
Package ‘aRtsy’
May 16, 2025

Title Generative Art with 'ggplot2'

Description Provides algorithms for creating artworks in the 'ggplot2' language that incorpo-
rate some form of randomness.

Version 1.0.1

Date 2025-05-16

BugReports https://github.com/koenderks/aRtsy/issues

URL https://koenderks.github.io/aRtsy/,

https://github.com/koenderks/aRtsy,

https://twitter.com/aRtsy_package,

https://mastodon.social/@aRtsy_package

Suggests testthat (>= 3.0.0)

Imports ambient, e1071, ggplot2 (>= 3.4.0), FNN, randomForest, Rcpp,
scales, stats

LinkingTo Rcpp, RcppArmadillo

Language en-US

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation yes

Author Koen Derks [aut, cre]

Maintainer Koen Derks <koen-derks@hotmail.com>

Repository CRAN

Date/Publication 2025-05-16 08:50:28 UTC

1

https://github.com/koenderks/aRtsy/issues
https://koenderks.github.io/aRtsy/
https://github.com/koenderks/aRtsy
https://twitter.com/aRtsy_package
https://mastodon.social/@aRtsy_package

2 Contents

Contents

aRtsy-package . 3
canvas_ant . 3
canvas_blacklight . 5
canvas_chladni . 6
canvas_circlemap . 7
canvas_cobweb . 9
canvas_collatz . 10
canvas_diamonds . 11
canvas_flame . 13
canvas_flow . 16
canvas_forest . 18
canvas_function . 19
canvas_gemstone . 21
canvas_lissajous . 22
canvas_mandelbrot . 23
canvas_maze . 24
canvas_mesh . 25
canvas_mosaic . 26
canvas_nebula . 28
canvas_petri . 29
canvas_phyllotaxis . 30
canvas_planet . 31
canvas_polylines . 33
canvas_recaman . 34
canvas_ribbons . 35
canvas_segments . 36
canvas_slime . 37
canvas_smoke . 38
canvas_splits . 40
canvas_squares . 41
canvas_stripes . 42
canvas_strokes . 43
canvas_swirls . 44
canvas_tiles . 45
canvas_turmite . 48
canvas_watercolors . 49
colorPalette . 50
saveCanvas . 53
theme_canvas . 54

Index 55

aRtsy-package 3

aRtsy-package aRtsy — Generative Art using ggplot2

Description

aRtsy aims to make generative art accessible to the general public in a straightforward and stan-
dardized manner. The package provides algorithms for creating artworks that incorporate some
form of randomness and are dependent on the set seed. Each algorithm is implemented in a sepa-
rate function with its own set of parameters that can be tweaked.

For documentation on aRtsy itself, including the manual and user guide for the package, worked
examples, and other tutorial information visit the package website.

Author(s)

Koen Derks (maintainer, author) <koen-derks@hotmail.com>

Please use the citation provided by R when citing this package. A BibTex entry is available from
citation("aRtsy").

See Also

Useful links:

• The twitter feed to check the artwork of the day.

• The issue page to submit a bug report or feature request.

canvas_ant Draw Langton’s Ant

Description

This function draws Langton’s Ant on a canvas. Langton’s Ant is a two-dimensional cellular au-
tomaton that is named after its creator, Chris Langton. See the Details section for more specific
information about the algorithm used in this function.

Usage

canvas_ant(
colors,
background = "#fafafa",
iterations = 1000000,
resolution = 500

)

https://koenderks.github.io/aRtsy/
https://twitter.com/aRtsy_package
https://github.com/koenderks/aRtsy/issues

4 canvas_ant

Arguments

colors a character (vector) specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations a positive integer specifying the number of iterations of the algorithm.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Details

The algorithm for Langton’s Ant involves the following steps:

• Set up a two-dimensional grid of cells, where each cell can either be "colored" or "non-
colored." The initial state of the grid is usually a single non-colored cell in the center of the
grid.

• Place an "ant" on the grid at the position of the initial non-colored cell. The ant can move in
four directions: up, down, left, or right.

• At each step of the algorithm, the ant examines the color of the cell it is currently on. If the
cell is non-colored, the ant turns 90 degrees clockwise, colors the cell, and moves forward one
unit.

• If the cell is colored, the ant turns 90 degrees counterclockwise, uncolors the cell, and moves
forward one unit.

• The ant continues to move around the grid, following these rules at each step. If a certain
number of iterations has passed, the ant chooses a different color which corresponds to a
different combination of these rules.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Langtons_ant

See Also

colorPalette

https://en.wikipedia.org/wiki/Langtons_ant

canvas_blacklight 5

Examples

set.seed(1)

Simple example
canvas_ant(colors = colorPalette("house"))

canvas_blacklight Draw Blacklights

Description

This function draws Blacklights on a canvas using a Support Vector Machine (SVM) algorithm.
SVM’s are a type of supervised learning algorithm that can be used for classification and regression
purposes. The main goal of the SVM technique is to find a hyperplane (decision boundary) that
best separates the values in the training dataset. This function draws the predictions from the SVM
algorithm fitted on a randomly generated continuous training data set.

Usage

canvas_blacklight(
colors,
n = 1000,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

n a positive integer specifying the number of random data points to generate.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Support-vector_machine

https://en.wikipedia.org/wiki/Support-vector_machine

6 canvas_chladni

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_blacklight(colors = colorPalette("tuscany2"))

canvas_chladni Draw Chladni Figures

Description

This function draws Chladni figures on a canvas. Named after Ernst Chladni, an 18th century
physicist who first discovered them, Chladni figures are patterns that arise from the vibrations of a
two-dimensional plate, typically covered with a thin layer of sand or powder. The Chladni figures
are created by varying the frequency of vibration applied to the plate. In this implementation, the
grid underneath the plate can be transformed using a domain warping technique. The basic idea
behind domain warping is to apply a series of transformations to the input grid to create a more
complex and interesting output.

