Package ‘Thermimage’

October 12, 2022

Type Package

Title Thermal Image Analysis
Version 4.1.3

Date 2021-09-23

Author Glenn J. Tattersall

Description A collection of functions and routines for inputting thermal
image video files, plotting and converting binary raw data into estimates of
temperature. First published 2015-03-26. Written primarily for research purposes
in biological applications of thermal images. v1 included the base calculations
for converting thermal image binary values to temperatures. v2 included additional
equations for providing heat transfer calculations and an import function for thermal
image files (v2.2.3 fixed error importing thermal image to windows OS). v3. Added numerous
functions for converting thermal image, videos, rewriting and exporting.
v3.1. Added new functions to convert files. v3.2. Fixed the various functions related to find-
ing frame times.
v4.0. fixed an error in atmospheric attenuation constants, affect-
ing raw2temp and temp2raw functions.
Recommend update for use with long distance calculations. v.4.1.3 changed to frameLo-
cates to reflect change to as.character() to format().

License GPL (>=2)

Depends R (>=2.10)

SystemRequirements exiftool, perl, ffmpeg, imagemagick
Suggests fields

Imports tiff, png

LazyData true

Maintainer Glenn J. Tattersall <gtatters@brocku.ca>

URL https://cran.r-project.org/package=Thermimage,
https://github.com/gtatters/Thermimage

BugReports https://github.com/gtatters/Thermimage/issues
Encoding UTF-8

https://cran.r-project.org/package=Thermimage
https://github.com/gtatters/Thermimage
https://github.com/gtatters/Thermimage/issues

2 R topics documented:

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-27 10:00:22 UTC

R topics documented:

Thermimage-package e e 3
airdensity e e e e e e 4
airspecificheat e 5
airtconductivity L e e e e e e e e e 6
AITVISCOSILY . v v v v v o o e 7
ATCACOME . .« . o v v v e e e e e e e e e e e e e e 8
areacylinder L e e e e 9
areasphere L e e e e 10
convertflitJPGo 11
convertflirVID 13
cumulDiff Lo 15
diffframe e 17
ffmpegeall L e 19
flipmatrix e e e e e e 21
flirpal e e 22
flirsettings e e e e 22
forcedparameters L e e 24
frameLocates L 26
freeparameters e 28
getFrames 30
getTimes e 32
glowbowpal 33
Grashof e 34
greylOpal e 35
greyl20pal 35
greyredpal L. 35
hconv 36
hotironpal L. 37
ironbowpal e 38
Ld . . e 38
locate.fid 39
Lu . e 40
Lw . e 42
meanEveryNo 43
medicalpal 44
midgreenpal e 44
midgreypal 44
mikronprismpal oL 45
mikroscanpal 45

MIITOLMAIIX .« v v v o v e e e e e e e e e e e e e e e e e e 45

Thermimage-package 3

nameleadzero 46
Nusseltforced 47
Nusseltfree o e e 48
palette.choose L 50
plotTherm e 51
Prandtl L 54
gabs . . . e e 55
qgeond ... e 56
0 1670) 1A 57
grad . . .o e e e 59
rainbowl1234pal oL 61
rainbowpal L e e e e 61
TAW2ETIID . .+« o v v v e 61
readflit]PG oL 64
Reynolds e 67
rotate180.matrix e e 69
rotate270.matrixX e e e e e 70
rotate90.matriX e e 71
SAMPAMAZE .« .« ¢ v v v o v e e e e e e e e e e e e e e e e e e e 72
slopebypoint 73
slopeEveryN L 74
StephBoltz e e 75
Te . o e 76
MP2raW L e e e e e e e e 78
Teq . . . e e 80
Tground L e 82
thermsum e 83
thermsumeent L e e e e 85
writeFlirBin o 87
yellowpal 89
Index 90
Thermimage-package Handles thermal image data input and conversion to temperature us-
ing established physical equations.
Description

Assists in converting raw thermal imaging data files into temperature values.

Details

Package: Thermimage
Type: Package
License: GPL-2

4 airdensity

Primary purpose of the package is to assist with manipulating raw data extracted from thermal
image files. These raw data are stored in a raw data format and require inforamtion about vari-
ous environmental variables to estimate surface temperatures accurately. raw2temp is the primary
function of use. Other functions included involve simple scripts for data handling.

Author(s)

Glenn J. Tattersall
Please report issues, upload problems, or provide sample files to the following site: https://github.com/gtatters/Thermimage/is

References

1. http://130.15.24.88/exiftool/forum/index.php/topic,4898.60.html

2. Minkina, W. and Dudzik, S. 2009. Infrared Thermography: Errors and Uncertainties. Wiley
Press, 192 pp.

airdensity Returns the density of air for a given air temperature.

Description

Density of air if temperature (degrees Celsius) provided. Units: kg/m3

Usage
airdensity(Ta = 20)

Arguments

Ta Air temperature in degrees Celsius. Default value is 20.

Author(s)

Glenn J Tattersall

References

http://www.engineeringtoolbox.com/air-properties-d_156.html

Examples

The function is currently defined as
function (Ta = 20)
{
Base <- 314.156
Exponent <- (-0.981)
p <- Base * (Ta + 273.15)”Exponent
p

airspecificheat

airspecificheat Specific heat capacity of air

Description

Specific heat capacity of air if temperature (degrees Celsius) provided. Units: J/(kg*K)

Usage

airspecificheat(Ta = 20)

Arguments

Ta Air temperature in degrees Celsius. Default value is 20.

Author(s)

Glenn J Tattersall

References

http://www.engineeringtoolbox.com/air-properties-d_156.html

Examples

The function is currently defined as
function (Ta = 20)
{

Intercept <- 1.003731424

Slopel <- 5.37909e-06

Slope2 <- 7.30124e-07

Slope3 <- (-1.34472e-09)

Slope4 <- 1.23027e-12

cp <- 1000x(Intercept + Slopel * Ta + Slope2 * Ta*2 + Slope3 *

Ta*3 + Slope4 x Ta’4)
cp

6 airtconductivity

airtconductivity Thermal conductivity of air.

Description

Thermal conductivity of air. Units: W/m/K

Usage

airtconductivity(Ta = 20)

Arguments

Ta Air temperature in degrees Celsius. Default value is 20.

Author(s)

Glenn J Tattersall

References

http://www.engineeringtoolbox.com/air-properties-d_156.html

See Also

airviscosity

Examples

The function is currently defined as
function (Ta = 20)
{
Intercept <- 0.024280952
Slope <- 7.07143e-05
k <- Intercept + Slope * Ta
k
}
Example calculation:
Ta<-20
airtconductivity(Ta)

airviscosity 7

airviscosity Returns air viscosity for a given air temperature.

Description

Returns the air viscosity value for a given, supplied air temperature (Ta). Ta should be in units of
oC.

Usage

airviscosity(Ta = 20)

Arguments

Ta Air temperature in degrees Celsius. Default value is 20.

Value

Kinematic viscosity of air, as a function of temperature Units: m2/s Regression for 0 to 1000C
range: Intercept<-13.17380952 Slope<-0.097457143 k<-(Intercept+Slope*Ta)*1e-6 # multiply by
le-6 to get into m2/s units

Author(s)

Glenn J Tattersall

References

http://www.engineeringtoolbox.com/air-properties-d_156.html

Examples

The function is currently defined as
function (Ta = 20)
{
Intercept <- 13.17380952
Slope <- 0.097457143
k <= (Intercept + Slope * Ta) * 1e-06
k
}
Example calculation
Ta<-20
airviscosity(Ta)

8 areacone

areacone Provides the surface are of a cone

Description
Provides the surface area of a cone with an elliptical base. For a circular cone, simply use Ra-
dius=radius.

Usage

areacone(Radius, radius=Radius, hypotenuse=NULL, height, ends=1)

Arguments
Radius The Radius of the major axis of the base of the cone.
radius The radius of the minor axis of the base of the cone.
hypotenuse The hypotenuse of the height of the cone (if blank, determined from radius and
height)
height The height of the cone (if hypotenuse is known, leave height blank)
ends To include the base area in surface area calculation, set ends = 1, otherwise set
ends = 0.
Details

Calculates the surface are of a cone with an elliptical base.

Author(s)

Glenn J Tattersall

Examples

The function is currently defined as
function(Radius, radius=Radius, hypotenuse=NULL, height, ends=1)
{

if(is.null(hypotenuse)){

hypotenuse<-sqrt(height*2+Radius*2)

}

Area <- ends*pi*Radius*radius + pi*Radius*hypotenuse

Area

}

Example calculation from a measure of a bird bill.

Typically, a bird bill will be measured by its depth (d) at the base, its width (w) at the
base and by its overall length. The length (1) is typically measured along the length of
the culmen, and thus is a diagonal measure along the hypotenuse of the cone.

areacylinder 9

d<-12
w<-6
1<-18
areacone(Radius=d/2, radius=w/2, hypotenuse=1, height=NULL, ends=1)

If the perpendicular cone height (h) is instead measured, rather than the hypotenuse, then
substitute h for height and assign hypotenuse = NULL, to obtain the same result
h<-sqrt(1%2-(d/2)"2)

areacone(Radius=d/2, radius=w/2, hypotenuse=NULL, height=h, ends=1)

To only show surface area of the exposed surface, and exclude the oval base of the cone

set ends=0:

areacone(Radius=d/2, radius=w/2, hypotenuse=1/2, height=NULL, ends=0)

areacylinder Provides the surface area of a cylinder.

Description

Provides the surface area of a cylinder, including the circular bases.

