Package ‘bcf’

February 27, 2024
Type Package

Title Causal Inference using Bayesian Causal Forests
Version 2.0.2
Date 2024-02-23

Description Causal inference for a binary treatment and continuous outcome us-
ing Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-
BA1195> for additional information. This implementation relies on code originally accompany-
ing Pratola et. al. (2013) <arXiv:1309.1906>.

License GPL-3

LinkingTo Rcpp, ReppArmadillo, ReppParallel
NeedsCompilation yes

Repository CRAN

Imports Rcpp, ReppParallel, coda (>=0.19.3), Hmisc, parallel,
doParallel, foreach, matrixStats
Suggests testthat, spelling, knitr, rmarkdown, latex2exp, ggplot2,
rpart, rpart.plot, partykit
SystemRequirements GNU make
Language en-US
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.3
Author Jared S. Murray [aut, cre],
P. Richard Hahn [aut],
Carlos Carvalho [aut],
Peter Mariani [ctb],
Constance Delannoy [ctb],
Mariel Finucane [ctb],

Lauren V. Forrow [ctb],
Drew Herren [ctb]

Maintainer Jared S. Murray <jared.murray@mccombs.utexas.edu>
Date/Publication 2024-02-27 17:30:05 UTC

https://doi.org/10.1214/19-BA1195
https://doi.org/10.1214/19-BA1195
https://arxiv.org/abs/1309.1906

2

R topics documented:

bef

bef . . 2
predict.bef 6
summarybcfo Lo 9
Index 11
bcf Fit Bayesian Causal Forests
Description

Fit Bayesian Causal Forests

Usage

bef(
y’
Z,
x_control,
x_moderate = x_control,
pihat,
w = NULL,

random_seed = sample.int(.Machine$integer.max, 1),
n_chains = 4,

n_threads = max((RcppParallel::defaultNumThreads() - 2), 1),

nburn,

nsim,

nthin = 1,
update_interval = 100,
ntree_control = 200,
sd_control = 2 * sd(y),
base_control = 0.95,
power_control = 2,
ntree_moderate = 50,
sd_moderate = sd(y),
base_moderate = 0.25,
power_moderate = 3,
no_output = FALSE,
save_tree_directory =

n o n
L]

log_file = file.path("."”, sprintf("bcf_log_%s.txt", format(Sys.time(),
"%Y%m%d_%H%EM%S"))) ,

nu = 3,

lambda = NULL,

sigq = 0.9,

sighat = NULL,

include_pi = "control”,

bef 3

use_muscale = TRUE,
use_tauscale = TRUE,
verbose = TRUE

)
Arguments

y Response variable

z Treatment variable

x_control Design matrix for the prognostic function mu(x)

x_moderate Design matrix for the covariate-dependent treatment effects tau(x)

pihat Length n estimates of propensity score

W An optional vector of weights. When present, BCF fits a model y|x N (f(x), 0% /w),
where f(z) is the unknown function.

random_seed A random seed passed to R’s set.seed

n_chains An optional integer of the number of MCMC chains to run

n_threads An optional integer of the number of threads to parallelize within chain bcf
operations on

nburn Number of burn-in MCMC iterations

nsim Number of MCMC iterations to save after burn-in. The chain will run for
nsim*nthin iterations after burn-in

nthin Save every nthin’th MCMC iterate. The total number of MCMC iterations will

be nsim*nthin + nburn.
update_interval
Print status every update_interval MCMC iterations
ntree_control Number of trees in mu(x)
sd_control SD(mu(x)) marginally at any covariate value (or its prior median if use_muscale=TRUE)
base_control Base for tree prior on mu(x) trees (see details)
power_control Power for the tree prior on mu(x) trees
ntree_moderate Number of trees in tau(x)
sd_moderate SD(tau(x)) marginally at any covariate value (or its prior median if use_tauscale=TRUE)
base_moderate Base for tree prior on tau(x) trees (see details)
power_moderate Power for the tree prior on tau(x) trees (see details)

no_output logical, whether to suppress writing trees and training log to text files, defaults
to FALSE.

save_tree_directory
Specify where trees should be saved. Keep track of this for predict(). Defaults
to working directory. Setting to NULL skips writing of trees.

log_file file where BCF should save its logs when running multiple chains in parallel.
This file is not written too when only running one chain.

nu Degrees of freedom in the chisq prior on sigma?

lambda Scale parameter in the chisq prior on sigma?

4 bcf
sigq Calibration quantile for the chisq prior on sigma?
sighat Calibration estimate for the chisq prior on sigma?
include_pi Takes values "control"”, "moderate”, "both" or "none". Whether to include pihat
in mu(x) ("control"), tau(x) ("moderate"), both or none. Values of "control" or
"both" are HIGHLY recommended with observational data.
use_muscale Use a half-Cauchy hyperprior on the scale of mu.

use_tauscale Use a half-Normal prior on the scale of tau.

verbose logical, whether to print log of MCMC iterations, defaults to TRUE.