Usage

canvas_chladni(
colors,
waves = 5,
warp = 0,
resolution = 500,
angles = NULL,
distances = NULL,
flatten = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

waves a character specifying the number of randomly sampled waves, or an integer
vector of waves to be summed.

warp a numeric value specifying the maximum warping distance for each point. If
warp = 0 (the default), no warping is performed.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

canvas_circlemap 7

angles optional, a resolution x resolution matrix containing the angles for the warp, or
a character indicating the type of noise to use (svm, knn, rf, perlin, cubic,
simplex, or worley). If NULL (the default), the noise type is chosen randomly.

distances optional, a resolution x resolution matrix containing the distances for the warp,
or a character indicating the type of noise to use (svm, knn, rf, perlin, cubic,
simplex, or worley). If NULL (the default), the noise type is chosen randomly.

flatten logical, should colors be flattened after being assigned to a point.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(2)

Simple example
canvas_chladni(colors = colorPalette("origami"))

Advanced example
canvas_chladni(

colors = colorPalette("lava"),
waves = c(1, 2, 3, 9),
warp = 1

)

canvas_circlemap Draw a Circle Map

Description

This function draws a circle map on a canvas. A circle map is a nonlinear dynamic system that can
exhibit a phenomenon known as Arnold’s tongue: a visualization of the frequency-locking behavior
of a nonlinear oscillator with a periodic external force. The tongue is a region in the parameter
space of the oscillator where the frequency of the oscillator matches the frequency of the external
force. The tongue appears as a series of tongues of varying widths and shapes that can extend into
regions of the parameter space where the frequency locking does not occur.

8 canvas_circlemap

Usage

canvas_circlemap(
colors,
left = 0,
right = 12.56,
bottom = 0,
top = 1,
iterations = 10,
resolution = 1500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

left a value specifying the minimum location on the x-axis.

right a value specifying the maximum location on the x-axis.

bottom a value specifying the minimum location on the y-axis.

top a value specifying the maximum location on the y-axis.

iterations a positive integer specifying the number of iterations of the algorithm.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Arnold_tongue

https://linas.org/art-gallery/circle-map/circle-map.html

See Also

colorPalette

Examples

canvas_circlemap(colors = colorPalette("dark2"))

https://en.wikipedia.org/wiki/Arnold_tongue
https://linas.org/art-gallery/circle-map/circle-map.html

canvas_cobweb 9

canvas_cobweb Draw Cobwebs

Description

This function draws a cobweb on the canvas. The cobweb consists of many Fibonacci spirals shifted
by random noise from a normal distribution. A Fibonacci spiral is a logarithmic spiral that is derived
from the Fibonacci sequence, a mathematical sequence where each number is the sum of the two
preceding ones. The spiral is created by connecting the corners of squares that are sized according
to the Fibonacci sequence. Specifically, if we draw a sequence of squares with side lengths of 1, 1,
2, 3, 5, 8, 13, and so on, each square can be arranged so that it is tangent to the previous square at
a corner. When we connect these corners with a smooth curve, the resulting shape is the Fibonacci
spiral.

Usage

canvas_cobweb(
colors,
background = "#fafafa",
lines = 300,
iterations = 100

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

lines the number of lines to draw.

iterations the number of iterations of the algorithm.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

10 canvas_collatz

Examples

set.seed(1)

Simple example
canvas_cobweb(colors = colorPalette("neon1"), background = "black")

canvas_collatz Draw Collatz Sequences

Description

This function draws the Collatz conjecture on a canvas. The conjecture of the Collatz sequence is
that no matter what positive integer is chosen as the starting point of the sequence, the sequence will
eventually reach the number 1. This conjecture has been verified for all starting integers up to very
large numbers, but it has not been proven mathematically. Despite its simple rule, the sequence can
produce long and complicated chains of numbers before eventually reaching 1. See the Details
section for more specific information about the algorithm used in this function.

Usage

canvas_collatz(
colors,
background = "#fafafa",
n = 200,
angle.even = 0.0075,
angle.odd = 0.0145,
side = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

n a positive integer specifying the number of random starting integers to use for
the lines. Can also be a vector of numbers to use as starting numbers.

angle.even a value specifying the angle (in radials) to use in bending the sequence at each
even number.

angle.odd a value specifying the angle (in radials) to use in bending the sequence at each
odd number.

side logical. Whether to put the artwork on its side.

canvas_diamonds 11

Details

The Collatz sequence, also known as the 3n+1 problem, is a sequence of numbers generated by the
following rule:

• Start with any positive integer n.

• If n is even, divide it by 2.

• If n is odd, multiply it by 3 and add 1.

• Repeat this process with the new value of n, generating a new number in the sequence.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://nl.wikipedia.org/wiki/Collatz_Conjecture

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_collatz(colors = colorPalette("tuscany3"))

canvas_diamonds Draw Diamonds

Description

This function draws diamonds on a canvas and (optionally) places two lines behind them. The
diamonds can be transparent or have a random color sampled from the input.

https://nl.wikipedia.org/wiki/Collatz_Conjecture

12 canvas_diamonds

Usage

canvas_diamonds(
colors,
background = "#fafafa",
col.line = "black",
radius = 10,
alpha = 1,
p = 0.2,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

col.line a character specifying the color of the diamond borders.

radius a positive value specifying the radius of the diamonds.

alpha a value specifying the transparency of the diamonds. If NULL (the default), added
layers become increasingly more transparent.

p a value specifying the probability of drawing an empty diamond.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_diamonds(colors = colorPalette("tuscany1"))

canvas_flame 13

canvas_flame Draw a Fractal Flame

Description

This function implements the fractal flame algorithm.

