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computeBCConstraint Compute Burchard and Cornwell’s (2018) Two-Mode Constraint

Description

This function calculates the values for two-mode network constraint for weighted and unweighted
two-mode networks based on Burchard and Cornwell (2018).

Usage

computeBCConstraint(net, isolates = NA, returnCIJmat = FALSE, weighted = FALSE)

Arguments

net A two-mode adjacency matrix or affiliation matrix.
isolates What value should isolates be given? Preset to be NA.
returnCIJmat TRUE/FALSE. TRUE indicates that the full constraint matrix, that is, the net-

work constraint from an alter j on node i, will be returned to the user. FALSE
indicates that the total constraint will be returned. Set to FALSE by default.

weighted TRUE/FALSE. TRUE indicates the statistic will be based on the weighted for-
mula (see the details section). FALSE indicates the statistic will be based on the
original non-weighted formula. Set to FALSE by default.

Details

Following Burchard and Cornwell (2018), the formula for two-mode constraint is:

cij =

(
|ζ(j) ∩ ζ(i)|

|ζ(i∗)|

)2

where:

• cij is the constraint of ego i with respect to actor j.
• |ζ(j) ∩ ζ(i)| is the number of opposite-class contacts that i and j both share.
• The denominator, |ζ(i∗)|, represents the total number of opposite-class contacts of ego i ex-

cluding pendants (level 2 groups that only have one member).

The total constraint for ego i is given by:

Ci =
∑

j∈σ(i)

cij

The function returns the aggregate constraint for each actor; however, the user can specify the
function to return the constraint matrix by setting returnCIJmat to TRUE.

The function can also compute constraint for weighted two-mode networks by setting weighted to
TRUE. The formula for two-mode weighted constraint is:

cij =

(
|ζ(j) ∩ ζ(i)|

|ζ(i∗)|

)2

× wt

where wt is the average of the tie weights that i and j send to their shared opposite-class contacts.
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Value

The vector of two-mode constraint scores for level 1 actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1,1,0,0,
1,0,1,0,
1,0,0,1,
0,1,1,1),

nrow = 4, ncol = 4, byrow = TRUE)
colnames(BCNet) <- c("1", "2", "3", "4")
rownames(BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot(BCNet, usearrows = FALSE,
# gmode = "twomode", displaylabels = TRUE)
computeBCConstraint(BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18) for
#weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,

0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)

rownames(BCweighted) <- c("i", "j", "k", "l")
computeBCConstraint(BCweighted, weighted = TRUE)

computeBCES Compute Burchard and Cornwell’s (2018) Two-Mode Effective Size

Description

This function calculates the values for two-mode effective size for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Usage

computeBCES(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
weighted = FALSE

)

Arguments

net A two-mode adjacency matrix or affiliation matrix

inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.

weighted TRUE/FALSE. TRUE indicates the statistic will be based on the weighted for-
mula (see the details section). FALSE indicates the statistic will be based on the
original non-weighted formula. Set to FALSE by default.

Details

The formula for two-mode effective size is:

ESi = |σ(i)| −
∑

j∈σ(i)

rij

where:

• ESi is the effective size of ego i.

• |σ(i)| is the number of same-class contacts of ego i.

•
∑

j∈σ(i) rij is the summation of the redundancy for each alter j in the two-mode ego network
of i.

This function allows the user to compute the scores in parallel through the foreach and doParallel
R packages. If the matrix is weighted, the user should specify weighted = TRUE. If the matrix
is weighted, following Burchard and Cornwell (2018), the formula for two-mode weighted redun-
dancy is:

rij =
|σ(j) ∩ σ(i)|
|σ(i)| × wt

where wt is the average of the tie weights that i and j send to their shared opposite class contacts.

Value

The vector of two-mode effective size values for level 1 actors in a two-mode network.
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Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1,1,0,0,
1,0,1,0,
1,0,0,1,
0,1,1,1),

nrow = 4, ncol = 4, byrow = TRUE)
colnames(BCNet) <- c("1", "2", "3", "4")
rownames(BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot(BCNet, usearrows = FALSE,
# gmode = "twomode", displaylabels = TRUE)
computeBCES(BCNet)

#In this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,

0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)

rownames(BCweighted) <- c("i", "j", "k", "l")
computeBCES(BCweighted, weighted = TRUE)

computeBCRedund Compute Burchard and Cornwell’s (2018) Two-Mode Redundancy

Description

This function calculates the values for two mode redundancy for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).

Usage

computeBCRedund(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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weighted = FALSE
)

Arguments

net A two-mode adjacency matrix or affiliation matrix.

inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.

weighted TRUE/FALSE. TRUE indicates the statistic will be based on the weighted for-
mula (see the details section). FALSE indicates the statistic will be based on the
original non-weighted formula. Set to FALSE by default.

Details

The formula for two-mode redundancy is:

rij =
|σ(j) ∩ σ(i)|

|σ(i)|

where:

• rij is the redundancy of ego i with respect to actor j.

• |σ(j) ∩ σ(i)| is the number of same-class contacts (e.g., medical doctors in a hospital) that i
and j both share.

• |σ(i)| is the number of same-class contacts of ego i.

The two-mode redundancy is ego-bound, that is, the redundancy is only based on the two-mode ego
network of i. Put differently, rij only considers the perspective of the ego. This function allows the
user to compute the scores in parallel through the foreach and doParallel R packages. If the matrix
is weighted, the user should specify weighted = TRUE. Following Burchard and Cornwell (2018),
the formula for two-mode weighted redundancy is:

rij =
|σ(j) ∩ σ(i)|
|σ(i)| × wt

where wt is the average of the tie weights that i and j send to their shared opposite class contacts.

Value

An n x n matrix with level 1 redundancy scores for actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and bridging in two-mode net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1,1,0,0,
1,0,1,0,
1,0,0,1,
0,1,1,1),

nrow = 4, ncol = 4, byrow = TRUE)
colnames(BCNet) <- c("1", "2", "3", "4")
rownames(BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot(BCNet, usearrows = FALSE,
# gmode = "twomode", displaylabels = TRUE)
#this values replicate those reported by Burchard and Cornwell (2018: 14)
computeBCRedund(BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,

0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)

rownames(BCweighted) <- c("i", "j", "k", "l")
computeBCRedund(BCweighted, weighted = TRUE)

computeBurtsConstraint

Compute Burt’s (1992) Constraint for Ego Networks from a Socioma-
trix

Description

This function computes Burt’s (1992) one-mode ego constraint based upon a sociomatrix.

Usage

computeBurtsConstraint(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
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pendants = 1
)

Arguments

net A one-mode sociomatrix with network ties.

inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Set to NA by default.

pendants What value should be given to pendant vertices? Set to 1 by default.

Details

The formula for Burt’s (1992) one-mode ego constraint is:

cij =

(
pij +

∑
q

piqpqj

)2

; q ̸= i ̸= j

where:

• piq is formulated as: piq =
ziq+zqi∑
j(zij+zji)

; i ̸= j

Finally, the aggregate constraint of an ego i is:

Ci =
∑
j

cij

While this function internally locates isolates (i.e., nodes who have no ties) and pendants (i.e., nodes
who only have one tie), the user should specify what values for constraint are returned for them via
the isolates and pendants options.

Lastly, this function allows users to compute the values in parallel via the foreach, doParallel, and
parallel R packages.

Value

The vector of ego network constraint values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Examples

# For this example, we recreate the ego network provided in Burt (1992: 56):
BurtEgoNet <- matrix(c(

0,1,0,0,1,1,1,
1,0,0,1,0,0,1,
0,0,0,0,0,0,1,
0,1,0,0,0,0,1,
1,0,0,0,0,0,1,
1,0,0,0,0,0,1,
1,1,1,1,1,1,0),
nrow = 7, ncol = 7)

colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",
"F", "ego")

#the constraint value for the ego replicates that provided in Burt (1992: 56)
computeBurtsConstraint(BurtEgoNet)

computeBurtsES Compute Burt’s (1992) Effective Size for Ego Networks from a So-
ciomatrix

Description

This function computes Burt’s (1992) one-mode ego effective size based upon a sociomatrix (see
details).

Usage

computeBurtsES(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
pendants = 1

)

Arguments

net The one-mode sociomatrix with network ties.

inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates The numerical value that represents what value will isolates be given. Set to NA
by default.
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pendants The numerical value that represents what value will pendant vertices be given.
Set to 1 by default.

Details

The formula for Burt’s (1992; see also Borgatti 1997) one-mode ego effective size is:

Ei =
∑
j

1−
∑
q

piqmjq; q ̸= i ̸= j

where Ei is the ego effective size for an ego i. piq is formulated as:

(ziq + zqi)∑
j(zij + zji)

; i ̸= j

and mjq is:

mjq =
(zjq + zqj)

max(zjk + zkj)

While this function internally locates isolates (i.e., nodes who have no ties) and pendants (i.e., nodes
who only have one tie), the user should specify what values for constraint are returned for them via
the isolates and pendants options.

Value

The vector of ego network effective size values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.

Borgatti, Stephen. 1997. "Structural Holes: Unpacking Burt’s Redundancy Measures." Connections
20(1): 35-38.

Examples

# For this example, we recreate the ego network provided in Borgatti (1997):
BorgattiEgoNet <- matrix(
c(0,1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,0,1,
0,0,0,1,0,0,0,0,1,
0,0,1,0,0,0,0,0,1,
0,0,0,0,0,1,0,0,1,
0,0,0,0,1,0,0,0,1,
0,0,0,0,0,0,0,1,1,
0,0,0,0,0,0,1,0,1,
1,1,1,1,1,1,1,1,0),

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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nrow = 9, ncol = 9, byrow = TRUE)
colnames(BorgattiEgoNet) <- rownames(BorgattiEgoNet) <- c("A", "B", "C",

"D", "E", "F",
"G", "H", "ego")

#the effective size value for the ego replicates that provided in Borgatti (1997)
computeBurtsES(BorgattiEgoNet)

# For this example, we recreate the ego network provided in Burt (1992: 56):
BurtEgoNet <- matrix(c(

0,1,0,0,1,1,1,
1,0,0,1,0,0,1,
0,0,0,0,0,0,1,
0,1,0,0,0,0,1,
1,0,0,0,0,0,1,
1,0,0,0,0,0,1,
1,1,1,1,1,1,0),
nrow = 7, ncol = 7)

colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",
"F", "ego")

#the effective size value for the ego replicates that provided in Burt (1992: 56)
computeBurtsES(BurtEgoNet)

computeFourCycles Compute the Four-Cycles Network Statistic for Event Dyads in a Re-
lational Event Sequence

Description

The function computes the four-cycles network sufficient statistic for a two-mode relational se-
quence with the exponential weighting function (Lerner and Lomi 2020). In essence, the four-
cycles measure captures the tendency for clustering to occur in the network of past events, whereby
an event is more likely to occur between a sender node a and receiver node b given that a has
interacted with other receivers in past events who have received events from other senders that in-
teracted with b (e.g., Duxbury and Haynie 2021, Lerner and Lomi 2020). The function allows users
to use two different weighting functions, reduce computational runtime, employ a sliding windows
framework for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeFourCycles(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
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halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE,
priorStats = FALSE,
sender_OutDeg = NULL,
receiver_InDeg = NULL

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).
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counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default.

priorStats TRUE/FALSE. Set to FALSE by default. TRUE indicates that the user has pre-
viously computed the sender outdegree and target indegree network statistics.
Set to FALSE by default. The four-cycles network statistics is computationally
burdensome. If priorStats =TRUE, the function speeds things up by setting the
statistic for an event dyad to 0 if either a) the current event sender was not a
sender in a previous event or b) the current event receiver was not a receiver in
a past event, then the four-cycles statistics for that event dyad will be 0.

sender_OutDeg If priorStats = TRUE, the vector of previously computed sender outdegree scores.

receiver_InDeg If priorStats = TRUE, the vector of previously computed receiver indegree scores.

Details

The function calculates the four-cycles network statistic for two-mode relational event models based
on the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and T1/2 is the halflife parameter.
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The formula for four-cycles for event ei is:

fourcyclesei = 3

√ ∑
s′andr′

w(s′, r, t) · w(s, r′, t) · w(s′, r′, t)

That is, the four-cycle measure captures all the past event structures in which the current event pair,
sender s and target r close a four-cycle. In particular, it finds all events in which: a past sender s’
had a relational event with target r, a past target r’ had a relational event with current sender s, and
finally, a relational event occurred between sender s’ and target r’.

