
Package ‘coxme’
August 23, 2024

Title Mixed Effects Cox Models

Priority optional

Version 2.2-22

Depends survival (>= 2.36.14), methods, bdsmatrix(>= 1.3), R(>= 2.10)

Imports nlme, Matrix (>= 1.0)

Suggests mvtnorm, kinship2

LinkingTo bdsmatrix

LazyData Yes

LazyLoad Yes

Description Fit Cox proportional hazards models containing both
fixed and random effects. The random effects can have a general form, of which
familial interactions (a ``kinship'' matrix) is a particular special case.
Note that the simplest case of a mixed effects Cox model, i.e. a single random
per-group intercept, is also called a ``frailty'' model. The approach is based
on Ripatti and Palmgren, Biometrics 2002.

License LGPL-2

NeedsCompilation yes

Author Terry M. Therneau [aut, cre]

Maintainer Terry M. Therneau <therneau.terry@mayo.edu>

Repository CRAN

Date/Publication 2024-08-23 04:20:06 UTC

Contents
anova.coxme . 2
coxme . 3
coxme.control . 5
coxme.object . 6
coxmeFull . 8
coxmeMlist . 9
eortc . 10

1

2 anova.coxme

expand.nested . 11
fixed.effects . 12
fixef.coxme . 12
fixef.lmekin . 13
lmekin . 14
lmekin.control . 16
lmekin.object . 17
logLik.coxme . 18
predict.coxme . 18
print.coxme . 19
print.lmekin . 20
ranef . 20
VarCorr . 20

Index 21

anova.coxme Analysis of Deviance for a Cox model.

Description

Compute an analysis of deviance table for one or more Cox model fits.

Usage

S3 method for class 'coxme'
anova(object, ..., test = 'Chisq')

Arguments

object An object of class coxme or coxph

... Further coxme objects

test a character string. The appropriate test is a chisquare, all other choices result in
no test being done.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the
reductions in the model log-likelihood as each term of the formula is added in turn are given in as
the rows of a table, plus the log-likelihoods themselves.

If more than one object is specified, the table has a row for the degrees of freedom and loglikelihood
for each model. For all but the first model, the change in degrees of freedom and loglik is also given.
(This only make statistical sense if the models are nested.) It is conventional to list the models from
smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in loglik for
each row.

coxme 3

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or will only be valid if they are fitted to the
same dataset. This may be a problem if there are missing values.

See Also

coxme, anova.

Examples

Testing a shrunken estimate of ECOG performace status
fit1 <- coxph(Surv(time, status) ~ age + sex, data=lung,

subset=(!is.na(ph.ecog)))
fit2 <- coxme(Surv(time, status) ~ age + sex + (1|ph.ecog), lung)
anova(fit1,fit2)

coxme Fit a mixed effects Cox model

Description

Fit a Cox model containing mixed (random and fixed) effects. Assume a Gaussian distribution for
the random effects.

Usage

coxme(formula, data, weights, subset, na.action, init, control,
ties = c("efron", "breslow"),
varlist, vfixed, vinit, x = FALSE, y = TRUE,
refine.n = 0, random, fixed, variance, ...)

Arguments

formula a two-sided formula with a survival object as the left hand side of a ~ operator
and the fixed and random effects on the right.

data an optional data frame containing the variables named in the formula.
subset, weights, na.action

further model specifications arguments as in lm; see there for details.

init optional initial values for the fixed effects.

control optional list of control options. See coxme.control for details.

ties method for handling exact ties in the survival time.

