
Package ‘adegenet’
February 6, 2025

Title Exploratory Analysis of Genetic and Genomic Data

Version 2.1.11

Description Toolset for the exploration of genetic and genomic
data. Adegenet provides formal (S4) classes for storing and handling
various genetic data, including genetic markers with varying ploidy
and hierarchical population structure ('genind' class), alleles counts
by populations ('genpop'), and genome-wide SNP data ('genlight'). It
also implements original multivariate methods (DAPC, sPCA), graphics,
statistical tests, simulation tools, distance and similarity measures,
and several spatial methods. A range of both empirical and simulated
datasets is also provided to illustrate various methods.

License GPL (>= 2)

URL https://github.com/thibautjombart/adegenet

Depends R (>= 2.14), methods, ade4

Imports utils, stats, grDevices, MASS, igraph, ape, shiny, ggplot2,
seqinr, parallel, boot, reshape2, dplyr (>= 0.4.1), vegan

Suggests adespatial, pegas, hierfstat, maps, spdep, interp, splancs,
poppr, testthat

Encoding UTF-8

LazyLoad yes

RoxygenNote 7.3.2

Collate 'adegenet.package.R' 'datasets.R' 'dist.genlight.R'
'orthobasis.R' 'classes.R' 'constructors.R' 'accessors.R'
'basicMethods.R' 'handling.R' 'auxil.R' 'minorAllele.R'
'setAs.R' 'SNPbin.R' 'strataMethods.R' 'hierarchyMethods.R'
'glHandle.R' 'glFunctions.R' 'glSim.R' 'find.clust.R'
'hybridize.R' 'scale.R' 'fstat.R' 'import.R' 'seqTrack.R'
'chooseCN.R' 'genind2genpop.R' 'loadingplot.R' 'sequences.R'
'gstat.randtest.R' 'makefreq.R' 'colorplot.R' 'monmonier.R'
'spca.R' 'coords.monmonier.R' 'haploGen.R' 'old2new.R'
'global_local_tests.R' 'dapc.R' 'compoplot.R' 'xvalDapc.R'
'haploPop.R' 'PCtest.R' 'dist.genpop.R' 'Hs.R' 'propShared.R'

1

https://github.com/thibautjombart/adegenet

2 Contents

'export.R' 'HWE.R' 'propTyped.R' 'inbreeding.R' 'glPlot.R'
'gengraph.R' 'simOutbreak.R' 'mutations.R' 'snpposi.R'
'snpzip.R' 'pairDist.R' 'snapclust.R' 'AIC.snapclust.R'
'AICc.snapclust.R' 'BIC.snapclust.R' 'KIC.snapclust.R'
'snapclust.choose.k.R' 'servers.R' 'showmekittens.R'
'spca_randtest.R' 'export_to_mvmapper.R' 'doc_C_routines.R'
'zzz.R'

NeedsCompilation yes

Author Thibaut Jombart [aut] (<https://orcid.org/0000-0003-2226-8692>),
Zhian N. Kamvar [aut, cre] (<https://orcid.org/0000-0003-1458-7108>),
Caitlin Collins [ctb],
Roman Lustrik [ctb],
Marie-Pauline Beugin [ctb],
Brian J. Knaus [ctb],
Peter Solymos [ctb],
Vladimir Mikryukov [ctb],
Klaus Schliep [ctb],
Tiago Maié [ctb],
Libor Morkovsky [ctb],
Ismail Ahmed [ctb],
Anne Cori [ctb],
Federico Calboli [ctb],
RJ Ewing [ctb],
Frédéric Michaud [ctb],
Rebecca DeCamp [ctb],
Alexandre Courtiol [ctb] (<https://orcid.org/0000-0003-0637-2959>),
Lindsay V. Clark [ctb] (<https://orcid.org/0000-0002-3881-9252>),
Pavel Dimens [ctb] (<https://orcid.org/0000-0003-3823-0373>),
Max Coulter [ctb],
Ivan Krylov [ctb]

Maintainer Zhian N. Kamvar <zkamvar@gmail.com>

Repository CRAN

Date/Publication 2025-02-06 22:40:02 UTC

Contents
.internal_C_routines . 4
a-score . 5
Accessors . 7
Adegenet servers . 11
adegenet.package . 12
adegenetWeb . 16
AIC.snapclust . 17
AICc . 17
as methods in adegenet . 18
as.genlight . 19

https://orcid.org/0000-0003-2226-8692
https://orcid.org/0000-0003-1458-7108
https://orcid.org/0000-0003-0637-2959
https://orcid.org/0000-0002-3881-9252
https://orcid.org/0000-0003-3823-0373

Contents 3

as.SNPbin . 20
Auxiliary functions . 21
BIC.snapclust . 24
chooseCN . 24
colorplot . 26
compoplot . 28
coords.monmonier . 29
dapc . 30
DAPC cross-validation . 36
dapc graphics . 39
dapcIllus . 43
df2genind . 45
dist.genpop . 47
eHGDP . 50
export_to_mvmapper . 52
extract.PLINKmap . 55
fasta2DNAbin . 56
fasta2genlight . 58
find.clusters . 59
findMutations . 65
gengraph . 66
genind class . 69
genind2df . 71
genind2genpop . 72
genlight auxiliary functions . 74
genlight-class . 76
genpop class . 81
global.rtest . 82
glPca . 84
glPlot . 87
glSim . 89
H3N2 . 91
haploGen . 92
hier . 96
Hs . 98
Hs.test . 99
HWE.test.genind . 100
hybridize . 101
hybridtoy . 103
import2genind . 104
Inbreeding estimation . 106
initialize,genind-method . 108
initialize,genpop-method . 110
isPoly-methods . 111
KIC . 112
loadingplot . 112
makefreq . 114
microbov . 116

4 .internal_C_routines

minorAllele . 118
monmonier . 119
nancycats . 123
old2new_genind . 124
pairDistPlot . 125
propShared . 127
propTyped-methods . 128
read.fstat . 129
read.genepop . 130
read.genetix . 131
read.snp . 132
read.structure . 134
repool . 136
rupica . 137
scaleGen . 138
selPopSize . 141
seploc . 142
seppop . 143
seqTrack . 145
SequencesToGenind . 150
setPop . 152
showmekittens . 153
sim2pop . 153
snapclust . 155
snapclust.choose.k . 157
SNPbin-class . 158
snpposi . 161
snpzip . 163
spca . 165
spcaIllus . 170
spca_randtest . 172
strata . 173
swallowtails . 176
tab . 177
truenames . 178
virtualClasses . 179

Index 180

.internal_C_routines Internal C routines

Description

These functions are internal C routines used in adegenet. Do not use them unless you know what
you are doing.

a-score 5

Usage

.internal_C_routines

Format

An object of class NULL of length 0.

Author(s)

Thibaut Jombart

a-score Compute and optimize a-score for Discriminant Analysis of Principal
Components (DAPC)

Description

These functions are under development. Please email the author before using them for published
results.

Usage

a.score(x, n.sim=10, ...)

optim.a.score(x, n.pca=1:ncol(x$tab), smart=TRUE, n=10, plot=TRUE,
n.sim=10, n.da=length(levels(x$grp)), ...)

Arguments

x a dapc object.

n.pca a vector of integers indicating the number of axes retained in the Principal
Component Analysis (PCA) steps of DAPC. nsim DAPC will be run for each
value in n.pca, unless the smart approach is used (see details).

smart a logical indicating whether a smart, less computer-intensive approach should
be used (TRUE, default) or not (FALSE). See details section.

n an integer indicating the numbers of values spanning the range of n.pca to be
used in the smart approach.

plot a logical indicating whether the results should be displayed graphically (TRUE,
default) or not (FALSE).

n.sim an integer indicating the number of simulations to be performed for each num-
ber of retained PC.

n.da an integer indicating the number of axes retained in the Discriminant Analysis
step.

... further arguments passed to other methods; currently unused..

6 a-score

Details

The Discriminant Analysis of Principal Components seeks a reduced space inside which observa-
tions are best discriminated into pre-defined groups. One way to assess the quality of the discrimi-
nation is looking at re-assignment of individuals to their prior group, successful re-assignment being
a sign of strong discrimination.

However, when the original space is very large, ad hoc solutions can be found, which discriminate
very well the sampled individuals but would perform poorly on new samples. In such a case, DAPC
re-assignment would be high even for randomly chosen clusters. The a-score measures this bias.
It is computed as (Pt-Pr), where Pt is the reassignment probability using the true cluster, and Pr is
the reassignment probability for randomly permuted clusters. A a-score close to one is a sign that
the DAPC solution is both strongly discriminating and stable, while low values (toward 0 or lower)
indicate either weak discrimination or instability of the results.

The a-score can serve as a criterion for choosing the optimal number of PCs in the PCA step
of DAPC, i.e. the number of PC maximizing the a-score. Two procedures are implemented in
optim.a.score. The smart procedure selects evenly distributed number of PCs in a pre-defined
range, compute the a-score for each, and then interpolate the results using splines, predicting an
approximate optimal number of PCs. The other procedure (when smart is FALSE) performs the
computations for all number of PCs request by the user. The ’optimal’ number is then the one giving
the highest mean a-score (computed over the groups).

Value

=== a.score ===
a.score returns a list with the following components:

tab a matrix of a-scores with groups in columns and simulations in row.

pop.score a vector giving the mean a-score for each population.

mean the overall mean a-score.

=== optim.a.score ===
optima.score returns a list with the following components:

pop.score a list giving the mean a-score of the populations for each number of retained PC
(each element of the list corresponds to a number of retained PCs).

mean a vector giving the overall mean a-score for each number of retained PCs.

pred (only when smart is TRUE) the predictions of the spline, given in x and y coor-
dinates.

best the optimal number of PCs to be retained.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Accessors 7

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics11:94. doi:10.1186/1471-
2156-11-94

See Also

- find.clusters: to identify clusters without prior.

- dapc: the Discriminant Analysis of Principal Components (DAPC)

Accessors Accessors for adegenet objects

Description

An accessor is a function that allows to interact with slots of an object in a convenient way. Several
accessors are available for genind or genpop objects. The operator "$" and "$<-" are used to access
the slots, being equivalent to "@" and "@<-".

The operator "[" is a flexible way to subset data by individuals, populations, alleles, and loci. When
using a matrix-like syntax, subsetting will apply to the dimensios of the @tab slot. In addition,
specific arguments loc and pop can be used to indicate subsets of loci and populations. The argu-
ment drop is a logical indicating if alleles becoming non-polymorphic in a new dataset should be
removed (default: FALSE). Examples:

• "obj[i,j]" returns "obj" with a subset ’i’ of individuals and ’j’ of alleles.

• "obj[1:10,]" returns an object with only the first 10 genotypes (if "obj" is a genind) or the first
10 populations (if "obj" is a genpop)

• "obj[1:10, 5:10]" returns an object keeping the first 10 entities and the alleles 5 to 10.

• "obj[loc=c(1,3)]" returns an object keeping only the 1st and 3rd loci, using locNames(obj)
as reference; logicals, or named loci also work; this overrides other subsetting of alleles.

• "obj[pop=2:4]" returns an object keeping only individuals from the populations 2, 3 and 4,
using popNames(obj) as reference; logicals, or named populations also work; this overrides
other subsetting of individuals.

• "obj[i=1:2, drop=TRUE]" returns an object keeping only the first two individuals (or popula-
tions), dropping the alleles no longer present in the data.

The argument treatOther handles the treatment of objects in the @other slot (see details). The
argument drop can be set to TRUE to drop alleles that are no longer represented in the subset.

8 Accessors

Usage

nInd(x, ...)
nLoc(x, ...)
nAll(x, onlyObserved = FALSE, ...)
nPop(x, ...)
pop(x)
indNames(x, ...)
S4 method for signature 'genind'
indNames(x, ...)
locNames(x, ...)
S4 method for signature 'genind'
locNames(x, withAlleles=FALSE, ...)
S4 method for signature 'genpop'
locNames(x, withAlleles=FALSE, ...)
popNames(x, ...)
S4 method for signature 'genind'
popNames(x, ...)
popNames(x, ...)
S4 method for signature 'genpop'
popNames(x, ...)
ploidy(x, ...)
S4 method for signature 'genind'
ploidy(x, ...)
S4 method for signature 'genpop'
ploidy(x, ...)
S4 method for signature 'genind'
other(x, ...)
S4 method for signature 'genpop'
other(x, ...)

Arguments

x a genind or a genpop object.

onlyObserved a logical indicating whether the allele count should also include the alleles with
onlyObserved columns in the matrix. Defaults to FALSE, which will report only
the observed alleles in the given population. onlyObserved = TRUE will be the
equivalent of table(locFac(x)), but faster.

withAlleles a logical indicating whether the result should be of the form [locus name].[allele
name], instead of [locus name].

... further arguments to be passed to other methods (currently not used).

Details

The "[" operator can treat elements in the @other slot as well. For instance, if obj@other$xy
contains spatial coordinates, the obj[1:3,]@other$xy will contain the spatial coordinates of the
genotypes (or population) 1,2 and 3. This is handled through the argument treatOther, a logical
defaulting to TRUE. If set to FALSE, the @other returned unmodified.

Accessors 9

Note that only matrix-like, vector-like and lists can be proceeded in @other. Other kind of objects
will issue a warning an be returned as they are, unless the argument quiet is left to TRUE, its
default value.

The drop argument can be set to TRUE to retain only alleles that are present in the subset. To
achieve better control of polymorphism of the data, see isPoly.

nAll() reflects the number of columns per locus present in the current gen object. If onlyObserved
= TRUE, then the number of columns with at least one non-missing allele is shown.

Value

A genind or genpop object.

Methods

nInd returns the number of individuals in the genind object

nLoc returns the number of loci

nAll returns the number of observed alleles in each locus

nPop returns the number of populations

pop returns a factor assigning individuals to populations.

pop<- replacement method for the @pop slot of an object.

popNames returns the names of populations.

popNames<- sets the names of populations using a vector of length nPop(x).

indNames returns the names of individuals.

indNames<- sets the names of individuals using a vector of length nInd(x).

locNames returns the names of markers and/or alleles.

locNames<- sets the names of markers using a vector of length nLoc(x).

locFac returns a factor that defines which locus each column of the @tab slot belongs to

ploidy returns the ploidy of the data.

ploidy<- sets the ploidy of the data using an integer.

alleles returns the alleles of each locus.

alleles<- sets the alleles of each locus using a list with one character vector for each locus.

other returns the content of the @other slot (misc. information); returns NULL if the slot is only-
Observed or of length zero.

other<- sets the content of the @other slot (misc. information); the provided value needs to be a
list; it not, provided value will be stored within a list.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

10 Accessors

Examples

data(nancycats)
nancycats
pop(nancycats) # get the populations
indNames(nancycats) # get the labels of individuals
locNames(nancycats) # get the labels of the loci
alleles(nancycats) # get the alleles
nAll(nancycats) # count the number of alleles

head(tab(nancycats)) # get allele counts

get allele frequencies, replace NAs
head(tab(nancycats, freq = TRUE, NA.method = "mean"))

let's isolate populations 4 and 8
popNames(nancycats)
obj <- nancycats[pop=c(4, 8)]
obj
popNames(obj)
pop(obj)
nAll(obj, onlyObserved = TRUE) # count number of alleles among these two populations
nAll(obj) # count number of columns in the data
all(nAll(obj, onlyObserved = TRUE) == lengths(alleles(obj))) # will be FALSE since drop = FALSE
all(nAll(obj) == lengths(alleles(obj))) # will be FALSE since drop = FALSE

let's isolate two markers, fca23 and fca90
locNames(nancycats)
obj <- nancycats[loc=c("fca23","fca90")]
obj
locNames(obj)

illustrate pop
obj <- nancycats[sample(1:100, 10)]
pop(obj)
pop(obj) <- rep(c('b', 'a'), each = 5)
pop(obj)

illustrate locNames
locNames(obj)
locNames(obj, withAlleles = TRUE)
locNames(obj)[1] <- "newLocus"
locNames(obj)
locNames(obj, withAlleles=TRUE)

illustrate how 'other' slot is handled
data(sim2pop)
nInd(sim2pop)
other(sim2pop[1:6]) # xy is subsetted automatically
other(sim2pop[1:6, treatOther=FALSE]) # xy is left as is

Adegenet servers 11

Adegenet servers Web servers for adegenet

Description

The function adegenetServer opens up a web page providing a simple user interface for some of
the functionalities implemented in adegenet. These servers have been developed using the package
shiny.

Currently available servers include:

• DAPC: a server for the Discriminant Analysis of Principal Components (see ?dapc)

Usage

adegenetServer(what=c("DAPC"))

Arguments

what a character string indicating which server to start; currently accepted values are:
"DAPC"

Value

The function invisibly returns NULL.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk> Caitlin Collins

See Also

dapc

Examples

Not run:
this opens a web page for DAPC
adegenetServer()

End(Not run)

12 adegenet.package

adegenet.package The adegenet package

Description

This package is devoted to the multivariate analysis of genetic markers data. These data can be
codominant markers (e.g. microsatellites) or presence/absence data (e.g. AFLP), and have any
level of ploidy. ’adegenet’ defines three formal (S4) classes:
- genind: a class for data of individuals ("genind" stands for genotypes-individuals).
- genpop: a class for data of groups of individuals ("genpop" stands for genotypes-populations)
- genlight: a class for genome-wide SNP data

Details

For more information about these classes, type "class ? genind", "class ? genpop", or "?genlight".

Essential functionalities of the package are presented througout 4 tutorials, accessible using adegenetTutorial(which="name-below"):
- basics: introduction to the package.
- spca: multivariate analysis of spatial genetic patterns.
- dapc: population structure and group assignment using DAPC.
- genomics: introduction to the class genlight for the handling and analysis of genome-wide SNP
data.

Note: In older versions of adegenet, these tutorials were avilable as vignettes, accessible through
the function vignette("name-below",package="adegenet"):
- adegenet-basics.
- adegenet-spca.
- adegenet-dapc.
- adegenet-genomics.

Important functions are also summarized below.

=== IMPORTING DATA ===
= TO GENIND OBJECTS =
adegenet imports data to genind object from the following softwares:
- STRUCTURE: see read.structure
- GENETIX: see read.genetix
- FSTAT: see read.fstat
- Genepop: see read.genepop
To import data from any of these formats, you can also use the general function import2genind.

In addition, it can extract polymorphic sites from nucleotide and amino-acid alignments:
- DNA files: use read.dna from the ape package, and then extract SNPs from DNA alignments

adegenet.package 13

using DNAbin2genind.

- protein sequences alignments: polymorphic sites can be extracted from protein sequences align-
ments in alignment format (package seqinr, see as.alignment) using the function alignment2genind.

The function fasta2DNAbin allows for reading fasta files into DNAbin object with minimum RAM
requirements.

It is also possible to read genotypes coded by character strings from a data.frame in which geno-
types are in rows, markers in columns. For this, use df2genind. Note that df2genind can be used
for any level of ploidy.

= TO GENLIGHT OBJECTS =
SNP data can be read from the following formats:
- PLINK: see function read.PLINK
- .snp (adegenet’s own format): see function read.snp

SNP can also be extracted from aligned DNA sequences with the fasta format, using fasta2genlight

=== EXPORTING DATA ===
adegenet exports data from

Genotypes can also be recoded from a genind object into a data.frame of character strings, using
any separator between alleles. This covers formats from many softwares like GENETIX or STRUC-
TURE. For this, see genind2df.

Also note that the pegas package imports genind objects using the function as.loci.

=== MANIPULATING DATA ===
Several functions allow one to manipulate genind or genpop objects
- genind2genpop: convert a genind object to a genpop
- seploc: creates one object per marker; for genlight objects, creates blocks of SNPs.
- seppop: creates one object per population
- - tab: access the allele data (counts or frequencies) of an object (genind and genpop)
- x[i,j]: create a new object keeping only genotypes (or populations) indexed by ’i’ and the alleles
indexed by ’j’.
- makefreq: returns a table of allelic frequencies from a genpop object.
- repool merges genoptypes from different gene pools into one single genind object.
- propTyped returns the proportion of available (typed) data, by individual, population, and/or lo-
cus.
- selPopSize subsets data, retaining only genotypes from a population whose sample size is above
a given level.
- pop sets the population of a set of genotypes.

=== ANALYZING DATA ===
Several functions allow to use usual, and less usual analyses:
- HWE.test.genind: performs HWE test for all populations and loci combinations

14 adegenet.package

- dist.genpop: computes 5 genetic distances among populations.
- monmonier: implementation of the Monmonier algorithm, used to seek genetic boundaries among
individuals or populations. Optimized boundaries can be obtained using optimize.monmonier.
Object of the class monmonier can be plotted and printed using the corresponding methods.
- spca: implements Jombart et al. (2008) spatial Principal Component Analysis
- global.rtest: implements Jombart et al. (2008) test for global spatial structures
- local.rtest: implements Jombart et al. (2008) test for local spatial structures
- propShared: computes the proportion of shared alleles in a set of genotypes (i.e. from a genind
object)
- propTyped: function to investigate missing data in several ways
- scaleGen: generic method to scale genind or genpop before a principal component analysis
- Hs: computes the average expected heterozygosity by population in a genpop. Classically Used as
a measure of genetic diversity.
- find.clusters and dapc: implement the Discriminant Analysis of Principal Component (DAPC,
Jombart et al., 2010).
- seqTrack: implements the SeqTrack algorithm for recontructing transmission trees of pathogens
(Jombart et al., 2010) .
glPca: implements PCA for genlight objects.
- gengraph: implements some simple graph-based clustering using genetic data. - snpposi.plot
and snpposi.test: visualize the distribution of SNPs on a genetic sequence and test their random-
ness. - adegenetServer: opens up a web interface for some functionalities of the package (DAPC
with cross validation and feature selection).

=== GRAPHICS ===
- colorplot: plots points with associated values for up to three variables represented by colors
using the RGB system; useful for spatial mapping of principal components.
- loadingplot: plots loadings of variables. Useful for representing the contribution of alleles to a
given principal component in a multivariate method.
- scatter.dapc: scatterplots for DAPC results.
- compoplot: plots membership probabilities from a DAPC object.

=== SIMULATING DATA ===
- hybridize: implements hybridization between two populations.
- haploGen: simulates genealogies of haplotypes, storing full genomes.
glSim: simulates simple genlight objects.

=== DATASETS ===
- H3N2: Seasonal influenza (H3N2) HA segment data.
- dapcIllus: Simulated data illustrating the DAPC.
- eHGDP: Extended HGDP-CEPH dataset.
- microbov: Microsatellites genotypes of 15 cattle breeds.
- nancycats: Microsatellites genotypes of 237 cats from 17 colonies of Nancy (France).
- rupica: Microsatellites genotypes of 335 chamois (Rupicapra rupicapra) from the Bauges moun-
tains (France).
- sim2pop: Simulated genotypes of two georeferenced populations.
- spcaIllus: Simulated data illustrating the sPCA.

adegenet.package 15

For more information, visit the adegenet website using the function adegenetWeb.

Tutorials are available via the command adegenetTutorial.

To cite adegenet, please use the reference given by citation("adegenet") (or see references
below).

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>
Developers: Zhian N. Kamvar <zkamvar@gmail.com>, Caitlin Collins <caitiecollins17@gmail.com>,
Ismail Ahmed <ismail.ahmed@inserm.fr>, Federico Calboli, Tobias Erik Reiners, Peter Solymos,
Anne Cori,
Contributed datasets from: Katayoun Moazami-Goudarzi, Denis Laloë, Dominique Pontier, Daniel
Maillard, Francois Balloux.

References

Jombart T. (2008) adegenet: a R package for the multivariate analysis of genetic markers Bioinfor-
matics 24: 1403-1405. doi: 10.1093/bioinformatics/btn129

Jombart T. and Ahmed I. (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP
data. Bioinformatics. doi: 10.1093/bioinformatics/btr521

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-
2156-11-94

Jombart T, Eggo R, Dodd P, Balloux F (2010) Reconstructing disease outbreaks from genetic data:
a graph approach. Heredity. doi: 10.1038/hdy.2010.78.

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. (2008) Revealing cryptic spatial patterns
in genetic variability by a new multivariate method. Heredity, 101, 92–103.

See adegenet website: http://adegenet.r-forge.r-project.org/

Please post your questions on ’the adegenet forum’: adegenet-forum@lists.r-forge.r-project.org

See Also

adegenet is related to several packages, in particular:
- ade4 for multivariate analysis
- pegas for population genetics tools
- ape for phylogenetics and DNA data handling
- seqinr for handling nucleic and proteic sequences
- shiny for R-based web interfaces

http://adegenet.r-forge.r-project.org/

16 adegenetWeb

adegenetWeb Functions to access online resources for adegenet

Description

These functions simply open websites or documents available online providing resources for ade-
genet.

Usage

adegenetWeb()

adegenetTutorial(
which = c("basics", "spca", "dapc", "genomics", "strata", "snapclust")

)

adegenetIssues()

Arguments

which a character string indicating which tutorial to open (see details)

Details

• adegenetWeb opens adegenet’s website

• adegenetTutorial opens adegenet tutorials

• adegenetIssues opens the issue page on github; this is used to report a bug or post a feature
request.

Available tutorials are:

• ’basics’: general introduction to adegenet; covers basic data structures, import/export, han-
dling, and a number of population genetics methods

• ’spca’: spatial genetic structures using the spatial Principal Component Analysis

• ’dapc’: population structure using the Discriminant Analysis of Principal Components

• ’genomics’: handling large genome-wide SNP data using adegenet

• ’strata’: introduction to hierarchical population structure in adegenet

• ’snapclust’: introduction to fast maximum-likelihood genetic clustering using snapclust

AIC.snapclust 17

AIC.snapclust Compute Akaike Information Criterion (AIC) for snapclust

Description

Do not use. We work on that stuff. Contact us if interested.

Usage

S3 method for class 'snapclust'
AIC(object, ...)

Arguments

object An object returned by the function snapclust.

... Further arguments for compatibility with the AIC generic (currently not used).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

snapclust to generate clustering solutions.

AICc Compute Akaike Information Criterion for small samples (AICc) for
snapclust

Description

Do not use. We work on that stuff. Contact us if interested.

Usage

AICc(object, ...)

S3 method for class 'snapclust'
AICc(object, ...)

Arguments

object An object returned by the function snapclust.

... Further arguments for compatibility with the AIC generic (currently not used).

18 as methods in adegenet

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

snapclust to generate clustering solutions.

as methods in adegenet

Converting genind/genpop objects to other classes

Description

These S3 and S4 methods are used to coerce genind and genpop objects to matrix-like objects. In
most cases, this is equivalent to calling the @tab slot. An exception to this is the convertion to ktab
objects used in the ade4 package as inputs for K-tables methods (e.g. Multiple Coinertia Analysis).

Usage

as(object, Class)

Arguments

object a genind or a genpop object.

Class the name of the class to which the object should be coerced, for instance "data.frame" or
"matrix".

Methods

coerce from one object class to another using as(object,"Class"), where the object is of the
old class and the returned object is of the new class "Class".

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

Not run:
data(microbov)
x <- tab(microbov,NA.method="mean")
as(x[1:3],"data.frame")

dudi functions attempt to convert their first argument
to a data.frame; so they can be used on genind/genpop objects.
perform a PCA
pca1 <- dudi.pca(x, scale=FALSE, scannf=FALSE)

as.genlight 19

pca1

x <- genind2genpop(microbov,miss="chi2")
x <- as(x,"ktab")
class(x)
perform a STATIS analysis
statis1 <- statis(x, scannf=FALSE)
statis1
plot(statis1)

End(Not run)

as.genlight Conversion to class "genlight"

Description

The class genlight is a formal (S4) class for storing a genotypes of binary SNPs in a compact way,
using a bit-level coding scheme. New instances of this class are best created using new; see the
manpage of genlight for more information on this point.

As a shortcut, conversion methods can be used to convert various objects into a genlight object.
Conversions can be achieved using S3-style (as.genlight(x)) or S4-style (as(x,"genlight")
procedures. All of them call upon the constructor (new) of genlight objects.

Conversion is currently available from the following objects: - matrix of type integer/numeric -
data.frame with integer/numeric data - list of vectors of integer/numeric type

Author(s)

Thibaut Jombart (<t.jombart@imperial.ac.uk>)

See Also

Related class:
- SNPbin, for storing individual genotypes of binary SNPs

- genind

Examples

Not run:
data to be converted
dat <- list(toto=c(1,1,0,0,2,2,1,2,NA), titi=c(NA,1,1,0,1,1,1,0,0), tata=c(NA,0,3, NA,1,1,1,0,0))

using the constructor
x1 <- new("genlight", dat)
x1

20 as.SNPbin

using 'as' methods
x2 <- as.genlight(dat)
x3 <- as(dat, "genlight")

identical(x1,x2)
identical(x1,x3)

End(Not run)

as.SNPbin Conversion to class "SNPbin"

Description

The class SNPbin is a formal (S4) class for storing a genotype of binary SNPs in a compact way,
using a bit-level coding scheme. New instances of this class are best created using new; see the
manpage of SNPbin for more information on this point.

As a shortcut, conversion methods can be used to convert various objects into a SNPbin object. Con-
versions can be achieved using S3-style (as.SNPbin(x)) or S4-style (as(x,"SNPbin") procedures.
All of them call upon the constructor (new) of SNPbin objects.

Conversion is currently available from the following objects: - integer vectors - numeric vectors

Author(s)

Thibaut Jombart (<t.jombart@imperial.ac.uk>)

See Also

Related class:
- SNPbin - genlight, for storing multiple binary SNP genotypes.

Examples

Not run:
data to be converted
dat <- c(1,0,0,2,1,1,1,2,2,1,1,0,0,1)

using the constructor
x1 <- new("SNPbin", dat)
x1

using 'as' methods
x2 <- as.SNPbin(dat)
x3 <- as(dat, "SNPbin")

identical(x1,x2)
identical(x1,x3)

Auxiliary functions 21

End(Not run)

Auxiliary functions Auxiliary functions for adegenet

Description

adegenet implements a number of auxiliary procedures that might be of interest for users. These
include graphical tools to translate variables (numeric or factors) onto a color scale, adding trans-
parency to existing colors, pre-defined color palettes, extra functions to access documentation, and
low-level treatment of character vectors.

These functions are mostly auxiliary procedures used internally in adegenet.

These items include:

• num2col: translates a numeric vector into colors.

• fac2col: translates a factor into colors.

• any2col: translates a vector of type numeric, character or factor into colors.

• transp: adds transparency to a vector of colors. Note that transparent colors are not supported
on some graphical devices.

• corner: adds text to a corner of a figure.

• checkType: checks the type of markers being used in a function and issues an error if appro-
priate.

• .rmspaces: remove peripheric spaces in a character string.

• .genlab: generate labels in a correct alphanumeric ordering.

• .readExt: read the extension of a given file.

• .render.server.info used to display session information for the dapcServer

Color palettes include:

• bluepal: white -> dark blue

• redpal: white -> dark red

• greenpal: white -> dark green

• greypal: white -> dark grey

• flame: gold -> red

• azur: gold -> blue

• seasun: blue -> gold -> red

• lightseasun: blue -> gold -> red (light variant)

• deepseasun: blue -> gold -> red (deep variant)

• spectral: red -> yellow -> blue (RColorBrewer variant)

22 Auxiliary functions

• wasp: gold -> brown -> black

• funky: many colors

• virid: adaptation of the viridis palette, from the viridis package.

• hybridpal: reorder a color palette (virid by default) to display sharp contrast between the
first two colors, and interpolated colors after; ideal for datasets where two parental populations
are provided first, followed by various degrees of hybrids.

Usage

.genlab(base, n)
corner(text, posi="topleft", inset=0.1, ...)
num2col(x, col.pal=heat.colors, reverse=FALSE,

x.min=min(x,na.rm=TRUE), x.max=max(x,na.rm=TRUE),
na.col="transparent")

fac2col(x, col.pal=funky, na.col="transparent", seed=NULL)
any2col(x, col.pal=seasun, na.col="transparent")
transp(col, alpha=.5)
hybridpal(col.pal = virid)

Arguments

base a character string forming the base of the labels

n the number of labels to generate

text a character string to be added to the plot

posi a character matching any combinations of "top/bottom" and "left/right".

inset a vector of two numeric values (recycled if needed) indicating the inset, as a
fraction of the plotting region.

... further arguments to be passed to text

x a numeric vector (for num2col) or a vector converted to a factor (for fac2col).

col.pal a function generating colors according to a given palette.

reverse a logical stating whether the palette should be inverted (TRUE), or not (FALSE,
default).

x.min the minimal value from which to start the color scale

x.max the maximal value from which to start the color scale

na.col the color to be used for missing values (NAs)

seed a seed for R’s random number generated, used to fix the random permutation of
colors in the palette used; if NULL, no randomization is used and the colors are
taken from the palette according to the ordering of the levels.

col a vector of colors

alpha a numeric value between 0 and 1 representing the alpha coefficient; 0: total
transparency; 1: no transparency.

Auxiliary functions 23

Value

For .genlab, a character vector of size "n". num2col and fac2col return a vector of colors.
any2col returns a list with the following components: $col (a vector of colors), $leg.col (colors
for the legend), and $leg.txt (text for the legend).

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package,
with many excellent palettes.

Examples

.genlab("Locus-",11)

transparent colors using "transp"
plot(rnorm(1000), rnorm(1000), col=transp("blue",.3), pch=20, cex=4)

numeric values to color using num2col
plot(1:100, col=num2col(1:100), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=bluepal), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=flame), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=wasp), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=azur,rev=TRUE), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=spectral), pch=20, cex=4)
plot(1:100, col=num2col(1:100, col.pal=virid), pch=20, cex=4)

factor as colors using fac2col
dat <- cbind(c(rnorm(50,8), rnorm(100), rnorm(150,3),
rnorm(50,10)),c(rnorm(50,1),rnorm(100),rnorm(150,3), rnorm(50,5)))
fac <- rep(letters[1:4], c(50,100,150,50))
plot(dat, col=fac2col(fac), pch=19, cex=4)
plot(dat, col=transp(fac2col(fac)), pch=19, cex=4)
plot(dat, col=transp(fac2col(fac,seed=2)), pch=19, cex=4)

use of any2col
x <- factor(1:10)
col.info <- any2col(x, col.pal=funky)
plot(x, col=col.info$col, main="Use of any2col on a factor")
legend("bottomleft", fill=col.info$leg.col, legend=col.info$leg.txt, bg="white")

x <- 100:1
col.info <- any2col(x, col.pal=wasp)
barplot(x, col=col.info$col, main="Use of any2col on a numeric")
legend("bottomleft", fill=col.info$leg.col, legend=col.info$leg.txt, bg="white")

24 chooseCN

BIC.snapclust Compute Bayesian Information Criterion (BIC) for snapclust

Description

Do not use. We work on that stuff. Contact us if interested.

Usage

S3 method for class 'snapclust'
BIC(object, ...)

Arguments

object An object returned by the function snapclust.

... Further arguments for compatibility with the BIC generic (currently not used).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

snapclust to generate clustering solutions.

chooseCN Function to choose a connection network

Description

The function chooseCN is a simple interface to build a connection network (CN) from xy coor-
dinates. The user chooses from 6 types of graph and one additional weighting scheme. chooseCN
calls functions from appropriate packages, handles non-unique coordinates and returns a connection
network either with classe nb or listw. For graph types 1-4, duplicated locations are not accepted
and will issue an error.

Usage

chooseCN(
xy,
ask = TRUE,
type = NULL,
result.type = "nb",
d1 = NULL,
d2 = NULL,
k = NULL,

chooseCN 25

a = NULL,
dmin = NULL,
plot.nb = TRUE,
edit.nb = FALSE,
check.duplicates = TRUE

)

Arguments

xy an matrix or data.frame with two columns for x and y coordinates.

ask a logical stating whether graph should be chosen interactively (TRUE,default)
or not (FALSE). Set to FALSE if type is provided.

type an integer giving the type of graph (see details).

result.type a character giving the class of the returned object. Either "nb" (default) or
"listw", both from spdep package. See details.

d1 the minimum distance between any two neighbours. Used if type=5.

d2 the maximum distance between any two neighbours. Used if type=5. Can also
be a character: "dmin" for the minimum distance so that each site has at least
one connection, or "dmax" to have all sites connected (despite the later has no
sense).

k the number of neighbours per point. Used if type=6.

a the exponent of the inverse distance matrix. Used if type=7.

dmin the minimum distance between any two distinct points. Used to avoid infinite
spatial proximities (defined as the inversed spatial distances). Used if type=7.

plot.nb a logical stating whether the resulting graph should be plotted (TRUE, default)
or not (FALSE).

edit.nb a logical stating whether the resulting graph should be edited manually for cor-
rections (TRUE) or not (FALSE, default).

check.duplicates

a logical indicating if duplicate coordinates should be detected; this can be an
issue for some graphs; TRUE by default.

Details

There are 7 kinds of graphs proposed:
Delaunay triangulation (type 1)
Gabriel graph (type 2)
Relative neighbours (type 3)
Minimum spanning tree (type 4)
Neighbourhood by distance (type 5)
K nearests neighbours (type 6)
Inverse distances (type 7)

The last option (type=7) is not a true neighbouring graph: all sites are neighbours, but the spatial
weights are directly proportional to the inversed spatial distances.