Four-cycles are computationally expensive, especially for large relational event sequences (see
Lerner and Lomi 2020 for a discussion on this), therefore this function allows the user to input
previously computed target indegree and sender outdegree scores to reduce the runtime. Relational
events where either the event target or event sender were not involved in any prior relational events
(i.e., a target indegree or sender outdegree score of 0) will close no-four cycles. This function
exploits this feature.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Lerner and Lomi (2020), if the counts of the past events are requested, the formula for
four-cycles formation for event ei is:

fourcyclesei =

|S′|∑
i=1

|R′|∑
j=1

min
[
d(s′i, r, t), d(s, r

′
j , t), d(s

′
i, r

′
j , t)

]
where, d() is the number of past events that meet the specific set operations, d(s′i, r, t) is the number
of past events where the current event receiver received a tie from another sender s′i, d(s, r

′
j , t) is

the number of past events where the current event sender sent a tie to a another receiver r′j , and
d(s′i, r

′
j , t) is the number of past events where the sender s′i sent a tie to the receiver r′j . Moreover,

the counting equation can leverage relational relevancy, by specifying the halflife parameter, expo-
nential weighting function, and the dyadic cut off weight values (see the above sections for help
with this). If the user is not interested in modeling relational relevancy, then those value should be
left at their default values.

Value

The vector of four-cycle statistics for the two-mode relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Duxbury, Scott and Dana Haynie. 2021. "Shining a Light on the Shadows: Endogenous Trade
Structure and the Growth of an Online Illegal Market." American Journal of Sociology 127(3):
787-827.

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. "Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:1000,] #the first one thousand events
WikiEvent2018$time <- as.numeric(WikiEvent2018$time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- processTMEventSeq(
data = WikiEvent2018, # The Event Dataset
time = WikiEvent2018$time, # The Time Variable
eventID = WikiEvent2018$eventID, # The Event Sequence Variable
sender = WikiEvent2018$user, # The Sender Variable
receiver = WikiEvent2018$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 8, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

#### Estimating the Four-Cycle Statistic Without the Sliding Windows Framework
EventSet$fourcycle <- computeFourCycles(

observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

#### Estimating the Four-Cycle Statistic With the Sliding Windows Framework
EventSet$cycle4SW <- computeFourCycles(

observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqIDs = EventSet$sequenceID,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)
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#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(EventSet$fourcycle, EventSet$cycle4SW)

#### Estimating the Four-Cycle Statistic with the Counts of Events Returned
EventSet$cycle4C <- computeFourCycles(

observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqIDs = EventSet$sequenceID,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(EventSet$fourcycle,
EventSet$cycle4SW,
EventSet$cycle4C)

computeHomFourCycles Compute Fujimoto, Snijders, and Valente’s (2018) Homophilous Four-
Cycles for Two-Mode Networks

Description

This function computes the number of homophilous four-cycles in a two-mode network as proposed
by Fujimoto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for
more details about this measure.

Usage

computeHomFourCycles(net, mem)

Arguments

net The two-mode adjacency matrix.

mem The vector of membership values that the homophilous four-cycles will be based
on.
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Details

Following Fujimoto, Snijders, and Valente (2018: 380), the number of homophilous four-cycles for
actor i is: ∑

j

∑
a ̸=b

yiayibyjayjbIvi = vj

where y is the two-mode adjacency matrix, v is the vector of membership scores (e.g., sports/club
membership), a and b represent the level two groups, and Ivi = vj is the indicator function that is
1 if the values are the same and 0 if not.

Value

The vector of counts of homophilous four-cycles for the two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women")
#creating a random binary membership vector
set.seed(9999)
membership <- sample(0:1, nrow(southern.women), replace = TRUE)
#the homophilous four-cycle values
computeHomFourCycles(southern.women, mem = membership)

computeISP Compute Butts’ (2008) Incoming Shared Partners Network Statistic
for Event Dyads in a Relational Event Sequence

Description

This function calculates the incoming shared partners (ISP) network sufficient statistic for a rela-
tional event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the incoming shared
partners measure captures the tendency of triadic closure to occur in the network of past events,
in which the past triadic closure is based upon the incoming shared partners structure (see Butts
2008 for an empirical example). This measure allows for ISP scores to be computed only for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Usage

computeISP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence.

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
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a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates incoming shared partners scores for relational event sequences based on
the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The general formula for incoming shared partners for event ei is:

ISPei =

√∑
h

w(h, s, t) · w(h, r, t)
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That is, as discussed in Butts (2008), incoming shared partners finds all past events where the current
sender and target were themselves the target in a relational event from the same h node

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for incoming
shared partners for event ei is:

ISPei =

|H|∑
i=1

min [d(h, s, t), d(h, r, t)]

Where, d() is the number of past events that meet the specific set operations, d(h, s, t) is the number
of past events where the current event sender received a tie from a third actor, h, and d(h, r, t) is the
number of past events where the current event receiver received a tie from a third actor, h. The sum
loops through all unique actors that have formed past incoming shared partners structures with the
current event sender and receiver. Moreover, the counting equation can leverage relational relevancy
by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their defaults.

Value

The vector of incoming shared partner statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Incoming Shared Partners Statistic without the sliding windows framework
eventSet$ISP <- computeISP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Incoming Shared Partners Statistic with the sliding windows framework
eventSet$ISP_SW <- computeISP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
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#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$ISP , eventSet$ISP_SW)

# Computing Incoming Shared Partners Statistics with the counts of events being returned
eventSet$ISPC <- computeISP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$ISP,
eventSet$ISP_SW,
eventSet$ISPC)

computeITP Compute Butts’ (2008) Incoming Two Paths Network Statistic for
Event Dyads in a Relational Event Sequence

Description

The function computes the incoming two path (ITP) network sufficient statistic for a relational event
sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the incoming two paths measure
captures the tendency of triadic closure to occur in the network of past events, in which the past
triadic closure is based upon the incoming two paths structure (see Butts 2008 for an empirical
example). This measure allows for ITP scores to be only computed for the sampled events, while
creating the weights based on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015).
The function allows users to use two different weighting functions, reduce computational runtime,
employ a sliding windows framework for large relational sequences, and specify a dyadic cutoff for
relational relevancy.

Usage

computeITP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
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counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
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weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates incoming two paths scores for relational event sequences based on the
exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The general formula for incoming two paths for event ei is:

ITPei =

√∑
h

w(r, h, t) · w(h, s, t)

That is, as discussed in Butts (2008), incoming two paths finds all past events where the current
sender was the receiver in a relational event where the sender was a node h and the current target
was the sender in a past relational event where the target was the same node h.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.
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Following Butts (2008), if the counts of the past events are requested, the formula for incoming two
paths for event ei is:

ITPei =

|H|∑
i=1

min [d(r, h, t), d(h, s, t]

Where, d() is the number of past events that meet the specific set operations. d(r, h, t) is the number
of past events where the current event receiver sent a tie to a third actor, h, and d(h, s, t is the number
of past events where the third actor h sent a tie to the current event sender. The sum loops through
all unique actors that have formed past incoming two path structures with the current event sender
and receiver. Moreover, the counting equation can be used in tandem with relational relevancy,
by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their baseline values.

Value

The vector of incoming two path statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Incoming Two Paths Statistics without the sliding windows framework
eventSet$ITP <- computeITP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Incoming Two Paths Statistics with the sliding windows framework
eventSet$ITP_SW <- computeITP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$ITP, eventSet$ITP_SW)

# Computing Incoming Shared Partners Statistics with the counts of events being returned
eventSet$ITPC <- computeITP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
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halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$ITP,
eventSet$ITP_SW,
eventSet$ITPC)

computeLealBrokerage Compute Potential for Cultural Brokerage (PIB) Based on Leal (2025)

Description

Following Leal (2025), this function calculates node’s Potential for Intercultural Brokerage (PIB)
in a one-mode network. For example, users can examine PIB across gender. The option count
determines what is returned by the function. If count is true, then the count of culturally dissimilar
pairs brokered by ego is included (i.e., ego’s total count of brokered open triangles where the alters at
the two endpoints of said open triangles are culturally dissimilar from one another). If count is false,
the proportion of ego’s brokered open triangles where the endpoints are culturally dissimilar out of
all of ego’s brokered open triangles (regardless of the cultural identity of the alters) is returned. The
formula for computing interpersonal brokerage is presented in the details section.

Usage

computeLealBrokerage(
net,
g.mem,
symmetric = TRUE,
triad.type = NULL,
count = TRUE,
isolate = NA

)

Arguments

net The one-mode adjacency matrix.

g.mem The vector of membership values that the brokerage scores will be based on.

symmetric TRUE/FALSE. TRUE indicates that network matrix will be treated as symmet-
ric. FALSE indicates that the network matrix will be treated as asymmetric. Set
to TRUE by default.

triad.type The string value (or vector) that indicates what specific triadic (star) structures
the potential for cultural brokerage will be computed for. Possible values are
"ANY", "OTS", "ITS", "MTS" (see the details section). The function defaults
to “ANY”.
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count TRUE/FALSE. TRUE indicates that the number of culturally brokered open tri-
angles will be returned. FALSE indicates that the proportion of culturally bro-
kered open triangles to all open triangles will be returned (see the details sec-
tion). Set to TRUE by default.

isolate If count = FALSE, the numerical value that will be given to isolates. This value
is set to NA by default, as 0/0 is undefined. The user can specify this value!

Details

Following Leal (2025), the formula for interpersonal brokerage is:

PIBi =
∑
j<k

Sjik

Sjk
mjk, Sjik ̸= 0 and i ̸= j ̸= k

where:

• Sjik = 1 if there is an (un)directed two-path connecting actors j and k through actor i; 0
otherwise.

• mjk = 1 if actors j and k are on different sides of a symbolic boundary; 0 otherwise.

• Following Gould (1989), Sjik represents the total number of two-paths between actors j and
k.

If the network is non-symmetric (i.e., the user specified symmetric = FALSE), then the function
can compute the cultural brokerage scores for different star structures. The possible values are:
"ANY", which computes the scores for all structures, where a tie exists between i and j, j and k, and
one does not exist between i and k. "OTS" computes the values for outgoing two-stars (i<-j->k or
the 021D triad according to the M.A.N. notation; see Wasserman and Faust 1994), where j is the
broker. "ITS" computes the values for incoming two-stars (i->j<-k or the 021U triad according to
the M.A.N. notation; see Wasserman and Faust 1994 ), where j is the broker. "MTS" computes PIB
for mixed triadic structures (i<-j<-k or i->j->k or the 021C triad according to the M.A.N. notation;
see Wasserman and Faust 1994). If not specified, the function defaults to the "ANY" category. This
function can also compute all of the formations at once.

Value

The vector of interpersonal cultural brokerage values for the one-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Gould, Roger. 1989. "Power and Social Structure in Community Elites." Social Forces 68(2):
531-552.

Leal, Diego F. 2025. "Locating Cultural Holes Brokers in Diffusion Dynamics Across Bright Sym-
bolic Boundaries." Sociological Methods & Research doi:10.1177/00491241251322517

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge: Cambridge University Press.
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mailto:dflc@arizona.edu
https://doi.org/10.1177/00491241251322517
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Examples

# For this example, we recreate Figure 3 in Leal (2025)
LealNet <- matrix( c(
0,1,0,0,0,0,0,
1,0,1,1,0,0,0,
0,1,0,0,1,1,0,
0,1,0,0,1,0,0,
0,0,1,1,0,0,0,
0,0,1,0,0,0,1,
0,0,0,0,0,1,0),
nrow = 7, ncol = 7, byrow = TRUE)

colnames(LealNet) <- rownames(LealNet) <- c("A", "B", "C","D",
"E", "F", "G")

categorical_variable <- c(0,0,1,0,0,0,0)
#These values are exactly the same as reported by Leal (2025)
computeLealBrokerage(LealNet,

symmetric = TRUE,
g.mem = categorical_variable)

computeNPaths Compute the Number of Paths of Length K in a One-Mode Network

Description

This function calculates the number of paths of length k between any two vertices in an unweighted
one-mode network.

Usage

computeNPaths(net, k)

Arguments

net An unweighted one-mode network adjacency matrix.
k A numerical value that corresponds to the length of the paths to be computed.

