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blq Bayesian Quantile Regression

Description

This function fits a Bayesian quantile regression model.
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Usage

blq(formula, data = NULL, p, mcmc = list(), prior = list(), marginal.likelihood = TRUE)

Arguments

formula an object of class “formula”
data an optional data frame.
p quantile of interest (default=0.5).
mcmc a list giving the MCMC parameters. The list includes the following integers

(with default values in parentheses): nblow (1000) giving the number of MCMC
in transition period, nskip (1) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis.

prior a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): beta_m0 and beta_v0 giv-
ing the hyperparameters of the multivariate normal distribution for parametric
part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and
variance of the inverse gamma prior for the scale parameter of response.

marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.
The methods of Gelfand and Dey (1994) is used.

Details

This generic function fits a Bayesian quantile regression model.

Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response, linearly. The model is as follows.

yi = wT
i β + ϵi, i = 1, . . . , n,

where the error terms {ϵi} are a random sample from an asymmetric Laplace distribution,ALDp(0, σ
2),

which has the following probability density function:

ALDp(ϵ;µ, σ
2) =

p(1− p)

σ2
exp

(
− (x− µ)[p− I(x ≤ µ)]

σ2

)
,

where 0 < p < 1 is the skew parameter, σ2 > 0 is the scale parameter, −∞ < µ < ∞ is the
location parameter, and I(·) is the indication function.

The conjugate priors are assumed for β and σ:

β|σ ∼ N(m0,β , σ
2V0,β), σ2 ∼ IG

(r0,σ
2
,
s0,σ
2

)
Value

An object of class blm representing the Bayesian parametric linear model fit. Generic functions
such as print and fitted have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:
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post.est posterior estimates for all parameters in the model.

lmarg log marginal likelihood using Gelfand-Dey method.

rsquarey correlation between y and ŷ.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Gelfand, A. E. and Dey, K. K. (1994) Bayesian model choice: asymptotics and exact calculations.
Journal of the Royal Statistical Society. Series B - Statistical Methodology, 56, 501-514.

Kozumi, H. and Kobayashi, G. (2011) Gibbs sampling methods for Bayesian quantile regression.
Journal of Statistical Computation and Simulation, 81(11), 1565-1578.

See Also

blr, gblr

Examples

#####################
# Simulated example #
#####################

# Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rald(n, scale = 0.8, p = 0.5)

# Fit median regression
fout <- blq(y ~ w, p = 0.5)

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# Plots
plot(fout)

blr Bayesian Linear Regression

Description

This function fits a Bayesian linear regression model using scale invariant prior.
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Usage

blr(formula, data = NULL, mcmc = list(), prior = list(), marginal.likelihood = TRUE)

Arguments

formula an object of class “formula”

data an optional data frame.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow (1000) giving the number of MCMC
in transition period, nskip (1) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis.

prior a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): beta_m0 and beta_v0 giv-
ing the hyperparameters of the multivariate normal distribution for parametric
part including intercept, sigma2_m0 and sigma2_v0 giving the prior mean and
variance of the inverse gamma prior for the scale parameter of response.

marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.

Details

This generic function fits a Bayesian linear regression model using scale invariant prior.

Let yi and wi be the response and the vector of parametric predictors, respectively. The model for
regression function is as follows.

yi = wT
i β + ϵi, i = 1, . . . , n,

where the error terms {ϵi} are a random sample from a normal distribution, N(0, σ2).

The conjugate priors are assumed for β and σ:

β|σ ∼ N(m0,β , σ
2V0,β), σ2 ∼ IG

(r0,σ
2
,
s0,σ
2

)
Value

An object of class blm representing the Bayesian spectral analysis model fit. Generic functions such
as print and fitted have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws and the
posterior samples of the fitted values are stored in the list fit.draws. The output list also includes
the following objects:

post.est posterior estimates for all parameters in the model.

lmarg log marginal likelihood.

rsquarey correlation between y and ŷ.

call the matched call.

mcmctime running time of Markov chain from system.time().
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See Also

blq, gblr

Examples

#####################
# Simulated example #
#####################

# Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rnorm(n, sd = 0.8)

# Fit the model with default priors and mcmc parameters
fout <- blr(y ~ w)

# Summary
print(fout); summary(fout)

# Fitted values
fit <- fitted(fout)

# Plots
plot(fout)

bsad Bayesian Semiparametric Density Estimation

Description

This function fits a semiparametric model, which consists of parametric and nonparametric compo-
nents, for estimating density using a logistic Gaussian process.

Usage

bsad(x, xmin, xmax, nint, MaxNCos, mcmc = list(), prior = list(),
smoother = c('geometric', 'algebraic'),
parametric = c('none', 'normal', 'gamma', 'laplace'), marginal.likelihood = TRUE,
verbose = FALSE)

Arguments

x a vector giving the data from which the density estimate is to be computed.

xmin minimum value of x.

xmax maximum value of x.
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nint number of grid points for plots (need to be odd). The default is 201.

MaxNCos maximum number of Fourier coefficients.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): kappaloop (5) giving the number of MCMC
loops within each choice of kappa, nblow (10000) giving the number of MCMC
in transition period, nskip (10) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis, and ndisp (1000) giving the number of
saved draws to be displayed on screen (the function reports on the screen when
every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): gmax giving maximum value
for gamma (default = 5), PriorProbs giving prior probability of parametric and
semiparametric models, beta_m0 and beta_v0 giving the hyperparameters for
prior distribution of the parametric coefficients, r0 and s0 giving the hyperpa-
rameters of σ2 for the logits, u0 and v0 giving the hyperparameters of τ2 for
Fourier coefficients, PriorKappa and KappaGrid giving prior on the number of
cosine terms.

smoother types of smoothing priors for Fourier coefficients. See Details.

parametric specifying a distribution of the parametric part to be test.
marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a semiparametric model, which consists of parametric and nonparametric,
for density estimation (Lenk, 2003):

f(x|β, Z) = exp[h(x)⊤β + Z(x)]∫
X exp[h(y)⊤β + Z(y)]dG(y)

where Z is a zero mean, second-order Gaussian process with bounded, continuous covariance func-
tion. i.e.,

E[Z(x), Z(y)] = σ(x, y),

∫
X
ZdG = 0 (a.s.)

Using the Karhunen-Loeve Expansion, Z is represented as infinite series with random coefficients

Z(x) =

∞∑
j=1

θjφj(x),

where {φj} is the cosine basis, φj(x) =
√
2 cos[jπG(x)].

For the random Fourier coefficients of the expansion, two smoother priors are assumed (optional),

θj |τ, γ ∼ N(0, τ2 exp[−jγ]), j ≥ 1 (geometric smoother)

θj |τ, γ ∼ N(0, τ2 exp[−ln(j + 1)γ]), j ≥ 1 (algebraic smoother)
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The coefficient β have the popular normal prior,

β|m0,β , V0,β ∼ N(m0,β , V0,β)

To complete the model specification, independent hyper priors are assumed,

τ2|r0, s0 ∼ IGa(r0/2, s0/2)

γ|w0 ∼ Exp(w0)

Note that the posterior algorithm is based on computing a discrete version of the likelihood over a
fine mesh on X .

Value

An object of class bsad representing the Bayesian spectral analysis density estimation model fit.
Generic functions such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lmarg log marginal likelihood.

ProbProbs posterior probability of models.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Lenk, P. (2003) Bayesian semiparametric density estimation and model verification using a logistic
Gaussian process. Journal of Computational and Graphical Statistics, 12, 548-565.

Examples

## Not run:
############################
# Old Faithful geyser data #
############################
data(faithful)
attach(faithful)

# mcmc parameters
mcmc <- list(nblow = 10000,

smcmc = 1000,
nskip = 10,
ndisp = 1000,
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kappaloop = 5)

# fits BSAD model
fout <- bsad(x = eruptions, xmin = 0, xmax = 8, nint = 501, mcmc = mcmc,

smoother = 'geometric', parametric = 'gamma')

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# predictive density plot
plot(fit, ask = TRUE)

detach(faithful)

## End(Not run)

bsaq Bayesian Shape-Restricted Spectral Analysis Quantile Regression

Description

This function fits a Bayesian semiparametric quantile regression model to estimate shape-restricted
functions using a spectral analysis of Gaussian process priors.