Usage

canvas_flame(
colors,
background = "#000000",
iterations = 1000000,
variations = 0,
symmetry = 0,
blend = TRUE,
weighted = FALSE,
post = FALSE,
final = FALSE,
extra = FALSE,
display = c("colored", "logdensity"),
zoom = 1,
resolution = 1000,
gamma = 1

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations a positive integer specifying the number of iterations of the algorithm. Using
more iterations results in images of higher quality but also increases the compu-
tation time.

variations an integer (vector) with a minimum of 0 and a maximum of 48 specifying the
variations to be included in the flame. The default 0 includes only a linear varia-
tion. Including multiple variations (e.g., c(1, 2, 3)) increases the computation
time. See the details section for more information about possible variations.

symmetry an integer with a minimum of -6 and a maximum of 6 indicating the type of
symmetry to include in the flame. The default 0 includes no symmetry. In-
cluding symmetry decreases the computation time as a function of the absolute
symmetry value. See the details section for more information about possible
symmetries.

blend logical. Whether to blend the variations (TRUE) or pick a unique variation in
each iteration (FALSE). blend = TRUE increases computation time as a function
of the number of included variations.

14 canvas_flame

weighted logical. Whether to weigh the functions and the variations (TRUE) or pick a
function at random and equally weigh all variations (FALSE). weighted = TRUE
significantly increases the computation time.

post logical. Whether to apply a post transformation in each iteration.

final logical. Whether to apply a final transformation in each iteration.

extra logical. Whether to apply an additional post transformation after the final trans-
formation. Only has an effect when final = TRUE.

display a character indicating how to display the flame. colored (the default) displays
colors according to which function they originate from. logdensity plots a
gradient using the log density of the pixel count.

zoom a positive value specifying the amount of zooming.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
does not increases the computation time of this algorithm.

gamma a numeric value specifying the gamma correction (only used when display =
"colored"). Larger values result in brighter images and vice versa.

Details

The variation argument can be used to include specific variations into the flame. See the appendix
in the references for examples of all variations. Possible variations are:

• 0: Linear (default)

• 1: Sinusoidal

• 2: Spherical

• 3: Swirl

• 4: Horsehoe

• 5: Polar

• 6: Handkerchief

• 7: Heart

• 8: Disc

• 9: Spiral

• 10: Hyperbolic

• 11: Diamond

• 12: Ex

• 13: Julia

• 14: Bent

• 15: Waves

• 16: Fisheye

• 17: Popcorn

• 18: Exponential

• 19: Power

canvas_flame 15

• 20: Cosine

• 21: Rings

• 22: Fan

• 23: Blob

• 24: PDJ

• 25: Fan2

• 26: Rings2

• 27: Eyefish

• 28: Bubble

• 29: Cylinder

• 30: Perspective

• 31: Noise

• 32: JuliaN

• 33: JuliaScope

• 34: Blur

• 35: Gaussian

• 36: RadialBlur

• 37: Pie

• 38: Ngon

• 39: Curl

• 40: Rectangles

• 41: Arch

• 42: Tangent

• 43: Square

• 44: Rays

• 45: Blade

• 46: Secant

• 47: Twintrian

• 48: Cross

The symmetry argument can be used to include symmetry into the flame. Possible options are:

• 0: No symmetry (default)

• -1: Dihedral symmetry

• 1: Two-way rotational symmetry

• (-)2: (Dihedral) Three-way rotational symmetry

• (-)3: (Dihedral) Four-way rotational symmetry

• (-)4: (Dihedral) Five-way rotational symmetry

• (-)5: (Dihedral) Six-way rotational symmetry

• (-)6: (Dihedral) Snowflake symmetry

16 canvas_flow

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://flam3.com/flame_draves.pdf

See Also

colorPalette

Examples

set.seed(3)

Simple example, linear variation, relatively few iterations
canvas_flame(colors = c("dodgerblue", "green"), variations = 0)

Simple example, linear variation, dihedral symmetry
canvas_flame(colors = c("hotpink", "yellow"), variations = 0, symmetry = -1, iterations = 1e7)

Advanced example (no-blend, weighted, sinusoidal and spherical variations)
canvas_flame(

colors = colorPalette("origami"), variations = c(1, 2),
blend = FALSE, weighted = TRUE, iterations = 1e8

)

More iterations give much better images
set.seed(123)
canvas_flame(colors = c("red", "blue"), iterations = 1e8, variations = c(10, 17))

canvas_flow Draw A Flow Field

Description

This function draws flow fields on a canvas. The algorithm simulates the flow of points through a
field of angles which can be set manually or generated from the predictions of a supervised learning
method (i.e., knn, svm, random forest) trained on randomly generated data.

https://flam3.com/flame_draves.pdf

canvas_flow 17

Usage

canvas_flow(
colors,
background = "#fafafa",
lines = 500,
lwd = 0.05,
iterations = 100,
stepmax = 0.01,
outline = c("none", "circle", "square"),
polar = FALSE,
angles = NULL

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

lines the number of lines to draw.

lwd expansion factor for the line width.

iterations the maximum number of iterations for each line.

stepmax the maximum proportion of the canvas covered in each iteration.

outline character. Which outline to use for the artwork. Possible options are none (de-
fault), circle or square.

polar logical. Whether to draw the flow field with polar coordinates.

angles optional, a 200 x 200 matrix containing the angles in the flow field, or a character
indicating the type of noise to use (svm, knn, rf, perlin, cubic, simplex, or
worley). If NULL (the default), the noise type is chosen randomly.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://tylerxhobbs.com/essays/2020/flow-fields

See Also

colorPalette

https://tylerxhobbs.com/essays/2020/flow-fields

18 canvas_forest

Examples

set.seed(1)

Simple example
canvas_flow(colors = colorPalette("dark2"))

Outline example
canvas_flow(

colors = colorPalette("vrolik1"), lines = 10000,
outline = "circle", iterations = 10, angles = "svm"

)

Polar example
canvas_flow(

colors = colorPalette("vrolik2"), lines = 300,
lwd = 0.5, polar = TRUE

)

Advanced example
angles <- matrix(0, 200, 200)
angles[1:100,] <- seq(from = 0, to = 2 * pi, length = 100)
angles[101:200,] <- seq(from = 2 * pi, to = 0, length = 100)
angles <- angles + rnorm(200 * 200, sd = 0.1)
canvas_flow(

colors = colorPalette("tuscany1"), background = "black",
angles = angles, lwd = 0.4, lines = 1000, stepmax = 0.001

)

canvas_forest Draw a Random Forest

Description

This function draws the predictions from a random forest algorithm trained on randomly generated
categorical data.