4 coxme

varlist the variance family to be used for each random term. If there are multiple terms
it will be a list of variance functions. The default is coxmeFull. Alternatively it
can be a list of matrices, in which case the coxmeMlist function is used.

vfixed optional named list or vector used to fix the value of one or more of the variance
terms at a constant.

vinit optional named list or vector giving suggested starting values for the variance.

x if TRUE the X matrix (fixed effects) is included in the output object

y if TRUE the y variable (survival time) is included in the output object

refine.n number of samples to be used in a monte-carlo estimate of possible error in the
log-likelihood of the fitted model due to inadequacy of the Laplace approxima-
tion.

fixed, random, variance
In the preliminary version of coxme the fixed and random effects were separate
arguments. These arguments are included for backwards compatability, but are
depreciated. The variance argument is a depreciated alias for vfixed.

... any other arguments are passed forward to coxme.control.

Value

An object of class coxme.

Author(s)

Terry Therneau

References

S Ripatti and J Palmgren, Estimation of multivariate frailty models using penalized partial likeli-
hood, Biometrics, 56:1016-1022, 2000.

T Therneau, P Grambsch and VS Pankratz, Penalized survival models and frailty, J Computational
and Graphical Statistics, 12:156-175, 2003.

See Also

coxmeFull, coxmeMlist, coxme.object

Examples

A non-significant institution effect
fit1 <- coxph(Surv(time, status) ~ ph.ecog + age, data=lung,

subset=(!is.na(inst)))
fit2 <- coxme(Surv(time, status) ~ ph.ecog + age + (1|inst), lung)
anova(fit1, fit2)

Shrinkage effects (equivalent to ridge regression)
temp <- with(lung, scale(cbind(age, wt.loss, meal.cal)))
rfit <- coxme(Surv(time, status) ~ ph.ecog + (temp | 1), data=lung)

coxme.control 5

coxme.control Auxillary parameters for controlling coxme fits.

Description

Auxillary function which packages the optional parameters of a coxme fit as a single list.

Usage

coxme.control(eps = 1e-08, toler.chol = .Machine$double.eps^0.75,
iter.max = 20, inner.iter = Quote(max(4, fit0$iter+1)),
sparse.calc = NULL,
optpar = list(method = "BFGS", control=list(reltol = 1e-5)),
refine.df=4, refine.detail=FALSE, refine.method="control",
sparse=c(50, .02),
varinit=c(.02, .1, .4, .8)^2, corinit = c(0, .3))

Arguments

eps convergence criteria for the partial likelihood

toler.chol tolerance for the underlying Cholesky decomposition. This is used to detect
singularity (redundant variables).

iter.max maximum number of iterations for the final fit

inner.iter number of iterations for the ‘inner loop’ fits, i.e. when the partial likelihood is
the objective function of optim. The default is to use one more iteration than the
baseline coxph model fit0. The baseline model contains only the fixed effects,
and is as part of the setup by the main program. The minimum value of 4 applies
most often to the case where there are no fixed effects.

sparse.calc choice of method 1 or 2 for a particular portion of the calculation. This can have
an effect on run time for problems with thousands of random effects.

optpar parameters passed forward to the optim routine.

refine.df the degrees of freedom for the t-distribution used to draw random samples for
the refine.n option

refine.detail this option is mostly for debugging. If TRUE then an extra component refine.detail
will be present in the output which contains intermediate variables from the it-
erative refinement calculation.

refine.method method by which the control calculations are done. This is a current research/development
question, the option will likely disappear at some future date, and users should
ignore it.

sparse rule for deciding sparsity of a random effect, see details below.

varinit the default set of starting values for variances, used if no vinit argument is
supplied in the coxme call.

corinit the default set of starting values for correlations.

6 coxme.object

Details

The main flow of coxme is to use the optim routine to find the best values for the variance pa-
rameters. For any given trial value of the variance parameters, an inner loop maximizes the partial
likelihood to select the regression coefficients beta (fixed) and b (random). Within this loop cholesky
decomposition is used. It is critical that the convergence criteria of inner loops be less than outer
ones, thus toler.chol < eps < reltol.