Details

A nice result from graph theory is that the number of paths of length k between vertices i and j can
be found by:

Ak
ij

This function is similar to the functions provided in igraph that provide the path between two
vertices. The main difference is that this function provides the counts of paths between all vertices
in the network. In addition, this function assumes that there are no self-loops (i.e., the diagonal of
the matrix is 0).
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Value

An n x n matrix of counts of paths.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

Examples

# For this example, we generate a random one-mode graph with the sna package.
#creating the random network with 10 actors
set.seed(9999)
rnet <- matrix(sample(c(0,1), 10*10, replace = TRUE, prob = c(0.8,0.2)),

nrow = 10, ncol = 10, byrow = TRUE)
diag(rnet) <- 0 #setting self ties to 0
#counting the paths of length 2
computeNPaths(rnet, k = 2)
#counting the paths of length 5
computeNPaths(rnet, k = 5)

computeOSP Compute Butts’ (2008) Outgoing Shared Partners Network Statistic
for Event Dyads in a Relational Event Sequence

Description

The function computes the outgoing shared partners (OSP) network sufficient statistic for a rela-
tional event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the outgoing shared
partners measure captures the tendency of triadic closure to occur in the network of past events,
in which the past triadic closure is based upon the outgoing shared partners structure (see Butts
2008 for an empirical example). This measure allows for OSP scores to be only computed for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

Usage

computeOSP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence
processed_time The vector of event times from the post-processing event sequence (i.e., the

event sequence that contains the observed and null events).
processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.
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halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates the outgoing shared partners statistics for relational event sequences based
on the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The general formula for outgoing shared partners for event ei is:

OSPei =

√∑
h

w(s, h, t) · w(r, h, t)

That is, as discussed in Butts (2008), outgoing shared partners finds all past events where the current
sender and target sent a relational tie (i.e., were a sender in a relational event) to the same h node.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing
shared partners for event ei is:

OSPei =

|H|∑
i=1

min [d(s, h, t), d(s, h, t)]
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Where, d() is the number of past events that meet the specific set operations. d(s, h, t) is the
number of past events where the current event sender sent a tie to a third actor, h, and d(r, h, t) is
the number of past events where the current event receiver sent a tie to a third actor, h. The sum
loops through all unique actors that have formed past outgoing shared partners structures with the
current event sender and receiver. Moreover, the counting equation can be used in tandem with
relational relevancy, by specifying the halflife parameter, exponential weighting function, and the
dyadic cut off weight values. If the user is not interested in modeling relational relevancy, then
those value should be left at their defaults.

Value

The vector of outgoing shared partner statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

mailto:kacarson@arizona.edu
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eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Outgoing Shared Partners Statistics without the sliding windows framework
eventSet$OSP <- computeOSP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Outgoing Shared Partners Statistics with the sliding windows framework
eventSet$OSP_SW <- computeOSP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$OSP , eventSet$OSP_SW)

# Computing Outgoing Shared Partners Statistics with the counts of events being returned
eventSet$OSP_C <- computeOSP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)
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cbind(eventSet$OSP,
eventSet$OSP_SW,
eventSet$OSP_C)

computeOTP Compute Butts’ (2008) Outgoing Two Paths Network Statistic for
Event Dyads in a Relational Event Sequence

Description

The function computes the outgoing two paths (OTP) network sufficient statistic for a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the outgoing two paths measure
captures the tendency of triadic closure to occur in the network of past events, in which the past
triadic closure is based upon the outgoing two paths structure (see Butts 2008 for an empirical
example). This measure allows for OTP scores to be only computed for the sampled events, while
creating the weights based on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015).
The function allows users to use two different weighting functions, reduce computational runtime,
employ a sliding windows framework for large relational sequences, and specify a dyadic cutoff for
relational relevancy.

Usage

computeOTP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence
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processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
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Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates the outgoing two paths statistic for relational event sequences based on the
exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The general formula for outgoing two paths for event ei is:

OTPei =

√∑
h

w(s, h, t) · w(h, r, t)

That is, as discussed in Butts (2008), outgoing two paths finds all past events where the current
sender sends a relational tie to node h and the current target receives a relational tie from the same
h node.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing two
paths for event ei is:

OTPei =

|H|∑
i=1

min [d(s, h, t), d(h, r, t)]

Where, d() is the number of past events that meet the specific set operations. d(s, h, t) is the number
of past events where the current event sender sent a tie to a third actor, h, and d(h, r, t) is the number
of past events where the third actor h sent a tie to the current event receiver. The sum loops through
all unique actors that have formed past outgoing two path structures with the current event sender
and receiver. Moreover, the counting equation can be used in tandem with relational relevancy,
by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those values should be left
at their defaults.

Value

The vector of outgoing two path statistics for the relational event sequence.
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Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Outgoing Two Paths Statistics without the sliding windows framework
eventSet$OTP <- computeOTP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,

mailto:kacarson@arizona.edu
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processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Outgoing Two Paths Statistics with the sliding windows framework
eventSet$OTP_SW <- computeOTP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$OTP , eventSet$OTP_SW)

# Computing Outgoing Two Paths Statistics with the counts of events being returned
eventSet$OTPC <- computeOTP(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$OTP,
eventSet$OTP_SW,
eventSet$OTPC)

computePersistence Compute Butts’ (2008) Persistence Network Statistic for Event Dyads
in a Relational Event Sequence

Description

This function computes the persistence network sufficient statistic for a relational event sequence
(see Butts 2008). Persistence measures the proportion of past ties sent from the event sender that
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went to the current event receiver. Furthermore, this measure allows for persistence scores to be
only computed for the sampled events, while creating the weights based on the full event sequence.
Moreover, the function allows users to specify relational relevancy for the statistic and employ a
sliding windows framework for large relational sequences.

Usage

computePersistence(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sender = TRUE,
dependency = FALSE,
relationalTimeSpan = NULL,
nopastEvents = NA,
sliding_windows = FALSE,
processed_seqIDs = NULL,
window_size = NA

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sender TRUE/FALSE. TRUE indicates that the persistence statistic will be computed in
reference to the sender’s past relational history (see details section). FALSE in-
dicates that the persistence statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.
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relationalTimeSpan

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, t, and
t-relationalTimeSpan. For example, if the time measurement is the number of
days since the first event and the value for relationalTimeSpan is set to 10, then
only those events which occurred in the past 10 days are included in the compu-
tation of the statistic.

nopastEvents The numerical value that specifies what value should be given to events in which
the sender has sent not past ties (i’s neighborhood when sender = TRUE) or has
not received any past ties (j’s neighborhood when sender = FALSE). Set to NA
by default.

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Details

The function calculates the persistence network sufficient statistic for a relational event sequence
based on Butts (2008).

The formula for persistence for event ei with reference to the sender’s past relational history is:

Persistenceei =
d(s(ei), r(ei), At)

d(s(ei), At)
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where d(s(ei), r(ei), At) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(s(ei), At) is the number of past events where the current sender
sent a tie.

The formula for persistence for event ei with reference to the target’s past relational history is:

Persistenceei =
d(s(ei), r(ei), At)

d(r(ei), At)

where d(s(ei), r(ei), At) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(r(ei), At) is the number of past events where the current receiver
recieved a tie.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of persistence network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,

eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

mailto:kacarson@arizona.edu
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# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

#Compute Persistence with respect to the sender's past relational history without
#the sliding windows framework and no temporal dependency
eventSet$persist <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
nopastEvents = 0)

#Compute Persistence with respect to the sender's past relational history with
#the sliding windows framework and no temporal dependency
eventSet$persistSW <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID,
nopastEvents = 0)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$persist,eventSet$persistSW)

#Compute Persistence with respect to the sender's past relational history without
#the sliding windows framework and temporal dependency
eventSet$persistDep <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
dependency = TRUE,
relationalTimeSpan = 5, #the past 5 events
nopastEvents = 0)
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#Compute Persistence with respect to the receiver's past relational history without
#the sliding windows framework and no temporal dependency
eventSet$persistT <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = FALSE,
nopastEvents = 0)

#Compute Persistence with respect to the receiver's past relational history with
#the sliding windows framework and no temporal dependency
eventSet$persistSWT <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = FALSE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID,
nopastEvents = 0)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$persistT,eventSet$persistSWT)

#Compute Persistence with respect to the receiver's past relational history without
#the sliding windows framework and temporal dependency
eventSet$persistDepT <- computePersistence(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = FALSE,
dependency = TRUE,
relationalTimeSpan = 5, #the past 5 events
nopastEvents = 0)

computePrefAttach Compute Butts’ (2008) Preferential Attachment Network Statistic for
Event Dyads in a Relational Event Sequence
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Description

The function computes the preferential attachment network sufficient statistic for a relational event
sequence (see Butts 2008). Preferential attachment measures the tendency towards a positive feed-
back loop in which actors involved in more past events are more likely to be involved in future
events (see Butts 2008 for an empirical example and discussion).This measure allows for prefer-
ential attachment scores to be only computed for the sampled events, while creating the statistics
based on the full event sequence. Moreover, the function allows users to specify relational relevancy
for the statistic and employ a sliding windows framework for large relational sequences.

Usage

computePrefAttach(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
dependency = FALSE,
relationalTimeSpan = NULL,
sliding_windows = FALSE,
processed_seqIDs = NULL,
window_size = NA

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
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served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, t, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Details

The function calculates preferential attachment for a relational event sequence based on Butts
(2008).
Following Butts (2008), the formula for preferential attachment for event ei is:

PAei =
d+(r(ei), At) + d−(r(ei), At)∑|S|

i=1(d
+(i, At) + d−(i, At))

where d+(r(ei), At) is the past outdegree of the receiver for ei, d−(r(ei), At) is the past indegree
of the receiver for ei,

∑|S|
i=1(d

+(i, At) + d−(i, At)) is the sum of the past outdegree and indegree
for all past event senders in the relational history.
Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.
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Value

The vector of event preferential attachment statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,

eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

# Compute Preferential Attachment Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$pref <- computePrefAttach(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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dependency = FALSE)

# Compute Preferential Attachment Statistic with Sliding Windows Framework and
# No Temporal Dependency
eventSet$prefSW <- computePrefAttach(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = FALSE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$pref,eventSet$prefSW) #the correlation of the values

# Compute Preferential Attachment Statistic without Sliding Windows Framework and
# Temporal Dependency
eventSet$prefdep <- computePrefAttach(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = TRUE,
relationalTimeSpan = 10)

# Compute Preferential Attachment Statistic with Sliding Windows Framework and
# Temporal Dependency
eventSet$pref1dep <- computePrefAttach(observed_time = events$time,

observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = TRUE,
relationalTimeSpan = 10,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$prefdep,eventSet$pref1dep) #the correlation of the values
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computeReceiverIndegree

Compute the Indegree Network Statistic for Event Receivers in a Re-
lational Event Sequence

Description

The function computes the indegree network sufficient statistic for event receivers in a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). This measure allows for the indegree
scores to be computed only for the sampled events, while creating the weights based on the full
event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two
different weighting functions, reduce computational runtime, employ a sliding windows framework
for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeReceiverIndegree(
observed_time,
observed_receiver,
processed_time,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
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to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates receiver indegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The formula for receiver indegree for event ei is:

recieverindegreeei = w(s′, r, t)

That is, all past events in which the event receiver is the current receiver.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for receiver
indegree for event ei is:

repetitionei = d(r′ = r, t′)

where, d() is the number of past events where the past event receiver, r’, is the current event receiver
(target). Moreover, the counting equation can be used in tandem with relational relevancy, by
specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their defaults.

Value

The vector of receiver indegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Target Indegree Statistics without the sliding windows framework
eventSet$target_indegree <- computeReceiverIndegree(

observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Target Indegree Statistics with the sliding windows framework
eventSet$target_indegreeSW <- computeReceiverIndegree(

observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$target_indegree , eventSet$target_indegreeSW )
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# Computing Target Indegree Statistics with the counts of events being returned
eventSet$target_indegreeC <- computeReceiverIndegree(

observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE,
counts = TRUE)

cbind(eventSet$target_indegree,
eventSet$target_indegreeSW,
eventSet$target_indegreeC)

computeReceiverOutdegree

Compute the Outdegree Network Statistic for Event Receivers in a Re-
lational Event Sequence

Description

The function computes the receiver outdegree network sufficient statistic for a relational event se-
quence (see Lerner and Lomi 2020; Butts 2008). This measure allows for outdegree scores to
be only computed for the sampled events, while creating the weights based on the full event se-
quence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two different
weighting functions, reduce computational runtime, employ a sliding windows framework for large
relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeReceiverOutdegree(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)
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Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
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than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates reciever outdegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The formula for receiver outdegree for event ei is:

receiveroutdegreeei = w(r′, r, t)

That is, all past events in which the past receiver is the current sender and the event receiver can be
any past actor.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for receiver
outdegree for event ei is:

receiveroutdegreeei = d(s′ = r, t′)

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r’.
Moreover, the counting equation can be used in tandem with relational relevancy, by specifying the
halflife parameter, exponential weighting function, and the dyadic cut off weight values. If the user
is not interested in modeling relational relevancy, then those value should be left at their baseline
values.
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Value

The vector of receiver outdegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Target Outdegree Statistics without the sliding windows framework

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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eventSet$target_outdegree <- computeReceiverOutdegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Target Outdegree Statistics with the sliding windows framework
eventSet$target_outdegreeSW <- computeReceiverOutdegree(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$target_outdegreeSW , eventSet$target_outdegree)

# Computing Target Outdegree Statistic with the counts of events being returned
eventSet$target_outdegreeC <- computeReceiverOutdegree(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$target_outdegree,
eventSet$target_outdegreeSW,
eventSet$target_outdegreeC)

computeRecency Compute Butts’ (2008) Recency Network Statistic for Event Dyads in
a Relational Event Sequence
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Description

This function computes the recency network sufficient statistic for a relational event sequence (see
Butts 2008; Vu et al. 2015; Meijerink-Bosman et al. 2022). The recency statistic captures the
tendency in which more recent events (i.e., an exchange between two medical doctors) are more
likely to reoccur in comparison to events that happened in the distant past (see Butts 2008 for a
discussion). This measure allows for recency scores to be only computed for the sampled events,
while creating the statistics based on the full event sequence. Moreover, the function allows users
to specify relational relevancy for the statistic and employ a sliding windows framework for large
relational sequences.

