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1 Introduction

Like many other projects, this software library started with a data set and a problem. From this
came statistical ideas for a solution, followed by some initial programming � which more than
anything else helped to de�ne the real computational and statistical issues � and then a more
ambitious programming solution. The problem turned out to be harder than I thought; the �rst
release-worthy code took over 3 years in gestation and resulted in the kinship library. This in
turn led to application to a larger set of problems, and a complete re-design of the underlying
code. It was then split into separate libraries: coxme contains the central code for mixed e�ects
Cox and linear models, kinship2 contains code for the construction and manipulation of pedigree
data, and bdsmatrix contains underlying routines for block-diagonal sparse matrices.

2 Model

The coxme function �ts the model

λ(t) = λ0(t)e
Xβ+Zb

b ∼ G(0,Σ(θ))

where λ0 is an unspeci�ed baseline hazard function, X and Z are the design matrices for the
�xed and random e�ects, respectively, β is the vector of �xed-e�ects coe�cients and b is the
vector of random e�ects coe�cients. The random e�ects distribution G is modeled as Gaussian
with mean zero and a variance matrix Σ, which in turn depends a vector of parameters θ.

For any �xed values of β and b we de�ne the usual Cox partial likelihood PL (often labeled
as a log-likelihood in printouts) as

log[PL(β, b))] =

n∑
i=1

∫ ∞

0

Yi(t)ηi(t)− log

∑
j

Yj(t)e
ηj(t)


where ηi(t) = Xi(t)β + Zi(t)b is the linear score for subject i at time t and Yi(t) describes the
risk set, Yi(t) = 1 if subject i is still under observation at time t and 0 otherwise. For further
details see chapter 3 of Therneau and Grambsch [5] or any other mid-level survival text.
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We can integrate out the random e�ects to create the integrated partial likelihood

IPL(β, θ) =
1

(2π)q/2|Σ(θ)|1/2

∫
PPL(β, b)e−b′Σ−1(θ)b/2 db

where q is the length of b, i.e., the number of random e�ects. Ripatti and Palmgren [3] showed
that the IPL can be treated as a likelihood, just as integrated full likelihoods can. An ML
estimate is obtained by joint maximization over β and θ. We can compare a nested set of
random or �xed e�ects Cox models using chi-square tests.

The REML estimate is obtained by also integrating out the �xed e�ects

REML(θ) =
1

(2π)q/2|Σ(θ)|1/2

∫
PPL(β, b)e−b′Σ−1(θ)b/2 db dβ

The REML estimate is obtained by maximization of this quantity over θ. As in linear models,
the REML estimate cannot be used for testing �xed e�ects, due to the lack of a proper prior
distribution for β. For instance, assume that age were a candidate variable. The REML value
for a �t with age in days versus one with age in years will di�er by the constant log(365.25); this
has no impact on the estimate of θ, but makes the comparison of two models, one with and one
without age, completely arbitrary.

In linear models the REML estimate is often preferred, since practical experience has shown
it to be more reliable; the ML estimates are often too large. By analogy, some have recom-
mended using a REML estimate for the mixed e�ects Cox model. However, either theoretical
and practical evidence for its superiority is sparse. The coxme function currently only provides
an ML estimate.

For a very simple �t such as

> fit1 <- coxme(Surv(endage, cancer) ~ parity + (1| famid))

found below there will be one random intercept per group (family), and Z will be the usual
design matrix for a one-way anova, i.e., the same design matrix as would be used by a linear
model lm(y ∼ factor(famid)-1). In this case Zij = 1 i� subject i is a member of family j.
The variance of the random e�ects in this case is Σ = θI.

Note that if there are k groups the vector of random e�ects coe�cients b will have k elements.
Because of the shrinkage provided by the random e�ect they will satisfy

∑
bk = 0, rather than

having one of their members set to zero. With respect to the random e�ects the contrasts

option has no relevance.