Usage

areacylinder(Radius, radius=Radius, height, ends = 2)

Arguments
Radius The major radius of the base of the cylinder.
radius The minor radius of the base of the cylinder. Default is to equal the major Radius
in the case of a circular base.
height The height of the cylinder (alternatively, the length of a horizontal cylinder)
ends How many ends to include in the surface area calculation (2=both ends, 1=one
end, O=neither end)
Author(s)

Glenn J Tattersall

10 areasphere

Examples

The function is currently defined as

function(Radius, radius=Radius, height, ends=2)

{
Area <- (Radiustradius)*pi*height + ends*pi*Radius*radius
Area

}

Example calculation:

Typically, a body part might be modelled as cylindrical if it appears to be approximately
circular or elliptical and elongated. By measuring the major diameter (D) and minor
diameter (d) as well as the length or height (1), the overall surface area can be

determined:

D<-12
d<-6
1<-18
areacylinder(Radius=D/2, radius=d/2, height=1, ends=2)

To only show surface area of the exposed surface, and exclude the oval base of the
cylinder, set ends=0

areacylinder(Radius=D/2, radius=d/2, height=1, ends=0)

areasphere Provides the surface area of a sphere.

Description

Provides the surface area of a sphere.

Usage

areasphere(radius)
Arguments

radius The radius of the sphere.
Author(s)

Glenn J Tattersall

convertflir’IPG

Examples

11

The function is currently defined as

function (radius)

{

Area <- 4 * pi * radius*2

Area

}

Example calculation:

radius<-4

areasphere(radius)

convertflirJPG

Convert FLIR jpg into 16 bit grayscale file using shell commands.

Description

Invoking shell commands to act on a FLIR jpg and calls the exiftool -RawThermallmage option to
extract the raw, binary thermal image data in 16 bit format and passes this to imagemagick’s convert
function to swap the byte order (if necessary) and output as a png file.

Usage
convertflirJPG(imagefile, exiftoolpath="installed”, res.in="640x480",
endian="1sb", outputfolder="output”, verbose=FALSE, ...)

Arguments
imagefile Name of the FLIR JPG file to read from, as captured by the thermal camera. A

exiftoolpath

res.in

endian

outputfolder

verbose

character string.

A character string that determines whether Exiftool has been "installed" or not.
If Exiftool has been installed in a specific location, use to direct to the folder
location.

Input file image resolution in text format, "wxh". Default = "640x480"

Byte order ("lsb" = least significant byte or "msb" = most significant byte) used
in converting raw thermal image in call to imagemagick’s convert function. Byte
order can be set according to the inherent raw thermal data type. TIFF type raw
thermal image data are saved as Isb, PNG type raw thermal image data are saved
as msb.

Desired output subfolder name, placed inside the folder where the input files are
stored. Default = "output".

Provides the command line output if verbose=TRUE. Default = FALSE.

Other values to pass to command line functions.

12 convertflir’PG

Details

Calls exiftool and imagemagick (convert) in shell to convert a FLIR jpg, using the command line
exiftool, and passing that raw thermal binary datat to convert to create a png file. The subsequent
converted file is a 16 bit grayscale png, with each pixel representing the uncalibrated raw sensor
radiance data from the thermal imaging camera. This raw png file can be loaded into ImagelJ for
further analysis.

For example, a typical shell call might look like:
exiftool FLIRjpgfilename.jpg -b -RawThermallmage | convert - gray:- | convert -depth 16 -endian

Isb -size 640x480 gray:- Outputfilename.png
Value

No output generated in R. Shell call to exiftool and imagemagick to convert flir jpg files to png
files. exiftool and imagemagick must be installed on the system. Files generated require further
processing to estimate temperature.

Note

This function has not been fully tested with all flir jpg types. Multiburst images and older camera
file types may not work.

This function requires that exiftool and imagemagick are installed. Consult with the references for
how to install
Author(s)

Glenn J. Tattersall

References

1. https://www.sno.phy.queensu.ca/~phil/exiftool/
2. https://www.imagemagick.org/script/index.php

See Also

convertflirVID, ffmpegcall, readflirJPG,

Examples

Based on the following command line unix code,
this function will convert a flir jpg into a 16 bit
greyscale png to import into imageJ

Equivalent command line code:

exiftool FLIRjpgfilename.jpg -b -RawThermalImage | convert - gray:- |
convert -depth 16 -endian 1lsb

-size 640x480 gray:- Outputfilename.png

N

ETS

Examples
See https://github.com/gtatters/FLIRJPGConvert/blob/master/Examples.R

convertflirVID

13

See https://github.com/gtatters/FLIRJPGConvert/blob/master/FLIRIJPG_Convert.R

See https://github.com/gtatters/Thermimage/blob/master/README.md

convertflirViD

Convert FLIR CSQ or SEQ into PNG or AVI, using shell commands.

Description

Invoking shell commands to act on a FLIR video (SEQ or CSQ file type) and calls the exiftool -
RawThermallmage option to extract the raw, binary thermal image frames in 16 bit format and pass
these to ffmpeg to convert the output as a series of png files or as an avi video file.

Usage

convertflirVID(imagefile, exiftoolpath="installed"”, perlpath="installed",
fffsplitpattern="fff", fr=30, res.in="1024x768", res.out="1024x768",
outputcompresstype="jpegls”, outputfilenameroot=NULL, outputfiletype="avi”,
outputfolder="output”, verbose=FALSE,...)

Arguments

imagefile

exiftoolpath

perlpath

fffsplitpattern

fr
res.in

res.out

Name of the FLIR SEQ or CSQ file to read from, as captured by the thermal
camera. A character string.

A character string that determines whether Exiftool has been "installed" or not.
If Exiftool has been installed in a specific location, use to direct to the folder
location.

A character string that determines whether Perl has been "installed" or not. If
Perl has been installed in a specific location, use to direct to the folder location.

This split pattern is used to break up thermal video file into their component
frames prior to call to exiftool. Used in call to the built-in perl script, split.pl.
The default value, "fff", should work for most files, but sometimes you might
need to specify "seq", "fcf", or "csq" if there are problems with the generated
output.

fff splits based on: "46 46 46 00"

fcf splits based on: "46 46 46 00 43 41 50"

seq splits based on: "46 46 46 00 43 41 4D"
csq splits based on: "46 46 46 00 52 54 50"

Frame rate of input video data, frames per sec. Default = 30.
Input file image resolution in text format, "wxh". Default = "640x480"

Desired output file image resolution in text format, "wxh". Decrease to make
smaller file, but maintain same aspect ratio. Default = "640x480".

14 convertflirVID

outputcompresstype
Desired output file image compression format. Possible values are "tiff", "png"
or "jpegls" (or any modifier from ffmpeg -vcodec). Default = "png".

outputfilenameroot
The base root of the output file(s) to be exported, without the indexing. If NULL,
then the input filenameroot will be used and a numeric index attached. Default
is NULL.

outputfiletype Desired output file type, "avi" or "png". If "png", multiple files will be exported.
If "avi", a single video file will be exported. Default = "avi"

outputfolder Desired output subfolder name, placed inside the folder where the input files are
stored. Default = "output".

verbose Provides the command line output if verbose=TRUE. Default = FALSE.

Other values to pass to command line functions.

Details

Calls exiftool, imagemagick, and ffmpeg in shell to convert a thermal image video file (SEQ or
CSQ) into a 16 bit grayscale avi or series of images corresponding to each frame of the input video.

Value

No output generated in R. Shell call to exiftool, imagemagick, and ffmpeg to convert files.

Note

Use with files <2Gb in size. Larger files have failed during testing due to internal memory limits
during call to perl.

This function requires that exiftool and ffmpeg are installed. Consult with the references for how to
install.

Author(s)

Glenn J. Tattersall

References

1. https://www.sno.phy.queensu.ca/~phil/exiftool/
2. https://www.imagemagick.org/script/index.php

3. https://www.eevblog.com/forum/thermal-imaging/csq-file-format/

See Also

convertflirJPG, ffmpegcall, readflirJPG,

cumulDiff 15

Examples

Based on the following command line unix code, this function will convert a
flir jpg into a 16 bit greyscale video or sequence of images for import into imagelJ

Equivalent command line code:
ffmpeg —-f image2 -vcodec tiff -r 30 -s 640x480 -i 'output/frame%05d.tiff' -pix_fmt grayl6be
-vcodec png -s 640x480 file.avi

Examples
See https://github.com/gtatters/FLIRJPGConvert/blob/master/Examples.R

See https://github.com/gtatters/FLIRJPGConvert/blob/master/FLIRIJPG_Convert.R

See https://github.com/gtatters/Thermimage/blob/master/README.md

cumulDiff Cumulative difference sum function for use with frame by frame differ-
ence dataframe

Description

Based on the absolute difference sum method (Lighton and Turner, 2004), this function takes a
difference frame dataframe, where each column corresponds to a video frame (i+1) that has been
subtracted from the previous (ith) frame. Each row corresponds to a pixel difference value.

Usage

cumulDiff (fdiff, extract.times, samples = 2)

Arguments

fdiff Dataframe containing the frame by frame differences obtained from the diff-
Frame function. Rows corresponds to the pixel dimensions (w x h) of each
frame and Columns (C-1) correpond to the number of columns, which is one
fewer columns compared to the original video dataframe.

extract.times A vector of times (POSIXct format) that corresponds to the actual frames from
the original video file. This should be length of C.

samples The number of samples over which to calculate the slope of the cumulative dif-
ference sums. Must be >= 2, as it will calculate the slope over at least two
frames.

16 cumulDiff

Details

Each row in fdiff corresponds to a specific pixel position in a thermal video frame. Data frames are
preferred over array functions for speed and simplicity. Row numbers range from 1 through to the
image dimensions (i.e. w*h = 640 * 480=307200). Image dimensions are not required, provided
the row number corresponds to the same relative position.

The premise behind this is that the thermal video is either time lapse or higher speed video. If a
specific pixel shows no change (0) from frame to frame, then there is no movement or temperature
change. For videos of living specimens, movement artefacts will manifest as change over time at
specific pixels. If there is sufficient movement, across the image space, the accumulation of small
differences will provide a measure of relative activity from frame to frame.

cumulDiff takes the average, standard deviation and rootmean square of all pixels within one frame
to arrive at an aggregate value for each difference frame (absolute value). Subsequently, it sums
these successive data points (avg,sd,rms) across all frames, arriving at an absolute difference sum-
mation. This results in an incrementing value, of which the slope will be a semi-quantitative as-
sessment of relative change. It also provides a clean break point when activity ceases (Lighton,
2008).

