object that can safely be
returned to the clientside without disclosure risk



50 glmPredictDS.ag

Usage

glmPredictDS.ag(
glmname.transmit,
newdataname.transmit,
output.type,
se.fit,
dispersion,
terms.transmit,
na.action

)

Arguments

glmname.transmit

a character string specifying the name of the glm object on the serverside that is
to be used for prediction. Fully specified by glmname argument in ds.glmPredict

newdataname.transmit

a character string specifying an (optional) dataframe on the serverside in which
to look for (potentially) new covariate values on which to base the predictions.
Fully specified by newdataname argument in ds.glmPredict.

output.type a character string taking the values ’response’, ’link’ or ’terms’. Fully specified
by corresponding argument in ds.glmPredict.

se.fit logical if standard errors for the fitted predictions are required. Fully specified
by corresponding argument in ds.glmPredict.

dispersion numeric value specifying the dispersion of the GLM fit to be assumed in comput-
ing the standard errors. Fully specified by corresponding argument in ds.glmPredict.

terms.transmit a character vector specifying a subset of terms to return in the prediction. Fully
specified by ’terms’ argument in ds.glmPredict.

na.action character string determining what should be done with missing values in the
data.frame identified by <newdataname.transmit>. Fully specified by na.action
argument in ds.glmPredict.

Details

Serverside aggregate function called by ds.glmPredict. It is called immediately after the assign
function glmPredict.as has created a predict_glm object on the serverside by applying the equivalent
of predict.glm() in native R to a glm object on the serverside. The aggregate function, glmPredict.ag,
then identifies and returns components of that predict_glm object that can safely be returned to the
clientside without a risk of disclosure. For further details see DataSHIELD help for ds.glmPredict
and glmPredict.as and help in native R for predict.glm

Value

components/summarising statistics of a serverside predict_glm object that can safely be transmit-
ted to the clientside without a risk of disclosure. For further details see DataSHIELD help for
ds.glmPredict and glmPredict.as and help in native R for predict.glm predict.glm in native R



glmPredictDS.as 51

Author(s)

Paul Burton for DataSHIELD Development Team (20/7/20)

glmPredictDS.as predict regression responses from a glm object

Description

create a predict_glm object on the serverside by applying the equivalent of predict.glm() in native
R to a glm object on the serverside. Identify and return components of the predict_glm object that
can safely be sent to the clientside without a risk of disclosure

Usage

glmPredictDS.as(
glmname.transmit,
newdataname.transmit,
output.type,
se.fit,
dispersion,
terms.transmit,
na.action

)

Arguments

glmname.transmit

a character string specifying the name of the glm object on the serverside that is
to be used for prediction. Fully specified by glmname argument in ds.glmPredict

newdataname.transmit

a character string specifying an (optional) dataframe on the serverside in which
to look for (potentially) new covariate values on which to base the predictions.
Fully specified by newdataname argument in ds.glmPredict.

output.type a character string taking the values ’response’, ’link’ or ’terms’. Fully specified
by corresponding argument in ds.glmPredict.

se.fit logical if standard errors for the fitted predictions are required. Fully specified
by corresponding argument in ds.glmPredict.

dispersion numeric value specifying the dispersion of the GLM fit to be assumed in comput-
ing the standard errors. Fully specified by corresponding argument in ds.glmPredict.

terms.transmit a character vector specifying a subset of terms to return in the prediction. Fully
specified by ’terms’ argument in ds.glmPredict.

na.action character string determining what should be done with missing values in the
data.frame identified by <newdataname.transmit>. Fully specified by na.action
argument in ds.glmPredict.



52 glmSLMADS.assign

Details

Serverside assign function called by ds.glmPredict makes predictions of regression responses based
on a serverside glm object that has already been created on the serverside by ds.glmSLMA and and
writes the predict_glm object to the serverside. For further details see help for ds.glmPredict and
help in native R for predict.glm

Value

glmPredict.as writes a new object to the serverside containing output precisely equivalent to the
output from predict.glm in native R. For more details see DataSHIELD help for ds.glmPredict and
help for predict.glm in native R

Author(s)

Paul Burton for DataSHIELD Development Team (20/7/20)

glmSLMADS.assign Fit a Generalized Linear Model (GLM) with pooling via Study Level
Meta-Analysis (SLMA)

Description

Fits a generalized linear model (GLM) on data from single or multiple sources with pooled co-
analysis across studies being based on SLMA (Study Level Meta Analysis).

Usage

glmSLMADS.assign(formula, family, offsetName, weightsName, dataName)

Arguments

formula a glm formula, specified in call to ds.glmSLMA

family a glm family, specified in call to ds.glmSLMA

offsetName a character string specifying a variable to be used as an offset. Specified in call
to ds.glmSLMA.

weightsName a character string specifying a variable to be used as regression weights. Speci-
fied in call to ds.glmSLMA. Specified in call to ds.glmSLMA.

dataName a character string specifying the name of a data.frame holding the data for the
model. Specified in call to ds.glmSLMA.

Details

glmSLMADS.assign is an assign function called by clientside function ds.glmSLMA. ds.glmSLMA
also calls two aggregate functions glmSLMADS1 and glmSLMADS2. For more detailed informa-
tion see help for ds.glmSLMA.



glmSLMADS1 53

Value

writes glm object summarising the fitted model to the serverside. For more detailed information see
help for ds.glmSLMA.

Author(s)

Paul Burton for DataSHIELD Development Team (14/7/20)

glmSLMADS1 Fit a Generalized Linear Model (GLM) with pooling via Study Level
Meta-Analysis (SLMA)

Description

Fits a generalized linear model (GLM) on data from single or multiple sources with pooled co-
analysis across studies being based on SLMA (Study Level Meta Analysis).

Usage

glmSLMADS1(formula, family, weights, offset, data)

Arguments

formula a glm formula, specified in call to ds.glmSLMA

family a glm family, specified in call to ds.glmSLMA

weights a character string specifying a variable to be used as regression weights. Speci-
fied in call to ds.glmSLMA. Specified in call to ds.glmSLMA.

offset a character string specifying a variable to be used as an offset. Specified in call
to ds.glmSLMA.

data a character string specifying the name of a data.frame holding the data for the
model. Specified as dataName in call to ds.glmSLMA.

Details

glmSLMADS.assign is an aggregate function called by clientside function ds.glmSLMA. ds.glmSLMA
also calls another aggregate function glmSLMADS2 and an assign function glmSLMADS.assign
For more detailed information see help for ds.glmSLMA.

Value

assesses and returns information about failure to pass disclosure traps such as test of model com-
plexity (saturation). For more detailed information see help for ds.glmSLMA.

Author(s)

Paul Burton for DataSHIELD Development Team (14/7/20)



54 glmSLMADS2

glmSLMADS2 Fit a Generalized Linear Model (GLM) with pooling via Study Level
Meta-Analysis (SLMA)

Description

Fits a generalized linear model (GLM) on data from single or multiple sources with pooled co-
analysis across studies being based on SLMA (Study Level Meta Analysis).

Usage

glmSLMADS2(formula, family, offset, weights, newobj, dataName)

Arguments

formula a glm formula, specified in call to ds.glmSLMA

family a glm family, specified in call to ds.glmSLMA

offset a character string specifying a variable to be used as an offset. Specified in call
to ds.glmSLMA.

weights a character string specifying a variable to be used as regression weights. Speci-
fied in call to ds.glmSLMA. Specified in call to ds.glmSLMA.

newobj a character string specifying the name of the glm object written to the server-
side by glmSLMADS.assign. This is either the name specified by the newobj
argument in ds.glmSLMA or if newobj was unspecified or NULL it is called
new.glm.obj.

dataName a character string specifying the name of a data.frame holding the data for the
model. Specified in call to ds.glmSLMA.

Details

glmSLMADS.assign is an aggregate function called by clientside function ds.glmSLMA. ds.glmSLMA
also calls another aggregate function glmSLMADS2 and an assign function glmSLMADS.assign
For more detailed information see help for ds.glmSLMA.

Value

All quantitative, Boolean, and character objects required to enable the SLMA pooling of the sep-
arate glm models fitted to each study - in particular including the study-specific regression coeffi-
cients and their corresponding standard errors.

Author(s)

Paul Burton for DataSHIELD Development Team (14/7/20)



glmSummaryDS.ag 55

glmSummaryDS.ag summarize a glm object on the serverside

Description

returns the non-disclosive elements to the clientside of a glm object and the corresponding object
holding the output of summary(glm object) on the serverside.

Usage

glmSummaryDS.ag(x.transmit)

Arguments

x.transmit a character string specifying the name of the glm object on the serverside that is
to be summarised. This is specified by x.name argument in ds.glmSummary

Details

Serverside aggregate function called by ds.glmSummary. ds.glmSummary first calls glmSumma-
ryDS.ag to create a glm_summary object on the serverside based on applying native R’s sum-
mary.glm() to a serverside glm object previously created by ds.glmSLMA. Then it calls glmSum-
maryDS.ag to return to the clientside all of the non-disclosive elements (and only the non-disclosive
elements) of the serverside glm and its corresponding summary_glm object.

Value

returns to the clientside all of the non-disclosive elements (and only the non-disclosive elements) of
a specified serverside glm and its corresponding summary_glm object.

Author(s)

Paul Burton for DataSHIELD Development Team (20/7/20)

glmSummaryDS.as summarize a glm object on the serverside

Description

summarize a glm object on the serverside to create a summary_glm object. Also identify and return
components of both the glm object and the summary_glm object that can safely be sent to the
clientside without a risk of disclosure

Usage

glmSummaryDS.as(x.transmit)



56 heatmapPlotDS

Arguments

x.transmit a character string specifying the name of the glm object on the serverside that is
to be summarised. This is specified by x.name argument in ds.glmSummary

Details

Serverside assign function called by ds.glmSummary summarises a glm object that has already been
created on the serverside by fitting ds.glmSLMA and writes the summary_glm object to the server-
side. For further details see help for ds.glmSLMA and help in native R for glm() and summary.glm

Value

writes object to serverside which is precisely equivalent to summary(glm object) in native R

Author(s)

Paul Burton for DataSHIELD Development Team (20/7/20)

heatmapPlotDS Calculates the coordinates of the centroid of each n nearest neighbours

Description

This function calculates the coordinates of the centroids for each n nearest neighbours.

Usage

heatmapPlotDS(x, y, k, noise, method.indicator)

Arguments

x the name of a numeric vector, the x-variable.

y the name of a numeric vector, the y-variable.

k the number of the nearest neighbours for which their centroid is calculated if the
method.indicator is equal to 1 (i.e. deterministic method).

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the method.indicator is equal to 2 (i.e. probabilistic method).

method.indicator

a number equal to either 1 or 2. If the value is equal to 1 then the ’deterministic’
method is used. If the value is set to 2 the ’probabilistic’ method is used.



hetcorDS 57

Details

The function finds the n-1 nearest neighbours of each data point in a 2-dimensional space. The
nearest neighbours are the data points with the minimum Euclidean distances from the point of
interest. Each point of interest and its n-1 nearest neighbours are then used for the calculation of the
coordinates of the centroid of those n points. Centroid here is referred to the centre of mass, i.e. the
x-coordinate of the centroid is the average value of the x-coordinates of the n nearest neighbours
and the y-coordinate of the centroid is the average of the y-coordinates of the n nearest neighbours.
The coordinates of the centroids return to the client side function and can be used for the plot of
non-disclosive graphs (e.g. scatter plots, heatmap plots, contour plots, etc).

Value

a list with the x and y coordinates of the centroids if the deterministic method is used or the x and y
coordinated of the noisy data if the probabilistic method is used.

Author(s)

Demetris Avraam for DataSHIELD Development Team

hetcorDS Heterogeneous Correlation Matrix

Description

This function is based on the hetcor function from the R package polycor.

Usage

hetcorDS(data, ML, std.err, bins, pd, use)

Arguments

data the name of a data frame consisting of factors, ordered factors, logical variables,
character variables, and/or numeric variables, or the first of several variables.

ML if TRUE, compute maximum-likelihood estimates; if FALSE (default), compute
quick two-step estimates.

std.err if TRUE (default), compute standard errors.

bins number of bins to use for continuous variables in testing bivariate normality; the
default is 4.

pd if TRUE (default) and if the correlation matrix is not positive-definite, an attempt
will be made to adjust it to a positive-definite matrix, using the nearPD function
in the Matrix package. Note that default arguments to nearPD are used (except
corr=TRUE); for more control call nearPD directly.

use if "complete.obs", remove observations with any missing data; if "pairwise.complete.obs",
compute each correlation using all observations with valid data for that pair of
variables.



58 histogramDS1

Details

Computes a heterogenous correlation matrix, consisting of Pearson product-moment correlations
between numeric variables, polyserial correlations between numeric and ordinal variables, and poly-
choric correlations between ordinal variables.

Value

Returns an object of class "hetcor" with the following components: the correlation matrix; the type
of each correlation: "Pearson", "Polychoric", or "Polyserial"; the standard errors of the correlations,
if requested; the number (or numbers) of observations on which the correlations are based; p-values
for tests of bivariate normality for each pair of variables; the method by which any missing data
were handled: "complete.obs" or "pairwise.complete.obs"; TRUE for ML estimates, FALSE for
two-step estimates.