26 colorplot

Also not that in this case, the output of the function is always a listw object, even if nb was re-
quested.

The choice of the connection network has been discuted on the adegenet forum. Please search the
archives from adegenet website (section ’contact’) using ’graph’ as keyword.

Value

Returns a connection network having the class nb or listw. The xy coordinates are passed as
attribute to the created object.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

spca

Examples

Not run:
data(nancycats)

par(mfrow=c(2,2))
cn1 <- chooseCN(nancycats@other$xy,ask=FALSE,type=1)
cn2 <- chooseCN(nancycats@other$xy,ask=FALSE,type=2)
cn3 <- chooseCN(nancycats@other$xy,ask=FALSE,type=3)
cn4 <- chooseCN(nancycats@other$xy,ask=FALSE,type=4)
par(mfrow=c(1,1))

End(Not run)

colorplot Represents a cloud of points with colors

Description

The colorplot function represents a cloud of points with colors corresponding to a combination
of 1,2 or 3 quantitative variables, assigned to RGB (Red, Green, Blue) channels. For instance, this
can be useful to represent up to 3 principal components in space. Note that the property of such
representation to convey multidimensional information has not been investigated.

colorplot is a S3 generic function. Methods are defined for particular objects, like spca objects.

colorplot 27

Usage

colorplot(...)

Default S3 method:
colorplot(xy, X, axes=NULL, add.plot=FALSE, defaultLevel=0, transp=FALSE, alpha=.5, ...)

Arguments

xy a numeric matrix with two columns (e.g. a matrix of spatial coordinates.

X a matrix-like containing numeric values that are translated into the RGB system.
Variables are considered to be in columns.

axes the index of the columns of X to be represented. Up to three axes can be chosen.
If null, up to the first three columns of X are used.

add.plot a logical stating whether the colorplot should be added to the existing plot (de-
faults to FALSE).

defaultLevel a numeric value between 0 and 1, giving the default level in a color for which
values are not specified. Used whenever less than three axes are specified.

transp a logical stating whether the produced colors should be transparent (TRUE) or
not (FALSE, default).

alpha the alpha level for transparency, between 0 (fully transparent) and 1 (not trans-
parent); see ?rgb for more details.

... further arguments to be passed to other methods. In colorplot.default, these
arguments are passed to plot/points functions. See ?plot.default and ?points.

Value

Invisibly returns a vector of colours used in the plot.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

a toy example
xy <- expand.grid(1:10,1:10)
df <- data.frame(x=1:100, y=100:1, z=runif(100,0,100))
colorplot(xy,df,cex=10,main="colorplot: toy example")

Not run:
a genetic example using a sPCA
if(require(spdep)){
data(spcaIllus)
dat3 <- spcaIllus$dat3
spca3 <- spca(dat3,xy=dat3$other$xy,ask=FALSE,type=1,plot=FALSE,scannf=FALSE,nfposi=1,nfnega=1)
colorplot(spca3, cex=4, main="colorplot: a sPCA example")
text(spca3$xy[,1], spca3$xy[,2], dat3$pop)
mtext("P1-P2 in cline\tP3 random \tP4 local repulsion")

28 compoplot

}

End(Not run)

compoplot Genotype composition plot

Description

The compoplot uses a barplot to represent the group assignment probability of individuals to several
groups. It is a generic with methods for the following objects:

Usage

compoplot(x, ...)

S3 method for class 'matrix'
compoplot(
x,
col.pal = funky,
border = NA,
subset = NULL,
show.lab = FALSE,
lab = rownames(x),
legend = TRUE,
txt.leg = colnames(x),
n.col = 4,
posi = NULL,
cleg = 0.8,
bg = transp("white"),
...

)

S3 method for class 'dapc'
compoplot(x, only.grp = NULL, border = NA, ...)

S3 method for class 'snapclust'
compoplot(x, border = NA, ...)

Arguments

x an object to be used for plotting (see description)

... further arguments to be passed to barplot

col.pal a color palette to be used for the groups; defaults to funky

border a color for the border of the barplot; use NA to indicate no border.

subset a subset of individuals to retain

coords.monmonier 29

show.lab a logical indicating if individual labels should be displayed

lab a vector of individual labels; if NULL, row.names of the matrix are used

legend a logical indicating whether a legend should be provided for the colors

txt.leg a character vector to be used for the legend

n.col the number of columns to be used for the legend

posi the position of the legend

cleg a size factor for the legend

bg the background to be used for the legend

only.grp a subset of groups to retain

Details

• matrix: a matrix with individuals in row and genetic clusters in column, each entry being an
assignment probability of the corresponding individual to the corresponding group

• dapc: the output of the dapc function; in this case, group assignments are based upon geo-
metric criteria in the discriminant space

• snapclust: the output of the snapclust function; in this case, group assignments are based
upon the likelihood of genotypes belonging to their groups

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

coords.monmonier Returns original points in results paths of an object of class ’mon-
monier’

Description

The original implementation of monmonier in package adegenet returns path coordinates, coords.monmonier
additionally displays identities of the original points of the network, based on original coordinates.

Usage

coords.monmonier(x)

Arguments

x an object of class monmonier.

30 dapc

Value

Returns a list with elements according to the x$nrun result of the monmonier object. Corresponding
path points are in the same order as in the original object.

run1 (run2, ...): for each run, a list containing a matrix giving the original points in the network
(first and second, indicating pairs of neighbours). Path coordinates are stored in columns x.hw
and y.hw. first and second are integers referring to the row numbers in the x$xy matrix of the
original monmonier object.

Author(s)

Peter Solymos, <Solymos.Peter@aotk.szie.hu>

See Also

monmonier

Examples

Not run:
if(require(spdep)){

load(system.file("files/mondata1.rda",package="adegenet"))
cn1 <- chooseCN(mondata1$xy,type=2,ask=FALSE)
mon1 <- monmonier(mondata1$xy,dist(mondata1$x1),cn1,threshold=2,nrun=3)

mon1$run1
mon1$run2
mon1$run3
path.coords <- coords.monmonier(mon1)
path.coords
}

End(Not run)

dapc Discriminant Analysis of Principal Components (DAPC)

Description

These functions implement the Discriminant Analysis of Principal Components (DAPC, Jombart et
al. 2010). This method descibes the diversity between pre-defined groups. When groups are un-
known, use find.clusters to infer genetic clusters. See ’details’ section for a succint description
of the method, and vignette("adegenet-dapc") for a tutorial. Graphical methods for DAPC are
documented in scatter.dapc (see ?scatter.dapc).

dapc is a generic function performing the DAPC on the following types of objects:
- data.frame (only numeric data)
- matrix (only numeric data)

dapc 31

- genind objects (genetic markers)
- genlight objects (genome-wide SNPs)

These methods all return an object with class dapc.

Functions that can be applied to these objects are (the ".dapc" can be ommitted):

- print.dapc: prints the content of a dapc object.
- summary.dapc: extracts useful information from a dapc object.
- predict.dapc: predicts group memberships based on DAPC results.
- xvalDapc: performs cross-validation of DAPC using varying numbers of PCs (and keeping the
number of discriminant functions fixed); it currently has methods for data.frame and matrix.

DAPC implementation calls upon dudi.pca from the ade4 package (except for genlight objects)
and lda from the MASS package. The predict procedure uses predict.lda from the MASS package.

as.lda is a generic with a method for dapc object which converts these objects into outputs similar
to that of lda.default.

Usage

S3 method for class 'data.frame'
dapc(x, grp, n.pca=NULL, n.da=NULL, center=TRUE,

scale=FALSE, var.contrib=TRUE, var.loadings=FALSE, pca.info=TRUE,
pca.select=c("nbEig","percVar"), perc.pca=NULL, ..., dudi=NULL)

S3 method for class 'matrix'
dapc(x, ...)

S3 method for class 'genind'
dapc(x, pop=NULL, n.pca=NULL, n.da=NULL, scale=FALSE,

truenames=TRUE, var.contrib=TRUE, var.loadings=FALSE, pca.info=TRUE,
pca.select=c("nbEig","percVar"), perc.pca=NULL, ...)

S3 method for class 'genlight'
dapc(x, pop=NULL, n.pca=NULL, n.da=NULL,

scale=FALSE, var.contrib=TRUE, var.loadings=FALSE, pca.info=TRUE,
pca.select=c("nbEig", "percVar"), perc.pca=NULL, glPca=NULL, ...)

S3 method for class 'dudi'
dapc(x, grp, ...)

S3 method for class 'dapc'
print(x, ...)

S3 method for class 'dapc'
summary(object, ...)

S3 method for class 'dapc'
predict(object, newdata, prior = object$prior, dimen,

method = c("plug-in", "predictive", "debiased"), ...)

32 dapc

Arguments

x a data.frame, matrix, or genind object. For the data.frame and matrix
arguments, only quantitative variables should be provided.

grp, pop a factor indicating the group membership of individuals; for scatter, an op-
tional grouping of individuals.

n.pca an integer indicating the number of axes retained in the Principal Component
Analysis (PCA) step. If NULL, interactive selection is triggered.

n.da an integer indicating the number of axes retained in the Discriminant Analysis
step. If NULL, interactive selection is triggered.

center a logical indicating whether variables should be centred to mean 0 (TRUE,
default) or not (FALSE). Always TRUE for genind objects.

scale a logical indicating whether variables should be scaled (TRUE) or not (FALSE,
default). Scaling consists in dividing variables by their (estimated) standard de-
viation to account for trivial differences in variances.

var.contrib a logical indicating whether the contribution of original variables (alleles, for
genind objects) should be provided (TRUE, default) or not (FALSE). Such out-
put can be useful, but can also create huge matrices when there is a lot of vari-
ables.

var.loadings a logical indicating whether the loadings of original variables (alleles, for
genind objects) should be provided (TRUE) or not (FALSE, default). Such
output can be useful, but can also create huge matrices when there is a lot of
variables.

pca.info a logical indicating whether information about the prior PCA should be stored
(TRUE, default) or not (FALSE). This information is required to predict group
membership of new individuals using predict, but makes the object slightly
bigger.

pca.select a character indicating the mode of selection of PCA axes, matching either
"nbEig" or "percVar". For "nbEig", the user has to specify the number of axes
retained (interactively, or via n.pca). For "percVar", the user has to specify
the minimum amount of the total variance to be preserved by the retained axes,
expressed as a percentage (interactively, or via perc.pca).

perc.pca a numeric value between 0 and 100 indicating the minimal percentage of the
total variance of the data to be expressed by the retained axes of PCA.

... further arguments to be passed to other functions. For dapc.matrix, arguments
are to match those of dapc.data.frame; for dapc.genlight, arguments passed
to glPca

glPca an optional glPca object; if provided, dimension reduction is not performed
(saving computational time) but taken directly from this object.

object a dapc object.

truenames a logical indicating whether true (i.e., user-specified) labels should be used in
object outputs (TRUE, default) or not (FALSE).

dudi optionally, a multivariate analysis with the class dudi (from the ade4 package).
If provided, prior PCA will be ignored, and this object will be used as a prior
step for variable orthogonalisation.

dapc 33

newdata an optional dataset of individuals whose membership is seeked; can be a data.frame,
a matrix, a genind or a genlight object, but object class must match the original
(’training’) data. In particular, variables must be exactly the same as in the orig-
inal data. For genind objects, see repool to ensure matching of alleles.

prior, dimen, method
see ?predict.lda.

Details

The Discriminant Analysis of Principal Components (DAPC) is designed to investigate the genetic
structure of biological populations. This multivariate method consists in a two-steps procedure.
First, genetic data are transformed (centred, possibly scaled) and submitted to a Principal Compo-
nent Analysis (PCA). Second, principal components of PCA are submitted to a Linear Discriminant
Analysis (LDA). A trivial matrix operation allows to express discriminant functions as linear com-
bination of alleles, therefore allowing one to compute allele contributions. More details about the
computation of DAPC are to be found in the indicated reference.

DAPC does not infer genetic clusters ex nihilo; for this, see the find.clusters function.

Value

=== dapc objects ===
The class dapc is a list with the following components:

call the matched call.

n.pca number of PCA axes retained

n.da number of DA axes retained

var proportion of variance conserved by PCA principal components

eig a numeric vector of eigenvalues.

grp a factor giving prior group assignment

prior a numeric vector giving prior group probabilities

assign a factor giving posterior group assignment

tab matrix of retained principal components of PCA

loadings principal axes of DAPC, giving coefficients of the linear combination of retained
PCA axes.

ind.coord principal components of DAPC, giving the coordinates of individuals onto prin-
cipal axes of DAPC; also called the discriminant functions.

grp.coord coordinates of the groups onto the principal axes of DAPC.

posterior a data.frame giving posterior membership probabilities for all individuals and
all clusters.

var.contr (optional) a data.frame giving the contributions of original variables (alleles in
the case of genetic data) to the principal components of DAPC.

var.load (optional) a data.frame giving the loadings of original variables (alleles in the
case of genetic data) to the principal components of DAPC.

34 dapc

match.prp a list, where each item is the proportion of individuals correctly matched to their
original population in cross-validation.

=== other outputs ===
Other functions have different outputs:
- summary.dapc returns a list with 6 components: n.dim (number of retained DAPC axes), n.pop
(number of groups/populations), assign.prop (proportion of overall correct assignment), assign.per.pop
(proportion of correct assignment per group), prior.grp.size (prior group sizes), and post.grp.size
(posterior group sizes), xval.dapc, xval.genind and xval (all return a list of four lists, each one
with as many items as cross-validation runs. The first item is a list of assign components, the secon
is a list of posterior components, the thirs is a list of ind.score components and the fourth is
a list of match.prp items, i.e. the prortion of the validation set correctly matched to its original
population)

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics11:94. doi:10.1186/1471-
2156-11-94

See Also

• xvalDapc: selection of the optimal numbers of PCA axes retained in DAPC using cross-
validation.

• scatter.dapc, assignplot, compoplot: graphics for DAPC.

• find.clusters: to identify clusters without prior.

• dapcIllus: a set of simulated data illustrating the DAPC

• eHGDP, H3N2: empirical datasets illustrating DAPC

Examples

data(dapcIllus), data(eHGDP), and data(H3N2) illustrate the dapc
see ?dapcIllus, ?eHGDP, ?H3N2
##
Not run:
example(dapcIllus)
example(eHGDP)
example(H3N2)

End(Not run)

H3N2 EXAMPLE
data(H3N2)
pop(H3N2) <- factor(H3N2$other$epid)
dapc1 <- dapc(H3N2, var.contrib=FALSE, scale=FALSE, n.pca=150, n.da=5)

dapc 35

remove internal segments and ellipses, different pch, add MStree
scatter(dapc1, cell=0, pch=18:23, cstar=0, mstree=TRUE, lwd=2, lty=2)

label individuals at the periphery
air = 2 is a measure of how much space each label needs
pch = NA suppresses plotting of points
scatter(dapc1, label.inds = list(air = 2, pch = NA))

only ellipse, custom labels
scatter(dapc1, cell=2, pch="", cstar=0, posi.da="top",

label=paste("year\n",2001:2006), axesel=FALSE, col=terrain.colors(10))

SHOW COMPOPLOT ON MICROBOV DATA
data(microbov)
dapc1 <- dapc(microbov, n.pca=20, n.da=15)
compoplot(dapc1, lab="")

Not run:
EXAMPLE USING GENLIGHT OBJECTS
simulate data
x <- glSim(50,4e3-50, 50, ploidy=2)
x
plot(x)

perform DAPC
dapc1 <- dapc(x, n.pca=10, n.da=1)
dapc1

plot results
scatter(dapc1, scree.da=FALSE)

SNP contributions
loadingplot(dapc1$var.contr)
loadingplot(tail(dapc1$var.contr, 100), main="Loading plot - last 100 SNPs")

USE "PREDICT" TO PREDICT GROUPS OF NEW INDIVIDUALS
load data
data(sim2pop)

we make a dataset of:
30 individuals from pop A
30 individuals from pop B
30 hybrids

separate populations and make F1
temp <- seppop(sim2pop)
temp <- lapply(temp, function(e) hybridize(e,e,n=30)) # force equal popsizes

36 DAPC cross-validation

make hybrids
hyb <- hybridize(temp[[1]], temp[[2]], n=30)

repool data - needed to ensure allele matching
newdat <- repool(temp[[1]], temp[[2]], hyb)
pop(newdat) <- rep(c("pop A", "popB", "hyb AB"), c(30,30,30))

perform the DAPC on the first 2 pop (60 first indiv)
dapc1 <- dapc(newdat[1:60],n.pca=5,n.da=1)

plot results
scatter(dapc1, scree.da=FALSE)

make prediction for the 30 hybrids
hyb.pred <- predict(dapc1, newdat[61:90])
hyb.pred

plot the inferred coordinates (circles are hybrids)
points(hyb.pred$ind.scores, rep(.1, 30))

look at assignment using assignplot
assignplot(dapc1, new.pred=hyb.pred)
title("30 indiv popA, 30 indiv pop B, 30 hybrids")

image using compoplot
compoplot(dapc1, new.pred=hyb.pred, ncol=2)
title("30 indiv popA, 30 indiv pop B, 30 hybrids")

CROSS-VALIDATION
data(sim2pop)
xval <- xvalDapc(sim2pop@tab, pop(sim2pop), n.pca.max=100, n.rep=3)
xval
boxplot(xval$success~xval$n.pca, xlab="Number of PCA components",
ylab="Classification succes", main="DAPC - cross-validation")

End(Not run)

DAPC cross-validation Cross-validation for Discriminant Analysis of Principal Components
(DAPC)

Description

The function xvalDapc performs stratified cross-validation of DAPC using varying numbers of PCs
(and keeping the number of discriminant functions fixed); xvalDapc is a generic with methods for
data.frame and matrix.

DAPC cross-validation 37

Usage

xvalDapc(x, ...)

Default S3 method:
xvalDapc(x, grp, n.pca.max = 300, n.da = NULL,

training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE, ...)

S3 method for class 'data.frame'
xvalDapc(x, grp, n.pca.max = 300, n.da = NULL,

training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE, ...)

S3 method for class 'matrix'
xvalDapc(x, grp, n.pca.max = 300, n.da = NULL,

training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE, ...)

S3 method for class 'genlight'
xvalDapc(x, ...)

S3 method for class 'genind'
xvalDapc(x, ...)

Arguments

x a data.frame or a matrix used as input of DAPC.

grp a factor indicating the group membership of individuals.

n.pca.max maximum number of PCA components to retain.

n.da an integer indicating the number of axes retained in the Discriminant Analysis
step. If NULL, n.da defaults to 1 less than the number of groups.

training.set the proportion of data (individuals) to be used for the training set; defaults to 0.9
if all groups have >= 10 members; otherwise, training.set scales automatically to
the largest proportion that still ensures all groups will be present in both training
and validation sets.

result a character string; "groupMean" for group-wise assignment sucess, or "overall"
for an overall mean assignment success; see details.

center a logical indicating whether variables should be centred to mean 0 (TRUE,
default) or not (FALSE). Always TRUE for genind objects.

scale a logical indicating whether variables should be scaled (TRUE) or not (FALSE,
default). Scaling consists in dividing variables by their (estimated) standard de-
viation to account for trivial differences in variances.

38 DAPC cross-validation

n.pca an integer vector indicating the number of different number of PCA axes to be
retained for the cross validation; if NULL, this will be dertermined automatically.

n.rep the number of replicates to be carried out at each level of PC retention; defaults
to 30.

xval.plot a logical indicating whether a plot of the cross-validation results should be gen-
erated.

... further arguments to be passed to boot. see Details.

Details

The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the
data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is of-
ten a non-trivial question. Cross validation provides an objective way to decide how many axes
to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by
cross- validation: DAPC is performed on a training set, typically made of 90% of the observations
(comprising 90% of the observations in each subpopulation) , and then used to predict the groups
of the 10% of remaining observations. The current method uses the average prediction success per
group (result="groupMean"), or the overall prediction success (result="overall"). The number of
PCs associated with the lowest Mean Squared Error is then retained in the DAPC.

Parallel Computing: The permutation of the data for cross-validation is performed in part by
the functionboot. If you have a modern computer, it is likely that you have multiple cores on
your system. R by default utilizes only one of these cores unless you tell it otherwise. For details,
please see the documentation of boot. Basically, if you want to use multiple cores, you need two
arguments:

1. parallel - what R parallel system to use (see below)
2. ncpus - number of cores you want to use

If you are on a unix system (Linux or OSX), you will want to specify parallel = "multicore".
If you are on Windows, you will want to specify parallel = "snow".

Value

A list containing seven items, and a plot of the results. The first is a data.frame with two
columns, the first giving the number of PCs of PCA retained in the corresponding DAPC, and the
second giving the proportion of successful group assignment for each replicate. The second item
gives the mean and confidence interval for random chance. The third gives the mean successful
assignment at each level of PC retention. The fourth indicates which number of PCs is associated
with the highest mean success. The fifth gives the Root Mean Squared Error at each level of PC
retention. The sixth indicates which number of PCs is associated with the lowest MSE. The seventh
item contains the DAPC carried out with the optimal number of PCs, determined with reference to
MSE.

If xval.plot=TRUE a scatterplot of the results of cross-validation will be displayed.

Author(s)

Caitlin Collins <caitlin.collins12@imperial.ac.uk>, Thibaut Jombart <t.jombart@imperial.ac.uk>,
Zhian N. Kamvar <kamvarz@science.oregonstate.edu>

dapc graphics 39

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics11:94. doi:10.1186/1471-
2156-11-94

See Also

dapc

Examples

Not run:
CROSS-VALIDATION
data(sim2pop)
xval <- xvalDapc(sim2pop@tab, pop(sim2pop), n.pca.max=100, n.rep=3)
xval

100 replicates

Serial version (SLOW!)
system.time(xval <- xvalDapc(sim2pop@tab, pop(sim2pop), n.pca.max=100, n.rep=100))

Parallel version (faster!)
system.time(xval <- xvalDapc(sim2pop@tab, pop(sim2pop), n.pca.max=100, n.rep=100,

parallel = "multicore", ncpus = 2))

End(Not run)

dapc graphics Graphics for Discriminant Analysis of Principal Components (DAPC)

Description

These functions provide graphic outputs for Discriminant Analysis of Principal Components (DAPC,
Jombart et al. 2010). See ?dapc for details about this method. DAPC graphics are detailed in the
DAPC tutorial accessible using vignette("adegenet-dapc").

These functions all require an object of class dapc (the ".dapc" can be ommitted when calling the
functions):
- scatter.dapc: produces scatterplots of principal components (or ’discriminant functions’), with
a screeplot of eigenvalues as inset.
- assignplot: plot showing the probabilities of assignment of individuals to the different clusters.

Usage

S3 method for class 'dapc'
scatter(x, xax=1, yax=2, grp=x$grp, col=seasun(length(levels(grp))),

pch=20, bg="white", solid=.7, scree.da=TRUE,

40 dapc graphics

scree.pca=FALSE, posi.da="bottomright",
posi.pca="bottomleft", bg.inset="white", ratio.da=.25,
ratio.pca=.25, inset.da=0.02, inset.pca=0.02,
inset.solid=.5, onedim.filled=TRUE, mstree=FALSE, lwd=1,
lty=1, segcol="black", legend=FALSE, posi.leg="topright",
cleg=1, txt.leg=levels(grp), cstar = 1, cellipse = 1.5,
axesell = FALSE, label = levels(grp), clabel = 1, xlim =
NULL, ylim = NULL, grid = FALSE, addaxes = TRUE, origin =
c(0,0), include.origin = TRUE, sub = "", csub = 1, possub =
"bottomleft", cgrid = 1, pixmap = NULL, contour = NULL, area
= NULL, label.inds = NULL, ...)

assignplot(x, only.grp=NULL, subset=NULL, new.pred=NULL, cex.lab=.75,pch=3)

Arguments

x a dapc object.

xax, yax integers specifying which principal components of DAPC should be shown in
x and y axes.

grp a factor defining group membership for the individuals. The scatterplot is opti-
mal only for the default group, i.e. the one used in the DAPC analysis.

col a suitable color to be used for groups. The specified vector should match the
number of groups, not the number of individuals.

pch a numeric indicating the type of point to be used to indicate the prior group of
individuals (see points documentation for more details); one value is expected
for each group; recycled if necessary.

bg the color used for the background of the scatterplot.

solid a value between 0 and 1 indicating the alpha level for the colors of the plot;
0=full transparency, 1=solid colours.

scree.da a logical indicating whether a screeplot of Discriminant Analysis eigenvalues
should be displayed in inset (TRUE) or not (FALSE).

scree.pca a logical indicating whether a screeplot of Principal Component Analysis eigen-
values should be displayed in inset (TRUE) or not (FALSE); retained axes are
displayed in black.

posi.da the position of the inset of DA eigenvalues; can match any combination of
"top/bottom" and "left/right".

posi.pca the position of the inset of PCA eigenvalues; can match any combination of
"top/bottom" and "left/right".

bg.inset the color to be used as background for the inset plots.

ratio.da the size of the inset of DA eigenvalues as a proportion of the current plotting
region.

ratio.pca the size of the inset of PCA eigenvalues as a proportion of the current plotting
region.

dapc graphics 41

inset.da a vector with two numeric values (recycled if needed) indicating the inset to be
used for the screeplot of DA eigenvalues as a proportion of the current plotting
region; see ?add.scatter for more details.

inset.pca a vector with two numeric values (recycled if needed) indicating the inset to be
used for the screeplot of PCA eigenvalues as a proportion of the current plotting
region; see ?add.scatter for more details.

inset.solid a value between 0 and 1 indicating the alpha level for the colors of the inset
plots; 0=full transparency, 1=solid colours.

onedim.filled a logical indicating whether curves should be filled when plotting a single dis-
criminant function (TRUE), or not (FALSE).

mstree a logical indicating whether a minimum spanning tree linking the groups and
based on the squared distances between the groups inside the entire space should
added to the plot (TRUE), or not (FALSE).

lwd, lty, segcol the line width, line type, and segment colour to be used for the minimum span-
ning tree.

legend a logical indicating whether a legend for group colours should added to the plot
(TRUE), or not (FALSE).

posi.leg the position of the legend for group colours; can match any combination of
"top/bottom" and "left/right", or a set of x/y coordinates stored as a list (locator
can be used).

cleg a size factor used for the legend.
cstar, cellipse, axesell, label, clabel, xlim, ylim, grid, addaxes, origin,
include.origin, sub, csub, possub, cgrid, pixmap, contour, area

arguments passed to s.class; see ?s.class for more informations

only.grp a character vector indicating which groups should be displayed. Values should
match values of x$grp. If NULL, all results are displayed

subset integer or logical vector indicating which individuals should be displayed.
If NULL, all results are displayed

new.pred an optional list, as returned by the predict method for dapc objects; if provided,
the individuals with unknown groups are added at the bottom of the plot. To
visualize these individuals only, specify only.grp="unknown".

cex.lab a numeric indicating the size of labels.

txt.leg a character vector indicating the text to be used in the legend; if not provided,
group names stored in x$grp are used.

label.inds Named list of arguments passed to the orditorp function. This will label indi-
vidual points witout overlapping. Arguments x and display are hardcoded and
should not be specified by user.

... further arguments to be passed to other functions. For scatter, arguments
passed to points; for compoplot, arguments passed to barplot.

Details

See the documentation of dapc for more information about the method.

42 dapc graphics

Value

All functions return the matched call.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics11:94. doi:10.1186/1471-
2156-11-94

See Also

- dapc: implements the DAPC.

- find.clusters: to identify clusters without prior.

- dapcIllus: a set of simulated data illustrating the DAPC

- eHGDP, H3N2: empirical datasets illustrating DAPC

Examples

Not run:
data(H3N2)
dapc1 <- dapc(H3N2, pop=H3N2$other$epid, n.pca=30,n.da=6)

defautl plot
scatter(dapc1)

label individuals at the periphery
air = 2 is a measure of how much space each label needs
pch = NA suppresses plotting of points
scatter(dapc1, label.inds = list(air = 2, pch = NA))

showing different scatter options
remove internal segments and ellipses, different pch, add MStree
scatter(dapc1, pch=18:23, cstar=0, mstree=TRUE, lwd=2, lty=2, posi.da="topleft")

only ellipse, custom labels, use insets
scatter(dapc1, cell=2, pch="", cstar=0, posi.pca="topleft", posi.da="topleft", scree.pca=TRUE,
inset.pca=c(.01,.3), label=paste("year\n",2001:2006), axesel=FALSE, col=terrain.colors(10))

without ellipses, use legend for groups
scatter(dapc1, cell=0, cstar=0, scree.da=FALSE, clab=0, cex=3,
solid=.4, bg="white", leg=TRUE, posi.leg="topleft")

only one axis
scatter(dapc1,1,1,scree.da=FALSE, legend=TRUE, solid=.4,bg="white")

dapcIllus 43

example using genlight objects
simulate data
x <- glSim(50,4e3-50, 50, ploidy=2)
x
plot(x)

perform DAPC
dapc2 <- dapc(x, n.pca=10, n.da=1)
dapc2

plot results
scatter(dapc2, scree.da=FALSE, leg=TRUE, txt.leg=paste("group",
c('A','B')), col=c("red","blue"))

SNP contributions
loadingplot(dapc2$var.contr)
loadingplot(tail(dapc2$var.contr, 100), main="Loading plot - last 100 SNPs")

assignplot / compoplot
assignplot(dapc1, only.grp=2006)

data(microbov)
dapc3 <- dapc(microbov, n.pca=20, n.da=15)
compoplot(dapc3, lab="")

End(Not run)

dapcIllus Simulated data illustrating the DAPC

Description

Datasets illustrating the Discriminant Analysis of Principal Components (DAPC, Jombart et al. sub-
mitted).

Format

dapcIllus is list of 4 components being all genind objects.

Details

These data were simulated using various models using Easypop (2.0.1). The dapcIllus is a list
containing the following genind objects:
- "a": island model with 6 populations
- "b": hierarchical island model with 6 populations (3,2,1)

44 dapcIllus

- "c": one-dimensional stepping stone with 2x6 populations, and a boundary between the two sets
of 6 populations
- "d": one-dimensional stepping stone with 24 populations

See "source" for a reference providing simulation details.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Source

Jombart, T., Devillard, S. and Balloux, F. Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. Submitted to BMC genetics.

References

Jombart, T., Devillard, S. and Balloux, F. Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. Submitted to Genetics.

See Also

- dapc: implements the DAPC.

- eHGDP: dataset illustrating the DAPC and find.clusters.

- H3N2: dataset illustrating the DAPC.

- find.clusters: to identify clusters without prior.

Examples

Not run:

data(dapcIllus)
attach(dapcIllus)
a # this is a genind object, like b, c, and d.

FINS CLUSTERS EX NIHILO
clust.a <- find.clusters(a, n.pca=100, n.clust=6)
clust.b <- find.clusters(b, n.pca=100, n.clust=6)
clust.c <- find.clusters(c, n.pca=100, n.clust=12)
clust.d <- find.clusters(d, n.pca=100, n.clust=24)

examin outputs
names(clust.a)
lapply(clust.a, head)

PERFORM DAPCs
dapc.a <- dapc(a, pop=clust.a$grp, n.pca=100, n.da=5)
dapc.b <- dapc(b, pop=clust.b$grp, n.pca=100, n.da=5)

df2genind 45

dapc.c <- dapc(c, pop=clust.c$grp, n.pca=100, n.da=11)
dapc.d <- dapc(d, pop=clust.d$grp, n.pca=100, n.da=23)

LOOK AT ONE RESULT
dapc.a
summary(dapc.a)

FORM A LIST OF RESULTS FOR THE 4 DATASETS
lres <- list(dapc.a, dapc.b, dapc.c, dapc.d)

DRAW 4 SCATTERPLOTS
par(mfrow=c(2,2))
lapply(lres, scatter)

detach data
detach(dapcIllus)

End(Not run)

df2genind Convert a data.frame of allele data to a genind object.

Description

The function df2genind converts a data.frame (or a matrix) into a genind object. The data.frame
must meet the following requirements:

• genotypes are in row (one row per genotype)

• markers/loci are in columns

• each element is a string of characters coding alleles, ideally separated by a character string (ar-
gument sep); if no separator is used, the number of characters coding alleles must be indicated
(argument ncode).

Usage

df2genind(
X,
sep = NULL,
ncode = NULL,
ind.names = NULL,
loc.names = NULL,
pop = NULL,
NA.char = "",
ploidy = 2,

46 df2genind

type = c("codom", "PA"),
strata = NULL,
hierarchy = NULL,
check.ploidy = getOption("adegenet.check.ploidy")

)

Arguments

X a matrix or a data.frame containing allelle data only (see decription)

sep a character string separating alleles. See details.

ncode an optional integer giving the number of characters used for coding one genotype
at one locus. If not provided, this is determined from data.

ind.names optinal, a vector giving the individuals names; if NULL, taken from rownames
of X. If factor or numeric, vector is converted to character.

loc.names an optional character vector giving the markers names; if NULL, taken from
colnames of X.

pop an optional factor giving the population of each individual.

NA.char a character string corresponding to missing allele (to be treated as NA)

ploidy an integer indicating the degree of ploidy of the genotypes.

type a character string indicating the type of marker: ’codom’ stands for ’codomi-
nant’ (e.g. microstallites, allozymes); ’PA’ stands for ’presence/absence’ mark-
ers (e.g. AFLP, RAPD).

strata an optional data frame that defines population stratifications for your samples.
This is especially useful if you have a hierarchical or factorial sampling design.

hierarchy a hierarchical formula that explicitely defines hierarchical levels in your strata.

check.ploidy a boolean indicating if the ploidy should be checked (TRUE, default) or not
(FALSE). Not checking the ploidy makes the import much faster, but might
result in bugs/problems if the input file is misread or the ploidy is wrong. It is
therefore advised to first import and check a subset of data to see if everything
works as expected before setting this option to false.

Details

See genind2df to convert genind objects back to such a data.frame.

=== Details for the sep argument ===
this character is directly used in reguar expressions like gsub, and thus require some characters to
be preceeded by double backslashes. For instance, "/" works but "|" must be coded as "\|".

Value

an object of the class genind for df2genind; a matrix of biallelic genotypes for genind2df

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>, Zhian N. Kamvar <kamvarz@science.oregonstate.edu>

dist.genpop 47

See Also

genind2df, import2genind, read.genetix, read.fstat, read.structure

Examples

simple example
df <- data.frame(locusA=c("11","11","12","32"),
locusB=c(NA,"34","55","15"),locusC=c("22","22","21","22"))
row.names(df) <- .genlab("genotype",4)
df

obj <- df2genind(df, ploidy=2, ncode=1)
obj
tab(obj)

converting a genind as data.frame
genind2df(obj)
genind2df(obj, sep="/")

dist.genpop Genetic distances between populations

Description

This function computes measures of genetic distances between populations using a genpop object.
Currently, five distances are available, some of which are euclidian (see details).

A non-euclidian distance can be transformed into an Euclidean one using cailliez in order to per-
form a Principal Coordinate Analysis dudi.pco (both functions in ade4).

The function dist.genpop is based on former dist.genet function of ade4 package.

Usage

dist.genpop(x, method = 1, diag = FALSE, upper = FALSE)

Arguments

x a list of class genpop

method an integer between 1 and 5. See details

diag a logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist

upper a logical value indicating whether the upper triangle of the distance matrix
should be printed by print.dist

48 dist.genpop

Details

Let A a table containing allelic frequencies with t populations (rows) and m alleles (columns).
Let ν the number of loci. The locus j gets m(j) alleles. m =

∑ν
j=1 m(j)

For the row i and the modality k of the variable j, notice the value akij (1 ≤ i ≤ t, 1 ≤ j ≤ ν,
1 ≤ k ≤ m(j)) the value of the initial table.

a+ij =
∑m(j)

k=1 akij and pkij =
ak
ij

a+
ij

Let P the table of general term pkij

p+ij =
∑m(j)

k=1 pkij = 1, p+i+ =
∑ν

j=1 p
+
ij = ν, p+++ =

∑ν
j=1 p

+
i+ = tν

The option method computes the distance matrices between populations using the frequencies pkij .

1. Nei’s distance (not Euclidean):

D1(a, b) = − ln(
∑ν

k=1

∑m(k)
j=1 pk

ajp
k
bj√∑ν

k=1

∑m(k)
j=1 (pk

aj)
2
√∑ν

k=1

∑m(k)
j=1 (pk

bj)
2
)

2. Angular distance or Edwards’ distance (Euclidean):

D2(a, b) =

√
1− 1

ν

∑ν
k=1

∑m(k)
j=1

√
pkajp

k
bj

3. Coancestrality coefficient or Reynolds’ distance (Eucledian):

D3(a, b) =

√ ∑ν
k=1

∑m(k)
j=1 (pk

aj−pk
bj)

2

2
∑ν

k=1(1−
∑m(k)

j=1 pk
ajp

k
bj)

4. Classical Euclidean distance or Rogers’ distance (Eucledian):

D4(a, b) =
1
ν

∑ν
k=1

√
1
2

∑m(k)
j=1 (pkaj − pkbj)

2

5. Absolute genetics distance or Provesti ’s distance (not Euclidean):
D5(a, b) =

1
2ν

∑ν
k=1

∑m(k)
j=1 |pkaj − pkbj |

Value

returns a distance matrix of class dist between the rows of the data frame

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>
Former dist.genet code by Daniel Chessel <chessel@biomserv.univ-lyon1.fr>
and documentation by Anne B. Dufour <dufour@biomserv.univ-lyon1.fr>

References

To complete informations about distances:

dist.genpop 49

Distance 1:
Nei, M. (1972) Genetic distances between populations. American Naturalist, 106, 283–292.
Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of
individuals. Genetics, 23, 341–369.
Avise, J. C. (1994) Molecular markers, natural history and evolution. Chapman & Hall, London.