Usage

canvas_forest(
colors,
n = 1000,
resolution = 500

)

canvas_function 19

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

n a positive integer specifying the number of random data points to generate.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Random_forest

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_forest(colors = colorPalette("jungle"))

canvas_function Draw Functions

Description

This function paints functions with random parameters on a canvas.

Usage

canvas_function(
colors,
background = "#fafafa",
by = 0.01,
polar = TRUE,
formula = NULL

)

https://en.wikipedia.org/wiki/Random_forest

20 canvas_function

Arguments

colors a string specifying the color used for the artwork.

background a character specifying the color used for the background.

by a value specifying the step size between consecutive points.

polar logical. Whether to draw the function with polar coordinates.

formula optional, a named list with ’x’ and ’y’ as structured in the example. If NULL
(default), chooses a function with random parameters.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://github.com/cutterkom/generativeart

See Also

colorPalette

Examples

set.seed(10)

Simple example
canvas_function(colors = colorPalette("tuscany1"))

Advanced example
formula <- list(

x = quote(x_i^2 - sin(y_i^2)),
y = quote(y_i^3 - cos(x_i^2))

)
canvas_function(colors = "firebrick", formula = formula)

https://github.com/cutterkom/generativeart

canvas_gemstone 21

canvas_gemstone Draw Gemstones

Description

This function draws the predictions from a k-nearest neighbors algorithm trained on randomly gen-
erated continuous data.

Usage

canvas_gemstone(
colors,
n = 1000,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

n a positive integer specifying the number of random data points to generate.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_gemstone(colors = colorPalette("dark3"))

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

22 canvas_lissajous

canvas_lissajous Draw a Lissajous Curve

Description

This function draws lissajous curves with points connected via a k-nearest neighbor approach.

Usage

canvas_lissajous(
colors,
background = "#000000",
iterations = 2,
neighbors = 50,
noise = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations a positive integer specifying the number of iterations of the algorithm.

neighbors a positive integer specifying the number of neighbors a block considers when
drawing the connections.

noise logical. Whether to add perlin noise to the coordinates of the nodes.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Lissajous_curve

See Also

colorPalette

https://en.wikipedia.org/wiki/Lissajous_curve

canvas_mandelbrot 23

Examples

set.seed(13)

Simple example
canvas_lissajous(colors = colorPalette("blossom"))

canvas_mandelbrot Draw the Mandelbrot Set

Description

This function draws the Mandelbrot set and other related fractal sets on the canvas.

Usage

canvas_mandelbrot(
colors,
iterations = 100,
zoom = 1,
set = c("mandelbrot", "multibrot", "julia", "ship"),
left = -2.16,
right = 1.16,
bottom = -1.66,
top = 1.66,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

iterations a positive integer specifying the number of iterations of the algorithm.

zoom a positive value specifying the amount of zoom to apply.

set a character indicating which fractal set to draw. Possible options are mandelbrot
for the Mandelbrot set, multibrot for variations of the Mandelbrot set (aka the
Multibrot sets), julia for the Julia set and ship for the Burning ship set.

left a value specifying the minimum location on the x-axis.

right a value specifying the maximum location on the x-axis.

bottom a value specifying the minimum location on the y-axis.

top a value specifying the maximum location on the y-axis.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

24 canvas_maze

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/Mandelbrot_set

See Also

colorPalette

Examples

canvas_mandelbrot(colors = colorPalette("tuscany1"), set = "mandelbrot")
canvas_mandelbrot(colors = colorPalette("flag"), set = "julia", zoom = 2)

canvas_maze Draw Mazes

Description

This function draws a maze on a canvas.

Usage

canvas_maze(
color = "#fafafa",
walls = "black",
background = "#fafafa",
resolution = 20,
polar = FALSE

)

Arguments

color a character specifying the color used for the artwork.
walls a character specifying the color used for the walls of the maze.
background a character specifying the color used for the background.
resolution resolution of the artwork in pixels per row/column. Increasing the resolution

increases the quality of the artwork but also increases the computation time ex-
ponentially.

polar logical, whether to use polar coordinates. Warning, this increases display and
saving time dramatically.

https://en.wikipedia.org/wiki/Mandelbrot_set

canvas_mesh 25

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://github.com/matfmc/mazegenerator

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_maze(color = "#fafafa")

canvas_mesh Draw Meshes

Description

This function draws one or more rotating circular morphing meshes on the canvas.

Usage

canvas_mesh(
colors,
background = "#fafafa",
transform = c("perlin", "fbm", "simplex", "cubic",

"worley", "knn", "rf", "svm"),
lines = 500,
iterations = 500,
mixprob = 0

)

https://github.com/matfmc/mazegenerator

26 canvas_mosaic

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background (and the hole).

transform a character specifying the type of transformation to use for the radius.

lines an integer specifying the number of lines to darw.

iterations a positive integer specifying the number of iterations of the algorithm.

mixprob a value between 0 and 1 specifying the probability of a line segment getting
another color.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://web.archive.org/web/20231130151102/http://rectangleworld.com/blog/archives/
462

See Also

colorPalette

Examples

set.seed(2)

Simple example
canvas_mesh(colors = colorPalette("origami"))

canvas_mosaic Draw Moisaics

Description

This function draws the predictions from a k-nearest neighbors algorithm trained on randomly gen-
erated categorical data.

https://web.archive.org/web/20231130151102/http://rectangleworld.com/blog/archives/462
https://web.archive.org/web/20231130151102/http://rectangleworld.com/blog/archives/462

canvas_mosaic 27

Usage

canvas_mosaic(
colors,
n = 1000,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

n a positive integer specifying the number of random data points to generate.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_mosaic(colors = colorPalette("retro2"))

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

28 canvas_nebula

canvas_nebula Draw Nebulas

Description

This function creates an artwork from randomly generated k-nearest neighbors noise.