Author(s)

Demetris Avraam for DataSHIELD Development Team

histogramDS1 returns the minimum and the maximum of the input numeric vector

Description

this function returns the minimum and maximum of the input numeric vector which depends on
the argument method.indicator. If the method.indicator is set to 1 (i.e. the ’smallCellsRule’ is
used) the computed minimum and maximum values are multiplied by a very small random number.
If the method.indicator is set to 2 (i.e. the ’deterministic’ method is used) the function returns the
minimum and maximum values of the vector with the scaled centroids. If the method.indicator is
set to 3 (i.e. the ’probabilistic’ method is used) the function returns the minimum and maximum
values of the generated ’noisy’ vector.

Usage

histogramDS1(xvect, method.indicator, k, noise)

Arguments

xvect the numeric vector for which the histogram is desired.
method.indicator

a number equal to either 1, 2 or 3 indicating the method of disclosure control
that is used for the generation of the histogram. If the value is equal to 1 then
the ’smallCellsRule’ is used. If the value is equal to 2 then the ’deterministic’
method is used. If the value is set to 3 then the ’probabilistic’ method is used.

k the number of the nearest neighbours for which their centroid is calculated if the
method.indicator is equal to 2 (i.e. deterministic method).

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the method.indicator is equal to 3 (i.e. probabilistic method).



histogramDS2 59

Value

a numeric vector which contains the minimum and the maximum values of the vector

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

histogramDS2 Computes a histogram of the input variable without plotting.

Description

This function produces the information required to plot a histogram. This is done without allowing
for bins (cells) with number of counts less than the pre-specified disclosure control set for the
minimum cell size of a table. If a bin has less counts than this threshold then their counts and its
density are replaced by a 0 value.

Usage

histogramDS2(xvect, num.breaks, min, max, method.indicator, k, noise)

Arguments

xvect the numeric vector for which the histogram is desired.
num.breaks the number of breaks that the range of the variable is divided.
min a numeric, the lower limit of the distribution.
max a numeric, the upper limit of the distribution.
method.indicator

a number equal to either 1, 2 or 3 indicating the method of disclosure control
that is used for the generation of the histogram. If the value is equal to 1 then
the ’smallCellsRule’ is used. If the value is equal to 2 then the ’deterministic’
method is used. If the value is set to 3 then the ’probabilistic’ method is used.

k the number of the nearest neighbours for which their centroid is calculated if the
method.indicator is equal to 2 (i.e. deterministic method).

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the method.indicator is equal to 3 (i.e. probabilistic method).

Details

Please find more details in the documentation of the clientside ds.histogram function.

Value

a list with an object of class histogram and the number of invalid cells

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team



60 igb_standardsDS

igb_standardsDS Converts birth measurements to intergrowth z-scores/centiles

Description

Converts birth measurements to INTERGROWTH z-scores/centiles (generic)

Usage

igb_standardsDS(
gagebrth = gagebrth,
z = z,
p = p,
val = val,
var = var,
sex = sex,
fun = fun

)

Arguments

gagebrth the name of the "gestational age at birth in days" variable.
z z-score(s) to convert (must be between 0 and 1). Default value is 0. This value

is used only if fun is set to "igb_zscore2value".
p centile(s) to convert (must be between 0 and 100). Default value is p=50. This

value is used only if fun is set to "igb_centile2value".
val the name of the anthropometric variable to convert.
var the name of the measurement to convert ("lencm", "wtkg", "hcircm", "wlr")
sex the name of the sex factor variable. The variable should be coded as Male/Female.

If it is coded differently (e.g. 0/1), then you can use the ds.recodeValues function
to recode the categories to Male/Female before the use of ds.igb_standards

fun the name of the function to be used. This can be one of: "igb_centile2value",
"igb_zscore2value", "igb_value2zscore" (default), "igb_value2centile".

Value

assigns the converted measurement as a new object on the server-side

Note

For gestational ages between 24 and 33 weeks, the INTERGROWTH very early preterm standard
is used.

Author(s)

Demetris Avraam for DataSHIELD Development Team



isNaDS 61

isNaDS Checks if a vector is empty

Description

this function is similar to R function is.na but instead of a vector of booleans it returns just one
boolean to tell if all the element are missing values.

Usage

isNaDS(xvect)

Arguments

xvect a numerical or character vector

Value

the integer ’1’ if the vector contains on NAs and ’0’ otherwise

Author(s)

Gaye, A.

isValidDS Checks if an input is valid

Description

Tells if an object on the server side is valid.

Usage

isValidDS(obj)

Arguments

obj a vector (numeric, integer, factor, character), data.frame or matrix

Details

This function checks if an object is valid.

Value

a boolean, TRUE if input is valid or FALSE if not.



62 kurtosisDS1

Author(s)

Gaye, A.

kurtosisDS1 Calculates the kurtosis of a numeric variable

Description

This function calculates the kurtosis of a numeric variable for each study separately.

Usage

kurtosisDS1(x, method)

Arguments

x a string character, the name of a numeric variable.

method an integer between 1 and 3 selecting one of the algorithms for computing kurto-
sis detailed in the headers of the client-side ds.kurtosis function.

Details

The function calculates the kurtosis of an input variable x with three different methods. The method
is specified by the argument method in the client-side ds.kurtosis function.

Value

a list including the kurtosis of the input numeric variable, the number of valid observations and the
study-side validity message.

Author(s)

Demetris Avraam, for DataSHIELD Development Team



kurtosisDS2 63

kurtosisDS2 Calculates the kurtosis of a numeric variable

Description

This function calculates summary statistics that are returned to the client-side and used for the
estimation of the combined kurtosis of a numeric variable across all studies.

Usage

kurtosisDS2(x, global.mean)

Arguments

x a string character, the name of a numeric variable.

global.mean a numeric, the combined mean of the input variable across all studies.

Details

The function calculates the sum of squared differences between the values of x and the global mean
of x across all studies, the sum of quatric differences between the values of x and the global mean
of x across all studies and the number of valid observations of the input variable x.

Value

a list including the sum of quartic differences between the values of x and the global mean of x
across all studies, the sum of squared differences between the values of x and the global mean of
x across all studies, the number of valid observations (i.e. the length of x after excluding miss-
ing values), and a validity message indicating indicating a valid analysis if the number of valid
observations are above the protection filter nfilter.tab or invalid analysis otherwise.

Author(s)

Demetris Avraam, for DataSHIELD Development Team

lengthDS Returns the length of a vector or list

Description

This function is similar to R function length.

Usage

lengthDS(x)



64 levelsDS

Arguments

x a string character, the name of a vector or list

Details

The function returns the length of the input vector or list.

Value

a numeric, the number of elements of the input vector or list.

Author(s)

Demetris Avraam, for DataSHIELD Development Team

levelsDS Returns the levels of a factor vector

Description

This function is similar to R function levels.

Usage

levelsDS(x)

Arguments

x a factor vector

Details

The function returns the levels of the input vector or list.

Value

a list, the factor levels present in the vector

Author(s)

Alex Westerberg, for DataSHIELD Development Team



lexisDS1 65

lexisDS1 lexisDS1

Description

The first server-side function called by ds.lexis.

Usage

lexisDS1(exitCol = NULL)

Arguments

exitCol a character string specifying the variable holding the time that each individual is
censored or fails

Details

This is an aggregate function. For more details see the extensive header for ds.lexis.

Value

List with ‘max.time‘

Author(s)

Burton PR

lexisDS2 lexisDS2

Description

The second serverside function called by ds.lexis.

Usage

lexisDS2(
datatext = NULL,
intervalWidth,
maxmaxtime,
idCol,
entryCol,
exitCol,
statusCol,
vartext = NULL

)



66 lexisDS3

Arguments

datatext a clientside provided character string specifying the data.frame holding the data
set to be expanded

intervalWidth a clientside generated character string specifying the width of the survival epochs
in the expanded data

maxmaxtime a clientside generated object specifying the maximum follow up time in any of
the sources

idCol a clientside generated character string specifying the variable holding the IDs of
individuals in the data set to be expanded

entryCol a clientside specified character string identifying the variable holding the time
that each individual starts follow up

exitCol a clientside specified character string identifying the variable holding the time
that each individual ends follow up (is censored or fails)

statusCol a clientside specified character string identifying the variable holding the final
censoring status (failed/censored)

vartext is a clientside provided vector of character strings denoting the column names
of additional variables to include in the final expanded table. If the ’variables’
argument is not set (is null) but the ’data’ argument is set the full data.frame will
be expanded and carried forward

Details

This is the assign function which actually creates the expanded dataframe containing surival data
for a piecewise exponential regression. lexisDS2 also carries out a series of disclosure checks and
if the arguments or data fail any of those tests, creation of the expanded dataframe is blocked and
an appropriate serverside error message is stored. For more details see the extensive header for
ds.lexis.

Value

List with ‘expanded.table‘

Author(s)

Burton PR

lexisDS3 @title lexisDS3

Description

The third serverside function called by ds.lexis.

Usage

lexisDS3()



listDisclosureSettingsDS 67

Details

This is an assign function that simplifies the returned output from ds.lexis. Specifically, without lex-
isDS3 the output consists of a table within a list, but lexisDS3 converts this directly into a dataframe.
For more details see the extensive header for ds.lexis.

Value

Data frame with ‘messageobj‘ object

listDisclosureSettingsDS

listDisclosureSettingsDS

Description

This serverside function is an aggregate function that is called by the ds.listDisclosureSettings

Usage

listDisclosureSettingsDS()

Details

For more details see the extensive header for ds.listDisclosureSettings

Value

List with DataSHIELD disclosure settings

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

listDS Coerce objects into a list

Description

this function is similar to R function ’list’

Usage

listDS(input = NULL, eltnames = NULL)



68 lmerSLMADS.assign

Arguments

input a list of objects to coerce into a list

eltnames a character list, the names of the elements in the list.

Details

Unlike the R function ’list’ it takes also a vector of characters, the names of the elements in the
output list.

Value

a list

Author(s)

Gaye, A.

lmerSLMADS.assign Fitting linear mixed effect models - serverside function

Description

lmerSLMADS.assing is the same as lmerSLMADS2 which fits a linear mixed effects model (lme)
per study and saves the outcomes in each study

Usage

lmerSLMADS.assign(
formula,
offset,
weights,
dataName,
REML = TRUE,
control_type,
control_value.transmit,
optimizer,
verbose = 0

)

Arguments

formula see help for ds.lmerSLMA

offset see help for ds.lmerSLMA

weights see help for ds.lmerSLMA

dataName see help for ds.lmerSLMA

REML see help for ds.lmerSLMA



lmerSLMADS2 69

control_type see help for ds.lmerSLMA
control_value.transmit

see help for argument <control_value> for function ds.lmerSLMA

optimizer see help for ds.lmerSLMA

verbose see help for ds.lmerSLMA

Details

lmerSLMADS.assign is a serverside function called by ds.lmerSLMA on the clientside. The ana-
lytic work engine is the lmer function in R which sits in the lme4 package. lmerSLMADS.assign
fits a linear mixed effects model (lme) including both fixed and random effects - on data from each
single data source and saves the regression outcomes on the serveside.

Value

writes lmerMod object summarising the fitted model to the serverside. For more detailed informa-
tion see help for ds.lmerSLMA.

Author(s)

TDemetris Avraam for DataSHIELD Development Team

lmerSLMADS2 Fitting linear mixed effect models - serverside function

Description

lmerSLMADS2 is a serverside function which fits a linear mixed effects model (lme) - i.e. can
include both fixed and random effects - on data from one or multiple sources with pooling via
SLMA (study level meta-analysis)

Usage

lmerSLMADS2(
formula,
offset,
weights,
dataName,
REML = TRUE,
control_type,
control_value.transmit,
optimizer,
verbose = 0

)



70 lsDS

Arguments

formula see help for ds.lmerSLMA

offset see help for ds.lmerSLMA

weights see help for ds.lmerSLMA

dataName see help for ds.lmerSLMA

REML see help for ds.lmerSLMA

control_type see help for ds.lmerSLMA
control_value.transmit

see help for argument <control_value> for function ds.lmerSLMA

optimizer see help for ds.lmerSLMA

verbose see help for ds.lmerSLMA

Details

lmerSLMADS2 is a serverside function called by ds.lmerSLMA on the clientside. The analytic
work engine is the lmer function in R which sits in the lme4 package. ds.lmerSLMA fits a linear
mixed effects model (lme) - can include both fixed and random effects - on data from a single or
multiple sources. When there are multiple data sources, the lme is fitted to convergence in each data
source independently and the estimates and standard errors returned to the client thereby enabling
cross-study pooling using study level meta-analysis (SLMA). By default the SLMA is undertaken
using the metafor package, but as the SLMA occurs on the clientside which, as far as the user
is concerned is just a standard R environment, the user can choose to use any approach to meta-
analysis they choose. For more detailed help about any aspect of lmerSLMDS2 please see the
extensive help for ds.lmerSLMA. Additional information about fitting lmes using the lmer engine
can be obtained using R help for lmer and the lme4 package

Value

all key model components see help for ds.lmerSLMA

Author(s)

Tom Bishop, with some additions by Paul Burton

lsDS lists all objects on a serverside environment

Description

creates a list of the names of all of the objects in a specified serverside environment

Usage

lsDS(search.filter = NULL, env.to.search)



lsplineDS 71

Arguments

search.filter either NULL or a character string (potentially including ’*’ wildcards) specify-
ing required search criteria. This argument is fully specified by its corresponding
argument in the clientside function.

env.to.search integer (e.g. in a format such as ’2’ or ’5L’ format) specifying the position in the
search path of the environment to be explored. This argument is fully specified
by its corresponding argument in the clientside function.