The extract.times value (POSIX) is required to provide a time index as well as to calculate the frame
rate.
Value

Returns a list variable, containing raw, cumulative difference calculations and the slope calculations
on a minimum of 2, preferrably every 3rd frame.

rawdiff rawdiff is a table of the cumulative average, sd, and rms values
slopediff slopediff is the summarised rates of change over time in the rawdiff values
Author(s)
Glenn J Tattersall
References

1. Lighton, J.R.B., and Turner, R.J. (2004). Thermolimit respirometry: an objective assessment
of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P.
californicus. J Exp Biol 207: 1903-1913.

2. Lighton, J. R. B. (2008). Measuring metabolic rates : a manual for scientists. Oxford ; New
York, Oxford University Press.

See Also

diffFrame

Examples

Create a vector of arbitrary frame times - these would be extracted normally using the
locateFrames and getTimes functions

diffFrame 17

start<-as.POSIXct("2017-03-31 12:00:00")
fdiff<-data.frame(matrix(runif(307200%20, 20, 40), nrow=307200))

add noise to pixels
for(i in 1:20){
randpixels<-floor(runif (10000, 1,307200))
fdiff[randpixels,il<-fdiff[randpixels,il*xrunif(1, 10, 10000)
3

extract.times<-seq(start, start+20,1)
cumulDiff(fdiff, extract.times, 2)

diffFrame A frame difference function for subtracting adjacent frames from an
imported thermal image sequence.

Description

Works similarly to the simple diff() function, but on a data.frame. Subtracts column i from column
i+1, assuming each column represents the pixel information for one frame of an imported thermal
image video. Each row in the column corresponds to a pixel. Returns a data.frame of one column
shorter dimension than the original data.frame.

Usage

diffFrame(dat, absolute = TRUE)

Arguments
dat A data.frame of R x C dimensions, where R represents the specific pixel, ranging
from 1 to w x h rows, and C represents the frame number.
absolute If set to TRUE (default) the absolute difference between the value for each pixel
is provided. If set to FALSE, it will return the true difference (negative/positive
values).
Details

Providing a data frame of R x C dimensions, returns a data frame of R x (C-1) dimensions, where
each column represents the difference between adjacent columns. Absolute or relative values are
provided.

Each row in dat corresponds to a specific pixel position in a thermal video frame. Data frames are
preferred over array functions for speed and simplicity. Row numbers range from 1 through to the
image dimensions (i.e. w*h = 640 * 480=307200).

The premise behind this is that the thermal video is either time lapse or higher speed video. If a
specific pixel shows no change (0) from frame to frame, then there is no movement or temperature

18 diffFrame

change. For videos of living specimens, movement artefacts will manifest as change over time at
specific pixels. If there is sufficient movement, across the image space, the accumulation of small
differences will provide a measure of relative activity from frame to frame.

In combination of a cumulative summation function (cumulDiff), the diffFrame function can assess
relative change in movement or activity. This makes use of a concept called the absolute difference
sum method, sometimes used to simplify noisy data. See cuamulDiff for further info.

Value

Returns a data frame of R x (C-1) dimensions, where each column represents the difference between
adjacent columns.

Author(s)

Glenn J Tattersall

References

1. Lighton, J.R.B., and Turner, R.J. (2004). Thermolimit respirometry: an objective assessment
of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P.
californicus. J Exp Biol 207: 1903-1913.

2. Lighton, J. R. B. (2008). Measuring metabolic rates : a manual for scientists. Oxford ; New
York, Oxford University Press.

See Also

cumulDiff

Examples

set w to 640 and h to 480

w<-640

h<-480

f<-system.file("extdata”, "SampleSEQ.seq"”, package = "Thermimage")
x<-framelLocates(f, w=w, h=h)

suppressWarnings (templookup<-raw2temp(1:65535))
alldata<-unlist(lapply(x$f.start, getFrames, vidfile=f, w=w, h=h))
alldata<-matrix(alldata, nrow=wxh, byrow=FALSE)
alltemperature<-templookup[alldatal]
alltemperature<-unname(matrix(alltemperature, nrow=wxh, byrow=FALSE))

dalltemperature<-as.matrix(diffFrame(alltemperature, absolute=TRUE), nrow=w)
Plot

plotTherm(dalltemperature[,1], templookup=NULL, w=w, h=h, minrangeset=min(dalltemperature),
maxrangeset=max(dalltemperature), trans="mirror.matrix")

ffmpegcall 19

ffmpegcall A simplified wrapper function calling ffmpeg

Description

A simplified wrapper function calling ffmpeg to convert numbered files extracted from FLIR ther-
mal image videos via exiftool into radiometric png files or radiometric avi files. Mostly for internal
use.

Usage

ffmpegcall(filenameroot, filenamesuffix="%05d", filenameext="jpegls"”,
incompresstype="jpegls”, fr=30, res.in="640x480", res.out=res.in,
outputcompresstype="png"”, outputfilenameroot=NULL, outputfiletype="avi",
outputfolder="output”,...)

Arguments

filenameroot The base root of the files to be converted, without the indexing. If numbered files
are: "Frame00001.fff", "Frame00002.fff", etc., then filenameroot = "Frame".

filenamesuffix The suffix defining the indexing numbers associated with filename. If num-
bered files are: "FrameOO0001.fff", "Frame00002.fff", etc., then filenamesuffix =
II%OSdH

filenameext File extension for input files. Typically "jpegls" or "fff"", depending on the video
or image filetype (SEQ files are extracted into .fff files; CSQ files are extracted
into .jpegls files). Default = "jpegls".

incompresstype Input file compression type. Typically "tiff" (non compressed data in SEQ
videos files) or "jpegls" (corresponds to jpegls, a lossless jpeg format (see De-
tails and References).

fr Frame rate of input video data, frames per sec. Default = 30.

res.in Input file image resolution in text format, "wxh". Default = "640x480"

res.out Desired output file image resolution in text format, "wxh". Decrease to make
smaller file, but maintain same aspect ratio. Default = "640x480".

outputcompresstype

" on

Desired output file image compression format. Possible values are "tiff", "png"
or "jpegls" (or any modifier from ffmpeg -vcodec). Default = "png".

outputfilenameroot
The base root of the output file(s) to be exported, without the indexing. If NULL,
then the input filenameroot will be used and a numeric index attached. Default
is NULL.

outputfiletype Desired output file type, "avi" or "png". If "png", multiple files will be exported.
If "avi", a single video file will be exported. Default = "avi"

outputfolder Desired output subfolder name, placed inside the folder where the input files are
stored. Default = "output".

Other values to pass to command line functions.

20 ffmpegcall

Details

Calls ffmpeg in shell to convert a series of image files, named filenameroot%05d.filenameext, ex-
tracted from a thermal image file using the command line tool, exiftool. The subsequent converted
file is a 16 bit grayscale avi or series of images corresponding to each of the input files.

For example, a typical shell call to ffmpeg might look like:

ffmpeg -f image2 -vcodec fff -i frame%05d.fff -f image?2 -vcodec png frame%05d.png -y

which converts a series of fff files (frameNNNNN.fff) into a series of png files (frameNNNNN.png).
Likewise, the following:

ffmpeg -r 30 -f image?2 -vcodec jpegls -s 1024x768 -1 frame%05d.jpegls -vcodec png -s 1024x768
frame.avi -y

converts a series of jpegls files (frameNNNNN.jpegls) into an avi file (frame.avi) with png style
compression

Jpeg-lIs is a lossless jpg format (JPG-LS) that is used for certain flir image types (e.g., CSQ, Ultra-
max FLIR jpg). The easiest means to convert the extracted, compressed data type is with ffmpeg,
which contains the codecs for extraction.

For example, once ffmpeg is installed, try in shell:

ffmpeg -codecs | grep jpegls

Value
No output generated in R. Shell call to ffmpeg to convert files. ffmpeg must be installed on the
system.

Author(s)

Glenn J. Tattersall

References

1. https://www.ffmpeg.org/
2. https://www.eevblog.com/forum/thermal-imaging/csq-file-format/
3. http://www.digitalpreservation.gov/formats/fdd/fdd000151.shtml

See Also

convertflirVID, convertflirJPG

Examples

Examples
See https://github.com/gtatters/FLIRJPGConvert/blob/master/Examples.R

See https://github.com/gtatters/Thermimage/blob/master/README.md

flip.matrix 21

flip.matrix Flips a matrix ’left-right’. Used in re-arranging image data for plot-
ting properly in R.

Description

Flips a matrix ’left-right’. Used in re-arranging image data for plotting properly in R.

Usage
flip.matrix(x)

Arguments

X A matrix corresponding to raster or image data.

Author(s)

Glenn J Tattersall

References

1. http://www.inside-r.org/packages/cran/RSEIS/docs/mirror.matrix

2. Based on similar code in package <RSEIS>

See Also

mirror.matrix rotate90.matrix rotate270.matrix rotate180.matrix

Examples

The function is currently defined as
function (x)
{

mirror.matrix(rotate180.matrix(x))

3

par(mfrow=c(1,2),mar=c(1,1,1,1))
r<-c(1:100,rnorm(1:100)*10,1:100)
m<-matrix(r,20)

image(m, axes=FALSE)

box ()
text(.5,.5,"Matrix"”,col="white")
mf<-flip.matrix(m)

image (mf, axes=FALSE)

box ()
text(.5,.5,"Flipped”,col="white")

22

flirsettings

flirpal

Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

flirsettings

Extracts meta tag information from a FLIR JPG image

Description

Extracts meta tag information from a FLIR JPG image using system installed Exiftool application.
Use this to obtain thermal image calibration values, date/time stamps, object distance, and other
parameters saved in FLIR image or video files.