If no starting values are supplied for the variances of the random effects then a grid search is per-
formed to select initial values for the main iteration loop. The default values given here are based on
experience but without any formal arguments for their optimality. We have found that the estimated
standard deviation of a random effect is often between .1 and .3, corresponding to exp(.1)= 1.1 to
exp(.3)= 1.35 fold “average” relative risks associated with group membership. This is biologically
reasonable for a latent trait. Other common solutions ane a small random effect corresponding to
only 1–5% change in the hazard or likelihood that is maximized at the boundary value of 0 variance.
Variances greater than 2 are very unusual. Because we use the log(variance) as our iteration scale
the 0–.001 portion of the variance scale is stretched out giving a log-likelihood surface that is almost
flat; a Newton-Raphson iteration starting at log(.2) may have log(.0001) as its next guess and get
stuck there, never finding a true maximum that lies in the range of .01 to .05. Corrleation paramters
seem to need fewer starting points.

The sparse option controls a sparse approximation in the code. Assume we have a mixed effects
model with a random intercept per group, and there are 1000 groups. In a Cox model (unlike a
linear mixed effects model) the resulting second derivative matrix used during the solution will be
1000 by 1000 with no zeros, and fitting the model can consume a large amount of both time and
memory. However, it is almost sparse, in that elements off the diagonal are very small and can often
be ignored. Computation with a sparse matrix approximation will be many times faster. Luckily, as
the number of groups increases the accuracy of the approximation also increases. If sparse=c(50,
.03) this states that sparse approximation will be employed for any grouping variable with 50 or
more levels, and off diagonal elements that relate any two levels both of which represent .03 of less
of the total sample will be treated as zero.

Value

a list of control parameters

Author(s)

Terry Therneau

See Also

coxme

coxme.object Coxme regression output object

coxme.object 7

Description

This contains further description of the output object created by a coxme call. Most components can
be accessed with extractor functions, which is the safer route since details of the object will likely
change over time.

Details

The structure of each element of the random effects coefficients (obtained with ranef) and variances
(VarCorr) depend on the variance functions, i.e., the functions used in the varlist argument. Since
users can write their own variance functions this format can never be completely known.

Value

coefficients the coefficients of the fixed effects. Use the fixef function to extract them.

frail the coefficients of the random effects. Use the ranef function to extract them.
These are always stored as a list with one member per random effect; each paren-
thesised term in the model is a random effect. In a linear mixed effects model
the fixed effects and the variances of the random effects can be obtained without
explicitly computing the coefficients of the random effects, the latter are called
BLUP estimates and are computed later if at all. This is not the case for a Cox
model, there the random effect coefficients are a required part of the iteration
process and so are always present in the final model.

vcoef the variances of the random effects. Use the VarCorr function to extract them.
These are always stored as a list with one member per random effect.

variance the variance-covariance matrix of the coefficient vector, including both fixed and
random terms. The random effects are listed first. This will often be a sparse
matrix. The vcov function will extract the fixed effects portion, which is always
dense.

loglik the log-likelihood vector from the fit. The first element is the loglik at the initial
values, the second is the integrated partial likelihood at the solution (IPL), the
third is the penalized partial likelihood at the solution(PPL).

df degrees of freedom for the IPL and the PPL solutions.

hmat sparse Cholesky factorization of the information matrix.

iter outer and inner iterations performed. For each trial value of the variance param-
eters an Cox model partial likelihood must be solved; the outer iterations is the
reported number from the optim() routine which handles the variance parame-
ters, the inner iterations is the cumulative number of partial likelihood iterations.

control a copy of the coxph.control parameters used in the fit.

ties the computational method used for ties.

u the vector of first derivatives of the PPL, at the solution.

means, scale means and scale for each predictor, used internally to scale the problem.
linear.predictor

the vector of linear predictors.

n vector containing the number of events and the number of observations in the
fitting data set.

8 coxmeFull

terms the terms object from the fixed effects of the model formula. Access using the
terms function.

formulaList the fixed and random portions of the formula, separated

na.action the missing value attributes of the data, if any

x, y, model optional: the x matrix, response, for model frame. These depend on the corre-
sponding arguments in the call.

call a copy of the call to the routine

coxmeFull Variance family function for coxme fits.