Distance 2:
Edwards, A.W.F. (1971) Distance between populations on the basis of gene frequencies. Biomet-
rics, 27, 873–881.
Cavalli-Sforza L.L. and Edwards A.W.F. (1967) Phylogenetic analysis: models and estimation pro-
cedures. Evolution, 32, 550–570.
Hartl, D.L. and Clark, A.G. (1989) Principles of population genetics. Sinauer Associates, Sunder-
land, Massachussetts (p. 303).

Distance 3:
Reynolds, J. B., B. S. Weir, and C. C. Cockerham. (1983) Estimation of the coancestry coefficient:
basis for a short-term genetic distance. Genetics, 105, 767–779.

Distance 4:
Rogers, J.S. (1972) Measures of genetic similarity and genetic distances. Studies in Genetics, Univ.
Texas Publ., 7213, 145–153.
Avise, J. C. (1994) Molecular markers, natural history and evolution. Chapman & Hall, London.

Distance 5:
Prevosti A. (1974) La distancia genetica entre poblaciones. Miscellanea Alcobe, 68, 109–118.
Prevosti A., Ocaña J. and Alonso G. (1975) Distances between populations of Drosophila sub-
obscura, based on chromosome arrangements frequencies. Theoretical and Applied Genetics, 45,
231–241.

For more information on dissimilarity indexes:
Gower J. and Legendre P. (1986) Metric and Euclidean properties of dissimilarity coefficients. Jour-
nal of Classification, 3, 5–48

Legendre P. and Legendre L. (1998) Numerical Ecology, Elsevier Science B.V. 20, pp274–288.

See Also

cailliez,dudi.pco

Examples

Not run:
data(microsatt)
obj <- as.genpop(microsatt$tab)

listDist <- lapply(1:5, function(i) cailliez(dist.genpop(obj,met=i)))
for(i in 1:5) {attr(listDist[[i]],"Labels") <- popNames(obj)}
listPco <- lapply(listDist, dudi.pco,scannf=FALSE)

par(mfrow=c(2,3))
for(i in 1:5) {scatter(listPco[[i]],sub=paste("Dist:", i))}

50 eHGDP

End(Not run)

eHGDP Extended HGDP-CEPH dataset

Description

This dataset consists of 1350 individuals from native Human populations distributed worldwide
typed at 678 microsatellite loci. The original HGDP-CEPH panel [1-3] has been extended by several
native American populations [4]. This dataset was used to illustrate the Discriminant Analysis of
Principal Components (DAPC, [5]).

Format

eHGDP is a genind object with a data frame named popInfo as supplementary component (eHGDP@other$popInfo),
which contains the following variables:

Population: a character vector indicating populations.

Region: a character vector indicating the geographic region of each population.

Label: a character vector indicating the correspondence with population labels used in the genind
object (i.e., as output by pop(eHGDP)).

Latitude,Longitude: geographic coordinates of the populations, indicated as north and east de-
grees.

Source

Original panel by Human Genome Diversity Project (HGDP) and Centre d’Etude du Polymor-
phisme Humain (CEPH). See reference [4] for Native American populations.

This copy of the dataset was prepared by Francois Balloux.

References

[1] Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, et al. (2002) Genetic structure of
human populations. Science 298: 2381-2385.

[2] Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, et al. (2005)
Support from the relationship of genetic and geographic distance in human populations for a serial
founder effect originating in Africa. Proc Natl Acad Sci U S A 102: 15942-15947.

[3] Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, et al. (2002) A human genome diversity
cell line panel. Science 296: 261-262.

[4] Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, et al. (2007) Genetic Variation and
Population Structure in Native Americans. PLoS Genetics 3: e185.

[5] Jombart, T., Devillard, S. and Balloux, F. Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. Submitted to BMC genetics.

eHGDP 51

Examples

Not run:
LOAD DATA
data(eHGDP)
eHGDP

PERFORM DAPC - USE POPULATIONS AS CLUSTERS
to reproduce exactly analyses from the paper, use "n.pca=1000"
dapc1 <- dapc(eHGDP, all.contrib=TRUE, scale=FALSE,
n.pca=200, n.da=80) # takes 2 minutes
dapc1

(see ?dapc for details about the output)

SCREEPLOT OF EIGENVALUES
barplot(dapc1$eig, main="eHGDP - DAPC eigenvalues",
col=c("red","green","blue", rep("grey", 1000)))

SCATTERPLOTS
(!) Note: colors may be inverted with respect to [5]
as signs of principal components are arbitrary
and change from one computer to another
##
axes 1-2
s.label(dapc1$grp.coord[,1:2], clab=0, sub="Axes 1-2")
par(xpd=T)
colorplot(dapc1$grp.coord[,1:2], dapc1$grp.coord, cex=3, add=TRUE)
add.scatter.eig(dapc1$eig,10,1,2, posi="bottomright", ratio=.3, csub=1.25)

axes 2-3
s.label(dapc1$grp.coord[,2:3], clab=0, sub="Axes 2-3")
par(xpd=T)
colorplot(dapc1$grp.coord[,2:3], dapc1$grp.coord, cex=3, add=TRUE)
add.scatter.eig(dapc1$eig,10,1,2, posi="bottomright", ratio=.3, csub=1.25)

MAP DAPC1 RESULTS
if(require(maps)){

xy <- cbind(eHGDP$other$popInfo$Longitude, eHGDP$other$popInfo$Latitude)

par(mar=rep(.1,4))
map(fill=TRUE, col="lightgrey")
colorplot(xy, -dapc1$grp.coord, cex=3, add=TRUE, trans=FALSE)
}

52 export_to_mvmapper

LOOK FOR OTHER CLUSTERS
to reproduce results of the reference paper, use :
grp <- find.clusters(eHGDP, max.n=50, n.pca=200, scale=FALSE)
and then
plot(grp$Kstat, type="b", col="blue")

grp <- find.clusters(eHGDP, max.n=30, n.pca=200,
scale=FALSE, n.clust=4) # takes about 2 minutes
names(grp)

(see ?find.clusters for details about the output)

PERFORM DAPC - USE POPULATIONS AS CLUSTERS
to reproduce exactly analyses from the paper, use "n.pca=1000"
dapc2 <- dapc(eHGDP, pop=grp$grp, all.contrib=TRUE,
scale=FALSE, n.pca=200, n.da=80) # takes around a 1 minute
dapc2

PRODUCE SCATTERPLOT
scatter(dapc2) # axes 1-2
scatter(dapc2,2,3) # axes 2-3

MAP DAPC2 RESULTS
if(require(maps)){
xy <- cbind(eHGDP$other$popInfo$Longitude,
eHGDP$other$popInfo$Latitude)

myCoords <- apply(dapc2$ind.coord, 2, tapply, pop(eHGDP), mean)

par(mar=rep(.1,4))
map(fill=TRUE, col="lightgrey")
colorplot(xy, myCoords, cex=3, add=TRUE, trans=FALSE)
}

End(Not run)

export_to_mvmapper Export analysis for mvmapper visualisation

Description

mvmapper is an interactive tool for visualising outputs of a multivariate analysis on a map from a
web browser. The function export_to_mvmapper is a generic with methods for several standard

export_to_mvmapper 53

classes of analyses in adegenet and ade4. Information on individual locations, as well as any other
relevant data, is passed through the second argument info. By default, the function returns a for-
matted data.frame and writes the output to a .csv file.

Usage

export_to_mvmapper(x, ...)

Default S3 method:
export_to_mvmapper(x, ...)

S3 method for class 'dapc'
export_to_mvmapper(x, info, write_file = TRUE, out_file = NULL, ...)

S3 method for class 'dudi'
export_to_mvmapper(x, info, write_file = TRUE, out_file = NULL, ...)

S3 method for class 'spca'
export_to_mvmapper(x, info, write_file = TRUE, out_file = NULL, ...)

Arguments

x The analysis to be exported. Can be a dapc, spca, or a dudi object.

... Further arguments to pass to other methods.

info A data.frame with additional information containing at least the following
columns: key (unique individual identifier), lat (latitude), and lon (longitude).
Other columns will be exported as well, but are optional.

write_file A logical indicating if the output should be written out to a .csv file. Defaults
to TRUE.

out_file A character string indicating the file to which the output should be written. If
NULL, the file used will be named 'mvmapper_data_[date and time].csv'

Details

mvmapper can be found at: https://popphylotools.github.io/mvMapper/

Value

A data.frame which can serve as input to mvmapper, containing at least the following columns:

• key: unique individual identifiers

• PC1: first principal component; further principal components are optional, but if provided will
be numbered and follow PC1.

• lat: latitude for each individual

• lon: longitude for each individual

In addition, specific information is added for some analyses:

https://popphylotools.github.io/mvMapper/

54 export_to_mvmapper

• spca: Lag_PC columns contain the lag-vectors of the principal components; the lag operator
computes, for each individual, the average score of neighbouring individuals; it is useful for
clarifying patches and clines.

• dapc: grp is the group used in the analysis; assigned_grp is the group assignment based on
the discriminant functions; support is the statistical support (i.e. assignment probability) for
assigned_grp.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

mvmapper is available at: https://popphylotools.github.io/mvMapper/

Examples

An example using the microsatellite dataset of Dupuis et al. 2016 (781
individuals, 10 loci, doi: 10.1111/jeb.12931)

Reading input file from adegenet

input_data <- system.file("data/swallowtails.rda", package="adegenet")
data(swallowtails)

conducting a DAPC (n.pca determined using xvalDapc, see ??xvalDapc)

dapc1 <- dapc(swallowtails, n.pca=40, n.da=200)

read in swallowtails_loc.csv, which contains "key", "lat", and "lon"
columns with column headers (this example contains additional columns
containing species identifications, locality descriptions, and COI
haplotype clades)

input_locs <- system.file("files/swallowtails_loc.csv", package = "adegenet")
loc <- read.csv(input_locs, header = TRUE)

generate mvmapper input file, automatically write the output to a csv, and
name the output csv "mvMapper_Data.csv"
out_dir <- tempdir()
out_file <- file.path(out_dir, "mvMapper_Data.csv")

out <- export_to_mvmapper(dapc1, loc, write_file = TRUE, out_file = out_file)

https://popphylotools.github.io/mvMapper/

extract.PLINKmap 55

extract.PLINKmap Reading PLINK Single Nucleotide Polymorphism data

Description

The function read.PLINK reads a data file exported by the PLINK software with extension ’.raw’
and converts it into a "genlight" object. Optionally, information about SNPs can be read from a
".map" file, either by specifying the argument map.file in read.PLINK, or using extract.PLINKmap
to add information to an existing "genlight" object.

Usage

extract.PLINKmap(file, x = NULL)

read.PLINK(
file,
map.file = NULL,
quiet = FALSE,
chunkSize = 1000,
parallel = FALSE,
n.cores = NULL,
...

)

Arguments

file for read.PLINK a character string giving the path to the file to convert, with the
extension ".raw"; for extract.PLINKmap, a character string giving the path to a
file with extension ".map".

x an optional object of the class "genlight", in which the information read is
stored; if provided, information is matched against the names of the loci in x, as
returned by locNames(x); if not provided, a list of two components is returned,
containing chromosome and position information.

map.file an optional character string indicating the path to a ".map" file, which contains
information about the SNPs (chromosome, position). If provided, this informa-
tion is processed by extract.PLINKmap and stored in the @other slot.

quiet logical stating whether a conversion messages should be printed (TRUE,default)
or not (FALSE).

chunkSize an integer indicating the number of genomes to be read at a time; larger values
require more RAM but decrease the time needed to read the data.

parallel a logical indicating whether multiple cores -if available- should be used for the
computations (TRUE, default), or not (FALSE); requires the package parallel
to be installed (see details).

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

... other arguments to be passed to other functions - currently not used.

56 fasta2DNAbin

Details

The function reads data by chunks of several genomes (minimum 1, no maximum) at a time, which
allows one to read massive datasets with negligible RAM requirements (albeit at a cost of computa-
tional time). The argument chunkSize indicates the number of genomes read at a time. Increasing
this value decreases the computational time required to read data in, while increasing memory re-
quirements.

See details for the documentation about how to export data using PLINK to the ’.raw’ format.

=== Exporting data from PLINK ===

Data need to be exported from PLINK using the option "–recodeA" (and NOT "–recodeAD"). The
PLINK command should therefore look like: plink --file data --recodeA. For more informa-
tion on this topic, please look at this webpage: http://zzz.bwh.harvard.edu/plink/

Value

- read.PLINK: an object of the class "genlight"

- extract.PLINKmap: if a "genlight" is provided as argument x, this object incorporating the new
information about SNPs in the @other slot (with new components ’chromosome’ and ’position’);
otherwise, a list with two components containing chromosome and position information.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- ?genlight for a description of the class "genlight".

- read.snp: read SNPs in adegenet’s ’.snp’ format.

- fasta2genlight: extract SNPs from alignments with fasta format.

- other import function in adegenet: import2genind, df2genind, read.genetix read.fstat,
read.structure, read.genepop.

- another function read.plink is available in the package snpMatrix.

fasta2DNAbin Read large DNA alignments into R

Description

The function fasta2DNAbin reads alignments with the fasta format (extensions ".fasta", ".fas", or
".fa"), and outputs a DNAbin object (the efficient DNA representation from the ape package). The
output contains either the full alignments, or only SNPs. This implementation is designed for
memory-efficiency, and can read in larger datasets than Ape’s read.dna.

The function reads data by chunks of a few genomes (minimum 1, no maximum) at a time, which
allows one to read massive datasets with negligible RAM requirements (albeit at a cost of computa-
tional time). The argument chunkSize indicates the number of genomes read at a time. Increasing
this value decreases the computational time required to read data in, while increasing memory re-
quirements.

http://zzz.bwh.harvard.edu/plink/

fasta2DNAbin 57

Usage

fasta2DNAbin(file, quiet=FALSE, chunkSize=10, snpOnly=FALSE)

Arguments

file a character string giving the path to the file to convert, with the extension ".fa",
".fas", or ".fasta".
Can also be a connection (which will be opened for reading if necessary, and if
so closed (and hence destroyed) at the end of the function call).

quiet a logical stating whether a conversion messages should be printed (FALSE, de-
fault) or not (TRUE).

chunkSize an integer indicating the number of genomes to be read at a time; larger values
require more RAM but decrease the time needed to read the data.

snpOnly a logical indicating whether SNPs only should be returned.

Value

an object of the class DNAbin

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- ?DNAbin for a description of the class DNAbin.

- read.snp: read SNPs in adegenet’s ’.snp’ format.

- read.PLINK: read SNPs in PLINK’s ’.raw’ format.

- df2genind: convert any multiallelic markers into adegenet genind.

- import2genind: read multiallelic markers from various software into adegenet.

Examples

Not run:
show the example file
this is the path to the file:
myPath <- system.file("files/usflu.fasta",package="adegenet")
myPath

read the file
obj <- fasta2DNAbin(myPath, chunk=10) # process 10 sequences at a time
obj

End(Not run)

58 fasta2genlight

fasta2genlight Extract Single Nucleotide Polymorphism (SNPs) from alignments

Description

The function fasta2genlight reads alignments with the fasta format (extensions ".fasta", ".fas",
or ".fa"), extracts the binary SNPs, and converts the output into a genlight object.

The function reads data by chunks of a few genomes (minimum 1, no maximum) at a time, which
allows one to read massive datasets with negligible RAM requirements (albeit at a cost of computa-
tional time). The argument chunkSize indicates the number of genomes read at a time. Increasing
this value decreases the computational time required to read data in, while increasing memory re-
quirements.

Multiple cores can be used to decrease the overall computational time on parallel architectures
(needs the package parallel).

Usage

fasta2genlight(file, quiet = FALSE, chunkSize = 1000, saveNbAlleles = FALSE,
parallel = FALSE, n.cores = NULL, ...)

Arguments

file a character string giving the path to the file to convert, with the extension ".fa",
".fas", or ".fasta".

quiet logical stating whether a conversion messages should be printed (FALSE,default)
or not (TRUE).

chunkSize an integer indicating the number of genomes to be read at a time; larger values
require more RAM but decrease the time needed to read the data.

saveNbAlleles a logical indicating whether the number of alleles for each loci in the original
alignment should be saved in the other slot (TRUE), or not (FALSE, default).
In large genomes, this takes some space but allows for tracking SNPs with more
than 2 alleles, lost during the conversion.

parallel a logical indicating whether multiple cores -if available- should be used for the
computations (TRUE, default), or not (FALSE); requires the package parallel
to be installed (see details).

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

... other arguments to be passed to other functions - currently not used.

Details

=== Using multiple cores ===

Most recent machines have one or several processors with multiple cores. R processes usually use
one single core. The package parallel allows for parallelizing some computations on multiple
cores, which decreases drastically computational time.

To use this functionality, you need to have the last version of the parallel package installed.

find.clusters 59

Value

an object of the class genlight

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- ?genlight for a description of the class genlight.

- read.snp: read SNPs in adegenet’s ’.snp’ format.

- read.PLINK: read SNPs in PLINK’s ’.raw’ format.

- df2genind: convert any multiallelic markers into adegenet genind.

- import2genind: read multiallelic markers from various software into adegenet.

Examples

Not run:
show the example file
this is the path to the file:
myPath <- system.file("files/usflu.fasta",package="adegenet")
myPath

read the file
obj <- fasta2genlight(myPath, chunk=10) # process 10 sequences at a time
obj

look at extracted information
position(obj)
alleles(obj)
locNames(obj)

plot positions of polymorphic sites
temp <- density(position(obj), bw=10)
plot(temp, xlab="Position in the alignment", lwd=2, main="Location of the SNPs")
points(position(obj), rep(0, nLoc(obj)), pch="|", col="red")

End(Not run)

find.clusters find.cluster: cluster identification using successive K-means

60 find.clusters

Description

These functions implement the clustering procedure used in Discriminant Analysis of Principal
Components (DAPC, Jombart et al. 2010). This procedure consists in running successive K-means
with an increasing number of clusters (k), after transforming data using a principal component anal-
ysis (PCA). For each model, a statistical measure of goodness of fit (by default, BIC) is computed,
which allows to choose the optimal k. See details for a description of how to select the optimal k
and vignette("adegenet-dapc") for a tutorial.

Optionally, hierarchical clustering can be sought by providing a prior clustering of individuals (ar-
gument clust). In such case, clusters will be sought within each prior group.

The K-means procedure used in find.clusters is kmeans function from the stats package. The
PCA function is dudi.pca from the ade4 package, except for genlight objects which use the glPca
procedure from adegenet.

find.clusters is a generic function with methods for the following types of objects:

• data.frame (only numeric data)

• matrix (only numeric data)

• genind objects (genetic markers)

• genlight objects (genome-wide SNPs)

Usage

S3 method for class 'data.frame'
find.clusters(x, clust = NULL, n.pca = NULL, n.clust =

NULL, method = c("kmeans", "ward"), stat = c("BIC","AIC", "WSS"),
choose.n.clust = TRUE, criterion = c("diffNgroup", "min","goesup",
"smoothNgoesup", "goodfit"), max.n.clust = round(nrow(x)/10),
n.iter = 1e5, n.start = 10, center = TRUE, scale = FALSE,
pca.select = c("nbEig","percVar"), perc.pca = NULL, ..., dudi =
NULL)

S3 method for class 'matrix'
find.clusters(x, ...)

S3 method for class 'genind'
find.clusters(x, clust = NULL, n.pca = NULL, n.clust = NULL,

method = c("kmeans", "ward"), stat = c("BIC","AIC", "WSS"),
choose.n.clust = TRUE, criterion = c("diffNgroup", "min","goesup",
"smoothNgoesup", "goodfit"), max.n.clust = round(nrow(x@tab)/10),
n.iter = 1e5, n.start = 10, scale = FALSE, truenames = TRUE,
...)

S3 method for class 'genlight'
find.clusters(x, clust = NULL, n.pca = NULL, n.clust = NULL,

find.clusters 61

method = c("kmeans", "ward"), stat = c("BIC", "AIC", "WSS"),
choose.n.clust = TRUE, criterion = c("diffNgroup",
"min","goesup","smoothNgoesup", "goodfit"), max.n.clust =
round(nInd(x)/10), n.iter = 1e5,n.start = 10, scale = FALSE,
pca.select = c("nbEig","percVar"), perc.pca = NULL,glPca=NULL,
...)

Arguments

x a data.frame, matrix, or genind object. For the data.frame and matrix
arguments, only quantitative variables should be provided.

clust an optional factor indicating a prior group membership of individuals. If pro-
vided, sub-clusters will be sought within each prior group.

n.pca an integer indicating the number of axes retained in the Principal Component
Analysis (PCA) step. If NULL, interactive selection is triggered.

n.clust an optinal integer indicating the number of clusters to be sought. If provided,
the function will only run K-means once, for this number of clusters. If left as
NULL, several K-means are run for a range of k (number of clusters) values.

method a character string indicating the type of clustering method to be used; "kmeans"
(default) uses K-means clustering, and is the original implementation of find.clusters;
"ward" is an alternative which uses Ward’s hierarchical clustering; this latter
method seems to be more reliable on some simulated datasets, but will be less
computer-efficient for large numbers (thousands) of individuals.

stat a character string matching ’BIC’, ’AIC’, or ’WSS’, which indicates the statis-
tic to be computed for each model (i.e., for each value of k). BIC: Bayesian In-
formation Criterion. AIC: Aikaike’s Information Criterion. WSS: within-groups
sum of squares, that is, residual variance.

choose.n.clust a logical indicating whether the number of clusters should be chosen by the
user (TRUE, default), or automatically, based on a given criterion (argument
criterion). It is HIGHLY RECOMMENDED to choose the number of clus-
ters INTERACTIVELY, since i) the decrease of the summary statistics (BIC by
default) is informative, and ii) no criteria for automatic selection is appropriate
to all cases (see details).

criterion a character string matching "diffNgroup", "min","goesup", "smoothNgoesup",
or "goodfit", indicating the criterion for automatic selection of the optimal num-
ber of clusters. See details for an explanation of these procedures.

max.n.clust an integer indicating the maximum number of clusters to be tried. Values of
’k’ will be picked up between 1 and max.n.clust

n.iter an integer indicating the number of iterations to be used in each run of K-
means algorithm. Corresponds to iter.max of kmeans function.

n.start an integer indicating the number of randomly chosen starting centroids to be
used in each run of the K-means algorithm. Using more starting points ensures
convergence of the algorithm. Corresponds to nstart of kmeans function.

center a logical indicating whether variables should be centred to mean 0 (TRUE,
default) or not (FALSE). Always TRUE for genind objects.

62 find.clusters

scale a logical indicating whether variables should be scaled (TRUE) or not (FALSE,
default). Scaling consists in dividing variables by their (estimated) standard
deviation to account for trivial differences in variances. In allele frequencies,
it comes with the risk of giving uninformative alleles more importance while
downweighting informative alleles. Further scaling options are available for
genind objects (see argument scale.method).

pca.select a character indicating the mode of selection of PCA axes, matching either
"nbEig" or "percVar". For "nbEig", the user has to specify the number of axes
retained (interactively, or via n.pca). For "percVar", the user has to specify
the minimum amount of the total variance to be preserved by the retained axes,
expressed as a percentage (interactively, or via perc.pca).

perc.pca a numeric value between 0 and 100 indicating the minimal percentage of the
total variance of the data to be expressed by the retained axes of PCA.

truenames a logical indicating whether true (i.e., user-specified) labels should be used in
object outputs (TRUE, default) or not (FALSE), in which case generic labels are
used.

... further arguments to be passed to other functions. For find.clusters.matrix,
arguments are to match those of the data.frame method.

dudi optionally, a multivariate analysis with the class dudi (from the ade4 package).
If provided, prior PCA will be ignored, and this object will be used as a prior
step for variable orthogonalisation.

glPca an optional glPca object; if provided, dimension reduction is not performed
(saving computational time) but taken directly from this object.

Details

=== ON THE SELECTION OF K ===
(where K is the ’optimal’ number of clusters)

So far, the analysis of data simulated under various population genetics models (see reference)
suggested an ad hoc rule for the selection of the optimal number of clusters. First important result
is that BIC seems more efficient than AIC and WSS to select the appropriate number of clusters
(see example). The rule of thumb consists in increasing K until it no longer leads to an appreciable
improvement of fit (i.e., to a decrease of BIC). In the most simple models (island models), BIC
decreases until it reaches the optimal K, and then increases. In these cases, our rule amounts to
choosing the lowest K. In other models such as stepping stones, the decrease of BIC often continues
after the optimal K, but is much less steep.

An alternative approach is the automatic selection based on a fixed criterion. Note that, in any
case, it is highly recommended to look at the graph of the BIC for different numbers of clusters as
displayed during the interactive cluster selection. To use automated selection, set choose.n.clust
to FALSE and specify the criterion you want to use, from the following values:

- "diffNgroup": differences between successive values of the summary statistics (by default, BIC)
are splitted into two groups using a Ward’s clustering method (see ?hclust), to differentiate sharp
decrease from mild decreases or increases. The retained K is the one before the first group switch.
Appears to work well for island/hierarchical models, and decently for isolation by distance models,
albeit with some unstability. Can be impacted by an initial, very sharp decrease of the test statistics.
IF UNSURE ABOUT THE CRITERION TO USE, USE THIS ONE.

find.clusters 63

- "min": the model with the minimum summary statistics (as specified by stat argument, BIC
by default) is retained. Is likely to work for simple island model, using BIC. It is likely to fail in
models relating to stepping stones, where the BIC always decreases (albeit by a small amount) as
K increases. In general, this approach tends to over-estimate the number of clusters.

- "goesup": the selected model is the K after which increasing the number of clusters leads to
increasing the summary statistics. Suffers from inaccuracy, since i) a steep decrease might follow
a small ’bump’ of increase of the statistics, and ii) increase might never happen, or happen after
negligible decreases. Is likely to work only for clear-cut island models.

- "smoothNgoesup": a variant of "goesup", in which the summary statistics is first smoothed using
a lowess approach. Is meant to be more accurate than "goesup" as it is less prone to stopping to
small ’bumps’ in the decrease of the statistics.

- "goodfit": another criterion seeking a good fit with a minimum number of clusters. This approach
does not rely on differences between successive statistics, but on absolute fit. It selects the model
with the smallest K so that the overall fit is above a given threshold.

Value

The class find.clusters is a list with the following components:

Kstat a numeric vector giving the values of the summary statistics for the different
values of K. Is NULL if n.clust was specified.

stat a numeric value giving the value of the summary statistics for the retained model

grp a factor giving group membership for each individual.

size an integer vector giving the size of the different clusters.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-
2156-11-94

See Also

- dapc: implements the DAPC.

- scatter.dapc: graphics for DAPC.

- dapcIllus: dataset illustrating the DAPC and find.clusters.

- eHGDP: dataset illustrating the DAPC and find.clusters.

- kmeans: implementation of K-means in the stat package.

- dudi.pca: implementation of PCA in the ade4 package.

64 find.clusters

Examples

Not run:
THIS ONE TAKES A FEW MINUTES TO RUN
data(eHGDP)

here, n.clust is specified, so that only on K value is used
grp <- find.clusters(eHGDP, max.n=30, n.pca=200, scale=FALSE,
n.clust=4) # takes about 2 minutes
names(grp)
grp$Kstat
grp$stat

to try different values of k (interactive)
grp <- find.clusters(eHGDP, max.n=50, n.pca=200, scale=FALSE)

and then, to plot BIC values:
plot(grp$Kstat, type="b", col="blue")

ANOTHER SIMPLE EXAMPLE
data(sim2pop) # this actually contains 2 pop

DETECTION WITH BIC (clear result)
foo.BIC <- find.clusters(sim2pop, n.pca=100, choose=FALSE)
plot(foo.BIC$Kstat, type="o", xlab="number of clusters (K)", ylab="BIC",
col="blue", main="Detection based on BIC")
points(2, foo.BIC$Kstat[2], pch="x", cex=3)
mtext(3, tex="'X' indicates the actual number of clusters")

DETECTION WITH AIC (less clear-cut)
foo.AIC <- find.clusters(sim2pop, n.pca=100, choose=FALSE, stat="AIC")
plot(foo.AIC$Kstat, type="o", xlab="number of clusters (K)",
ylab="AIC", col="purple", main="Detection based on AIC")
points(2, foo.AIC$Kstat[2], pch="x", cex=3)
mtext(3, tex="'X' indicates the actual number of clusters")

DETECTION WITH WSS (less clear-cut)
foo.WSS <- find.clusters(sim2pop, n.pca=100, choose=FALSE, stat="WSS")
plot(foo.WSS$Kstat, type="o", xlab="number of clusters (K)", ylab="WSS
(residual variance)", col="red", main="Detection based on WSS")
points(2, foo.WSS$Kstat[2], pch="x", cex=3)
mtext(3, tex="'X' indicates the actual number of clusters")

TOY EXAMPLE FOR GENLIGHT OBJECTS
x <- glSim(100,500,500)
x
plot(x)

findMutations 65

grp <- find.clusters(x, n.pca = 100, choose = FALSE, stat = "BIC")
plot(grp$Kstat, type = "o", xlab = "number of clusters (K)",

ylab = "BIC",
main = "find.clusters on a genlight object\n(two groups)")

End(Not run)

findMutations Identify mutations between DNA sequences

Description

The function findMutations identifies mutations (position and nature) of pairs of aligned DNA
sequences. The function graphMutations does the same thing but plotting mutations on a directed
graph.

Both functions are generics, but the only methods implemented in adegenet so far is for DNAbin
objects.

Usage

findMutations(...)

S3 method for class 'DNAbin'
findMutations(x, from=NULL, to=NULL, allcomb=TRUE, ...)

graphMutations(...)

S3 method for class 'DNAbin'
graphMutations(x, from=NULL, to=NULL, allcomb=TRUE, plot=TRUE,

curved.edges=TRUE, ...)

Arguments

x a DNAbin object containing aligned sequences, as a matrix.

from a vector indicating the DNA sequences from which mutations should be found.
If NULL, all sequences are considered (i.e., 1:nrow(x)).

to a vector indicating the DNA sequences to which mutations should be found. If
NULL, all sequences are considered (i.e., 1:nrow(x)).

allcomb a logical indicating whether all combinations of sequences (from and to) should
be considered (TRUE, default), or not (FALSE).

plot a logical indicating whether the graph should be plotted.

curved.edges a logical indicating whether the edges of the graph should be curved.

... further arguments to be passed to other methods. Used in graphMutations
where it is passed to the plot method for igraph objects.

66 gengraph

Value

For findMutations, a named list indicating the mutations from one sequence to another. For each
comparison, a three-column matrix is provided, corresponding to the nucleotides in first and second
sequence, and a summary of the mutation provided as: [position]:[nucleotide in first sequence]-
>[nucleotide in second sequence].

For graphMutations, a graph with the class igraph.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>.

See Also

The fasta2DNAbin to read fasta alignments with minimum RAM use.

Examples

Not run:
data(woodmouse)

mutations between first 3 sequences
findMutations(woodmouse[1:3,])

mutations from the first to sequences 2 and 3
findMutations(woodmouse[1:3,], from=1)

same, graphical display
g <- graphMutations(woodmouse[1:3,], from=1)

some manual checks
as.character(woodmouse)[1:3,35]
as.character(woodmouse)[1:3,36]
as.character(woodmouse)[1:3,106]

End(Not run)

gengraph Genetic transitive graphs

Description

These functions are under development. Please email the author before using them for published
work.

The function gengraph generates graphs based on genetic distances, so that pairs of entities (indi-
viduals or populations) are connected if and only if they are distant by less than a given threshold

gengraph 67

distance. Graph algorithms and classes from the igraph package are used.

gengraph is a generic function with methods for the following types of objects:
- matrix (only numeric data)
- dist
- genind objects (genetic markers, individuals)
- genpop objects (genetic markers, populations)
- DNAbin objects (DNA sequences)

Usage

gengraph(x, ...)

S3 method for class 'matrix'
gengraph(x, cutoff=NULL, ngrp=NULL, computeAll=FALSE,

plot=TRUE, show.graph=TRUE, col.pal=funky, truenames=TRUE,
nbreaks=10, ...)

S3 method for class 'dist'
gengraph(x, cutoff=NULL, ngrp=NULL, computeAll=FALSE,

plot=TRUE, show.graph=TRUE, col.pal=funky, truenames=TRUE,
nbreaks=10, ...)

S3 method for class 'genind'
gengraph(x, cutoff=NULL, ngrp=NULL, computeAll=FALSE,

plot=TRUE, show.graph=TRUE, col.pal=funky, truenames=TRUE,
nbreaks=10, ...)

S3 method for class 'genpop'
gengraph(x, cutoff=NULL, ngrp=NULL, computeAll=FALSE,

plot=TRUE, show.graph=TRUE, col.pal=funky, method=1,
truenames=TRUE, nbreaks=10, ...)

S3 method for class 'DNAbin'
gengraph(x, cutoff=NULL, ngrp=NULL, computeAll=FALSE,

plot=TRUE, show.graph=TRUE, col.pal=funky, truenames=TRUE,
nbreaks=10, ...)

Arguments

x a matrix, dist, genind, genpop, or DNAbin object. For matrix and dist, the
object represents pairwise (by default, Hamming) distances between considered
individuals.

cutoff a numeric value indicating the cutoff point, i.e. the distance at which two enti-
ties are no longer connected in the garph produced by the method.

ngrp an integer indicating the number of groups to be looked for. A message is
issued if this exact number could not be found.

68 gengraph

computeAll a logical stating whether to investigate solutions for every (integer) cutoff
point; defaults to FALSE.

plot a logical indicating whether plots should be drawn; defaults to TRUE; this
operation can take time for large, highly-connected graphs.

show.graph a logical indicating whether the found graph should be drawn, only used in
the interactive mode; this operation can take time for large, highly-connected
graphs; defaults to FALSE.

col.pal a color palette used to define group colors.

method an integer ranging from 1 to 6 indicating the type of method to be used to
derive a matrix of pairwise distances between populations; values from 1 to 5
are passed to the function dist.genpop; other values are not supported.

truenames a logical indicating whether original labels should be used for plotting (TRUE),
as opposed to indices of sequences (FALSE).

nbreaks an integer indicating the number of breaks used by the heuristic when seeking
an exact number of groups.

... further arguments to be used by other functions; currently not used.

Value

The class gengraph is a list with the following components:

graph a graph of class igraph.

clust a list containing group information: $membership: an integer giving group
membership; $csize: the size of each cluster; $no: the number of clusters

cutoff the value used as a cutoff point

col the color used to plot each group.

Author(s)

Original idea by Anne Cori and Christophe Fraser. Implementation by Thibaut Jombart <t.jombart@imperial.ac.uk>.

See Also

The igraph package.

Examples

if(require(ape)){
data(woodmouse)
g <- gengraph(woodmouse, cutoff=5)
g
plot(g$graph)

}

genind class 69

genind class adegenet formal class (S4) for individual genotypes

Description

The S4 class genind is used to store individual genotypes.
It contains several components described in the ’slots’ section).
The summary of a genind object invisibly returns a list of component. The function .valid.genind
is for internal use. The function genind creates a genind object from a valid table of alleles corre-
sponding to the @tab slot. Note that as in other S4 classes, slots are accessed using @ instead of
$.

Slots

tab: (accessor: tab) matrix integers containing genotypes data for individuals (in rows) for all
alleles (in columns). The table differs depending on the @type slot:
- ’codom’: values are numbers of alleles, summing up to the individuals’ ploidies.
- ’PA’: values are presence/absence of alleles.
In all cases, rows and columns are given generic names.

loc.fac: (accessor: locFac) locus factor for the columns of tab

loc.n.all: (accessor: nAll) integer vector giving the number of observed alleles per locus (see
note)

all.names: (accessor: alleles) list having one component per locus, each containing a character
vector of allele names

ploidy: (accessor: ploidy) an integer vector indicating the degree of ploidy of the genotypes.
Beware: 2 is not an integer, but 2L or as.integer(2) is.

type: a character string indicating the type of marker: ’codom’ stands for ’codominant’ (e.g. mi-
crostallites, allozymes); ’PA’ stands for ’presence/absence’ (e.g. AFLP).

call: the matched call

strata: (accessor: strata) (optional) data frame giving levels of population stratification for each
individual

hierarchy: (accessor: hier) (optional, currently unused) a hierarchical formula defining the
hierarchical levels in the @@strata slot.

pop: (accessor: pop) (optional) factor giving the population of each individual

other: (accessor: other) (optional) a list containing other information

Note:

The loc.n.all slot will reflect the number of columns per locus that contain at least one observa-
tion. This means that the sum of the this vector will not necessarily equal the number of columns in
the data unless you use drop = TRUE when subsetting.