3 Simple Models

For many random e�ects models the random e�ects can be speci�ed very simply in the model
formula. As an example consider the eortc data set, which is included with the package for
illustration. This is a simple simulated example, based on the results of a breast cancer trial
undertaken by the European Organization for Research and Treatment of Cancer. There are 37
enrolling centers with enrollments ranging from 21 to 247 subjects. We start by �tting a simple
model with a random intercept per center.
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> library(coxme)

> stem(table(eortc$center))

The decimal point is 1 digit(s) to the right of the |

2 | 1335600244455579

4 | 12232236

6 | 1362

8 | 561

10 | 46

12 | 0

14 | 5

16 |

18 | 3

20 |

22 |

24 | 7

> efit1 <- coxph(Surv(y, uncens) ~ trt, eortc)

> efit2 <- coxme(Surv(y, uncens) ~ trt + (1|center), eortc)

Random e�ects are speci�ed in the formula by a parenthesised expression which contains a
vertical bar separating e�ects on the left from grouping variables on the right. In the case above
we read it as an intercept (e�ect) per center (group).

> print(efit2)

Cox mixed-effects model fit by maximum likelihood

Data: eortc

events, n = 1463, 2323

Iterations= 9 49

NULL Integrated Fitted

Log-likelihood -10638.71 -10520.65 -10478.84

Chisq df p AIC BIC

Integrated loglik 236.11 2.00 0 232.11 221.53

Penalized loglik 319.74 28.69 0 262.37 110.67

Model: Surv(y, uncens) ~ trt + (1 | center)

Fixed coefficients

coef exp(coef) se(coef) z p

trt 0.7086127 2.031171 0.06424398 11.03 0

Random effects

Group Variable Std Dev Variance

center Intercept 0.3292140 0.1083818

The components of the printout are
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� The total number of observations and the total number of events (deaths) in the data set.

� The computational e�ort, summarized as the number of iterations for the optim routine
and the underlying Newton-Raphson iterations used.

� The log partial likelihood for a model with no covariates or random e�ects, the �tted
partial likelihood, and the value with the random e�ects integrated out. We will normally
be interested in the null and integrated values. (The log values are printed, but labeled as
PL and IPL for brevity).

� Likelihood ratio tests based on the integrated and penalized views of the model, along with
penalized values. The AIC penalizes by twice the e�ective degrees of freedom, and the BIC
by log(d) times the e�ective degrees of freedom, where d is the number of events.

� A summary of the �xed e�ects

� A summary of the variances of the random e�ects

After integrating out the random e�ects, the log partial likelihood for the mixed e�ects model
is 236.1. As a test of the random e�ects, we would normally compare this to efit1, the �t with
no random e�ects which has a log partial likelihood of 105.7 The estimated standard deviation
between centers of .33 is fairly substantial (more on this below). The di�erence is > 100 on one
degree of freedom, which is highly signi�cant.

Another way to approach the �t is as a penalized model. The coe�cients are viewed as the
solution to a penalized problem log(PPL(β, b))− log(PL(β, b))−p(θ) where the penalty function
p(θ) = b′Σ−1(θ)b/2. In this case we use the ordinary PL for assessment, but with an e�ective
degrees of freedom which lies somewhere between the total number of coe�cients (β, b) of 38
and the degrees of freedom for the �xed e�ects of 1. For this particular problem Σ(θ) = θI, a
multiple of the identity matrix and our penalty is p(θ) = −1/(2θ)

∑
j = 137b2j . As the penalty

goes to zero the �t will be equivalent to treating factor(center) as a �xed e�ect with degrees of
freedom equal to 38, as the penalty becomes larger the e�ective degrees of freedom will decrease.
In this case a test for the random e�ects would be based on (319.7 - 105.7) on 27.7 degrees of
freedom. We do not normally use this test, but the adjusted degrees of freedom is useful in
summarizing the �t.

The major components of the model can be extracted via the following functions:

Method
lme/lmer coxme < 2.2 coxme ≥ 2.2

�xed e�ects coe�cients �xef �xef �xef
random e�ects coe�cients ranef ranef

�xed e�ects variance matrix vcov vcov
random e�ects parameters (θ) VarCorr ranef VarCorr

Note that for version 2.2 and greater these follow the same pattern as the linear mixed e�ects
models in R; prior to version 2.2 the ranef method was incorrectly assigned.