Details

Serverside aggregate function lsDS called by clientside function ds.ls. When running analyses
one may want to know the objects already generated. This request is not disclosive as it only
returns the names of the objects and not their contents. By default, objects in the current ’active
analytic environment’ (".GlobalEnv") will be displayed. This is the environment that contains all
of the objects that serverside DataSHIELD is using for the main analysis or has written out to the
serverside during the process of managing or undertaking the analysis (variables, scalars, matrices,
data.frames etc). For further details see help for ds.ls function and for native R function ls

Value

a list containing: (1) the name/details of the serverside R environment which ds.ls has searched;
(2) a vector of character strings giving the names of all objects meeting the naming criteria specified
by the argument <search.filter> in this specified R serverside environment; (3) the nature of the
search filter string as it was actually applied

Author(s)

Gaye, A (2015). Updated and extended by Paul Burton (2020).

lsplineDS Basis for a piecewise linear spline with meaningful coefficients

Description

This function is based on the native R function lspline from the lspline package. This function
computes the basis of piecewise-linear spline such that, depending on the argument marginal, the
coefficients can be interpreted as (1) slopes of consecutive spline segments, or (2) slope change at
consecutive knots.

Usage

lsplineDS(x = x, knots = NULL, marginal = FALSE, names = NULL)



72 matrixDetDS1

Arguments

x the name of the input numeric variable

knots numeric vector of knot positions

marginal logical, how to parametrize the spline, see Details

names character, vector of names for constructed variables

Details

If marginal is FALSE (default) the coefficients of the spline correspond to slopes of the consecutive
segments. If it is TRUE the first coefficient correspond to the slope of the first segment. The
consecutive coefficients correspond to the change in slope as compared to the previous segment.

Value

an object of class "lspline" and "matrix", which its name is specified by the newobj argument (or
its default name "lspline.newobj"), is assigned on the serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team

matrixDetDS1 matrixDetDS aggregate function called by ds.matrixDet.report

Description

Calculates the determinant of a square matrix A and returns the output to the clientside

Usage

matrixDetDS1(M1.name = NULL, logarithm)

Arguments

M1.name A character string specifying the name of the matrix for which determinant to
be calculated

logarithm logical. Default is FALSE, which returns the determinant itself, TRUE returns
the logarithm of the modulus of the determinant.

Details

Calculates the determinant of a square matrix (for additional information see help for det function
in native R). This operation is only possible if the number of columns and rows of A are the same.



matrixDetDS2 73

Value

Output is the determinant of the matrix identified by argument <M1> which is returned to the
clientside. For more details see help for ds.matrixDet

Author(s)

Paul Burton for DataSHIELD Development Team

matrixDetDS2 matrixDetDS assign function called by ds.matrixDet

Description

Calculates the determinant of a square matrix A and writes the output to the serverside

Usage

matrixDetDS2(M1.name = NULL, logarithm)

Arguments

M1.name A character string specifying the name of the matrix for which determinant to
be calculated

logarithm logical. Default is FALSE, which returns the determinant itself, TRUE returns
the logarithm of the modulus of the determinant.

Details

Calculates the determinant of a square matrix (for additional information see help for det function
in native R). This operation is only possible if the number of columns and rows of A are the same.

Value

Output is the determinant of the matrix identified by argument <M1> which is written to the server-
side. For more details see help for ds.matrixDet

Author(s)

Paul Burton for DataSHIELD Development Team



74 matrixDiagDS

matrixDiagDS matrixDiagDS assign function called by ds.matrixDiag

Description

Extracts the diagonal vector from a square matrix A or creates a diagonal matrix A based on a vector
or a scalar value and writes the output to the serverside

Usage

matrixDiagDS(x1.transmit, aim, nrows.transmit)

Arguments

x1.transmit identifies the input matrix or vector. Fully specified by <x1> argument of ds.matrixDiag.
For more details see help for ds.matrixDiag.

aim a character string specifying what behaviour is required of the function. Fully
specified by <aim> argument of ds.matrixDiag. For more details see help for
ds.matrixDiag.

nrows.transmit a scalar value forcing the number of rows and columns in an output matrix.Fully
specified by <nrows.scalar> argument of ds.matrixDiag. For more details see
help for ds.matrixDiag.

Details

For details see help for function ds.matrixDiag.

Value

Output is the matrix or vector specified by the <newobj> argument (or default name diag_<x1>)
which is written to the serverside. For more details see help for ds.matrixDiag.

Author(s)

Paul Burton for DataSHIELD Development Team



matrixDimnamesDS 75

matrixDimnamesDS matrixDimnamesDS assign function called by ds.matrixDimnames

Description

Adds dimnames (row names, column names or both) to a matrix on the serverside.

Usage

matrixDimnamesDS(M1.name = NULL, dimnames)

Arguments

M1.name Specifies the name of the serverside matrix to which dimnames are to be added.
Fully specified by <M1> argument of function ds.matrixDimnames. For more
details see help for ds.matrixDimnames.

dimnames A dimnames attribute for the matrix: NULL or a list of length 2 giving the row
and column names respectively. Fully specified by <dimnames> argument of
function ds.matrixDimnames. For more details see help for ds.matrixDimnames.

Details

Adds dimnames (row names, column names or both) to a matrix on the serverside. Similar to the
dimnames function in native R. For more details see help for function ds.matrixDimnames

Value

Output is the serverside matrix specified by the <newobj> argument (or default name diag_<x1>)
with specified dimnames (row and column names) which is written to the serverside.

Author(s)

Paul Burton for DataSHIELD Development Team

matrixDS matrixDS assign function called by ds.matrix

Description

Creates a matrix A on the serverside

Usage

matrixDS(mdata.transmit, from, nrows.transmit, ncols.transmit, byrow, dimnames)



76 matrixInvertDS

Arguments

mdata.transmit specifies the elements of the matrix to be created. Fully specified by <mdata>
argument of ds.matrix

from a character string specifying the source and nature of <mdata>. Fully specified
by <from> argument of ds.matrix

nrows.transmit specifies the number of rows in the matrix to be created. Fully specified by
<nrows.scalar> argument of ds.matrix

ncols.transmit specifies the number of columns in the matrix to be created. Fully specified by
<ncols.scalar> argument of ds.matrix

byrow a logical value specifying whether, when <mdata> is a vector, the matrix created
should be filled row by row or column by column. Fully specified by <byrow>
argument of ds.matrix

dimnames A dimnames attribute for the matrix: NULL or a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list
of length one as row names only. Fully specified by <dimnames> argument of
ds.matrix

Details

Similar to the matrix() function in native R. Creates a matrix with dimensions specified by <nrows.scalar>
and <ncols.scalar> arguments and assigns the values of all its elements based on the <mdata> argu-
ment

Value

Output is the matrix A written to the serverside. For more details see help for ds.matrix

Author(s)

Paul Burton for DataSHIELD Development Team

matrixInvertDS matrixInvertDS serverside assign function called by ds.matrixInvert

Description

Inverts a square matrix A and writes the output to the serverside

Usage

matrixInvertDS(M1.name = NULL)

Arguments

M1.name A character string specifying the name of the matrix to be inverted



matrixMultDS 77

Details

Undertakes standard matrix inversion. This operation is only possible if the number of columns
and rows of A are the same and the matrix is non-singular - positive definite (eg there is no row or
column that is all zeros)

Value

Output is the matrix representing the inverse of A which is written to the serverside. For more
details see help for ds.matrixInvert

Author(s)

Paul Burton for DataSHIELD Development Team

matrixMultDS matrixMultDS serverside assign function called by ds.matrixMult

Description

Calculates the matrix product of two matrices and writes output to serverside

Usage

matrixMultDS(M1.name = NULL, M2.name = NULL)

Arguments

M1.name A character string specifying the name of the first matrix (M1) argument speci-
fied by the M1 argument in the original call to ds.matrixMult

M2.name A character string specifying the name of the second matrix (M2) argument
specified by the M1 argument in the original call to ds.matrixMult

Details

Undertakes standard matrix multiplication where with input matrices A and B with dimensions A:
mxn and B: nxp the output C has dimensions mxp and each element C[i,j] has value equal to the
dot product of row i of A and column j of B where the dot product is obtained as sum(A[i,1]*B[1,j]
+ A[i,2]*B[2,j] + .... + A[i,n]*B[n,j]). This calculation is only valid if the number of columns of A
is the same as the number of rows of B

Value

Output is the matrix representing the product of M1 and M2 which is written to the serverside. For
more details see help for ds.matrixMult

Author(s)

Paul Burton for DataSHIELD Development Team



78 meanDS

matrixTransposeDS matrixTransposeDS serverside assign function called by
ds.matrixTranspose

Description

Transposes a matrix A and writes the output to the serverside

Usage

matrixTransposeDS(M1.name = NULL)

Arguments

M1.name A character string specifying the name of the matrix to be transposed

Details

Undertakes standard matrix transposition. This operation converts matrix A to matrix C where
element C[i,j] of matrix C equals element A[j,i] of matrix A. Matrix A therefore has the same
number of rows as matrix C has columns and vice versa.

Value

Output is the matrix representing the transpose of A which is written to the serverside. For more
details see help for ds.matrixTranspose

Author(s)

Paul Burton for DataSHIELD Development Team

meanDS Computes statistical mean of a vectores

Description

Calculates the mean value.

Usage

meanDS(xvect)

Arguments

xvect a vector



meanSdGpDS 79

Details

if the length of input vector is less than the set filter a missing value is returned.

Value

a numeric, the statistical mean

Author(s)

Gaye A, Burton PR

meanSdGpDS MeanSdGpDS

Description

Server-side function called by ds.meanSdGp

Usage

meanSdGpDS(X, INDEX)

Arguments

X a client-side supplied character string identifying the variable for which means/SDs
are to be calculated

INDEX a client-side supplied character string identifying the factor across which means/SDs
are to be calculated

Details

Computes the mean and standard deviation across groups defined by one factor

Value

List with results from the group statistics

Author(s)

Burton PR



80 mergeDS

mergeDS mergeDS (assign function) called by ds.merge

Description

merges (links) two data.frames together based on common values in defined vectors in each data.frame

Usage

mergeDS(
x.name,
y.name,
by.x.names.transmit,
by.y.names.transmit,
all.x,
all.y,
sort,
suffixes.transmit,
no.dups,
incomparables

)

Arguments

x.name the name of the first data.frame to be merged specified in inverted commas.
Specified via argument <x.name> of ds.merge function

y.name the name of the second data.frame to be merged specified in inverted commas.
Specified via argument <y.name> of ds.merge function

by.x.names.transmit

the name of a single variable or a vector of names of multiple variables (in
transmittable form) containing the IDs or other data on which data.frame x is
to be merged/linked to data.frame y. Specified via argument <by.x.names> of
ds.merge function

by.y.names.transmit

the name of a single variable or a vector of names of multiple variables (in
transmittable form) containing the IDs or other data on which data.frame y is
to be merged/linked to data.frame x. Specified via argument <by.y.names> of
ds.merge function

all.x logical, if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. Specified via argument <all.x> of ds.merge
function. Default = FALSE.

all.y logical, if TRUE, then extra rows will be added to the output, one for each row
in y that has no matching row in x. Specified via argument <all.y> of ds.merge
function. Default = FALSE.



messageDS 81

sort logical, if TRUE the merged result should be sorted on elements in the by.x.names
and by.y.names columns. Specified via argument <sort> of ds.merge function.
Default = TRUE.

suffixes.transmit

a character vector of length 2 (in transmittable form) specifying the suffixes to
be used for making unique common column names in the two input data.frames
when they both appear in the merged data.frame. Specified via argument <suf-
fixes> of ds.merge function. Default ’.x’ and ’.y’.

no.dups logical, when TRUE suffixes are appended in more cases to rigorously avoid
duplicated column names in the merged data.frame. Specified via argument
<no.dups> of ds.merge function. Default TRUE but was apparently implicitly
FALSE before R version 3.5.0.

incomparables values intended for merging on one column which cannot be matched. See
’match’ in help for Native R merge function. Specified via argument <incompa-
rables> of ds.merge

Details

For further information see details of the native R function merge and the DataSHIELD clientside
function ds.merge.

Value

the merged data.frame specified by the <newobj> argument of ds.merge (or by default ’x.name_y.name’
if the <newobj> argument is NULL) which is written to the serverside. In addition, two validity
messages are returned to the clientside indicating whether <newobj> has been created in each data
source and if so whether it is in a valid form. If its form is not valid in at least one study there
may be a studysideMessage that can explain the error in creating the full output object. As well as
appearing on the screen at run time,if you wish to see the relevant studysideMessages at a later date
you can use the ds.message function. If you type ds.message(<newobj>) it will print out the rele-
vant studysideMessage from any datasource in which there was an error in creating <newobj> and a
studysideMessage was saved. If there was no error and <newobj> was created without problems no
studysideMessage will have been saved and ds.message(<newobj>) will return the message: "ALL
OK: there are no studysideMessage(s) on this datasource".

Author(s)

Paul Burton, Demetris Avraam, for DataSHIELD Development Team

messageDS messageDS

Description

This function allows for error messages arising from the running of a server-side assign function to
be returned to the client-side



82 metadataDS

Usage

messageDS(message.object.name)

Arguments

message.object.name

is a character string, containing the name of the list containing the message. See
the header of the client-side function ds.message for more details.