Usage

canvas_nebula(
colors,
k = 50,
n = 500,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

k a positive integer specifying the number of nearest neighbors to consider.

n a positive integer specifying the number of random data points to generate.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_nebula(colors = colorPalette("tuscany1"))

canvas_petri 29

canvas_petri Draw Petri Dish Colonies

Description

This function uses a space colony algorithm to draw Petri dish colonies.

Usage

canvas_petri(
colors,
background = "#fafafa",
dish = "black",
attractors = 1000,
iterations = 15,
hole = 0

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background (and the hole).

dish a character specifying the color used for the Petri dish.

attractors an integer specifying the number of attractors.

iterations a positive integer specifying the number of iterations of the algorithm.

hole a value between 0 and 0.9 specifying the hole size in proportion to the dish.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://medium.com/@jason.webb/space-colonization-algorithm-in-javascript-6f683b743dc5

See Also

colorPalette

https://medium.com/@jason.webb/space-colonization-algorithm-in-javascript-6f683b743dc5

30 canvas_phyllotaxis

Examples

set.seed(2)

Simple example
canvas_petri(colors = colorPalette("origami"))

Advanced example
canvas_petri(colors = "white", hole = 0.8, attractors = 5000)

canvas_phyllotaxis Draw a Phyllotaxis

Description

This function draws a phyllotaxis which resembles the arrangement of leaves on a plant stem.

Usage

canvas_phyllotaxis(
colors,
background = "#fafafa",
iterations = 10000,
angle = 137.5,
size = 0.01,
alpha = 1,
p = 0.5

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations the number of iterations of the algorithm.

angle the angle at which to place the artwork.

size the size of the lines.

alpha transparency of the points.

p probability of drawing a point on each iteration.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

canvas_planet 31

References

https://en.wikipedia.org/wiki/Phyllotaxis

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_phyllotaxis(colors = colorPalette("tuscany1"))

canvas_planet Draw Planets

Description

This function paints one or multiple planets and uses a cellular automata to fill their surfaces.

Usage

canvas_planet(
colors,
threshold = 4,
iterations = 200,
starprob = 0.01,
fade = 0.2,
radius = NULL,
center.x = NULL,
center.y = NULL,
light.right = TRUE,
resolution = 1500

)

Arguments

colors a character specifying the colors used for a single planet. Can also be a list
where each entry is a vector of colors for a planet.

threshold a character specifying the threshold for a color take.

iterations a positive integer specifying the number of iterations of the algorithm.

starprob a value specifying the probability of drawing a star in outer space.

fade a value specifying the amount of fading to apply.

https://en.wikipedia.org/wiki/Phyllotaxis

32 canvas_planet

radius a numeric (vector) specifying the radius of the planet(s).

center.x the x-axis coordinate(s) for the center(s) of the planet(s).

center.y the y-axis coordinate(s) for the center(s) of the planet(s).

light.right whether to draw the light from the right or the left.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://fronkonstin.com/2021/01/02/neighborhoods-experimenting-with-cyclic-cellular-automata/

Examples

set.seed(1)

Simple example
canvas_planet(colors = colorPalette("lava"), threshold = 3)

Advanced example
colors <- list(

c("khaki1", "lightcoral", "lightsalmon"),
c("dodgerblue", "forestgreen", "white"),
c("gray", "darkgray", "beige")

)
canvas_planet(colors,

radius = c(800, 400, 150),
center.x = c(1, 500, 1100),
center.y = c(1400, 500, 1000),
starprob = 0.005

)

https://fronkonstin.com/2021/01/02/neighborhoods-experimenting-with-cyclic-cellular-automata/

canvas_polylines 33

canvas_polylines Draw Polygons and Lines

Description

This function draws many points on the canvas and connects these points into a polygon. After
repeating this for all the colors, the edges of all polygons are drawn on top of the artwork.

Usage

canvas_polylines(
colors,
background = "#fafafa",
ratio = 0.5,
iterations = 1000,
size = 0.1,
resolution = 500

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the lines.

ratio a positive value specifying the width of the polygons. Larger ratios cause more
overlap.

iterations a positive integer specifying the number of iterations of the algorithm.

size a positive value specifying the size of the borders.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

34 canvas_recaman

Examples

set.seed(1)

Simple example
canvas_polylines(colors = colorPalette("retro1"))

canvas_recaman Draw Recaman’s Sequence

Description

This function draws Recaman’s sequence on a canvas. The algorithm takes increasingly large steps
backward on the positive number line, but if it is unable to it takes a step forward.

Usage

canvas_recaman(
colors,
background = "#fafafa",
iterations = 100,
start = 0,
increment = 1,
curvature = 1,
angle = 0,
size = 0.1,
closed = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations the number of iterations of the algorithm.

start the starting point of the algorithm.

increment the increment of each step.

curvature the curvature of each line.

angle the angle at which to place the artwork.

size the size of the lines.

closed logical. Whether to plot a curve from the end of the sequence back to the starting
point.

Value

A ggplot object containing the artwork.

canvas_ribbons 35

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://mathworld.wolfram.com/RecamansSequence.html

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_recaman(colors = colorPalette("tuscany1"))

canvas_ribbons Draw Ribbons

Description

This function paints random ribbons and (optionally) a triangle in the middle.

Usage

canvas_ribbons(
colors,
background = "#fdf5e6",
triangle = TRUE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork. The
number of colors determines the number of ribbons.

background a character specifying the color of the background.

triangle logical. Whether to draw the triangle that breaks the ribbon polygons.