Details

Fits the Bayesian Causal Forest model (Hahn et. al. 2020): For a response variable y, binary
treatment z, and covariates x, we return estimates of mu, tau, and sigma in the model

yi = plxg,) + 7(x,)2 + €

where 7; is an (optional) estimate of the propensity score Pr(Z; = 1|X; = ;) and ¢; ~ N (0, 02)

Some notes:

Value

By default, bef writes each sample (including the trees in the ensemble) for each chain to a
text file, which is used for prediction by the predict.bcf function. These text files may be large
if bef is run for many samples, so we also provide an option to suppress this output by setting
no_output = TRUE. If bcf is run with no_output = TRUE, it will not be possible to predict
from the model after the fact.

x_control and x_moderate must be numeric matrices. See e.g. the makeModelMatrix function
in the dbarts package for appropriately constructing a design matrix from a data.frame

sd_control and sd_moderate are the prior SD(mu(x)) and SD(tau(x)) at a given value of x
(respectively). If use_muscale = FALSE, then this is the parameter o, from the original BART
paper, where the leaf parameters have prior distribution N (0, o,,/m), where m is the number
of trees. If use_muscale=TRUE then sd_control is the prior median of a half Cauchy prior for
SD(mu(x)). If use_tauscale = TRUE, then sd_moderate is the prior median of a half Normal
prior for SD(tau(x)).

By default the prior on o2 is calibrated as in Chipman, George and McCulloch (2010).

A fitted bcf object that is a list with elements

tau

mu

nsim by n matrix of posterior samples of individual-level treatment effect esti-
mates

nsim by n matrix of posterior samples of prognostic function E(YIZ=0, x=x)
estimates

sigma Length nsim vector of posterior samples of sigma

bef 5

References

Hahn, Murray, and Carvalho (2020). Bayesian regression tree models for causal inference: reg-
ularization, confounding, and heterogeneous effects. https://projecteuclid.org/journals/bayesian-
analysis/volume-15/issue-3/Bayesian-Regression-Tree-Models-for-Causal-Inference—Regularization-
Confounding/10.1214/19-BA1195.full. (Call citation("bcf") from the command line for citation
information in Bibtex format.)

Examples
Not run:
data generating process
p = 3 #two control variables and one moderator

n = 250

set.seed(1)

x
I

= matrix(rnorm(n*p), nrow=n)

create targeted selection

a = -1x(x[,11>(x[,2D)) + 1*(x[,11<(x[,21))

generate treatment variable
pi = pnorm(q)
z = rbinom(n,1,pi)

tau is the true (homogeneous) treatment effect
tau = (0.5%x(x[,3] > -3/4) + 0.25%x(x[,3] > @) + 0.25%x(x[,31>3/4))

generate the response using q, tau and z
mu = (q + tauxz)

set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tauxpi))/8

draw the response variable with additive error
y = mu + sigma*rnorm(n)

If you didn't know pi, you would estimate it here
pihat = pnorm(q)

bef_fit = bef(y, z, x, x, pihat, nburn=2000, nsim=2000)

Get posterior of treatment effects
tau_post = bcf_fit$tau

tauhat = colMeans(tau_post)
plot(tau, tauhat); abline(0,1)

End(Not run)
Not run:

6 predict.bcf

data generating process
= 3 #two control variables and one moderator
= 250

* 5 T =

set.seed(1)
x = matrix(rnorm(n*p), nrow=n)

create targeted selection

q = ~1x(x[,11>(x[,21)) + 1*(x[,11<(x[,21))

generate treatment variable
pi = pnorm(q)
z = rbinom(n,1,pi)

tau is the true (homogeneous) treatment effect
tau = (0.5%(x[,3] > -3/4) + 0.25%x(x[,3] > @) + 0.25%x(x[,3]1>3/4))

generate the response using q, tau and z
mu = (g + tauxz)

set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tauxpi))/8

draw the response variable with additive error
y = mu + sigma*rnorm(n)

pihat = pnorm(q)

nburn and nsim should be much larger, at least a few thousand each
The low values below are for CRAN.
bcf_fit = bef(y, z, x, x, pihat, nburn=100, nsim=10)

Get posterior of treatment effects
tau_post = bcf_fit$tau

tauhat = colMeans(tau_post)
plot(tau, tauhat); abline(@,1)

End(Not run)

predict.bcf Takes a fitted bef object produced by bcf() along with serialized tree
samples and produces predictions for a new set of covariate values

Description

This function takes in an existing BCF model fit and uses it to predict estimates for new data. It
is important to note that this function requires that you indicate where the trees from the model fit
are saved. You can do so using the save_tree_directory argument in bef(). Otherwise, they will be
saved in the working directory.