Details

Errors arising from aggregate server-side functions can be returned directly to the client-side. But
this is not possible for server-side assign functions because they are designed specifically to write
objects to the server-side and to return no meaningful information to the client-side. Otherwise,
users may be able to use assign functions to return disclosive output to the client-side. ds.message
calls messageDS which looks specifically for an object called $serversideMessage in a designated
list on the server-side. Server-side functions from which error messages are to be made available,
are designed to be able to write the designated error message to the $serversideMessage object into
the list that is saved on the server-side as the primary output of that function. So only valid server-
side functions of DataSHIELD can write a $studysideMessage, and as additional protection against
unexpected ways that someone may try to get round this limitation, a $studysideMessage is a string
that cannot exceed a length of nfilter.string a default of 80 characters.

Value

a list object from each study, containing whatever message has been written by DataSHIELD into
$studysideMessage.

Author(s)

Burton PR

metadataDS Returns the metadata, if any, about the specified variable

Description

This function returns metadata, if any, about specified variable.

Usage

metadataDS(x)

Arguments

x a string character, containing the name of the specified variable



miceDS 83

Details

The function returns the metadata, obtained from attributes function.

Value

a list containing the metadata. The elements of the list will depend on the meatadata available.

Author(s)

Stuart Wheater, for DataSHIELD Development Team

miceDS Aggregate function called by ds.mice

Description

This function is a wrapper function of the mice from the mice R package. The function creates
multiple imputations (replacement values) for multivariate missing data. The method is based on
Fully Conditional Specification, where each incomplete variable is imputed by a separate model.
The MICE algorithm can impute mixes of continuous, binary, unordered categorical and ordered
categorical data. In addition, MICE can impute continuous two-level data, and maintain consistency
between imputations by means of passive imputation.

Usage

miceDS(
data = data,
m = m,
maxit = maxit,
method = method,
post = post,
seed = seed,
predictorMatrix = predictorMatrix,
ncol.pred.mat = ncol.pred.mat,
newobj_mids = newobj_mids,
newobj_df = newobj_df

)

Arguments

data a data frame or a matrix containing the incomplete data.

m Number of multiple imputations. The default is m=5. The maximum allowed
number in DataSHIELD is m=20.

maxit A scalar giving the number of iterations. The default is 5. The maximum al-
lowed number in DataSHIELD is maxit=30.



84 miceDS

method Can be either a single string, or a vector of strings with length ncol(data), spec-
ifying the imputation method to be used for each column in data. If specified
as a single string, the same method will be used for all blocks. The default im-
putation method (when no argument is specified) depends on the measurement
level of the target column, as regulated by the defaultMethod argument in native
R mice function. Columns that need not be imputed have the empty method "".

post A vector of strings with length ncol(data) specifying expressions as strings. Each
string is parsed and executed within the sampler() function to post-process im-
puted values during the iterations. The default is a vector of empty strings,
indicating no post-processing. Multivariate (block) imputation methods ignore
the post parameter.

seed either NA (default) or "fixed". If seed is set to "fixed" then a fixed seed random
number generator which is study-specific is used.

predictorMatrix

A numeric matrix of ncol(data) rows and ncol(data) columns, containing 0/1
data specifying the set of predictors to be used for each target column. Each row
corresponds to a variable to be imputed. A value of 1 means that the column
variable is used as a predictor for the target variables (in the rows). By default,
the predictorMatrix is a square matrix of ncol(data) rows and columns with all
1’s, except for the diagonal.

ncol.pred.mat the number of columns of the predictorMatrix.

newobj_mids a character string that provides the name for the output mids object that is stored
on the data servers. Default mids_object.

newobj_df a character string that provides the name for the output dataframes that are
stored on the data servers. Default imputationSet. For example, if m=5,
and newobj_df="imputationSet", then five imputed dataframes are saved on the
servers with names imputationSet.1, imputationSet.2, imputationSet.3, imputa-
tionSet.4, imputationSet.5.

Details

For additional details see the help header of mice function in native R mice package.

Value

a list with three elements: the method, the predictorMatrix and the post. The function also saves in
each server the mids object and all completed datasets as dataframes.

Author(s)

Demetris Avraam for DataSHIELD Development Team



minMaxRandDS 85

minMaxRandDS Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

Creates a minimum value that is more negative, and less positive than any real value in V2BR and
a maximum value that is more positive and less negative than any value of V2BR.

Usage

minMaxRandDS(input.var.name)

Arguments

input.var.name a character string specifying the name of V2BR. This argument is set by the
argument with the same name in the clientside function ds.ranksSecure

Details

Severside aggregate function called by ds.ranksSecure. The minimum and maximum values it cre-
ates are used to replace missing values (NAs) in V2BR if the argument <NA.manag>e is set to
"NA.low" or "NA.hi" respectively. For more details about the cluster of functions that collectively
enable secure global ranking and estimation of global quantiles see the associated document entitled
"secure.global.ranking.docx". Also see the header file for ds.ranksSecure

Value

the data frame objects containing the global ranks and quantiles. For more details see the associated
document entitled "secure.global.ranking.docx"

Author(s)

Paul Burton 9th November, 2021

namesDS Return the names of a list object

Description

Returns the names of a designated server-side list

Usage

namesDS(xname.transmit)



86 nsDS

Arguments

xname.transmit a character string specifying the name of the list.

Details

namesDS is an aggregate function called by ds.names. This function is similar to the native R
function names but it does not subsume all functionality, for example, it only works to extract names
that already exist, not to create new names for objects. The function is restricted to objects of type
list, but this includes objects that have a primary class other than list but which return TRUE to the
native R function is.list. As an example, this includes the multi-component object created by
fitting a generalized linear model using ds.glmSLMA. The resultant object saved on each separate
server is formally of double class "glm" and "ls" but responds TRUE to is.list(),

Value

namesDS returns to the client-side the names of a list object stored on the server-side.

Author(s)

Amadou Gaye, updated by Paul Burton 25/06/2020

nsDS Generate a Basis Matrix for Natural Cubic Splines

Description

This function is based on the native R function ns from the splines package. This function generate
the B-spline basis matrix for a natural cubic spline.

Usage

nsDS(x, df, knots, intercept, Boundary.knots)

Arguments

x the predictor variable. Missing values are allowed.
df degrees of freedom. One can supply df rather than knots; ns() then chooses df - 1

- intercept knots at suitably chosen quantiles of x (which will ignore missing val-
ues). The default, df = NULL, sets the number of inner knots as length(knots).

knots breakpoints that define the spline. The default is no knots; together with the
natural boundary conditions this results in a basis for linear regression on x.
Typical values are the mean or median for one knot, quantiles for more knots.
See also Boundary.knots.

intercept if TRUE, an intercept is included in the basis; default is FALSE.
Boundary.knots boundary points at which to impose the natural boundary conditions and anchor

the B-spline basis (default the range of the data). If both knots and Bound-
ary.knots are supplied, the basis parameters do not depend on x. Data can extend
beyond Boundary.knots



numNaDS 87

Details

ns is native R is based on the function splineDesign. It generates a basis matrix for representing
the family of piecewise-cubic splines with the specified sequence of interior knots, and the natural
boundary conditions. These enforce the constraint that the function is linear beyond the boundary
knots, which can either be supplied or default to the extremes of the data. A primary use is in
modeling formula to directly specify a natural spline term in a model.

Value

A matrix of dimension length(x) * df where either df was supplied or if knots were supplied, df =
length(knots) + 1 + intercept. Attributes are returned that correspond to the arguments to ns, and
explicitly give the knots, Boundary.knots etc for use by predict.ns(). The object is assigned at each
serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team

numNaDS Counts the number of missing values

Description

this function just counts the number of missing entries in a vector.

Usage

numNaDS(xvect)

Arguments

xvect a vector

Value

an integer, the number of missing values

Author(s)

Gaye, A.



88 qlsplineDS

qlsplineDS Basis for a piecewise linear spline with meaningful coefficients

Description

This function is based on the native R function qlspline from the lspline package. This function
computes the basis of piecewise-linear spline such that, depending on the argument marginal, the
coefficients can be interpreted as (1) slopes of consecutive spline segments, or (2) slope change at
consecutive knots.

Usage

qlsplineDS(x = x, q = q, na.rm = TRUE, marginal = FALSE, names = NULL)

Arguments

x the name of the input numeric variable

q numeric, a single scalar greater or equal to 2 for a number of equal-frequency
intervals along x or a vector of numbers in (0; 1) specifying the quantiles ex-
plicitely.

na.rm logical, whether NA should be removed when calculating quantiles, passed to
na.rm of quantile. Default set to TRUE.

marginal logical, how to parametrize the spline, see Details

names character, vector of names for constructed variables

Details

If marginal is FALSE (default) the coefficients of the spline correspond to slopes of the consecutive
segments. If it is TRUE the first coefficient correspond to the slope of the first segment. The
consecutive coefficients correspond to the change in slope as compared to the previous segment.
Function qlspline wraps lspline and calculates the knot positions to be at quantiles of x. If q is
a numerical scalar greater or equal to 2, the quantiles are computed at seq(0, 1, length.out = q +
1)[-c(1, q+1)], i.e. knots are at q-tiles of the distribution of x. Alternatively, q can be a vector of
values in [0; 1] specifying the quantile probabilities directly (the vector is passed to argument probs
of quantile).

Value

an object of class "lspline" and "matrix", which its name is specified by the newobj argument (or
its default name "qlspline.newobj"), is assigned on the serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team



quantileMeanDS 89

quantileMeanDS Generates quantiles and mean information without maximum and min-
imum

Description

the probabilities 5 are used to compute the corresponding quantiles.

Usage

quantileMeanDS(xvect)

Arguments

xvect a numerical vector

Value

a numeric vector that represents the sample quantiles

Author(s)

Burton, P.; Gaye, A.

rangeDS returns the minimum and maximum of a numeric vector

Description

this function is similar to R function range but instead to not return the real minimum and maxi-
mum, the computed values are multiplied by a very small random number.

Usage

rangeDS(xvect)

Arguments

xvect a numerical

Value

a numeric vector which contains the minimum and the maximum values of the vector

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team



90 ranksSecureDS2

ranksSecureDS1 Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

takes key non-disclosive components of the serverside data frame blackbox.output.df over to the
clientside to enable global ranking.

Usage

ranksSecureDS1()

Details

Severside aggregate function called by ds.ranksSecure. The non-disclosive components of black-
box.output.df that are transmitted to the clientside are: (1) final values of the "combined real+pseudo
data vector" after all seven rounds of encryption have been completed; (2) a set of sequential IDs
allocated after sorting the "combined real+pseudo data vector" by value (in ascending order). This
allows later re-linkage of values back on the serverside and confirmation that that linkage is correct.
For more details about the cluster of functions that collectively enable secure global ranking and
estimation of global quantiles see the associated document entitled "secure.global.ranking.docx".
Also see the header file for ds.ranksSecure

Value

the non-disclosive elements of blackbox.output.df (see details) on the serverside as a data frame
object (called blackbox.output) on the clientside. After processing to create the global ranks across
all studies, this is returned to the serverside as the data frame sR4.df using the clientside function
ds.dmtC2S

Author(s)

Paul Burton 9th November, 2021

ranksSecureDS2 Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

Checks that the data frame produced in creating the initial global ranks (ranks based on real and
pseudo-data after the running of blackBoxDS)has the correct dimensions and order as the serverside
data frames to which it will now be appended. If either the number of rows or the order of the rows
are inconsistent with the pre-existing data frames on the serverside an error message is returned and
the processing stops. Then strips out the pseudo-data leaving solely the global ranks based just on
the real data



ranksSecureDS3 91

Usage

ranksSecureDS2()

Details

Severside assign function called by ds.ranksSecure. It works on the on the output created by server-
side function ranksSecureDS1 and saved on the serverside in data frame sR4.df by ds.dmtC2S.
Having checked QA it strips out all rows corresponding to pseudo-data. The resultant data frame
contains the following vectors: (1) the fully encrypted V2BR (after application of blackBoxDS);(2)
"ID.by.val" the sequential ID associated with the "combined real+pseudo data vector" sorted by
value (ascending); (3) "studyid", a vector consisting solely of value n in the nth study; (4) "global.rank"
the vector containing global ranks created by the clientside code in ds.ranksSecure after ranksSe-
cureDS1 is called and up to the point where ds.dmtC2S sends sR4.df to the serverside. For more
details about the cluster of functions that collectively enable secure global ranking and estimation
of global quantiles see the associated document entitled "secure.global.ranking.docx". Also see the
header file for ds.ranksSecure

Value

creates a new data frame sR5.df on the serverside containing solely the real data and including key
elements needed for next stage of the ranking process. Most crucially these include "global.rank"
and "ID.by.val" sorted in ascending order of the magnitude of V2BR

Author(s)

Paul Burton 9th November, 2021

ranksSecureDS3 Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

takes key non-disclosive components of the serverside data frame blackbox.ranks.df over to the
clientside to enable global re-ranking of the global ranks just applying to the real data (not the
pseudo-data).