Usage

flirsettings(imagefile, exiftoolpath = "installed”, camvals = NULL)

Arguments

imagefile

exiftoolpath

camvals

Details

Name of the FLIR JPG file to read from, as captured by the thermal camera. A
character string.

A character string that determines whether Exiftool has been "installed" (http://www.sno.phy.queensu.ca/-
or not. If Exiftool has been installed in a specific location, use to direct to the
folder location.

A list of arguments to be passed to Exiftool as described in Exiftool documen-
tation. A character string. Default value (recommended) is "", which will pass
all possible arguments to Exiftool.

The imagefile should be the original captured FLIR JPG file, not a modified JPG. This also works
with FLIR video files (.seq and .fcf).

Exiftool should install on most operating systems. Consult with http://www.sno.phy.queensu.ca/~phil/exiftool/
for information on installing Exiftool. If trouble installing, download Exiftool perl scripts and set
exiftoolpath to the custom folder locationto access the perl scripts that are attached with this pack-

age.

For camvals, provide a character string as described in Exiftool documentation. Set camvals="-
*Emissivity", to simply return the Emissivity value. Set camvals="-*Planck*" for camera calibra-

tion constants.

Note: the Emissivity value is simply that which is stored in the file. It typically is the default value
the camera is set to (0.95), but this does not mean that the true Emissivity of the surface is what is
stored in the file. Similar caution is advised regarding the environmental parameters returned from
the meta tags. User knowledge is required.

flirsettings 23

Value

Returns a list of camera meta tags for use in thermal imaging calculations.
Info is the basic list of camera settings.

Dates will be the date values associated with the image creation, modification etc.

Note

Requires Exiftool be installed. see http://www.sno.phy.queensu.ca/~phil/exiftool/

Author(s)

Glenn J Tattersall

References

1. http://www.sno.phy.queensu.ca/~phil/exiftool/ 2. http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html

Examples

Not run:
To access meta-tag information from a flir jpg or flir file:

Example using the flirsettings functions:

library(Thermimage)
Sample flir jpg included with Thermimage package:

imagefile<-paste@(system.file("extdata/IR_2412.jpg", package="Thermimage"))
Extract meta-tags from thermal image file
cams<-flirsettings(imagefile, exiftool="installed”, camvals="")

cams

Set variables for calculation of temperature values from raw A/D sensor data

Emissivity<-cams$Info$Emissivity # Image Saved Emissivity - should be ~0.95 or 0.96
ObjectEmissivity<-0.96 # Object Emissivity - should be ~0.95 or 0.96
dateOriginal<-cams$Dates$DateTimeOriginal

dateModif<- cams$Dates$FileModificationDateTime

PlanckR1<- cams$Info$PlanckRr1 # Planck R1 constant for camera
PlanckB<- cams$Info$PlanckB # Planck B constant for camera
PlanckF<- cams$Info$PlanckF # Planck F constant for camera
PlanckO<- cams$Info$PlanckO # Planck O constant for camera
PlanckR2<- cams$Info$PlanckR2 # Planck R2 constant for camera
ATAI<- cams$Info$AtmosphericTransAlphal # Atmospheric attenuation constant
ATA2<- cams$Info$AtmosphericTransAlpha2 # Atmospheric attenuation constant
ATB1<- cams$Info$AtmosphericTransBetal # Atmospheric attenuation constant
ATB2<- cams$Info$AtmosphericTransBeta2 # Atmospheric attenuation constant
ATX<- cams$Info$AtmosphericTransX # Atmospheric attenuation constant
0oD<- cams$Info$ObjectDistance # object distance in metres

FD<- cams$Info$FocusDistance # focus distance in metres

ReflT<- cams$Info$ReflectedApparentTemperature # Reflected apparent temperature

24 forcedparameters
AtmosT<- cams$Info$AtmosphericTemperature # Atmospheric temperature
IRWinT<- cams$Info$IRWindowTemperature # IR Window Temperature
IRWinTran<- cams$Info$IRWindowTransmission # IR Window transparency
RH<- cams$Info$RelativeHumidity # Relative Humidity
h<- cams$Info$RawThermalImageHeight # sensor height (i.e. image height)
w<- cams$Info$RawThermalImageWidth # sensor width (i.e. image width)
See also https://github.com/gtatters/Thermimage/README.md
End(Not run)
forcedparameters Parameters required for forced convection equation.
Description
Parameters required for forced convection equation and heat exchange estimation.
Usage
forcedparameters(V = 1, L = 0.1, Ta = 20, shape = "hcylinder")
Arguments
\ Air velocity in metres/second. Used in call to Reynolds(). Default is 0.1.
L Characteristic dimension in metres. Default value is 0.1.
Ta Air temperature in degrees celsius. Used in call to Reynolds(). Default is 20.
shape "sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"
Details
Gates (2003) describes coefficients that characterise the base and exponent values used to calculate
Nusselt numbers from Reynolds number as: c*Re”n. This function will return those parameters.
Value
A vector of length two, with values c and n.
Author(s)

Glenn J Tattersall

forcedparameters

References

25

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

Gates, DM. 2003. Biophysical Ecology. Dover Publications, Mineola, New York, 611 pp.

See Also

freeparameters Nusseltforced

Examples

The function is currently defined as

function (V =1, L = 0.1, Ta

{

= 20, shape =

"hcylinder™)

Re <- Reynolds(V, L, airviscosity(Ta))

if

if

if

if

if

if

if

if

if

3

(shape
shape
(shape
shape
(shape
c = 0.
n=20.5

"plate”

"cylinder”
"plate”) {

(shape
c=0.
n=2o.6

(shape "cylinder”
c <- 0.891

n=20.33

(shape == "cylinder”
c <- 0.821
n = 0.385
(shape == "cylinder"”
c <- 0.615
n = 0.466

(shape == "cylinder”
c <-0.174
n=20.618

(shape == "cylinder”
c <- 0.024
n = 0.805

coeffs <- c(c, n)
names (coeffs) <- c("c",
coeffs

"sphere”) {

& Re

& Re

& Re

& Re

& Re

nnu)

"vplate” | shape == "hplate")

"vcylinder” | shape == "hcylinder")

>= 0.4 & Re < 4) {

>= 4 & Re < 40) {

>= 40 & Re < 4000) {

>= 4000 & Re < 40000) {

>= 40000 & Re < 4e+@5) {

26 frameL ocates

}
Example:
V<-1
L<-0.1
Ta<-20
shape="hcylinder"”
forcedparameters(V, L, Ta, shape)

shape="vcylinder"”
forcedparameters(V, L, Ta, shape)

shape="hplate”
forcedparameters(V, L, Ta, shape)

shape="vplate”
forcedparameters(V, L, Ta, shape)

shape="sphere”
forcedparameters(V, L, Ta, shape)

frameLocates Find the frame read start positions in a FLIR SEQ video file.

Description

Using readBin function, find everywhere in file where the magic-byte/thermal resolution info is
stored: i.e. 640x480, 320x240. These positions denote where the image frame data is found in the
larger video file and will facilitate extraction of image save times and pixel information.

Usage
frameLocates(vidfile = "", w = 640, h = 480)
Arguments
vidfile Filename or filepath (as character) of the thermal video. Should end in .seq or
fcf. Not tested comprehensively so it may only work for certain camera models
and software packages.
w Width resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.
h Height resolution (pixels) of thermal camera.
Details

FLIR cameras have built-in radiometric video saving functions. FLIR software also has similar
video, or time lapse, functionality. These files are typically stored as .seq or .fcf and encode infor-
mation on the thermal imaging camera model, calibration, date/time, etc. These meta-tags can be
extracted using system installed software (Exiftool).

frameL ocates 27

This function makes use of the readBin function in the R base package, by loading a small portion of
the file in raw(). It then searches through this data vector for the magic byte sequence in hexadecimal
(0200wwwwhhhh) where wwww is the image width in little endian hexadecimal, and hhhh is the
image height in little endian hexademical.

The actual start of all the magic byte locations is empirically determined by the repeating pattern of
locations within the file.

Frame refers to the still frame that is to be extracted from the thermal video file.

The function returns a list, containing the "header’ start (h.start) position of each frame and the
’frame’ start (f.start) where pixel data is stored in raw, binary format (at present, in 16-Bit integers).

h.start and f.start can be passed to other functions to extract the precise times of each frame (get-
Times) and to extract the actual frame by frame data (getFrames).

The length of h.start and f.start should be the same. If these are blank, then the detection process
has not worked and the filetype might not be supported by this function.

Warning: this is not tested on all samples of all video file types and may return errors for .fcf files.

Value
Returns a list, containing two vectors, h.start and f.start. These should be the same length.

h.start A vector containing the byte read position start points in the file to extract header
information from each frame. Typically passed to the getTimes function.

f.start A vector containing the byte read position start points in the file to extract raw,
binary pixel data from each frame. Typically passed to the getFrames function.

Note

Requires Exiftool be installed in order to automatically determine thermal image width and height.
If you know the width and height in pixels, then the frame start locations can be determined.

For information on installing Exiftool, see http://www.sno.phy.queensu.ca/~phil/exiftool/

Author(s)

Glenn J Tattersall

References

1. http://www.sno.phy.queensu.ca/~phil/exiftool/ 2. http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html

See Also

getFrames, getTimes, readBin

Examples

x<-framelLocates(vidfile = system.file("extdata”, "SampleSEQ.seq", package = "Thermimage"))
x$h.start
x$f.start

28 freeparameters

freeparameters Parameters required for free convection equation.

Description

Parameters required for free convection equation and heat exchange estimation.