Extends

Class "gen", directly. Class "indInfo", directly.

70 genind class

Methods

names signature(x = "genind"): give the names of the components of a genind object

print signature(x = "genind"): prints a genind object

show signature(object = "genind"): shows a genind object (same as print)

summary signature(object = "genind"): summarizes a genind object, invisibly returning its
content or suppress printing of auxiliary information by specifying verbose = FALSE

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

as.genind, genind2genpop, genpop, import2genind, read.genetix, read.genepop, read.fstat

Related classes:
- genpop for storing data per populations

- genlight for an efficient storage of binary SNPs genotypes

Examples

showClass("genind")

obj <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))
obj
validObject(obj)
summary(obj)

Not run:
test inter-colonies structuration
if(require(hierfstat)){
gtest <- gstat.randtest(obj,nsim=99)
gtest
plot(gtest)
}

perform a between-class PCA
pca1 <- dudi.pca(scaleGen(obj, NA.method="mean"),scannf=FALSE,scale=FALSE)
pcabet1 <- between(pca1,obj@pop,scannf=FALSE)
pcabet1

s.class(pcabet1$ls,obj@pop,sub="Inter-class PCA",possub="topleft",csub=2)
add.scatter.eig(pcabet1$eig,2,xax=1,yax=2)

End(Not run)

genind2df 71

genind2df Convert a genind object to a data.frame.

Description

The function genind2df converts a genind back to a data.frame of raw allelic data.

Usage

genind2df(x, pop = NULL, sep = "", usepop = TRUE, oneColPerAll = FALSE)

Arguments

x a genind object

pop an optional factor giving the population of each individual.

sep a character string separating alleles. See details.

usepop a logical stating whether the population (argument pop or x@pop should be used
(TRUE, default) or not (FALSE)).

oneColPerAll a logical stating whether or not alleles should be split into columns (defaults to
FALSE). This will only work with data with consistent ploidies.

Value

a data.frame of raw allelic data, with individuals in rows and loci in column

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

df2genind, import2genind, read.genetix, read.fstat, read.structure

Examples

simple example
df <- data.frame(locusA=c("11","11","12","32"),
locusB=c(NA,"34","55","15"),locusC=c("22","22","21","22"))
row.names(df) <- .genlab("genotype",4)
df

obj <- df2genind(df, ploidy=2, ncode=1)
obj
obj@tab

converting a genind as data.frame
genind2df(obj)

72 genind2genpop

genind2df(obj, sep="/")

genind2genpop Conversion from a genind to a genpop object

Description

The function genind2genpop converts genotypes data (genind) into alleles counts per population
(genpop).

Usage

genind2genpop(
x,
pop = NULL,
quiet = FALSE,
process.other = FALSE,
other.action = mean

)

Arguments

x an object of class genind.

pop a factor giving the population of each genotype in ’x’ OR a formula specifying
which strata are to be used when converting to a genpop object. If none provided,
population factors are sought in x@pop, but if given, the argument prevails on
x@pop.

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

process.other a logical indicating whether the @other slot should be processed (see details).

other.action a function to be used when processing the @other slot. By default, ’mean’ is
used.

Details

=== ’missing’ argument ===
The values of the ’missing’ argument in genind2genpop have the following effects:
- "NA": if all genotypes of a population for a given allele are missing, count value will be NA

- "0": if all genotypes of a population for a given allele are missing, count value will be 0

- "chi2": if all genotypes of a population for a given allele are missing, count value will be that of
a theoretical count in of a Chi-squared test. This is obtained by the product of the margins sums
divided by the total number of alleles.

genind2genpop 73

=== processing the @other slot ===
Essentially, genind2genpop is about aggregating data per population. The function can do the same
for all numeric items in the @other slot provided they have the same length (for vectors) or the same
number of rows (matrix-like objects) as the number of genotypes. When the case is encountered
and if process.other is TRUE, then these objects are processed using the function defined in
other.action per population. For instance, spatial coordinates of genotypes would be averaged to
obtain population coordinates.

Value

A genpop object. The component @other in ’x’ is passed to the created genpop object.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

genind, genpop

Examples

simple conversion
data(nancycats)
nancycats
catpop <- genind2genpop(nancycats)
catpop
summary(catpop)

processing the @other slot
data(sim2pop)
sim2pop$other$foo <- letters
sim2pop
dim(sim2pop$other$xy) # matches the number of genotypes
sim2pop$other$foo # does not match the number of genotypes

obj <- genind2genpop(sim2pop, process.other=TRUE)
obj$other # the new xy is the populations' centre

pch <- as.numeric(pop(sim2pop))
col <- pop(sim2pop)
levels(col) <- c("blue","red")
col <- as.character(col)
plot(sim2pop$other$xy, pch=pch, col=col)
text(obj$other$xy, lab=row.names(obj$other$xy), col=c("blue","red"), cex=2, font=2)
Not run:
data(microbov)
strata(microbov) <- data.frame(other(microbov))
summary(genind2genpop(microbov)) # Conversion based on population factor
summary(genind2genpop(microbov, ~coun)) # Conversion based on country
summary(genind2genpop(microbov, ~coun/spe)) # Conversion based on country and species

74 genlight auxiliary functions

End(Not run)

genlight auxiliary functions

Auxiliary functions for genlight objects

Description

These functions provide facilities for usual computations using genlight objects. When ploidy varies
across individuals, the outputs of these functions depend on whether the information units are indi-
viduals, or alleles within individuals (see details).

These functions are:

- glSum: computes the sum of the number of second allele in each SNP.

- glNA: computes the number of missing values in each SNP.

- glMean: computes the mean number of second allele in each SNP.

- glVar: computes the variance of the number of second allele in each SNP.

- glDotProd: computes dot products between (possibly centred/scaled) vectors of individuals - uses
compiled C code - used by glPca.

Usage

glSum(x, alleleAsUnit = TRUE, useC = FALSE)
glNA(x, alleleAsUnit = TRUE)
glMean(x, alleleAsUnit = TRUE)
glVar(x, alleleAsUnit = TRUE)
glDotProd(x, center = FALSE, scale = FALSE, alleleAsUnit = FALSE,

parallel = FALSE, n.cores = NULL)

Arguments

x a genlight object
alleleAsUnit a logical indicating whether alleles are considered as units (i.e., a diploid geno-

type equals two samples, a triploid, three, etc.) or whether individuals are con-
sidered as units of information.

center a logical indicating whether SNPs should be centred to mean zero.
scale a logical indicating whether SNPs should be scaled to unit variance.
useC a logical indicating whether compiled C code should be used (TRUE) or not

(FALSE, default).
parallel a logical indicating whether multiple cores -if available- should be used for the

computations (TRUE, default), or not (FALSE); requires the package parallel
to be installed (see details); this option cannot be used alongside useCoption.

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

genlight auxiliary functions 75

Details

=== On the unit of information ===

In the cases where individuals can have different ploidy, computation of sums, means, etc. of allelic
data depends on what we consider as a unit of information.

To estimate e.g. allele frequencies, unit of information can be considered as the allele, so that a
diploid genotype contains two samples, a triploid individual, three samples, etc. In such a case,
all computations are done directly on the number of alleles. This corresponds to alleleAsUnit =
TRUE.

However, when the focus is put on studying differences/similarities between individuals, the unit of
information is the individual, and all genotypes possess the same information no matter what their
ploidy is. In this case, computations are made after standardizing individual genotypes to relative
allele frequencies. This corresponds to alleleAsUnit = FALSE.

Note that when all individuals have the same ploidy, this distinction does not hold any more.

Value

A numeric vector containing the requested information.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- genlight: class of object for storing massive binary SNP data.

- dapc: Discriminant Analysis of Principal Components.

- glPca: PCA for genlight objects.

- glSim: a simple simulator for genlight objects.

- glPlot: plotting genlight objects.

Examples

Not run:
x <- new("genlight", list(c(0,0,1,1,0), c(1,1,1,0,0,1), c(2,1,1,1,1,NA)))
x
as.matrix(x)
ploidy(x)

compute statistics - allele as unit
glNA(x)
glSum(x)
glMean(x)

compute statistics - individual as unit
glNA(x, FALSE)
glSum(x, FALSE)
glMean(x, FALSE)

76 genlight-class

explanation: data are taken as relative frequencies
temp <- as.matrix(x)/ploidy(x)
apply(temp,2, function(e) sum(is.na(e))) # NAs
apply(temp,2,sum, na.rm=TRUE) # sum
apply(temp,2,mean, na.rm=TRUE) # mean

End(Not run)

genlight-class Formal class "genlight"

Description

The class genlight is a formal (S4) class for storing a genotypes of binary SNPs in a compact way,
using a bit-level coding scheme. This storage is most efficient with haploid data, where the memory
taken to represent data can be reduced more than 50 times. However, genlight can be used for any
level of ploidy, and still remain an efficient storage mode.

A genlight object can be constructed from vectors of integers giving the number of the second
allele for each locus and each individual (see ’Objects of the class genlight’ below).

genlight stores multiple genotypes. Each genotype is stored as a SNPbin object.

Details

=== On the subsetting using [===

The function [accepts the following extra arguments:

treatOther a logical stating whether elements of the @other slot should be treated as well (TRUE),
or not (FALSE). If treated, elements of the list are examined for a possible match of length
(vectors, lists) or number of rows (matrices, data frames) with the number of individuals.
Those who match are subsetted accordingly. Others are left as is, issuing a warning unless the
argument quiet is set to TRUE.

quiet a logical indicating whether warnings should be issued when trying to subset components
of the @other slot which do not match the number of individuals (TRUE), or not (FALSE,
default).

. . . further arguments passed to the genlight constructor.

Objects from the class genlight

genlight objects can be created by calls to new("genlight", ...), where ’...’ can be the follow-
ing arguments:

gen input genotypes, where each genotype is coded as a vector of numbers of the second allele.
If a list, each slot of the list correspond to an individual; if a matrix or a data.frame, rows
correspond to individuals and columns to SNPs. If individuals or loci are named in the input,
these names will we stored in the produced object. All individuals are expected to have the
same number of SNPs. Shorter genotypes are completed with NAs, issuing a warning.

genlight-class 77

ploidy an optional vector of integers indicating the ploidy of the genotypes. Genotypes can there-
fore have different ploidy. If not provided, ploidy will be guessed from the data (as the maxi-
mum number of second alleles in each individual).

ind.names an optional vector of characters giving the labels of the genotypes.

loc.names an optional vector of characters giving the labels of the SNPs.

loc.all an optional vector of characters indicating the alleles of each SNP; for each SNP, alleles
must be coded by two letters separated by ’/’, e.g. ’a/t’ is valid, but ’a t’ or ’a |t’ are not.

chromosome an optional factor indicating the chromosome to which each SNP belongs.

position an optional vector of integers indicating the position of the SNPs.

other an optional list storing miscellaneous information.

Slots

The following slots are the content of instances of the class genlight; note that in most cases, it is
better to retrieve information via accessors (see below), rather than by accessing the slots manually.

gen: a list of genotypes stored as SNPbin objects.

n.loc: an integer indicating the number of SNPs of the genotype.

ind.names: a vector of characters indicating the names of genotypes.

loc.names: a vector of characters indicating the names of SNPs.

loc.all: a vector of characters indicating the alleles of each SNP.

chromosome: an optional factor indicating the chromosome to which each SNP belongs.

position: an optional vector of integers indicating the position of the SNPs.

ploidy: a vector of integers indicating the ploidy of each individual.

pop: a factor indicating the population of each individual.

strata: a data frame containing different levels of population definition. (For methods, see addStrata
and setPop)

hierarchy: a hierarchical formula defining the hierarchical levels in the @@strata slot.

other: a list containing other miscellaneous information.

Methods

Here is a list of methods available for genlight objects. Most of these methods are accessors, that
is, functions which are used to retrieve the content of the object. Specific manpages can exist for
accessors with more than one argument. These are indicated by a ’*’ symbol next to the method’s
name. This list also contains methods for conversion from genlight to other classes.

[signature(x = "genlight"): usual method to subset objects in R. Is to be applied as if the
object was a matrix where genotypes were rows and SNPs were columns. Indexing can be
done via vectors of signed integers or of logicals. See details for extra supported arguments.

show signature(x = "genlight"): printing of the object.

$ signature(x = "genlight"): similar to the @ operator; used to access the content of slots of
the object.

78 genlight-class

$<- signature(x = "genlight"): similar to the @ operator; used to replace the content of slots
of the object.

tab signature(x = "genlight"): returns a table of allele counts (see tab; additional arguments
are freq, a logical stating if relative frequencies should be returned (use for varying ploidy),
and NA.method, a character indicating if missing values should be replaced by the mean fre-
quency("mean"), or left as is ("asis").

nInd signature(x = "genlight"): returns the number of individuals in the object.

nPop signature(x = "genlight"): returns the number of populations in the object.

nLoc signature(x = "genlight"): returns the number of SNPs in the object.

dim signature(x = "genlight"): returns the number of individuals and SNPs in the object, re-
spectively.

names signature(x = "genlight"): returns the names of the slots of the object.

indNames signature(x = "genlight"): returns the names of the individuals, if provided when
the object was constructed.

indNames<- signature(x = "genlight"): sets the names of the individuals using a character
vector of length nInd(x).

popNames signature(x = "genlight"): returns the names of the populations, if provided when
the object was constructed.

popNames<- signature(x = "genlight"): sets the names of the populations using a character
vector of length nPop(x).

locNames signature(x = "genlight"): returns the names of the loci, if provided when the object
was constructed.

locNames<- signature(x = "genlight"): sets the names of the SNPs using a character vector of
length nLoc(x).

ploidy signature(x = "genlight"): returns the ploidy of the genotypes.

ploidy<- signature(x = "genlight"): sets the ploidy of the individuals using a vector of integers
of size nInd(x); if a single value is provided, the same ploidy is assumed for all individuals.

NA.posi signature(x = "genlight"): returns the indices of missing values (NAs) as a list with
one vector of integer for each individual.

alleles signature(x = "genlight"): returns the names of the alleles of each SNPs, if provided
when the object was constructed.

alleles<- signature(x = "genlight"): sets the names of the alleles of each SNPs using a charac-
ter vector of length nLoc(x); for each SNP, two alleles must be provided, separated by a "/",
e.g. ’a/t’, ’c/a’, etc.

chromosome signature(x = "genlight"): returns a factor indicating the chromosome of each
SNPs, or NULL if the information is missing.

chromosome<- signature(x = "genlight"): sets the chromosome to which SNPs belong using
a factor of length nLoc(x).

chr signature(x = "genlight"): shortcut for chromosome.

chr<- signature(x = "genlight"): shortcut for chromosome<-.

position signature(x = "genlight"): returns an integer vector indicating the position of each
SNPs, or NULL if the information is missing.

genlight-class 79

position<- signature(x = "genlight"): sets the positions of the SNPs using an integer vector of
length nLoc(x).

pop signature(x = "genlight"): returns a factor indicating the population of each individual, if
provided when the object was constructed.

pop<- signature(x = "genlight"): sets the population of each individual using a factor of length
nInd(x).

other signature(x = "genlight"): returns the content of the slot @other.

other<- signature(x = "genlight"): sets the content of the slot @other.

as.matrix signature(x = "genlight"): converts a genlight object into a matrix of integers,
with individuals in rows and SNPs in columns. The S4 method ’as’ can be used as well (e.g.
as(x, "matrix")).

as.data.frame signature(x = "genlight"): same as as.matrix.

as.list signature(x = "genlight"): converts a genlight object into a list of genotypes coded as
vector of integers (numbers of second allele). The S4 method ’as’ can be used as well (e.g.
as(x, "list")).

cbind signature(x = "genlight"): merges several genlight objects by column, i.e. regroups
data of identical individuals genotyped for different SNPs.

rbind signature(x = "genlight"): merges several genlight objects by row, i.e. regroups data of
different individuals genotyped for the same SNPs.

Author(s)

Thibaut Jombart (<t.jombart@imperial.ac.uk>)
Zhian N. Kamvar (<kamvarz@science.oregonstate.edu>)

See Also

Related class:
- SNPbin, for storing individual genotypes of binary SNPs

- genind, for storing other types of genetic markers.

Examples

Not run:
TOY EXAMPLE
create and convert data
dat <- list(toto=c(1,1,0,0), titi=c(NA,1,1,0), tata=c(NA,0,3, NA))
x <- new("genlight", dat)
x

examine the content of the object
names(x)
x@gen
x@gen[[1]]@snp # bit-level coding for first individual

80 genlight-class

conversions
as.list(x)
as.matrix(x)

round trips - must return TRUE
identical(x, new("genlight", as.list(x))) # list
identical(x, new("genlight", as.matrix(x))) # matrix
identical(x, new("genlight", as.data.frame(x))) # data.frame

test subsetting
x[c(1,3)] # keep individuals 1 and 3
as.list(x[c(1,3)])
x[c(1,3), 1:2] # keep individuals 1 and 3, loci 1 and 2
as.list(x[c(1,3), 1:2])
x[c(TRUE,FALSE), c(TRUE,TRUE,FALSE,FALSE)] # same, using logicals
as.list(x[c(TRUE,FALSE), c(TRUE,TRUE,FALSE,FALSE)])

REAL-SIZE EXAMPLE
50 genotypes of 1,000,000 SNPs
dat <- lapply(1:50, function(i) sample(c(0,1,NA), 1e6, prob=c(.5, .49, .01), replace=TRUE))
names(dat) <- paste("indiv", 1:length(dat))
print(object.size(dat), unit="aut") # size of the original data

x <- new("genlight", dat) # conversion
x
print(object.size(x), unit="au") # size of the genlight object
object.size(dat)/object.size(x) # conversion efficiency

cbind, rbind
a <- new("genlight", list(toto=rep(1,10), tata=rep(c(0,1), each=5), titi=c(NA, rep(1,9))))

ara <- rbind(a,a)
ara
as.matrix(ara)

aca <- cbind(a,a)
aca
as.matrix(aca)

subsetting @other
x <- new("genlight", list(a=1,b=0,c=1), other=list(1:3, letters,data.frame(2:4)))
x
other(x)
x[2:3]
other(x[2:3])
other(x[2:3, treatOther=FALSE])

seppop

genpop class 81

pop(x) # no population info
pop(x) <- c("pop1","pop1", "pop2") # set population memberships
pop(x)
seppop(x)

End(Not run)

genpop class adegenet formal class (S4) for allele counts in populations

Description

An object of class genpop contain alleles counts for several loci.
It contains several components (see ’slots’ section).
Such object is obtained using genind2genpop which converts individuals genotypes of known pop-
ulation into a genpop object. Note that the function summary of a genpop object returns a list of
components. Note that as in other S4 classes, slots are accessed using @ instead of $.

Slots

tab: matrix of alleles counts for each combinaison of population (in rows) and alleles (in columns).

loc.fac: locus factor for the columns of tab

loc.n.all: integer vector giving the number of alleles per locus

all.names: list having one component per locus, each containing a character vector of alleles
names

call: the matched call

ploidy: an integer indicating the degree of ploidy of the genotypes. Beware: 2 is not an integer,
but as.integer(2) is.

type: a character string indicating the type of marker: ’codom’ stands for ’codominant’ (e.g. mi-
crostallites, allozymes); ’PA’ stands for ’presence/absence’ (e.g. AFLP).

other: (optional) a list containing other information

Extends

Class "gen", directly. Class "popInfo", directly.

Methods

names signature(x = "genpop"): give the names of the components of a genpop object

print signature(x = "genpop"): prints a genpop object

show signature(object = "genpop"): shows a genpop object (same as print)

summary signature(object = "genpop"): summarizes a genpop object, invisibly returning its
content or suppress printing of auxiliary information by specifying verbose = FALSE

82 global.rtest

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

as.genpop, is.genpop,makefreq, genind, import2genind, read.genetix, read.genepop, read.fstat

Examples

obj1 <- import2genind(system.file("files/nancycats.gen",
package="adegenet"))
obj1

obj2 <- genind2genpop(obj1)
obj2

Not run:
data(microsatt)
use as.genpop to convert convenient count tab to genpop
obj3 <- as.genpop(microsatt$tab)
obj3

all(obj3@tab==microsatt$tab)

perform a correspondance analysis
obj4 <- genind2genpop(obj1,missing="chi2")
ca1 <- dudi.coa(as.data.frame(obj4@tab),scannf=FALSE)
s.label(ca1$li,sub="Correspondance Analysis",csub=2)
add.scatter.eig(ca1$eig,2,xax=1,yax=2,posi="top")

End(Not run)

global.rtest Global and local tests

Description

These two Monte Carlo tests are used to assess the existence of global and local spatial structures.
They can be used as an aid to interprete global and local components of spatial Principal Compo-
nent Analysis (sPCA).

They rely on the decomposition of a data matrix X into global and local components using multiple
regression on Moran’s Eigenvector Maps (MEMs). They require a data matrix (X) and a list of
weights derived from a connection network. X is regressed onto global MEMs (U+) in the global
test and on local ones (U-) in the local test. One mean R2 is obtained for each MEM, the k highest
being summed to form the test statistic.

The reference distribution of these statistics are obtained by randomly permuting the rows of X.

global.rtest 83

Usage

global.rtest(X, listw, k = 1, nperm = 499)
local.rtest(X, listw, k = 1, nperm = 499)

Arguments

X a data matrix, with variables in columns

listw a list of weights of class listw. Can be obtained easily using the function
chooseCN.

k integer: the number of highest R2 summed to form the test statistics

nperm integer: the number of randomisations to be performed.

Details

This test is purely R code. A C or C++ version will be developped soon.

Value

An object of class randtest.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. Revealing cryptic spatial patterns in genetic
variability by a new multivariate method. Heredity, 101, 92–103.

See Also

chooseCN, spca, monmonier

Examples

Not run:
data(sim2pop)
if(require(spdep)){
cn <- chooseCN(sim2pop@other$xy,ask=FALSE,type=1,plot=FALSE,res="listw")

global test
Gtest <- global.rtest(sim2pop@tab,cn)
Gtest

local test
Ltest <- local.rtest(sim2pop@tab,cn)
Ltest
}

84 glPca

End(Not run)

glPca Principal Component Analysis for genlight objects

Description

These functions implement Principal Component Analysis (PCA) for massive SNP datasets stored
as genlight object. This implementation has the advantage of never representing to complete data
matrix, therefore making huge economies in terms of rapid access memory (RAM). When the
parallel package is available, glPca uses multiple-core ressources for more efficient computa-
tions. glPca returns lists with the class glPca (see ’value’).

Other functions are defined for objects of this class:

- print: prints the content of a glPca object.

- scatter: produces scatterplots of principal components, with a screeplot of eigenvalues as inset.

- loadingplot: plots the loadings of the analysis for one given axis, using an adapted version of
the generic function loadingplot.

Usage

glPca(x, center = TRUE, scale = FALSE, nf = NULL, loadings = TRUE,
alleleAsUnit = FALSE, useC = TRUE, parallel = FALSE,

n.cores = NULL, returnDotProd=FALSE, matDotProd=NULL)

S3 method for class 'glPca'
print(x, ...)

S3 method for class 'glPca'
scatter(x, xax = 1, yax = 2, posi = "bottomleft", bg = "white",

ratio = 0.3, label = rownames(x$scores), clabel = 1, xlim = NULL,
ylim = NULL, grid = TRUE, addaxes = TRUE, origin = c(0, 0),
include.origin = TRUE, sub = "", csub = 1, possub = "bottomleft",
cgrid = 1, pixmap = NULL, contour = NULL, area = NULL, ...)

S3 method for class 'glPca'
loadingplot(x, at=NULL, threshold=NULL, axis=1,

fac=NULL, byfac=FALSE, lab=rownames(x$loadings), cex.lab=0.7, cex.fac=1,
lab.jitter=0, main="Loading plot", xlab="SNP positions",
ylab="Contributions", srt = 90, adj = c(0, 0.5), ...)

Arguments

x for glPca, a genlight object; for print, scatter, and loadingplot, a glPca
object.

glPca 85

center a logical indicating whether the numbers of alleles should be centered; defaults
to TRUE

scale a logical indicating whether the numbers of alleles should be scaled; defaults to
FALSE

nf an integer indicating the number of principal components to be retained; if
NULL, a screeplot of eigenvalues will be displayed and the user will be asked
for a number of retained axes.

loadings a logical indicating whether loadings of the alleles should be computed (TRUE,
default), or not (FALSE). Vectors of loadings are not always useful, and can take
a large amount of RAM when millions of SNPs are considered.

alleleAsUnit a logical indicating whether alleles are considered as units (i.e., a diploid geno-
type equals two samples, a triploid, three, etc.) or whether individuals are con-
sidered as units of information.

useC a logical indicating whether compiled C code should be used for faster compu-
tations; this option cannot be used alongside parallel option.

parallel a logical indicating whether multiple cores -if available- should be used for the
computations (TRUE), or not (FALSE, default); requires the package parallel
to be installed (see details); this option cannot be used alongside useCoption.

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

returnDotProd a logical indicating whether the matrix of dot products between individuals
should be returned (TRUE) or not (FALSE, default).

matDotProd an optional matrix of dot products between individuals, NULL by default. This
option is used internally to speed up computation time when re-running the same
PCA several times. Leave this argument as NULL unless you really know what
you are doing.

... further arguments to be passed to other functions.

xax, yax integers specifying which principal components should be shown in x and y
axes.

posi, bg, ratio arguments used to customize the inset in scatterplots of glPca results. See
add.scatter documentation in the ade4 package for more details.

label, clabel, xlim, ylim, grid, addaxes, origin, include.origin, sub, csub,
possub, cgrid, pixmap, contour, area

arguments passed to s.class; see ?s.label for more information

at an optional numeric vector giving the abscissa at which loadings are plotted.
Useful when variates are SNPs with a known position in an alignement.

threshold a threshold value above which values of x are identified. By default, this is the
third quartile of x.

axis an integer indicating the column of x to be plotted; used only if x is a matrix-like
object.

fac a factor defining groups of SNPs.

byfac a logical stating whether loadings should be averaged by groups of SNPs, as
defined by fac.

86 glPca

lab a character vector giving the labels used to annotate values above the threshold.

cex.lab a numeric value indicating the size of annotations.

cex.fac a numeric value indicating the size of annotations for groups of observations.

lab.jitter a numeric value indicating the factor of randomisation for the position of anno-
tations. Set to 0 (by default) implies no randomisation.

main the main title of the figure.

xlab the title of the x axis.

ylab the title of the y axis.

srt rotation of the labels; see ?text.

adj adjustment of the labels; see ?text.

Details

=== Using multiple cores ===

Most recent machines have one or several processors with multiple cores. R processes usually use
one single core. The package parallel allows for parallelizing some computations on multiple
cores, which can decrease drastically computational time.

Lastly, note that using compiled C code (useC=TRUE)is an alternative for speeding up computations,
but cannot be used together with the parallel option.

Value

=== glPca objects ===

The class glPca is a list with the following components:

call the matched call.

eig a numeric vector of eigenvalues.

scores a matrix of principal components, containing the coordinates of each individual
(in row) on each principal axis (in column).

loadings (optional) a matrix of loadings, containing the loadings of each SNP (in row) for
each principal axis (in column).

-

=== other outputs ===

Other functions have different outputs:
- scatter return the matched call.
- loadingplot returns information about the most contributing SNPs (see loadingplot.default)

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

glPlot 87

See Also

- genlight: class of object for storing massive binary SNP data.

- glSim: a simple simulator for genlight objects.

- glPlot: plotting genlight objects.

- dapc: Discriminant Analysis of Principal Components.

Examples

Not run:
simulate a toy dataset
x <- glSim(50,4e3, 50, ploidy=2)
x
plot(x)

perform PCA
pca1 <- glPca(x, nf=2)

plot eigenvalues
barplot(pca1$eig, main="eigenvalues", col=heat.colors(length(pca1$eig)))

basic plot
scatter(pca1, ratio=.2)

plot showing groups
s.class(pca1$scores, pop(x), col=colors()[c(131,134)])
add.scatter.eig(pca1$eig,2,1,2)

End(Not run)

glPlot Plotting genlight objects

Description

genlight object can be plotted using the function glPlot, which is also used as the dedicated plot
method. These functions relie on image to represent SNPs data. More specifically, colors are used
to represent the number of second allele for each locus and individual.

Usage

glPlot(x, col=NULL, legend=TRUE, posi="bottomleft", bg=rgb(1,1,1,.5),...)

S4 method for signature 'genlight'
plot(x, y=NULL, col=NULL, legend=TRUE, posi="bottomleft", bg=rgb(1,1,1,.5),...)

88 glPlot

Arguments

x a genlight object.

col an optional color vector; the first value corresponds to 0 alleles, the last value
corresponds to the ploidy level of the data. Therefore, the vector should have a
length of (ploidy(x)+1).

legend a logical indicating whether a legend should be added to the plot.

posi a character string indicating where the legend should be positioned. Can be any
concatenation of "bottom"/"top" and "left"/"right".

bg a color used as a background for the legend; by default, transparent white is
used; this may not be supported on some devices, and therefore background
should be specified (e.g. bg="white").

... further arguments to be passed to image.

y ununsed argument, present for compatibility with the plot generic.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- genlight: class of object for storing massive binary SNP data.

- glSim: a simple simulator for genlight objects.

- glPca: PCA for genlight objects.

Examples

Not run:
simulate data
x <- glSim(100, 1e3, n.snp.struc=100, ploid=2)

default plot
glPlot(x)
plot(x) # identical plot

disable legend
plot(x, leg=FALSE)

use other colors
plot(x, col=heat.colors(3), bg="white")

End(Not run)

glSim 89

glSim Simulation of simple genlight objects

Description

The function glSim simulates simple SNP data with the possibility of contrasted structures between
two groups as well as background ancestral population structure. Returned objects are instances of
the class genlight.

Usage

glSim(n.ind, n.snp.nonstruc, n.snp.struc = 0, grp.size = c(0.5, 0.5), k = NULL,
pop.freq = NULL, ploidy = 1, alpha = 0, parallel = FALSE,

LD = TRUE, block.minsize = 10, block.maxsize = 1000, theta = NULL,
sort.pop = FALSE, ...)

Arguments

n.ind an integer indicating the number of individuals to be simulated.
n.snp.nonstruc an integer indicating the number of non-structured SNPs to be simulated; for

these SNPs, all individuals are drawn from the same binomial distribution.
n.snp.struc an integer indicating the number of structured SNPs to be simulated; for these

SNPs, different binomial distributions are used for the two simulated groups;
frequencies of the derived alleles in groups A and B are built to differ (see de-
tails).

grp.size a vector of length 2 specifying the proportions of the two phenotypic groups
(must sum to 1). By default, both groups have the same size.

k an integer specifying the number of ancestral populations to be generated.
pop.freq a vector of length k specifying the proportions of the k ancestral populations

(must sum to 1). If, as by default, pop.freq is null, and k is non-null, pop.freq
will be the result of random sampling into k population groups.

ploidy an integer indicating the ploidy of the simulated genotypes.
alpha asymmetry parameter: a numeric value between 0 and 0.5, used to enforce allelic

differences between the groups. Differences between groups are strongest when
alpha = 0.5 and weakest when alpha = 0 (see details).

parallel a logical indicating whether multiple cores should be used in generating the
simulated data (TRUE). This option can reduce the amount of computational
time required to simulate the data, but is not supported on Windows.

LD a logical indicating whether loci should be displaying linkage disequilibrium
(TRUE) or be generated independently (FALSE, default). When set to TRUE,
data are generated by blocks of correlated SNPs (see details).

block.minsize an optional integer indicating the minimum number of SNPs to be handled at a
time during the simulation of linked SNPs (when LD=TRUE. Increasing the mini-
mum block size will increase the RAM requirement but decrease the amount of
computational time required to simulate the genotypes.

90 glSim

block.maxsize an optional integer indicating the maximum number of SNPs to be handled at a
time during the simulation of linked SNPs. Note: if LD blocks of equal size are
desired, set block.minsize = block.maxsize.

theta an optional numeric value between 0 and 0.5 specifying the extent to which
linkage should be diluted. Linkage is strongest when theta = 0 and weakest
when theta = 0.5.

sort.pop a logical specifying whether individuals should be ordered by ancestral popula-
tion (sort.pop=TRUE) or phenotypic population (sort.pop=FALSE).

... arguments to be passed to the genlight constructor.

Details

=== Allele frequencies in contrasted groups ===

When n.snp.struc is greater than 0, some SNPs are simulated in order to differ between groups
(noted ’A’ and ’B’). Different patterns between groups are achieved by using different frequencies
of the second allele for A and B, denoted pA and pB . For a given SNP, pA is drawn from a uniform
distribution between 0 and (0.5 - alpha). pB is then computed as 1 - pA. Therefore, differences
between groups are mild for alpha=0, and total for alpha = 0.5.

=== Linked or independent loci ===

Independent loci (LD=FALSE) are simulated using the standard binomial distribution, with randomly
generated allele frequencies. Linked loci (LD=FALSE) are trickier towe need to simulate discrete
variables with pre-defined correlation structure.

Here, we first generate deviates from multivariate normal distributions with randomly generated
correlation structures. These variables are then discretized using the quantiles of the distribution.
Further improvement of the procedure will aim at i) specifying the strength of the correlations
between blocks of alleles and ii) enforce contrasted structures between groups.

Value

A genlight object.

Author(s)

Caitlin Collins <caitlin.collins12@imperial.ac.uk>, Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- genlight: class of object for storing massive binary SNP data.

- glPlot: plotting genlight objects.

- glPca: PCA for genlight objects.

Examples

Not run:
no structure
x <- glSim(100, 1e3, ploid=2)
plot(x)

H3N2 91

1,000 non structured SNPs, 100 structured SNPs
x <- glSim(100, 1e3, n.snp.struc=100, ploid=2)
plot(x)

1,000 non structured SNPs, 100 structured SNPs, ploidy=4
x <- glSim(100, 1e3, n.snp.struc=100, ploid=4)
plot(x)

same thing, stronger differences between groups
x <- glSim(100, 1e3, n.snp.struc=100, ploid=2, alpha=0.4)
plot(x)

same thing, loci with LD structures
x <- glSim(100, 1e3, n.snp.struc=100, ploid=2, alpha=0.4, LD=TRUE, block.minsize=100)
plot(x)

End(Not run)

H3N2 Seasonal influenza (H3N2) HA segment data

Description

The dataset H3N2 consists of 1903 strains of seasonal influenza (H3N2) distributed worldwide, and
typed at 125 SNPs located in the hemagglutinin (HA) segment. It is stored as an R object with class
genind and can be accessed as usual using data(H3N2) (see example). These data were gathered
from DNA sequences available from Genbank (http://www.ncbi.nlm.nih.gov/Genbank/).

Format

H3N2 is a genind object with several data frame as supplementary components (H3N2@other) slort,
which contains the following items:

x a data.frame containing miscellaneous annotations of the sequences.
xy a matrix with two columns indicating the geographic coordinates of the strains, as longitudes

and latitudes.
epid a character vector indicating the epidemic of the strains.

Details

The data file usflu.fasta is a toy dataset also gathered from Genbank, consisting of the aligned
sequences of 80 seasonal influenza isolates (HA segment) sampled in the US, in fasta format. This
file is installed alongside the package; the path to this file is automatically determined by R using
system.file (see example in this manpage and in ?fasta2genlight) as well.

Source

This dataset was prepared by Thibaut Jombart (t.jombart@imperia.ac.uk), from annotated sequences
available on Genbank (http://www.ncbi.nlm.nih.gov/Genbank/).

92 haploGen

References

Jombart, T., Devillard, S. and Balloux, F. Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. Submitted to BMC genetics.

Examples

Not run:
H3N2
LOAD DATA
data(H3N2)
H3N2

set population to yearly epidemics
pop(H3N2) <- factor(H3N2$other$epid)

PERFORM DAPC - USE POPULATIONS AS CLUSTERS
to reproduce exactly analyses from the paper, use "n.pca=1000"
dapc1 <- dapc(H3N2, all.contrib=TRUE, scale=FALSE, n.pca=150, n.da=5)
dapc1

(see ?dapc for details about the output)

SCREEPLOT OF EIGENVALUES
barplot(dapc1$eig, main="H3N2 - DAPC eigenvalues")

SCATTERPLOT (axes 1-2)
scatter(dapc1, posi.da="topleft", cstar=FALSE, cex=2, pch=17:22,
solid=.5, bg="white")

usflu.fasta
myPath <- system.file("files/usflu.fasta",package="adegenet")
myPath

extract SNPs from alignments using fasta2genlight
see ?fasta2genlight for more details
obj <- fasta2genlight(myPath, chunk=10) # process 10 sequences at a time
obj

End(Not run)

haploGen Simulation of genealogies of haplotypes

haploGen 93

Description

The function haploGen implements simulations of genealogies of haplotypes. This forward-time,
individual-based simulation tool allows haplotypes to replicate and mutate according to specified
parameters, and keeps track of their genealogy.