Usage

ranksSecureDS3()

Details

Severside aggregate function called by ds.ranksSecure. The non-disclosive components of black-
box.ranks.df that are transmitted to the clientside are: (1) final values of the encrypted global ranks
vector after all seven rounds of encryption have been completed; (2) a set of sequential IDs al-
located to the global ranks vector in each study in their current order based on increasing value
of V2BR. This allows later re-linkage of values back on the serverside and confirmation that that



92 ranksSecureDS4

linkage is correct. (3) a studyid vector with all values n in the nth study. This facilitates data man-
agement on the serverside during the global ranking of global ranks. For more details about the
cluster of functions that collectively enable secure global ranking and estimation of global quan-
tiles see the associated document entitled "secure.global.ranking.docx". Also see the header file for
ds.ranksSecure

Value

the non-disclosive elements of blackbox.output.df (see details) on the serverside as a data frame
object (called sR6.df) on the clientside. After processing within ds.ranksSecure to create the global
ranks and global quantiles (of real data only) across all studies, this is returned to the serverside
as data frame "global.ranks.quantiles.df" using the clientside function ds.dmtC2S. To illustrate the
difference between ranks and quantiles, if there are a total of 1000 original real observations across
all studies and one particular observation has the rank 250, it will have quantile value 0.25 (i.e.
25 increasing value). Both ranks and quantiles can have ties. For more details about the clus-
ter of functions that collectively enable secure global ranking and estimation of global quantiles
see the associated document entitled "secure.global.ranking.docx". Also see the header file for
ds.ranksSecure

Author(s)

Paul Burton 9th November, 2021

ranksSecureDS4 Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

Creates a data frame "sR8.df" by cbinding the data frame "blackBox.ranks.df" with the global ranks
and global quantiles vectors in "global.ranks.quantiles.df". Performs QA on this matrix and orders
the sR8.df data frame according to the argument <ranks.sort.by> in ds.ranksSecure

Usage

ranksSecureDS4(ranks.sort.by)

Arguments

ranks.sort.by a character string taking two possible values. These are "ID.orig" and "vals.orig".
These define the order in which the output.ranks.df and summary.output.ranks.df
data frames are presented. This argument is set by the argument with the same
name in ds.ranksSecure. Default value is "ID.orig".



ranksSecureDS5 93

Details

Severside assign function called by ds.ranksSecure. Creates a data frame "sR8.df" by cbinding the
data frame "blackBox.ranks.df" with the global ranks and global quantiles vectors in "global.ranks.quantiles.df".
Checks that all components of sR8.df have the correct dimensions and are consistent in their
ordering. If either the number of rows or the order of the rows are inconsistent with those in
"blackBox.ranks.df" an error message is returned and the processing stops. If sR8.df passes all
QA tests it is written to the serverside as a data frame with its name identified by the argument
<output.ranks.df> in ds.ranksSecure. If that argument is NULL or unspecified the data frame is
called "main.ranks.df". The ranksSecureDS4 function also orders the combined data frame (<out-
put.ranks.df>) in one of two ways: if the argument <ranks.sort.by> in ds.ranksSecure is set to
"ID.orig" the combined data frame is ordered in the same way as the original V2BR vector; if the
argument <ranks.sort.by> is set to vals.orig" the combined data frame is ordered by the magni-
tude of the values of V2BR (ascending). Having created the data frame (<output.ranks.df>) in this
manner it can now be directly cbinded to either the V2BR vector itself or to a data frame, tibble
or matrix containing V2BR (assuming they are also in the order corresponding to the argument
<ranks.sort.by>) and this combined object can be used as the basis of analysis based on the global
ranks or quantiles including a range of types of non-parametric analysis.

Value

Creates the data frame identified by the name given by the argument (<output.ranks.df>) of the
ds.ranksSecure function and writes it to the serverside. If the argument <output.ranks.df> is NULL
or unspecified the output data frame is called "main.ranks.df". The data frame is ordered according
to the argument <ranks.sort.by> in ds.ranksSecure.

Author(s)

Paul Burton 9th November, 2021

ranksSecureDS5 Secure ranking of "V2BR" (vector to be ranked) across all sources

Description

Summarises the serverside data frame written by ranksSecureDS4 which is identified by the name
given by the argument (<output.ranks.df>) of the ds.ranksSecure function to produce a new output
data frame containing only 5 key variables.

Usage

ranksSecureDS5(output.ranks.df)

Arguments

output.ranks.df

a character string which specifies an optional name for the data.frame written
to the serverside on each data source that contains 11 of the key output vari-
ables from the ranking procedure pertaining to that particular data source. This
argument is set by the argument with the same name in ds.ranksSecure.



94 rbindDS

Details

Serverside assign function called by clientside function ds.ranksSecure. Takes the serverside data
frame written by ranksSecureDS4 which is identified by the name given by the argument (<out-
put.ranks.df>) of the ds.ranksSecure function. This holds 11 vectors including the final global
ranks across all studies and final global quantiles. The data frame is ordered according to the argu-
ment <ranks.sort.by> in ds.ranksSecure. The ranksSecureDS5 function then extracts 5 key vectors
from the larger data frame to produce a summary data frame that is given a name specified by the
argument (<summary.output.ranks.df>) the ds.ranksSecure function. This data frame includes the
following components: (1) The values of a sequential ID variable (ID.seq.real.orig) created to lie
alongside the original V2BR vector in the same order as that vector was itself ordered. These ID
values therefore reflect which row in the original data corresponds to a given row in the output. If
the argument <ranks.sort.by> in ds.ranksSecure is set to "ID.orig" the values of the ID.seq.real.orig
vector in the output data frame simply run sequentially from 1 to N where N is the number of
individuals in the corresponding study. If <ranks.sort.by> is set to "vals.orig" the values of the
ID.seq.real.orig vector will be determined by the magnitude of the corresponding V2BR value and
will appear to be ordered in a haphazard manner; (2) the original values of V2BR; (3) the global
ranks corresponding to the original values in V2BR, with ties reflected appropriately; (4) the global
quantiles corresponding to the original values in V2BR, with ties reflected appropriately; (5) a
studyid vector in which all elements take the value n in the nth study.

Value

extracts 5 key vectors from the larger data frame created by ranksSecureDS4 to produce a summary
data frame that is written to the serverside. It is given a name specified by the argument.

Author(s)

Paul Burton 9th November, 2021

rbindDS rbindDS called by ds.rbind

Description

serverside assign function that takes a sequence of vector, matrix or data-frame arguments and
combines them by row to produce a matrix.

Usage

rbindDS(x.names.transmit = NULL, colnames.transmit = NULL)

Arguments

x.names.transmit

This is a vector of character strings representing the names of the elemental com-
ponents to be combined converted into a transmittable format. This argument is
fully specified by the <x> argument of ds.rbind



rBinomDS 95

colnames.transmit

This is NULL or a vector of character strings representing forced column names
for the output object converted into a transmittable format. This argument is
fully specified by the <force.colnames> argument of ds.cbind.

Details

A sequence of vector, matrix or data-frame arguments is combined row by row to produce a matrix
which is written to the serverside. For more details see help for ds.rbind and the native R function
rbind.

Value

the object specified by the <newobj> argument of ds.rbind(or default name <rbind.out>) which is
written to the serverside. As well as writing the output object as <newobj> on the serverside, two
validity messages are returned indicating whether <newobj> has been created in each data source
and if so whether it is in a valid form. If its form is not valid in at least one study - e.g. because
a disclosure trap was tripped and creation of the full output object was blocked - ds.cbind() also
returns any studysideMessages that can explain the error in creating the full output object. As
well as appearing on the screen at run time,if you wish to see the relevant studysideMessages at a
later date you can use the ds.message function. If you type ds.message("<newobj>") it will print
out the relevant studysideMessage from any datasource in which there was an error in creating
<newobj> and a studysideMessage was saved. If there was no error and <newobj> was created
without problems no studysideMessage will have been saved and ds.message("<newobj>") will
return the message: "ALL OK: there are no studysideMessage(s) on this datasource".

Author(s)

Paul Burton for DataSHIELD Development Team

rBinomDS rBinomDS serverside assign function

Description

primary serverside assign function called by ds.rBinom

Usage

rBinomDS(n, size = 1, prob = 0.5)

Arguments

n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rBinom

size a scalar that must be a positive integer. Value set directly by <size> argument
of ds.rBinom - for details see help for ds.rBinom. May be a scalar or a vector
allowing the size to vary from observation to observation.



96 recodeLevelsDS

prob a numeric scalar in range 0 > prob > 1 which specifies the probability of a
positive response. Value set directly by <prob> argument of ds.rBinom - for
details see help for ds.rBinom May be a scalar or a vector allowing the size to
vary from observation to observation.

Details

Generates the vector of pseudorandom numbers from a binomial distribution in each data source
as specified by the arguments of ds.rBinom. This serverside function is effectively the same as the
function rbinom() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team

recodeLevelsDS Recodes the levels of a categorical variables

Description

The functions uses the input factor and generates a new factor with new levels.

Usage

recodeLevelsDS(x = NULL, classes = NULL)

Arguments

x a factor vector

classes a character vector the levels of the newt factor vector

Value

a factor vector with the new levels

Author(s)

Gaye, A.



recodeValuesDS 97

recodeValuesDS recodeValuesDS an assign function called by ds.recodeValues

Description

This function recodes specified values of elements in a vector into a matched set of alternative
specified values.

Usage

recodeValuesDS(
var.name.text = NULL,
values2replace.text = NULL,
new.values.text = NULL,
missing = NULL

)

Arguments

var.name.text a character string providing the name for the vector representing the variable to
be recoded. <var.name.text> argument generated and passed directly to recode-
ValuesDS by ds.recodeValues

values2replace.text

a character string specifying the values in the vector specified by the argu-
ment <var.name.text> that are to be replaced by new values as specified in
the new.values.vector. The <values2replace.text> argument is generated and
passed directly to recodeValuesDS by ds.recodeValues. In effect, the <val-
ues2replace.vector> argument of the ds.recodeValues function is converted to
a character string format that is acceptable to the DataSHIELD R parser in the
data repository and so can be accepted by recodeValuesDS

new.values.text

a character string specifying the new values to which the specified values in
the vector <var.name> are to be converted. The <new.values.text> argument is
generated and passed directly to recodeValuesDS by ds.recodeValues. In effect,
the <new.values.vector> argument of the ds.recodeValues function is converted
to a character string format that is acceptable to the DataSHIELD R parser in
the data repository and so can be used in the call to recodeValuesDS.

missing if supplied, any missing values in the variable referred to by var.name.text will
be replaced by this value.

Details

For all details see the help header for ds.recodeValues



98 repDS

Value

the object specified by the <newobj> argument (or default name ’<var.name>_recoded’) initially
specified in calling ds.recodeValues. The output object (the required recoded variable called <newobj>
is written to the serverside.

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

repDS repDS called by ds.rep

Description

An assign function which creates a repetitive sequence by repeating an identified scalar, or specified
elements of a vector or list. This is analogous to the rep function in native R. The sequence is written
as a new object to the serverside

Usage

repDS(
x1.transmit,
times.transmit,
length.out.transmit,
each.transmit,
x1.includes.characters,
source.x1,
source.times,
source.length.out,
source.each

)

Arguments

x1.transmit This argument determines the input scalar, vector or list. for behaviour see help
for ds.rep and "details from native R help for <rep>" (see above). This parame-
ter is usually fully defined by the argument <x1> in the call to ds.rep that itself
calls repDS.

times.transmit This argument determines the number of replications and the pattern of these
replications of the input scalar/vector to construct the output repetitive sequence.
For behaviour see help for ds.rep and "details from native R help for <rep>"
(see above). This parameter is usually fully defined by the argument <times> in
the call to ds.rep that itself calls repDS.

length.out.transmit

This argument fixes the length of the output repetive sequence vector For be-
haviour see help for ds.rep and "details from native R help for <rep>" (see
above). This parameter is usually fully defined by the argument <length.out> in
the call to ds.rep that itself calls repDS.



repDS 99

each.transmit This argument specifies the number of replications of individual elements rather
than replications of the full sequence. For behaviour see help for ds.rep and
"details from native R help for <rep>" (see above). This parameter is usually
fully defined by the argument <each> in the call to ds.rep that itself calls repDS.

x1.includes.characters

Boolean parameter determining whether to coerce the final output sequence to
numeric. Defaults to FALSE and output is coerced to numeric. For detailed
behaviour see help for ds.rep. This parameter is usually fully defined by the
argument <x1.includes.characters> in the call to ds.rep that itself calls repDS.

source.x1 This defines the source of the scalar or vector defined by the <x1> argument.
Four character strings are allowed: "clientside" or "c" and serverside or "s". For
behaviour see help for ds.rep and "details from native R help for <rep>" (see
above). This parameter is usually fully defined by the argument <source.x1> in
the call to ds.rep that itself calls repDS.

source.times see "param source.x1" This parameter is usually fully defined by the argument
<source.times> in the call to ds.rep that itself calls repDS.

source.length.out

see "param source.x1" This parameter is usually fully defined by the argument
<source.length.out> in the call to ds.rep that itself calls repDS.

source.each see "param source.x1" This parameter is usually fully defined by the argument
<source.each> in the call to ds.rep that itself calls repDS.

Details

Further details can be found in the help details for on ds.rep and the following aspects of the help
for the function rep in native R also apply (as explained in more detail with exceptions identified in
help for ds.rep):

In addition a Details from R help for <rep>:

The default behaviour is as if the call was rep(x, times = 1, length.out = NA, each = 1) Normally
just one of the additional arguments is specified, but if ’each’ is specified with either of the other
two, its replication is performed first, and then that is followed by the replication implied by times
or length.out.

If times consists of a single integer, the result consists of the whole input repeated this many times.
If times is a vector of the same length as x (after replication by each), the result consists of x[1]
repeated times[1] times, x[2] repeated times[2] times and so on. ***Note exception 1 above.

length.out may be given in place of times, in which case x is repeated as many times as is necessary
to create a vector of this length. If both are given, length.out takes priority and times is ignored.
***Note exception 3 above.

Non-integer values of times will be truncated towards zero. If times is a computed quantity it is
prudent to add a small fuzz or use round. And analogously for each.