One feature of the mixed e�ects Cox model is that the standard deviation of the random
e�ect is directly interpretable. The random e�ects bj for each center j are in the risk score,
a value of .33 for instance (one standard deviation above the mean) corresponds to a relative
risk of exp(.33) = 1.39, an almost 40% higher risk of death for subjects at that center. (In
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real data sets we would of course have adjusted for imbalances in patient risk factors between
centers.) The random e�ects coe�cients can be retrieved using the ranef function. The code
below shows center e�ects ranging from less than 1/2 to over 1.6 times the average risk for the
study. Because there may be multiple random e�ects in a model the ranef function returns a
list, with one element per random e�ect. We are interested in the �rst element (only element in
this case) of the list.

> stem(exp(ranef(efit2)[[1]]))

The decimal point is 1 digit(s) to the left of the |

4 | 44

6 | 42447

8 | 679015556888

10 | 12458966

12 | 45670

14 | 159

16 | 27

To look at random treatment e�ects within center we can add a nested e�ect

> efit3 <- coxme(Surv(y, uncens) ~ trt + (1 | center/trt), eortc)

> efit3

Cox mixed-effects model fit by maximum likelihood

Data: eortc

events, n = 1463, 2323

Iterations= 10 54

NULL Integrated Fitted

Log-likelihood -10638.71 -10517.57 -10464.38

Chisq df p AIC BIC

Integrated loglik 242.28 3.00 0 236.28 220.42

Penalized loglik 348.67 39.26 0 270.16 62.56

Model: Surv(y, uncens) ~ trt + (1 | center/trt)

Fixed coefficients

coef exp(coef) se(coef) z p

trt 0.7420388 2.100213 0.08270483 8.97 0

Random effects

Group Variable Std Dev Variance

center/trt (Intercept) 0.20451052 0.04182455

center (Intercept) 0.26273062 0.06902738

This shows a further improvement in �t, but by much smaller amount.
There is one important di�erence between how random e�ects in coxme and in lmer are

handled concerning intercepts. Linear models have an implied intercept term. Unless explicitly
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removed, the model lm(y ~x) will actually �t the model lm(y ~x +1). This carries forward
into the notation of lmer where a random e�ect (age | group) will automatically add the
random intercept and �t (1 + age | group). Cox models do not have an intercept term, and
an automatic �1� is not added to either �xed e�ects or random e�ects portions of the formula.

4 The Minnesota Breast Cancer Family Study

4.1 Background

Details of the study can be found in Sellers [4] Brie�y, in 1944 a family study of breast cancer was
initiated at the Dight institute for Human Genetics at the University of Minnesota to examine
the in�uence of heredity on the risk of breast cancer. Probands were a consecutive series of all
breast cancer patients ascertained at the tumor clinic of the University hospital between 1944
and 1952. A total of 544 families were studied, representing data on 4418 family members.
Results of that early study provided some of the �rst evidence that breast cancer clusters in
families [1].

Records of the research then sat dormant for 40 years, until a series of follow-up studies was
initiated in the late 1990s. Prevalent cases (n = 40) and families where most of the relatives
other than the proband were deceased at baseline (n = 42) were excluded. Of the remainder 30
families could be contacted and 6 refused, leaving 426 participating families. After extending
pedigrees to the current generation, the �nal data set has 28081 subjects. The full set of subjects
along with a few selected variables is included in the kinship2 package as the minnbreast data
set. The analysis of this data set was the original genesis of the coxme function.

> library(coxme)

> library(kinship2)

> data(minnbreast)

> options(show.signif.stars=FALSE)

> makefig <- function(file) {

+ pdf(paste(file, "pdf", sep='.'), width=7, height=5)

+ par(mar=c(5.1, 4.1, .1, .1))

+ }

> names(minnbreast)

[1] "id" "proband" "fatherid" "motherid" "famid" "endage"

[7] "cancer" "yob" "education" "marstat" "everpreg" "parity"

[13] "nbreast" "sex" "bcpc"

> with(minnbreast, table(sex, cancer, exclude=NULL))

cancer

sex 0 1 <NA>

F 10618 1224 976

M 8534 141 4827

<NA> 4 11 1746
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135 136

161 142 143 162 144 163 145 146 165 147 166 148

137 138 159 139 140 141 149 150 151 152 153 154 155

?