Usage

computeRecency(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
type = c("raw.diff", "inv.diff.plus1", "rank.ordered.count"),
i_neighborhood = TRUE,
dependency = FALSE,
relationalTimeSpan = NULL,
nopastEvents = NA,
sliding_windows = FALSE,
processed_seqIDs = NULL,
window_size = NA

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

type A string value that specifies which recency formula will be used to compute the
statistics. The options are "raw.diff", "inv.diff.plus1", "rank.ordered.count" (see
the details section).
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i_neighborhood TRUE/FALSE. TRUE indicates that the recency statistic will be computed in
reference to the sender’s past relational history (see details section). FALSE in-
dicates that the persistence statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, t, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.

nopastEvents The numerical value that specifies what value should be given to events in
which the sender has sent not past ties (i’s neighborhood when i_neighborhood =
TRUE) or has not received any past ties (j’s neighborhood when i_neighborhood
= FALSE). Set to NA by default.

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).
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Details

This function calculates the recency network sufficient statistic for a relational event based on Butts
(2008), Vu et al. (2015), or Meijerink-Bosman et al. (2022). Depending on the type and neighbor-
hood requested, different formulas will be used.

In the below equations, when i_neighborhood is TRUE:

t∗ = max(t ∈ {(s′, r′, t′) ∈ E : s′ = s ∧ r′ = r ∧ t′ < t})

When i_neighborhood is FALSE, the following formula is used:

t∗ = max(t ∈ {(s′, r′, t′) ∈ E : s′ = r ∧ r′ = s ∧ t′ < t})

The formula for recency for event ei with type set to "raw.diff" and i_neighborhood is TRUE (Vu
et al. 2015):

recencyei = tei − t∗

where t∗, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event ei with type set to "raw.diff" and i_neighborhood is FALSE (Vu
et al. 2015):

recencyei = tei − t∗

where t∗, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event ei with type set to "inv.diff.plus1" and i_neighborhood is TRUE
(Meijerink-Bosman et al. 2022):

recencyei =
1

tei − t∗ + 1

where t∗, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event ei with type set to "inv.diff.plus1" and i_neighborhood is FALSE
(Meijerink-Bosman et al. 2022):

recencyei =
1

tei − t∗ + 1

where t∗, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event ei with type set to "rank.ordered.count" and i_neighborhood is
TRUE (Butts 2008):

recencyei = ρ(s(ei), r(ei), At)
−1

where ρ(s(ei), r(ei), At), is the current event receiver’s rank amongst the current sender’s recent
relational events. That is, as Butts (2008: 174) argues, "ρ(s(ei), r(ei), At) is j’s recency rank among
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i’s in-neighborhood. Thus, if j is the last person to have called i, then ρ(s(ei), r(ei), At)
−1 = 1. This

falls to 1/2 if j is the second most recent person to call i, 1/3 if j is the third most recent person, etc."
Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there are no past events
with the current sender, then the value defaults to the nopastEvents argument.

The formula for recency for event ei with type set to "rank.ordered.count" and i_neighborhood is
FALSE (Butts 2008):

recencyei = ρ(r(ei), s(ei), At)
−1

where ρ(r(ei), s(ei), At), is the current event sender’s rank amongst the current receiver’s recent
relational events. That is, this measure is the same as above where the dyadic pair is flipped for the
past relational events. Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there
are no past events with the current sender, then the value defaults to the nopastEvents argument.

Finally, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of recency network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Meijerink-Bosman, Marlyne, Roger Leenders, and Joris Mulder. 2022. "Dynamic relational event
modeling: Testing, exploring, and applying." PLOS One 17(8): e0272309.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Vu, Duy, Philippa Pattison, and Garry Robbins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,

eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu


computeRecency 63

"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

# Compute Recency Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$recency_rawdiff <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "raw.diff",
dependency = FALSE,
i_neighborhood = TRUE,
nopastEvents = 0)

# Compute Recency Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$recency_inv <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "inv.diff.plus1",
dependency = FALSE,
i_neighborhood = TRUE,
nopastEvents = 0)

# Compute Recency Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$recency_rank <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
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processed_sender = eventSet$sender,
type = "rank.ordered.count",
dependency = FALSE,
i_neighborhood = TRUE,
nopastEvents = 0)

# Compute Recency Statistic with Sliding Windows Framework and No Temporal Dependency
eventSet$recency_rawdiffSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "raw.diff",
dependency = FALSE,
i_neighborhood = TRUE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID,
nopastEvents = 0)

# Compute Recency Statistic with Sliding Windows Framework and No Temporal Dependency
eventSet$recency_invSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "inv.diff.plus1",
dependency = FALSE,
i_neighborhood = TRUE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID,
nopastEvents = 0)

# Compute Recency Statistic with Sliding Windows Framework and No Temporal Dependency
eventSet$recency_rankSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "rank.ordered.count",
dependency = FALSE,
i_neighborhood = TRUE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequenceID,
nopastEvents = 0)
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computeReciprocity Compute the Reciprocity Network Statistic for Event Dyads in a Rela-
tional Event Sequence

Description

This function calculates the reciprocity network sufficient statistic for a relational event sequence
(see Lerner and Lomi 2020; Butts 2008). The reciprocity statistic captures the tendency in which a
sender a sends a tie to receiver b given that b sent a tie to a in the past (i.e., an exchange between
two medical doctors). This measure allows for reciprocity scores to be only computed for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

Usage

computeReciprocity(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
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processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default
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Details

This function calculates reciprocity scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The formula for reciprocity for event ei is:

reciprocityei = w(r, s, t)

That is, all past events in which the past sender is the current receiver and the past receiver is the
current sender.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for reciprocity
for event ei is:

reciprocityei = d(r = s′, s = r′, t′)

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r,
and the event receiver (target), r’, is the current event sender, s. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential
weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of reciprocity statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Examples

events <- data.frame(time = 1:18, eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Reciprocity Statistics without the sliding windows framework
eventSet$recip <- computeReciprocity(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)
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# Computing Reciprocity Statistics with the sliding windows framework
eventSet$recipSW <- computeReciprocity(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$recipSW , eventSet$recip)

# Computing Reciprocity Statistics with the counts of events being returned
eventSet$recipC <- computeReciprocity(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$recip,
eventSet$recipSW,
eventSet$recipC)

computeRemDyadCut A Helper Function to Assist Researchers in Finding Dyadic Weight
Cutoff Values

Description

A user-helper function to assist researchers in finding the dyadic cutoff value to compute sufficient
statistics for relational event models based upon temporal dependency.

Usage

computeRemDyadCut(halflife, relationalWidth, Lerneretal_2013 = FALSE)
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Arguments

halflife The user specified halflife value for the weighting function.
relationalWidth

The numerical value that corresponds to the time range for which the user spec-
ifies for temporal relevancy.

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function is specifically designed as a user-helper function to assist researchers in finding the
dyadic cutoff value for creating sufficient statistics based upon temporal dependency. In other
words, this function estimates a dyadic cutoff value for relational relevance, that is, the minimum
dyadic weight for past events to be potentially relevant (i.e., to possibly have an impact) on the
current event. All non-relevant events (i.e., events too distant in the past from the current event to
be considered relevant, that is, those below the cutoff value) will have a weight of 0. This cutoff
value is based upon two user-specified values: the events’ halflife (i..e, halflife) and the relation-
ally relevant event or time span (i.e., relationalWidth). Ideally, both the values for halflife
and relationalWidth would be based on the researcher’s command of the relevant substantive
literature. Importantly, halflife and relationalWidth must be in the same units of measurement
(e.g., days). If not, the function will not return the correct answer.

For example, let’s say that the user defines the halflife to be 15 days (i.e., two weeks) and the
relationally relevant event or time span (i.e., relationalWidth) to be 30 days (i.e., events that
occurred more than 1 month in the past are not considered relationally relevant for the current
event). The user would then specify halflife = 15 and relationalWidth = 30.

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter. The task of this function is to find the weight, w(s, r, t), that corresponds to the
time difference provided by the user.

Value

The dyadic weight cutoff based on user specified values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Examples

#To replicate the example in the details section:
# with the Lerner et al. 2013 weighting function
computeRemDyadCut(halflife = 15,

relationalWidth = 30,
Lerneretal_2013 = TRUE)

# without the Lerner et al. 2013 weighting function
computeRemDyadCut(halflife = 15,

relationalWidth = 30,
Lerneretal_2013 = FALSE)

# A result to test the function (should come out to 0.50)
computeRemDyadCut(halflife = 30,

relationalWidth = 30,
Lerneretal_2013 = FALSE)

# Replicating Lerner and Lomi (2020):
#"We set T1/2 to 30 days so that an event counts as (close to) one in the very next instant of time,
#it counts as 1/2 one month later, it counts as 1/4 two months after the event, and so on. To reduce
#the memory consumption needed to store the network of past events, we set a dyadic weight to
#zero if its value drops below 0.01. If a single event occurred in some dyad this would happen after
#6.64×T1/2, that is after more than half a year." (Lerner and Lomi 2020: 104).

# Based upon Lerner and Lomi (2020: 104), the result should be around 0.01. Since the
# time values in Lerner and Lomi (2020) are in milliseconds, we have to change
# all measurements into milliseconds
computeRemDyadCut(halflife = (30*24*60*60*1000), #30 days in milliseconds

relationalWidth = (6.64*30*24*60*60*1000), #Based upon the paper
#using the Lerner and Lomi (2020) weighting function
Lerneretal_2013 = FALSE)

computeRepetition Compute Butts’ (2008) Repetition Network Statistic for Event Dyads
in a Relational Event Sequence
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Description

This function computes the repetition network sufficient statistic for a relational event sequence (see
Lerner and Lomi 2020; Butts 2008). Repetition measures the increased tendency for events between
S and R to occur given that S and R have interacted in the past. Furthermore, this measure allows
for repetition scores to be only computed for the sampled events, while creating the weights based
on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users
to use two different weighting functions, reduce computational runtime, employ a sliding windows
framework for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeRepetition(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
halflife = 2,
counts = FALSE,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
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sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates the repetition scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and T1/2 is the halflife parameter.

The formula for repetition for event ei is:

repetitionei = w(s, r, t)

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for repetition for
event ei is:

repetitionei = d(s = s′, r = r′, t′)

Where, d() is the number of past events where the event sender, s’, is the current event sender,
s, the event receiver (target), r’, is the current event receiver, r. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential
weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of repetition statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu
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Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:10000,] #the first ten thousand events
WikiEvent2018$time <- as.numeric(WikiEvent2018$time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- processTMEventSeq(
data = WikiEvent2018, # The Event Dataset
time = WikiEvent2018$time, # The Time Variable
eventID = WikiEvent2018$eventID, # The Event Sequence Variable
sender = WikiEvent2018$user, # The Sender Variable
receiver = WikiEvent2018$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 5, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

#### Estimating Repetition Scores Without the Sliding Windows Framework
EventSet$rep <- computeRepetition(

observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

EventSet$sw_rep <- computeRepetition(
observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqIDs = EventSet$sequenceID,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(EventSet$sw_rep, EventSet$rep)

#### Estimating Repetition Scores with the Counts of Events Returned
EventSet$repC <- computeRepetition(

observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
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processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE,
counts = TRUE)

cbind(EventSet$rep,
EventSet$sw_rep,
EventSet$repC)

computeSenderIndegree Compute the Indegree Network Statistic for Event Senders in a Rela-
tional Event Sequence

Description

The function computes the indegree network sufficient statistic for event senders in a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). This measure allows for indegree scores
to be only computed for the sampled events, while creating the weights based on the full event
sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two
different weighting functions, reduce computational runtime, employ a sliding windows framework
for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeSenderIndegree(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
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observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).
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Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates sender indegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The formula for sender indegree for event ei is:

senderindegreeei = w(s′, s, t)

That is, all past events in which the event receiver is the current sender.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for sender inde-
gree for event ei is:

senderindegreeei = d(r′ = s, t′)

Where, d() is the number of past events where the event receiver, r’, is the current event sender s .
Moreover, the counting equation can be used in tandem with relational relevancy, by specifying the
halflife parameter, exponential weighting function, and the dyadic cut off weight values. If the user
is not interested in modeling relational relevancy, then those value should be left at their defaults.