Value

A ggplot object containing the artwork.

https://mathworld.wolfram.com/RecamansSequence.html

36 canvas_segments

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_ribbons(colors = colorPalette("retro1"))

canvas_segments Draw Segments

Description

This function draws line segments on a canvas. The length and direction of the line segments is
determined randomly.

Usage

canvas_segments(
colors,
background = "#fafafa",
n = 250,
p = 0.5,
H = 0.1,
size = 0.2

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

n a positive integer specifying the number of line segments to draw.

p a value specifying the probability of drawing a vertical line segment.

H a positive value specifying the scaling factor for the line segments.

size a positive value specifying the size of the line segments.

Value

A ggplot object containing the artwork.

canvas_slime 37

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_segments(colors = colorPalette("dark1"))

canvas_slime Draw A Slime Mold

Description

This function draws the Physarum polycephalum slime mold on a canvas. The algorithm simulates
particles on a two-dimensional grid that move towards areas on the grid with a high intensity.

Usage

canvas_slime(
colors,
background = "#000000",
iterations = 2000,
agents = 1000,
layout = c(

"random", "gaussian", "circle", "grid",
"clusters", "arrows", "wave", "spiral"

),
resolution = 1000

)

Arguments

colors a character (vector) specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations a positive integer specifying the number of iterations of the algorithm.

agents a positive integer specifying the number of agents to use.

layout a character specifying the initial layout of the agents. Possible options are
random (default), gaussian, circle, grid, clusters, arrows and wave.

38 canvas_smoke

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://cargocollective.com/sagejenson/physarum

https://fronkonstin.com/2020/08/11/abstractions/

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_slime(colors = colorPalette("neon1"))

canvas_smoke Draw Rainbow Smoke

Description

This function implements the rainbow smoke algorithm.

Usage

canvas_smoke(
colors,
init = 1,
shape = c("bursts", "clouds"),
algorithm = c("minimum", "average"),
resolution = 150

)

https://cargocollective.com/sagejenson/physarum
https://fronkonstin.com/2020/08/11/abstractions/

canvas_smoke 39

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

init an integer larger than zero and lower than or equal to resolution^2 specifying
the initial number of pixels to color on the canvas.

shape a character indicating the shape of the smoke. Possible options are burst and
clouds.

algorithm a character specifying how to select a new pixel. The default option minimum
selects the pixel with the smallest color difference in a single neighbor and is
relatively fast. The option average selects the pixel with the smallest average
color difference in all the neighbors and is relatively slow.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

http://rainbowsmoke.hu

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_smoke(colors = "all", resolution = 500)

Advanced example
reds <- colorRampPalette(c("red", "black"))
blues <- colorRampPalette(c("goldenrod", "navyblue"))
palette <- c(reds(100), blues(100))
canvas_smoke(colors = palette, init = 3, shape = "clouds", resolution = 500)

http://rainbowsmoke.hu

40 canvas_splits

canvas_splits Draw Split Lines

Description

This function draws split lines.

Usage

canvas_splits(
colors,
background = "#fafafa",
iterations = 6,
sd = 0.2,
lwd = 0.05,
alpha = 0.5

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the background (and the hole).

iterations a positive integer specifying the number of iterations of the algorithm.

sd a numeric value specifying the standard deviation of the angle noise.

lwd a numeric value specifying the width of the lines.

alpha a numeric value specifying the transparency of the lines.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(2)

Simple example
canvas_splits(colors = "black", sd = 0)

Simple example

canvas_squares 41

canvas_splits(colors = colorPalette("dark2"), background = "black", sd = 1)

canvas_squares Draw Squares and Rectangles

Description

This function paints random squares and rectangles. It works by repeatedly cutting into the canvas
at random locations and coloring the area that these cuts create.

Usage

canvas_squares(
colors,
background = "#000000",
cuts = 50,
ratio = 1.618,
resolution = 200,
noise = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

background a character specifying the color used for the borders of the squares.

cuts a positive integer specifying the number of cuts to make.

ratio a value specifying the 1:1 ratio for each cut.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

noise logical. Whether to add k-nn noise to the artwork. Note that adding noise in-
creases computation time significantly in large dimensions.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

42 canvas_stripes

Examples

set.seed(1)

Simple example
canvas_squares(colors = colorPalette("retro2"))

canvas_stripes Draw Stripes

Description

This function creates a brownian motion on each row of the artwork and colors it according to the
height of the motion.

Usage

canvas_stripes(
colors,
n = 300,
H = 1,
burnin = 1

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

n a positive integer specifying the length of the brownian motion (effectively the
width of the artwork).

H a positive value specifying the square of the standard deviation of each step in
the motion.

burnin a positive integer specifying the number of steps to discard before filling each
row.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

canvas_strokes 43

Examples

set.seed(1)

Simple example
canvas_stripes(colors = colorPalette("random", n = 10))

canvas_strokes Draw Strokes

Description

This function creates an artwork that resembles paints strokes. The algorithm is based on the simple
idea that each next point on the grid has a chance to take over the color of an adjacent colored point
but also has a change of generating a new color.

Usage

canvas_strokes(
colors,
neighbors = 1,
p = 0.01,
iterations = 1,
resolution = 500,
side = FALSE

)

Arguments

colors a string or character vector specifying the color(s) used for the artwork.

neighbors a positive integer specifying the number of neighbors a block considers when
taking over a color. More neighbors fades the artwork.

p a value specifying the probability of selecting a new color at each block. A
higher probability adds more noise to the artwork.

iterations a positive integer specifying the number of iterations of the algorithm. More
iterations generally apply more fade to the artwork.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

side logical. Whether to put the artwork on its side.

Value

A ggplot object containing the artwork.

44 canvas_swirls

Author(s)

Koen Derks, <koen-derks@hotmail.com>

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_strokes(colors = colorPalette("tuscany1"))

canvas_swirls Draw Swirls

Description

This function draws swirling stripes on a canvas by simulating a particle system.