Value

the vector containing the specified repetitive sequence and write to the output object defined by the
<newobj> argument (or default name seq.vect) which is written to the serverside in each source.
In addition, two validity messages are returned indicating whether <newobj> has been created



100 replaceNaDS

in each data source and if so whether it is in a valid form. If its form is not valid in at least
one study - e.g. because a disclosure trap was tripped and creation of the full output object was
blocked - ds.matrixDiag also returns any studysideMessages that can explain the error in creat-
ing the full output object. As well as appearing on the screen at run time,if you wish to see the
relevant studysideMessages at a later date you can use the ds.message function. If you type
ds.message("newobj") it will print out the relevant studysideMessage from any datasource in which
there was an error in creating <newobj> and a studysideMessage was saved. If there was no er-
ror and <newobj> was created without problems no studysideMessage will have been saved and
ds.message("newobj") will return the message: "ALL OK: there are no studysideMessage(s) on
this datasource".

Author(s)

Paul Burton for DataSHIELD Development Team, 14/10/2019

replaceNaDS Replaces the missing values in a vector

Description

This function identifies missing values and replaces them by a value or values specified by the
analyst.

Usage

replaceNaDS(xvect, replacements)

Arguments

xvect a character, the name of the vector to process.

replacements a vector which contains the replacement value(s), a vector one or more values
for each study.

Details

This function is used when the analyst prefer or requires complete vectors. It is then possible the
specify one value for each missing value by first returning the number of missing values using the
function numNaDS but in most cases it might be more sensible to replace all missing values by one
specific value e.g. replace all missing values in a vector by the mean or median value. Once the
missing values have been replaced a new vector is created.

Value

a new vector without missing values

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team



reShapeDS 101

reShapeDS reShapeDS (assign function) called by ds.reShape

Description

Reshapes a data frame containing longitudinal or otherwise grouped data from ’wide’ to ’long’
format or vice-versa

Usage

reShapeDS(
data.name,
varying.transmit,
v.names.transmit,
timevar.name,
idvar.name,
drop.transmit,
direction,
sep

)

Arguments

data.name the name of the data.frame to be reshaped. Specified via argument <data.name>
of ds.reShape function

varying.transmit

names of sets of variables in the wide format that correspond to single variables
in long format (typically what may be called ’time-varying’ or ’time-dependent’
variables). Specified via argument <varying> of ds.reShape function.

v.names.transmit

the names of variables in the long format that correspond to multiple variables
in the wide format - for example, sbp7, sbp11, sbp15 (measured systolic blood
pressure at ages 7, 11 and 15 years). Specified via argument <v.names> of
ds.reShape function

timevar.name the variable in long format that differentiates multiple records from the same
group or individual. Specified via argument <timevar.name> of ds.reShape
function

idvar.name names of one or more variables in long format that identify multiple records
from the same group/individual. This/these variable(s) may also be present in
wide format. Specified via argument <idvar.name> of ds.reShape function

drop.transmit a vector of names of variables to drop before reshaping. Specified via argument
<drop> of ds.reShape function

direction a character string, partially matched to either "wide" to reshape from long to
wide format, or "long" to reshape from wide to long format. Specified via argu-
ment <direction> of ds.reShape function



102 rmDS

sep a character vector of length 1, indicating a separating character in the variable
names in the wide format. Specified via argument <sep> of ds.reShape func-
tion

Details

This function is based on the native R function reshape. It reshapes a data frame containing longi-
tudinal or otherwise grouped data between ’wide’ format with repeated measurements in separate
columns of the same record and ’long’ format with the repeated measurements in separate records.
The reshaping can be in either direction

Value

a reshaped data.frame converted from long to wide format or from wide to long format which is
written to the serverside and given the name provided as the <newobj> argument of ds.reShape or
’newObject’ if no name is specified. In addition, two validity messages are returned to the clientside
indicating whether <newobj> has been created in each data source and if so whether it is in a valid
form (see header for ds.reShape.

Author(s)

Demetris Avraam, Paul Burton for DataSHIELD Development Team

rmDS rmDS an aggregate function called by ds.rm

Description

deletes an R object on the serverside

Usage

rmDS(x.names.transmit)

Arguments

x.names.transmit

the names of the objects to be deleted converted into transmissable form, a
comma seperated list of character string. The argument is specified via the
<x.names> argument of ds.rm

Details

this is a serverside function based on the rm() function in native R. It is an aggregate function which
may be surprising because it modifies an object on the serverside, and would therefore be expected
to be an assign function. However, as an assign function the last step in running it would be to write
the modified object as newobj. But this would fail because the effect of the function is to delete the
object and so it would be impossible to write it anywhere.



rNormDS 103

Value

the specified object is deleted from the serverside. If this is successful the message "Object <x.names>
successfully deleted" is returned to the clientside (where x.names are the names of the object to be
deleted). If the objects to be deleted is already absent on a given source, that source will return the
message: "Object to be deleted, i.e. <x.names>, does not exist so does not need deleting".

Author(s)

Paul Burton for DataSHIELD Development Team

rNormDS rNormDS serverside assign function

Description

primary serverside assign function called by ds.rNorm

Usage

rNormDS(n, mean = 0, sd = 1, force.output.to.k.decimal.places = 9)

Arguments

n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rNorm

mean this specifies the mean of the pseudorandom number vector to be generated as
specified by the argument <mean> in the function ds.rNorm. May be a scalar or
a vector allowing the mean to vary from observation to observation.

sd this specifies the standard deviation of the pseudorandom number vector to be
generated as specified by the argument <sd> in the function ds.rNorm May be a
scalar or a vector allowing the sd to vary from observation to observation.

force.output.to.k.decimal.places

scalar integer. Forces the output random number vector to have k decimal places.
If 0 rounds it coerces decimal random number output to integer, a k in range
1-8 forces output to have k decimal places. If k = 9, no rounding occurs of
native output. Default=9. Value specified by <force.output.to.k.decimal.places>
argument in ds.rNorm

Details

Generates the vector of pseudorandom numbers from a normal distribution in each data source as
specified by the arguments of ds.rNorm. This serverside function is effectively the same as the
function rnorm() in native R and its arguments are the same.



104 rowColCalcDS

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team

rowColCalcDS Computes sums and means of rows or columns of numeric arrays

Description

The function is similar to R base functions ’rowSums’, ’colSums’, ’rowMeans’ and ’colMeans’.

Usage

rowColCalcDS(dataset, operation)

Arguments

dataset an array of two or more dimensions.

operation an integer that indicates the operation to carry out: 1 for ’rowSums’, 2 for ’col-
Sums’, 3 for ’rowMeans’ or 4 for ’colMeans’

Details

the output is returned to the user only the number of entries in the output vector is greater or equal
to the allowed size.

Value

a numeric vector

Author(s)

Gaye, A.



rPoisDS 105

rPoisDS rPoisDS serverside assign function

Description

primary serverside assign function called by ds.rPois

Usage

rPoisDS(n, lambda = 1)

Arguments

n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rPois

lambda a numeric scalar specifying the expected count of the Poisson distribution used
to generate the random counts. Specified directly by the lambda argument in
ds.rPois. May be a scalar or a vector allowing lambda to vary from observation
to observation.

Details

Generates the vector of pseudorandom numbers (non-negative integers) from a Poisson distribution
in each data source as specified by the arguments of ds.rPois. This serverside function is effectively
the same as the function rpois() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team



106 rUnifDS

rUnifDS rUnifDS serverside assign function

Description

primary serverside assign function called by ds.rUnif

Usage

rUnifDS(n, min = 0, max = 1, force.output.to.k.decimal.places = 9)

Arguments

n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rUnif

min a numeric scalar specifying the minimum of the range across which the random
numbers will be generated in each source. Specified directly by the min argu-
ment in ds.rUnif. May be a scalar or a vector allowing the min to vary from
observation to observation.

max a numeric scalar specifying the maximum of the range across which the random
numbers will be generated in each source. Specified directly by the max argu-
ment in ds.rUnif. May be a scalar or a vector allowing the min to vary from
observation to observation.

force.output.to.k.decimal.places

scalar integer. Forces the output random number vector to have k decimal places.
If 0 rounds it coerces decimal random number output to integer, a k in range
1-8 forces output to have k decimal places. If k = 9, no rounding occurs of
native output. Default=9. Value specified by <force.output.to.k.decimal.places>
argument in ds.rUnif

Details

Generates the vector of pseudorandom numbers from a uniform distribution in each data source
as specified by the arguments of ds.rUnif. This serverside function is effectively the same as the
function runif() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team



sampleDS 107

sampleDS random sampling and permuting of vectors, dataframes and matrices

Description

draws a pseudorandom sample from a vector, dataframe or matrix on the serverside or - as a special
case - randomly permutes a vector, dataframe or matrix.

Usage

sampleDS(
x.transmit,
size.transmit,
replace.transmit = NULL,
prob.transmit = NULL

)

Arguments

x.transmit Either a character string providing the name for the serverside vector, matrix or
data.frame to be sampled or permuted, or an integer/numeric scalar (e.g. 923)
indicating that one should create a new vector on the serverside that is a ran-
domly permuted sample of the vector 1:923. x.transmit is fully specified by the
[x] argument of ds.sample. For further details see help for ds.sample and native
R help for sample().

size.transmit a numeric/integer scalar indicating the size of the sample to be drawn. size.transmit
is fully specified by the [size] argument of ds.sample. For further details see help
for ds.sample and native R help for sample().

replace.transmit

a Boolean indicator (TRUE or FALSE) specifying whether the sample should be
drawn with or without replacement. Default is FALSE so the sample is drawn
without replacement. replace.transmit is fully specified by the [replace] argu-
ment of ds.sample. For further details see help for ds.sample and native R help
for sample().

prob.transmit a character string containing the name of a numeric vector of probability weights
on the serverside that is associated with each of the elements of the vector to be
sampled enabling the drawing of a sample with some elements given higher
probability of being drawn than others. prob.transmit is fully specified by the
[prob] argument of ds.sample. For further details see help for ds.sample and
native R help for sample().

Details

Serverside assign function sampleDS called by clientside function ds.sample. Based on the native R
function sample() but deals slightly differently with data.frames and matrices. For further details
see help for ds.sample and native R help for sample().



108 scatterPlotDS

Value

the object specified by the <newobj> argument (or default name ’newobj.sample’) which is written
to the serverside. For further details see help for ds.sample and native R help for sample().

Author(s)

Paul Burton, for DataSHIELD Development Team, 15/4/2020

scatterPlotDS Calculates the coordinates of the data to be plot

Description

This function uses two disclosure control methods to generate non-disclosive coordinates that are
returned to the client that generates the non-disclosive scatter plots.

Usage

scatterPlotDS(x, y, method.indicator, k, noise)

Arguments

x the name of a numeric vector, the x-variable.

y the name of a numeric vector, the y-variable.
method.indicator

an integer either 1 or 2. If the user selects the deterministic method in the client
side function the method.indicator is set to 1 while if the user selects the proba-
bilistic method this argument is set to 2.

k the number of the nearest neighbours for which their centroid is calculated if the
deterministic method is selected.

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the probabilistic method is selected.

Details

If the user chooses the deterministic approach, the function finds the k-1 nearest neighbours of each
data point in a 2-dimensional space. The nearest neighbours are the data points with the minimum
Euclidean distances from the point of interest. Each point of interest and its k-1 nearest neighbours
are then used for the calculation of the coordinates of the centroid of those k points. Centroid
here is referred to the centre of mass, i.e. the x-coordinate of the centroid is the average value of the
x-coordinates of the k nearest neighbours and the y-coordinate of the centroid is the average of the y-
coordinates of the k nearest neighbours. If the user chooses the probabilistic approach, the function
adds random noise to $x$ and $y$ separately. Each random noise follows a normal distribution with
zero mean and variance equal to 10 disclosure we fix the random number generator in a value that
is specified by the input variables. Thus the function returns always the same noisy data for a given
pair of variables.



seqDS 109

Value

a list with the x and y coordinates of the data to be plot

Author(s)

Demetris Avraam for DataSHIELD Development Team

seqDS seqDS a serverside assign function called by ds.seq

Description

assign function seqDS called by ds.seq

Usage

seqDS(
FROM.value.char,
TO.value.char,
BY.value.char,
LENGTH.OUT.value.char,
ALONG.WITH.name

)

Arguments

FROM.value.char

the starting value for the sequence expressed as an integer or real number with
a decimal point but in character form. Fully specified by <FROM.value.char>
argument of ds.seq.

TO.value.char the terminal value for the sequence expressed as an integer or real number with
a decimal point but in character form. Fully specified by <TO.value.char> argu-
ment of ds.seq.

BY.value.char the value to increment each step in the sequence expressed as an integer or
real number with a decimal point but in character form. Fully specified by
<BY.value.char> argument of ds.seq.

LENGTH.OUT.value.char

length of the sequence at which point its extension should be stopped, expressed
as an integer or real number with a decimal point but in character form. Fully
specified by <LENGTH.OUT.value.char> argument of ds.seq.

ALONG.WITH.name

For convenience, rather than specifying a value for LENGTH.OUT it can often
be better to specify a variable name as the <ALONG.WITH.name> argument.
Fully specified by <ALONG.WITH.name> argument of ds.seq.



110 setSeedDS

Details

An assign function that uses the native R function seq() to create any one of a flexible range of
sequence vectors that can then be used to help manage and analyse data. As it is an assign function
the resultant vector is written as a new object into all of the specified data source servers. Please see
"details" for ds.seq for more information about allowable combinations of arguments etc.