Usage

bsaq(formula, xmin, xmax, p, nbasis, nint, mcmc = list(), prior = list(),
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS','DecreasingRotatedS','InvertedU','Ushape',
'IncMultExtreme','DecMultExtreme'), nExtreme = NULL,
marginal.likelihood = TRUE, spm.adequacy = FALSE, verbose = FALSE)

Arguments

formula an object of class “formula”

xmin a vector or scalar giving user-specific minimum values of x. The default values
are minimum values of x.

xmax a vector or scalar giving user-specific maximum values of x. The default values
are maximum values of x.

p quantile of interest (default=0.5).

nbasis number of cosine basis functions.

nint number of grid points where the unknown function is evaluated for plotting. The
default is 200.
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mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow0 (1000) giving the number of ini-
tialization period for adaptive metropolis, maxmodmet (5) giving the maximum
number of times to modify metropolis, nblow (10000) giving the number of
MCMC in transition period, nskip (10) giving the thinning interval, smcmc
(1000) giving the number of MCMC for analysis, and ndisp (1000) giving
the number of saved draws to be displayed on screen (the function reports on
the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parame-
ters (default values specify the non-informative prior): iflagprior choosing a
smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior
(default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0
giving the hyperparameters for prior distribution of the spectral coefficients
(theta0_m0 and theta0_s0 are used when the functions have shape-restriction),
tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of
smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparame-
ter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate nor-
mal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0
giving the prior mean and variance of the inverse gamma prior for the scale pa-
rameter of response, alpha_m0 and alpha_s0 giving the prior mean and stan-
dard deviation of the truncated normal prior distribution for the constant of in-
tegration, iflagpsi determining the prior of slope for logisitic function in S or
U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed),
psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope,
omega_m0 and omega_s0 giving the prior mean and standard deviation of the
truncated normal prior distribution for the inflection point of S or U shaped func-
tion.

shape a vector giving types of shape restriction.
nExtreme a vector of extreme points for ’IncMultExtreme’, ’DecMultExtreme’ shape re-

strictions.
marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.
The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are
used.

spm.adequacy a logical variable indicating whether the log marginal likelihood of linear model
is calculated. The marginal likelihood gives the values of the linear regression
model excluding the nonlinear parts.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a Bayesian spectral analysis quantile regression model for estimating
shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, the
model assumed that the derivatives of the functions are squares of Gaussian processes.

Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response through an unknown shape-restricted function. The model
for estimating shape-restricted functions is as follows.
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yi = wT
i β +

K∑
k=1

fk(xi,k) + ϵi, i = 1, . . . , n,

where fk is an unknown shape-restricted function of the scalar xi,k ∈ [0, 1] and the error terms
{ϵi} are a random sample from an asymmetric Laplace distribution, ALDp(0, σ

2), which has the
following probability density function:

ALDp(ϵ;µ, σ
2) =

p(1− p)

σ2
exp

(
− (x− µ)[p− I(x ≤ µ)]

σ2

)
,

where 0 < p < 1 is the skew parameter, σ2 > 0 is the scale parameter, −∞ < µ < ∞ is the
location parameter, and I(·) is the indication function.

The prior of function without shape restriction is:

f(x) = Z(x),

where Z is a second-order Gaussian process with mean function equal to zero and covariance func-
tion ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The Gaussian process is expressed with the spectral
representation based on cosine basis functions:

Z(x) =

∞∑
j=0

θjφj(x)

φ0(x) = 1 and φj(x) =
√
2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of
Gaussian processes:

f (q)(x) = δZ2(x)h(x), δ ∈ {1,−1}, q ∈ {1, 2},

where h is the squish function. For monotonic, monotonic convex, and concave functions, h(x) =
1, while for S and U shaped functions, h is defined by

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
, ψ > 0, 0 < ω < 1

For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used
(The intercept is included in β):

θj |σ, τ, γ ∼ N(0, σ2τ2 exp[−jγ]), j ≥ 1

The priors for the spectral coefficients of shape restricted functions are:

θ0|σ ∼ N(mθ0 , σv
2
θ0), θj |σ, τ, γ ∼ N(mθj , στ

2 exp[−jγ]), j ≥ 1

To complete the model specification, the conjugate priors are assumed for β and σ:

β|σ ∼ N(m0,β , σ
2V0,β), σ2 ∼ IG

(r0,σ
2
,
s0,σ
2

)



12 bsaq

Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lmarg.lm log marginal likelihood for linear quantile regression model.

lmarg.gd log marginal likelihood using Gelfand-Dey method.

lmarg.nr log marginal likelihood using Netwon-Raftery method, which is biased.

rsquarey correlation between y and ŷ.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Lenk, P. and Choi, T. (2017) Bayesian Analysis of Shape-Restricted Functions using Gaussian
Process Priors. Statistica Sinica, 27: 43-69.

Gelfand, A. E. and Dey, K. K. (1994) Bayesian model choice: asymptotics and exact calculations.
Journal of the Royal Statistical Society. Series B - Statistical Methodology, 56, 501-514.

Kozumi, H. and Kobayashi, G. (2011) Gibbs sampling methods for Bayesian quantile regression.
Journal of Statistical Computation and Simulation, 81(11), 1565-1578.

Newton, M. A. and Raftery, A. E. (1994) Approximate Bayesian inference with the weighted like-
lihood bootstrap (with discussion). Journal of the Royal Statistical Society. Series B - Statistical
Methodology, 56, 3-48.

See Also

bsar, gbsar

Examples

## Not run:
######################
# Increasing-concave #
######################

# Simulate data
set.seed(1)

n <- 200
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x <- runif(n)
y <- log(1 + 10*x) + rald(n, scale = 0.5, p = 0.5)

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout1 <- bsaq(y ~ fs(x), p = 0.25, nbasis = nbasis,

shape = 'IncreasingConcave')
fout2 <- bsaq(y ~ fs(x), p = 0.5, nbasis = nbasis,

shape = 'IncreasingConcave')
fout3 <- bsaq(y ~ fs(x), p = 0.75, nbasis = nbasis,

shape = 'IncreasingConcave')

# fitted values
fit1 <- fitted(fout1)
fit2 <- fitted(fout2)
fit3 <- fitted(fout3)

# plots
plot(x, y, lwd = 2, xlab = 'x', ylab = 'y')
lines(fit1$xgrid, fit1$wbeta$mean[1] + fit1$fxgrid$mean, lwd=2, col=2)
lines(fit2$xgrid, fit2$wbeta$mean[1] + fit2$fxgrid$mean, lwd=2, col=3)
lines(fit3$xgrid, fit3$wbeta$mean[1] + fit3$fxgrid$mean, lwd=2, col=4)
legend('topleft', legend = c('1st Quartile', '2nd Quartile', '3rd Quartile'),

lwd = 2, col = 2:4, lty = 1)

## End(Not run)

bsaqdpm Bayesian Shape-Restricted Spectral Analysis Quantile Regression
with Dirichlet Process Mixture Errors

Description

This function fits a Bayesian semiparametric quantile regression model to estimate shape-restricted
functions using a spectral analysis of Gaussian process priors. The model assumes that the errors
follow a Dirichlet process mixture model.

Usage

bsaqdpm(formula, xmin, xmax, p, nbasis, nint,
mcmc = list(), prior = list(), egrid, ngrid = 500,
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS', 'DecreasingRotatedS', 'InvertedU', 'Ushape'),
verbose = FALSE)



14 bsaqdpm

Arguments

formula an object of class “formula”

xmin a vector or scalar giving user-specific minimum values of x. The default values
are minimum values of x.

xmax a vector or scalar giving user-specific maximum values of x. The default values
are maximum values of x.

p quantile of interest (default=0.5).

nbasis number of cosine basis functions.

nint number of grid points where the unknown function is evaluated for plotting. The
default is 200.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow0 (1000) giving the number of ini-
tialization period for adaptive metropolis, maxmodmet (5) giving the maximum
number of times to modify metropolis, nblow (10000) giving the number of
MCMC in transition period, nskip (10) giving the thinning interval, smcmc
(1000) giving the number of MCMC for analysis, and ndisp (1000) giving
the number of saved draws to be displayed on screen (the function reports on
the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parame-
ters (default values specify the non-informative prior): iflagprior choosing a
smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior
(default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0
giving the hyperparameters for prior distribution of the spectral coefficients
(theta0_m0 and theta0_s0 are used when the functions have shape-restriction),
tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of
smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparame-
ter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate nor-
mal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0
giving the prior mean and variance of the inverse gamma prior for the scale pa-
rameter of response, alpha_m0 and alpha_s0 giving the prior mean and stan-
dard deviation of the truncated normal prior distribution for the constant of in-
tegration, iflagpsi determining the prior of slope for logisitic function in S or
U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed),
psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope,
omega_m0 and omega_s0 giving the prior mean and standard deviation of the
truncated normal prior distribution for the inflection point of S or U shaped func-
tion.

egrid a vector giving grid points where the residual density estimate is evaluated. The
default range is from -10 to 10.

ngrid a vector giving number of grid points where the residual density estimate is
evaluated. The default value is 500.

shape a vector giving types of shape restriction.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.
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Details

This generic function fits a Bayesian spectral analysis quantile regression model for estimating
shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, the
model assumes that the derivatives of the functions are squares of Gaussian processes. The model
also assumes that the errors follow a Dirichlet process mixture model.

Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response through an unknown shape-restricted function. The model
for estimating shape-restricted functions is as follows.

yi = wT
i β +

K∑
k=1

fk(xi,k) + ϵi, i = 1, . . . , n,

where fk is an unknown shape-restricted function of the scalar xi,k ∈ [0, 1] and the error terms
{ϵi} are a random sample from a Dirichlet process mixture of an asymmetric Laplace distribution,
ALDp(0, σ

2), which has the following probability density function:

ϵi ∼ f(ϵ) =

∫
ALDp(ϵ; 0, σ

2)dG(σ2),

G ∼ DP (M,G0), G0 = Ga
(
σ−2;

r0,σ
2
,
s0,σ
2

)
.

The prior of function without shape restriction is:

f(x) = Z(x),

where Z is a second-order Gaussian process with mean function equal to zero and covariance func-
tion ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The Gaussian process is expressed with the spectral
representation based on cosine basis functions:

Z(x) =

∞∑
j=0

θjφj(x)

φ0(x) = 1 and φj(x) =
√
2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of
Gaussian processes:

f (q)(x) = δZ2(x)h(x), δ ∈ {1,−1}, q ∈ {1, 2},

where h is the squish function. For monotonic, monotonic convex, and concave functions, h(x) =
1, while for S and U shaped functions, h is defined by

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
, ψ > 0, 0 < ω < 1

For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used
(The intercept is included in β):

θj |τ, γ ∼ N(0, τ2 exp[−jγ]), j ≥ 1
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The priors for the spectral coefficients of shape restricted functions are:

θ0 ∼ N(mθ0 , v
2
θ0), θj |τ, γ ∼ N(mθj , τ

2 exp[−jγ]), j ≥ 1

To complete the model specification, the popular normal prior is assumed for β:

β| ∼ N(m0,β , V0,β)

Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lpml log pseudo marginal likelihood using Mukhopadhyay and Gelfand method.

rsquarey correlation between y and ŷ.

imodmet the number of times to modify Metropolis.

pmet proportion of θ accepted after burn-in.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Kozumi, H. and Kobayashi, G. (2011) Gibbs sampling methods for Bayesian quantile regression.
Journal of Statistical Computation and Simulation, 81(11), 1565-1578.

Lenk, P. and Choi, T. (2017) Bayesian Analysis of Shape-Restricted Functions using Gaussian
Process Priors. Statistica Sinica, 27, 43-69.

MacEachern, S. N. and Müller, P. (1998) Estimating mixture of Dirichlet process models. Journal
of Computational and Graphical Statistics, 7, 223-238.

Mukhopadhyay, S. and Gelfand, A. E. (1997) Dirichlet process mixed generalized linear models.
Journal of the American Statistical Association, 92, 633-639.

Neal, R. M. (2000) Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistics, 9, 249-265.

See Also

bsaq, bsardpm
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Examples

## Not run:
######################
# Increasing-concave #
######################

# Simulate data
set.seed(1)

n <- 500
x <- runif(n)
e <- c(rald(n/2, scale = 0.5, p = 0.5),

rald(n/2, scale = 3, p = 0.5))
y <- log(1 + 10*x) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout1 <- bsaqdpm(y ~ fs(x), p = 0.25, nbasis = nbasis,

shape = 'IncreasingConcave')
fout2 <- bsaqdpm(y ~ fs(x), p = 0.5, nbasis = nbasis,

shape = 'IncreasingConcave')
fout3 <- bsaqdpm(y ~ fs(x), p = 0.75, nbasis = nbasis,

shape = 'IncreasingConcave')

# fitted values
fit1 <- fitted(fout1)
fit2 <- fitted(fout2)
fit3 <- fitted(fout3)

# plots
plot(x, y, lwd = 2, xlab = 'x', ylab = 'y')
lines(fit1$xgrid, fit1$wbeta$mean[1] + fit1$fxgrid$mean, lwd=2, col=2)
lines(fit2$xgrid, fit2$wbeta$mean[1] + fit2$fxgrid$mean, lwd=2, col=3)
lines(fit3$xgrid, fit3$wbeta$mean[1] + fit3$fxgrid$mean, lwd=2, col=4)
legend('topleft',legend=c('1st Quartile','2nd Quartile','3rd Quartile'),

lwd=2, col=2:4, lty=1)

## End(Not run)

bsar Bayesian Shape-Restricted Spectral Analysis Regression

Description

This function fits a Bayesian semiparametric regression model to estimate shape-restricted functions
using a spectral analysis of Gaussian process priors.



18 bsar

Usage

bsar(formula, xmin, xmax, nbasis, nint, mcmc = list(), prior = list(),
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS','DecreasingRotatedS','InvertedU','Ushape',
'IncMultExtreme','DecMultExtreme'), nExtreme = NULL,
marginal.likelihood = TRUE, spm.adequacy = FALSE, verbose = FALSE)

Arguments

formula an object of class “formula”

xmin a vector or scalar giving user-specific minimum values of x. The default values
are minimum values of x.

xmax a vector or scalar giving user-specific maximum values of x. The default values
are maximum values of x.

nbasis number of cosine basis functions.

nint number of grid points where the unknown function is evaluated for plotting. The
default is 200.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow0 (1000) giving the number of ini-
tialization period for adaptive metropolis, maxmodmet (5) giving the maximum
number of times to modify metropolis, nblow (10000) giving the number of
MCMC in transition period, nskip (10) giving the thinning interval, smcmc
(1000) giving the number of MCMC for analysis, and ndisp (1000) giving
the number of saved draws to be displayed on screen (the function reports on
the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parame-
ters (default values specify the non-informative prior): iflagprior choosing a
smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior
(default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0
giving the hyperparameters for prior distribution of the spectral coefficients
(theta0_m0 and theta0_s0 are used when the functions have shape-restriction),
tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of
smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparame-
ter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate nor-
mal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0
giving the prior mean and variance of the inverse gamma prior for the scale pa-
rameter of response, alpha_m0 and alpha_s0 giving the prior mean and stan-
dard deviation of the truncated normal prior distribution for the constant of in-
tegration, iflagpsi determining the prior of slope for logisitic function in S or
U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed),
psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope,
omega_m0 and omega_s0 giving the prior mean and standard deviation of the
truncated normal prior distribution for the inflection point of S or U shaped func-
tion.

shape a vector giving types of shape restriction.
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nExtreme a vector of extreme points for ’IncMultExtreme’, ’DecMultExtreme’ shape re-
strictions.

marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.
The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are
used.

spm.adequacy a logical variable indicating whether the log marginal likelihood of linear model
is calculated. The marginal likelihood gives the values of the linear regression
model excluding the nonlinear parts.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a Bayesian spectral analysis regression model (Lenk and Choi, 2015) for
estimating shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions,
they assumed that the derivatives of the functions are squares of Gaussian processes.

Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response through an unknown shape-restricted function. The model
for estimating shape-restricted functions is as follows.

yi = wT
i β +

K∑
k=1

fk(xi,k) + ϵi, i = 1, . . . , n,

where fk is an unknown shape-restricted function of the scalar xi,k ∈ [0, 1] and the error terms {ϵi}
are a random sample from a normal distribution, N(0, σ2).

The prior of function without shape restriction is:

f(x) = Z(x),

where Z is a second-order Gaussian process with mean function equal to zero and covariance func-
tion ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The Gaussian process is expressed with the spectral
representation based on cosine basis functions:

Z(x) =

∞∑
j=0

θjφj(x)

φ0(x) = 1 and φj(x) =
√
2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of
Gaussian processes:

f (q)(x) = δZ2(x)h(x), δ ∈ {1,−1}, q ∈ {1, 2},

where h is the squish function. For monotonic, monotonic convex, and concave functions, h(x) =
1, while for S and U shaped functions, h is defined by

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
, ψ > 0, 0 < ω < 1
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For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used
(The intercept is included in β):

θj |σ, τ, γ ∼ N(0, σ2τ2 exp[−jγ]), j ≥ 1

The priors for the spectral coefficients of shape restricted functions are:

θ0|σ ∼ N(mθ0 , σv
2
θ0), θj |σ, τ, γ ∼ N(mθj , στ

2 exp[−jγ]), j ≥ 1

To complete the model specification, the conjugate priors are assumed for β and σ:

β|σ ∼ N(m0,β , σ
2V0,β), σ2 ∼ IG

(r0,σ
2
,
s0,σ
2

)
Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lmarg.lm log marginal likelihood for linear regression model.

lmarg.gd log marginal likelihood using Gelfand-Dey method.

lmarg.nr log marginal likelihood using Netwon-Raftery method, which is biased.

rsquarey correlation between y and ŷ.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Lenk, P. and Choi, T. (2017) Bayesian Analysis of Shape-Restricted Functions using Gaussian
Process Priors. Statistica Sinica, 27, 43-69.