Value

The vector of sender indegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu
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mailto:dflc@arizona.edu
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Sender Indegree Statistics without the sliding windows framework
eventSet$sender.indegree <- computeSenderIndegree(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
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Lerneretal_2013 = FALSE)

# Computing Sender Indegree Statistics with the sliding windows framework
eventSet$sender.indegree.SW <- computeSenderIndegree(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$sender.indegree.SW,eventSet$sender.indegree)

# Computing Sender Indegree Statistics with the counts of events being returned
eventSet$sender.indegreeC <- computeSenderIndegree(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE,
counts = TRUE)

cbind(eventSet$sender.indegree.SW,
eventSet$sender.indegree,
eventSet$sender.indegreeC)

computeSenderOutdegree

Compute the Outdegree Network Statistic for Event Senders in a Rela-
tional Event Sequence

Description

The function computes the sender outdegree network sufficient statistic for a relational event se-
quence (see Lerner and Lomi 2020; Butts 2008). This measure allows for outdegree scores to
be only computed for the sampled events, while creating the weights based on the full event se-
quence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two different
weighting functions, reduce computational runtime, employ a sliding windows framework for large
relational sequences, and specify a dyadic cutoff for relational relevancy.
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Usage

computeSenderOutdegree(
observed_time,
observed_sender,
processed_time,
processed_sender,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
processed_time The vector of event times from the post-processing event sequence (i.e., the

event sequence that contains the observed and null events).
processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).
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counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates sender outdegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The formula for sender outdegree for event ei is:

senderoutdegreeei = w(s, r′, t)

That is, all past events in which the past sender is the current sender and the event target can be any
past user.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.
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Following Butts (2008), if the counts of the past events are requested, the formula for sender outde-
gree for event ei is:

senderoutdegreeei = d(s = s′, t′)

Where, d() is the number of past events where the sender s’ is the current event sender, s. Moreover,
the counting equation can be used in tandem with relational relevancy, by specifying the halflife
parameter, exponential weighting function, and the dyadic cutoff weight values. If the user is not
interested in modeling relational relevancy, then those value should be left at their defaults.

Value

The vector of sender outdegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Sender Outdegree Statistics without the sliding windows framework
eventSet$sender_outdegree <- computeSenderOutdegree(

observed_time = events$time,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Sender Outdegree Statistics with the sliding windows framework
eventSet$sender_outdegreeSW <- computeSenderOutdegree(

observed_time = events$time,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$sender_outdegreeSW , eventSet$sender_outdegree)

# Computing Sender Outdegree Statistic with the counts of events being returned
eventSet$sender_outdegreeC <- computeSenderOutdegree(

observed_time = events$time,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$sender_outdegree,
eventSet$sender_outdegreeSW,
eventSet$sender_outdegreeC)
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computeTMDegree Compute Degree Centrality Values for Two-Mode Networks

Description

This function computes the degree centrality values for two-mode networks following Knoke and
Yang (2020). The computed degree centrality is based on the specified level. That is, in an affiliation
matrix, the density can be computed on the symmetric g x g co-membership matrix of level 1 actors
(e.g., medical doctors) or on the symmetric h x h shared actors matrix for level 2 groups (e.g.,
hospitals) based on their shared members.

Usage

computeTMDegree(net, level1 = TRUE)

Arguments

net A two-mode adjacency matrix

level1 TRUE/FALSE. TRUE indicates that the degree centrality will be computed for
level 1 nodes. FALSE indicates that the degree centrality will be computed for
level 2 nodes. Set to TRUE by default.

Details

Following Knoke and Yang (2020), the computation of degree for two-mode affiliation networks is
level specific. A two-mode affiliation matrix X with dimensions g x h, where g is the number of
level 1 nodes (e.g., medical doctors) and h is the number of level 2 nodes (i.e., hospitals). If the
function is defined on the level 1 nodes, the degree centrality of an actor i is computed as:

XG = XXT

CG
D(gi) =

g∑
i=1

xg
ij (i ̸= j)

In contrast, if it is defined on the level 2 nodes, the degree centrality of an actor i is computed as:

XH = XTX

CH
D (hi) =

h∑
i=1

xh
ij (i ̸= j)

Value

The vector of two-mode level-specific degree centrality values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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References

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154)

Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,

1,1,1,0, 0,0,1,1,
0,0,1,1), byrow = TRUE,
nrow = 5, ncol = 4)

colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames(knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
computeTMDegree(knoke_yang_PC, level1 = TRUE) #this value matches the book
computeTMDegree(knoke_yang_PC, level1 = FALSE) #this value matches the book

computeTMDens Compute Level-Specific Graph Density for Two-Mode Networks

Description

This function computes the density of a two-mode network following Wasserman and Faust (1994)
and Knoke and Yang (2020). The density is computed based on the specified level. That is, in an
affiliation matrix, density can be computed on the symmetric g x g matrix of co-membership for the
level 1 actors or on the symmetric h x h matrix of shared actors for level 2 groups.

Usage

computeTMDens(net, binary = FALSE, level1 = TRUE)

Arguments

net A two-mode adjacency matrix.

binary TRUE/FALSE. TRUE indicates that the transposed matrices will be binarized
(see Wasserman and Faust 1995: 316). FALSE indicates that the transposed
matrices will not be binarized. Set to FALSE by default.

level1 TRUE/FALSE. TRUE indicates that the graph density will be computed for level
1 nodes. FALSE indicates that the graph density will be computed for level 2
nodes. Set to FALSE by default.

Details

Following Wasserman and Faust (1994) and Knoke and Yang (2020), the computation of density for
two-mode networks is level specific. A two-mode matrix X with dimensions g x h, where g is the
number of level 1 nodes (e.g., medical doctors) and h is the number of level 2 nodes (i.e., hospitals).
If the function is defined on the level 1 nodes, the density is computed as:
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Xg = XXT

Dg =

∑g
i=1

∑g
j=1 x

g
ij

g(g − 1)

In contrast, if it is defined on the level 2 nodes, the density is:

Xh = XTX

Dh =

∑h
i=1

∑h
j=1 x

h
ij

h(h− 1)

Moreover, as discussed in Wasserman and Faust (1994: 316), the density can be based on the
dichotomous relations instead of the shared membership values. This can be specified by binary =
TRUE.

Value

The level-specific network density for the two-mode graph.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press.

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154).

Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,

1,1,1,0, 0,0,1,1,
0,0,1,1), byrow = TRUE,
nrow = 5, ncol = 4)

colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames(knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
#compute two-mode density for level 1
#note: this value does not match that of Knoke and Yang (which we believe
#is a typo in that book), but does match that of Wasserman and
#Faust (1995: 317) for the ceo dataset.
computeTMDens(knoke_yang_PC, level1 = TRUE)
#compute two-mode density for level 2.
#note: this value matches that of the book
computeTMDens(knoke_yang_PC, level1 = FALSE)

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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computeTMEgoDis Compute Fujimoto, Snijders, and Valente’s (2018) Ego Homophily
Distance for Two-Mode Networks

Description

This function computes the ego homophily distance in two-mode networks as proposed by Fuji-
moto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for more
details about this measure.

Usage

computeTMEgoDis(net, mem, standardize = FALSE)

Arguments

net The two-mode adjacency matrix.

mem The vector of membership values that the homophilous four cycles will be based
on.

standardize TRUE/FALSE. TRUE indicates that the sores will be standardized by the num-
ber of level 2 nodes the level 1 node is connected to. FALSE indicates that the
scores will not be standardized. Set to FALSE by default.

Details

The formula for ego homophily distance in two-mode networks is:

Ego2Disti =
∑
a

yia1− |vi − pia|

where:

•
∑

a sums across all level 2 nodes in the network

• yia is the 1 if node i is tied to node a and 0 else.

• vi is the value of the respondent. Within the function this is predefined to be 1 if there are
multiple categories.

• pia is the proportion of same-category actors that are tied to node a not including the ego
itself.

• |vi − pia| is equal to 1 if all the level 1 nodes that are tied to the level 2 node share the same
categorical membership and 0 if all level 1 nodes are a different category.

If the ego is a level 2 isolate or a level 2 pendant, that is, only one level 1 node (e.g., patient) is
connected to that specific level 2 node (e.g., medical doctor), then they are given a value of 0. In
particular, the contribution to the ego distance for a pendant is 0. The ego distance value can be
standardized by the number of groups which would provide the average ego distance as a proportion
between 0 and 1.
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Value

The vector of two-mode ego homophily distance.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women")
#creating a random binary membership vector
set.seed(9999)
membership <- sample(0:1, nrow(southern.women), replace = TRUE)
#the ego 2 mode distance non-standardized
computeTMEgoDis(southern.women, mem = membership)
#the ego 2 mode distance standardized
computeTMEgoDis(southern.women, mem = membership, standardize = TRUE)

computeTriads Compute the Triadic Closure Network Statistic for Event Dyads in a
Relational Event Sequence

Description

This function computes the triadic closure network sufficient statistic for a relational event sequence
(see Lerner and Lomi 2020; Butts 2008). This measure allows for triadic scores to be only computed
for the sampled events, while creating the weights based on the full event sequence (see Lerner and
Lomi 2020; Vu et al. 2015). The function allows users to use two different weighting functions,
reduce computational runtime, employ a sliding windows framework for large relational sequences,
and specify a dyadic cutoff for relational relevancy.

Usage

computeTriads(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

)

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the network statistic, while FALSE indicates the ap-
proach will not be used. Set to FALSE by default. It’s important to note that the
sliding windows framework should only be used when the pre-processed event
sequence is ‘big’, such as the 360 million pre-processed event sequence used in
Lerner and Lomi (2020), as it aims to reduce the computational burden of sort-
ing ‘big’ datasets. In general, most pre-processed event sequences will not need
to use the sliding windows approach. There is not a strict cutoff for ‘big’ dataset.
This definition depends on both the size of the observed event sequence and the
post-processing sampling dataset. For instance, according to our internal tests,
when the event sequence is relatively large (i.e., 100,000 observed events) with
probability of sampling from the observed event sequence set to 0.05 and using
10 controls per sampled event, the sliding windows framework for computing
repetition is about 11% faster than the non-sliding windows framework. Yet, in
a smaller dataset (i.e., 10,000 observed events) the sliding windows framework
is about 25% slower than the non-sliding framework with the same conditions
as before.

processed_seqIDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).
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counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see the details section). Preset to 2 (should be updated by user).

dyadic_weight A numerical value that is the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and will not be included in the sum of the past event
weights (see the details section). Set to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates triadic scores for relational event sequences based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

w(s, r, t) = e
−(t−t′)· ln(2)

T1/2 · ln(2)
T1/2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, t’ is the past event times that meet the weight subset, and T1/2 is the
halflife parameter.

The general formula for triadic structures for event ei is:

triadicei =

√∑
k

w(s, r′, t) · w(s′, r, t)

That is, this function combines all triadic structures discussed in Butts (2008) into a single sum-
mation such that the computed scores include incoming shared partners, outgoing shared partners,
incoming two paths, and outgoing two paths.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
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value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for triadic struc-
tures for event ei is:

TSei =

|H|∑
i=1

min [d(s, r′, t), d(s′, r, t)]

where, d() is the number of past events that meet the specific set operations. Notably, this function
combines all triadic structures discussed in Butts (2008) into a single summation, such that the
computed scores include incoming shared partners, outgoing shared partners, incoming two paths,
and outgoing two paths. The sum loops through all unique actors that have formed past sent or
received ties from the current event sender and receiver. Moreover, the counting equation can be
used in tandem with relational relevancy, by specifying the halflife parameter, exponential weighting
function, and the dyadic cut off weight values. If the user is not interested in modeling relational
relevancy, then those value should be left at their baseline values.