Simulations can be spatially explicit or not (see geo.sim argument). In the first case, haplotypes
are assigned to locations on a regular grip. New haplotypes disperse from their ancestor’s location
according to a random Poisson diffusion, or alternatively according to a pre-specified migration
scheme. This tool does not allow for simulating selection or linkage disequilibrium.

Produced objects are lists with the class haploGen; see ’value’ section for more information on this
class. Other functions are available to print, plot, subset, sample or convert haploGen objects. A
seqTrack method is also provided for analysing haploGen objects.

Note that for simulation of outbreaks, the new tool simOutbreak in the outbreaker package should
be used.

Usage

haploGen(seq.length=1e4, mu.transi=1e-4, mu.transv=mu.transi/2, t.max=20,
gen.time=function(){1+rpois(1,0.5)},
repro=function(){rpois(1,1.5)}, max.nb.haplo=200,
geo.sim=FALSE, grid.size=10, lambda.xy=0.5,
mat.connect=NULL,
ini.n=1, ini.xy=NULL)

S3 method for class 'haploGen'
print(x, ...)
S3 method for class 'haploGen'
as.igraph(x, col.pal=redpal, ...)
S3 method for class 'haploGen'
plot(x, y=NULL, col.pal=redpal, ...)
S3 method for class 'haploGen'
x[i, j, drop=FALSE]
S3 method for class 'haploGen'
labels(object, ...)
S3 method for class 'haploGen'
as.POSIXct(x, tz="", origin=as.POSIXct("2000/01/01"), ...)
S3 method for class 'haploGen'
seqTrack(x, best=c("min","max"), prox.mat=NULL, ...)
as.seqTrack.haploGen(x)
plotHaploGen(x, annot=FALSE, date.range=NULL, col=NULL, bg="grey", add=FALSE, ...)
sample.haploGen(x, n)

Arguments

seq.length an integer indicating the length of the simulated haplotypes, in number of nu-
cleotides.

mu.transi the rate of transitions, in number of mutation per site and per time unit.

mu.transv the rate of transversions, in number of mutation per site and per time unit.

94 haploGen

t.max an integer indicating the maximum number of time units to run the simulation
for.

gen.time an integer indicating the generation time, in number of time units. Can be a
(fixed) number or a function returning a number (then called for each reproduc-
tion event).

repro an integer indicating the number of descendents per haplotype. Can be a (fixed)
number or a function returning a number (then called for each reproduction
event).

max.nb.haplo an integer indicating the maximum number of haplotypes handled at any time of
the simulation, used to control the size of the produced object. Larger number
will lead to slower simulations. If this number is exceeded, the genealogy is
prunded to as to keep this number of haplotypes.

geo.sim a logical stating whether simulations should be spatially explicit (TRUE) or not
(FALSE, default). Spatially-explicit simulations are slightly slower than their
non-spatial counterpart.

grid.size the size of the square grid of possible locations for spatial simulations. The total
number of locations will be this number squared.

lambda.xy the parameter of the Poisson distribution used to determine dispersion in x and
y axes.

mat.connect a matrix of connectivity describing migration amongts all pairs of locations.
mat.connect[i,j] indicates the probability, being in ’i’, to migrate to ’j’. The
rows of this matrix thus sum to 1. It has as many rows and columns as there
are locations, with row ’i’ / column ’j’ corresponding to locations number ’i’
and ’j’. Locations are numbered as in a matrix in which rows and columns
are respectively x and y coordinates. For instance, in a 5x5 grid, locations are
numbered as in matrix(1:25,5,5).

ini.n an integer specifying the number of (identical) haplotypes to initiate the simula-
tion

ini.xy a vector of two integers giving the x/y coordinates of the initial haplotype.

x, object haploGen objects.

y unused argument, for compatibility with ’plot’.

col.pal a color palette to be used to represent weights using colors on the edges of the
graph. See ?num2col. Note that the palette is inversed by default.

i, j, drop i is a vector used for subsetting the object. For instance, i=1:3 will retain only
the first three haplotypes of the genealogy. j and drop are only provided for
compatibility, but not used.

best, prox.mat arguments to be passed to the seqTrack function. See documentation of seqTrack
for more information.

annot, date.range, col, bg, add
arguments to be passed to plotSeqTrack.

n an integer indicating the number of haplotypes to be retained in the sample

tz, origin aguments to be passed to as.POSIXct (see ?as.POSIXct)

... further arguments to be passed to other methods; for ’plot’, arguments are passed
to plot.igraph.

haploGen 95

Details

=== Dependencies with other packages ===
- ape package is required as it implements efficient handling of DNA sequences used in haploGen
objects. To install this package, simply type:
install.packages("ape")

- for various purposes including plotting, converting genealogies to graphs can be useful. From
adegenet version 1.3-5 onwards, this is achieved using the package igraph. See below.

=== Converting haploGen objects to graphs ===
haploGen objects can be converted to igraph objects (package igraph), which can in turn be plot-
ted and manipulated using classical graph tools. Simply use ’as.igraph(x)’ where ’x’ is a haploGen
object. This functionality requires the igraph package. Graphs are time oriented (top=old, bot-
tom=recent).

Value

=== haploGen class ===
haploGen objects are lists containing the following slots:
- seq: DNA sequences in the DNAbin matrix format
- dates: dates of appearance of the haplotypes
- ances: a vector of integers giving the index of each haplotype’s ancestor
- id: a vector of integers giving the index of each haplotype
- xy: (optional) a matrix of spatial coordinates of haplotypes
- call: the matched call

=== misc functions ===
- as.POSIXct: returns a vector of dates with POSIXct format
- labels: returns the labels of the haplotypes
- as.seqTrack: returns a seqTrack object. Note that this object is not a proper seqTrack analysis, but
just a format conversion convenient for plotting haploGen objects.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart T, Eggo R, Dodd P, Balloux F (2010) Reconstructing disease outbreaks from genetic data:
a graph approach. Heredity. doi: 10.1038/hdy.2010.78.

See Also

simOutbreak in the package ’outbreaker’ for simulating disease outbreaks under a realistic epi-
demiological model.

Examples

Not run:
if(require(ape) && require(igraph)){
PERFORM SIMULATIONS

96 hier

x <- haploGen(geo.sim=TRUE)
x

PLOT DATA
plot(x)

PLOT SPATIAL SPREAD
plotHaploGen(x, bg="white")
title("Spatial dispersion")

USE SEQTRACK RECONSTRUCTION
x.recons <- seqTrack(x)
mean(x.recons$ances==x$ances, na.rm=TRUE) # proportion of correct reconstructions

g <- as.igraph(x)
g
plot(g)
plot(g, vertex.size=0)

}

End(Not run)

hier Access and manipulate the population hierarchy for genind or genlight
objects.

Description

The following methods allow the user to quickly change the hierarchy or population of a genind or
genlight object.

Usage

hier(x, formula = NULL, combine = TRUE, value)

hier(x) <- value

Arguments

x a genind or genlight object

formula a nested formula indicating the order of the population hierarchy to be returned.

combine if TRUE (default), the levels will be combined according to the formula argument.
If it is FALSE, the levels will not be combined.

value a formula specifying the full hierarchy of columns in the strata slot. (See Details
below)

hier 97

Details

You must first specify your strata before you can specify your hierarchies. Hierarchies are special
cases of strata in that the levels must be nested within each other. An error will occur if you specify
a hierarchy that is not truly hierarchical.

Details on Formulas:
The preferred use of these functions is with a formula object. Specifically, a hierarchical formula
argument is used to name which strata are hierarchical. An example of a hierarchical formula
would be:

~Country/City/Neighborhood

This convention was chosen as it becomes easier to type and makes intuitive sense when defining
a hierarchy. Note: it is important to use hierarchical formulas when specifying hierarchies as other
types of formulas (eg. ~Country*City*Neighborhood) will give incorrect results.

Author(s)

Zhian N. Kamvar

See Also

strata genind as.genind

Examples

let's look at the microbov data set:
data(microbov)
microbov

We see that we have three vectors of different names in the 'other' slot.
?microbov
These are Country, Breed, and Species
names(other(microbov))

Let's set the hierarchy
strata(microbov) <- data.frame(other(microbov))
microbov

And change the names so we know what they are
nameStrata(microbov) <- ~Country/Breed/Species

let's see what the hierarchy looks like by Species and Breed:
hier(microbov) <- ~Species/Breed
head(hier(microbov, ~Species/Breed))

98 Hs

Hs Expected heterozygosity (Hs)

Description

This function computes the expected heterozygosity (Hs) within populations of a genpop object.
This function is available for codominant markers (@type="codom") only. Hs is commonly used
for measuring within population genetic diversity (and as such, it still has sense when computed
from haploid data).

Usage

Hs(x, pop = NULL)

Arguments

x a genind or genpop object.

pop only used if x is a genind; an optional factor to be used as population; if not
provided, pop(x) is used.

Details

Let m(k) be the number of alleles of locus k, with a total of K loci. We note fi the allele frequency
of allele i in a given population. Then, Hs is given for a given population by:

1
K

∑K
k=1(1−

∑m(k)
i=1 f2

i)

Value

a vector of Hs values (one value per population)

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

Hs.test to test differences in Hs between two groups

Examples

Not run:
data(nancycats)
Hs(genind2genpop(nancycats))

End(Not run)

Hs.test 99

Hs.test Test differences in expected heterozygosity (Hs)

Description

This procedure permits to test if two groups have significant differences in expected heterozygosity
(Hs). The test statistic used is simply the difference in Hs between the two groups ’x’ and ’y’:

Usage

Hs.test(x, y, n.sim = 999, alter = c("two-sided", "greater", "less"))

Arguments

x a genind object.

y a genind object.

n.sim the number of permutations to be used to generate the reference distribution.

alter a character string indicating the alternative hypothesis

Details

Hs(x)−Hs(y)

Individuals are randomly permuted between groups to obtain a reference distribution of the test
statistics.

Value

an object of the class randtest

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

Hs to compute Hs for different populations; as.randtest for the class of Monte Carlo tests.

Examples

Not run:
data(microbov)
Hs(microbov)
test <- Hs.test(microbov[pop="Borgou"],

microbov[pop="Lagunaire"],
n.sim=499)

test
plot(test)

100 HWE.test.genind

End(Not run)

HWE.test.genind Hardy-Weinberg Equilibrium test for multilocus data

Description

The function HWE.test is a generic function to perform Hardy-Weinberg Equilibrium tests defined
by the genetics package. adegenet proposes a method for genind objects.

The output can be of two forms:
- a list of tests (class htest) for each locus-population combinaison
- a population x locus matrix containing p-values of the tests

Usage

S3 method for class 'genind'
HWE.test(x,pop=NULL,permut=FALSE,nsim=1999,hide.NA=TRUE,res.type=c("full","matrix"))

Arguments

x an object of class genind.

pop a factor giving the population of each individual. If NULL, pop is seeked from
x$pop.

permut a logical passed to HWE.test stating whether Monte Carlo version (TRUE)
should be used or not (FALSE, default).

nsim number of simulations if Monte Carlo is used (passed to HWE.test).

hide.NA a logical stating whether non-tested loci (e.g., when an allele is fixed) should be
hidden in the results (TRUE, default) or not (FALSE).

res.type a character or a character vector whose only first argument is considered giving
the type of result to display. If "full", then a list of complete tests is returned. If
"matrix", then a matrix of p-values is returned.

Details

Monte Carlo procedure is quiet computer-intensive when large datasets are involved. For more
precision on the performed test, read HWE.test documentation (genetics package).

hybridize 101

Value

Returns either a list of tests or a matrix of p-values. In the first case, each test is designated by locus
first and then by population. For instance if res is the "full" output of the function, then the test for
population "PopA" at locus "Myloc" is given by res$Myloc$PopA. If res is a matrix of p-values,
populations are in rows and loci in columns. P-values are given for the upper-tail: they correspond
to the probability that an oberved chi-square statistic as high as or higher than the one observed
occured under H0 (HWE).

In all cases, NA values are likely to appear in fixed loci, or entirely non-typed loci.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

HWE.test in the genetics package, chisq.test

Examples

Not run:
data(nancycats)
obj <- nancycats
if(require(genetics)){
obj.test <- HWE.test(obj)

pvalues matrix to have a preview
HWE.test(obj,res.type="matrix")

#more precise view to...
obj.test$fca90$P10
}

End(Not run)

hybridize Function hybridize takes two genind in inputs and generates hybrids
individuals having one parent in both objects.

Description

The function hybridize performs hybridization between two set of genotypes stored in genind ob-
jects (referred as the "2 populations"). Allelic frequencies are derived for each population, and then
gametes are sampled following a multinomial distribution.

102 hybridize

Usage

hybridize(
x1,
x2,
n,
pop = "hybrid",
res.type = c("genind", "df", "STRUCTURE"),
file = NULL,
quiet = FALSE,
sep = "/",
hyb.label = "h"

)

Arguments

x1 a genind object

x2 a genind object

n an integer giving the number of hybrids requested

pop a character string giving naming the population of the created hybrids.

res.type a character giving the type of output requested. Must be "genind" (default),
"df" (i.e. data.frame like in genind2df), or "STRUCTURE" to generate a .str
file readable by STRUCTURE (in which case the ’file’ must be supplied). See
’details’ for STRUCTURE output.

file a character giving the name of the file to be written when ’res.type’ is "STRUC-
TURE"; if NULL, a the created file is of the form "hybrids_[the current date].str".

quiet a logical specifying whether the writing to a file (when ’res.type’ is "STRUC-
TURE") should be announced (FALSE, default) or not (TRUE).

sep a character used to separate two alleles

hyb.label a character string used to construct the hybrids labels; by default, "h", which
gives labels: "h01", "h02", "h03",...

Details

The result consists in a set of ’n’ genotypes, with different possible outputs (see ’res.type’ argu-
ment).

If the output is a STRUCTURE file, this file will have the following caracteristics:
- file contains the genotypes of the parents, and then the genotypes of hybrids
- the first column identifies genotypes
- the second column identifies the population (1 and 2 for parents x1 and x2; 3 for hybrids)
- the first line contains the names of the markers
- one row = one genotype (onerowperind will be true)
- missing values coded by "-9" (the software’s default)

hybridtoy 103

Value

A genind object (by default), or a data.frame of alleles (res.type="df"). No R output if res.type="STRUCTURE"
(results written to the specified file).

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

seploc, seppop, repool

Examples

Not run:
Let's make some cattle hybrids
data(microbov)

first, isolate each breed
temp <- seppop(microbov)
names(temp)
salers <- temp$Salers
zebu <- temp$Zebu

let's make some... Zeblers
zebler <- hybridize(salers, zebu, n=40,

pop="Zebler")

now let's merge all data into a single genind
newDat <- repool(microbov, zebler)

make a correspondance analysis
and see where hybrids are placed
X <- genind2genpop(newDat, quiet=TRUE)
coa1 <- dudi.coa(tab(X),scannf=FALSE,nf=3)
s.label(coa1$li)
add.scatter.eig(coa1$eig,2,1,2)

End(Not run)

hybridtoy Toy hybrid dataset

Description

Toy hybrid dataset

104 import2genind

Format

a genind object

Author(s)

Data simulated by Marie-Pauline Beugin. Example by Thibaut Jombart.

Examples

data(hybridtoy)
x <- hybridtoy
pca1 <- dudi.pca(tab(x), scannf=FALSE, scale=FALSE)
s.class(pca1$li, pop(x))

if(require(ggplot2)) {
p <- ggplot(pca1$li, aes(x=Axis1)) +

geom_density(aes(fill=pop(x)), alpha=.4, adjust=1) +
geom_point(aes(y=0, color=pop(x)), pch="|", size=10, alpha=.5)

p
}

kmeans
km <- find.clusters(x, n.pca=10, n.clust=2)
table(pop(x), km$grp)

dapc
dapc1 <- dapc(x, pop=km$grp, n.pca=10, n.da=1)
scatter(dapc1)
scatter(dapc1, grp=pop(x))
compoplot(dapc1, col.pal=spectral, n.col=2)

ML-EM with hybrids
res <- snapclust(x, k=2, hybrids=TRUE, detailed=TRUE)
compoplot(res, n.col=3)
table(res$group, pop(x))

import2genind Importing data from several softwares to a genind object

Description

Their are several ways to import genotype data to a genind object: i) from a data.frame with a given
format (see df2genind), ii) from a file with a recognized extension, or iii) from an alignement of
sequences (see DNAbin2genind).

Usage

import2genind(file, quiet = FALSE, ...)

import2genind 105

Arguments

file a character string giving the path to the file to convert, with the appropriate
extension.

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

... other arguments passed to the appropriate ’read’ function (currently passed to
read.structure)

Details

The function import2genind detects the extension of the file given in argument and seeks for an
appropriate import function to create a genind object.
Current recognized formats are :
- GENETIX files (.gtx)
- Genepop files (.gen)
- Fstat files (.dat)
- STRUCTURE files (.str or .stru)

Beware: same data in different formats are not expected to produce exactly the same genind objects.
For instance, conversions made by GENETIX to Fstat may change the the sorting of the genotypes;
GENETIX stores individual names whereas Fstat does not; Genepop chooses a sample’s name from
the name of its last genotype; etc.

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Belkhir K., Borsa P., Chikhi L., Raufaste N. & Bonhomme F. (1996-2004) GENETIX 4.05, logiciel
sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interac-
tions, CNRS UMR 5000, Universite de Montpellier II, Montpellier (France).

Pritchard, J.; Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus
genotype data. Genetics, 155: 945-959

Raymond M. & Rousset F, (1995). GENEPOP (version 1.2): population genetics software for exact
tests and ecumenicism. J. Heredity, 86:248-249

Fstat (version 2.9.3). Software by Jerome Goudet. http://www2.unil.ch/popgen/softwares/fstat.htm

Excoffier L. & Heckel G.(2006) Computer programs for population genetics data analysis: a sur-
vival guide Nature, 7: 745-758

106 Inbreeding estimation

See Also

import2genind, read.genetix, read.fstat, read.structure, read.genepop

Examples

import2genind(system.file("files/nancycats.gtx",
package="adegenet"))

import2genind(system.file("files/nancycats.dat",
package="adegenet"))

import2genind(system.file("files/nancycats.gen",
package="adegenet"))

import2genind(system.file("files/nancycats.str",
package="adegenet"), onerowperind=FALSE, n.ind=237, n.loc=9, col.lab=1, col.pop=2, ask=FALSE)

Inbreeding estimation Likelihood-based estimation of inbreeding

Description

The function inbreeding estimates the inbreeding coefficient of an individuals (F) by computing
its likelihood function. It can return either the density of probability of F, or a sample of F values
from this distribution. This operation is performed for all the individuals of a genind object. Any
ploidy greater than 1 is acceptable.

Usage

inbreeding(x, pop = NULL, truenames = TRUE,
res.type = c("sample", "function", "estimate"), N = 200, M = N * 10)

Arguments

x an object of class genind.

pop a factor giving the ’population’ of each individual. If NULL, pop is seeked
from pop(x). Note that the term population refers in fact to any grouping of
individuals’.

truenames a logical indicating whether true names should be used (TRUE, default) instead
of generic labels (FALSE); used if res.type is "matrix".

res.type a character string matching "sample", "function", or "estimate" specifying whether
the output should be a function giving the density of probability of F values
("function"), the maximum likelihood estimate of F from this distribution ("esti-
mate"), or a sample of F values taken from this distribution ("sample", default).

N an integer indicating the size of the sample to be taken from the distribution of
F values.

Inbreeding estimation 107

M an integer indicating the number of different F values to be used to generate the
sample. Values larger than N are recommended to avoid poor sampling of the
distribution.

Details

Let F denote the inbreeding coefficient, defined as the probability for an individual to inherit two
identical alleles from a single ancestor.

Let pi refer to the frequency of allele i in the population. Let h be an variable which equates 1 if
the individual is homozygote, and 0 otherwise. For one locus, the probability of being homozygote
is computed as:

F + (1− F)
∑

i p
2
i

The probability of being heterozygote is: 1− (F + (1− F)
∑

i p
2
i)

The likelihood of a genotype is defined as the probability of being the observed state (homozygote
or heterozygote). In the case of multilocus genotypes, log-likelihood are summed over the loci.

Value

A named list with one component for each individual, each of which is a function or a vector of
sampled F values (see res.type argument).

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>
Zhian N. Kamvar

See Also

Hs: computation of expected heterozygosity.

Examples

Not run:
cattle breed microsatellite data
data(microbov)

isolate Lagunaire breed
lagun <- seppop(microbov)$Lagunaire

estimate inbreeding - return sample of F values
Fsamp <- inbreeding(lagun, N=30)

plot the first 10 results
invisible(sapply(Fsamp[1:10], function(e) plot(density(e), xlab="F",
xlim=c(0,1), main="Density of the sampled F values")))

compute means for all individuals
Fmean=sapply(Fsamp, mean)
hist(Fmean, col="orange", xlab="mean value of F",

108 initialize,genind-method

main="Distribution of mean F across individuals")

estimate inbreeding - return proba density functions
Fdens <- inbreeding(lagun, res.type="function")

view function for the first individual
Fdens[[1]]

plot the first 10 functions
invisible(sapply(Fdens[1:10], plot, ylab="Density",
main="Density of probability of F values"))

estimate inbreeding - return maximum likelihood estimates
Fest <- inbreeding(lagun, res.type = "estimate")
mostInbred <- which.max(Fest)
plot(Fdens[[mostInbred]], ylab = "Density", xlab = "F",

main = paste("Probability density of F values\nfor", names(mostInbred)))
abline(v = Fest[mostInbred], col = "red", lty = 2)
legend("topright", legend = "MLE", col = "red", lty = 2)

note that estimates and average samples are likely to be different.
plot(Fest, ylab = "F", col = "blue",

main = "comparison of MLE and average sample estimates of F")
points(Fmean, pch = 2, col = "red")
arrows(x0 = 1:length(Fest), y0 = Fest,

y1 = Fmean, x1 = 1:length(Fest), length = 0.125)
legend("topleft", legend = c("estimate", "sample"), col = c("blue", "red"),

pch = c(1, 2), title = "res.type")

End(Not run)

initialize,genind-method

genind constructor

Description

The function new has a method for building genind objects. See the class description of genind
for more information on this data structure. The functions genind and as.genind are aliases for
new("genind", ...).

Usage

S4 method for signature 'genind'
initialize(
.Object,
tab,
pop = NULL,
prevcall = NULL,

initialize,genind-method 109

ploidy = 2L,
type = c("codom", "PA"),
strata = NULL,
hierarchy = NULL,
...

)

genind(...)

as.genind(...)

Arguments

.Object prototyped object (generated automatically when calling ’new’)

tab A matrix of integers corresponding to the @tab slot of a genind object, with
individuals in rows and alleles in columns, and containing either allele counts
(if type="codom") or allele presence/absence (if type="PA")

pop an optional factor with one value per row in tab indicating the population of
each individual

prevcall an optional call to be stored in the object

ploidy an integer vector indicating the ploidy of the individual; each individual can
have a different value; if only one value is provided, it is recycled to generate a
vector of the right length.

type a character string indicating the type of marker: codominant ("codom") or pres-
ence/absence ("PA")

strata a data frame containing population hierarchies or stratifications in columns. This
must be the same length as the number of individuals in the data set.

hierarchy a hierarchical formula defining the columns of the strata slot that are hierarchi-
cal. Defaults to NULL.

... further arguments passed to other methods (currently not used)

Details

Most users do not need using the constructor, but merely to convert raw allele data using df2genind
and related functions.

Value

a genind object

See Also

the description of the genind class; df2genind

110 initialize,genpop-method

initialize,genpop-method

genpop constructor

Description

The function new has a method for building genpop objects. See the class description of genpop
for more information on this data structure. The functions genpop and as.genpop are aliases for
new("genpop", ...).

Usage

S4 method for signature 'genpop'
initialize(
.Object,
tab,
prevcall = NULL,
ploidy = 2L,
type = c("codom", "PA"),
...

)

genpop(...)

as.genpop(...)

Arguments

.Object prototyped object (generated automatically when calling ’new’)

tab A matrix of integers corresponding to the @tab slot of a genpop object, with
individuals in rows and alleles in columns, and containing either allele counts

prevcall an optional call to be stored in the object

ploidy an integer vector indicating the ploidy of the individual; each individual can
have a different value; if only one value is provided, it is recycled to generate a
vector of the right length.

type a character string indicating the type of marker: codominant ("codom") or pres-
ence/absence ("PA")

... further arguments passed to other methods (currently not used)

Details

Most users do not need using the constructor, but merely to convert raw allele data using genind2genpop.

Value

a genpop object

isPoly-methods 111

See Also

the description of the genpop class; df2genind and related functions for reading raw allele data

isPoly-methods Assess polymorphism in genind/genpop objects

Description

The simple function isPoly can be used to check which loci are polymorphic, or alternatively to
check which alleles give rise to polymorphism.

Usage

S4 method for signature 'genind'
isPoly(x, by=c("locus","allele"), thres=1/100)
S4 method for signature 'genpop'
isPoly(x, by=c("locus","allele"), thres=1/100)

Arguments

x a genind and genpop object

by a character being "locus" or "allele", indicating whether results should indicate
polymorphic loci ("locus"), or alleles giving rise to polymorphism ("allele").

thres a numeric value giving the minimum frequency of an allele giving rise to poly-
morphism (defaults to 0.01).

Value

A vector of logicals.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

Not run:
data(nancycats)
isPoly(nancycats,by="loc", thres=0.1)
isPoly(nancycats[1:3],by="loc", thres=0.1)
genind2df(nancycats[1:3])

End(Not run)

112 loadingplot

KIC Compute Akaike Information Criterion for small samples (AICc) for
snapclust

Description

Do not use. We work on that stuff. Contact us if interested.

Usage

KIC(object, ...)

S3 method for class 'snapclust'
KIC(object, ...)

Arguments

object An object returned by the function snapclust.

... Further arguments for compatibility with the AIC generic (currently not used).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

snapclust to generate clustering solutions.

loadingplot Represents a cloud of points with colors

Description

The loadingplot function represents positive values of a vector and identifies the values above a
given threshold. It can also indicate groups of observations provided as a factor.

Such graphics can be used, for instance, to assess the weight of each variable (loadings) in a given
analysis.

loadingplot 113

Usage

loadingplot(x, ...)

Default S3 method:
loadingplot(x, at=NULL, threshold=quantile(x,0.75),

axis=1, fac=NULL, byfac=FALSE,
lab=NULL, cex.lab=0.7, cex.fac=1, lab.jitter=0,
main="Loading plot", xlab="Variables", ylab="Loadings",
srt = 0, adj = NULL, ...)

Arguments

x either a vector with numeric values to be plotted, or a matrix-like object con-
taining numeric values. In such case, the x[,axis] is used as vector of values
to be plotted.

at an optional numeric vector giving the abscissa at which loadings are plotted.
Useful when variates are SNPs with a known position in an alignement.

threshold a threshold value above which values of x are identified. By default, this is the
third quartile of x.

axis an integer indicating the column of x to be plotted; used only if x is a matrix-like
object.

fac a factor defining groups of observations.
byfac a logical stating whether loadings should be averaged by groups of observations,

as defined by fac.
lab a character vector giving the labels used to annotate values above the threshold;

if NULL, names are taken from the object.
cex.lab a numeric value indicating the size of annotations.
cex.fac a numeric value indicating the size of annotations for groups of observations.
lab.jitter a numeric value indicating the factor of randomisation for the position of anno-

tations. Set to 0 (by default) implies no randomisation.
main the main title of the figure.
xlab the title of the x axis.
ylab the title of the y axis.
srt rotation of the labels; see ?text.
adj adjustment of the labels; see ?text.
... further arguments to be passed to the plot function.

Value

Invisibly returns a list with the following components:
- threshold: the threshold used
- var.names: the names of observations above the threshold
- var.idx: the indices of observations above the threshold
- var.values: the values above the threshold

114 makefreq

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

x <- runif(20)
names(x) <- letters[1:20]
grp <- factor(paste("group", rep(1:4,each=5)))

basic plot
loadingplot(x)

adding groups
loadingplot(x,fac=grp,main="My title",cex.lab=1)

makefreq Compute allelic frequencies

Description

The function makefreq is a generic to compute allele frequencies. These can be derived for genind
or genpop objects. In the case of genind objects, data are kept at the individual level, but standard-
ised so that allele frequencies sum up to 1.

Usage

makefreq(x, ...)

S4 method for signature 'genind'
makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...)

S4 method for signature 'genpop'
makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...)

Arguments

x a genind or genpop object.

... further arguments (curently unused)

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

missing treatment for missing values. Can be NA, 0 or "mean" (see details)

truenames deprecated; there for backward compatibility

makefreq 115

Details

There are 3 treatments for missing values:
- NA: kept as NA.
- 0: missing values are considered as zero. Recommended for a PCA on compositionnal data.
- "mean": missing values are given the mean frequency of the corresponding allele. Recommended
for a centred PCA.

Note that this function is now a simple wrapper for the accessor tab.

Value

Returns a list with the following components:

tab matrix of allelic frequencies (rows: populations; columns: alleles).

nobs number of observations (i.e. alleles) for each population x locus combinaison.

call the matched call

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

genpop

Examples

Not run:
data(microbov)
obj1 <- microbov
obj2 <- genind2genpop(obj1)

perform a correspondance analysis on counts data
Xcount <- tab(obj2, NA.method="zero")
ca1 <- dudi.coa(Xcount,scannf=FALSE)
s.label(ca1$li,sub="Correspondance Analysis",csub=1.2)
add.scatter.eig(ca1$eig,nf=2,xax=1,yax=2,posi="topleft")

perform a principal component analysis on frequency data
Xfreq <- makefreq(obj2, missing="mean")
Xfreq <- tab(obj2, NA.method="mean") # equivalent to line above
pca1 <- dudi.pca(Xfreq,scale=FALSE,scannf=FALSE)
s.label(pca1$li,sub="Principal Component Analysis",csub=1.2)
add.scatter.eig(pca1$eig,nf=2,xax=1,yax=2,posi="top")

End(Not run)

116 microbov

microbov Microsatellites genotypes of 15 cattle breeds

Description

This data set gives the genotypes of 704 cattle individuals for 30 microsatellites recommended by
the FAO. The individuals are divided into two countries (Afric, France), two species (Bos taurus,
Bos indicus) and 15 breeds. Individuals were chosen in order to avoid pseudoreplication according
to their exact genealogy.

Format

microbov is a genind object with 3 supplementary components:

coun a factor giving the country of each individual (AF: Afric; FR: France).

breed a factor giving the breed of each individual.

spe is a factor giving the species of each individual (BT: Bos taurus; BI: Bos indicus).

Source

Data prepared by Katayoun Moazami-Goudarzi and Denis Lalo\"e (INRA, Jouy-en-Josas, France)

References

Lalo\"e D., Jombart T., Dufour A.-B. and Moazami-Goudarzi K. (2007) Consensus genetic struc-
turing and typological value of markers using Multiple Co-Inertia Analysis. Genetics Selection
Evolution. 39: 545–567.

Examples

Not run:
data(microbov)
microbov
summary(microbov)

make Y, a genpop object
Y <- genind2genpop(microbov)

make allelic frequency table
temp <- makefreq(Y,missing="mean")
X <- temp$tab
nsamp <- temp$nobs

perform 1 PCA per marker

kX <- ktab.data.frame(data.frame(X),Y@loc.n.all)

kpca <- list()
for(i in 1:30) {kpca[[i]] <- dudi.pca(kX[[i]],scannf=FALSE,nf=2,center=TRUE,scale=FALSE)}

microbov 117

sel <- sample(1:30,4)
col = rep('red',15)
col[c(2,10)] = 'darkred'
col[c(4,12,14)] = 'deepskyblue4'
col[c(8,15)] = 'darkblue'

display %PCA
par(mfrow=c(2,2))
for(i in sel) {
s.multinom(kpca[[i]]$c1,kX[[i]],n.sample=nsamp[,i],coulrow=col,sub=locNames(Y)[i])
add.scatter.eig(kpca[[i]]$eig,3,xax=1,yax=2,posi="top")
}

perform a Multiple Coinertia Analysis
kXcent <- kX
for(i in 1:30) kXcent[[i]] <- as.data.frame(scalewt(kX[[i]],center=TRUE,scale=FALSE))
mcoa1 <- mcoa(kXcent,scannf=FALSE,nf=3, option="uniform")

coordinated %PCA
mcoa.axes <- split(mcoa1$axis, Y@loc.fac)
mcoa.coord <- split(mcoa1$Tli,mcoa1$TL[,1])
var.coord <- lapply(mcoa.coord,function(e) apply(e,2,var))

par(mfrow=c(2,2))
for(i in sel) {
s.multinom(mcoa.axes[[i]][,1:2],kX[[i]],n.sample=nsamp[,i],coulrow=col,sub=locNames(Y)[i])
add.scatter.eig(var.coord[[i]],2,xax=1,yax=2,posi="top")
}

reference typology
par(mfrow=c(1,1))
s.label(mcoa1$SynVar,lab=popNames(microbov),sub="Reference typology",csub=1.5)
add.scatter.eig(mcoa1$pseudoeig,nf=3,xax=1,yax=2,posi="top")

typologial values
tv <- mcoa1$cov2
tv <- apply(tv,2,function(c) c/sum(c))*100
rownames(tv) <- locNames(Y)
tv <- tv[order(locNames(Y)),]

par(mfrow=c(3,1),mar=c(5,3,3,4),las=3)
for(i in 1:3){
barplot(round(tv[,i],3),ylim=c(0,12),yaxt="n",main=paste("Typological value -
structure",i))
axis(side=2,at=seq(0,12,by=2),labels=paste(seq(0,12,by=2),"%"),cex=3)
abline(h=seq(0,12,by=2),col="grey",lty=2)
}

End(Not run)

118 minorAllele

minorAllele Compute minor allele frequency

Description

This function computes the minor allele frequency for each locus in a genind object. To test if loci
are polymorphic, see the function isPoly.

Usage

minorAllele(x)

Arguments

x a genind object

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

isPoly

Examples

Not run:

LOAD DATA
data(nancycats)

COMPUTE ALLELE FREQUENCIES
x <- nancycats
apply(tab(x, freq=TRUE),2,mean, na.rm=TRUE)

GET MINOR ALLELE FREQUENCY
m.freq <- minorAllele(x)
m.freq

End(Not run)

monmonier 119

monmonier Boundary detection using Monmonier algorithm

Description

The Monmonier’s algorithm detects boundaries among vertices of a valuated graph. This is achieved
by finding the path exhibiting the largest distances between connected vertices.

The highest distance between two connected vertices (i.e. neighbours) is found, giving the starting
point of the path. Then, the algorithm seeks the highest distance between immediate neighbours,
and so on until a threshold value is attained. This threshold can be chosen from the plot of sorted
distances between connected vertices: a boundary will likely result in an abrupt decrease of these
values.

When several paths are looked for, the previous paths are taken into account, and cannot be either
crossed or redrawn. Monmonier’s algorithm can be used to assess the boundaries between patches
of homogeneous observations.

Although Monmonier algorithm was initially designed for Voronoi tesselation, this implementation
generalizes this algorithm to different connection networks. The optimize.monmonier function
produces a monmonier object by trying several starting points, and returning the best boundary (i.e.
largest sum of local distances). This is designed to avoid the algorithm to be trapped by a single
strong local difference inside an homogeneous patch.

Usage

monmonier(xy, dist, cn, threshold=NULL, bd.length=NULL, nrun=1,
skip.local.diff=rep(0,nrun),scanthres=is.null(threshold), allowLoop=TRUE)

optimize.monmonier(xy, dist, cn, ntry=10, bd.length=NULL, return.best=TRUE,
display.graph=TRUE, threshold=NULL, scanthres=is.null(threshold), allowLoop=TRUE)

S3 method for class 'monmonier'
plot(x, variable=NULL,
displayed.runs=1:x$nrun, add.arrows=TRUE,
col='blue', lty=1, bwd=4, clegend=1, csize=0.7,
method=c('squaresize','greylevel'), sub='', csub=1, possub='topleft',
cneig=1, pixmap=NULL, contour=NULL, area=NULL, add.plot=FALSE, ...)

S3 method for class 'monmonier'
print(x, ...)