156 157 158

Figure 1: Pedigree for family 8 of the Minnesota Breast Cancer Study. Cancer cases are �lled,
the proband is marked with a slash

> mped <- with(minnbreast, pedigree(id, fatherid, motherid, sex,

+ affected=cancer, famid=famid,

+ status=proband))

> makefig("cfig1")

> plot(mped["8"]) #figure 1

Did not plot the following people: 160 164 167 168 169 170 171 172 173 174

> dev.off()

null device

1

Figure 1 shows the pedigree for family 8. The original case (the proband) has a mother,
daughter, and niece with breast cancer. This is a high risk family. There is also a brother-in-law
with prostate cancer.

An aside. Our �rst action was to turn o� one of the most egregious abominations of statistical
packages: using stars to train our users that �< .05� is all that matters, when in fact that is one
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of the most useless ways known to employ statistical methods. I also like to place my �gures
within the document using the latex \begin{figure} command, hence I use fig=FALSE as a
default Sweave option and generate the pdfs directly.

4.2 Simple models

The simplest model is to look for a random intercept per family.

> minnfemale <- minnbreast[minnbreast$sex == 'F' & !is.na(minnbreast$sex),]

> fit0 <- coxph(Surv(endage, cancer) ~ I(parity>0), minnfemale,

+ subset=(proband==0))

> summary(fit0)

Call:

coxph(formula = Surv(endage, cancer) ~ I(parity > 0), data = minnfemale,

subset = (proband == 0))

n= 9421, number of events= 782

(2971 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

I(parity > 0)TRUE -0.3366 0.7142 0.1037 -3.246 0.00117

exp(coef) exp(-coef) lower .95 upper .95

I(parity > 0)TRUE 0.7142 1.4 0.5829 0.8752

Concordance= 0.519 (se = 0.007 )

Likelihood ratio test= 9.71 on 1 df, p=0.002

Wald test = 10.54 on 1 df, p=0.001

Score (logrank) test = 10.64 on 1 df, p=0.001

> fit1 <- coxme(Surv(endage, cancer) ~ I(parity>0) + (1|famid),

+ minnfemale, subset=(proband==0))

> print(fit1)

Cox mixed-effects model fit by maximum likelihood

Data: minnfemale; Subset:

(proband == 0)

events, n = 782, 9421 (2971 observations deleted due to missingness)

Iterations= 15 79

NULL Integrated Fitted

Log-likelihood -6690.462 -6676.827 -6576.373

Chisq df p AIC BIC

Integrated loglik 27.27 2.00 1.1973e-06 23.27 13.95

Penalized loglik 228.18 93.14 2.4769e-13 41.89 -392.32
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Model: Surv(endage, cancer) ~ I(parity > 0) + (1 | famid)

Fixed coefficients

coef exp(coef) se(coef) z p

I(parity > 0)TRUE -0.3437546 0.7091029 0.1048988 -3.28 0.001

Random effects

Group Variable Std Dev Variance

famid Intercept 0.4118759 0.1696417

Note that we don't include the proband in the model. Because they are the index case that
caused a family to be included, they have in a probability of 1 for cancer and don't �t into the
predictive framework.

From the simple Cox model we see that ever having a child is protective, reducing the risk
of breast cancer by about 30%. A mixed e�ects model has nearly the same estimate for parity.
The random family e�ect, an estimated intercept (excess risk) for each family, has a standard
deviation of .41. We would expect about 15% of the families to be 1 standard deviation or more
above the mean, and these families will have a breast cancer risk that is exp(.41)=1.5 times the
norm. A similar fraction have lower risk. This is a modestly large familial e�ect.