Gelfand, A. E. and Dey, K. K. (1994) Bayesian model choice: asymptotics and exact calculations.
Journal of the Royal Statistical Society. Series B - Statistical Methodology, 56, 501-514.

Newton, M. A. and Raftery, A. E. (1994) Approximate Bayesian inference with the weighted like-
lihood bootstrap (with discussion). Journal of the Royal Statistical Society. Series B - Statistical
Methodology, 56, 3-48.

See Also

bsardpm
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Examples

## Not run:

##########################################
# Increasing Convex to Concave (S-shape) #
##########################################

# simulate data
f <- function(x) 5*exp(-10*(x - 1)^4) + 5*x^2

set.seed(1)

n <- 100
x <- runif(n)
y <- f(x) + rnorm(n, sd = 1)

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsar(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex',

spm.adequacy = TRUE)

# Summary
print(fout); summary(fout)

# Trace plots
plot(fout)

# fitted values
fit <- fitted(fout)

# Plot
plot(fit, ask = TRUE)

#############################################
# Additive Model #
# Monotone-Increasing and Increasing-Convex #
#############################################

# Simulate data
f1 <- function(x) 2*pi*x + sin(2*pi*x)
f2 <- function(x) exp(6*x - 3)

n <- 200
x1 <- runif(n)
x2 <- runif(n)
x <- cbind(x1, x2)

y <- 5 + f1(x1) + f2(x2) + rnorm(n, sd = 0.5)
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# Number of cosine basis functions
nbasis <- 50

# MCMC parameters
mcmc <- list(nblow0 = 1000, nblow = 10000, nskip = 10,

smcmc = 5000, ndisp = 1000, maxmodmet = 10)

# Prior information
xmin <- apply(x, 2, min)
xmax <- apply(x, 2, max)
xrange <- xmax - xmin
prior <- list(iflagprior = 0, theta0_m0 = 0, theta0_s0 = 100,

tau2_m0 = 1, tau2_v0 = 100, w0 = 2,
beta_m0 = numeric(1), beta_v0 = diag(100,1),
sigma2_m0 = 1, sigma2_v0 = 1000,
alpha_m0 = 3, alpha_s0 = 50, iflagpsi = 1,
psifixed = 1000, omega_m0 = (xmin + xmax)/2,
omega_s0 = (xrange)/8)

# Fit the model with user specific priors and mcmc parameters
fout <- bsar(y ~ fs(x1) + fs(x2), nbasis = nbasis, mcmc = mcmc, prior = prior,

shape = c('Increasing', 'IncreasingS'))

# Summary
print(fout); summary(fout)

## End(Not run)

bsarBig Bayesian Spectral Analysis Regression for Big data

Description

This function fits a Bayesian spectral analysis regression model for Big data.

Usage

bsarBig(formula, nbasis, nint, mcmc = list(), prior = list(), verbose = FALSE)

Arguments

formula an object of class “formula”

nbasis number of cosine basis functions.

nint number of grid points where the unknown function is evaluated for plotting. The
default is 500.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow (10000) giving the number of MCMC
in transition period, nskip (10) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis, and ndisp (1000) giving the number of
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saved draws to be displayed on screen (the function reports on the screen when
every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): sigma2_m0 and sigma2_v0
giving the prior mean and variance of the inverse gamma prior for the scale
parameter of response, tau2_m0, tau2_s0 and w0 giving the prior mean and
standard deviation of smoothing prior.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Value

The MCMC samples of the parameters in the model are stored in the list mcmc.draws and the
posterior samples of the fitted values are stored in the list fit.draws. The output list also includes
the following objects:

post.est posterior estimates for all parameters in the model.

call the matched call.

mcmctime running time of Markov chain from system.time().

See Also

bsar

Examples

# Ttrue function
ftrue <- function(x){

ft <- 7*exp(-3*x) + 2*exp(-70*(x-.6)^2) - 2 + 5*x
return(ft)

}

# Generate data
set.seed(1)

nobs <- 100000 # Number of observations
sigmat <- .5 # True sigma
nxgrid <- 500 # number of grid points: approximate likelihood & plots

xdata <- runif(nobs) # Generate x values
fobst <- ftrue(xdata) # True f at observations
ydata <- fobst + sigmat*rnorm(nobs)

# Compute grid on 0 to 1
xdelta <- 1/nxgrid
xgrid <- seq(xdelta/2, 1-xdelta/2, xdelta)
xgrid <- matrix(xgrid,nxgrid)
fxgridt <- ftrue(xgrid) # True f on xgrid

# Fit data
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fout <- bsarBig(ydata ~ xdata, nbasis = 50, nint = nxgrid, verbose = TRUE)

# Plots
smcmc <- fout$mcmc$smcmc
t <- 1:smcmc
par(mfrow=c(2,2))
matplot(t, fout$mcmc.draws$theta, type = "l", main = "Theta", xlab = "Iteration", ylab = "Draw")
plot(t, fout$mcmc.draws$sigma, type = "l", main = "Sigma", xlab = "Iteration", ylab = "Draw")
matplot(t, fout$mcmc.draws$tau, type = "l", main = "Tau", xlab = "Iteration", ylab = "Draw")
matplot(t, fout$mcmc.draws$gamma, type = "l", main = "Gamma", xlab = "Iteration", ylab = "Draw")

dev.new()
matplot(fout$fit.draws$xgrid, cbind(fxgridt, fout$post.est$fhatm, fout$post.est$fhatq),

type = "l", main = "Regression Function", xlab = "X", ylab = "Y")

# Compute RMISE for regression function
sse <- (fout$post.est$fhatm - fxgridt)^2
rmise <- intgrat(sse, 1/nxgrid)
rmise <- sqrt(rmise)
rmise

bsardpm Bayesian Shape-Restricted Spectral Analysis Regression with Dirich-
let Process Mixture Errors

Description

This function fits a Bayesian semiparametric regression model to estimate shape-restricted functions
using a spectral analysis of Gaussian process priors. The model assumes that the errors follow a
Dirichlet process mixture model.

Usage

bsardpm(formula, xmin, xmax, nbasis, nint,
mcmc = list(), prior = list(), egrid, ngrid, location = TRUE,
shape = c('Free', 'Increasing', 'Decreasing', 'IncreasingConvex', 'DecreasingConcave',
'IncreasingConcave', 'DecreasingConvex', 'IncreasingS', 'DecreasingS',
'IncreasingRotatedS','DecreasingRotatedS','InvertedU','Ushape'),
verbose = FALSE)

Arguments

formula an object of class “formula”

xmin a vector or scalar giving user-specific minimum values of x. The default values
are minimum values of x.

xmax a vector or scalar giving user-specific maximum values of x. The default values
are maximum values of x.

nbasis number of cosine basis functions.



bsardpm 25

nint number of grid points where the unknown function is evaluated for plotting. The
default is 200.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow0 (1000) giving the number of ini-
tialization period for adaptive metropolis, maxmodmet (5) giving the maximum
number of times to modify metropolis, nblow (10000) giving the number of
MCMC in transition period, nskip (10) giving the thinning interval, smcmc
(1000) giving the number of MCMC for analysis, and ndisp (1000) giving
the number of saved draws to be displayed on screen (the function reports on
the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parame-
ters (default values specify the non-informative prior): iflagprior choosing a
smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior
(default), iflagprior=1 chooses Lasso-Smoother prior), theta0_m0 and theta0_s0
giving the hyperparameters for prior distribution of the spectral coefficients
(theta0_m0 and theta0_s0 are used when the functions have shape-restriction),
tau2_m0, tau2_s0 and w0 giving the prior mean and standard deviation of
smoothing prior (When iflagprior=1, tau2_m0 is only used as the hyperparame-
ter), beta_m0 and beta_v0 giving the hyperparameters of the multivariate nor-
mal distribution for parametric part including intercept, sigma2_m0 and sigma2_v0
giving the prior mean and variance of the inverse gamma prior for the scale pa-
rameter of response, alpha_m0 and alpha_s0 giving the prior mean and stan-
dard deviation of the truncated normal prior distribution for the constant of in-
tegration, iflagpsi determining the prior of slope for logisitic function in S or
U shaped (iflagpsi=1 (default), slope ψ is sampled and iflagpsi=0, ψ is fixed),
psifixed giving initial value (iflagpsi=1) or fixed value (iflagpsi=0) of slope,
omega_m0 and omega_s0 giving the prior mean and standard deviation of the
truncated normal prior distribution for the inflection point of S or U shaped func-
tion.

egrid a vector giving grid points where the residual density estimate is evaluated. The
default range is from -10 to 10.

ngrid a vector giving number of grid points where the residual density estimate is
evaluated. The default value is 500.

location a logical value. If it is true, error density is modelled using location-scale mix-
ture.

shape a vector giving types of shape restriction.