Value

the object specified by the <newobj> argument of ds.seq (or its default name newObj) which is
written to the serverside. As well as writing the output object as <newobj> on the serverside, two
validity messages are returned indicating whether <newobj> has been created in each data source
and if so whether it is in a valid form. If its form is not valid in at least one study - e.g. because
a disclosure trap was tripped and creation of the full output object was blocked - ds.seq() also
returns any studysideMessages that can explain the error in creating the full output object. As
well as appearing on the screen at run time,if you wish to see the relevant studysideMessages at a
later date you can use the ds.message function. If you type ds.message("<newobj>") it will print
out the relevant studysideMessage from any datasource in which there was an error in creating
<newobj> and a studysideMessage was saved. If there was no error and <newobj> was created
without problems no studysideMessage will have been saved and ds.message("<newobj>") will
return the message: "ALL OK: there are no studysideMessage(s) on this datasource".

Author(s)

Paul Burton for DataSHIELD Development Team, 17/9/2019

setSeedDS setSeedDs called by ds.setSeed, ds.rNorm, ds.rUnif, ds.rPois and
ds.rBinom

Description

An aggregate serverside function that primes the pseudorandom number generator in a data source

Usage

setSeedDS(seedtext = NULL, kind = NULL, normal.kind = NULL)

Arguments

seedtext this is simply the value of the <seed.as.integer> argument of ds.setSeed, ds.rNorm,
ds.rUnif, ds.rPois of ds.rBinom coerced into character format. This is done by
the clientside functions themselves and does not require the DataSHIELD user
to do anything. Please see the help for these clientside functions, and in partic-
ular, the information for the argument <seed.as.integer> for more details.

kind see help for set.seed() function in native R

normal.kind see help for set.seed() function in native R



skewnessDS1 111

Details

setSeedDS is effectively equivalent to the native R function set.seed() and so the help for that func-
tion can provide many additional details. The only very minor difference is that the first argument
of setSeedDS, <seedtext> takes the integer priming seed in character format. However, for the user
that integer is still specified directly as an integer as the <seed.as.integer> argument of one of the
clientside functions ds.setSeed, ds.rNorm ..... Each of these clientside functions coerces the inte-
ger to character format calls setSeedDS and the first active line of code in setSeedDS converts the
character string back to an integer and treats it as the first argument <seed> of the native R function
set.seed(). The two other arguments of set.seed() in native R, <kind> and <normal.kind> are both
defaulted by specifying them as NULL. This defaulting is hard wired into the setSeedDS function
and as this cannot be changed by the analyst it means that setSeedDS is much less flexible than
native R’s set.seed() function. If any DataSHIELD user requires some aspect of this flexibility re-
turned the development team can be approached, but unless you are actually doing theoretical work
with random number generators it is likely that the

Value

Sets the values of the vector of integers of length 626 known as .Random.seed on each data source
that is the true current state of the random seed in each source.

Author(s)

Paul Burton for DataSHIELD Development Team

skewnessDS1 Calculates the skewness of a numeric variable

Description

This function calculates the skewness of a numeric variable for each study separately.

Usage

skewnessDS1(x, method)

Arguments

x a string character, the name of a numeric variable.

method an integer between 1 and 3 selecting one of the algorithms for computing skew-
ness detailed in the headers of the client-side ds.skewness function.

Details

The function calculates the skewness of an input variable x with three different methods. The
method is specified by the argument method in the client-side ds.skewness function.



112 skewnessDS2

Value

a list including the skewness of the input numeric variable, the number of valid observations and
the study-side validity message.

Author(s)

Demetris Avraam, for DataSHIELD Development Team

skewnessDS2 Calculates the skewness of a numeric variable

Description

This function calculates summary statistics that are returned to the client-side and used for the
estimation of the combined skewness of a numeric variable across all studies.

Usage

skewnessDS2(x, global.mean)

Arguments

x a string character, the name of a numeric variable.

global.mean a numeric, the combined mean of the input variable across all studies.

Details

The function calculates the sum of squared differences between the values of x and the global mean
of x across all studies, the sum of cubed differences between the values of x and the global mean of
x across all studies and the number of valid observations of the input variable x.

Value

a list including the sum of cubed differences between the values of x and the global mean of x across
all studies, the sum of squared differences between the values of x and the global mean of x across
all studies, the number of valid observations (i.e. the length of x after excluding missing values),
and a validity message indicating indicating a valid analysis if the number of valid observations are
above the protection filter nfilter.tab or invalid analysis otherwise.

Author(s)

Demetris Avraam, for DataSHIELD Development Team



sqrtDS 113

sqrtDS Computes the square root values of the input variable

Description

This function is similar to R function sqrt.

Usage

sqrtDS(x)

Arguments

x a string character, the name of a numeric or integer vector

Details

The function computes the square root values of an input numeric or integer vector.

Value

the object specified by the newobj argument of ds.sqrt (or default name sqrt.newobj) which is
written to the server-side. The output object is of class numeric or integer.

Author(s)

Demetris Avraam for DataSHIELD Development Team

subsetByClassDS Breaks down a dataframe or a factor into its sub-classes

Description

The function takes a categorical vector or dataframe as input and generates subset(s) vectors or
dataframes for each category. Subsets are considered invalid if they hold between 1 and 4 observa-
tions.

Usage

subsetByClassDS(data = NULL, variables = NULL)

Arguments

data a string character, the name of the dataframe or the factor vector

variables a vector of string characters, the names of the the variables to subset on.



114 subsetDS

Details

If the input data object is a dataframe it is possible to specify the variables to subset on. If a subset is
not ’valid’ all its the values are reported as missing (i.e. NA), the name of the subsets is labelled as
’_INVALID’. If no variables are specified to subset on, the dataframe will be subset on each of its
factor variables. And if none of the columns holds a factor variable a message is issued as output.
A message is also issued as output if the input vector is not of type factor.

Value

a list which contains the subsetted datasets

Author(s)

Gaye, A.

subsetDS Generates a valid subset of a table or a vector

Description

The function uses the R classical subsetting with squared brackets ’[]’ and allows also to subset
using a logical operator and a threshold. The object to subset from must be a vector (factor, numeric
or character) or a table (data.frame or matrix).

Usage

subsetDS(
dt = NULL,
complt = NULL,
rs = NULL,
cs = NULL,
lg = NULL,
th = NULL,
varname = NULL

)

Arguments

dt a string character, the name of the dataframe or the factor vector and the range
of the subset.

complt a boolean that tells if the subset to subset should include only complete cases

rs a vector of two integers that give the range of rows de extract.

cs a vector of two integers or one or more characters; the indices of the columns to
extract or the names of the columns (i.e. names of the variables to extract).



table1DDS 115

lg a character, the logical parameter to use if the user wishes to subset a vector
using a logical operator. This parameter is ignored if the input data is not a
vector.

th a numeric, the threshold to use in conjunction with the logical parameter. This
parameter is ignored if the input data is not a vector.

varname a character, if the input data is a table, if this parameter is provided along with the
’logical’ and ’threshold’ parameters, a subtable is based the threshold applied to
the specified variable. This parameter is however ignored if the parameter ’rows’
and/or ’cols’ are provided.

Details

If the input data is a table: The user specifies the rows and/or columns to include in the subset if the
input object is a table; the columns can be referred to by their names. The name of a vector (i.e. a
variable) can also be provided with a logical operator and a threshold (see example 3). If the input
data is a vector: when the parameters ’rows’, ’logical’ and ’threshold’ are all provided the last two
are ignored ( ’rows’ has precedence over the other two parameters then). If the requested subset is
not valid (i.e. contains less than the allowed number of observations), the subset is not generated,
rather a table or a vector of missing values is generated to allow for any subsequent process using
the output of the function to proceed after informing the user via a message.

Value

a subset of the vector, matrix or dataframe as specified is stored on the server side

Author(s)

Gaye, A.

table1DDS Creates 1-dimensional contingency tables

Description

This function generates a 1-dimensional table where potentially disclosive cells. (based on the set
threshold) are replaced by a missing value (’NA’).

Usage

table1DDS(xvect)

Arguments

xvect a numerical vector with discrete values - usually a factor.



116 table2DDS

Details

It generates a 1-dimensional tables where valid (non-disclosive) 1-dimensional tables are defined
as data from sources where no table cells have counts between 1 and the set threshold. When
the output table is invalid all cells but the total count are replaced by missing values. Only the
total count is visible on the table returned to the client site. A message is also returned with the
1-dimensional; the message says "invalid table - invalid counts present" if the table is invalid and
’valid table’ otherwise.

Value

a list which contains two elements: ’table’, the 1-dimensional table and ’message’ a message which
informs about the validity of the table.

Author(s)

Gaye A.

table2DDS table2DDS (aggregate function) called by ds.table2D

Description

This function generates a 2-dimensional contingency table where potentially disclosive cells (based
on a set threshold) are replaced by a missing value (’NA’).

Usage

table2DDS(xvect, yvect)

Arguments

xvect a numerical vector with discrete values - usually a factor.

yvect a numerical vector with discrete values - usually a factor.

Details

It generates 2-dimensional contingency tables where valid (non-disclosive) tables are defined as
those where none of their cells have counts between 1 and the set threshold "nfilter.tab". When
the output table is invalid all cells except the total counts are replaced by missing values. Only the
total counts are visible on the table returned to the client side. A message is also returned with the
2-dimensional table; the message says "invalid table - invalid counts present" if the table is invalid
and ’valid table’ otherwise.

Value

a list which contains two elements: ’table’, the 2-dimensional table and ’message’ a message which
informs about the validity of the table.



tableDS 117

Author(s)

Amadou Gaye, Paul Burton, Demetris Avraam for DataSHIELD Development Team

tableDS tableDS is the first of two serverside aggregate functions called by
ds.table

Description

creates 1-dimensional, 2-dimensional and 3-dimensional tables using the table function in native
R.

Usage

tableDS(
rvar.transmit,
cvar.transmit,
stvar.transmit,
rvar.all.unique.levels.transmit,
cvar.all.unique.levels.transmit,
stvar.all.unique.levels.transmit,
exclude.transmit,
useNA.transmit,
force.nfilter.transmit

)

Arguments

rvar.transmit is a character string (in inverted commas) specifiying the name of the variable
defining the rows in all of the 2 dimensional tables that form the output. Fully
specified by <rvar> argument in ds.table. For more information see help for
ds.table

cvar.transmit is a character string specifiying the name of the variable defining the columns in
all of the 2 dimensional tables that form the output. Fully specified by <cvar>
argument in ds.table. For more information see help for ds.table

stvar.transmit is a character string specifiying the name of the variable that indexes the separate
two dimensional tables in the output if the call specifies a 3 dimensional table.
Fully specified by <stvar> argument in ds.table. For more information see
help for ds.table

rvar.all.unique.levels.transmit

is a character string containing all unique level in rvar, across the studies, sepa-
rated by ’,’.

cvar.all.unique.levels.transmit

is a character string containing all unique level in cvar, across the studies, sepa-
rated by ’,’.



118 tableDS.assign

stvar.all.unique.levels.transmit

is a character string containing all unique level in stvar, across the studies, sepa-
rated by ’,’.

exclude.transmit

for information see help on <exclude> argument of ds.table. Fully specified
by <exclude> argument of ds.table

useNA.transmit for information see help on <useNA> argument of ds.table. Fully specified by
<useNA> argument of ds.table

force.nfilter.transmit

for information see help on <force.nfilter> argument of ds.table. Fully speci-
fied by <force.nfilter> argument of ds.table

Details

this serverside function is the workhorse of ds.table - creating the table requested in the format
specified by ds.table. For more information see help for ds.table in DataSHIELD and the table
function in native R.

Value

For information see help for ds.table

Author(s)

Paul Burton for DataSHIELD Development Team, 13/11/2019

tableDS.assign tableDS.assign is the serverside assign function called by ds.table

Description

helps creates 1-dimensional, 2-dimensional and 3-dimensional tables using the table function in
native R.

Usage

tableDS.assign(
rvar.transmit,
cvar.transmit,
stvar.transmit,
rvar.all.unique.levels.transmit,
cvar.all.unique.levels.transmit,
stvar.all.unique.levels.transmit,
exclude.transmit,
useNA.transmit

)



tableDS.assign 119

Arguments

rvar.transmit is a character string (in inverted commas) specifiying the name of the variable
defining the rows in all of the 2 dimensional tables that form the output. Fully
specified by <rvar> argument in ds.table. For more information see help for
ds.table

cvar.transmit is a character string specifiying the name of the variable defining the columns in
all of the 2 dimensional tables that form the output. Fully specified by <cvar>
argument in ds.table. For more information see help for ds.table

stvar.transmit is a character string specifiying the name of the variable that indexes the separate
two dimensional tables in the output if the call specifies a 3 dimensional table.
Fully specified by <stvar> argument in ds.table. For more information see
help for ds.table

rvar.all.unique.levels.transmit

is a character string containing all unique level in rvar, across the studies, sepa-
rated by ’,’.

cvar.all.unique.levels.transmit

is a character string containing all unique level in cvar, across the studies, sepa-
rated by ’,’.

stvar.all.unique.levels.transmit

is a character string containing all unique level in stvar, across the studies, sepa-
rated by ’,’.

exclude.transmit

for information see help on <exclude> argument of ds.table. Fully specified
by <exclude> argument of ds.table

useNA.transmit for information see help on <useNA> argument of ds.table. Fully specified by
<useNA> argument of ds.table

Details

If the <table.assign> argument of ds.table is set to TRUE, this assign function writes the the
table requested in the format specified by ds.table function as an object named by the <newobj>
argument of ds.table. For more information see help for ds.table in DataSHIELD and the table
function in native R.