Arguments

xy a matrix yielding the spatial coordinates of the objects, with two columns re-
spectively giving X and Y

120 monmonier

dist an object of class dist, giving the distances between the objects

cn a connection network of class nb (package spdep)

threshold a number giving the minimal distance between two neighbours crossed by the
path; by default, this is the third quartile of all the distances between neighbours

bd.length an optional integer giving the requested length of the boundaries (in number of
local differences)

nrun is a integer giving the number of runs of the algorithm, that is, the number of
paths to search, being one by default

skip.local.diff

is a vector of integers, whose length is the number of paths (nrun); each integer
gives the number of starting point to skip, to avoid being stuck in a local differ-
ence between two neighbours into an homogeneous patch; none are skipped by
default

scanthres a logical stating whether the threshold sould be chosen from the barplot of sorted
distances between neighbours

allowLoop a logical specifying whether the boundary can loop (TRUE, default) or not
(FALSE)

ntry an integer giving the number of different starting points tried.

return.best a logical stating whether the best monmonier object should be returned (TRUE,
default) or not (FALSE)

display.graph a logical whether the scores of each try should be plotted (TRUE, default) or not

x a monmonier object

variable a variable to be plotted using s.value (package ade4)

displayed.runs an integer vector giving the rank of the paths to represent

add.arrows a logical, stating whether arrows should indicate the direction of the path (TRUE)
or not (FALSE, used by default)

col a characters vector giving the colors to be used for each boundary; recycled is
needed; ’blue’ is used by default

lty a characters vector giving the type of line to be used for each boundary; 1 is used
by default

bwd a number giving the boundary width factor, applying to every segments of the
paths; 4 is used by default

clegend like in s.value, the size factor of the legend if a variable is represented

csize like in s.value, the size factor of the squares used to represent a variable

method like in s.value, a character giving the method to be used to represent the vari-
able, either ’squaresize’ (by default) or ’greylevel’

sub a string of characters giving the subtitle of the plot

csub the size factor of the subtitle

possub the position of the subtitle; available choices are ’topleft’ (by default), ’topright’,
’bottomleft’, and ’bottomright’

cneig the size factor of the connection network

monmonier 121

pixmap an object of the class pixmap displayed in the map background

contour a data frame with 4 columns to plot the contour of the map: each row gives a
segment (x1,y1,x2,y2)

area a data frame of class ’area’ to plot a set of surface units in contour

add.plot a logical stating whether the plot should be added to the current one (TRUE), or
displayed in a new window (FALSE, by default)

... further arguments passed to other methods

Details

The function monmonier returns a list of the class monmonier, which contains the general informa-
tions about the algorithm, and about each run. When displayed, the width of the boundaries reflects
their ’strength’. Let a segment MN be part of the path, M being the middle of AB, N of CD. Then
the boundary width for MN is proportionnal to (d(AB)+d(CD))/2.

As there is no perfect method to display graphically a quantitative variable (see for instance the
differences between the two methods of s.value), the boundaries provided by this algorithm seem
sometimes more reliable than the boundaries our eyes perceive (or miss).

Value

Returns an object of class monmonier, which contains the following elements :

run1 (run2, ...)
for each run, a list containing a dataframe giving the path coordinates, and a
vector of the distances between neighbours of the path

nrun the number of runs performed, i.e. the number of boundaries in the monmonier
object

threshold the threshold value, minimal distance between neighbours accounted for by the
algorithm

xy the matrix of spatial coordinates

cn the connection network of class nb

call the call of the function

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Monmonier, M. (1973) Maximum-difference barriers: an alternative numerical regionalization method.
Geographic Analysis, 3, 245–261.

Manni, F., Guerard, E. and Heyer, E. (2004) Geographic patterns of (genetic, morphologic, lin-
guistic) variation: how barriers can be detected by "Monmonier’s algorithm". Human Biology, 76,
173–190

122 monmonier

See Also

spca,edit.nb

Examples

if(require(spdep)){

non-interactive example

est-west separation
load(system.file("files/mondata1.rda",package="adegenet"))
cn1 <- chooseCN(mondata1$xy,type=2,ask=FALSE)
mon1 <- monmonier(mondata1$xy,dist(mondata1$x1),cn1,threshold=2)
plot(mon1,mondata1$x1)
plot(mon1,mondata1$x1,met="greylevel",add.arr=FALSE,col="red",bwd=6,lty=2)

square in the middle
load(system.file("files/mondata2.rda",package="adegenet"))
cn2 <- chooseCN(mondata2$xy,type=1,ask=FALSE)
mon2 <- monmonier(mondata2$xy,dist(mondata2$x2),cn2,threshold=2)
plot(mon2,mondata2$x2,method="greylevel",add.arr=FALSE,bwd=6,col="red",csize=.5)

genetic data example
Not run:
data(sim2pop)

if(require(hierfstat)){
try and find the Fst
fstat(sim2pop,fst=TRUE)
Fst = 0.038
}

run monmonier algorithm

build connection network
gab <- chooseCN(sim2pop@other$xy,ask=FALSE,type=2)

filter random noise
pca1 <- dudi.pca(sim2pop@tab,scale=FALSE, scannf=FALSE, nf=1)

run the algorithm
mon1 <- monmonier(sim2pop@other$xy,dist(pca1$l1[,1]),gab,scanthres=FALSE)

graphical display
plot(mon1,var=pca1$l1[,1])
temp <- sim2pop@pop
levels(temp) <- c(17,19)
temp <- as.numeric(as.character(temp))
plot(mon1)
points(sim2pop@other$xy,pch=temp,cex=2)
legend("topright",leg=c("Pop A", "Pop B"),pch=c(17,19))

nancycats 123

interactive example

north-south separation
xy <- matrix(runif(120,0,10), ncol=2)
x1 <- rnorm(60)
x1[xy[,2] > 5] <- x1[xy[,2] > 5]+3
cn1 <- chooseCN(xy,type=1,ask=FALSE)
mon1 <- optimize.monmonier(xy,dist(x1)^2,cn1,ntry=10)

graphics
plot(mon1,x1,met="greylevel",csize=.6)

island in the middle
x2 <- rnorm(60)
sel <- (xy[,1]>3.5 & xy[,2]>3.5 & xy[,1]<6.5 & xy[,2]<6.5)
x2[sel] <- x2[sel]+4
cn2 <- chooseCN(xy,type=1,ask=FALSE)
mon2 <- optimize.monmonier(xy,dist(x2)^2,cn2,ntry=10)

graphics
plot(mon2,x2,method="greylevel",add.arr=FALSE,bwd=6,col="red",csize=.5)

End(Not run)
}

nancycats Microsatellites genotypes of 237 cats from 17 colonies of Nancy
(France)

Description

This data set gives the genotypes of 237 cats (Felis catus L.) for 9 microsatellites markers. The
individuals are divided into 17 colonies whose spatial coordinates are also provided.

Format

nancycats is a genind object with spatial coordinates of the colonies as a supplementary compo-
nents (@xy).

Source

Dominique Pontier (UMR CNRS 5558, University Lyon1, France)

References

Devillard, S.; Jombart, T. & Pontier, D. Disentangling spatial and genetic structure of stray cat
(Felis catus L.) colonies in urban habitat using: not all colonies are equal. submitted to Molecular
Ecology

124 old2new_genind

Examples

Not run:
data(nancycats)
nancycats

summary's results are stored in x
x <- summary(nancycats)

some useful graphics
barplot(x$loc.n.all,ylab="Alleles numbers",main="Alleles numbers
per locus")

plot(x$pop.eff,x$pop.nall,type="n",xlab="Sample size",ylab="Number of alleles")
text(x$pop.eff,y=x$pop.nall,lab=names(x$pop.nall))

par(las=3)
barplot(table(nancycats@pop),ylab="Number of genotypes",main="Number of genotypes per colony")

are cats structured among colonies ?
if(require(hierfstat)){

gtest <- gstat.randtest(nancycats,nsim=99)
gtest
plot(gtest)

dat <- genind2hierfstat(nancycats)

Fstat <- varcomp.glob(dat$pop,dat[,-1])
Fstat
}

End(Not run)

old2new_genind Convert objects with obsolete classes into new objects

Description

The genind and genlight objects have changed in Adegenet version 2.0. They have each gained
strata and hierarchy slots. What’s more is that the genind objects have been optimized for storage
and now store the tab slot as integers instead of numerics. This function will convert old genind or
genlight objects to new ones seamlessly.

Usage

old2new_genind(object, donor = new("genind"))

pairDistPlot 125

old2new_genlight(object, donor = new("genlight"))

old2new_genpop(object, donor = new("genpop"))

Arguments

object a genind or genlight object from version 1.4 or earlier.

donor a new object to place all the data into.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>
Zhian N. Kamvar <kamvarz@science.oregonstate.edu>

pairDistPlot Pairwise distance plots

Description

The function pairDistPlot extracts and plots pairwise distances between different groups (graphs
use ggplot2). The function pairDistPlot does the same, without the graphs.

pairDistPlot is a generic function with methods for the following types of objects:
- dist
- matrix (only numeric data)
- genind objects (genetic markers, individuals)
- DNAbin objects (DNA sequences)

Usage

pairDist(x, ...)

pairDistPlot(x, ...)

S3 method for class 'dist'
pairDistPlot(x, grp, within=FALSE, sep="-", data=TRUE,

violin=TRUE, boxplot=TRUE, jitter=TRUE, ...)

S3 method for class 'matrix'
pairDistPlot(x, grp, within=FALSE, sep="-", data=TRUE,

violin=TRUE, boxplot=TRUE, jitter=TRUE, ...)

S3 method for class 'genind'
pairDistPlot(x, grp, within=FALSE, sep="-", data=TRUE,

violin=TRUE, boxplot=TRUE, jitter=TRUE, ...)

S3 method for class 'DNAbin'
pairDistPlot(x, grp, within=FALSE, sep="-", data=TRUE,

126 pairDistPlot

violin=TRUE, boxplot=TRUE, jitter=TRUE, ...)

Arguments

x pairwise distances provided as a dist or a symmetric matrix, or genind or
DNAbin object. For genind objects, pairwise squared Euclidean distances are
computed from the allele data. For DNAbin objects, distances are computed uing
dist.dna, and ’...’ is used to pass arguments to the function.

grp a factor defining a grouping of individuals.

within a logical indicating whether to keep within-group comparisons.

sep a character used as separator between group names

data a logical indicating whether data of the plot should be returned.

violin a logical indicating whether a violinplot should be generated.

boxplot a logical indicating whether a boxplot should be generated.

jitter a logical indicating whether a jitter-plot should be generated.

... further arguments to be used by other functions; used for DNAbin object to pass
argumetns to dist.dna.

Value

A list with different components, depending on the values of the arguments. Plots are returned as
ggplot2 objects.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>.

See Also

gengraph to identify connectivity based on distances.

Examples

Not run:

use a subset of influenza data
data(H3N2)
set.seed(1)
dat <- H3N2[sample(1:nInd(H3N2), 100)]

get pairwise distances
temp <- pairDistPlot(dat, other(dat)$epid)

see raw data
head(temp$data)

see plots

propShared 127

temp$boxplot
temp$violin
temp$jitter

End(Not run)

propShared Compute proportion of shared alleles

Description

The function propShared computes the proportion of shared alleles in a set of genotypes (i.e. from
a genind object). Current implementation works for any level of ploidy.

Usage

propShared(obj)

Arguments

obj a genind object.

Details

Computations of the numbers of shared alleles are done in C. Proportions are computed from all
available data, i.e. proportion can be computed as far as there is at least one typed locus in common
between two genotypes.

Value

Returns a matrix of proportions

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

dist.genpop

128 propTyped-methods

Examples

Not run:
make a small object
data(microbov)
obj <- microbov[1:5, loc = locNames(microbov)[1:2]]

verify results
propShared(obj)
genind2df(obj,sep="|")

Use this similarity measure inside a PCoA
! This is for illustration only !
the distance should be rendered Euclidean before
(e.g. using cailliez from package ade4).
matSimil <- propShared(microbov)
matDist <- exp(-matSimil)
D <- cailliez(as.dist(matDist))
pcoa1 <- dudi.pco(D,scannf=FALSE,nf=3)
s.class(pcoa1$li,microbov$pop,lab=popNames(microbov))

End(Not run)

propTyped-methods Compute the proportion of typed elements

Description

The generic function propTyped is devoted to investigating the structure of missing data in adegenet
objects.

Methods are defined for genind and genpop objects. They can return the proportion of available
(i.e. non-missing) data per individual/population, locus, or the combination of both in with case the
matrix indicates which entity (individual or population) was typed on which locus.

Usage

S4 method for signature 'genind'
propTyped(x, by=c("ind","loc","both"))
S4 method for signature 'genpop'
propTyped(x, by=c("pop","loc","both"))

Arguments

x a genind and genpop object

by a character being "ind","loc", or "both" for genind object and "pop","loc", or
"both" for genpop object. It specifies whether proportion of typed data are pro-
vided by entity ("ind"/"pop"), by locus ("loc") or both ("both"). See details.

read.fstat 129

Details

When by is set to "both", the result is a matrix of binary data with entities in rows (individuals or
populations) and markers in columns. The values of the matrix are 1 for typed data, and 0 for NA.

Value

A vector of proportion (when by equals "ind", "pop", or "loc"), or a matrix of binary data (when by
equals "both")

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

Not run:
data(nancycats)
propTyped(nancycats,by="loc")
propTyped(genind2genpop(nancycats),by="both")

End(Not run)

read.fstat Reading data from Fstat

Description

The function read.fstat reads Fstat data files (.dat) and convert them into a genind object.

Usage

read.fstat(file, quiet = FALSE)

Arguments

file a character string giving the path to the file to convert, with the appropriate
extension.

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

Details

Note: read.fstat is meant for DIPLOID DATA ONLY. Haploid data with the Hierfstat format can
be read into R using read.table or read.csv after removing headers and ’POP’ lines, and then
converted using df2genind.

130 read.genepop

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Fstat (version 2.9.3). Software by Jerome Goudet. http://www2.unil.ch/popgen/softwares/fstat.htm

See Also

import2genind, df2genind, read.genetix, read.structure, read.genepop

Examples

obj <- read.fstat(system.file("files/nancycats.dat",package="adegenet"))
obj

read.genepop Reading data from Genepop

Description

The function read.genepop reads Genepop data files (.gen) and convert them into a genind object.

Usage

read.genepop(file, ncode = 2L, quiet = FALSE)

Arguments

file a character string giving the path to the file to convert, with the appropriate
extension.

ncode an integer indicating the number of characters used to code an allele.

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

Details

Note: read.genepop is meant for DIPLOID DATA ONLY. Haploid data with the Genepop format
can be read into R using read.table or read.csv after removing headers and ’POP’ lines, and
then converted using df2genind.

read.genetix 131

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Raymond M. & Rousset F, (1995). GENEPOP (version 1.2): population genetics software for exact
tests and ecumenicism. J. Heredity, 86:248-249

See Also

import2genind, df2genind, read.fstat, read.structure, read.genetix

Examples

obj <- read.genepop(system.file("files/nancycats.gen",package="adegenet"))
obj

read.genetix Reading data from GENETIX

Description

The function read.genetix reads GENETIX data files (.gtx) and convert them into a genind object.

Usage

read.genetix(file = NULL, quiet = FALSE)

Arguments

file a character string giving the path to the file to convert, with the appropriate
extension.

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

Details

Note: read.genetix is meant for DIPLOID DATA ONLY. Haploid data with the GENETIX format
can be read into R using read.table or read.csv after removing headers and ’POP’ lines, and then
converted using df2genind.

132 read.snp

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Belkhir K., Borsa P., Chikhi L., Raufaste N. & Bonhomme F. (1996-2004) GENETIX 4.05, logiciel
sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interac-
tions, CNRS UMR 5000, Universite de Montpellier II, Montpellier (France).

See Also

import2genind, df2genind, read.fstat, read.structure, read.genepop

Examples

obj <- read.genetix(system.file("files/nancycats.gtx",package="adegenet"))
obj

read.snp Reading Single Nucleotide Polymorphism data

Description

The function read.snp reads a SNP data file with extension ’.snp’ and converts it into a genlight
object. This format is devoted to handle biallelic SNP only, but can accommodate massive datasets
such as complete genomes with considerably less memory than other formats.

Usage

read.snp(
file,
quiet = FALSE,
chunkSize = 1000,
parallel = FALSE,
n.cores = NULL,
...

)

read.snp 133

Arguments

file a character string giving the path to the file to convert, with the extension ".snp".

quiet logical stating whether a conversion messages should be printed (TRUE,default)
or not (FALSE).

chunkSize an integer indicating the number of genomes to be read at a time; larger values
require more RAM but decrease the time needed to read the data.

parallel a logical indicating whether multiple cores -if available- should be used for the
computations (TRUE, default), or not (FALSE); requires the package parallel
to be installed (see details).

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

... other arguments to be passed to other functions - currently not used.

Details

The function reads data by chunks of a few genomes (minimum 1, no maximum) at a time, which
allows one to read massive datasets with negligible RAM requirements (albeit at a cost of computa-
tional time). The argument chunkSize indicates the number of genomes read at a time. Increasing
this value decreases the computational time required to read data in, while increasing memory re-
quirements.

A description of the .snp format is provided in an example file distributed with adegenet (see exam-
ple below).

=== The .snp format ===

Details of the .snp format can be found in the example file distributed with adegenet (see below), or
on the adegenet website (type adegenetWeb() in R).

Value

an object of the class "genlight"

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

- ?genlight for a description of the class "genlight".

- read.PLINK: read SNPs in PLINK’s ’.raw’ format.

- fasta2genlight: extract SNPs from alignments with fasta format.

- df2genind: convert any multiallelic markers into adegenet "genlight".

- import2genind: read multiallelic markers from various software into adegenet.

134 read.structure

Examples

Not run:
show the example file
this is the path to the file:
system.file("files/exampleSnpDat.snp",package="adegenet")

show its content:
file.show(system.file("files/exampleSnpDat.snp",package="adegenet"))

read the file
obj <-
read.snp(system.file("files/exampleSnpDat.snp",package="adegenet"), chunk=2)
obj
as.matrix(obj)
ploidy(obj)
alleles(obj)
locNames(obj)

End(Not run)

read.structure Reading data from STRUCTURE

Description

The function read.structure reads STRUCTURE data files (.str ou .stru) and convert them into a
genind object. By default, this function is interactive and asks a few questions about data content.
This can be disabled (for optional questions) by turning the ’ask’ argument to FALSE. However,
one has to know the number of genotypes, of markers and if genotypes are coded on a single or on
two rows before importing data.

Usage

read.structure(
file,
n.ind = NULL,
n.loc = NULL,
onerowperind = NULL,
col.lab = NULL,
col.pop = NULL,
col.others = NULL,
row.marknames = NULL,
NA.char = "-9",
pop = NULL,
sep = NULL,
ask = TRUE,

read.structure 135

quiet = FALSE
)

Arguments

file a character string giving the path to the file to convert, with the appropriate
extension.

n.ind an integer giving the number of genotypes (or ’individuals’) in the dataset

n.loc an integer giving the number of markers in the dataset

onerowperind a STRUCTURE coding option: are genotypes coded on a single row (TRUE),
or on two rows (FALSE, default)

col.lab an integer giving the index of the column containing labels of genotypes. ’0’ if
absent.

col.pop an integer giving the index of the column containing population to which geno-
types belong. ’0’ if absent.

col.others an vector of integers giving the indexes of the columns containing other infor-
mations to be read. Will be available in @other of the created object.

row.marknames an integer giving the index of the row containing the names of the markers. ’0’
if absent.

NA.char the character string coding missing data. "-9" by default. Note that in any case,
series of zero (like "000") are interpreted as NA too.

pop an optional factor giving the population of each individual.

sep a character string used as separator between alleles.

ask a logical specifying if the function should ask for optional informations about
the dataset (TRUE, default), or try to be as quiet as possible (FALSE).

quiet logical stating whether a conversion message must be printed (TRUE,default) or
not (FALSE).

Details

Note: read.structure is meant for DIPLOID DATA ONLY. Haploid data with the STRUC-
TURE format can easily be read into R using read.table or read.csv and then converted using
df2genind.

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Pritchard, J.; Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus
genotype data. Genetics, 155: 945-959

136 repool

See Also

import2genind, df2genind, read.fstat, read.genetix, read.genepop

Examples

obj <- read.structure(system.file("files/nancycats.str",package="adegenet"),
onerowperind=FALSE, n.ind=237, n.loc=9, col.lab=1, col.pop=2, ask=FALSE)

obj

repool Pool several genotypes into a single dataset

Description

The function repool allows to merge genotypes from different genind objects into a single ’pool’
(i.e. a new genind). The markers have to be the same for all objects to be merged, but there is no
constraint on alleles.

Usage

repool(..., list = FALSE)

Arguments

... a list of genind objects, or a series of genind objects separated by commas

list a logical indicating whether a list of objects with matched alleles shall be re-
turned (TRUE), or a single genind object (FALSE, default).

Details

This function can be useful, for instance, when hybrids are created using hybridize, to merge
hybrids with their parent population for further analyses. Note that repool can also reverse the
action of seppop.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

seploc, seppop

rupica 137

Examples

Not run:
use the cattle breeds dataset
data(microbov)
temp <- seppop(microbov)
names(temp)
hybridize salers and zebu -- nasty cattle
zebler <- hybridize(temp$Salers, temp$Zebu, n=40)
zebler
now merge zebler with other cattle breeds
nastyCattle <- repool(microbov, zebler)
nastyCattle

End(Not run)

rupica Microsatellites genotypes of 335 chamois (Rupicapra rupicapra) from
the Bauges mountains (France)

Description

This data set contains the genotypes of 335 chamois (Rupicapra rupicapra) from the Bauges moun-
tains, in France. No prior clustering about individuals is known. Each genotype is georeferenced.
These data also contain a raster map of elevation of the sampling area.

Format

rupica is a genind object with 3 supplementary components inside the @other slot:

xy a matrix containing the spatial coordinates of the genotypes.

mnt a raster map of elevation, with the asc format from the adehabitat package.

showBauges a function to display the map of elevation with an appropriate legend (use showBauges()).

Source

Daniel Maillard, ’Office National de la Chasse et de la Faune Sauvage’ (ONCFS), France.

References

Cassar S (2008) Organisation spatiale de la variabilité génétique et phénotypique a l’échelle du
paysage: le cas du chamois et du chevreuil, en milieu de montagne. PhD Thesis. University Claude
Bernard - Lyon 1, France.

Cassar S, Jombart T, Loison A, Pontier D, Dufour A-B, Jullien J-M, Chevrier T, Maillard D. Spatial
genetic structure of Alpine chamois (Rupicapra rupicapra): a consequence of landscape features
and social factors? submitted to Molecular Ecology.

138 scaleGen

Examples

data(rupica)
rupica

Not run:
required_packages <- require(adehabitat) &&

require(adespatial) &&
require(spdep)

if (required_packages) {

see the sampling area
showBauges <- rupica$other$showBauges
showBauges()
points(rupica$other$xy,col="red")

perform a sPCA
spca1 <- spca(rupica,type=5,d1=0,d2=2300,plot=FALSE,scannf=FALSE,nfposi=2,nfnega=0)
barplot(spca1$eig,col=rep(c("black","grey"),c(2,100)),main="sPCA eigenvalues")
screeplot(spca1,main="sPCA eigenvalues: decomposition")

data visualization
showBauges(,labcex=1)
s.value(spca1$xy,spca1$ls[,1],add.p=TRUE,csize=.5)
add.scatter.eig(spca1$eig,1,1,1,posi="topleft",sub="Eigenvalues")

showBauges(,labcex=1)
s.value(spca1$xy,spca1$ls[,2],add.p=TRUE,csize=.5)
add.scatter.eig(spca1$eig,2,2,2,posi="topleft",sub="Eigenvalues")

rupica$other$showBauges()
colorplot(spca1$xy,spca1$li,cex=1.5,add.plot=TRUE)

global and local tests
Gtest <- global.rtest(rupica@tab,spca1$lw,nperm=999)
Gtest
plot(Gtest)
Ltest <- local.rtest(rupica@tab,spca1$lw,nperm=999)
Ltest
plot(Ltest)
}

End(Not run)

scaleGen Compute scaled allele frequencies

scaleGen 139

Description

The generic function scaleGen is an analogue to the scale function, but is designed with further
arguments giving scaling options.

Usage

scaleGen(x, ...)

S4 method for signature 'genind'
scaleGen(
x,
center = TRUE,
scale = TRUE,
NA.method = c("asis", "mean", "zero"),
truenames = TRUE

)

S4 method for signature 'genpop'
scaleGen(
x,
center = TRUE,
scale = TRUE,
NA.method = c("asis", "mean", "zero"),
truenames = TRUE

)

Arguments

x a genind and genpop object

... further arguments passed to other methods.

center a logical stating whether alleles frequencies should be centred to mean zero
(default to TRUE). Alternatively, a vector of numeric values, one per allele, can
be supplied: these values will be substracted from the allele frequencies.

scale a logical stating whether alleles frequencies should be scaled (default to TRUE).
Alternatively, a vector of numeric values, one per allele, can be supplied: these
values will be substracted from the allele frequencies.

NA.method a method to replace NA; asis: leave NAs as is; mean: replace by the mean allele
frequencies; zero: replace by zero

truenames no longer used; kept for backward compatibility

Details

Methods are defined for genind and genpop objects. Both return data.frames of scaled allele fre-
quencies.

140 scaleGen

Value

A matrix of scaled allele frequencies with genotypes (genind) or populations in (genpop) in rows
and alleles in columns.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Examples

Not run:
load data
data(microbov)
obj <- genind2genpop(microbov)

apply scaling
X1 <- scaleGen(obj)

compute PCAs with and without scaling
pcaObj <- dudi.pca(obj, scale = FALSE, scannf = FALSE) # pca with no scaling
pcaX1 <- dudi.pca(X1, scale = FALSE, scannf = FALSE, nf = 100) # pca scaled using scaleGen()
pcaX2 <- dudi.pca(obj, scale = TRUE, scannf = FALSE, nf = 100) # pca scaled in-PCA

get the loadings of alleles for the two scalings
U1 <- pcaObj$c1
U2 <- pcaX1$c1
U3 <- pcaX2$c1

find an optimal plane to compare loadings
use a procustean rotation of loadings tables
pro1 <- procuste(U1, U2, nf = 2)
pro2 <- procuste(U2, U3, nf = 2)
pro3 <- procuste(U1, U3, nf = 2)

graphics
par(mfrow=c(2, 3))
eigenvalues
barplot(pcaObj$eig, main = "Eigenvalues\n no scaling")
barplot(pcaX1$eig, main = "Eigenvalues\n scaleGen scaling")
barplot(pcaX2$eig, main = "Eigenvalues\n in-PCA scaling")
differences between loadings of alleles
s.match(pro1$scorX, pro1$scorY, clab = 0,

sub = "no scaling -> scaling (procustean rotation)")
s.match(pro2$scorX, pro2$scorY, clab = 0,

sub = "scaling scaleGen -> in-PCA scaling")
s.match(pro3$scorX, pro3$scorY, clab = 0,

sub = "no scaling -> in-PCA scaling")

End(Not run)

selPopSize 141

selPopSize Select genotypes of well-represented populations

Description

The function selPopSize checks the sample size of each population in a genind object and keeps
only genotypes of populations having a given minimum size.

Usage

S4 method for signature 'genind'
selPopSize(x,pop=NULL,nMin=10)

Arguments

x a genind object

pop a vector of characters or a factor giving the population of each genotype in ’x’.
If not provided, seeked from x$pop.

nMin the minimum sample size for a population to be retained. Samples sizes strictly
less than nMin will be discarded, those equal to or greater than nMin are kept.

Value

A genind object.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

seploc, repool

Examples

Not run:
data(microbov)

table(pop(microbov))
obj <- selPopSize(microbov, n=50)

obj
table(pop(obj))

End(Not run)

142 seploc

seploc Separate data per locus

Description

The function seploc splits an object (genind, genpop or genlight) by marker. For genind and
genpop objects, the method returns a list of objects whose components each correspond to a marker.
For genlight objects, the methods returns blocks of SNPs.

Usage

S4 method for signature 'genind'
seploc(x,truenames=TRUE,res.type=c("genind","matrix"))
S4 method for signature 'genpop'
seploc(x,truenames=TRUE,res.type=c("genpop","matrix"))
S4 method for signature 'genlight'
seploc(x, n.block=NULL, block.size=NULL, random=FALSE,

parallel=FALSE, n.cores=NULL)

Arguments

x a genind or a genpop object.

truenames a logical indicating whether true names should be used (TRUE, default) instead
of generic labels (FALSE).

res.type a character indicating the type of returned results, a genind or genpop object
(default) or a matrix of data corresponding to the ’tab’ slot.

n.block an integer indicating the number of blocks of SNPs to be returned.

block.size an integer indicating the size (in number of SNPs) of the blocks to be returned.

random should blocks be formed of contiguous SNPs, or should they be made or ran-
domly chosen SNPs.

parallel a logical indicating whether multiple cores -if available- should be used for the
computations (TRUE, default), or not (FALSE); requires the package parallel
to be installed.

n.cores if parallel is TRUE, the number of cores to be used in the computations; if
NULL, then the maximum number of cores available on the computer is used.

Value

The function seploc returns an list of objects of the same class as the initial object, or a list of
matrices similar to x$tab.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

seppop 143

See Also

seppop, repool

Examples

Not run:
example on genind objects
data(microbov)

separate all markers
obj <- seploc(microbov)
names(obj)

obj$INRA5

example on genlight objects
x <- glSim(100, 1000, 0, ploidy=2) # simulate data
x <- x[,order(glSum(x))] # reorder loci by frequency of 2nd allele
glPlot(x, main="All data") # plot data
foo <- seploc(x, n.block=3) # form 3 blocks
foo
glPlot(foo[[1]], main="1st block") # plot 1st block
glPlot(foo[[2]], main="2nd block") # plot 2nd block
glPlot(foo[[3]], main="3rd block") # plot 3rd block

foo <- seploc(x, block.size=600, random=TRUE) # split data, randomize loci
foo # note the different block sizes
glPlot(foo[[1]])

End(Not run)

seppop Separate genotypes per population

Description

The function seppop splits a genind or a genlight object by population, returning a list of objects
whose components each correspond to a population.

For genind objects, the output can either be a list of genind (default), or a list of matrices corre-
sponding to the @tab slot.

Usage

S4 method for signature 'genind'
seppop(x,pop=NULL,truenames=TRUE,res.type=c("genind","matrix"),
drop=FALSE, treatOther=TRUE, keepNA = FALSE, quiet=TRUE)

144 seppop

S4 method for signature 'genlight'
seppop(x,pop=NULL, treatOther=TRUE, keepNA = FALSE, quiet=TRUE, ...)

Arguments

x a genind object

pop a factor giving the population of each genotype in ’x’ OR a formula specifying
which strata are to be used when converting to a genpop object. If none provided,
population factors are sought in x@pop, but if given, the argument prevails on
x@pop.

truenames a logical indicating whether true names should be used (TRUE, default) instead
of generic labels (FALSE); used if res.type is "matrix".

res.type a character indicating the type of returned results, a list of genind object (default)
or a matrix of data corresponding to the ’tab’ slots.

drop a logical stating whether alleles that are no longer present in a subset of data
should be discarded (TRUE) or kept anyway (FALSE, default).

treatOther a logical stating whether elements of the @other slot should be treated as well
(TRUE), or not (FALSE). See details in accessor documentations (pop).

keepNA If there are individuals with missing population information, should they be
pooled into a separate population (TRUE), or excluded (FALSE, default).

quiet a logical indicating whether warnings should be issued when trying to subset
components of the @other slot (TRUE), or not (FALSE, default).

... further arguments passed to the genlight constructor.

Value

According to ’res.type’: a list of genind object (default) or a matrix of data corresponding to the
’tab’ slots.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

seploc, repool

Examples

Not run:
data(microbov)
strata(microbov) <- data.frame(other(microbov))

obj <- seppop(microbov)
names(obj)

obj$Salers

seqTrack 145

example using strata
obj2 <- seppop(microbov, ~coun/spe)
names(obj2)

obj2$AF_BI

example for genlight objects
x <- new("genlight", list(a=rep(1,1e3),b=rep(0,1e3),c=rep(1, 1e3)))
x

pop(x) # no population info
pop(x) <- c("pop1","pop2", "pop1") # set population memberships
pop(x)
seppop(x)
as.matrix(seppop(x)$pop1)[,1:20]
as.matrix(seppop(x)$pop2)[,1:20,drop=FALSE]

End(Not run)

seqTrack SeqTrack algorithm for reconstructing genealogies

Description

The SeqTrack algorithm [1] aims at reconstructing genealogies of sampled haplotypes or genotypes
for which a collection date is available. Contrary to phylogenetic methods which aims at recon-
structing hypothetical ancestors for observed sequences, SeqTrack considers that ancestors and
descendents are sampled together, and therefore infers ancestry relationships among the sampled
sequences.

This approach proved more efficient than phylogenetic approaches for reconstructing transmission
trees in densely sampled disease outbreaks [1]. This implementation defines a generic function
seqTrack with methods for specific object classes.

Usage

seqTrack(...)

S3 method for class 'matrix'
seqTrack(x, x.names, x.dates, best = c("min", "max"),

prox.mat = NULL, mu = NULL, haplo.length = NULL, ...)

S3 method for class 'seqTrack'
as.igraph(x, col.pal=redpal, ...)

S3 method for class 'seqTrack'
plot(x, y=NULL, col.pal=redpal, ...)

146 seqTrack

plotSeqTrack(x, xy, use.arrows=TRUE, annot=TRUE, labels=NULL, col=NULL,
bg="grey", add=FALSE, quiet=FALSE,
date.range=NULL, jitter.arrows=0, plot=TRUE, ...)

get.likelihood(...)

S3 method for class 'seqTrack'
get.likelihood(x, mu, haplo.length, ...)

Arguments

x for seqTrack, a matrix giving weights to pairs of ancestries such that x[i,j] is the
weight of ’i ancestor of j’. For plotSeqTrack and get.likelihood. seqTrack, a
seqTrack object.

x.names a character vector giving the labels of the haplotypes/genotypes

x.dates a vector of collection dates for the sampled haplotypes/genotypes. Dates must
have the POSIXct format. See details or ?as.POSIXct for more information.

best a character string matching ’min’ or ’max’, indicating whether genealogies should
minimize or maximize the sum of weights of ancestries.

prox.mat an optional matrix of proximities between haplotypes/genotypes used to resolve
ties in the choice of ancestors, by picking up the ’closest’ ancestor amongst
possible ancestors, in the sense of prox.mat. prox.mat[i,j] must indicate
a proximity for the relationship ’i ancestor to j’. For instance, if prox.mat
contains spatial proximities, then prox.mat[i,j] gives a measure of how easy
it is to migrate from location ’i’ to ’j’.

mu (optional) a mutation rate, per site and per day. When ’x’ contains numbers of
mutations, used to resolve ties using a maximum likelihood approach (requires
haplo.length to be provided).

haplo.length (optional) the length of analysed sequences in number of nucleotides. When ’x’
contains numbers of mutations, used to resolve ties using a maximum likelihood
approach (requires mu to be provided).

y unused argument, for compatibility with ’plot’.

col.pal a color palette to be used to represent weights using colors on the edges of the
graph. See ?num2col. Note that the palette is inversed by default.

xy spatial coordinates of the sampled haplotypes/genotypes.

use.arrows a logical indicating whether arrows should be used to represented ancestries
(pointing from ancestor to descendent, TRUE), or whether segments shall be
used (FALSE).

annot a logical indicating whether arrows or segments representing ancestries should
be annotated (TRUE) or not (FALSE).

labels a character vector containing annotations of the ancestries. If left empty, ances-
tries are annotated by the descendent.

col a vector of colors to be used for plotting ancestries.

bg a color to be used as background.

seqTrack 147

add a logical stating whether the plot should be added to current figure (TRUE), or
drawn as a new plot (FALSE, default).

quiet a logical stating whether messages other than errors should be displayed (FALSE,
default), or hidden (TRUE).

date.range a vector of length two with POSIXct format indicating the time window for
which ancestries should be displayed.

jitter.arrows a positive number indicating the amount of noise to be added to coordinates of
arrows; useful when several arrows overlap. See jitter.

plot a logical stating whether a plot should be drawn (TRUE, default), or not (FALSE).
In all cases, the function invisibly returns plotting information.

... further arguments to be passed to other methods

Details

=== Maximum parsimony genealogies ===
Maximum parsimony genealogies can be obtained easily using this implementation of seqTrack.
One has to provide in x a matrix of genetic distances. The most straightforward distance is the
number of differing nucleotides. See dist.dna in the ape package for a wide range of genetic
distances between aligned sequences. The argument best should be set to "min" (its default value),
so that the identified genealogy minimizes the total number of mutations. If x contains number
of mutations, then mu and haplo.length should also be provided for resolving ties in equally
parsimonious ancestors using maximum likelihood.

=== Likelihood of observed genetic differentiation ===
The probability of oberving a given number of mutations between a sequence and its ancestor can be
computed using get.likelihood.seqTrack. Note that this is only possible if x contained number
of mutations.

=== Plotting/converting seqTrack objects to graphs ===
seqTrack objects are best plotted as graphs. From adegenet_1.3-5 onwards, seqTrack objects can be
converted to igraph objects (from the package igraph), which can in turn be plotted and manipu-
lated using classical graph tools. The plot method does this operation automatically, using colors to
represent edge weights, and using time-ordering of the data from top (ancient) to bottom (recent).

Value

=== output of seqTrack ===
seqTrack function returns data.frame with the class seqTrack, in which each row is an inferred
ancestry described by the following columns: - id: indices identifying haplotypes/genotypes
- ances: index of the inferred ancestor
- weight: weight of the inferred ancestries
- date: date of the haplotype/genotype
- ances.date: date of the ancestor

=== output of plotSeqTrack ===
This graphical function invisibly returns the coordinates of the arrows/segments drawn and their
colors, as a data.frame.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

148 seqTrack

References

Jombart T, Eggo R, Dodd P, Balloux F (2010) Reconstructing disease outbreaks from genetic data:
a graph approach. Heredity. doi: 10.1038/hdy.2010.78.