Value

The vector of triadic closure network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",

mailto:kacarson@arizona.edu
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"H", "A", "D"),
target = c("B", "C", "D",

"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Triadic Statistics without the sliding windows framework
eventSet$triadic <- computeTriads(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Triadic Statistics with the sliding windows framework
eventSet$triadicSW <- computeTriads(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequenceID,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$triadic , eventSet$triadicSW)

# Computing Triadic Statistics with the counts of events being returned
eventSet$triadicC <- computeTriads(

observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
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processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$triadic,
eventSet$triadicSW,
eventSet$triadicC)

dream dream: A Package for Dynamic Relational Event Analysis and Model-
ing

Description

The dream package provides users with helpful functions for relational and event analysis. In partic-
ular, dream provides users with helper functions for large relational event analysis, such as recently
proposed sampling procedures for creating relational risk sets. Alongside the set of functions for
relational event analysis, this package includes functions for the structural analysis of one- and
two-mode networks, such as network constraint and effective size measures. This package was
developed with support from the National Science Foundation’s (NSF) Human Networks and Data
Science Program (HNDS) under award number 2241536 (PI: Diego F. Leal). Any opinions, find-
ings, and conclusions, or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

dream functions

The functions in dream can be grouped into four useful categories:

• Create Dynamic Risk Sets for (Large) Relational Event Models

– Functions: processOMEventSeq and processTMEventSeq.

• Compute Network Statistics for (Large) Relational Event Models

– Functions: computeISP, computeITP, computeOSP, computeOTP, computeFourCycles,
computeFourCycles, computePersistence, computePrefAttach, computeReceiverIndegree,
computeReceiverOutdegree, computeRecency, computeReciprocity, computeRemDyadCut,
computeRepetition, computeSenderIndegree, computeSenderOutdegree, and computeTriads.

• Estimate and Simulate (Large) Relational Event Models

– Functions: estimateREM and simulateRESeq.

• Compute One- and Two-Mode Network Structural Measures

– Functions: computeBCConstraint, computeBCES, computeBCRedund, computeBurtsConstraint,
computeBurtsES, computeHomFourCycles, computeLealBrokerage, computeNPaths,
computeTMDegree, computeTMDens, and computeTMEgoDis.
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Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

estimateREM Fit a Relational Event Model (REM) to Event Sequence Data

Description

This function estimates the ordinal timing relational event model by maximizing the likelihood
function given by Butts (2008) via maximum likelihood estimation. A nice outcome is that the
ordinal timing relational event model is equivalent to the conditional logistic regression (see Greene
2003; for R functions, see clogit). In addition, based on this outcome and the structure of the data,
this function can estimate the Cox proportional hazards model (see Box-Steffensmeier and Jones
2004; for R functions, see coxph) given that the likelihood functions are equivalent. An important
assumption this model makes is that only one event occurs at each time point. If this is unfeasible
for the user’s specific dataset, we encourage the user to see the clogit function for the Breslow
approximation technique (Box-Steffensmeier and Jones 2004). Future versions of the package will
include options for interval timing relational event models and tied event data (e.g., multiple events
at one time point).

Usage

estimateREM(
formula,
event.cluster,
data,
ordinal = TRUE,
multiple.events = FALSE,
newton.rhapson = TRUE,
optim.method = "BFGS",
optim.control = list(),
tolerance = 1e-09,
maxit = 20,
starting.beta = NULL,
...

)

Arguments

formula A formula object with the dependent variable on the left hand side of ~ and the
covariates on the right hand side. This is the same argument found in lm and
glm.

event.cluster An integer or factor vector that groups each observed event with its correspond-
ing control (null) events. This vector defines the strata in the event sequence,
ensuring that each stratum contains one observed event and its associated null
alternatives. It is used to structure the likelihood by stratifying events based on
their occurrence in time.

mailto:kacarson@arizona.edu
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data The data.frame that contains the variable included in the formula argument.

ordinal TRUE/FALSE. Currently, this function supports only the estimation of ordinal
timing relational event models (see Butts 2008). Future versions of the package
will include estimation options for interval timing relational event models. At
this time, this argument is preset to TRUE and should not be modified by the
user.

multiple.events

TRUE/FALSE. Currently, this function assumes that only one event occurs per
event cluster (i.e., time point). Future versions of the package will include esti-
mation options for multiple events per time point, commonly referred to as tied
events, via the Breslow approximation technique (see Box-Steffensmeier and
Jones 2004). At this moment, this argument is preset to FALSE and should not
be modified by the user.

newton.rhapson TRUE/FALSE. TRUE indicates an internal Newton-Rhapson iteration proce-
dure with line searching is used to find the set of maximum likelihood estimates.
FALSE indicates that the log likelihood function will be optimized via the optim
function. The function defaults to TRUE.

optim.method If newton.rhapson is FALSE, what optim method should be used in conjunction
with the optim function. Defaults to "BFGS". See the optim function for the
set of options.

optim.control If newton.rhapson is FALSE, a list of control to be used in the optim function.
See the optim function for the set of controls.

tolerance If newton.rhapson is TRUE, the stopping criterion for the absolute difference
in the log likelihoods for each Newton-Rhapson iteration. The optimization
procedure stops when the absolute change in the log likelihoods is less than
tolerance (see Greene 2003).

maxit If newton.rhapson is TRUE, the maximum number of iterations for the Newton-
Rhapson optimization procedure (see Greene 2003).

starting.beta A numeric vector that represents the starting parameter estimates for the Newton-
Rhapson optimization procedure. This may be a beneficial argument if the opti-
mization procedure fails, since the Newton-Rhapson optimization procedure is
sensitive to starting values. Preset to NULL.

... Additional arguments.

Details

This function maximizes the ordinal timing relational event model likelihood function provided in
the seminal REM paper by Butts (2008). The likelihood function is:

L(E|β) =
|E|∏
i=1

λei∑
e′∈RSei

λe′

where, following Butts (2008) and Duxbury (2020), E is the relational event sequence, λei is the
hazard rate for event i, which is formulated to be equal to exp(βT z(x, Y )), that is, the linear combi-
nation of user-specific covariates, z(x, Y ), and associated REM parameters, β. Following Duxbury
(2020), z(x, Y ) is a mapping function that represents the endogenous network statistics computed
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on the network of past events,x, and exogenous covariates, Y . The user provides these covariates
via the formula argument.

This function provides two numerical optimization techniques to find the maximum likelihood esti-
mates for the associated parameters. First, this function allows the user to use the optim function to
find the associated parameters based on the above likelihood function. Secondly, and by default, this
function employs a Newton-Rhapson iteration algorithm with line-searching to find the unknown
parameters (see Greene 2003 for a discussion of this algorithm). If desired, the user can provide the
initial searching values for both algorithms with the starting.beta argument.

It’s important to note that the modeling concerns of the conditional logistic regression apply to the
ordinal timing relational event model, such as no within-sequence fixed effects, that is, a variable
that does not vary within event cluster (i.e., a variable that is the same for both the null and observed
events). The function internally checks for this and provides the user with a warning if any requested
effects has no total within-event variance. Moreover, any observed events that have no associated
control events are removed from the analysis as they provide no information to the log likelihood
(see Greene 2003). The function removes these events from the sequence prior to estimation.

Value

An object of class "dream" as a list containing the following components:

optimization.method The optimzation method used to find the parameters..

converged TRUE/FALSE. TRUE indicates that the REM converged.

loglikelihood.null The log likelihood of the null model (i.e., the model where the parameters are
assumed to be 0).

loglikelihood.full The log likelihood of the estimated model.

chi.stat The chi-statistic of the likelihood ratio test.

loglikelihood.test The p-value of the likelihood ratio test.

df.null The degrees of freedom of the null model.

df.full The degrees of freedom of the full model.

parameters The MLE parameter estimates.

hessian The estimated hessian matrix.

gradient The estimated gradient vector.

se.parameter The standard errors of the MLE parameter estimates.

covariance.mat The estimated variance-covariance matrix.

z.values The z-scores for the MLE parameter estimates.

p.values The p-values for the MLE parameter estimates.

AIC The AIC of the estimated REM.

BIC The BIC of the estimated REM.

n.events The number of observed events in the relational event sequence.

null.events The number of control events in the relational event sequence.

newton.iterations The number of Newton-Rhapson iterations.

search.algo A data.frame object that contains the Newton-Rhapson searching algorithm results.
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Examples

#Creating a psuedo one-mode relational event sequence with ordinal timing
relational.seq <- simulateRESeq(n_actors = 8,

n_events = 50,
inertia = TRUE,
inertia_p = 0.10,
sender_outdegree = TRUE,
sender_outdegree_p = 0.05)

#Creating a post-processing event sequence for the above relational sequence
post.processing <- processOMEventSeq(data = relational.seq,

time = relational.seq$eventID,
eventID = relational.seq$eventID,
sender = relational.seq$sender,
receiver = relational.seq$target,
n_controls = 5)

#Computing the sender-outdegree statistic for the above post-processing
#one-mode relational event sequence
post.processing$sender.outdegree <- computeSenderOutdegree(

observed_time = relational.seq$eventID,
observed_sender = relational.seq$sender,
processed_time = post.processing$time,
processed_sender = post.processing$sender,
counts = TRUE)

#Computing the inertia/repetition statistic for the above post-processing
#one-mode relational event sequence
post.processing$inertia <- computeRepetition(

observed_time = relational.seq$eventID,
observed_sender = relational.seq$sender,
observed_receiver = relational.seq$target,
processed_time = post.processing$time,
processed_sender = post.processing$sender,
processed_receiver = post.processing$receiver,
counts = TRUE)

mailto:kacarson@arizona.edu
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#Fitting a (ordinal) relational event model to the above one-mode relational
#event sequence
rem <- estimateREM(observed~sender.outdegree+inertia,

event.cluster = post.processing$time,
data=post.processing)

summary(rem) #summary of the relational event model

#Fitting a (ordinal) relational event model to the above one-mode relational
#event sequence via the optim function
rem1 <- estimateREM(observed~sender.outdegree+inertia,

event.cluster = post.processing$time,
data=post.processing,
newton.rhapson=FALSE) #use the optim function

summary(rem1) #summary of the relational event model

print.dream Print Method for Summary of dream Model

Description

Print Method for Summary of dream Model

Usage

## S3 method for class 'dream'
print(x, digits = 4, ...)

Arguments

x An object of class "summary.dream".

digits The number of digits to print after the decimal point.

... Additional arguments (currently unused).

Value

No return value. Prints out the main results of a ’dream’ object.
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print.summary.dream Print Method for dream Model

Description

Print Method for dream Model

Usage

## S3 method for class 'summary.dream'
print(x, digits = 4, ...)

Arguments

x An object of class "dream".

digits The number of digits to print after the decimal point.

... Additional arguments (currently unused).