Usage

freeparameters(L = 0.1, Ts = 30, Ta = 20, shape = "hcylinder")

Arguments
L Characteristic dimension in metres. Default is 0.1.
Ts Surface temperature (degrees Celsius) of object. Default is 30.
Ta Air temperature (degrees Celsius) of environment. Defauly is 20.
shape "sphere", "hplate", "vplate", "hcylinder”, "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder".
Details

Gates (2003) describes coefficients that characterise laminar flow patterns describing how to cal-
culate Nusselt numbers for objects of different shapes. This function will return those parameters.
At present, it only supplies coefficients for different shapes, not for laminar vs. turbulent since free
convection is not often used in biological applications.

Value

A vector of length three, with values a, b, and m.

Author(s)

Glenn J Tattersall

References

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

Gates, DM. 2003. Biophysical Ecology. Dover Publications, Mineola, New York, 611 pp.

See Also

Nusseltfree forcedparameters

freeparameters

Examples

The function is currently defined as
function (L = @.1, Ts = 30, Ta = 20, shape = "hcylinder")
{

a=1

Gr <- Grashof(L =1, Ts = Ts, Ta = Ta)

Pr <- Prandtl(Ta)

if (shape == "hcylinder") {

b <- 0.53
m<- 0.25
}
if (shape == "vcylinder") {
b <- 0.726
m<- 0.25
}
if (shape == "hplate”) {
b <-0.71
m<- 0.25
3
if (shape == "vplate") {
b <- 0.523
m<- 0.25
3
if (shape == "sphere”) {
b <- 0.58
m<-0.25
}
coeffs <- c(a, b, m)
names(coeffs) <- c("a”", "b", "m")
coeffs
}
Example:
L<-0.1
Ts<-30
Ta<-20

shape="hcylinder"”
freeparameters(L, Ts, Ta, shape)

shape="vcylinder"”
freeparameters(L, Ts, Ta, shape)

shape="hplate”
freeparameters(L, Ts, Ta, shape)

shape="vplate”
freeparameters(L, Ts, Ta, shape)

shape="sphere”
freeparameters(L, Ts, Ta, shape)

30

getFrames

getFrames

Extract raw binary thermal from thermal image file.

Description

Extracts raw binary thermal image data in integer format as a vector from a flir seq file.

Usage

getFrames(vidfile, framestarts, w = 640, h = 480, 1 = w * h, byte.length = 2,
reverse=FALSE, magic2pixel=32)

Arguments

vidfile

framestarts

byte.length

reverse

magic2pixel

Details

Filename or filepath (as character) of the thermal video. Should end in .seq or
.fcf. Not tested comprehensively with .fcf files, so it may only work for certain
camera models and software packages.

An integer value corresponding to the actual pixel read byte start position in the
thermal video file. Acquired using the frameLocates function.

Width of thermal image.
Height of thermal image

The total size (length) of pixel data corresponding to one image = width * height.
User does not need to set this.

Set to 2 by default. Each pixel information is encoded in two bytes (i.e. 16 bit),
leading to an integer value ranging from 1 to 2”°16. Pixel data are read in order
in the file and converted to integer using the readBin function. User does not
need to set this.

Set to FALSE by default. Will provide the vector in reverse order.

Set to 32 by default. This is the number of bytes ahead of the magicbyte where
pixel information generally starts. User does not need to set this, but this might
help diagnose oddly aligned frames.

This function will load into memory the raw binary pixel data from the entire thermal video file.
Data are stored as read in using the readBin function, but the number of frames read in can be
determined by dividing the length of the vector by (w*h*byte.length). Depending on the size of the
video, this can become quite large.

Frame data is stored as a vector to speed calculations. Thermal video files may exceed memory
capacity of some systems, so processing as arrays or dataframes is generally avoided.

As written, this is a vectorised function, so will only load in one frame is used normally. To load
multiple frames from the video file, use a for-loop (usually slow) or the apply function to import
(faster processing) or parallel apply functions (best).

getFrames 31

Value

Returns a vector of integers, each item corresponding to raw pixel value. With information on
thermal image width and height, the specific image can be reconstructed. To be used in conjunction
with raw2temp function which will convert this raw binary value into an estimated temperature.

Note

Requires Exiftool be installed in order to automatically determine thermal image width and height.
If you know the width and height in pixels, then the frame start locations can be determined.

For information on installing Exiftool, see http://www.sno.phy.queensu.ca/~phil/exiftool/

See convertflirVID function for an alternative to getFrames. The latter is loaded into R, which
has high processor requirements. It is likely more feasible to first convert the thermal video into a
format to be imported into an image stack processing program like Image].

Author(s)

Glenn J Tattersall

References

1. http://www.sno.phy.queensu.ca/~phil/exiftool/ 2. http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html

See Also

framelLocates, getTimes, readBin, raw2temp, convertflirVID

Examples

set w to 640 and h to 480

w<-640

h<-480

f<-system.file("extdata"”, "SampleSEQ.seq", package = "Thermimage")
x<-framelLocates(f, w=w, h=h)

Slow approach:
system. time({
alldata<-matrix(nrow=wxh, ncol=length(x$f.start))
for(i in 1:length(x$f.start)) alldatal,il<-getFrames(f, x$f.start[i], w, h)
»
dim(alldata)

Faster approach

alldata<-NULL

system.time(alldata<-unlist(lapply(x$f.start, getFrames, vidfile=f, w=w, h=h)))
length(alldata)/(wxh)

Parallel approach (requires parallel package. will not be faster on small files)
library(parallel)
alldata<-NULL

32 getTimes

set mc.cores to higher number to use parallel processing
system.time(alldata<-unlist(mclapply(x$f.start, getFrames, vidfile=f, mc.cores=1)))
length(alldata)/(wxh) # number of frames in video

getTimes Extracts time values from binary imported thermal video file

Description

Extracts time values for each image frame from a thermal camera video file (.seq or with some .fcf).
For time lapse or video capture, computer time is stored for each image frame in 3 chunks, denoting
msec, sec, and date information.

Usage

getTimes(vidfile, headstarts, timestart = 900, byte.length = 1)

Arguments
vidfile Filename or filepath (as character) of the thermal video. Should end in .seq or
fcf. Not tested comprehensively so it may only work for certain camera models,
software packages, file type combinations.
headstarts A vector of integers corresponding to the header read byte start positions in the
thermal video file. Acquired using the getFrames function. The header informa-
tion is where the magicbyte + width + height image information is located (ie.
FLIR Cameralnfo Tags from the Exiftool library), as well as information on the
camera, calibration, time of image capture, etc...are stored.
timestart Set to 900 by default. Once the header start location has been determined with
the frameLocates function, the frame times were stored in 900 bytes into the
header. The user should not need to set this.
byte.length Set to 1 by default. User does not need to set this. Deprecated option from an
older version of this function.s
Details

Somewhat empirically determined, but also information provided on the exiftool website below
describes where time stamp information is stored in each file. This function concatentates the 3
time stamps corresponding to msec, sec, and date into one variable that gives the actual time each
image was captured.

As written, this is a vectorised function, so to extract multiple frames of data (i.e. length(headstarts)>1),

use a loop or the apply function as shown in the example below.

Extracted times are used in sumamrising information about the temperature profiles of the thermal
videos and can be passed to the cumulDiff function.

Extracted times can also be used to verify the frame rate of the image capture in the video.

Has not been fully tested on file types from all cameras or thermal imaging software.

glowbowpal 33

Value

Returns a vector of times as characters corresponding to the frame capture times as extracted from
the thermal video file. Times should resemble those returned using Exiftool.

Author(s)

Glenn J Tattersall

References

1. http://www.sno.phy.queensu.ca/~phil/exiftool/
2. http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/FLIR.html
3. http://www.silisoftware.com/tools/date.php

4. http://www.sandersonforensics.com/forum/content.php?131-A-brief-history-of-time-stamps

See Also

getFrames, framelLocates, cumulDiff

Examples

w=640

h=480

f<-system.file("extdata"”, "SampleSEQ.seq", package = "Thermimage")
x<-framelLocates(f, w=w, h=h)

getTimes(f, x$h.start)

only returns the first frame of data, must use lapply to get all frames

Using lapply
extract.times<-do.call("c", lapply(x$h.start, getTimes, vidfile=f))
extract.times

Using parallel lapply (uncomment below):

library(parallel)

set mc.cores to higher number to use parallel processing:

extract.times<-do.call("c"”, mclapply(x$h.start, getTimes, vidfile=f, mc.cores=1))
extract.times

glowbowpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

34 Grashof

Grashof Determines the Grashof number for an object

Description
Determines the Grashof number for an object. The Grashof number is used in calculations of heat
exchange.

Usage

Grashof(L = 1, Ts = 25, Ta = 20)

Arguments
L Characteristic dimension of object in metres. Usually height, depending on ob-
ject shape.
Ts Surface Temperature of object, in degrees Celsius.
Ta Air/Ambient Temperature surrounding object, in degrees Celsius.
Details

The Grashof number is a dimensionless number describing the ability of a parcel of fluid warmer or
colder than the surrounding fluid to rise against or fall with the attractive force of gravity as follows:
Gr=agl"3(Ts-Ta)/v*2 where L is the characteristic dimension, usually the vertical dimension. For
reference, a cylinder’s characteristic L would be its height, assuming it is standing on its end Units
of L should be in metres This L should be the same L as is used for the convective coefficient
calculation Ts is the surface temperature Ta is the ambient temperature v2 is the kinematic viscosity
squared (calculated from airviscosity(Ta))

Author(s)

Glenn J Tattersall

References

Blaxter, K. 1989. Energy Metabolism in Animals and Man. Gates, D. M. 2003. Biophysical
Ecology. Dover Publications, Mineola, New York. 611 pp.

See Also

airviscosity

grey10pal

Examples

Typical values for Grashof number range from ©.016 to 4.6e+09 if Ts-Ta varies from

0.1 to 300C

L<-1

Ts<-30

Ta<-20

Grashof (L, Ts, Ta)

35

greylopal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

grey120pal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

greyredpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

36 hconv

hconv Convective heat coefficient (W/m2/0C)

Description
Calculates the convective heat coefficient for an object of known dimensions, and given various
physical parameters, typically only for laminar flow.