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a Bayesian spectral analysis regression model for estimating shape-
restricted functions using Gaussian process priors. For enforcing shape-restrictions, the model
assumes that the derivatives of the functions are squares of Gaussian processes. The model also
assumes that the errors follow a Dirichlet process mixture model.
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Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response through an unknown shape-restricted function. The model
for estimating shape-restricted functions is as follows.

yi = wT
i β +

K∑
k=1

fk(xi,k) + ϵi, i = 1, . . . , n,

where fk is an unknown shape-restricted function of the scalar xi,k ∈ [0, 1] and the error terms {ϵi}
are a random sample from a Dirichlet process mixture model,

1. scale mixture :
ϵi ∼ f(ϵ) =

∫
N(ϵ; 0, σ2)dG(σ2),

G ∼ DP (M,G0), G0 = Ga
(
σ−2;

r0,σ
2
,
s0,σ
2

)
.

2. location-scale mixture :

ϵi ∼ f(ϵ) =

∫
N(ϵ;µ, σ2)dG(µ, σ2),

G ∼ DP (M,G0), G0 = N
(
µ;µ0, κσ

2
)
Ga

(
σ−2;

r0,σ
2
,
s0,σ
2

)
.

The prior of function without shape restriction is:

f(x) = Z(x),

where Z is a second-order Gaussian process with mean function equal to zero and covariance func-
tion ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The Gaussian process is expressed with the spectral
representation based on cosine basis functions:

Z(x) =

∞∑
j=0

θjφj(x)

φ0(x) = 1 and φj(x) =
√
2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of
Gaussian processes:

f (q)(x) = δZ2(x)h(x), δ ∈ {1,−1}, q ∈ {1, 2},

where h is the squish function. For monotonic, monotonic convex, and concave functions, h(x) =
1, while for S and U shaped functions, h is defined by

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
, ψ > 0, 0 < ω < 1

For the spectral coefficients of functions without shape constraints, the scale-invariant prior is used
(The intercept is included in β):

θj |τ, γ ∼ N(0, τ2 exp[−jγ]), j ≥ 1
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The priors for the spectral coefficients of shape restricted functions are:

θ0 ∼ N(mθ0 , v
2
θ0), θj |τ, γ ∼ N(mθj , τ

2 exp[−jγ]), j ≥ 1

To complete the model specification, the popular normal prior is assumed for β:

β| ∼ N(m0,β , V0,β)

Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lpml log pseudo marginal likelihood using Mukhopadhyay and Gelfand method.

imodmet the number of times to modify Metropolis.

pmet proportion of θ accepted after burn-in.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Lenk, P. and Choi, T. (2017) Bayesian Analysis of Shape-Restricted Functions using Gaussian
Process Priors. Statistica Sinica, 27, 43-69.

MacEachern, S. N. and Müller, P. (1998) Estimating mixture of Dirichlet process models. Journal
of Computational and Graphical Statistics, 7, 223-238.

Mukhopadhyay, S. and Gelfand, A. E. (1997) Dirichlet process mixed generalized linear models.
Journal of the American Statistical Association, 92, 633-639.

Neal, R. M. (2000) Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistics, 9, 249-265.

See Also

bsar, bsaqdpm
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Examples

## Not run:
#####################
# Increasing-convex #
#####################

# Simulate data
set.seed(1)

n <- 200
x <- runif(n)
e <- c(rnorm(n/2, sd = 0.5), rnorm(n/2, sd = 3))
y <- exp(6*x - 3) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsardpm(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex')

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# Plot
plot(fit, ask = TRUE)

## End(Not run)

cadmium Cadmium dose-response meta data

Description

This dataset includes minimal information of NCC-2012 meta data.

Usage

data("cadmium")

Format

A data frame with 190 observations on the following 5 variables.

gender a numeric vector with 1 : Female, 0 : Male, 0.5 : Unknown or both

ethnicity a integer vector with 1 : Asian, 2 : Caucasian
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Ucd_GM a numeric vector of Geometric means of urinary cadmium

b2_GM a numeric vector of Geometric means of Beta2-Microglobulin

isOld a logical vector whether the observation is older than 50

References

Lee, Minjea, Choi, Taeryon; Kim, Jeongseon; Woo, Hae Dong (2013) Bayesian Analysis of Dose-
Effect Relationship of Cadmium for Benchmark Dose Evaluation. Korean Journal of Applied Statis-
tics, 26(3), 453–470.

Examples

## Not run:
data(cadmium)

## End(Not run)

Elec.demand Electricity demand data

Description

The Elec.demand data consists of 288 quarterly observations in Ontario from 1971 to 1994.

Usage

data(Elec.demand)

Format

A data frame with 288 observations on the following 7 variables.

quarter date (yyyy-mm) from 1971 to 1994

enerm electricity demand.

gdp gross domestic product.

pelec price of electricity.

pgas price of natural gas.

hddqm the number of heating degree days relative to a reference temperature.

cddqm the number of cooling degree days relative to a reference temperature.

Source

Yatchew, A. (2003). Semiparametric Regression for the Applied Econometrician. Cambridge Uni-
versity Press.
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References

Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the
relation between weather and electricity sales. Journal of the American Statistical Association, 81,
310-320.

Lenk, P. and Choi, T. (2017). Bayesian analysis of shape-restricted functions using Gaussian pro-
cess priors. Statistica Sinica, 27, 43-69.

Examples

## Not run:
data(Elec.demand)
plot(Elec.demand)

## End(Not run)

fitted.blm Compute fitted values for a blm object

Description

Computes pointwise posterior means and 95% credible intervals of the fitted Bayesian linear mod-
els.

Usage

## S3 method for class 'blm'
fitted(object, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsam object
alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.
HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density

(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.

Value

A list containing posterior means and 95% credible intervals.

The output list includes the following objects:

wbeta posterior estimates for regression function.
yhat posterior estimates for generalised regression function.
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References

Chen, M., Shao, Q. and Ibrahim, J. (2000) Monte Carlo Methods in Bayesian computation. Springer-
Verlag New York, Inc.

See Also

blq, blr, gblr

Examples

## See examples for blq and blr

fitted.bsad Compute fitted values for a bsad object

Description

Computes pointwise posterior means and 100(1 − α)% credible intervals of the fitted Bayesian
spectral analysis density estimation model.

Usage

## S3 method for class 'bsad'
fitted(object, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsad object

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.

Value

A list object of class fitted.bsad containing posterior means and 100(1−α)% credible intervals.
Generic function plot displays the results of the fit.

The output list includes the following objects:

fpar posterior estimates for parametric model.

fsemi posterior estimates for semiparametric model.

fsemiMaxKappa posterior estimates for semiparametric model with maximum number of basis.
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See Also

bsad

Examples

## See examples for bsad

fitted.bsam Compute fitted values for a bsam object

Description

Computes pointwise posterior means and 100(1 − α)% credible intervals of the fitted Bayesian
spectral analysis models.

Usage

## S3 method for class 'bsam'
fitted(object, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsam object

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.

Value

A list object of class fitted.bsam containing posterior means and 100(1−α)% credible intervals.
Generic function plot displays the results of the fit.

The output list includes the following objects:

fxobs posterior estimates for unknown functions over observation.

fxgrid posterior estimates for unknown functions over grid points.

wbeta posterior estimates for parametric part.

yhat posterior estimates for fitted values of response. For gbsar, it gives posterior
estimates for expectation of response.
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See Also

bsaq, bsaqdpm, bsar, bsardpm

Examples

## See examples for bsaq, bsaqdpm, bsar, and bsardpm

fitted.bsamdpm Compute fitted values for a bsamdpm object

Description

Computes pointwise posterior means and 100(1 − α)% credible intervals of the fitted Bayesian
spectral analysis models with Dirichlet process mixture error.

Usage

## S3 method for class 'bsamdpm'
fitted(object, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsamdpm object

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.

Value

A list object of class fitted.bsamdpm containing posterior means and 95% credible intervals.
Generic function plot displays the results of the fit.

The output list includes the following objects:

edens posterior estimate for unknown error distribution over grid points.

fxobs posterior estimates for unknown functions over observation.

fxgrid posterior estimates for unknown functions over grid points.

wbeta posterior estimates for parametric part.

yhat posterior estimates for fitted values of response.
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See Also

bsaqdpm, bsardpm

Examples

## See examples for bsaqdpm and bsardpm

fs Specify a Fourier Basis Fit in a BSAM Formula

Description

A symbolic wrapper to indicate a nonparametric term in a formula argument to bsaq, bsaqdpm,
bsar, bsardpm, and gbsar.

Usage

fs(x)

Arguments

x a vector of the univariate covariate for nonparametric component

Examples

## Not run:

# fit x using a Fourier basis
y ~ w + fs(x)

# fit x1 and x2 using a Fourier basis
y ~ fs(x1) + fs(x2)

## End(Not run)

gblr Generalized Bayesian Linear Models

Description

This function fits a Bayesian generalized linear regression model.