Value

No return value. Prints out the main results of a ’dream’ summary object.

processOMEventSeq Process and Create Risk Sets for a One-Mode Relational Event Se-
quence

Description

This function creates a one-mode post-sampling eventset with options for case-control sampling
(Vu et al. 2015), sampling from the observed event sequence (Lerner and Lomi 2020), and time-
or event-dependent risk sets. Case-control sampling samples an arbitrary m number of controls
from the risk set for any event (Vu et al. 2015). Lerner and Lomi (2020) proposed sampling
from the observed event sequence where observed events are sampled with probability p. The
time- and event-dependent risk sets generate risk sets where the potential null events are based
upon a specified past relational time window, such as events that have occurred in the past year.
Importantly, this function creates risk sets based upon the assumption that only actors active in past
events are in relevant for the creation of the risk set. Users interested in generating risk sets that
assume all actors active at any time point within the event sequence are in the risk set at every time
point should consult the createRemDataset and remify functions. Future versions of this package
will incorporate this option into the function.
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Usage

processOMEventSeq(
data,
time,
eventID,
sender,
receiver,
p_samplingobserved = 1,
n_controls,
time_dependent = FALSE,
timeDV = NULL,
timeDif = NULL,
seed = 9999

)

Arguments

data The full relational event sequence dataset.

time The vector of event time values from the observed event sequence.

eventID The vector of event IDs from the observed event sequence (typically a numerical
event sequence that goes from 1 to n).

sender The vector of event senders from the observed event sequence.

receiver The vector of event receivers from the observed event sequence.
p_samplingobserved

The numerical value for the probability of selection for sampling from the ob-
served event sequence. Set to 1 by default indicating that all observed events
from the event sequence will be included in the post-processing event sequence.

n_controls The numerical value for the number of null event controls for each (sampled)
observed event.

time_dependent TRUE/FALSE. TRUE indicates that a time- or event-dependent dynamic risk
set will be created in which only actors involved in a user-specified relationally
relevant (time or event) span (i.e., the ‘stretch’ of relational relevancy, such as
one month for a time-dependent risk set or 100 events for an event-dependent
risk set) are included in the potential risk set. FALSE indicates the complete set
of actors involved in past events will be included in the risk set (see the details
section). Set to FALSE by default.

timeDV If time_dependent = TRUE, the vector of event time values that corresponds to
the creation of the time- or event-dependent dynamic risk set (see the details
section). This may or may not be the same vector provided to the time argu-
ment. The timeDV vector can be the same vector provided to the time argument,
in which the relational time span will be based on the event timing within the
dataset. In contrast, the timeDV vector can also be the vector of numerical event
IDs which correspond to the number sequence of events. Moreover, the timeDV
can also be another measurement that is not the time argument or a numerical
event ID sequence, such as the number of days, months, years, etc. since the
first event.
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timeDif If time_dependent = TRUE, the numerical value that represents the time or event
span for the creation of the risk set (see the details section). This argument must
be in the same measurement unit as the timeDV argument. For instance, in an
event-dependent dynamic risk set, if timeDV is the number of events since the
first event (i.e., a numerical event ID sequence) and only those actors involved
in the past, say, 100 events, are considered relationally relevant for the creation
of the null events for the current observed event, then timeDIF should be set to
100. In the time-dependent dynamic risk set case, let’s say that only those actors
involved in events that occurred in the past month are considered relationally
relevant for the risk set. Let’s also assume that the timeDV vector is measured
in the number of days since the first event. Then timeDif should be set to 30 in
this particular case.

seed The random number seed for user replication.

Details

This function processes observed events from the set E, where each event ei is defined as:

ei ∈ E = (si, ri, ti, G[E; t])

where:

• si is the sender of the event.

• ri is the receiver of the event.

• ti represents the time of the event.

• G[E; t] = {e1, e2, . . . , et′ | t′ < t} is the network of past events, that is, all events that
occurred prior to the current event, ei.

Following Butts (2008) and Butts and Marcum (2017), we define the risk (support) set of all possible
events at time t, At, as the full Cartesian product of prior senders and receivers in the set G[E; t]
that could have occurred at time t. Formally:

At = {(s, r) | s ∈ G[E; t] X r ∈ G[E; t]}

where G[E; t] is the set of events up to time t.

Case-control sampling maintains the full set of observed events, that is, all events in E, and samples
an arbitrary number m of non-events from the support set At (Vu et al. 2015; Lerner and Lomi
2020). This process generates a new support set, SAt, for any relational event ei contained in E
given a network of past events G[E; t]. SAt is formally defined as:

SAt ⊆ {(s, r) | s ∈ G[E; t] X r ∈ G[E; t]}

and in the process of sampling from the observed events, n number of observed events are sampled
from the set E with known probability 0 < p ≤ 1. More formally, sampling from the observed set
generates a new set SE ⊆ E.

A time or event-dependent dynamic risk set can be created where the set of potential events, that
is, all events in the risk set, At, is based only on the set of actors active in a specified event or time
span from the current event (e.g., such as within the past month or within the past 100 events). In
other words, the specified event or time span can be based on either: a) a specified time span based
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upon the actual timing of the past events (e.g., years, months, days or even milliseconds as in the
case of Lerner and Lomi 2020), or b) a specified number of events based on the ordering of the past
events (e.g., such as all actors involved in the past 100 events). Thus, if time- or event-dependent
dynamic risk sets are desired, the user should set time_dependent to TRUE, and then specify the
accompanying time vector, timeDV, defined as the number of time units (e.g., days) or the number
of events since the first event. Moreover, the user should also specify the cutoff threshold with
the timeDif value that corresponds directly to the measurement unit of timeDV (e.g., days). For
example, let’s say you wanted to create a time-dependent dynamic risk set that only includes actors
active within the past month, then you should create a vector of values timeDV, which for each event
represents the number of days since the first event, and then specify timeDif to 30. Similarly, let’s
say you wanted to create an event-dependent dynamic risk set that only includes actors involved in
the past 100 events, then you should create a vector of values timeDV, that is, the counts of events
since the first event (e.g., 1:n), and then specify timeDif to 100.

Value

A post-processing data table with the following columns:

• sender - The event senders of the sampled and observed events.

• receiver - The event targets (receivers) of the sampled and observed events.

• time - The event time for the sampled and observed events.

• sequenceID - The numerical event sequence ID for the sampled and observed events.

• observed - Boolean indicating if the event is a sampled event or observed event. (1 = ob-
served; 0 = sampled)

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References
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Examples

# A random one-mode relational event sequence
set.seed(9999)
events <- data.frame(time = sort(rexp(1:18)),

eventID = 1:18,

mailto:kacarson@arizona.edu
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sender = c("A", "B", "C",
"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),

target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "J", "A",
"F", "C", "B"))

# Creating a one-mode relational risk set with p = 1.00 (all true events)
# and 5 controls
eventSet <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 5,
seed = 9999)

# Creating a event-dependent one-mode relational risk set with p = 1.00 (all
# true events) and 3 controls based upon the past 5 events prior to the current event.
events$timeseq <- 1:nrow(events)
eventSetT <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
time_dependent = TRUE,
timeDV = events$timeseq,
timeDif = 5,
n_controls = 3,
seed = 9999)

# Creating a time-dependent one-mode relational risk set with p = 1.00 (all
# true events) and 3 controls based upon the past 0.40 time units.
eventSetT <- processOMEventSeq(data = events,

time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
time_dependent = TRUE,
timeDV = events$time, #the original time variable
timeDif = 0.40, #time difference of 0.40 units
n_controls = 3,
seed = 9999)
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processTMEventSeq Process and Create Risk Sets for a Two-Mode Relational Event Se-
quence

Description

This function creates a two-mode post-sampling eventset with options for case-control sampling
(Vu et al. 2015), sampling from the observed event sequence (Lerner and Lomi 2020), and time-
or event-dependent risk sets. Case-control sampling samples an arbitrary m number of controls
from the risk set for any event (Vu et al. 2015). Lerner and Lomi (2020) proposed sampling from
the observed event sequence where observed events are sampled with probability p. The time-
and event-dependent risk sets generate risk sets where the potential null events are based upon a
specified past relational time window, such as events that have occurred in the past month. Users
interested in generating risk sets that assume all actors active at any time point within the event
sequence are in the risk set at every time point should consult the createRemDataset and remify
functions. Future versions of this package will incorporate this option into the function.

Usage

processTMEventSeq(
data,
time,
eventID,
sender,
receiver,
p_samplingobserved = 1,
n_controls,
time_dependent = FALSE,
timeDV = NULL,
timeDif = NULL,
seed = 9999

)

Arguments

data The full relational event sequence dataset.

time The vector of event time values from the observed event sequence.

eventID The vector of event IDs from the observed event sequence (typically a numerical
event sequence that goes from 1 to n).

sender The vector of event senders from the observed event sequence.

receiver The vector of event receivers from the observed event sequence.
p_samplingobserved

The numerical value for the probability of selection for sampling from the ob-
served event sequence. Set to 1 by default indicating that all observed events
from the event sequence will be included in the post-processing event sequence.
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n_controls The numerical value for the number of null event controls for each (sampled)
observed event.

time_dependent TRUE/FALSE. TRUE indicates that a time- or event-dependent dynamic risk
set will be created in which only actors involved in a user-specified relationally
relevant (time or event) span (i.e., the ‘stretch’ of relational relevancy, such as
one month for a time-dependent risk set or 100 events for an event-dependent
risk set) are included in the potential risk set. FALSE indicates the complete set
of actors involved in past events will be included in the risk set (see the details
section). Set to FALSE by default.

timeDV If time_dependent = TRUE, the vector of event time values that corresponds to
the creation of the time- or event-dependent dynamic risk set (see the details
section). This may or may not be the same vector provided to the time argu-
ment. The timeDV vector can be the same vector provided to the time argument,
in which the relational time span will be based on the event timing within the
dataset. In contrast, the timeDV vector can also be the vector of numerical event
IDs which correspond to the number sequence of events. Moreover, the timeDV
can also be another measurement that is not the time argument or a numerical
event ID sequence, such as the number of days, months, years, etc. since the
first event.

timeDif If time_dependent = TRUE, the numerical value that represents the time or event
span for the creation of the risk set (see the details section). This argument must
be in the same measurement unit as the timeDV argument. For instance, in an
event-dependent dynamic risk set, if timeDV is the number of events since the
first event (i.e., a numerical event ID sequence) and only those actors involved
in the past, say, 100 events, are considered relationally relevant for the creation
of the null events for the current observed event, then timeDIF should be set to
100. In the time-dependent dynamic risk set case, let’s say that only those actors
involved in events that occurred in the past month are considered relationally
relevant for the risk set. Let’s also assume that the timeDV vector is measured
in the number of days since the first event. Then timeDif should be set to 30 in
this particular case.

seed The random number seed for user replication.

Details

This function processes observed events from the set E, where each event ei is defined as:

ei ∈ E = (si, ri, ti, G[E; t])

where:

• si is the sender of the event.

• ri is the receiver of the event.

• ti represents the time of the event.

• G[E; t] = {e1, e2, . . . , et′ | t′ < t} is the network of past events, that is, all events that
occurred prior to the current event, ei.
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Following Butts (2008) and Butts and Marcum (2017), we define the risk (support) set of all possible
events at time t, At, as the cross product of two disjoint sets, namely, prior senders and receivers,
in the set G[E; t] that could have occurred at time t. Formally:

At = {(s, r) | s ∈ G[E; t] X r ∈ G[E; t]}

where G[E; t] is the set of events up to time t.

Case-control sampling maintains the full set of observed events, that is, all events in E, and samples
an arbitrary number m of non-events from the support set At (Vu et al. 2015; Lerner and Lomi
2020). This process generates a new support set, SAt, for any relational event ei contained in E
given a network of past events G[E; t]. SAt is formally defined as:

SAt ⊆ {(s, r) | s ∈ G[E; t] X r ∈ G[E; t]}

and in the process of sampling from the observed events, n number of observed events are sampled
from the set E with known probability 0 < p ≤ 1. More formally, sampling from the observed set
generates a new set SE ⊆ E.

A time or event-dependent dynamic risk set can be created where the set of potential events, that
is, all events in the risk set, At, is based only on the set of actors active in a specified event or time
span from the current event (e.g., such as within the past month or within the past 100 events). In
other words, the specified event or time span can be based on either: a) a specified time span based
upon the actual timing of the past events (e.g., years, months, days or even milliseconds as in the
case of Lerner and Lomi 2020), or b) a specified number of events based on the ordering of the past
events (e.g., such as all actors involved in the past 100 events). Thus, if time- or event-dependent
dynamic risk sets are desired, the user should set time_dependent to TRUE, and then specify the
accompanying time vector, timeDV, defined as the number of time units (e.g., days) or the number
of events since the first event. Moreover, the user should also specify the cutoff threshold with
the timeDif value that corresponds directly to the measurement unit of timeDV (e.g., days). For
example, let’s say you wanted to create a time-dependent dynamic risk set that only includes actors
active within the past month, then you should create a vector of values timeDV, which for each event
represents the number of days since the first event, and then specify timeDif to 30. Similarly, let’s
say you wanted to create an event-dependent dynamic risk set that only includes actors involved in
the past 100 events, then you should create a vector of values timeDV, that is, the counts of events
since the first event (e.g., 1:n), and then specify timeDif to 100.

Value

A post-processing data table with the following columns:

• sender - The event senders of the sampled and observed events.

• receiver - The event targets (receivers) of the sampled and observed events.

• time - The event time for the sampled and observed events.

• sequenceID - The numerical event sequence ID for the sampled and observed events.