Usage

hconv(Ts=30, Ta=20, V=1, L=0.1, c =NULL, n=NULL, a =NULL, b = NULL, m = NULL,
type = "forced”, shape="hcylinder")

Arguments

Ts Surface temperature (degrees celsius). Required for free convection function
call. Default value is 30.

Ta Air temperature (degrees celsius). Default value is 20.

\Y Air velocity (m/s). Default value is 1.
Characteristic dimension (m) of object. Usually the vertical dimension (i.e.
height). Default value is 0.1.

c coefficient used in forced convection (see Gates, 2003). Default value is NULL,
typical values is 0.24)

n coefficient used in forced convection (see Gates, 2003). Default value is NULL,
typical value is 0.6)

a coefficient used in forced convection (see Gates, 2003). Default value is NULL,
typical value is 1.

b coefficient used in free convection (see Gates, 2003). Default value is NULL,
typical value is 0.58 for upright cylinder, 0.48 for horizontal cylinder.

m coefficient used in free convection. Default is NULL. For laminar flow, m=0.25

type "forced" or "free" - to calculate convection coefficient for either forced or free
convection. Default value is "forced"

shape "sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"

Details

Calculates the convection coefficient for heat transfer estimation by estimating Nusselt’s number.
Used in conjunction with known temperature differences in order to estimate heat transfer via con-
vection. Gates advises to use "forced" convection coefficients down to 0.1 m/s as appropriate for
very low air flow rates, rather than distinguishing between "free" and "forced" convection. Nussel’s
number depends on whether forced or free convection is specified. There may be some conditions
(i.e. combinations of wind speeds, critical dimensions) where Nusselt’s numbers are unspecified,

hotironpal 37

since these values fall outside the range of Reynold’s number for which estimates of convection
coefficients are plausible.

Caution is advised when using hconv without considering the assumptions of convective heat ex-
change, and users are advised to check with Gates (2003) to see if estimates provided with this
function are within the predicted range.

Value

A value corresponding to the convection coefficient, units: W/m/oC.

Author(s)

Glenn J Tattersall

References

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

Gates, DM. 2003. Biophysical Ecology. Dover Publications, Mineola, New York, 611 pp.

See Also

gconv

Examples

The function is currently defined as
function (Ts=30, Ta =20, V=1, L =0.1, ¢ = NULL, n = NULL, a = NULL, b = NULL,
m = NULL, type = "forced”, shape="hcylinder")

{
if (V== 0)
type <- "free”
if (type == "forced” | type == "Forced")
Nu <- Nusseltforced(c = c, n=n, V=V, L =L, Ta = Ta, shape="hcylinder")
if (type == "free" | type == "Free")
Nu <- Nusseltfree(a =a, b=b, m=m, L =L, Ts = Ts, Ta = Ta, shape="hcylinder")
k <- airtconductivity(Ta)
hconv <- Nu * k/L
hconv
}
hotironpal Colour palette extracted from FLIR thermal camera files
Description

A text file containing the palette information for use in thermal images

38 Ld

ironbowpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

Ld Estimates downward facing longwave radiation (W/m2)

Description
Estimates downward incoming longwave radiation (W/m2) using relationship derived from Konzel-
mann et al. 1994.

Usage
Ld(Ta = 20, RH = 0.5, n = 0.5)

Arguments
Ta Local air temperature (degrees Celsius), ~ 2 m above ground
RH Local relative humidity (fractional value from 0 to 1)
n Fractional cloud cover (fractional value from O to 1)

Details

By estimating the sky emissivity, from information on humidity and cloud cover, the incoming
infrared radiation can be estimated using the Stephan-Boltzmann relationship: emissivity*Stephan
Boltzmann constant * TA4. The effective atmospheric emissivity is determined from known cloud
emissivity (0.97) and empirically determined clear sky emissivities.

Value

A value, vector of length one, corresponding to the incoming longwave radiation, units: W/m?2.

Author(s)

Glenn J Tattersall

References

Konzelmann et al 1994. Parameterization of global and longwave incoming radiation for the Green-
land ice-sheet. Global and Planetary Change. 9: 143-164.

locate.fid 39

See Also

Lw

Examples

Returns a value in W/m2 of the estimated incoming longwave radiation
Example calculation:

Ta<-30
RH<-0.5

n<-9

Ld(Ta, RH, n)

locate.fid Returns the index locations that match vector fid within data vector.

Description
Returns the index locations that match vector fid within data vector. Used mostly to search for
magic byte locations in a raw vector, but can be used to search any vector for locations of fid.
Usage

locate.fid(fid, vect, long = TRUE, zeroindex = TRUE)

Arguments
fid A lookup vector, typically numeric, which can be 1 element long or greater.
Typical use is 2 elements long. fid<-c(1,2). This sequence of values will be
searched within the data vector, vect.
vect Data vector of interest, within which fid will be searched.
long Default is TRUE, will use a slower algorithm. When long=true, any length of fid
can be used to search in vector. Computing time also depends on the length of
fid. Caution advised when setting long = FALSE. Null values maye be returned.
zeroindex Whether you wish the returned values to reference 0 as the starting index or 1 as
the starting index. Natural byte reading starts at 0, but in R, indexes start at 1,
so set zeroindex=FALSE if you using this simply as a vector lookup tool in R.
Default is TRUE.
Details

Returns the positions within the data vector where fid is found. Do not use this function if fid is
length = 1. Use which(). If length(fid)>1, the elements of fid must be adjacent and in that specific
order.

40 Lu

Value

An object of type integer, to be used as an index subset.

Author(s)

Glenn J. Tattersall

See Also

match which

Examples

Similar to the which or match functions in package::base, except that this returns the
index placement where variable fid occurs in data

Define a vector
s<-c(2,3,42,38,88,33,55,99,32,56,22,48,1,2,3,5,6,7,8,9,10,12,20)

Define what fid sequence to look for: i.e. what adjacent elements to look for in
this order

fid<-c(22,48)

look for all instances where 22 and 48 occur together, using locate.fid
system. time(where.locate<-locate.fid(fid,s,long=FALSE, zeroindex=FALSE))
where.locate

verify that locate.fid worked by subsetting s, using where.locate as index
s[where.locate]

system.time(where.locate<-locate.fid(fid,s,long=TRUE, zeroindex=FALSE))
s[where.locate]

longer algorithm check

#i#t# Define a vector of 100000 random numbers from 1 to 100

s<-ceiling(runif (100000, 0, 100))

Define what fid sequence to look for: i.e. what adjacent elements to look for in
this order

fid<-c(22,48)
system.time(where.locate<-locate.fid(fid,s,long=TRUE,zeroindex=FALSE))

where.locate

verify that locate.fid worked by subsetting s, using where.locate as index
s[where.locate]

Lu Estimates upward facing ground radiation (W/m2)

Description

Estimates upward facing ground radiation (W/m2), from the Stephan Boltzmann relationship and
ground temperature

Lu 41

Usage

Lu(Tg = 20, Eground = 0.97)

Arguments

Tg Ground temperature (degrees celsius)

Eground Emissivity of soil or ground. Default value is 0.97.
Details

Calculates ground radiation facing upward. Assumes ground emissivity = 0.97. Terrain emissivities
vary from 0.89 (sand, snow) to 0.97 (moist soil) - Blaxter, 1986

Value

A value, vector of length one, corresponding to the longwave radiation from the ground, units:
W/m2.

Author(s)

Glenn J Tattersall

References

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

See Also

Ld

Examples

Estimates ground generated longwave radiation rising up. Units W/m2.
Example calculation:

Tg<-30

Eground<-0.97

Lu(Tg, Eground)

42 Lw

Lw Estimates downward facing longwave radiation (W/m?2)

Description
Estimates downward facing longwave radiation (W/m2) using a relationship derived from Gabathuler
et al 2001

Usage

Lw(Ta = 20, RH = 0.5, n = 0.5)

Arguments
Ta Local air temperature (degrees Celsius), ~ 2 m above ground
RH Local relative humidity (fractional value from 0 to 1)
n Fractional cloud cover (fractional value from O to 1)

Details

An alternative to Ld() for estimating incoming radiation by determining an offset temperature to
account for the influence of atmospheric transmission loss. The incoming infrared radiation is
estimated using the Stephan-Boltzmann relationship: emissivity*Stephan Boltzmann constant*T*4

Value

A value, vector of length one, corresponding to the incoming longwave radiation, units: W/m?2.

Author(s)

Glenn J Tattersall

References
Gabathuler et al 2001. Parameterization of incoming longwave radiation in high mountain environ-
ments. Physical Geography 22: 99-114

See Also

Ld

meanEveryN 43

Examples

Example calculation:
Ta<-30

RH<-0.5

n<-9

Lw(Ta, RH, n)

meanEveryN Calculate the mean every nth data point.

Description

meanEveryN calculates the mean of a vectorised data set (x) at N intervals. Means are calculated
by centring around every nth data point in the vector. Upon running the function, it attempts to
subdivide the vector into n discrete intervals. If the vector length is not fully divisible by n, then the
remainder elements are forced to NA values and the final mean calculated.

The function returns a labelled matrix, with the average index as the first column and the mean over
that range of data.

Usage

meanEveryN(x, n = 2, lag = round(n/2),showsamples=FALSE)

Arguments
X numeric vector containing the data over which mean is required. Typically this
is a vector of data that has been sampled at even time intervals (represented by
n).
n the sample interval over which the mean will be calculated. Default is 2 (as in
every 2nd data point). At minimum this must be >1.
lag default value is half the sample interval, n, which will ensure the calculation is
centred over the new sample interval. Not tested for any other situation. Leave
blank to have function operate as intended.
showsamples default value is false. Determines whether to output a matrix where the first
column contains the mean sample #. If true, the mean sample number is included
with the mean calculations of the variable of interest, x. If false, then only a
vector containing the mean values of x will be provided.
Details

The general purpose of this function is to assist with time based averaging a data stream typically
sampled at evenly recorded time intervals common to computerised data acquisition systems. Akin
to a moving average function, except that it also resamples the data.