The result of fit1 is also known as a shared frailty model. The term originally arose in
demography, where the excess risk fk = exp(bk) for family k could be thought of as an underlying
propensity for failure or �frailty� for the subject. The statistics literature is divided on the use of f
or frailty as the underlying random variable or using b. The �rst leads to investigation of random
e�ects distributions that are> 0 such as the gamma, positive stable, and log-normal. We strongly
prefer the latter form, however, �rst since it ties into the very familiar notational structure of
linear mixed e�ects models, and second because the Gaussian forms a simpler framework for
multiple and correlated random e�ects.

> ncancer <- with(minnfemale, tapply(cancer, famid, sum, na.rm=T))

> pyears <- with(minnfemale, tapply(endage -18, famid, sum, na.rm=T))

> count <- with(minnfemale, tapply(cancer, famid,

+ function(x) sum(!is.na(x))))

> indx <- match(names(ranef(fit1)[[1]]), names(ncancer))

> makefig("cfig2")

> plot(ncancer[indx], exp(ranef(fit1)[[1]]), log='y',

+ xlab="Number of cancers per family",

+ ylab="Estimated familial risk")

> abline(h=1, lty=2)

> text(c(8.1, 1.6), c(.85, 1.2), c("165", "72"))

> dev.off()

null device

1

> indx <- match(c(72,165), names(ncancer))

> temp <- cbind(ncancer, count, pyears, 100*ncancer/pyears)[indx,]

> dimnames(temp) <- list(c(72, 165),

+ c("Cancers", "N", "Years of FU", "Rate"))

> print(round(temp,2))
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Figure 2: The number of breast cancers in each family versus the estimated familial risk
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Figure 3: Pro�le likelihood for the per-family random e�ects model

Cancers N Years of FU Rate

72 2 5 109.50 1.83

165 8 134 5444.21 0.15

Figure 2 shows number of cancers in each family versus the estimated excess risk from the
model. Family 72 has a high risk but only 2 cases; there are only 5 female relatives in the family
and the cancers occur at ages 32 and 36. Because the family is small the model has shrunk the
estimated risk closer to the overall mean. Family 165 has 8 cancers but is has lower risk than
the average Minnesota subject due to the large family size.

There is not a good closed form formula for the variance of the variance estimates themselves,
i.e., one that is both reliable and simple to compute. Valid con�dence intervals can be obtained
from a pro�le likelihood, however. We start by computing the likelihood over a range of values
for the variance.

> estvar <- seq(.2, .6, length=15)^2 #range of std values

> loglik <- double(15)

> for (i in 1:15) {

+ tfit <- coxme(Surv(endage, cancer) ~ I(parity>0) + (1|famid),
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+ data=minnfemale, subset=(proband==0),

+ vfixed=estvar[i])

+ loglik[i] <- 2*diff(tfit$loglik)[1]

+ }

> makefig("cfig3")

> plot(sqrt(estvar), loglik,

+ xlab="Std of the random effect", ylab="2 * loglik")

> abline(h=2*diff(fit1$loglik)[1] - qchisq(.95, 1), lty=2)

> dev.off()

null device

1

The 95% pro�le likelihood con�dence interval is the region where the curve lies above the line,
i.e., the set of values x for which a 1 degree of freedom likelihood ratio test would not reject
the hypothesis that the true standard deviation = x. (It will sometimes take a couple of tries
to guess an appropriate range for the variance, for many data sets it will be considerably wider
than this one). We can easily get a numeric estimate from the graph, giving a con�dence interval
from .28 to .53.

> temp <- 2*diff(fit1$loglik)[1] - loglik

> approx(temp[1:8], sqrt(estvar[1:8]), 3.84)$y

[1] 0.2818699

> approx(temp[9:15], sqrt(estvar[9:15]), 3.84)$y

[1] 0.5326992

4.3 Correlated Random E�ects

The simple family intercept model has provided some insight, but it has two serious �aws.

� Subjects will be counted in a family's risk who should actually be excluded. In family 8
there are also 4 women who have married into the family; they are not shown on �gure 1
since they have no children and hence have no genetic relationship to family 8 at all. Yet
they are counted in the familial risk.

� More generally, the simple model cannot account for degrees of association. In �gure 1 sub-
ject 162 is a marry-in and so does not share the familial burden of the proband/mother/daughter
cancers. Yet she is connected indirectly to the family through her high risk daughter. The
largest families have over 200 individuals, some of whom are only distantly related while
others are close.