See Also

dist.dna in the ape package to compute pairwise genetic distances in aligned sequences.

Examples

Not run:
if(require(ape && require(igraph))){
ANALYSIS OF SIMULATED DATA
SIMULATE A GENEALOGY
dat <- haploGen(seq.l=1e4, repro=function(){sample(1:4,1)}, gen.time=1, t.max=3)
plot(dat, main="Simulated data")

SEQTRACK ANALYSIS
res <- seqTrack(dat, mu=0.0001, haplo.length=1e4)
plot(res, main="seqTrack reconstruction")

PROPORTION OF CORRECT RECONSTRUCTION
mean(dat$ances==res$ances,na.rm=TRUE)

ANALYSIS OF PANDEMIC A/H1N1 INFLUENZA DATA
note:
this is for reproduction purpose only
seqTrack is best kept for the analysis
of densely sampled outbreaks, which
is not the case of this dataset.
##
dat <- read.csv(system.file("files/pdH1N1-data.csv",package="adegenet"))
ha <- read.dna(system.file("files/pdH1N1-HA.fasta",package="adegenet"), format="fa")
na <- read.dna(system.file("files/pdH1N1-NA.fasta",package="adegenet"), format="fa")

COMPUTE NUCLEOTIDIC DISTANCES
nbNucl <- ncol(as.matrix(ha)) + ncol(as.matrix(na))
D <- dist.dna(ha,model="raw")*ncol(as.matrix(ha)) +
dist.dna(na,model="raw")*ncol(as.matrix(na))
D <- round(as.matrix(D))

MATRIX OF SPATIAL CONNECTIVITY
(to promote local transmissions)
xy <- cbind(datlon, datlat)
temp <- as.matrix(dist(xy))
M <- 1* (temp < 1e-10)

SEQTRACK ANALYSIS

seqTrack 149

dat$date <- as.POSIXct(dat$date)
res <- seqTrack(D, rownames(dat), dat$date, prox.mat=M, mu=.00502/365, haplo.le=nbNucl)

COMPUTE GENETIC LIKELIHOOD
p <- get.likelihood(res, mu=.00502/365, haplo.length=nbNucl)
(these could be shown as colors when plotting results)
(but mutations will be used instead)

EXAMINE RESULTS
head(res)
tail(res)
range(res$weight, na.rm=TRUE)
barplot(table(res$weight)/sum(!is.na(res$weight)), ylab="Frequency",
xlab="Mutations between inferred ancestor and descendent", col="orange")

DISPLAY SPATIO-TEMPORAL DYNAMICS
if(require(maps)){
myDates <- as.integer(difftime(dat$date, as.POSIXct("2009-01-21"), unit="day"))
myMonth <- as.POSIXct(
c("2009-02-01", "2009-03-01","2009-04-01","2009-05-01","2009-06-01","2009-07-01"))
x.month <- as.integer(difftime(myMonth, as.POSIXct("2009-01-21"), unit="day"))

FIRST STAGE:
SPREAD TO THE USA AND CANADA
curRange <- as.POSIXct(c("2009-03-29","2009-04-25"))
par(bg="deepskyblue")
map("world", fill=TRUE, col="grey")
opal <- palette()
palette(rev(heat.colors(10)))
plotSeqTrack(res, round(xy), add=TRUE,annot=FALSE,lwd=2,date.range=curRange,
col=res$weight+1)
title(paste(curRange, collapse=" to "))
legend("bottom", lty=1, leg=0:8, title="number of mutations", col=1:9,
lwd=2, horiz=TRUE)

SECOND STAGE:
SPREAD WITHIN AMERICA, FIRST SEEDING OUTSIDE AMERICA
curRange <- as.POSIXct(c("2009-04-30","2009-05-07"))
par(bg="deepskyblue")
map("world", fill=TRUE, col="grey")
opal <- palette()
palette(rev(heat.colors(10)))
plotSeqTrack(res, round(xy), add=TRUE,annot=FALSE,lwd=2,
date.range=curRange, col=res$weight+1)
title(paste(curRange, collapse=" to "))
legend("bottom", lty=1, leg=0:8, title="number of mutations",
col=1:9,lwd=2, horiz=TRUE)

150 SequencesToGenind

THIRD STAGE:
PANDEMIC
curRange <- as.POSIXct(c("2009-05-15","2009-05-25"))
par(bg="deepskyblue")
map("world", fill=TRUE, col="grey")
opal <- palette()
palette(rev(heat.colors(10)))
plotSeqTrack(res, round(xy), add=TRUE,annot=FALSE,lwd=2, date.range=curRange,
col=res$weight+1)
title(paste(curRange, collapse=" to "))
legend("bottom", lty=1, leg=0:8, title="number of mutations",
col=1:9,lwd=2, horiz=TRUE)

}
}

End(Not run)

SequencesToGenind Importing data from an alignement of sequences to a genind object

Description

These functions take an alignement of sequences and translate SNPs into a genind object. Note that
only polymorphic loci are retained.

Currently, accepted sequence formats are:
- DNAbin (ape package): function DNAbin2genind
- alignment (seqinr package): function alignment2genind

Usage

DNAbin2genind(x, pop=NULL, exp.char=c("a","t","g","c"), polyThres=1/100)

alignment2genind(x, pop=NULL, exp.char=c("a","t","g","c"), na.char="-",
polyThres=1/100)

Arguments

x an object containing aligned sequences.

pop an optional factor giving the population to which each sequence belongs.

exp.char a vector of single character providing expected values; all other characters will
be turned to NA.

na.char a vector of single characters providing values that should be considered as NA.
If not NULL, this is used instead of exp.char.

SequencesToGenind 151

polyThres the minimum frequency of a minor allele for a locus to be considered as poly-
morphic (defaults to 0.01).

Value

an object of the class genind

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

import2genind, read.genetix, read.fstat, read.structure, read.genepop, DNAbin, as.alignment.

Examples

Not run:
data(woodmouse)
x <- DNAbin2genind(woodmouse)
x
genind2df(x)

End(Not run)

if(require(seqinr)){
mase.res <- read.alignment(file=system.file("sequences/test.mase",package="seqinr"),
format = "mase")
mase.res
x <- alignment2genind(mase.res)
x
locNames(x) # list of polymorphic sites
genind2df(x)

look at Euclidean distances
D <- dist(tab(x))
D

summarise with a PCoA
pco1 <- dudi.pco(D, scannf=FALSE,nf=2)
scatter(pco1, posi="bottomright")
title("Principal Coordinate Analysis\n-based on proteic distances-")

}

152 setPop

setPop Manipulate the population factor of genind objects.

Description

The following methods allow the user to quickly change the population of a genind object.

Usage

setPop(x, formula = NULL)

setPop(x) <- value

Arguments

x a genind or genlight object

formula a nested formula indicating the order of the population strata.

value same as formula

Author(s)

Zhian N. Kamvar

Examples

data(microbov)

strata(microbov) <- data.frame(other(microbov))

Currently set on just
head(pop(microbov))

setting the strata to both Pop and Subpop
setPop(microbov) <- ~coun/breed
head(pop(microbov))

Not run:

Can be used to create objects as well.
microbov.old <- setPop(microbov, ~spe)
head(pop(microbov.old))

End(Not run)

showmekittens 153

showmekittens When you need a break...

Description

Genetic data analysis can be a harsh, tiring, daunting task. Sometimes, a mere break will not cut it.
Sometimes, you need a kitten.

Usage

showmekittens(x = NULL, list = FALSE)

Arguments

x the name or index of the video to display; if NULL, a random video is chosen

list a logical indicating if the list of available videos should be displayed

Details

Please send us more! Either pull request or submit an issue with a URL (use adegenetIssues()).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

sim2pop Simulated genotypes of two georeferenced populations

Description

This simple data set was obtained by sampling two populations evolving in a island model, sim-
ulated using Easypop (2.0.1). See source for simulation details. Sample sizes were respectively
100 and 30 genotypes. The genotypes were given spatial coordinates so that both populations were
spatially differentiated.

Format

sim2pop is a genind object with a matrix of xy coordinates as supplementary component.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

154 sim2pop

Source

Easypop version 2.0.1 was run with the following parameters:
- two diploid populations, one sex, random mating
- 1000 individuals per population
- proportion of migration: 0.002
- 20 loci
- mutation rate: 0.0001 (KAM model)
- maximum of 50 allelic states
- 1000 generations (last one taken)

References

Balloux F (2001) Easypop (version 1.7): a computer program for oppulation genetics simulations
Journal of Heredity, 92: 301-302

Examples

Not run:
data(sim2pop)

if(require(hierfstat)){
try and find the Fst
temp <- genind2hierfstat(sim2pop)
varcomp.glob(temp[,1],temp[,-1])
Fst = 0.038
}

run monmonier algorithm

build connection network
gab <- chooseCN(sim2pop@other$xy,ask=FALSE,type=2)

filter random noise
pca1 <- dudi.pca(sim2pop@tab,scale=FALSE, scannf=FALSE, nf=1)

run the algorithm
mon1 <- monmonier(sim2pop@other$xy,dist(pca1$l1[,1]),gab, scanthres=FALSE)

graphical display
temp <- sim2pop@pop
levels(temp) <- c(17,19)
temp <- as.numeric(as.character(temp))
plot(mon1)
points(sim2pop@other$xy,pch=temp,cex=2)
legend("topright",leg=c("Pop A", "Pop B"),pch=c(17,19))

End(Not run)

snapclust 155

snapclust Maximum-likelihood genetic clustering using EM algorithm

Description

This function implements the fast maximum-likelihood genetic clustering approach described in
Beugin et al (2018). The underlying model is very close to the model implemented by STRUC-
TURE, but allows for much faster estimation of genetic clusters thanks to the use of the Expectation-
Maximization (EM) algorithm. Optionally, the model can explicitely account for hybridization and
detect different types of hybrids (see hybrids and hybrid.coef arguments). The method is fully
documented in a dedicated tutorial which can be accessed using adegenetTutorial("snapclust").

Usage

snapclust(
x,
k,
pop.ini = "ward",
max.iter = 100,
n.start = 10,
n.start.kmeans = 50,
hybrids = FALSE,
dim.ini = 100,
hybrid.coef = NULL,
parent.lab = c("A", "B"),
...

)

Arguments

x a genind object

k the number of clusters to look for

pop.ini parameter indicating how the initial group membership should be found. If
NULL, groups are chosen at random, and the algorithm will be run n.start
times. If "kmeans", then the function find.clusters is used to define initial
groups using the K-means algorithm. If "ward", then the function find.clusters
is used to define initial groups using the Ward algorithm. Alternatively, a factor
defining the initial cluster configuration can be provided.

max.iter the maximum number of iteration of the EM algorithm

n.start the number of times the EM algorithm is run, each time with different random
starting conditions

n.start.kmeans the number of times the K-means algorithm is run to define the starting point of
the ML-EM algorithm, each time with different random starting conditions

hybrids a logical indicating if hybrids should be modelled explicitely; this is currently
implemented for 2 groups only.

156 snapclust

dim.ini the number of PCA axes to retain in the dimension reduction step for find.clusters,
if this method is used to define initial group memberships (see argument pop.ini).

hybrid.coef a vector of hybridization coefficients, defining the proportion of hybrid gene
pool coming from the first parental population; this is symmetrized around 0.5,
so that e.g. c(0.25, 0.5) will be converted to c(0.25, 0.5, 0.75)

parent.lab a vector of 2 character strings used to label the two parental populations; only
used if hybrids are detected (see argument hybrids)

... further arguments passed on to find.clusters

Details

The method is described in Beugin et al (2018) A fast likelihood solution to the genetic clustering
problem. Methods in Ecology and Evolution doi:10.1111/2041210X.12968. A dedicated tutorial is
available by typing adegenetTutorial("snapclust").

Value

The function snapclust returns a list with the following components:

• $group a factor indicating the maximum-likelihood assignment of individuals to groups; if
identified, hybrids are labelled after hybridization coefficients, e.g. 0.5_A - 0.5_B for F1,
0.75_A - 0.25_B for backcross F1 / A, etc.

• $ll: the log-likelihood of the model

• $proba: a matrix of group membership probabilities, with individuals in rows and groups
in columns; each value correspond to the probability that a given individual genotype was
generated under a given group, under Hardy-Weinberg hypotheses.

• $converged a logical indicating if the algorithm converged; if FALSE, it is doubtful that the
result is an actual Maximum Likelihood estimate.

• $n.iter an integer indicating the number of iterations the EM algorithm was run for.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com> and Marie-Pauline Beugin

See Also

The function snapclust.choose.k to investigate the optimal value number of clusters ’k’.

Examples

Not run:
data(microbov)

try function using k-means initialization
grp.ini <- find.clusters(microbov, n.clust=15, n.pca=150)

run EM algo
res <- snapclust(microbov, 15, pop.ini = grp.ini$grp)

https://doi.org/10.1111/2041-210X.12968

snapclust.choose.k 157

names(res)
res$converged
res$n.iter

plot result
compoplot(res)

flag potential hybrids
to.flag <- apply(res$proba,1,max)<.9
compoplot(res, subset=to.flag, show.lab=TRUE,

posi="bottomleft", bg="white")

Simulate hybrids F1
zebu <- microbov[pop="Zebu"]
salers <- microbov[pop="Salers"]
hyb <- hybridize(zebu, salers, n=30)
x <- repool(zebu, salers, hyb)

method without hybrids
res.no.hyb <- snapclust(x, k=2, hybrids=FALSE)
compoplot(res.no.hyb, col.pal=spectral, n.col=2)

method with hybrids
res.hyb <- snapclust(x, k=2, hybrids=TRUE)
compoplot(res.hyb, col.pal =

hybridpal(col.pal = spectral), n.col = 2)

Simulate hybrids backcross (F1 / parental)
f1.zebu <- hybridize(hyb, zebu, 20, pop = "f1.zebu")
f1.salers <- hybridize(hyb, salers, 25, pop = "f1.salers")
y <- repool(x, f1.zebu, f1.salers)

method without hybrids
res2.no.hyb <- snapclust(y, k = 2, hybrids = FALSE)
compoplot(res2.no.hyb, col.pal = hybridpal(), n.col = 2)

method with hybrids F1 only
res2.hyb <- snapclust(y, k = 2, hybrids = TRUE)
compoplot(res2.hyb, col.pal = hybridpal(), n.col = 2)

method with back-cross
res2.back <- snapclust(y, k = 2, hybrids = TRUE, hybrid.coef = c(.25,.5))
compoplot(res2.back, col.pal = hybridpal(), n.col = 2)

End(Not run)

snapclust.choose.k Choose the number of clusters for snapclust using AIC, BIC or AICc

158 SNPbin-class

Description

This function implements methods for investigating the optimal number of genetic clusters (’k’) us-
ing the fast maximum-likelihood genetic clustering approach described in Beugin et al (2018). The
method runs snapclust for varying values of ’k’, and computes the requested summary statistics
for each clustering solution to assess goodness of fit. The method is fully documented in a dedicated
tutorial which can be accessed using adegenetTutorial("snapclust").

Usage

snapclust.choose.k(max, ..., IC = AIC, IC.only = TRUE)

Arguments

max An integer indicating the maximum number of clusters to seek; snapclust will
be run for all k from 2 to max.

... Arguments passed to snapclust.
IC A function computing the information criterion for snapclust objects. Avail-

able statistics are AIC (default), AICc, and BIC.
IC.only A logical (TRUE by default) indicating if IC values only should be returned; if

FALSE, full snapclust objects are returned.

Details

The method is described in Beugin et al (2018) A fast likelihood solution to the genetic clustering
problem. Methods in Ecology and Evolution doi:10.1111/2041210X.12968. A dedicated tutorial is
available by typing adegenetTutorial("snapclust").

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

snapclust to generate individual clustering solutions, and BIC.snapclust for computing BIC for
snapclust objects.

SNPbin-class Formal class "SNPbin"

Description

The class SNPbin is a formal (S4) class for storing a genotype of binary SNPs in a compact way,
using a bit-level coding scheme. This storage is most efficient with haploid data, where the memory
taken to represent data can reduced more than 50 times. However, SNPbin can be used for any level
of ploidy, and still remain an efficient storage mode.

A SNPbin object can be constructed from a vector of integers giving the number of the second allele
for each locus.

SNPbin stores a single genotype. To store multiple genotypes, use the genlight class.

https://doi.org/10.1111/2041-210X.12968

SNPbin-class 159

Objects from the class SNPbin

SNPbin objects can be created by calls to new("SNPbin", ...), where ’...’ can be the following
arguments:

snp a vector of integers or numeric giving numbers of copies of the second alleles for each locus.
If only one unnamed argument is provided to ’new’, it is considered as this one.

ploidy an integer indicating the ploidy of the genotype; if not provided, will be guessed from the
data (as the maximum from the ’snp’ input vector).

label an optional character string serving as a label for the genotype.

Slots

The following slots are the content of instances of the class SNPbin; note that in most cases, it is
better to retrieve information via accessors (see below), rather than by accessing the slots manually.

snp: a list of vectors with the class raw.

n.loc: an integer indicating the number of SNPs of the genotype.

NA.posi: a vector of integer giving the position of missing data.

label: an optional character string serving as a label for the genotype..

ploidy: an integer indicating the ploidy of the genotype.

Methods

Here is a list of methods available for SNPbin objects. Most of these methods are accessors, that
is, functions which are used to retrieve the content of the object. Specific manpages can exist for
accessors with more than one argument. These are indicated by a ’*’ symbol next to the method’s
name. This list also contains methods for conversion from SNPbin to other classes.

[signature(x = "SNPbin"): usual method to subset objects in R. The argument indicates how
SNPs are to be subsetted. It can be a vector of signed integers or of logicals.

show signature(x = "SNPbin"): printing of the object.

$ signature(x = "SNPbin"): similar to the @ operator; used to access the content of slots of the
object.

$<- signature(x = "SNPbin"): similar to the @ operator; used to replace the content of slots of
the object.

nLoc signature(x = "SNPbin"): returns the number of SNPs in the object.

names signature(x = "SNPbin"): returns the names of the slots of the object.

ploidy signature(x = "SNPbin"): returns the ploidy of the genotype.

as.integer signature(x = "SNPbin"): converts a SNPbin object to a vector of integers. The S4
method ’as’ can be used as well (e.g. as(x, "integer")).

cbind signature(x = "SNPbin"): merges genotyping of the same individual at different SNPs (all
stored as SNPbin objects) into a single SNPbin.

c signature(x = "SNPbin"): same as cbind.SNPbin.

160 SNPbin-class

Author(s)

Thibaut Jombart (<t.jombart@imperial.ac.uk>)

See Also

Related class:
- genlight, for storing multiple binary SNP genotypes.
- genind, for storing other types of genetic markers.

Examples

Not run:
HAPLOID EXAMPLE
create a genotype of 100,000 SNPs
dat <- sample(c(0,1,NA), 1e5, prob=c(.495, .495, .01), replace=TRUE)
dat[1:10]
x <- new("SNPbin", dat)
x
x[1:10] # subsetting
as.integer(x[1:10])

try a few accessors
ploidy(x)
nLoc(x)
head(x$snp[[1]]) # internal bit-level coding

check that conversion is OK
identical(as(x, "integer"),as.integer(dat)) # SHOULD BE TRUE

compare the size of the objects
print(object.size(dat), unit="auto")
print(object.size(x), unit="auto")
object.size(dat)/object.size(x) # EFFICIENCY OF CONVERSION

TETRAPLOID EXAMPLE
create a genotype of 100,000 SNPs
dat <- sample(c(0:4,NA), 1e5, prob=c(rep(.995/5,5), 0.005), replace=TRUE)
x <- new("SNPbin", dat)
identical(as(x, "integer"),as.integer(dat)) # MUST BE TRUE

compare the size of the objects
print(object.size(dat), unit="auto")
print(object.size(x), unit="auto")
object.size(dat)/object.size(x) # EFFICIENCY OF CONVERSION

c, cbind
a <- new("SNPbin", c(1,1,1,1,1))
b <- new("SNPbin", c(0,0,0,0,0))
a

snpposi 161

b
ab <- c(a,b)
ab
identical(c(a,b),cbind(a,b))
as.integer(ab)

End(Not run)

snpposi Analyse the position of polymorphic sites

Description

These functions are used to describe the distribution of polymorphic sites (SNPs) in an alignment.

The function snpposi.plot plots the positions and density of SNPs in the alignment.

The function snpposi.test tests whether SNPs are randomly distributed in the genome, the alter-
native hypothesis being that they are clustered. This test is based on the distances of each SNP to
the closest SNP. This provides one measure of clustering for each SNP. Different statistics can be
used to summarise these values (argument stat), but by default the statistics used is the median.

snpposi.plot and snpposi.test are generic functions with methods for vectors of integers or
numeric (indicating SNP position), and for DNAbin objects.

Usage

snpposi.plot(...)

S3 method for class 'integer'
snpposi.plot(x, genome.size, smooth=0.1,

col="royalblue", alpha=.2, codon=TRUE, start.at=1, ...)

S3 method for class 'numeric'
snpposi.plot(x, ...)

S3 method for class 'DNAbin'
snpposi.plot(x, ...)

snpposi.test(...)

S3 method for class 'integer'
snpposi.test(x, genome.size, n.sim=999, stat=median, ...)

S3 method for class 'numeric'
snpposi.test(x, ...)

S3 method for class 'DNAbin'

162 snpposi

snpposi.test(x, ...)

Arguments

x a vector of integers or numerics containing SNP positions, or a set of aligned
sequences in a DNAbin object.

genome.size an integer indicating the length of genomes.
smooth a smoothing parameter for the density estimation; smaller values will give more

local peaks; values have to be positive but can be less than 1.
col the color to be used for the plot; ignored if codon positions are represented.
alpha the alpha level to be used for transparency (density curve).
codon a logical indicating if codon position should be indicated (TRUE, default) or not.
start.at an integer indicating at which base of a codon the alignment starts (defaults to

1); values other than 1, 2 and 3 will be ignored.
n.sim an integer indicating the number of randomizations to be used in the Monte

Carlo test.
stat a function used to summarize the measure of physical proximity between SNPs;

by default, the median is used.
... further arguments to be passed to the integer method.

Value

A Monte Carlo test of the class randtest.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>.

See Also

The fasta2DNAbin to read fasta alignments with minimum RAM use.

Examples

if(require(ape)){
data(woodmouse)
snpposi.plot(woodmouse, codon=FALSE)
snpposi.plot(woodmouse)

Not run:
snpposi.test(c(1,3,4,5), 100)
snpposi.test(woodmouse)

End(Not run)
}

snpzip 163

snpzip Identification of structural SNPs

Description

The function snpzip identifies the set of alleles which contribute most significantly to phenotypic
structure.

This procedure uses Discriminant Analysis of Principal Components (DAPC) to quantify the contri-
bution of individual alleles to between-population structure. Then, defining contribution to DAPC
as the measure of distance between alleles, hierarchical clustering is used to identify two groups of
alleles: structural SNPs and non-structural SNPs.

Usage

snpzip(snps, y, plot = TRUE, xval.plot = FALSE, loading.plot = FALSE,
method = c("complete", "single", "average", "centroid",

"mcquitty", "median", "ward"), ...)

Arguments

snps a snps matrix used as input of DAPC.

y either a factor indicating the group membership of individuals, or a dapc ob-
ject.

plot a logical indicating whether a graphical representation of the DAPC results
should be displayed.

xval.plot a logical indicating whether the results of the cross-validation step should be
displayed (iff y is a factor).

loading.plot a logical indicating whether a loading.plot displaying the SNP selection thresh-
old should be displayed.

method the clustering method to be used. This should be (an unambiguous abbreviation
of) one of "complete", "single", "average", "centroid", "mcquitty", "median",
or "ward".

... further arguments.

Details

snpzip provides an objective procedure to delineate between structural and non-structural SNPs
identified by Discriminant Analysis of Principal Components (DAPC, Jombart et al. 2010). snpzip
precedes the multivariate analysis with a cross-validation step to ensure that the subsequent DAPC
is performed optimally. The contributions of alleles to the DAPC are then submitted to hclust,
where they define a distance matrix upon which hierarchical clustering is carried out. To complete
the procedure, snpzip uses cutree to automatically subdivide the set of SNPs fed into the analysis
into two groups: those which contribute significantly to the phenotypic structure of interest, and
those which do not.

164 snpzip

Value

A list with four items if y is a factor, or two items if y is a dapc object: The first cites the number
of principal components (PCs) of PCA retained in the DAPC.

The second item is an embedded list which first indicates the number of structural and non-structural
SNPs identified by snpzip, second provides a list of the structuring alleles, third gives the names
of the selected alleles, and fourth details the contributions of these structuring alleles to the DAPC.

The optional third item provides measures of discrimination success both overall and by group.

The optional fourth item contains the dapc object generated if y was a factor.

If plot=TRUE, a scatter plot will provide a visualization of the DAPC results.

If xval.plot=TRUE, the results of the cross-validation step will be displayed as an array of the
format generated by xvalDapc, and a scatter plot of the results of cross-validation will be provided.

If loading.plot=TRUE, a loading plot will be generated to show the contributions of alleles to the
DAPC, and the SNP selection threshold will be indicated. If the number of Discriminant Axes
(n.da) in the DAPC is greater than 1, loading.plot=TRUE will generate one loading plot for each
discriminant axis.

Author(s)

Caitlin Collins <caitlin.collins12@imperial.ac.uk>

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics11:94. doi:10.1186/1471-
2156-11-94

Examples

Not run:
simpop <- glSim(100, 10000, n.snp.struc = 10, grp.size = c(0.3,0.7),

LD = FALSE, alpha = 0.4, k = 4)
snps <- as.matrix(simpop)
phen <- simpop@pop

outcome <- snpzip(snps, phen, method = "centroid")
outcome

End(Not run)
Not run:
simpop <- glSim(100, 10000, n.snp.struc = 10, grp.size = c(0.3,0.7),

LD = FALSE, alpha = 0.4, k = 4)
snps <- as.matrix(simpop)
phen <- simpop@pop

dapc1 <- dapc(snps, phen, n.da = 1, n.pca = 30)

features <- snpzip(dapc1, loading.plot = TRUE, method = "average")
features

spca 165

End(Not run)

spca Spatial principal component analysis

Description

These functions implement the spatial principal component analysis (sPCA). The function spca is
a generic with methods for:

• matrix: only numeric values are accepted

• data.frame: same as for matrices

• genind: any genind object is accepted

• genpop: any genpop object is accepted

The core computation use multispati from the adespatial package.

Besides the set of spca functions, other functions include:

• print.spca: prints the spca content

• summary.spca: gives variance and autocorrelation statistics

• plot.spca: usefull graphics (connection network, 3 different representations of map of scores,
eigenvalues barplot and decomposition)

• screeplot.spca: decomposes spca eigenvalues into variance and autocorrelation

• colorplot.spca: represents principal components of sPCA in space using the RGB system.

A tutorial on sPCA can be opened using:
adegenetTutorial(which="spca").

Usage

spca(...)

Default S3 method:
spca(x, ...)

S3 method for class 'matrix'
spca(x, xy = NULL, cn = NULL, matWeight = NULL,

center = TRUE, scale = FALSE, scannf = TRUE,
nfposi = 1, nfnega = 1,
type = NULL, ask = TRUE,
plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE,
d1 = NULL, d2 = NULL, k = NULL,
a = NULL, dmin = NULL, ...)

166 spca

S3 method for class 'data.frame'
spca(x, xy = NULL, cn = NULL, matWeight = NULL,

center = TRUE, scale = FALSE, scannf = TRUE,
nfposi = 1, nfnega = 1,
type = NULL, ask = TRUE,
plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE,
d1 = NULL, d2 = NULL, k = NULL,
a = NULL, dmin = NULL, ...)

S3 method for class 'genind'
spca(obj, xy = NULL, cn = NULL, matWeight = NULL,

scale = FALSE, scannf = TRUE,
nfposi = 1, nfnega = 1,
type = NULL, ask = TRUE,
plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE,
d1 = NULL, d2 = NULL, k = NULL,
a = NULL, dmin = NULL, ...)

S3 method for class 'genpop'
spca(obj, xy = NULL, cn = NULL, matWeight = NULL,

scale = FALSE, scannf = TRUE,
nfposi = 1, nfnega = 1,
type = NULL, ask = TRUE,
plot.nb = TRUE, edit.nb = FALSE,
truenames = TRUE,
d1 = NULL, d2 = NULL, k = NULL,
a = NULL, dmin = NULL, ...)

S3 method for class 'spca'
print(x, ...)

S3 method for class 'spca'
summary(object, ..., printres=TRUE)

S3 method for class 'spca'
plot(x, axis = 1, useLag=FALSE, ...)

S3 method for class 'spca'
screeplot(x, ..., main=NULL)

S3 method for class 'spca'
colorplot(x, axes=1:ncol(x$li), useLag=FALSE, ...)

spca 167

Arguments

x a matrix or a data.frame of numeric values, with individuals in rows and vari-
ables in columns; categorical variables with a binary coding are acceptable too;
for print and plotting functions, a spca object.

obj a genind or genpop object.

xy a matrix or data.frame with two columns for x and y coordinates. Seeked from
obj$other$xy if it exists when xy is not provided. Can be NULL if a nb object
is provided in cn.
Longitude/latitude coordinates should be converted first by a given projection
(see ’See Also’ section).

cn a connection network of the class ’nb’ (package spdep). Can be NULL if xy is
provided. Can be easily obtained using the function chooseCN (see details).

matWeight a square matrix of spatial weights, indicating the spatial proximities between
entities. If provided, this argument prevails over cn (see details).

center a logical indicating whether data should be centred to a mean of zero; used
implicitely for genind or genpop objects.

scale a logical indicating whether data should be scaled to unit variance (TRUE) or
not (FALSE, default).

scannf a logical stating whether eigenvalues should be chosen interactively (TRUE,
default) or not (FALSE).

nfposi an integer giving the number of positive eigenvalues retained (’global struc-
tures’).

nfnega an integer giving the number of negative eigenvalues retained (’local struc-
tures’).

type an integer giving the type of graph (see details in chooseCN help page). If pro-
vided, ask is set to FALSE.

ask a logical stating whether graph should be chosen interactively (TRUE,default)
or not (FALSE).

plot.nb a logical stating whether the resulting graph should be plotted (TRUE, default)
or not (FALSE).

edit.nb a logical stating whether the resulting graph should be edited manually for cor-
rections (TRUE) or not (FALSE, default).

truenames a logical stating whether true names should be used for ’obj’ (TRUE, default)
instead of generic labels (FALSE)

d1 the minimum distance between any two neighbours. Used if type=5.

d2 the maximum distance between any two neighbours. Used if type=5.

k the number of neighbours per point. Used if type=6.

a the exponent of the inverse distance matrix. Used if type=7.

dmin the minimum distance between any two distinct points. Used to avoid infinite
spatial proximities (defined as the inversed spatial distances). Used if type=7.

object a spca object.

168 spca

printres a logical stating whether results should be printed on the screen (TRUE, default)
or not (FALSE).

axis an integer between 1 and (nfposi+nfnega) indicating which axis should be plot-
ted.

main a title for the screeplot; if NULL, a default one is used.

... further arguments passed to other methods.

axes the index of the columns of X to be represented. Up to three axes can be chosen.

useLag a logical stating whether the lagged components (x$ls) should be used instead
of the components (x$li).

Details

The spatial principal component analysis (sPCA) is designed to investigate spatial patterns in the
genetic variability. Given multilocus genotypes (individual level) or allelic frequency (population
level) and spatial coordinates, it finds individuals (or population) scores maximizing the product
of variance and spatial autocorrelation (Moran’s I). Large positive and negative eigenvalues corre-
spond to global and local structures.

Spatial weights can be obtained in several ways, depending how the arguments xy, cn, and matWeight
are set.
When several acceptable ways are used at the same time, priority is as follows:
matWeight > cn > xy

Value

The class spca are given to lists with the following components:

eig a numeric vector of eigenvalues.

nfposi an integer giving the number of global structures retained.

nfnega an integer giving the number of local structures retained.

c1 a data.frame of alleles loadings for each axis.

li a data.frame of row (individuals or populations) coordinates onto the sPCA axes.

ls a data.frame of lag vectors of the row coordinates; useful to clarify maps of
global scores .

as a data.frame giving the coordinates of the PCA axes onto the sPCA axes.

call the matched call.

xy a matrix of spatial coordinates.

lw a list of spatial weights of class listw.

Other functions have different outputs:
- summary.spca returns a list with 3 components: Istat giving the null, minimum and maximum
Moran’s I values; pca gives variance and I statistics for the principal component analysis; spca

spca 169

gives variance and I statistics for the sPCA.

- plot.spca returns the matched call.

- screeplot.spca returns the matched call.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

References

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. Revealing cryptic spatial patterns in genetic
variability by a new multivariate method. Heredity, 101, 92–103.

Wartenberg, D. E. (1985) Multivariate spatial correlation: a method for exploratory geographical
analysis. Geographical Analysis, 17, 263–283.

Moran, P.A.P. (1948) The interpretation of statistical maps. Journal of the Royal Statistical Society,
B 10, 243–251.

Moran, P.A.P. (1950) Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

de Jong, P. and Sprenger, C. and van Veen, F. (1984) On extreme values of Moran’s I and Geary’s
c. Geographical Analysis, 16, 17–24.

See Also

spcaIllus and rupica for datasets illustrating the sPCA
global.rtest and local.rtest
chooseCN, multispati
convUL, from the package ’PBSmapping’ to convert longitude/latitude to UTM coordinates.

Examples

data(spcaIllus) illustrates the sPCA
see ?spcaIllus
##
Not run:
example(spcaIllus)
example(rupica)

End(Not run)

170 spcaIllus

spcaIllus Simulated data illustrating the sPCA

Description

Datasets illustrating the spatial Principal Component Analysis (Jombart et al. 2009). These data
were simulated using various models using Easypop (2.0.1). Spatial coordinates were defined so
that different spatial patterns existed in the data. The spca-illus is a list containing the following
genind or genpop objects:
- dat2A: 2 patches
- dat2B: cline between two pop
- dat2C: repulsion among individuals from the same gene pool
- dat3: cline and repulsion
- dat4: patches and local alternance

Format

spcaIllus is list of 5 components being either genind or genpop objects.

Details

See "source" for a reference providing simulation details.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Source

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. Revealing cryptic spatial patterns in genetic
variability by a new multivariate method. Heredity, 101, 92–103.

References

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. Revealing cryptic spatial patterns in genetic
variability by a new multivariate method. Heredity, 101, 92–103.