44 midgreypal

Value

A matrix object returned

Author(s)

Glenn J. Tattersall

See Also

slopeEveryN

Examples

Define a vector of 50 random numbers from 1 to 100
#s<-ceiling(runif (50, 0, 100))

#x<-seq(1,50,1)

Calculate the mean value every 4th point
#s10<-meanEveryN(s,4)

#plot(x,s,type="1",col="red")
#lines(s10,col="black")

medicalpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

midgreenpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

midgreypal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

mikronprismpal 45

mikronprismpal Colour palette extracted from Mikron thermal camera files

Description

A text file containing the palette information for use in thermal images

mikroscanpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

mirror.matrix Mirrors a matrix upside-down. Used in re-arranging image data for
plotting properly in R.

Description

Mirrors a matrix upside-down. Used in re-arranging image data for plotting properly in R.

Usage

mirror.matrix(x)

Arguments

X A matrix corresponding to raster or image data.

Value

Returns a matrix

Author(s)

Glenn J Tattersall

See Also

flip.matrix rotate90.matrix rotate270.matrix rotate180.matrix

46 nameleadzero

Examples

The function is currently defined as
function (x)
{

xx <- as.data.frame(x)

XX <= rev(xx)

XX <- as.matrix(xx)

XX

par(mfrow=c(2,1),mar=c(1,1,1,1))
r<-c(1:100,rnorm(1:100)*10,1:100)
m<-matrix(r,50)

image(m, axes=FALSE)

box ()
text(.5,.5,"Matrix",col="white")
mf<-mirror.matrix(m)

image (mf, axes=FALSE)

box ()
text(.5,.5,"Mirror"”,col="white")

od B o O O OE H M

nameleadzero Add leading zeros to character for easy sequential naming of file-
names.

Description

Returns a character with leading zeros according to the total number of filenames to be created.

Useful when exporting multiple images arising from imported video data stored as a matrix or

dataframe. By providing a base root name, the function will then add leading zeroes ahead of the

number suffix (counter variable), according to the no.digits requested (i.e. Img0001.png, Img0002.png,...Img9999.png).
Best used inside a loop exporting images.

Usage

nameleadzero(filenameroot = "Img", filetype = ".png"”, no.digits = 5, counter = 1)

Arguments

filenameroot Prefix or root filename, supplied as a character vector.
filetype The type of file to be saved, as a character. i.e. ".png", or ".csv".

no.digits The total number of digits required for the suffix portion of the complete file-
name. Use 2 if numbers range from 1 to 99.

counter The specific counter to add to the suffix. Typically counter is a number.

Nusseltforced 47

Details

Although this returns a single character value with leading zeros, it could be used in a loop to create
a new, incremented file name (i.e. Img0001.png, Img0002.png, Img0003.png,... Img9999.png), or
wrapped in an apply function:

Value

Returns a character value.

Author(s)

Glenn J Tattersall

Examples

Using for-loop

prefix<-"Img_"

filetype<-".png"

no.digits<-2

for(i in 1:10){
f.txt<-nameleadzero(prefix, filetype, no.digits, counter=i)
print(f.txt)

3

Using an apply function
x<-unlist(lapply(1:10, nameleadzero, filenameroot="Img_", filetype=".png", no.digits=2))
X

Nusseltforced Nusselt number for forced convection.

Description

Nusselt number for forced convection. Used in estimating convective heat loss. Typical values of ¢
and n are 0.24 and 0.6, respectively. This function sets ¢ and n to NULL to force shape calculation
checks.

Usage

Nusseltforced(c = NULL, n = NULL, V=1, L = 0.1, Ta = 20, shape="hcylinder"”)

48

Arguments

C

v
L
Ta

shape

Author(s)

Glenn J Tattersall

References

Nusseltfree

coefficient used in calculating Nusselt number. Default is NULL

coefficient used in calculating Nusselt number. Default is NULL

Air velocity in metres/second. Used in call to Reynolds(). Default value is 1.
Characteristic dimension in metres. Default value is 0.1.

Air temperature in degrees celsius. Used in call to Reynolds().

"non "non

"sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"

Gates, DM. 2003. Biophysical Ecology. Dover Publications, Mineola, New York, 611 pp. Blaxter,
K. 1989. Energy Metabolism in Animals and Man

Examples

The function is currently defined as
function (¢ = NULL, n = NULL, V =1, L = 0.1, Ta = 20, shape="hcylinder")

{

Nu <- ¢ * Reynolds(V, L, Ta)"n

Nu
3

Example

Usually called from the hconv() or qconv() functions

V<-1
L<-0.1
Ta<-20

shape="hcylinder"”

Nu<-Nusseltforced(V=V, L=L, Ta=Ta, shape=shape)

Nusseltfree

Nusselt number for free convection.

Description

Nusselt number for free convection. Used in calculating heat loss by convection.

Usage

Nusseltfree(a=NULL, b = NULL, m=NULL, L =0.1, Ts = 25, Ta = 20, shape="hcylinder")

Nusseltfree 49

Arguments
a Coefficient used in calculating Nu. a is normally 1, except for turbulent flow.
b Coefficient used in calculating Nu. b is 0.58 for upright cylinders, 0.48 for
horizontal cylinders.
m Coefficient used in calculating Nu. m=0.25 for laminar flow.
L Characteristic dimension in metres.
Ts Surface temperature in degrees celsius. Used in call to Grashof() function.
Ta Air temperature in degrees celsius. Used in call to Grashof() function.
shape "sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"
Author(s)
Glenn J Tattersall
References

Blaxter, K. 1989. Energy Metabolism in Animals and Man Gates, DM. 2003. Biophysical Ecology.
Dover Publications, Mineola, New York, 611 pp.

Examples

The function is currently defined as
function (a=NULL, b = NULL, m = NULL, L = 0.1, Ts = 20, Ta = 20)
{
Nu <- b x (Grashof(L, Ts, Ta)*Prandtl(Ta)”*a)’m
Nu
}

Nusselt number for free convection
Example calculation:

a<-1

b<-0.58

m<-0.25

L<-1

Ts<-30

Ta<-20
Nusseltfree(a,b,m,L,Ts,Ta)

Free convection is higher when surface temperatures are elevated. This is the effect
that free convection predicts: greater molecular energy of air surrounding a warmer surface
leading to air currents over top of a warm surface.

Ts<-40
Nusseltfree(a,b,m,L,Ts,Ta)

50 palette.choose

palette.choose Choose a colour palette for gradient filling thermal image files.

Description
Choose from among three the following colour palettes: flir, glowblow, grey120, grey10, greyred,
hotiron, ironbow, medical, midgreen, midgrey, mikronprism, mikroscan, rain, and yellow.

Usage

palette.choose(colscheme)

Arguments
colscheme A colour palette from the following: flir, glowblow, grey, grey10, greyred, hot-
iron, ironbow, medical, midgreen, midgrey, mikronprism, mikroscan, rain, and
yellow.
Details

non

Colscheme is a character description drawn from the following list: ("flir", "glowblow", "grey120",
"grey10", "greyred", "hotiron", "ironbow", "medical", "midgreen", "midgrey", "mikronprism", "mikroscan",
"rain", "yellow")

palnames<-c("flir", "glowblow", "grey120", "grey10", "greyred", "hotiron", "ironbow", "medical",

"non non non "non

"midgreen", "midgrey", "mikronprism", "mikroscan", "rainbowpal", "yellowpal")

where "flir" is palnames[1], "rain" is palnames[13]

Value
Returns a palette to be used in various graphics functions where ’col=palette’ is requested. The
palette vector is formatted for use as gradient fills in plotting functions.

Author(s)

Glenn J. Tattersall

Examples

#itHHH Example ###H#HE

palnames<-c("flir"”, "ironbow”, "mikronprism”, "glowbow"”, "grey120", "greyl10", "greyred",
"hotiron”, "medical”, "midgreen”, "midgrey", "mikroscan”, "yellowpal”, "rainbowpal")
palnames<-as.matrix(palnames)

plotTherm 51

pals<-apply(as.matrix(palnames),1,palette.choose)
add palnames to a list to call in image function below

par(mfrow=c(4,1),mar=c(1,0.3,1,0.3))
r<-c(1:500)
m<-matrix(r,500)

Show palettes

image(m, axes=FALSE, col=flirpal, main="Flir Standard Palette"”)
image(m, axes=FALSE, col=ironbowpal, main="Ironbow Palette")

smaller palette for faster plotting

image(m, axes=FALSE, col=mikronprismpal, main="Mikron Prism Palette”)
image(m, axes=FALSE, col=glowbowpal, main="Glowbow Palette")
image(m, axes=FALSE, col=greyl120pal, main="Grey120 Palette")
image(m, axes=FALSE, col=greyl10@pal, main="Greyl10@ Palette")
image(m, axes=FALSE, col=greyredpal, main="Greyred Palette")
image(m, axes=FALSE, col=hotironpal, main="Hotiron Palette")
image(m, axes=FALSE, col=medicalpal, main="Medical Palette”)
image(m, axes=FALSE, col=midgreypal, main="Midgrey Palette")
image(m, axes=FALSE, col=mikroscanpal, main="Mikroscan Palette")
image(m, axes=FALSE, col=rainbowpal, main="Rainbow Palette")
image(m, axes=FALSE, col=yellowpal, main="Yellow Palette")

Palettes can be run in reverse

par(mfrow=c(2,1),mar=c(1,0.3,1,0.3))

image(m, axes=FALSE, col=flirpal, main="Flir Standard Palette"”)

image(m, axes=FALSE, col=rev(flirpal), main="Reverse Flir Standard Palette")

plotTherm Plot thermal image data for visualisation purposes.