• observed - Boolean indicating if the event is a sampled event or observed event. (1 = ob-
served; 0 = sampled)

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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Examples

data("WikiEvent2018.first100k")
WikiEvent2018.first100k$time <- as.numeric(WikiEvent2018.first100k$time)
### Creating the EventSet By Employing Case-Control Sampling With M = 10 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- processTMEventSeq(

data = WikiEvent2018.first100k, # The Event Dataset
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 10, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

### Creating A New EventSet with more observed events and less control events
### Sampling from the Observed Event Sequence with P = 0.02
### Employing Case-Control Sampling With M = 2
EventSet1 <- processTMEventSeq(

data = WikiEvent2018.first100k, # The Event Dataset
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
p_samplingobserved = 0.02, # The Probability of Selection
n_controls = 2, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

### Creating An Event-Dependent EventSet with P = 0.001 and m = 5 with
### where only actors involved in the past 20 events are involved in the
### creation of the risk set.
event_dependent <- processTMEventSeq(
data = WikiEvent2018.first100k,
time = WikiEvent2018.first100k$time,
sender = WikiEvent2018.first100k$user,
receiver = WikiEvent2018.first100k$article,
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eventID = WikiEvent2018.first100k$eventID,
p_samplingobserved = 0.001,
n_controls = 5,
time_dependent = TRUE,
timeDV = 1:nrow(WikiEvent2018.first100k),
timeDif = 20, #20 past events
seed = 9999)

### Creating An Time-Dependent EventSet with P = 0.001 and m = 5 with
### where only actors involved in the past 30 days are involved in the
### creation of the risk set.
timeSinceStart <- WikiEvent2018.first100k$time-WikiEvent2018.first100k$time[1]
timeDifMonth <- 30*24*60*60*1000
timedependent <- processTMEventSeq(
data = WikiEvent2018.first100k,
time = WikiEvent2018.first100k$time,
sender = WikiEvent2018.first100k$user,
receiver = WikiEvent2018.first100k$article,
eventID = WikiEvent2018.first100k$eventID,
p_samplingobserved = 0.001,
n_controls = 5,
time_dependent = TRUE,
timeDV = timeSinceStart,
timeDif = timeDifMonth,
seed = 9999)

remExpWeights Helper Function to Compute Minimum Effective Time and Exponential
Weights for REM Statistics

Description

A helper function for computing exponential decay weights and the corresponding minimum effec-
tive time used to calculate network statistics in relational event models within the dream package.
This implementation follows the formulations of Lerner et al. (2013) and Lerner & Lomi (2020).
Although primarily designed for internal use (e.g., within computeReciprocity), it may also be of
interest to users working directly with REM statistics (e.g., creating new statistics).

Usage

remExpWeights(
current,
past = NULL,
halflife,
dyadic_weight,
Lerneretal_2013 = FALSE,
exp.weights = TRUE

)
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Arguments

current The current relational event time.

past The numeric vector of past event times (for exponential weighting only).

halflife The halflife parameter for exponential weighting.

dyadic_weight The dyadic (event) weight cutoff for relational relevancy.

Lerneretal_2013

TRUE/FALSE. If TRUE, the function uses the Lerner et al. (2013) exponential
weighting function. If FALSE, the function uses the Lerner and Lomi (2020)
exponential weighting function.

exp.weights TRUE/FALSE. If TRUE, the function computes the exponential weights for past
relational events. If FALSE, the function computes the minimum effective time
for a relational event (that is, the minimum past time that would result in a 0
value for an exponential weight).

Details

• Exponential Weighting Function:

– Lerner & Lomi (2020): w(u, a, t) =
∑

exp(−(t− t′) ∗ (log(2)/T1/2))

– Lerner et al. (2013): w(u, a, t) =
∑

exp(−(t− t′) ∗ (log(2)/T1/2)) ∗ (log(2)/T1/2)

• Minimum Effective Time (MEF):

– Lerner & Lomi (2020): MEF = t+ log(w)/(log(2)/T1/2)

– Lerner et al. (2013): MEF = t+ [T1/2 ∗ log((w ∗ T1/2)/ log(2))]/ log(2)

Value

When exp.weights = TRUE, the numeric vector of exponential decay weights. When exp.weights
= FALSE, the scalar for the minimum event cut-off time.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Lerner, Jürgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jürgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.
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simulateRESeq Simulate a Random One-Mode Relational Event Sequence

Description

The function allows users to simulate a random one-mode relational event sequence between n
actors for k events. Importantly, this function follows the methods discussed in Butts (2008), Amati,
Lomi, and Snijders (2024), and Scheter and Quintane (2021). See the details for more information
on this algorithm. Critically, this function can be used to simulate a random event sequence, to
assess the goodness of fit for ordinal timing relational event models (see Amati, Lomi, and Snijders
2024), and simulate random outcomes for relational outcome models.

Usage

simulateRESeq(
n_actors,
n_events,
inertia = FALSE,
inertia_p = 0,
recip = FALSE,
recip_p = 0,
sender_outdegree = FALSE,
sender_outdegree_p = 0,
sender_indegree = FALSE,
sender_indegree_p = 0,
target_outdegree = FALSE,
target_outdegree_p = 0,
target_indegree = FALSE,
target_indegree_p = 0,
assort = FALSE,
assort_p = 0,
trans_trips = FALSE,
trans_trips_p = 0,
three_cycles = FALSE,
three_cycles_p = 0,
starting_events = NULL,
returnStats = FALSE

)

Arguments

n_actors The number of potential actors in the event sequence.

n_events The number of simulated events for the relational event sequence.

inertia TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.
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inertia_p If inertia = TRUE, the numerical value that corresponds to the parameter weight
for the inertia statistic.

recip TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

recip_p If recip = TRUE, the numerical value that corresponds to the parameter weight
for the reciprocity statistic.

sender_outdegree

TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

sender_outdegree_p

If sender_outdegree = TRUE, the numerical value that corresponds to the pa-
rameter weight for the outdegree statistic.

sender_indegree

TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

sender_indegree_p

If sender_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

target_outdegree

TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

target_outdegree_p

If target_outdegree = TRUE, the numerical value that corresponds to the param-
eter weight for the outdegree statistic.

target_indegree

TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

target_indegree_p

If target_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

assort Boolean. TRUE/FALSE. True indicates the effect will be included (see the de-
tails section). FALSE indicates the effect will not be included.

assort_p If assort = TRUE, the numerical value that corresponds to the parameter weight
for the assortativity statistic.

trans_trips TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

trans_trips_p If trans_trips = TRUE, the numerical value that corresponds to the parameter
weight for the transitive triplets statistic.

three_cycles TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

three_cycles_p If three_cycles = TRUE, the numerical value that corresponds to the parameter
weight for the three cycles statistic.

starting_events

A n x 2 dataframe with n starting events and 2 columns. The first column should
be the sender and the second should be the target.
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returnStats TRUE/FALSE. TRUE indicates that the requested network statistics will be re-
turned alongside the simulated relational event sequence. FALSE indicates that
only the simulated relational event sequence will be returned. Set to FALSE by
default.

Details

Following the authors listed in the descriptions section, the probability of selecting a new event for
t+1 based on the past relational history, Ht, from 0 < t < t+ 1 is given by:

p(et) =
λij(t; θ)∑

(u,v)∈Rt
λuv(t; θ)

where (i,j,t) is the triplet that corresponds to the dyadic pair with sender i and target j at time t
contained in the full risk set, Rt, based on the past relational history. λij(t; θ) is formulated as:

λij(t; θ) = e
∑

p θpXijp(Ht)

where θp corresponds to the specific parameter weight given by the user, and Xijp represents the
value of the specific statistic based on the current past relational history Ht.

Following Scheter and Quintane (2021) and Amati, Lomi, and Snijders (2024), the algorithm for
simulating the random relational sequence for k events is:

• 1. Initialize the full risk set, Rt, which is the full Cartesian plot of actors.

• 2. Randomly sample the first event e1 and add that event into the relational history, Ht.

• 3. Until i = k, compute the sufficient statistics for each event in the risk set, sample a new event
ei based on the probability function specified above, and add that element into the relational
history.

• 4. End when i > k.

Currently, the function supports 6 statistics for one-mode networks. These are:

• Inertia: nijt

• Reciprocity: njit

• Target Indegree:
∑

k nkjt

• Target Outdegree:
∑

k njkt

• Sender Outdegree:
∑

k nikt

• Sender Indegree:
∑

k nkit

• Assortativity:
∑

k nkit ·
∑

k nikt

• Transitive Triplets:
∑

k nikt · nkjt

• Three Cycles:
∑

k njkt · nkit

Where n represents the counts of past events, i is the event sender, and j is the event target. See
Scheter and Quintane (2021) and Butts (2008) for a further discussion of these statistics.

Users are allowed to insert a starting event sequence to base the simulation on. A few things are
worth nothing. The starting event sequence should be a matrix with n rows indicating the number of
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starting events and 2 columns, with the first representing the event senders and the second column
representing the event targets. Internally, the number of actors is ignored, as the number of possible
actors in the risk set is based only on the actors present in the starting event sequence. Finally, the
sender and target actor IDs should be numerical values.

Value

A data frame that contains the simulated relational event sequence with the sufficient statistics (if
requested).

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc@arizona.edu

References

Amati, Viviana, Alessandro Lomi, and Tom A.B. Snijders. 2024. "A goodness of fit framework
for relational event models." Journal of the Royal Statistical Society Series A: Statistics in Society
187(4): 967-988.

Butts, Carter T. "A Relational Framework for Social Action." Sociological Methodology 38: 155-
200.

Schecter, Aaron and Eric Quintane. 2021 "The Power, Accuracy, and Precision of the Relational
Event Model." Organizational Research Methods 24(4): 802-829.

Examples

#Creating a random relational sequence with 5 actors and 25 events
rem1<- simulateRESeq(n_actors = 25,

n_events = 1000,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
sender_outdegree = TRUE,
sender_outdegree_p = 0.09,
target_indegree = TRUE,
target_indegree_p = 0.05,
assort = TRUE,
assort_p = -0.01,
trans_trips = TRUE,
trans_trips_p = 0.09,
three_cycles = TRUE,
three_cycles_p = 0.04,
starting_events = NULL,
returnStats = TRUE)

rem1

#Creating a random relational sequence with 100 actors and 1000 events with
#only inertia and reciprocity
rem2 <- simulateRESeq(n_actors = 100,

n_events = 1000,

mailto:kacarson@arizona.edu
mailto:dflc@arizona.edu
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inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
returnStats = TRUE)

rem2

#Creating a random relational sequence based on the starting sequence with
#only inertia and reciprocity
rem3 <- simulateRESeq(n_actors = 100, #does not matter can be any value, this is

#overridden by the starting event sequence
n_events = 100,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
#a random starting event sequence
starting_events = matrix(c(1:10, 10:1),
nrow = 10, ncol = 2, byrow = FALSE),
returnStats = TRUE)

rem3

southern.women Davis Southern Women’s Dataset

Description

Davis Southern Women’s Dataset

Usage

data(southern.women)

Format

southern.women:
Two-Mode Affliation Matrix from Davis et al.(1941) Southern Women study. 18 women x 14
events. Dataset is taken from the networkdata R package (Almquist)

Source

Almquist ZW (2014). networkdata: Lin Freeman’s Network Data Collection. R package version
0.01, https://github.com/Z-co/networkdata.

Brieger, Ronald. 1974. "Duality of Persons and Groups." Social Forces 53(2): 181-190.

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South: A Social Anthropo-
logical Study of Caste and Class. University of Chicago Press.

https://github.com/Z-co/networkdata
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summary.dream Summary Method for dream Objects

Description

Summarizes the results of an ordinal timing relational event model.

Usage

## S3 method for class 'dream'
summary(object, digits = 4, ...)

Arguments

object An object of class "dream".

digits The number of digits to print after the decimal point.

... Additional arguments (currently unused).

Value

A list of summary statistics for the relational event model including parameter estimates, (null)
likelihoods, and tests of significance for likelihood ratios and estimated parameters.

WikiEvent2018.first100k

Wikipedia Edit Event Sequence 2018

Description

The first 100,000 events of the Wikipedia edit event sequence, where an event is described as a
Wikipedia user editing a Wikipedia article. The user column represents the unique event senders,
the article column represents the unique event recievers (targets), and the time variable is in mil-
liseconds.

Usage

data(WikiEvent2018.first100k)
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Format

WikiEvent2018.first100k:
The first 100,000 events of the Wikipedia edit event sequence, where an event is described as a
Wikipedia user editing a Wikipedia article. The user column represents the unique event senders,
the article column represents the unique event recievers (targets), and the time variable is in mil-
liseconds.

user the column that represents the unique event senders
article the article column represents the unique event recievers
time the event time variable in milliseconds
eventID the numerical id for each event in the event sequence

Source

https://zenodo.org/records/1626323

Lerner, Jurgen and Alessandro Lomi. 2020. "Reliability of relational event model estimates un-
der sampling: how to fit a relational event model to 360 million dyadic events." Network Science
8(1):97-135. (DOI: https://doi.org/10.1017/nws.2019.57)

https://zenodo.org/records/1626323
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