We approach this by making use of the kinship matrix K. Formally, Kij is the probability
that for any given gene, an allele randomly chosen from subject i and another randomly chosen
from subject j will be identical by descent, that is, have been passed down from a common
ancestor. Then 2K is a measure of the expected fraction of shared genes: 1 on the diagonal, 1/2
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for mother/daughter or sib/sib, 1/4 for grandparent/grandchild or uncle/niece, etc. If subject i
and j are from di�erent families then Kij = 0 by de�nition, since they have no common ancestor.
The relevant Cox model is

λi(t) = λ0(t)e
Xβ+bi

bi ∼ N(0, σ22K)

Each subject has an individual random genetic risk bi, but those risks are correlated according
to the strength of relationship. The model is easy to �t in coxme

> kmat <- kinship(mped)

> fit2 <- coxme(Surv(endage, cancer) ~ I(parity>0) + (1|id),

+ data=minnfemale, varlist=coxmeMlist(2*kmat, rescale=F),

+ subset=(proband==0))

> print(fit2)

Cox mixed-effects model fit by maximum likelihood

Data: minnfemale; Subset:

(proband == 0)

events, n = 782, 9421 (2971 observations deleted due to missingness)

Iterations= 9 49

NULL Integrated Fitted

Log-likelihood -6690.462 -6671.391 -6102.548

Chisq df p AIC BIC

Integrated loglik 38.14 2.00 5.2159e-09 34.14 24.82

Penalized loglik 1175.83 553.23 0.0000e+00 69.36 -2509.73

Model: Surv(endage, cancer) ~ I(parity > 0) + (1 | id)

Fixed coefficients

coef exp(coef) se(coef) z p

I(parity > 0)TRUE -0.3602322 0.6975144 0.109819 -3.28 0.001

Random effects

Group Variable Std Dev Variance

id Vmat.1 0.8995394 0.8091712

The estimated genetic e�ect is much larger, with a standard deviation of almost 0.9. This
means that there are multiple subjects in the study with quite large relative risks, exp(.9)= 2.5
fold greater than the average Minnesotan.

Note that even though we are only interested in �tting the females, creation of the kinship
matrix kmat requires use of all the subjects in the pedigree. When the model is �t appropriate
rows/columns of the matrix are selected by matching its dimnames with the id variable. In
�tting the model we have to explicitly describe the variance structure using one of a small set of
variance functions. The coxmeMlist function accepts a set of matrices V1, V2, . . . as arguments
and �ts the an overall variance matrix σ2

1V1 + σ2
2V2 + . . ., solving for the optimal values of σ. A

major portion of the code in the coxmeMlist function is devoted to ensuring that each level of
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the grouping variable � id in this instance � exists in the matrix, that all matrices have the
same row and column order, and other consistency checks.

Since Kij = 0 for any unrelated individuals, the kinship matrix is mostly zeros. Although
it has a theoretical size of just under 800 million elements (prod(dim(kmat))) only the 500,000
non-zero elements are stored (length(kmat@x)) using a sparse matrix form based on the Matrix
package. To maximize storage e�ciency families are clustered together in adjacent rows. This
carries through to the calculations, and thus it is the order of the elements in kmat which
determines the order of the random e�ects coe�cients b in the �tted model. Do not expect them
to be sorted in the same way as as they were in the data set, nor in the sorted order found for a
factor variable in an ordinary Cox model. (For a simple model like fit1 which does not require
sparse storage they will be in standard order, however.)

4.4 Breast and prostate cancer

An interesting genetic question is whether there might be a connection between various cancers.
That is, inherited traits that predispose subjects to all or some subset of malignancies. Grabrick
et al [2] undertook a sub study within the Minnesota Breast Family cohort of possible genetic
connections between breast and prostate cancer. A subset of 206 families was selected, and all
men in those families were invited to participate. Living male members were sent a questionnaire,
for those deceased or unable to answer a shortened form was sent to their spouse or close relative.

More to do for this section

5 Random slopes
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