Value

For information see help for ds.table

Author(s)

Paul Burton for DataSHIELD Development Team, 13/11/2019



120 tableDS2

tableDS2 tableDS is the second of two serverside aggregate functions called by
ds.table

Description

Helps creates 1-dimensional, 2-dimensional and 3-dimensional tables using the table function in
native R.

Usage

tableDS2(newobj, rvar.transmit, cvar.transmit, stvar.transmit)

Arguments

newobj this a character string providing a name for the output table object to be written
to the serverside if <table.assign> is TRUE. If no explicit name for the table
object is specified, but <table.assign> is nevertheless TRUE, the name for the
serverside table object defaults to ’newObj’. Fully specified by <newobj> argu-
ment in ds.table. For more information see help for ds.table

rvar.transmit is a character string (in inverted commas) specifiying the name of the variable
defining the rows in all of the 2 dimensional tables that form the output. Fully
specified by <rvar> argument in ds.table. For more information see help for
ds.table

cvar.transmit is a character string specifiying the name of the variable defining the columns in
all of the 2 dimensional tables that form the output. Fully specified by <cvar>
argument in ds.table. For more information see help for ds.table

stvar.transmit is a character string specifiying the name of the variable that indexes the separate
two dimensional tables in the output if the call specifies a 3 dimensional table.
Fully specified by <stvar> argument in ds.table. For more information see
help for ds.table

Details

If the <table.assign> argument of ds.table is set to TRUE, this aggregate function returns non-
disclosive information about the table object written to the serverside by tableDS.assign. For
more information see help for ds.table, tableDS.assign and tableDS in DataSHIELD and the
table function in native R.

Value

For information see help for ds.table

Author(s)

Paul Burton for DataSHIELD Development Team, 13/11/2019



tapplyDS 121

tapplyDS tapplyDS called by ds.tapply

Description

Apply one of a selected range of functions to summarize an outcome variable over one or more
indexing factors and write the resultant summary to the clientside

Usage

tapplyDS(X.name, INDEX.names.transmit, FUN.name)

Arguments

X.name the name of the variable to be summarized. Specified via argument <X.name>
of ds.tapply function

INDEX.names.transmit

the name of a single factor or a vector of names of factors to index the vari-
able to be summarized. Specified via argument <INDEX.names> of ds.tapply
function

FUN.name the name of one of the allowable summarizing functions to be applied. Specified
via argument <FUN.name> of ds.tapply function.

Details

see details for ds.tapply function

Value

an array of the summarized values created by the tapplyDS function. This array is returned to the
clientside. It has the same number of dimensions as INDEX.

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

tapplyDS.assign tapplyDS.assign called by ds.tapply.assign

Description

Apply one of a selected range of functions to summarize an outcome variable over one or more
indexing factors and write the resultant summary as a newobj on the serverside



122 testObjExistsDS

Usage

tapplyDS.assign(X.name, INDEX.names.transmit, FUN.name)

Arguments

X.name the name of the variable to be summarized. Specified via argument <X.name>
of ds.tapply.assign function

INDEX.names.transmit

the name of a single factor or a vector of names of factors to index the variable to
be summarized. Specified via argument <INDEX.names> of ds.tapply.assign
function

FUN.name the name of one of the allowable summarizing functions to be applied. Specified
via argument <FUN.name> of ds.tapply.assign function.

Details

see details for ds.tapply.assign function

Value

an array of the summarized values created by the tapplyDS.assign function. This array is written
as a newobj on the serverside. It has the same number of dimensions as INDEX.

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

testObjExistsDS testObjExistsDS

Description

The server-side function called by ds.testObjExists

Usage

testObjExistsDS(test.obj.name = NULL)

Arguments

test.obj.name a client-side provided character string specifying the variable whose presence is
to be tested in each data source

Details

Tests whether a given object exists in all sources. It is called at the end of all recently written assign
functions to check the new (assigned) object has been created in all sources



uniqueDS 123

Value

List with ‘test.obj.exists‘ and ‘test.obj.class‘

Author(s)

Burton PR

uniqueDS Applies the unique method to a server-side variable.

Description

This function is similar to R function unique.

Usage

uniqueDS(x.name.transmit = NULL)

Arguments

x.name.transmit

is the name of the variable upon which unique method will be applied

Details

The function computes the uniques values of a variable.

Value

the object specified by the newobj argument which is written to the server-side.

Author(s)

Stuart Wheater for DataSHIELD Development Team



124 unListDS

unListDS unListDS a serverside assign function called by ds.unList

Description

this function is based on the native R function unlist which coerces an object of list class back to
the class it was when it was coerced into a list

Usage

unListDS(x.name)

Arguments

x.name the name of the input object to be unlisted. It must be specified in inverted com-
mas e.g. x.name="input.object.name". Fully specified by the x.name argument
of ds.unList

Details

See details of the native R function unlist. This function represents a substantive restructuring of
an earlier version created by Amadou Gaye. For further details of its working please see ’details’ in
the help for ds.unList.

Value

the object specified by the newobj argument of the ds.unList function (or by default "unlist.newobj"
if the newobj argument is NULL). This is written to the serverside. As well as writing the output
object as newobj on the serverside, two validity messages are returned indicating whether newobj
has been created in each data source and if so whether it is in a valid form. If its form is not
valid in at least one study - e.g. because a disclosure trap was tripped and creation of the full
output object was blocked - ds.seq also returns any studysideMessages that can explain the error
in creating the full output object. As well as appearing on the screen at run time,if you wish to
see the relevant studysideMessages at a later date you can use the ds.message function. If you
type ds.message("<newobj>") it will print out the relevant studysideMessage from any datasource
in which there was an error in creating newobj and a studysideMessage was saved. Because the
outcome object from ds.unList is typically a list object with no names, if there are no errors in
creating it the message returned from ds.message("<newobj>") in each study will read "Outcome
object is a list without names. So a studysideMessage may be hidden. Please check output is OK".
This suggests that - in the case of this specific function - one should check as far as one can the
nature of the output from a call to ds.unList - e.g. ds.class, ds.length etc

Author(s)

Amadou Gaye (2016), Paul Burton (19/09/2019) for DataSHIELD Development Team



varDS 125

varDS Computes the variance of vector

Description

Calculates the variance.

Usage

varDS(xvect)

Arguments

xvect a vector

Details

if the length of input vector is less than the set filter a missing value is returned.

Value

a list, with the sum of the input variable, the sum of squares of the input variable, the number of
missing values, the number of valid values, the number of total length of the variable, and a study
message indicating whether the number of valid is less than the disclosure threshold

Author(s)

Amadou Gaye, Demetris Avraam, for DataSHIELD Development Team

vectorDS Creates a vector on the server-side.

Description

This function is similar to R function c.

Usage

vectorDS(...)

Arguments

... parameter to be used to form the vector.

Details

The function computes the vectors values.



126 vectorDS

Value

the object specified by the newobj argument which is written to the server-side.

Author(s)

Stuart Wheater for DataSHIELD Development Team



Index

absDS, 5
asCharacterDS, 5
asDataMatrixDS, 6
asFactorDS1, 7
asFactorDS2, 7
asFactorSimpleDS, 8
asIntegerDS, 9
asListDS, 9
asLogicalDS, 10
asMatrixDS, 11
asNumericDS, 12
aucDS, 12

blackBoxDS, 13
blackBoxRanksDS, 14
BooleDS, 15
boxPlotGG_data_Treatment_numericDS, 18
boxPlotGG_data_TreatmentDS, 17
boxPlotGGDS, 16
bp_standardsDS, 18

cbindDS, 19
cDS, 20
changeRefGroupDS, 21
checkNegValueDS, 22
checkPermissivePrivacyControlLevel, 22
classDS, 23
colnamesDS, 24
completeCasesDS, 24
corDS, 25
corTestDS, 26
covDS, 27

dataFrameDS, 28
dataFrameFillDS, 29
dataFrameSortDS, 30
dataFrameSubsetDS1, 31
dataFrameSubsetDS2, 33
densityGridDS, 34
dimDS, 35

dmtC2SDS, 36

elsplineDS, 37
extractQuantilesDS1, 38
extractQuantilesDS2, 40

gamlssDS, 41
getWGSRDS, 43
glmDS1, 45
glmDS2, 46
glmerSLMADS.assign, 47
glmerSLMADS2, 48
glmPredictDS.ag, 49
glmPredictDS.as, 51
glmSLMADS.assign, 52
glmSLMADS1, 53
glmSLMADS2, 54
glmSummaryDS.ag, 55
glmSummaryDS.as, 55

heatmapPlotDS, 56
hetcorDS, 57
histogramDS1, 58
histogramDS2, 59

igb_standardsDS, 60
isNaDS, 61
isValidDS, 61

kurtosisDS1, 62
kurtosisDS2, 63

lengthDS, 63
levelsDS, 64
lexisDS1, 65
lexisDS2, 65
lexisDS3, 66
listDisclosureSettingsDS, 67
listDS, 67
lmerSLMADS.assign, 68
lmerSLMADS2, 69

127



128 INDEX

lsDS, 70
lsplineDS, 71

matrixDetDS1, 72
matrixDetDS2, 73
matrixDiagDS, 74
matrixDimnamesDS, 75
matrixDS, 75
matrixInvertDS, 76
matrixMultDS, 77
matrixTransposeDS, 78
meanDS, 78
meanSdGpDS, 79
mergeDS, 80
messageDS, 81
metadataDS, 82
miceDS, 83
minMaxRandDS, 85

namesDS, 85
nsDS, 86
numNaDS, 87

qlsplineDS, 88
quantileMeanDS, 89

rangeDS, 89
ranksSecureDS1, 90
ranksSecureDS2, 90
ranksSecureDS3, 91
ranksSecureDS4, 92
ranksSecureDS5, 93
rbindDS, 94
rBinomDS, 95
recodeLevelsDS, 96
recodeValuesDS, 97
repDS, 98
replaceNaDS, 100
reShapeDS, 101
rmDS, 102
rNormDS, 103
rowColCalcDS, 104
rPoisDS, 105
rUnifDS, 106

sampleDS, 107
scatterPlotDS, 108
seqDS, 109
setSeedDS, 110

skewnessDS1, 111
skewnessDS2, 112
sqrtDS, 113
subsetByClassDS, 113
subsetDS, 114

table1DDS, 115
table2DDS, 116
tableDS, 117
tableDS.assign, 118
tableDS2, 120
tapplyDS, 121
tapplyDS.assign, 121
testObjExistsDS, 122

uniqueDS, 123
unListDS, 124

varDS, 125
vectorDS, 125


	absDS
	asCharacterDS
	asDataMatrixDS
	asFactorDS1
	asFactorDS2
	asFactorSimpleDS
	asIntegerDS
	asListDS
	asLogicalDS
	asMatrixDS
	asNumericDS
	aucDS
	blackBoxDS
	blackBoxRanksDS
	BooleDS
	boxPlotGGDS
	boxPlotGG_data_TreatmentDS
	boxPlotGG_data_Treatment_numericDS
	bp_standardsDS
	cbindDS
	cDS
	changeRefGroupDS
	checkNegValueDS
	checkPermissivePrivacyControlLevel
	classDS
	colnamesDS
	completeCasesDS
	corDS
	corTestDS
	covDS
	dataFrameDS
	dataFrameFillDS
	dataFrameSortDS
	dataFrameSubsetDS1
	dataFrameSubsetDS2
	densityGridDS
	dimDS
	dmtC2SDS
	elsplineDS
	extractQuantilesDS1
	extractQuantilesDS2
	gamlssDS
	getWGSRDS
	glmDS1
	glmDS2
	glmerSLMADS.assign
	glmerSLMADS2
	glmPredictDS.ag
	glmPredictDS.as
	glmSLMADS.assign
	glmSLMADS1
	glmSLMADS2
	glmSummaryDS.ag
	glmSummaryDS.as
	heatmapPlotDS
	hetcorDS
	histogramDS1
	histogramDS2
	igb_standardsDS
	isNaDS
	isValidDS
	kurtosisDS1
	kurtosisDS2
	lengthDS
	levelsDS
	lexisDS1
	lexisDS2
	lexisDS3
	listDisclosureSettingsDS
	listDS
	lmerSLMADS.assign
	lmerSLMADS2
	lsDS
	lsplineDS
	matrixDetDS1
	matrixDetDS2
	matrixDiagDS
	matrixDimnamesDS
	matrixDS
	matrixInvertDS
	matrixMultDS
	matrixTransposeDS
	meanDS
	meanSdGpDS
	mergeDS
	messageDS
	metadataDS
	miceDS
	minMaxRandDS
	namesDS
	nsDS
	numNaDS
	qlsplineDS
	quantileMeanDS
	rangeDS
	ranksSecureDS1
	ranksSecureDS2
	ranksSecureDS3
	ranksSecureDS4
	ranksSecureDS5
	rbindDS
	rBinomDS
	recodeLevelsDS
	recodeValuesDS
	repDS
	replaceNaDS
	reShapeDS
	rmDS
	rNormDS
	rowColCalcDS
	rPoisDS
	rUnifDS
	sampleDS
	scatterPlotDS
	seqDS
	setSeedDS
	skewnessDS1
	skewnessDS2
	sqrtDS
	subsetByClassDS
	subsetDS
	table1DDS
	table2DDS
	tableDS
	tableDS.assign
	tableDS2
	tapplyDS
	tapplyDS.assign
	testObjExistsDS
	uniqueDS
	unListDS
	varDS
	vectorDS
	Index