Usage

gblr(formula, data = NULL, family, link, mcmc = list(), prior = list(),
marginal.likelihood = TRUE, algorithm = c('AM', 'KS'), verbose = FALSE)
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Arguments

formula an object of class “formula”

data an optional data frame.

family a description of the error distribution to be used in the model: The family
contains bernoulli (“bernoulli”), poisson (“poisson”), negative-binomial (“neg-
ative.binomial”), poisson-gamma mixture (“poisson.gamma”).

link a description of the link function to be used in the model.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow (10000) giving the number of MCMC
in transition period, nskip (10) giving the thinning interval, smcmc (1000) giv-
ing the number of MCMC for analysis, and ndisp (1000) giving the number of
saved draws to be displayed on screen (the function reports on the screen when
every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parameters
(default values specify the non-informative prior): beta_m0 and beta_v0 giving
the hyperparameters of the multivariate normal distribution for parametric part
including intercept, kappa_m0 and kappa_v0 giving the prior mean and variance
of the gammal prior distribution for dispersion parameter (negative-binomial).

marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.
The methods of Gelfand and Dey (1994) is used.

algorithm a description of the algorithm to be used in the fitting of the logistic model:
The algorithm contains the Gibbs sampler based on the Kolmogorov-Smirnov
distribution (KS) and an adaptive Metropolis algorithm (AM).

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a Bayesian generalized linear regression models.

Let yi and wi be the response and the vector of parametric predictors, respectively. The model is as
follows.

yi|µi ∼ F (µi),

g(µi) = wT
i β, i = 1, . . . , n,

where g(·) is a link function and F (·) is a distribution of an exponential family.

For unknown coefficients, the following prior is assumed for β:

β ∼ N(m0,β , V0,β)

The prior for the dispersion parameter of negative-binomial regression is

κ ∼ Ga(r0, s0)
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Value

An object of class blm representing the generalized Bayesian linear model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.

lmarg log marginal likelihood using Gelfand-Dey method.

family the family object used.

link the link object used.

methods the method object used in the logit model.

call the matched call.

mcmctime running time of Markov chain from system.time().

References

Albert, J. H. and Chib, S. (1993) Bayesian Analysis of Binary and Polychotomous Response Data.
Journal of the American Statistical Association, 88, 669-679.

Holmes, C. C. and Held, L. (2006) Bayesian Auxiliary Variables Models for Binary and Multino-
mial Regression. Bayesian Analysis, 1, 145-168.

Gelfand, A. E. and Dey, K. K. (1994) Bayesian Model Choice: Asymptotics and Exact Calculations.
Journal of the Royal Statistical Society. Series B - Statistical Methodology, 56, 501-514.

Roberts, G. O. and Rosenthal, J. S. (2009) Examples of Adaptive MCMC. Journal of Computational
and Graphical Statistics, 18, 349-367.

See Also

blr, blq

Examples

############################
# Poisson Regression Model #
############################

# Simulate data
set.seed(1)

n <- 100
x <- runif(n)
y <- rpois(n, exp(0.5 + x*0.4))

# Fit the model with default priors and mcmc parameters
fout <- gblr(y ~ x, family = 'poisson', link = 'log')
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# Summary
print(fout); summary(fout)

# Plot
plot(fout)

# fitted values
fitf <- fitted(fout)

gbsar Bayesian Shape-Restricted Spectral Analysis for Generalized Partial
Linear Models

Description

This function fits a Bayesian generalized partial linear regression model to estimate shape-restricted
functions using a spectral analysis of Gaussian process priors.

Usage

gbsar(formula, xmin, xmax, family, link, nbasis, nint, mcmc = list(), prior = list(),
shape = c('Free','Increasing','Decreasing','IncreasingConvex','DecreasingConcave',

'IncreasingConcave','DecreasingConvex','IncreasingS','DecreasingS',
'IncreasingRotatedS','DecreasingRotatedS','InvertedU','Ushape'),

marginal.likelihood = TRUE, algorithm = c('AM', 'KS'), verbose = FALSE)

Arguments

formula an object of class “formula”

xmin a vector or scalar giving user-specific minimum values of x. The default values
are minimum values of x.

xmax a vector or scalar giving user-specific maximum values of x. The default values
are maximum values of x.

family a description of the error distribution to be used in the model: The family
contains bernoulli (“bernoulli”), poisson (“poisson”), negative-binomial (“neg-
ative.binomial”), poisson-gamma mixture (“poisson.gamma”).

link a description of the link function to be used in the model.

nbasis number of cosine basis functions.

nint number of grid points where the unknown function is evaluated for plotting. The
default is 200.

mcmc a list giving the MCMC parameters. The list includes the following integers
(with default values in parentheses): nblow0 (1000) giving the number of ini-
tialization period for adaptive metropolis, maxmodmet (5) giving the maximum
number of times to modify metropolis, nblow (10000) giving the number of
MCMC in transition period, nskip (10) giving the thinning interval, smcmc
(1000) giving the number of MCMC for analysis, and ndisp (1000) giving
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the number of saved draws to be displayed on screen (the function reports on
the screen when every ndisp iterations have been carried out).

prior a list giving the prior information. The list includes the following parame-
ters (default values specify the non-informative prior): iflagprior choosing a
smoothing prior for spectral coefficients (iflagprior=0 assigns T-Smoother prior
(default), iflagprior=1 chooses Lasso-Smoother prior), theta_m0, theta0_m0
and theta0_s0 giving the hyperparameters for prior distribution of the spec-
tral coefficients (theta0_m0 and theta0_s0 are used when the functions have
shape-restriction), tau2_m0, tau2_s0 and w0 giving the prior mean and standard
deviation of smoothing prior (When iflagprior=1, tau2_m0 is only used as the
hyperparameter), beta_m0 and beta_v0 giving the hyperparameters of the mul-
tivariate normal distribution for parametric part including intercept, alpha_m0
and alpha_s0 giving the prior mean and standard deviation of the truncated
normal prior distribution for the constant of integration, iflagpsi determining
the prior of slope for logisitic function in S or U shaped (iflagpsi=1 (default),
slope ψ is sampled and iflagpsi=0, ψ is fixed), psifixed giving initial value
(iflagpsi=1) or fixed value (iflagpsi=0) of slope, omega_m0 and omega_s0 giving
the prior mean and standard deviation of the truncated normal prior distribution
for the inflection point of S or U shaped function, kappa_m0 and kappa_v0 giv-
ing the prior mean and variance of the gammal prior distribution for dispersion
parameter (negative-binomial).

shape a vector giving types of shape restriction.
marginal.likelihood

a logical variable indicating whether the log marginal likelihood is calculated.
The methods of Gelfand and Dey (1994) and Newton and Raftery (1994) are
used.

algorithm a description of the algorithm to be used in the fitting of the logistic model:
The algorithm contains the Gibbs sampler based on the Kolmogorov-Smirnov
distribution (KS) and an adaptive Metropolis algorithm (AM).

verbose a logical variable. If TRUE, the iteration number and the Metropolis acceptance
rate are printed to the screen.

Details

This generic function fits a Bayesian generalized partial linear regression models for estimating
shape-restricted functions using Gaussian process priors. For enforcing shape-restrictions, they
assumed that the derivatives of the functions are squares of Gaussian processes.

Let yi and wi be the response and the vector of parametric predictors, respectively. Further, let xi,k
be the covariate related to the response through an unknown shape-restricted function. The model
for estimating shape-restricted functions is as follows.

yi|µi ∼ F (µi),

g(µi) = wT
i β +

K∑
k=1

fk(xi,k), i = 1, . . . , n,

where g(·) is a link function and fk is an unknown nonlinear function of the scalar xi,k ∈ [0, 1].
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The prior of function without shape restriction is:

f(x) = Z(x),

where Z is a second-order Gaussian process with mean function equal to zero and covariance func-
tion ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The Gaussian process is expressed with the spectral
representation based on cosine basis functions:

Z(x) =

∞∑
j=0

θjφj(x)

φ0(x) = 1 and φj(x) =
√
2 cos(πjx), j ≥ 1, 0 ≤ x ≤ 1

The shape-restricted functions are modeled by assuming the qth derivatives of f are squares of
Gaussian processes:

f (q)(x) = δZ2(x)h(x), δ ∈ {1,−1}, q ∈ {1, 2},

where h is the squish function. For monotonic, monotonic convex, and concave functions, h(x) =
1, while for S and U shaped functions, h is defined by

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
, ψ > 0, 0 < ω < 1

For the spectral coefficients of functions without shape constraints, the following prior is used (The
intercept is included in β):

θj |τ, γ ∼ N(0, τ2 exp[−jγ]), j ≥ 1

The priors for the spectral coefficients of shape restricted functions are:

θ0| ∼ N(mθ0 , v
2
θ0), θj |τ, γ ∼ N(mθj , τ

2 exp[−jγ]), j ≥ 1

To complete the model specification, the following prior is assumed for β:

β| ∼ N(m0,β , V0,β)

Value

An object of class bsam representing the Bayesian spectral analysis model fit. Generic functions
such as print, fitted and plot have methods to show the results of the fit.