predict.bcf 7

Usage

S3 method for class 'bcf'
predict(
object,
x_predict_control,
x_predict_moderate,

pi_pred,

z_pred,

save_tree_directory,

log_file = file.path("."”, sprintf("bcf_log_%s.txt", format(Sys.time(),

"9%Y%m%d_%H%M%S"))),
n_cores = 2,
verbose = TRUE,

Arguments

object output from a BCF predict run

x_predict_control
matrix of covariates for the "prognostic” function mu(x) for predictions (op-
tional)

x_predict_moderate
matrix of covariates for the covariate-dependent treatment effects tau(x) for pre-
dictions (optional)

pi_pred propensity score for prediction

z_pred Treatment variable for predictions (optional except if x_pre is not empty)
save_tree_directory
directory where the trees have been saved

log_file File to log progress
n_cores An optional integer of the number of cores to run your MCMC chains on
verbose Logical; set to FALSE to suppress extra output

additional arguments affecting the predictions produced.

Value
A list with elements: tau (samples of treatment effects), mu (samples of predicted control out-
comes), yhat (samples of predicted values), and coda_chains (coda objects for scalar summaries)

Examples
Not run:
data generating process

p = 3 #two control variables and one moderator
n = 250

predict.bcf

x = matrix(rnorm(n*p), nrow=n)

create targeted selection

q = -1x(x[,11>(x[,21)) + 1*(x[,11<(x[,21))

generate treatment variable
pi = pnorm(q)
z = rbinom(n,1,pi)

tau is the true (homogeneous) treatment effect
tau = (0.5%(x[,3] > -3/4) + 0.25%x(x[,3] > @) + 0.25%x(x[,3]1>3/4))

generate the response using q, tau and z
mu = (g + tauxz)

set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tauxpi))/8

draw the response variable with additive error
y = mu + sigma*rnorm(n)

If you didn't know pi, you would estimate it here
pihat = pnorm(q)

n_burn = 5000

n_sim = 5000

bcf_fit = bef(y =y,
z =z,
x_control = X,
x_moderate = X,
pihat = pihat,
nburn = n_burn,
nsim = n_sim,
n_chains =2,
update_interval = 100,
save_tree_directory = './trees')

Predict using new data
x_pred = matrix(rnorm(nxp), nrow=n)

pred_out = predict(bcf_out=bcf_fit,
x_predict_control=x_pred,
x_predict_moderate=x_pred,
pi_pred=pihat,
z_pred=z,
save_tree_directory = './trees')

End(Not run)

summary.bcf 9

summary . bcf Takes a fitted bef object produced by bcf() and produces summary stats
and MCMC diagnostics. This function is built using the coda package
and meant to mimic output from rstan::print.stanfit(). It includes, for
key parameters, posterior summary stats, effective sample sizes, and
Gelman and Rubin’s convergence diagnostics. By default, those pa-
rameters are: sigma (the error standard deviation when the weights
are all equal), tau_bar (the estimated sample average treatment ef-
fect), mu_bar (the average outcome under control/z=0 across all ob-
servations in the sample), and yhat_bat (the average outcome under
the realized treatment assignment across all observations in the sam-
ple).

Description

We strongly suggest updating the coda package to our Github version, which uses the Stan effective
size computation. We found the native coda effective size computation to be overly optimistic in
some situations and are in discussions with the coda package authors to change it on CRAN.

Usage
S3 method for class 'bcf'
summary (
object,
params_2_summarise = c("sigma"”, "tau_bar”, "mu_bar”, "yhat_bar")
)
Arguments
object output from a BCF predict run.

additional arguments affecting the summary produced.
params_2_summarise
parameters to summarise.

Value

No return value, called for side effects

Examples
Not run:
data generating process

p = 3 #two control variables and one moderator
n = 250

10

summary.bcf

set.seed(1)
x = matrix(rnorm(n*p), nrow=n)

create targeted selection
g = -1x(x[,11>(x[,21)) + 1*(x[,11<(x[,21))

generate treatment variable
pi = pnorm(q)

z = rbinom(n,1,pi)

tau is the true (homogeneous) treatment effect
tau = (0.5%(x[,3] > -3/4) + 0.25%x(x[,3] > @) + 0.25%(x[,31>3/4))

generate the response using q, tau and z
mu = (q + tau*z)

set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tauxpi))/8

draw the response variable with additive error
y = mu + sigma*rnorm(n)

If you didn't know pi, you would estimate it here
pihat = pnorm(q)

bef_fit = bef(y, z, x, x, pihat, nburn=2000, nsim=2000)
Get model fit diagnostics

summary (bcf_fit)

End(Not run)

Index

bcf, 2
predict.bcf, 6

summary.bcf, 9

11

	bcf
	predict.bcf
	summary.bcf
	Index