Balloux F (2001) Easypop (version 1.7): a computer program for oppulation genetics simulations
Journal of Heredity, 92: 301-302

See Also

spca

spcaIllus 171

Examples

required_packages <- require(adespatial) && require(spdep)
if (required_packages) {
data(spcaIllus)
attach(spcaIllus)
opar <- par(no.readonly=TRUE)
comparison PCA vs sPCA

PCA
pca2A <- dudi.pca(dat2A$tab,center=TRUE,scale=FALSE,scannf=FALSE)
pca2B <- dudi.pca(dat2B$tab,center=TRUE,scale=FALSE,scannf=FALSE)
pca2C <- dudi.pca(dat2C$tab,center=TRUE,scale=FALSE,scannf=FALSE)
pca3 <- dudi.pca(dat3$tab,center=TRUE,scale=FALSE,scannf=FALSE,nf=2)
pca4 <- dudi.pca(dat4$tab,center=TRUE,scale=FALSE,scannf=FALSE,nf=2)

sPCA
spca2A <-spca(dat2A,xy=dat2A$other$xy,ask=FALSE,type=1,
plot=FALSE,scannf=FALSE,nfposi=1,nfnega=0)

spca2B <- spca(dat2B,xy=dat2B$other$xy,ask=FALSE,type=1,
plot=FALSE,scannf=FALSE,nfposi=1,nfnega=0)

spca2C <- spca(dat2C,xy=dat2C$other$xy,ask=FALSE,
type=1,plot=FALSE,scannf=FALSE,nfposi=0,nfnega=1)

spca3 <- spca(dat3,xy=dat3$other$xy,ask=FALSE,
type=1,plot=FALSE,scannf=FALSE,nfposi=1,nfnega=1)

spca4 <- spca(dat4,xy=dat4$other$xy,ask=FALSE,
type=1,plot=FALSE,scannf=FALSE,nfposi=1,nfnega=1)

an auxiliary function for graphics
plotaux <- function(x,analysis,axis=1,lab=NULL,...){
neig <- NULL
if(inherits(analysis,"spca")) neig <- nb2neig(analysislwneighbours)
xrange <- range(x$other$xy[,1])
xlim <- xrange + c(-diff(xrange)*.1 , diff(xrange)*.45)
yrange <- range(x$other$xy[,2])
ylim <- yrange + c(-diff(yrange)*.45 , diff(yrange)*.1)

s.value(x$other$xy,analysis$li[,axis],include.ori=FALSE,addaxes=FALSE,
cgrid=0,grid=FALSE,neig=neig,cleg=0,xlim=xlim,ylim=ylim,...)

par(mar=rep(.1,4))
if(is.null(lab)) lab = gsub("[P]","",x$pop)
text(x$other$xy, lab=lab, col="blue", cex=1.2, font=2)
add.scatter({barplot(analysis$eig,col="grey");box();
title("Eigenvalues",line=-1)},posi="bottomright",ratio=.3)
}

plots
plotaux(dat2A,pca2A,sub="dat2A - PCA",pos="bottomleft",csub=2)

172 spca_randtest

plotaux(dat2A,spca2A,sub="dat2A - sPCA glob1",pos="bottomleft",csub=2)

plotaux(dat2B,pca2B,sub="dat2B - PCA",pos="bottomleft",csub=2)
plotaux(dat2B,spca2B,sub="dat2B - sPCA glob1",pos="bottomleft",csub=2)

plotaux(dat2C,pca2C,sub="dat2C - PCA",pos="bottomleft",csub=2)
plotaux(dat2C,spca2C,sub="dat2C - sPCA loc1",pos="bottomleft",csub=2,axis=2)

par(mfrow=c(2,2))
plotaux(dat3,pca3,sub="dat3 - PCA axis1",pos="bottomleft",csub=2)
plotaux(dat3,spca3,sub="dat3 - sPCA glob1",pos="bottomleft",csub=2)
plotaux(dat3,pca3,sub="dat3 - PCA axis2",pos="bottomleft",csub=2,axis=2)
plotaux(dat3,spca3,sub="dat3 - sPCA loc1",pos="bottomleft",csub=2,axis=2)

plotaux(dat4,pca4,lab=dat4$other$sup.pop,sub="dat4 - PCA axis1",
pos="bottomleft",csub=2)
plotaux(dat4,spca4,lab=dat4$other$sup.pop,sub="dat4 - sPCA glob1",
pos="bottomleft",csub=2)
plotaux(dat4,pca4,lab=dat4$other$sup.pop,sub="dat4 - PCA axis2",
pos="bottomleft",csub=2,axis=2)
plotaux(dat4,spca4,lab=dat4$other$sup.pop,sub="dat4 - sPCA loc1",
pos="bottomleft",csub=2,axis=2)

color plot
par(opar)
colorplot(spca3, cex=4, main="colorplot sPCA dat3")
text(spca3$xy[,1], spca3$xy[,2], dat3$pop)

colorplot(spca4, cex=4, main="colorplot sPCA dat4")
text(spca4$xy[,1], spca4$xy[,2], dat4$other$sup.pop)

detach data
detach(spcaIllus)
}

spca_randtest Monte Carlo test for sPCA

Description

The function spca_randtest implements Monte-Carlo tests for the presence of significant spatial
structures in a sPCA object. Two tests are run, for global (positive autocorrelation) and local (neg-
ative autocorrelation) structures, respectively. The test statistics used are the sum of the absolute
values of the corresponding eigenvalues.

Usage

spca_randtest(x, nperm = 499, p = 0.05)

strata 173

Arguments

x A spca object.

nperm The number of permutations to be used for the test.

p p value to use for Bonferroni correction.

Value

A list with two objects of the class ’randtest’ (see as.randtest), the first one for ’global’ structures
(positivie autocorrelation) and the second for ’local’ structures (negative autocorrelation).

Author(s)

Original code by Valeria Montano adapted by Thibaut Jombart.

Examples

Not run:
Load data
data(sim2pop)

Make spca
spca1 <- spca(sim2pop, type = 1, scannf = FALSE, plot.nb = FALSE)

spca1
plot(spca1)

run tests (use more permutations in practice, e.g. 999)
tests <- spca_randtest(spca1, nperm = 49)

check results
tests
plot(tests[[1]]) # global structures

End(Not run)

strata Access and manipulate the population strata for genind or genlight
objects.

Description

The following methods allow the user to quickly change the strata of a genind or genlight object.

174 strata

Usage

strata(x, formula = NULL, combine = TRUE, value)

strata(x) <- value

nameStrata(x, value)

nameStrata(x) <- value

splitStrata(x, value, sep = "_")

splitStrata(x, sep = "_") <- value

addStrata(x, value, name = "NEW")

addStrata(x, name = "NEW") <- value

Arguments

x a genind or genlight object

formula a nested formula indicating the order of the population strata.

combine if TRUE (default), the levels will be combined according to the formula argument.
If it is FALSE, the levels will not be combined.

value a data frame OR vector OR formula (see details).

sep a character indicating the character used to separate hierarchical levels. This
defaults to "_".

name an optional name argument for use with addStrata if supplying a vector. Defaults
to "NEW".

Details

Function Specifics:

• strata() - Use this function to view or define population stratification of a genind or genlight
object.

• nameStrata() - View or rename the different levels of strata.
• splitStrata() - Split strata that are combined with a common separator. This function should

only be used once during a workflow.
– Rationale: It is often difficult to import files with several levels of strata as most data

formats do not allow unlimited population levels. This is circumvented by collapsing
all population strata into a single population factor with a common separator for each
observation.

• addStrata() - Add levels to your population strata. This is ideal for adding groups defined
by find.clusters. You can input a data frame or a vector, but if you put in a vector, you
have the option to name it.

strata 175

Argument Specifics:
These functions allow the user to seamlessly carry all possible population stratification with their
genind or genlight object. Note that there are two ways of performing all methods:

• modifying: strata(myData) <- myStrata

• preserving: myNewData <- strata(myData, value = myStrata)

They essentially do the same thing except that the modifying assignment method (the one with
the "<-") will modify the object in place whereas the non-assignment method will preserve the
original object (unless you overwrite it). Due to convention, everything right of the assignment is
termed value. To avoid confusion, here is a guide to the argument value for each function:

• strata() value = a data.frame that defines the strata for each individual in the rows.
• nameStrata() value = a vector or a formula that will define the names.
• splitStrata() value = a formula argument with the same number of levels as the strata you

wish to split.
• addStrata() value = a vector or data.frame with the same length as the number of indi-

viduals in your data.

Details on Formulas:
The preferred use of these functions is with a formula object. Specifically, a hierarchical formula
argument is used to assign the levels of the strata. An example of a hierarchical formula would
be:

~Country/City/Neighborhood

This convention was chosen as it becomes easier to type and makes intuitive sense when defining
a hierarchy. Note: it is important to use hiearchical formulas when specifying hierarchies as other
types of formulas (eg. ~Country*City*Neighborhood) will give incorrect results.

Author(s)

Zhian N. Kamvar

See Also

setPop genind as.genind

Examples

let's look at the microbov data set:
data(microbov)
microbov

We see that we have three vectors of different names in the 'other' slot.
?microbov
These are Country, Breed, and Species
names(other(microbov))

Let's set the strata
strata(microbov) <- data.frame(other(microbov))

176 swallowtails

microbov

And change the names so we know what they are
nameStrata(microbov) <- ~Country/Breed/Species

Not run:
let's see what the strata looks like by Species and Breed:
head(strata(microbov, ~Breed/Species))

If we didn't want the last column combined with the first, we can set
combine = FALSE
head(strata(microbov, ~Breed/Species, combine = FALSE))

USING splitStrata

For the sake of example, we'll imagine that we have imported our data set
with all of the stratifications combined.
setPop(microbov) <- ~Country/Breed/Species
strata(microbov) <- NULL

This is what our data would look like after import.
microbov

To set our strata here, we need to use the functions strata and splitStrata
strata(microbov) <- data.frame(x = pop(microbov))
microbov # shows us that we have "one" level of stratification
head(strata(microbov)) # all strata are separated by "_"

splitStrata(microbov) <- ~Country/Breed/Species
microbov # Now we have all of our strata named and split
head(strata(microbov)) # all strata are appropriately named and split.

End(Not run)

swallowtails Microsatellites genotypes of 781 swallowtail butterflies from 40 popu-
lations in Alberta and British Columbia, Canada

Description

This data set gives the genotypes of 781 swallowtail butterflies (Papilio machaon species group) for
10 microsatellites markers. The individuals are divided into 40 populations.

Format

swallowtails is a genind object containing 781 individuals, 10 microsatellite markers, and 40
populations.

Source

Julian Dupuis (University of Hawaii, USA)

tab 177

References

Dupuis, J.R. & Sperling, F.A.H. Hybrid dynamics in a species group of swallowtail butterflies.
Journal of Evolutionary Biology, 10, 1932–1951.

Examples

Not run:
data(swallowtails)
swallowtails

conducting a DAPC (n.pca determined using xvalDapc, see ??xvalDapc)

dapc1 <- dapc(swallowtails, n.pca=40, n.da=200)

read in swallowtails_loc.csv, which contains "key", "lat", and "lon"
columns with column headers (this example contains additional columns
containing species identifications, locality descriptions, and COI
haplotype clades)

input_locs <- system.file("files/swallowtails_loc.csv", package = "adegenet")
loc <- read.csv(input_locs, header = TRUE)

generate mvmapper input file, automatically write the output to a csv, and
name the output csv "mvMapper_Data.csv"

out <- export_to_mvmapper(dapc1, loc, write_file = TRUE, out_file = "mvMapper_Data.csv")

End(Not run)

tab Access allele counts or frequencies

Description

This accessor is used to retrieve a matrix of allele data. By default, a matrix of integers representing
allele counts is returned. If freq is TRUE, then data are standardised as frequencies, so that for any
individual and any locus the data sum to 1. The argument NA.method allows to replace missing data
(NAs). This accessor replaces the previous function truenames as well as the function makefreq.

Usage

tab(x, ...)

S4 method for signature 'genind'
tab(x, freq = FALSE, NA.method = c("asis", "mean", "zero"), ...)

S4 method for signature 'genpop'
tab(x, freq = FALSE, NA.method = c("asis", "mean", "zero"), ...)

178 truenames

Arguments

x a genind or genpop object.

... further arguments passed to other methods.

freq a logical indicating if data should be transformed into relative frequencies (TRUE);
defaults to FALSE.

NA.method a method to replace NA; asis: leave NAs as is; mean: replace by the mean allele
frequencies; zero: replace by zero

Value

a matrix of integers or numeric

Examples

data(microbov)
head(tab(microbov))
head(tab(microbov,freq=TRUE))

truenames Restore true labels of an object

Description

The function truenames returns some elements of an object (genind or genpop) using true names
(as opposed to generic labels) for individuals, markers, alleles, and population.

Important: as of adegenet_2.0-0, these functions are deprecated as true labels are used whenever
possible. Please use the function tab instead.

Usage

S4 method for signature 'genind'
truenames(x)
S4 method for signature 'genpop'
truenames(x)

Arguments

x a genind or a genpop object

Value

If x$pop is empty (NULL), a matrix similar to the x$tab slot but with true labels.

If x$pop exists, a list with this matrix ($tab) and a population vector with true names ($pop).

virtualClasses 179

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

See Also

tab

virtualClasses Virtual classes for adegenet

Description

These virtual classes are only for internal use in adegenet

Objects from the Class

A virtual Class: No objects may be created from it.

Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

Index

∗ classes
as.genlight, 19
as.SNPbin, 20
genind class, 69
genind2genpop, 72
genlight-class, 76
genpop class, 81
SNPbin-class, 158
virtualClasses, 179

∗ datasets
.internal_C_routines, 4
dapcIllus, 43
eHGDP, 50
H3N2, 91
microbov, 116
nancycats, 123
rupica, 137
sim2pop, 153
spcaIllus, 170
swallowtails, 176

∗ hplot
colorplot, 26
loadingplot, 112

∗ manip
Accessors, 7
adegenet.package, 12
Auxiliary functions, 21
coords.monmonier, 29
df2genind, 45
extract.PLINKmap, 55
fasta2DNAbin, 56
fasta2genlight, 58
genind class, 69
genind2df, 71
genind2genpop, 72
genpop class, 81
HWE.test.genind, 100
import2genind, 104
isPoly-methods, 111

makefreq, 114
old2new_genind, 124
propShared, 127
propTyped-methods, 128
read.fstat, 129
read.genepop, 130
read.genetix, 131
read.snp, 132
read.structure, 134
scaleGen, 138
selPopSize, 141
seploc, 142
seppop, 143
SequencesToGenind, 150

∗ methods
as methods in adegenet, 18
coords.monmonier, 29
isPoly-methods, 111
propTyped-methods, 128
scaleGen, 138

∗ multivariate
a-score, 5
adegenet.package, 12
colorplot, 26
dapc, 30
DAPC cross-validation, 36
dapc graphics, 39
dist.genpop, 47
find.clusters, 59
genind class, 69
genind2genpop, 72
genlight auxiliary functions, 74
genpop class, 81
global.rtest, 82
glPca, 84
glPlot, 87
glSim, 89
HWE.test.genind, 100
loadingplot, 112

180

INDEX 181

makefreq, 114
monmonier, 119
propShared, 127
snpzip, 163
spca, 165

∗ spatial
chooseCN, 24
global.rtest, 82
monmonier, 119
spca, 165
spcaIllus, 170

∗ utilities
chooseCN, 24

.find.sub.clusters (find.clusters), 59

.genlab (Auxiliary functions), 21

.internal_C_routines, 4

.readExt (Auxiliary functions), 21

.render.server.info (Auxiliary
functions), 21

.rmspaces (Auxiliary functions), 21

.valid.genind (genind class), 69
[,SNPbin,ANY,ANY,ANY-method

(SNPbin-class), 158
[,SNPbin,ANY,ANY-method (SNPbin-class),

158
[,SNPbin-method (SNPbin-class), 158
[,genind,ANY,ANY,ANY-method

(Accessors), 7
[,genind-method (Accessors), 7
[,genlight,ANY,ANY,ANY-method

(genlight-class), 76
[,genlight,ANY,ANY-method

(genlight-class), 76
[,genlight-method (genlight-class), 76
[,genpop,ANY,ANY,ANY-method

(Accessors), 7
[,genpop-method (Accessors), 7
[.haploGen (haploGen), 92
$,SNPbin-method (SNPbin-class), 158
$,genind-method (Accessors), 7
$,genlight-method (genlight-class), 76
$,genpop-method (Accessors), 7
$<-,SNPbin-method (SNPbin-class), 158
$<-,genind-method (Accessors), 7
$<-,genlight-method (genlight-class), 76
$<-,genpop-method (Accessors), 7

a-score, 5
a.score (a-score), 5

Accessors, 7
add.scatter, 85
addStrata, 77
addStrata (strata), 173
addStrata,genind-method (strata), 173
addStrata,genlight-method (strata), 173
addStrata<- (strata), 173
addStrata<-,genind-method (strata), 173
addStrata<-,genlight-method (strata),

173
adegenet (adegenet.package), 12
Adegenet servers, 11
adegenet-package (adegenet.package), 12
adegenet.package, 12
adegenetIssues (adegenetWeb), 16
adegenetServer, 14
adegenetServer (Adegenet servers), 11
adegenetTutorial (adegenetWeb), 16
adegenetWeb, 15, 16
AIC.snapclust, 17
AICc, 17
alignment2genind, 13
alignment2genind (SequencesToGenind),

150
alleles, 69
alleles (Accessors), 7
alleles,gen-method (Accessors), 7
alleles,genind-method (Accessors), 7
alleles,genlight-method

(genlight-class), 76
alleles,genpop-method (Accessors), 7
alleles<- (Accessors), 7
alleles<-,gen-method (Accessors), 7
alleles<-,genind-method (Accessors), 7
alleles<-,genlight-method

(genlight-class), 76
alleles<-,genpop-method (Accessors), 7
any2col (Auxiliary functions), 21
as methods in adegenet, 18
as,data.frame,genlight-method

(genlight-class), 76
as,genind,data.frame-method (as

methods in adegenet), 18
as,genind,genpop-method (as methods in

adegenet), 18
as,genind,ktab-method (as methods in

adegenet), 18
as,genind,matrix-method (as methods in

182 INDEX

adegenet), 18
as,genlight,data.frame-method

(as.genlight), 19
as,genlight,list-method (as.genlight),

19
as,genlight,matrix-method

(as.genlight), 19
as,genpop,data.frame-method (as

methods in adegenet), 18
as,genpop,ktab-method (as methods in

adegenet), 18
as,genpop,matrix-method (as methods in

adegenet), 18
as,integer,SNPbin-method

(SNPbin-class), 158
as,list,genlight-method

(genlight-class), 76
as,matrix,genlight-method

(genlight-class), 76
as,numeric,SNPbin-method

(SNPbin-class), 158
as,SNPbin,integer-method (as.SNPbin), 20
as,SNPbin,numeric-method (as.SNPbin), 20
as-method (as methods in adegenet), 18
as.alignment, 13, 151
as.data.frame.genind (as methods in

adegenet), 18
as.data.frame.genlight

(genlight-class), 76
as.data.frame.genpop (as methods in

adegenet), 18
as.genind, 70, 97, 175
as.genind (initialize,genind-method),

108
as.genlight, 19
as.genlight,data.frame-method

(as.genlight), 19
as.genlight,list-method (as.genlight),

19
as.genlight,matrix-method

(as.genlight), 19
as.genpop, 82
as.genpop (initialize,genpop-method),

110
as.genpop.genind (as methods in

adegenet), 18
as.igraph.haploGen (haploGen), 92
as.igraph.seqTrack (seqTrack), 145

as.integer.SNPbin (SNPbin-class), 158
as.ktab.genind (as methods in

adegenet), 18
as.ktab.genpop (as methods in

adegenet), 18
as.lda (dapc), 30
as.list.genlight (genlight-class), 76
as.matrix.genind (as methods in

adegenet), 18
as.matrix.genlight (genlight-class), 76
as.matrix.genpop (as methods in

adegenet), 18
as.POSIXct, 94
as.POSIXct.haploGen (haploGen), 92
as.randtest, 99, 173
as.seqTrack.haploGen (haploGen), 92
as.SNPbin, 20
as.SNPbin,integer-method (as.SNPbin), 20
as.SNPbin,numeric-method (as.SNPbin), 20
assignplot, 34
assignplot (dapc graphics), 39
Auxiliary functions, 21
azur (Auxiliary functions), 21

BIC.snapclust, 24, 158
binIntToBytes (.internal_C_routines), 4
bluepal (Auxiliary functions), 21
boot, 38
bytesToBinInt (.internal_C_routines), 4
bytesToInt (.internal_C_routines), 4

c.SNPbin (SNPbin-class), 158
cailliez, 47, 49
callOrNULL-class (virtualClasses), 179
cbind.genlight (genlight-class), 76
cbind.SNPbin (SNPbin-class), 158
charOrNULL-class (virtualClasses), 179
CheckAllSeg (.internal_C_routines), 4
checkType (Auxiliary functions), 21
chisq.test, 101
chooseCN, 24, 83, 169
chr (genlight-class), 76
chr,genlight-method (genlight-class), 76
chr<- (genlight-class), 76
chr<-,genlight-method (genlight-class),

76
chromosome (genlight-class), 76
chromosome,genlight-method

(genlight-class), 76

INDEX 183

chromosome<- (genlight-class), 76
chromosome<-,genlight-method

(genlight-class), 76
close, 57
coerce,data.frame,genlight-method

(genlight-class), 76
coerce,genind,data.frame-method (as

methods in adegenet), 18
coerce,genind,genpop-method (as

methods in adegenet), 18
coerce,genind,ktab-method (as methods

in adegenet), 18
coerce,genind,matrix-method (as

methods in adegenet), 18
coerce,genlight,data.frame-method

(as.genlight), 19
coerce,genlight,list-method

(as.genlight), 19
coerce,genlight,matrix-method

(as.genlight), 19
coerce,genpop,data.frame-method (as

methods in adegenet), 18
coerce,genpop,ktab-method (as methods

in adegenet), 18
coerce,genpop,matrix-method (as

methods in adegenet), 18
coerce,integer,SNPbin-method

(as.SNPbin), 20
coerce,list,genlight-method

(genlight-class), 76
coerce,matrix,genlight-method

(genlight-class), 76
coerce,numeric,SNPbin-method

(as.SNPbin), 20
coerce,SNPbin,integer-method

(SNPbin-class), 158
colorplot, 14, 26
colorplot.spca (spca), 165
compoplot, 14, 28, 34
connection, 57
coords.monmonier, 29
corner (Auxiliary functions), 21

dapc, 7, 11, 14, 30, 39, 41, 42, 44, 63, 75, 87
DAPC cross-validation, 36
dapc graphics, 39
dapcIllus, 14, 34, 42, 43, 63
data.frame, 175
deepseasun (Auxiliary functions), 21

df2genind, 13, 45, 56, 57, 59, 71, 104, 109,
111, 129–133, 135, 136

dfOrNULL-class (virtualClasses), 179
dim,genlight-method (genlight-class), 76
dist,genpop,ANY,ANY,ANY,missing-method

(genpop class), 81
dist.dna, 147, 148
dist.genpop, 14, 47, 127
DNAbin, 56, 57, 65, 67, 125, 151, 161
DNAbin2genind, 13, 104
DNAbin2genind (SequencesToGenind), 150
dudi.pca, 31, 60, 63
dudi.pco, 47, 49

edit.nb, 122
eHGDP, 14, 34, 42, 44, 50, 63
export_to_mvmapper, 52
extract.PLINKmap, 55

fac2col (Auxiliary functions), 21
factorOrNULL-class (virtualClasses), 179
fasta2DNAbin, 13, 56, 66, 162
fasta2genlight, 13, 56, 58, 133
find.clusters, 7, 14, 33, 34, 42, 44, 59, 156,

174
findMutations, 65
flame (Auxiliary functions), 21
formOrNULL-class (virtualClasses), 179
formula, 69, 77, 97, 175
funky (Auxiliary functions), 21

gen, 69, 81
gen-class (virtualClasses), 179
gengraph, 14, 66, 126
genind, 7–9, 12–14, 18, 19, 31–33, 37, 43, 45,

46, 57, 59–62, 67, 71, 73, 79, 82, 91,
97–99, 101–104, 106, 108, 109, 111,
114, 118, 125–131, 134, 136,
139–144, 150, 151, 155, 160, 165,
167, 170, 174, 175, 178

genind (initialize,genind-method), 108
genind class, 69
genind-class (genind class), 69
genind2df, 13, 46, 47, 71, 102
genind2genpop, 13, 70, 72, 110
genlight, 12–14, 19, 20, 31, 33, 55, 56,

58–60, 70, 74, 75, 79, 84, 87–90,
132, 133, 142, 143, 158, 160, 174,
175

184 INDEX

genlight (genlight-class), 76
genlight auxiliary functions, 74
genlight-class, 76
genpop, 7–9, 12–14, 18, 67, 70, 73, 98, 110,

111, 114, 115, 128, 139, 140, 142,
165, 167, 170, 178

genpop (initialize,genpop-method), 110
genpop class, 81
genpop-class (genpop class), 81
get.likelihood (seqTrack), 145
GLdotProd (.internal_C_routines), 4
glDotProd (genlight auxiliary

functions), 74
glMean (genlight auxiliary functions),

74
glNA (genlight auxiliary functions), 74
global.rtest, 14, 82, 169
glPca, 14, 32, 60, 62, 75, 84, 88, 90
glPlot, 75, 87, 87, 90
glSim, 14, 75, 87, 88, 89
glSum (genlight auxiliary functions), 74
GLsumFreq (.internal_C_routines), 4
GLsumInt (.internal_C_routines), 4
glVar (genlight auxiliary functions), 74
graphMutations (findMutations), 65
greenpal (Auxiliary functions), 21
greypal (Auxiliary functions), 21

H3N2, 14, 34, 42, 44, 91
haploGen, 14, 92
haploGen-class (haploGen), 92
hier, 69, 96
hier,genind-method (hier), 96
hier,genlight-method (hier), 96
hier<- (hier), 96
hier<-,genind-method (hier), 96
hier<-,genlight-method (hier), 96
Hs, 14, 98, 99, 107
Hs.test, 98, 99
HWE.test.genind, 13, 100
hybridize, 14, 101, 136
hybridpal (Auxiliary functions), 21
hybridtoy, 103

igraph, 67, 68
image, 87, 88
import2genind, 12, 47, 56, 57, 59, 70, 71, 82,

104, 106, 130–133, 136, 151
inbreeding (Inbreeding estimation), 106

Inbreeding estimation, 106
indInfo, 69
indInfo-class (virtualClasses), 179
indNames (Accessors), 7
indNames,genind-method (Accessors), 7
indNames,genlight-method

(genlight-class), 76
indNames<- (Accessors), 7
indNames<-,genind-method (Accessors), 7
indNames<-,genlight-method

(genlight-class), 76
initialize,genind-method, 108
initialize,genind-methods

(initialize,genind-method), 108
initialize,genlight-method

(genlight-class), 76
initialize,genpop-method, 110
initialize,genpop-methods

(initialize,genpop-method), 110
initialize,SNPbin-method

(SNPbin-class), 158
intOrNULL-class (virtualClasses), 179
intOrNum-class (virtualClasses), 179
is.genind (genind class), 69
is.genpop, 82
is.genpop (genpop class), 81
isPoly, 9, 118
isPoly (isPoly-methods), 111
isPoly,genind-method (isPoly-methods),

111
isPoly,genpop-method (isPoly-methods),

111
isPoly-methods, 111

jitter, 147

KIC, 112
kmeans, 60, 63
ktab, 18
ktab-class (as methods in adegenet), 18

labels.haploGen (haploGen), 92
lda, 31
lightseasun (Auxiliary functions), 21
listOrNULL-class (virtualClasses), 179
loadingplot, 14, 112
loadingplot.default, 86
loadingplot.glPca (glPca), 84
local.rtest, 14, 169

INDEX 185

local.rtest (global.rtest), 82
locFac, 69
locFac (Accessors), 7
locFac,gen-method (Accessors), 7
locFac,genind-method (Accessors), 7
locFac,genpop-method (Accessors), 7
locNames (Accessors), 7
locNames,gen-method (Accessors), 7
locNames,genind-method (Accessors), 7
locNames,genlight-method

(genlight-class), 76
locNames,genpop-method (Accessors), 7
locNames<- (Accessors), 7
locNames<-,gen-method (Accessors), 7
locNames<-,genind-method (Accessors), 7
locNames<-,genlight-method

(genlight-class), 76
locNames<-,genpop-method (Accessors), 7

makefreq, 13, 82, 114
makefreq,genind-method (makefreq), 114
makefreq,genind-methods (makefreq), 114
makefreq,genpop-method (makefreq), 114
makefreq,genpop-methods (makefreq), 114
makefreq.genind (makefreq), 114
makefreq.genpop (makefreq), 114
microbov, 14, 116
minorAllele, 118
monmonier, 14, 29, 30, 83, 119
multispati, 169

NA.posi (genlight-class), 76
NA.posi,genlight-method

(genlight-class), 76
NA.posi,SNPbin-method (SNPbin-class),

158
nAll, 69
nAll (Accessors), 7
nAll,gen-method (Accessors), 7
nAll,genind-method (Accessors), 7
nAll,genpop-method (Accessors), 7
names,genind-method (genind class), 69
names,genlight-method (genlight-class),

76
names,genpop-method (genpop class), 81
names,SNPbin-method (SNPbin-class), 158
nameStrata (strata), 173
nameStrata,genind-method (strata), 173
nameStrata,genlight-method (strata), 173

nameStrata<- (strata), 173
nameStrata<-,genind-method (strata), 173
nameStrata<-,genlight-method (strata),

173
nancycats, 14, 123
nb_shared_all (.internal_C_routines), 4
nInd (Accessors), 7
nInd,genind-method (Accessors), 7
nInd,genlight-method (genlight-class),

76
nLoc (Accessors), 7
nLoc,gen-method (Accessors), 7
nLoc,genind-method (Accessors), 7
nLoc,genlight-method (genlight-class),

76
nLoc,genpop-method (Accessors), 7
nLoc,SNPbin-method (SNPbin-class), 158
nPop (Accessors), 7
nPop,genind-method (Accessors), 7
nPop,genlight-method (genlight-class),

76
nPop,genpop-method (Accessors), 7
num2col (Auxiliary functions), 21

old2new (old2new_genind), 124
old2new_genind, 124
old2new_genlight (old2new_genind), 124
old2new_genpop (old2new_genind), 124
optim.a.score (a-score), 5
optimize.monmonier, 14
optimize.monmonier (monmonier), 119
orditorp, 41
other, 69
other (Accessors), 7
other,gen-method (Accessors), 7
other,genind-method (Accessors), 7
other,genlight-method (genlight-class),

76
other,genpop-method (Accessors), 7
other<- (Accessors), 7
other<-,gen-method (Accessors), 7
other<-,genind-method (Accessors), 7
other<-,genlight-method

(genlight-class), 76
other<-,genpop-method (Accessors), 7

pairDist (pairDistPlot), 125
pairDistPlot, 125
ploidy, 69

186 INDEX

ploidy (Accessors), 7
ploidy,genind-method (Accessors), 7
ploidy,genlight-method

(genlight-class), 76
ploidy,genpop-method (Accessors), 7
ploidy,SNPbin-method (SNPbin-class), 158
ploidy<- (Accessors), 7
ploidy<-,genind-method (Accessors), 7
ploidy<-,genlight-method

(genlight-class), 76
ploidy<-,genpop-method (Accessors), 7
ploidy<-,SNPbin-method (SNPbin-class),

158
plot,genlight,ANY-method (glPlot), 87
plot,genlight-method (glPlot), 87
plot.genlight (glPlot), 87
plot.haploGen (haploGen), 92
plot.monmonier (monmonier), 119
plot.seqTrack (seqTrack), 145
plot.spca (spca), 165
plotHaploGen (haploGen), 92
plotSeqTrack, 94
plotSeqTrack (seqTrack), 145
points, 40
pop, 13, 69, 144
pop (Accessors), 7
pop,genind-method (Accessors), 7
pop,genlight-method (genlight-class), 76
pop<- (Accessors), 7
pop<-,gen-method (Accessors), 7
pop<-,genind-method (Accessors), 7
pop<-,genlight-method (genlight-class),

76
popInfo, 81
popInfo-class (virtualClasses), 179
popNames (Accessors), 7
popNames,genind-method (Accessors), 7
popNames,genlight-method

(genlight-class), 76
popNames,genpop-method (Accessors), 7
popNames<- (Accessors), 7
popNames<-,genind-method (Accessors), 7
popNames<-,genlight-method

(genlight-class), 76
popNames<-,genpop-method (Accessors), 7
position (genlight-class), 76
position,genlight-method

(genlight-class), 76

position<- (genlight-class), 76
position<-,genlight-method

(genlight-class), 76
predict.dapc (dapc), 30
predict.lda, 31
print,genind-method (genind class), 69
print,genindSummary-method (genind

class), 69
print,genpopSummary-method (genpop

class), 81
print.dapc (dapc), 30
print.genindSummary (genind class), 69
print.genpopSummary (genpop class), 81
print.glPca (glPca), 84
print.haploGen (haploGen), 92
print.monmonier (monmonier), 119
print.spca (spca), 165
propShared, 14, 127
propTyped, 13, 14
propTyped (propTyped-methods), 128
propTyped,genind-method

(propTyped-methods), 128
propTyped,genpop-method

(propTyped-methods), 128
propTyped-methods, 128

rbind.genlight (genlight-class), 76
read.dna, 12, 56
read.fstat, 12, 47, 56, 70, 71, 82, 106, 129,

131, 132, 136, 151
read.genepop, 12, 56, 70, 82, 106, 130, 130,

132, 136, 151
read.genetix, 12, 47, 56, 70, 71, 82, 106,

130, 131, 131, 136, 151
read.PLINK, 13, 57, 59, 133
read.PLINK (extract.PLINKmap), 55
read.plink (extract.PLINKmap), 55
read.snp, 13, 56, 57, 59, 132
read.structure, 12, 47, 56, 71, 106,

130–132, 134, 151
redpal (Auxiliary functions), 21
repool, 13, 33, 103, 136, 141, 143, 144
rupica, 14, 137, 169

s.class, 41, 85
sample.haploGen (haploGen), 92
scaleGen, 14, 138
scaleGen,genind-method (scaleGen), 138
scaleGen,genpop-method (scaleGen), 138

INDEX 187

scaleGen-methods (scaleGen), 138
scatter.dapc, 14, 30, 34, 63
scatter.dapc (dapc graphics), 39
scatter.glPca (glPca), 84
screeplot.spca (spca), 165
seasun (Auxiliary functions), 21
selPopSize, 13, 141
selPopSize,ANY-method (selPopSize), 141
selPopSize,genind-method (selPopSize),

141
selPopSize-methods (selPopSize), 141
seploc, 13, 103, 136, 141, 142, 144
seploc,ANY-method (seploc), 142
seploc,genind-method (seploc), 142
seploc,genlight-method (seploc), 142
seploc,genpop-method (seploc), 142
seploc-methods (seploc), 142
seppop, 13, 103, 136, 143, 143
seppop,ANY-method (seppop), 143
seppop,genind-method (seppop), 143
seppop,genlight-method (seppop), 143
seppop-methods (seppop), 143
seqTrack, 14, 94, 145
seqTrack-class (seqTrack), 145
seqTrack.default (seqTrack), 145
seqTrack.haploGen (haploGen), 92
seqTrack.matrix (seqTrack), 145
SequencesToGenind, 150
setPop, 77, 152, 175
setPop,genind-method (setPop), 152
setPop,genlight-method (setPop), 152
setPop<- (setPop), 152
setPop<-,genind-method (setPop), 152
setPop<-,genlight-method (setPop), 152
show,genind-method (genind class), 69
show,genlight-method (genlight-class),

76
show,genpop-method (genpop class), 81
show,SNPbin-method (SNPbin-class), 158
showmekittens, 153
sim2pop, 14, 153
snapclust, 17, 18, 24, 112, 155, 158
snapclust.choose.k, 156, 157
SNPbin, 19, 20, 76, 77, 79, 159
SNPbin (SNPbin-class), 158
SNPbin-class, 158
snpposi, 161
snpposi.plot, 14

snpposi.test, 14
snpzip, 163
spca, 14, 26, 83, 122, 165, 170, 173
spca_randtest, 172
spcaIllus, 14, 169, 170
spectral (Auxiliary functions), 21
splitStrata (strata), 173
splitStrata,genind-method (strata), 173
splitStrata,genlight-method (strata),

173
splitStrata<- (strata), 173
splitStrata<-,genind-method (strata),

173
splitStrata<-,genlight-method (strata),

173
strata, 69, 97, 173
strata,genind-method (strata), 173
strata,genlight-method (strata), 173
strata<- (strata), 173
strata<-,genind-method (strata), 173
strata<-,genlight-method (strata), 173
summary,genind-method (genind class), 69
summary,genpop-method (genpop class), 81
summary.dapc (dapc), 30
summary.spca (spca), 165
swallowtails, 176

tab, 13, 69, 78, 115, 177, 178, 179
tab,genind-method (tab), 177
tab,genind-methods (tab), 177
tab,genlight-method (genlight-class), 76
tab,genpop-method (tab), 177
tab,genpop-methods (tab), 177
tab.genind (tab), 177
tab.genpop (tab), 177
text, 22
transp (Auxiliary functions), 21
truenames, 178
truenames,ANY-method (truenames), 178
truenames,genind-method (truenames), 178
truenames,genpop-method (truenames), 178
truenames-methods (truenames), 178

USflu (H3N2), 91
usflu (H3N2), 91
USflu.fasta (H3N2), 91
usflu.fasta (H3N2), 91

vector, 175

188 INDEX

virid (Auxiliary functions), 21
virtualClasses, 179

wasp (Auxiliary functions), 21

xvalDapc, 34
xvalDapc (DAPC cross-validation), 36

	.internal_C_routines
	a-score
	Accessors
	Adegenet servers
	adegenet.package
	adegenetWeb
	AIC.snapclust
	AICc
	as methods in adegenet
	as.genlight
	as.SNPbin
	Auxiliary functions
	BIC.snapclust
	chooseCN
	colorplot
	compoplot
	coords.monmonier
	dapc
	DAPC cross-validation
	dapc graphics
	dapcIllus
	df2genind
	dist.genpop
	eHGDP
	export_to_mvmapper
	extract.PLINKmap
	fasta2DNAbin
	fasta2genlight
	find.clusters
	findMutations
	gengraph
	genind class
	genind2df
	genind2genpop
	genlight auxiliary functions
	genlight-class
	genpop class
	global.rtest
	glPca
	glPlot
	glSim
	H3N2
	haploGen
	hier
	Hs
	Hs.test
	HWE.test.genind
	hybridize
	hybridtoy
	import2genind
	Inbreeding estimation
	initialize,genind-method
	initialize,genpop-method
	isPoly-methods
	KIC
	loadingplot
	makefreq
	microbov
	minorAllele
	monmonier
	nancycats
	old2new_genind
	pairDistPlot
	propShared
	propTyped-methods
	read.fstat
	read.genepop
	read.genetix
	read.snp
	read.structure
	repool
	rupica
	scaleGen
	selPopSize
	seploc
	seppop
	seqTrack
	SequencesToGenind
	setPop
	showmekittens
	sim2pop
	snapclust
	snapclust.choose.k
	SNPbin-class
	snpposi
	snpzip
	spca
	spcaIllus
	spca_randtest
	strata
	swallowtails
	tab
	truenames
	virtualClasses
	Index