The MCMC samples of the parameters in the model are stored in the list mcmc.draws, the posterior
samples of the fitted values are stored in the list fit.draws, and the MCMC samples for the log
marginal likelihood are saved in the list loglik.draws. The output list also includes the following
objects:

post.est posterior estimates for all parameters in the model.
lmarg.gd log marginal likelihood using Gelfand-Dey method.
lmarg.nr log marginal likelihood using Netwon-Raftery method, which is biased.
family the family object used.
link the link object used.
call the matched call.
mcmctime running time of Markov chain from system.time().
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References

Jo, S., Choi, T., Park, B. and Lenk, P. (2019). bsamGP: An R Package for Bayesian Spectral
Analysis Models Using Gaussian Process Priors. Journal of Statistical Software, 90, 310-320.

Lenk, P. and Choi, T. (2017) Bayesian Analysis of Shape-Restricted Functions using Gaussian
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Roberts, G. O. and Rosenthal, J. S. (2009) Examples of Adaptive MCMC. Journal of Computational
and Graphical Statistics, 18, 349-367.
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Gelfand, A. E. and Dey, K. K. (1994) Bayesian model choice: asymptotics and exact calculations.
Journal of the Royal Statistical Society. Series B - Statistical Methodology, 56, 501-514.

Newton, M. A. and Raftery, A. E. (1994) Approximate Bayesian inference with the weighted like-
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Albert, J. H. and Chib, S. (1993) Bayesian Analysis of Binary and Polychotomous Response Data.
Journal of the American Statistical Association, 88, 669-679.

See Also

bsaq, bsar

Examples

## Not run:
###########################
# Probit Regression Model #
###########################

# Simulate data
set.seed(1)

f <- function(x) 1.5 * sin(pi * x)

n <- 1000
b <- c(1,-1)
rho <- 0.7
u <- runif(n, min = -1, max = 1)
x <- runif(n, min = -1, max = 1)
w1 <- runif(n, min = -1, max = 1)
w2 <- round(f(rho * x + (1 - rho) * u))
w <- cbind(w1, w2)

y <- w %*% b + f(x) + rnorm(n)
y <- (y > 0)

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
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fout <- gbsar(y ~ w1 + w2 + fs(x), family = "bernoulli", link = "probit",
nbasis = nbasis, shape = 'Free')

# Summary
print(fout); summary(fout)

# fitted values
fit <- fitted(fout)

# Plot
plot(fit, ask = TRUE)

######################################
# Logistic Additive Regression Model #
######################################

# Wage-Union data
data(wage.union); attach(wage.union)

race[race==1 | race==2]=0
race[race==3]=1

y <- union
w <- cbind(race,sex,south)
x <- cbind(wage,education,age)

# mcmc parameters
mcmc <- list(nblow0 = 10000,

nblow = 10000,
nskip = 10,
smcmc = 1000,
ndisp = 1000,
maxmodmet = 10)

foutGBSAR <- gbsar(y ~ race + sex + south + fs(wage) + fs(education) + fs(age),
family = 'bernoulli', link = 'logit', nbasis = 50, mcmc = mcmc,
shape = c('Free','Decreasing','Increasing'))

# fitted values
fitGBSAR <- fitted(foutGBSAR)

# Plot
plot(fitGBSAR, ask = TRUE)

## End(Not run)

intgrat Numerical integration using a simple Trapezoidal rule
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Description

Trapezoidal rule is a technique for approximating the definite integral.

Usage

intgrat(f, delta)

Arguments

f Function values to be integrated.

delta Spacing size.

Value

intgrat returns the value of the intergral.

intsim Numerical integration using Simpson’s rule

Description

Simpson’s rule is a method for numerical integration.

Usage

intsim(f, delta)

Arguments

f Function values to be integrated.

delta Spacing size.

Value

intsim returns the value of the intergral.
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London.Mortality Daily Moratlity in London

Description

The London.Mortality data consists of daily death occurrences from Jan. 1st, 1993 to Dec. 31st,
2006 and corresponding weather observations including temperature and humidity in London.

Usage

data(London.Mortality)

Format

A data frame with 5113 observations on the following 7 variables.

date date in YYYY-MM-DD.

tmean Mean temperature.

tmin Minimum dry-bulb temperature.

tmax Maximum dry-bulb temperature.

dewp Dew point.

rh Relative humidity.

death the number of death occurences.

Source

Office for National Statistics

British Atmospheric Data Centre

https://github.com/gasparrini/2015_gasparrini_Lancet_Rcodedata

References

Armstrong BG, Chalabi Z, Fenn B, Hajat S, Kovats S, Milojevic A, Wilkinson P (2011). Associ-
ation of mortality with high temperatures in a temperate climate: England and Wales. Journal of
Epidemiology & Community Health, 65(4), 340–345.

Gasparrini A, Armstrong B, Kovats S, Wilkinson P (2012). The effect of high temperatures on
cause-specific mortality in England and Wales. Occupational and Environmental Medicine, 69(1),
56–61.

Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rock-
löv J, Forsberg B, et al.(2015). Mortality risk attributable to high and low ambient temperature: a
multicountry observational study. The Lancet, 386(9991), 369-375.
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Examples

## Not run:
data(London.Mortality)

## End(Not run)

plasma A Data Set for Plasma Levels of Retinol and Beta-Carotene

Description

This data set contains 314 observations on 14 variables.

Usage

data(plasma)

Format

age Age (years).
sex Sex (1=Male, 2=Female).
smoke Smoking status (1=Never, 2=Former, 3=Current Smoker).
vmi BMI values (weight/(height^2)).
vitas Vitamin use (1=Yes,fairly often, 2=Yes, not often, 3=No).
calories Number of calories consumed per day.
fat Grams of fat consumed per day.
fiber Grams of fiber consumed per day.
alcohol Number of alcoholic drinks consumed per week.
cholesterol Cholesterol consumed (mg per day).
beta diet Dietary beta-carotene consumed (mcg per day).
reedit Dietary retinol consumed (mcg per day).
betaplasma Plasma beta-carotene (ng/ml).
retplasma Plasma Retinol (ng/ml).

Source

https://lib.stat.cmu.edu/datasets/Plasma_Retinol

References

Nierenberg, D. W., Stukel, T. A., Baron, J. A., Dain, B. J., and Greenberg, E. R. (1989). Deter-
minants of plasma levels of beta-carotene and retinol. American Journal of Epidemiology, 130,
511-521.

Meyer, M. C., Hackstadt, A. J., and Hoeting, J. A. (2011). Bayesian estimation and inference for
generalized partial linear models using shape-restricted splines. Journal of Nonparametric Statis-
tics, 23(4), 867-884.

https://lib.stat.cmu.edu/datasets/Plasma_Retinol


plot.blm 45

Examples

## Not run:
data(plasma)

## End(Not run)

plot.blm Plot a blm object

Description

Plots the posterior samples for Bayesian linear models

Usage

## S3 method for class 'blm'
plot(x, ...)

Arguments

x a blm object

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

blq, blr

Examples

## See examples for blq and blr
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plot.bsad Plot a bsad object

Description

Plots the posterior samples for Bayesian semiparametric density estimation using a logistic Gaus-
sian process.

Usage

## S3 method for class 'bsad'
plot(x, ...)

Arguments

x a bsad object

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsad

Examples

## See examples for bsad

plot.bsam Plot a bsam object

Description

Plots the posterior samples for Bayesian spectral analysis models.

Usage

## S3 method for class 'bsam'
plot(x, ...)

Arguments

x a bsam object

... other options to pass to the plotting functions
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Value

Returns a plot.

See Also

bsaq, bsaqdpm, bsar, bsardpm

Examples

## See examples for bsaq, bsaqdpm, bsar, and bsardpm

plot.bsamdpm Plot a bsamdpm object

Description

Plots the posterior samples for Bayesian spectral analysis models with Dirichlet process mixture
error.

Usage

## S3 method for class 'bsamdpm'
plot(x, ...)

Arguments

x a bsamdpm object

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsaqdpm, bsardpm

Examples

## See examples for bsaqdpm and bsardpm
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plot.fitted.bsad Plot a fitted.bsad object

Description

Plots the predictive density for Bayesian density estimation model using logistic Gaussian process

Usage

## S3 method for class 'fitted.bsad'
plot(x, ggplot2, legend.position, nbins, ...)

Arguments

x a fitted.bsad object

ggplot2 a logical variable. If TRUE the ggplot2 package is used.
legend.position

the position of legends (“none”, “left”, “right”, “bottom”, “top”). It is used when
ggplot2 = TRUE.

nbins Number of bins used. Default is 30.