Usage

canvas_swirls(
colors,
background = "#fafafa",
iterations = 250,
n = 250,
curvature = 0.005,
lwd = 0.1,
resolution = 500

)

Arguments

colors a character (vector) specifying the color(s) used for the artwork.

background a character specifying the color used for the background.

iterations a positive integer specifying the number of iterations of the algorithm.

n a positive integer specifying the number of particles.

curvature a positive number specifying the curvature of the lines. Larger values imply
relatively curved lines, while lower values produce relatively straight lines.

lwd expansion factor for the line width.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

canvas_tiles 45

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://mattdesl.svbtle.com/generative-art-with-nodejs-and-canvas

See Also

colorPalette

Examples

set.seed(2)

Simple example
canvas_swirls(colors = colorPalette("origami"))

canvas_tiles Draw Portuguese Tiles

Description

This function uses a reaction diffusion algorithm in an attempt to draw a Portuguese-styled tiling
pattern.

Usage

canvas_tiles(
colors,
background = "#ffffff",
iterations = 1000,
size = 5,
col.line = "#000000",
resolution = 100,
layout = NULL

)

https://mattdesl.svbtle.com/generative-art-with-nodejs-and-canvas

46 canvas_tiles

Arguments

colors a string or character vector specifying the color(s) used for the artwork, or a list
containing a set of colors for each unique tile on the wall.

background a character specifying the color of the background.

iterations a positive integer specifying the number of iterations of the algorithm.

size a positive integer specifying how many tiles should be in each row of the wall.

col.line a character specifying the color of the joints between the tiles.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

layout optional. A matrix containing integers ranging from 1 to the maximum number
of unique tiles (i.e., length(colors)) specifying the placement of the tiles on
the wall.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://en.wikipedia.org/wiki/ReactionâĂŞdiffusion_system

See Also

colorPalette

Examples

set.seed(3)

Simple example
canvas_tiles(colors = colorPalette("azul"), iterations = 5000)

Advanced example
canvas_tiles(colors = list(

colorPalette("blossom"),
colorPalette("neon1"),
colorPalette("dark1")

))

Custom layout
layout <- matrix(c(

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1,

https://en.wikipedia.org/wiki/Reaction–diffusion_system

canvas_tiles 47

1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1,
1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

), nrow = 11, byrow = TRUE)
canvas_tiles(

colors = list(colorPalette("azul"), colorPalette("blossom")),
size = nrow(layout), layout = layout

)

Another custom layout
set.seed(11)
layout <- matrix(c(

2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
7, 7,
2, 2,
2, 2,
2, 2, 1, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 5, 5, 5, 2, 6, 2, 6, 2,
2, 1, 2, 1, 2, 3, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 2, 6, 2, 6, 2,
2, 1, 1, 1, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 6, 2, 2,
2, 1, 2, 1, 2, 3, 2, 3, 2, 2, 4, 2, 5, 5, 5, 2, 2, 2, 6, 2, 2,
2, 2,
2, 2,
7, 7,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2

), nrow = 21, byrow = TRUE)
canvas_tiles(

colors = list(
colorPalette("blossom"),
colorPalette("azul"),
colorPalette("neon1"),
colorPalette("mixer4"),
colorPalette("neon2"),
colorPalette("vrolik1"),
colorPalette("blackwhite")

),
iterations = 2000,
size = nrow(layout), layout = layout

)

48 canvas_turmite

canvas_turmite Draw Turmites

Description

This function paints a turmite. A turmite is a Turing machine which has an orientation in addition
to a current state and a "tape" that consists of a two-dimensional grid of cells.

Usage

canvas_turmite(
colors,
background = "#fafafa",
p = 0,
iterations = 1000000,
resolution = 500,
noise = FALSE

)

Arguments

colors a character specifying the color used for the artwork. The number of colors
determines the number of turmites.

background a character specifying the color used for the background.

p a value specifying the probability of a state switch within the turmite.

iterations a positive integer specifying the number of iterations of the algorithm.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

noise logical. Whether to add k-nn noise to the artwork. Note that adding noise in-
creases computation time significantly in large dimensions.

Details

The turmite algorithm consists of the following steps: 1) turn on the spot (left, right, up, down) 2)
change the color of the square 3) move forward one square.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

canvas_watercolors 49

References

https://en.wikipedia.org/wiki/Turmite

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_turmite(colors = colorPalette("dark2"))

canvas_watercolors Draw Watercolors

Description

This function paints watercolors on a canvas.

Usage

canvas_watercolors(
colors,
background = "#fafafa",
layers = 50,
depth = 2,
resolution = 250

)

Arguments

colors a string specifying the color used for the artwork.

background a character specifying the color used for the background.

layers the number of layers of each color.

depth the maximum depth of the recursive algorithm.

resolution resolution of the artwork in pixels per row/column. Increasing the resolution
increases the quality of the artwork but also increases the computation time ex-
ponentially.

Value

A ggplot object containing the artwork.

https://en.wikipedia.org/wiki/Turmite

50 colorPalette

Author(s)

Koen Derks, <koen-derks@hotmail.com>

References

https://tylerxhobbs.com/essays/2017/a-generative-approach-to-simulating-watercolor-paints

See Also

colorPalette

Examples

set.seed(1)

Simple example
canvas_watercolors(colors = colorPalette("tuscany2"))

colorPalette Color Palette Generator

Description

This function creates a random color palette, or allows the user to select a pre-implemented palette.