Description

This function sets up the default variance family information for a mixed effects survival model fit
with coxme.

Usage

coxmeFull(collapse = FALSE)

Arguments

collapse Form for fitting a nested effect, either standard or collapsed. The latter appears
to be more numerically stable (still under research).

Details

Coxme variance families create a list with three functions: initialize, generate, and wrapup, that
determine how the variance structure of a fit is modeled.

Value

an object of class coxvar.

Author(s)

Terry Therneau

See Also

coxme

coxmeMlist 9

coxmeMlist Coxme variance function

Description

This variance function accepts a list of matrices, which define a correlation structure for a coxme
fit.

Usage

coxmeMlist(varlist, rescale = FALSE, pdcheck = TRUE, positive = TRUE)

Arguments

varlist a list containing one or more matrix or bdsmatrix objects.

rescale if TRUE, each input matrix is rescaled to have a diagonal of 1. (Kinship matrices
for instance are often generated with a diagonal of .5 and would be multiplied
by 2).

pdcheck check each matrix to ensure that it is positive definite

positive constrain coefficients to be positive. This may also be a vector of the same length
as varlist

Details

If two matrices A and B were given, this fits the variance structure V = σ2
1A + σ2

2B, where the
variances σ2

1 and σ2
2 are parameters that will be optimized by coxme, treating A and B as fixed.

Value

a coxme variance family object, used by coxme in the fitting process.

Author(s)

Terry Therneau

See Also

coxme

10 eortc

eortc Simulated data set based on an EORTC trial

Description

This is a simulated surival data set for investigating random center effects. To make it realistic, the
number of centers and their sizes is based on an EORTC cancer trial.

Usage

data(eortc)

Format

A data frame with 2323 observations on the following 4 variables.

y survival time

uncens 0=alive, 1=dead

center enrolling center, a number from 1 to 37

trt treatment arm, 0 or 1

Details

This is used in the test suite for the code.

Source

PhD thesis work of Jose Cortinas Abrahantes

References

Cortinas Abrahantes, Jose; Burzykowski, Tomasz (2002), A version of the EM algorithm for pro-
portional hazards models with random effects , Published in: Lecture Notes of the ICB Seminars.
p. 15-20

Examples

data(eortc)
coxme(Surv(y, uncens) ~ trt + (trt| center) + strata(center), eortc)

expand.nested 11

expand.nested Expand nested factors

Description

Expand out the data frame for a nested factor such as (1| a/b). This is used by the variance function
routines of coxme.

Usage

expand.nested(x)

Arguments

x A data frame containing the nesting variables

Details

The initialize function of a coxme variance family is passed, as one of its arguments, a data frame
G containing the grouping variables, each of which is a factor.. Assume a nested factor (1| a/b) in
the model formula and a data set whose first few rows are:

a b
1 1
1 2
2 1

The function will replace the second column with a variable named a/b and values of 1/1, 1/2, 2/1,
etc.

Value

an updated data frame

Author(s)

Terry Therneau

See Also

coxme, coxmeMlist

12 fixef.coxme

fixed.effects Import from package nlme

Description

The fixed.effects and fixef methods are imported from package nlme. Help is available here:
nlme::fixed.effects.

fixef.coxme Extraction functions for Coxme

Description

Extract the fixed effects, randome effects, variance of the fixed effects, or variance of the random
effects from a coxme model.

Usage

S3 method for class 'coxme'
fixef(object, ...)
S3 method for class 'coxme'
ranef(object, ...)
S3 method for class 'coxme'
vcov(object, ...)
S3 method for class 'coxme'
VarCorr(x, ...)

Arguments

object an object inheriting from class coxme representing the result of a mixed effects
Cox model.

x an object inheriting from class coxme representing the result of a mixed effects
Cox model.