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsad, fitted.bsad

Examples

## See example for bsad

plot.fitted.bsam Plot a fitted.bsam object

Description

Plots the data and the fit for Bayesian spectral analysis models.

Usage

## S3 method for class 'fitted.bsam'
plot(x, type, ask, ggplot2, legend.position, ...)
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Arguments

x a fitted.bsam object

type the type of fitted plot. The default is on the scale of the response variabletype="response";
the alternative type="term" is on the scale of the nonparametric predictor. Note
that this affects only on glm type models. For example, binomial model with the
default option gives the predicted probabilites.

ask see. par

ggplot2 a logical variable. If TRUE the ggplot2 package is used.
legend.position

the position of legends (“none”, “left”, “right”, “bottom”, “top”). It is used when
ggplot2 = TRUE.

... other options to pass to the plotting functions

Value

Returns a plot.

See Also

bsaq, bsaqdpm, bsar, bsardpm, fitted.bsam

Examples

## See examples for bsaq, bsaqdpm, bsar, and bsardpm

plot.fitted.bsamdpm Plot a fitted.bsamdpm object

Description

Plots the data and the fit for Bayesian spectral analysis models with Dirichlet process mixture error.

Usage

## S3 method for class 'fitted.bsamdpm'
plot(x, ask, ggplot2, legend.position, ...)

Arguments

x a fitted.bsamdpm object

ask see. par

ggplot2 a logical variable. If TRUE the ggplot2 package is used.
legend.position

the position of legends (“none”, “left”, “right”, “bottom”, “top”). It is used when
ggplot2 = TRUE.

... other options to pass to the plotting functions
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Value

Returns a plot.

See Also

bsaqdpm, bsardpm, fitted.bsamdpm

Examples

## See examples for bsaqdpm and bsardpm

predict.blm Predict method for a blm object

Description

Computes predicted values of Bayesian linear models.

Usage

## S3 method for class 'blm'
predict(object, newdata, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsam object

newdata an optional data matrix or vector with which to predict. If omitted, the fitted
values are returned.

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.

Value

A list containing posterior means and 95% credible intervals.

The output list includes the following objects:

wbeta posterior estimates for regression function.

yhat posterior estimates for generalised regression function.
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References

Chen, M., Shao, Q. and Ibrahim, J. (2000) Monte Carlo Methods in Bayesian computation. Springer-
Verlag New York, Inc.

See Also

blq, blr, gblr

Examples

## Not run:
#####################
# Simulated example #
#####################

# Simulate data
set.seed(1)

n <- 100
w <- runif(n)
y <- 3 + 2*w + rnorm(n, sd = 0.8)

# Fit the model with default priors and mcmc parameters
fout <- blr(y ~ w)

# Predict
new <- rnorm(n)
predict(fout, newdata = new)

## End(Not run)

predict.bsam Predict method for a bsam object

Description

Computes the predicted values of Bayesian spectral analysis models.

Usage

## S3 method for class 'bsam'
predict(object, newp, newnp, alpha = 0.05, HPD = TRUE, type = "response", ...)

Arguments

object a bsam object

newp an optional data of parametric components with which to predict. If omitted, the
fitted values are returned.
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newnp an optional data of nonparametric components with which to predict. If omitted,
the fitted values are returned.

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

type the type of prediction required. type = "response" gives the posterior predic-
tive samples as default. The "mean" option returns expectation of the posterior
estimates.

... not used

Details

None.

Value

A list object of class predict.bsam containing posterior means and 100(1−α)% credible intervals.

The output list includes the following objects:

fxobs posterior estimates for unknown functions over observation.

wbeta posterior estimates for parametric part.

yhat posterior estimates for fitted values of either response or expectation of response.
For gbsar, it gives posterior estimates for expectation of response.

fxResid posterior estimates for fitted parametric residuals. Not applicable for gbsar.

See Also

bsaq, bsar, gbsar

Examples

## Not run:

##########################################
# Increasing Convex to Concave (S-shape) #
##########################################

# simulate data
f <- function(x) 5*exp(-10*(x - 1)^4) + 5*x^2

set.seed(1)

n <- 100
x <- runif(n)
y <- f(x) + rnorm(n, sd = 1)

# Number of cosine basis functions
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nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsar(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex',

spm.adequacy = TRUE)

# Prediction
xnew <- runif(n)
predict(fout, newnp = xnew)

## End(Not run)

predict.bsamdpm Predict method for a bsamdpm object

Description

Computes the predicted values of Bayesian spectral analysis models with Dirichlet process mixture
errors.

Usage

## S3 method for class 'bsamdpm'
predict(object, newp, newnp, alpha = 0.05, HPD = TRUE, ...)

Arguments

object a bsamdpm object

newp an optional data of parametric components with which to predict. If omitted, the
fitted values are returned.

newnp an optional data of nonparametric components with which to predict. If omitted,
the fitted values are returned.

alpha a numeric scalar in the interval (0,1) giving the 100(1− α)% credible intervals.

HPD a logical variable indicating whether the 100(1−α)% Highest Posterior Density
(HPD) intervals are calculated. If HPD=FALSE, the 100(1 − α)% equal-tail
credible intervals are calculated. The default is TRUE.

... not used

Details

None.
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Value

A list object of class predict.bsamdpm containing posterior means and 100(1 − α)% credible
intervals.

The output list includes the following objects:

fxobs posterior estimates for unknown functions over observation.

wbeta posterior estimates for parametric part.

yhat posterior estimates for fitted values of response.

See Also

bsaqdpm, bsardpm

Examples

## Not run:

#####################
# Increasing-convex #
#####################

# Simulate data
set.seed(1)

n <- 200
x <- runif(n)
e <- c(rnorm(n/2, sd = 0.5), rnorm(n/2, sd = 3))
y <- exp(6*x - 3) + e

# Number of cosine basis functions
nbasis <- 50

# Fit the model with default priors and mcmc parameters
fout <- bsardpm(y ~ fs(x), nbasis = nbasis, shape = 'IncreasingConvex')

# Prediction
xnew <- runif(n)
predict(fout, newnp = xnew)

## End(Not run)

rald The asymmetric Laplace distribution

Description

Density for and random values from a three-parameter asymmetric Laplace distribution.
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Usage

rald(n, location=0, scale=1, p=0.5)

Arguments

n Number of random values to be generated.

location Location parameter.

scale Scale parameter.

p Skewness parameter.

Details

This generic function generates a random variable from an asymmetric Laplace distribution (ALD).
The ALD has the following probability density function:

ALDp(x;µ, σ) =
p(1− p)

σ
exp

(
− (x− µ)[p− I(x ≤ µ)]

σ

)
,

where 0 < p < 1 is the skew parameter, σ > 0 is the scale parameter, −∞ < µ <∞ is the location
parameter, and I(·) is the indication function. The range of x is (−∞,∞).

Value

rald gives out a vector of random numbers generated by the asymmetric Laplace distribution.

References

Koenker, R. and Machado, J. (1999). Goodness of fit and related inference processes for quantile
regression. Journal of the American Statistical Association, 94(3), 1296-1309.

Yu, K. and Zhang, J. (2005). A Three-parameter asymmetric Laplace distribution and its extension.
Communications in Statistics - Theory and Methods, 34, 1867-1879.

traffic Monthly traffic accidents data

Description

This data set contains 108 observations on 6 variables.

Usage

data(traffic)
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Format

ln_number logarithm of the number of monthly automobile accidents in the state of Michigan.
month months from January 1st, 1979 to Decembe 31st, 1987.
ln_unemp logarithm of unemployment rate
spring indicator for spring season.
summer indicator for summer season.
fall indicator for fall season.

References

Lenk (1999) Bayesian inference for semiparametric regression using a Fourier representation. Jour-
nal of the Royal Statistical Society: Series B, 61(4), 863-879.

Examples

## Not run:
data(traffic)
pairs(traffic)

## End(Not run)

wage.union Wage-Union data

Description

This data set contains 534 observations on 11 variables.

Usage

data(wage.union)

Format

education number of years of education.
south indicator of living in southern region of U.S.A.
sex gender indicator: 0=male,1=female.
experience number of years of work experience.
union indicator of trade union membership: 0=non-member, 1=member.
wage wages in dollars per hour.
age age in years.
race 1=black, 2=Hispanic, 3=white.
occupation 1=management, 2=sales, 3=clerical, 4=service, 5=professional, 6=other.
sector 0=other, 1=manufacturing, 2=construction.
married indicator of being married: 0=unmarried, 1=married.
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References

Berndt, E.R. (1991) The Practice of Econometrics. New York: Addison-Wesley.

Ruppert, D., Wand, M.P. and Carroll, R.J. (2003) Semiparametric Regression. Cambridge Univer-
sity Press.

Examples

## Not run:
data(wage.union)
pairs(wage.union)

## End(Not run)
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