Usage

colorPalette(
name,
n = NULL

)

Arguments

name name of the color palette. Can be random for random colors, complement for
complementing colors, divergent for equally spaced colors, or random-palette
for a random palette, but can also be the name of a pre-implemented palette. See
the details section for a list of pre-implemented palettes.

n the number of colors to select from the palette. Required if name = 'random',
name = 'complement', or name = 'divergent'. Otherwise, if NULL, automati-
cally selects all colors from the chosen palette.

https://tylerxhobbs.com/essays/2017/a-generative-approach-to-simulating-watercolor-paints

colorPalette 51

Details

The following color palettes are implemented:

52 colorPalette

azul bell blackwhite

blossom boogy1 boogy2

boogy3 dark1 dark2

dark3 flag flora

house gogh jasp

jfa jungle klimt

kpd lava origami

mixer1 mixer2 mixer3

mixer4 nature neo1

neo2 neo3 neon1

neon2 retro1 retro2

retro3 retro4 shell1

shell2 shell3 sooph

sky tuscany1 tuscany2

tuscany3 vrolik1 vrolik2

vrolik3 vrolik4 vrolik5

saveCanvas 53

Value

A vector of colors.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

Examples

colorPalette("divergent", 5)

saveCanvas Save a Canvas to an External Device

Description

This function is a wrapper around ggplot2::ggsave. It provides a suggested export with square
dimensions for a canvas created using the aRtsy package.

Usage

saveCanvas(plot, filename, width = 7, height = 7, dpi = 300)

Arguments

plot a ggplot2 object to be saved.

filename the filename of the export.

width the width of the artwork in cm.

height the height of the artwork in cm.

dpi the dpi (dots per inch) of the file.

Value

No return value, called for saving plots.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

54 theme_canvas

theme_canvas Canvas Theme for ggplot2 Objects

Description

Add a canvas theme to the plot. The canvas theme by default has no margins and fills any empty
canvas with a background color.

Usage

theme_canvas(x, background = NULL, margin = 0)

Arguments

x a ggplot2 object.

background a character specifying the color used for the empty canvas.

margin margins of the canvas.

Value

A ggplot object containing the artwork.

Author(s)

Koen Derks, <koen-derks@hotmail.com>

Index

∗ aRtsy
aRtsy-package, 3

∗ artwork
canvas_ant, 3
canvas_blacklight, 5
canvas_chladni, 6
canvas_circlemap, 7
canvas_cobweb, 9
canvas_collatz, 10
canvas_diamonds, 11
canvas_flame, 13
canvas_flow, 16
canvas_forest, 18
canvas_function, 19
canvas_gemstone, 21
canvas_lissajous, 22
canvas_mandelbrot, 23
canvas_maze, 24
canvas_mesh, 25
canvas_mosaic, 26
canvas_nebula, 28
canvas_petri, 29
canvas_phyllotaxis, 30
canvas_planet, 31
canvas_polylines, 33
canvas_recaman, 34
canvas_ribbons, 35
canvas_segments, 36
canvas_slime, 37
canvas_smoke, 38
canvas_splits, 40
canvas_squares, 41
canvas_stripes, 42
canvas_strokes, 43
canvas_swirls, 44
canvas_tiles, 45
canvas_turmite, 48
canvas_watercolors, 49

∗ canvas

canvas_ant, 3
canvas_blacklight, 5
canvas_chladni, 6
canvas_circlemap, 7
canvas_cobweb, 9
canvas_collatz, 10
canvas_diamonds, 11
canvas_flame, 13
canvas_flow, 16
canvas_forest, 18
canvas_function, 19
canvas_gemstone, 21
canvas_lissajous, 22
canvas_mandelbrot, 23
canvas_maze, 24
canvas_mesh, 25
canvas_mosaic, 26
canvas_nebula, 28
canvas_petri, 29
canvas_phyllotaxis, 30
canvas_planet, 31
canvas_polylines, 33
canvas_recaman, 34
canvas_ribbons, 35
canvas_segments, 36
canvas_slime, 37
canvas_smoke, 38
canvas_splits, 40
canvas_squares, 41
canvas_stripes, 42
canvas_strokes, 43
canvas_swirls, 44
canvas_tiles, 45
canvas_turmite, 48
canvas_watercolors, 49
colorPalette, 50
saveCanvas, 53
theme_canvas, 54

∗ package

55

56 INDEX

aRtsy-package, 3
∗ palette

colorPalette, 50
∗ save

saveCanvas, 53
∗ theme

theme_canvas, 54

aRtsy (aRtsy-package), 3
aRtsy-package, 3

canvas_ant, 3
canvas_blacklight, 5
canvas_chladni, 6
canvas_circlemap, 7
canvas_cobweb, 9
canvas_collatz, 10
canvas_diamonds, 11
canvas_flame, 13
canvas_flow, 16
canvas_forest, 18
canvas_function, 19
canvas_gemstone, 21
canvas_lissajous, 22
canvas_mandelbrot, 23
canvas_maze, 24
canvas_mesh, 25
canvas_mosaic, 26
canvas_nebula, 28
canvas_petri, 29
canvas_phyllotaxis, 30
canvas_planet, 31
canvas_polylines, 33
canvas_recaman, 34
canvas_ribbons, 35
canvas_segments, 36
canvas_slime, 37
canvas_smoke, 38
canvas_splits, 40
canvas_squares, 41
canvas_stripes, 42
canvas_strokes, 43
canvas_swirls, 44
canvas_tiles, 45
canvas_turmite, 48
canvas_watercolors, 49
colorPalette, 50

saveCanvas, 53

theme_canvas, 54

	aRtsy-package
	canvas_ant
	canvas_blacklight
	canvas_chladni
	canvas_circlemap
	canvas_cobweb
	canvas_collatz
	canvas_diamonds
	canvas_flame
	canvas_flow
	canvas_forest
	canvas_function
	canvas_gemstone
	canvas_lissajous
	canvas_mandelbrot
	canvas_maze
	canvas_mesh
	canvas_mosaic
	canvas_nebula
	canvas_petri
	canvas_phyllotaxis
	canvas_planet
	canvas_polylines
	canvas_recaman
	canvas_ribbons
	canvas_segments
	canvas_slime
	canvas_smoke
	canvas_splits
	canvas_squares
	canvas_stripes
	canvas_strokes
	canvas_swirls
	canvas_tiles
	canvas_turmite
	canvas_watercolors
	colorPalette
	saveCanvas
	theme_canvas
	Index