... some methods for this generic require additional arguments. None are used in
this method.

Value

the fixed effects are a vector and the variance of the fixed effects is a matrix. The random effects
will be a list with one element for each random effects terms, as will be their variance.

Author(s)

Terry Therneau

fixef.lmekin 13

See Also

coxme, random.effects, fixed.effects

Examples

rat1 <- coxme(Surv(time, status) ~ rx + (1|litter), rats)
fixed.effects(rat1)
vcov(rat1)
random.effects(rat1)[[1]] #one value for each of the 50 litters
VarCorr(rat1)

fixef.lmekin Extraction functions for Lmekin

Description

Extract the fixed effects, random effects, variance of the fixed effects, or variance of the random
effects from a linear mixed effects model fit with lmekin.

Usage

S3 method for class 'lmekin'
fixef(object, ...)
S3 method for class 'lmekin'
ranef(object, ...)
S3 method for class 'lmekin'
vcov(object, ...)
S3 method for class 'lmekin'
VarCorr(x, ...)
S3 method for class 'lmekin'
logLik(object, ...)

Arguments

object an object inheriting from class lmekin representing the result of a mixed effects
model.

x an object inheriting from class lmekin representing the result of a mixed effects
model.

... some methods for this generic require additional arguments. None are used in
this method.

Details

For the random effects model y = Xβ + Zb + ϵ, let σ2 be the variance of the error term ϵ. Let
A = σ2P be the variance of the random effects b. There is a computational advantage to solving
the problem in terms of P instead of A, and that is what is stored in the returned lmekin object.
The VarCorr function returns elements of P ; the print and summary functions report values of A.
Pinhiero and Bates call P the precision factor.

14 lmekin

Value

the fixed effects are a vector and vcov returns their variance/covariance matrix. The random effects
are a list with one element for each random effect. The ranef component contains the coefficients
and VarCorr the estimated variance/covariance matrix. The logLik method returns the loglikelihood
along with its degrees of freedom.

Author(s)

Terry Therneau

References

J Pinheiro and D Bates, Mixed-effects models in S and S-Plus. Springer, 2000.

See Also

lmekin, random.effects, fixed.effects, link{vcov}, VarCorr

Examples

data(ergoStool, package="nlme") # use a data set from nlme
efit <- lmekin(effort ~ Type + (1|Subject), ergoStool)
ranef(efit)

lmekin Fit a linear mixed effects model

Description

The lmekin function fits a linear mixed effects model, with random effects specified in the same
structure as in the coxme function.

Usage

lmekin(formula, data, weights, subset, na.action, control,
varlist, vfixed, vinit, method = c("ML", "REML"),
x = FALSE, y = FALSE, model=FALSE,
random, fixed, variance, ...)

Arguments

formula a two-sided formula with the response as the left hand side of a ~ operator and
the fixed and random effects on the right.

data an optional data frame containing the variables named in the formula.
subset, weights, na.action

further model specifications arguments as in lm; see there for details.

control optional list of control options. See coxme.control for details.

lmekin 15

varlist the variance family to be used for each random term. If there are multiple terms
it will be a list of variance functions. The default is coxmeFull. Alternatively it
can be a list of matrices, in which case the coxmeMlist function is used.

vfixed optional named list or vector used to fix the value of one or more of the variance
terms at a constant.

vinit optional named list or vector giving suggested starting values for the variance.

method fit using either maximum likelihood or restricted maximum likelihood

x if TRUE the X matrix (fixed effects) is included in the output object

y if TRUE the y variable is included in the output object

model if TRUE the model frame is included in the output object

fixed, random, variance
In an earlier version of lmekin the fixed and random effects were separate ar-
guments. These arguments are included for backwards compatability, but are
depreciated. The variance argument is a depreciated alias for vfixed.

... any other arguments are passed forward to coxme.control.

Details

Let A = σ2B be the variance matrix of the random effects where σ2 is the residual variance for the
model. Internally the routine solves for the parameters of B, computing A at the end. The vinit
and vfixed parmaters refer to B, however.

It is possible to specify certain models in lmekin that can not be fit with lme, in particular models
with familial genetic effects, i.e., a kinship matrix, and hence the name of the routine. Using user-
specified variance functions an even wider range of models is possible. For simple models the
specification of the random effects follows the same form as the lmer function. For any model
which can be fit by both lmekin and lmer, the latter routine would normally be prefered due to a
much wider selection of post-fit tools for residuals, prediction and plotting.

Much of the underlying model code for specification and manipulation of the random effects is
shared with the coxme routine. In fact lmekin was originally written only to provide a test routine
for those codes, and no expectation that it would find wider utility.

Value

An object of class lmekin.

Author(s)

Terry Therneau

See Also

lmekin.object, coxme

16 lmekin.control

Examples

data(ergoStool, package="nlme") # use a data set from nlme
fit1 <- lmekin(effort ~ Type + (1|Subject), data=ergoStool)
Not run:
gives the same result
require(nlme)
fit2 <- lme(effort ~ Type, data=ergoStool, random= ~1|Subject,

method="ML")

End(Not run)

lmekin.control Auxillary parameters for controlling lmekin fits.

Description

Auxillary function which packages the optional parameters of a lmekin fit as a single list.

Usage

lmekin.control(
optpar = list(method = "BFGS", control=list(reltol = 1e-8)),
varinit=c(.02, .1, .8, 1.5)^2, corinit = c(0, .3))

Arguments

optpar parameters passed forward to the optim routine.
varinit the default grid of starting values for variances, used if no vinit argument is

supplied in the lmekin call.
corinit the default grid of starting values for correlations.

Details

The main flow of lmekin is to use the optim routine to find the best values for the variance param-
eters. For any given trial value of the variance parameters, a subsidiary computation maximizes the
likelihood to select the regression coefficients beta (fixed) and b (random).

If no starting values are supplied for the variances of the random effects then a grid search is per-
formed to select initial values for the main iteration loop. The variances and correlations are all
scaled by σ2, making these starting estimates scale free, e.g., replacing y by 10*y in a data set will
change σ but not the internal representation of any other variance parameters. Because we use the
log(variance) as our iteration scale the 0–.001 portion of the variance scale is stretched out giving
a log-likelihood surface that is almost flat; a Newton-Raphson iteration starting at log(.2) may have
log(.0001) as its next guess and get stuck there, never finding a true maximum that lies in the range
of .01 to .05. Corrleation paramters seem to need fewer starting points.

Value

a list of control parameters

lmekin.object 17

Author(s)

Terry Therneau

See Also

lmekin

lmekin.object lmekin object

Description

This class of object is returned by the lmekin function to represent a fittd mixed effect linear model.
Objects of this class currently have methods for print and residuals.

Value

A list with the folling components:

coefficients a list with components fixed and random; the first will be NULL for a model
with no fixed effects. The random component is itself a list, with an element for
each random effect.

var the variance matrix of the fixed effects

vcoef the parameters of the variance matrix of the random effects.

residuals vector of residuals from the fit

method either "ML" or "REML"

loglik the log-likelihood for the fitted model

sigma the estimated residual error

n number of observations used

call a copy of the call

na.action this will be present if any observations were removed due to missing values

Author(s)

Terry Therneau

See Also

lmekin, coxmeFull, coxmeMlist

18 predict.coxme

logLik.coxme The logLik method for coxme objects

Description

logLik is most commonly used for a model fitted by maximum likelihood, and some uses, e.g. by
AIC. This method allows generic functions to easily extract the log-likelhood of a coxme model.

Usage

S3 method for class 'coxme'
logLik(object, type = c("penalized", "integrated"), ...)

Arguments

object a fitted coxme model

type which of the two types of partial likelihood to extract

... used by other methods

Details

The likelihood for a mixed effects Cox model can be viewed in two ways: the ordinarly partial
likelihood, where the random effects act only as a penalty or constraint, or a partial likelihood
where the random effect has been integrated out. Both are valid.

Value

Returns an object of class logLik.

See Also

logLik

predict.coxme Predictions for a coxme object.

Description

Return predicted values from a coxme fit.

Usage

S3 method for class 'coxme'
predict(object, newdata, type = c("lp", "risk"), ...)

print.coxme 19

Arguments

object an object of class coxme, from the fit of a mixed effects survival model

newdata new data set, not yet supported

type type of prediction

... arguments for other methods

Value

a vector of predicted values

See Also

coxme

print.coxme Print method for a coxme fit.

Description

Print out the result of a coxme fit.

Usage

S3 method for class 'coxme'
print(x, rcoef=FALSE, digits = options()$digits, ...)

Arguments

x an object of class coxme, from the fit of a mixed effects survival model.

rcoef print the random (penalized) coefficients, as well as the fixed ones.

digits number of significant digits to print

... optional arguments

Author(s)

Terry Therneau

See Also

coxme

20 VarCorr

print.lmekin Print function for lmekin

Description

Print out the result of an lmekin fit.

Usage

S3 method for class 'lmekin'
print(x, ...)

Arguments

x an object of class lmekin.

... generic arguments to print, unused.

Details

The print function current has no options. This should one day improve.

Author(s)

Terry Therneau

See Also

lmekin

ranef Import from package nlme

Description

The ranef and random.effects methods are imported from package nlme. Help is available here:
nlme::random.effects.

VarCorr Import from package nlme

Description

The VarCorr method is imported from package nlme. Help is available here: nlme::VarCorr.

Index

∗ datasets
eortc, 10

∗ models
anova.coxme, 2
fixef.coxme, 12
fixef.lmekin, 13
lmekin, 14
lmekin.object, 17
print.lmekin, 20

∗ regression
anova.coxme, 2

∗ survival
anova.coxme, 2
coxme, 3
coxme.control, 5
coxme.object, 6
coxmeFull, 8
coxmeMlist, 9
expand.nested, 11
fixef.coxme, 12
lmekin.control, 16
logLik.coxme, 18
predict.coxme, 18
print.coxme, 19

anova, 3
anova.coxme, 2
anova.coxmelist (anova.coxme), 2

coxme, 3, 3, 6, 8, 9, 11, 13, 15, 19
coxme.control, 5
coxme.object, 4, 6
coxmeFull, 4, 8, 17
coxmeMlist, 4, 9, 11, 17

eortc, 10
expand.nested, 11

fixed.effects, 12, 13, 14
fixef (fixed.effects), 12

fixef.coxme, 12
fixef.lmekin, 13

lmekin, 14, 14, 17, 20
lmekin.control, 16
lmekin.object, 15, 17
logLik, 18
logLik.coxme, 18
logLik.lmekin (fixef.lmekin), 13

nlme::fixed.effects, 12
nlme::random.effects, 20
nlme::VarCorr, 20

predict.coxme, 18
print.coxme, 19
print.lmekin, 20

random.effects, 13, 14
random.effects (ranef), 20
ranef, 20
ranef.coxme (fixef.coxme), 12
ranef.lmekin (fixef.lmekin), 13

VarCorr, 14, 20
VarCorr.coxme (fixef.coxme), 12
VarCorr.lmekin (fixef.lmekin), 13
vcov.coxme (fixef.coxme), 12
vcov.lmekin (fixef.lmekin), 13

21

	anova.coxme
	coxme
	coxme.control
	coxme.object
	coxmeFull
	coxmeMlist
	eortc
	expand.nested
	fixed.effects
	fixef.coxme
	fixef.lmekin
	lmekin
	lmekin.control
	lmekin.object
	logLik.coxme
	predict.coxme
	print.coxme
	print.lmekin
	ranef
	VarCorr
	Index