Description

A quick way to plot and visualise thermal image data using the fields package image.plot function.

Usage

plotTherm(bindata, templookup = NULL, w, h, minrangeset = 20, maxrangeset = 40, trans="1",
main = NULL, thermal.palette = flirpal)

Arguments

bindata An integer vector of raw binary thermal information (usually) extracted from
a thermal video or image using the getFrames or readflirJPG functions to be
converted to temperature and summarised. Instead, this can be a vector of tem-
perature values (numeric); if so, then templookup should be set to NULL or
ignored.

52

templookup

minrangeset
maxrangeset

trans

main

thermal.palette

Details

plotTherm

A vector of temperatures converted using the raw2temp function, corresponding
to the conversion from raw binary thermal information to calibrated temperature
estimates. Typically will be vector of numbers 2216 long, for a 16-bit camera.
Default is NULL, which assumes that dat has already been converted to temper-
ature.

Width resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

Height resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

The minimum temperature to scale the raster plot z (temperature) value to.
The maximum temperature to scale the raster plot z (temperature) value to.

Transformation to apply to image matrix. Default is I, the identity matrix,
which will plot the image without transformation. Options are mirror.matrix,
rotate90.matrix, rotate270.matrix, rotate180.matrix, flip.matrix.

Title to plot on image. Default is NULL.

Palette to use for the thermal image plot. Default is ironbowpal (FLIR stan-
dard prism palette). See examples in the palette.choose() function, or provide a
custom palette.

Experience has shown that it is challenging to set the scale bar to align nicely
with the rasterised image, so the user is left to explore the image.plot() function
on their own. It may help to set the plot area size first to get nicely aligned image
and scale bars. The following option has worked in testing: par(pin=c(6,4.5))

This function is a simplified wrapper to call the image.plot function in the fields package. Not all
options are implemented, but default ones are shown here.

Value

Provides a rasterised plot based on a vector of data from a thermal image file.

Author(s)

Glenn J Tattersall

References

Douglas Nychka, Reinhard Furrer, John Paige and Stephan Sain (2015). "fields: Tools for spa-
tial data." doi: 10.5065/D6W9S57CT (URL.: http://doi.org/10.5065/D6W957CT), R package version
8.10, <URL: www.image.ucar.edu/fields>.

plotTherm 53

Examples

m = 400 # grid size

C = complex(real=rep(seq(-1.8,0.6, length.out=m), each=m),
imag=rep(seq(-1.2,1.2, length.out=m), m))

C = matrix(C,m,m)

Z =20
array(@, c(m,m,20))

>
1

for (k in 1:10) {

Z = 7"2+C

X[, ,k]1 = exp(-abs(Z))
3

for (k in 1:10){
x<-as.matrix(X[,,k], nrow=400)
x[is.na(x)J<-min(x, na.rm=TRUE)
plotTherm(x, w=400, h=400, minrangeset=min(x), maxrangeset=max(x))

3

set w to 640 and h to 480

w<-640

h<-480

f<-system.file("extdata"”, "SampleSEQ.seq", package = "Thermimage")
x<-frameLocates(f)

suppressWarnings(templookup<-raw2temp(1:65535))
alldata<-unlist(lapply(x$f.start, getFrames, vidfile=f, w=w, h=h))
alldata<-matrix(alldata, nrow=wxh, byrow=FALSE)
alltemperature<-templookup[alldatal
alltemperature<-unname(matrix(alltemperature, nrow=wxh, byrow=FALSE))

Plot
plotTherm(alldatal,2], templookup=templookup, w=w, h=h, minrangeset=min(alldata),
maxrangeset=max(alldata), trans="mirror.matrix")

Plot all frames using binary data with templookup
x<-apply(alldata, 2, plotTherm, templookup=templookup, w=w, h=h, minrangeset=20,
maxrangeset=40, trans="mirror.matrix")

Plot all frames using converted temperature data
x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
maxrangeset=max(alltemperature), thermal.palette=flirpal, trans="mirror.matrix")

Try other palettes:
#x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
#maxrangeset=max(alltemperature), thermal.palette=rainbowpal, trans="mirror.matrix")

#x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
#maxrangeset=max(alltemperature), thermal.palette=midgreypal, trans="mirror.matrix")

54 Prandtl

#x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
#maxrangeset=max(alltemperature), thermal.palette=midgreenpal, trans="mirror.matrix")

#x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
#maxrangeset=max(alltemperature), thermal.palette=greyredpal, trans="mirror.matrix")

#x<-apply(alltemperature, 2, plotTherm, w=w, h=h, minrangeset=min(alltemperature),
#maxrangeset=max(alltemperature), thermal.palette=hotironpal, trans="mirror.matrix")

Prandtl Returns the Prandtl number

Description

Returns the Prandtl number

Usage
Prandtl(Ta = 20)

Arguments

Ta Air temperature in degrees Celsius. Default value is 20.

Details

Returns the Prandlt number

Author(s)

Glenn J Tattersall

References

Blaxter, K. 1989. Energy Metabolism in Animals and Man Gates, D. M. 2003. Biophysical Ecol-
ogy. Dover Publications, Mineola, New York. 611 pp.

Examples

Example:
Ta<-30
Prandtl(Ta)

gabs 55

gabs Estimates the absorbed solar and infrared radiation (W/m2)

Description
Estimates the absorbed solar radiation and infrared radiation (W/m2) of an object using known
physical relationships.

Usage
gabs(Ta = 20, Tg = NULL, RH = 0.5, E = 0.96, rho = 0.1, cloud = @, SE = 100)

Arguments

Ta Air temperature (degrees Celsius). Default value is 20. Used to estimate ground
temperature if Tg is unavailable.

Tg Ground temperature (degrees Celsius). Default value is NULL, but a measured
Tg can be substituted or estimated with other functions.

RH Relative humidity (fraction O to 1). Default value is 0.5. Used in call to Ld() to
determine incoming radiation.

E Emissivity (fraction O to 1) of the object absorbing longwave radiation. Accord-
ing to Kirschoff’s law, emissivity = absorptivity. Absorptivity is multiplied by
the average of the incoming longwave radiation to estimate absorbed radiation.

rho Reflectivity (fraction 0 to 1) of the object absorbing solar radiation. Used to
modify absorbed solar energy. Default is 0.1.

cloud Fractional cloud cover (fraction from O to 1). Used in call to Ld() to determine
incoming radiation. Default is 0.

SE Solar energy (W/m2), usually measured. Default is 100.

Details

Total solar radiation must be supplied at this stage. The calculation here provides the worst case
scenario since since no profile/angle metrics are yet taken into account. The animal could change
orientation to/away from solar beam.

Author(s)

Glenn J Tattersall

References
Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

See Also
Ld LuLdgrad

56 gcond

Examples

The function is currently defined as
function (Ta = 25, Tg = NULL, RH = 0.5, E = 0.96, rho = 0.1,
cloud = @, SE = 100)

{
if (length(SE) == 1)
SE <- rep(SE, length(Ta))
if (is.null(Tg))
Tg <- Tg(Ta, SE)
Ld <- Ld(Ta, RH = RH, n = cloud)
Lu <- Lu(Tg)
IR <- E * (Lu + Ld)/2
gabs <- (1 - rho) * SE + IR
qabs
}
Example:
Ta<-25
Tg<-30
RH<-0.5
E<-0.96
rho<-0.1
cloud=0
SE<-100

gabs(Ta, Tg, RH, E, rho, cloud, SE)

If Tg is unknown it can be set to NULL, and the qgabs function will estimate Tg from
an empirical relationship of Tg vs Ta and SE from the Tground() function

gabs(Ta, Tg=NULL, RH, E, rho, cloud, SE)

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

gcond Estimates the area specific heat transfer by conduction (W/m2)

Description

Estimates the area specific heat transfer by conduction (W/m?2). Positive

Usage
qgcond(Ts = 30, Tc = 20, ktiss = 0.502, x = 1)

Arguments

Ts Surface temperature (degrees Celsius). Default value is 30.

gconv 57

Tc Contact temperature (degrees Celsius), usually ground temperature. Default
value is 20.

ktiss Thermal conductivity of tissue (W/m/oC).

X Distance over which heat is conducted. Default value is 1 m (unrealistic, but

easier for converting)

Details
Usually conductive heat transfer is ignored given little surface area will be in contact with the
ground, but this is included for functionality.

Author(s)

Glenn J Tattersall

References
Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

See Also

grad gconv

Examples

The function is currently defined as
function (Ts = 30, Tc = 20, ktiss = 0.502, x = 1)

{
qcond <- ktiss * (Tc - Ts)/x
qgcond
}
gconv Estimates the area specific heat transfer by convection (W/m2)
Description

Estimates heat transfer by convective heat exchange, using the heat transfer coefficient estimate,
surface temperature, and air temperature. Positive value = heat gain from air to object. Negative
value = heat loss from object to air.

Usage

qconv(Ts =30, Ta=20, V=1, L =0.1, ¢ =NULL, n =NULL, a=NULL, b = NULL, m = NULL,
type = "forced”, shape="hcylinder")

58

Arguments

Ts
Ta
\
L

type

shape

Details

gconv

Surface temperature (degrees celsius). Default value is 30.
Air temperature (degrees celsius). Default value is 20.
Air velocity (m/s). Default value is 1.

Characteristic dimension (m) of object. Usually the vertical dimension (i.e.
height). Default value is 0.1.

coefficient used in forced convection (see Blaxter, 1986, default value is 0.24).
see forcedparameters() for details.

coefficient used in forced convection (see Blaxter, 1986, default value is 0.6).
see forcedparameters() for details.

coefficient used in free convection (see Gates, 2003. default value is 1). see
freeparameters() for details.

coefficient used in free convection (0.58 upright cylinder, 0.48 flat cylinder, de-
fault value is 0.58). see freeparameters() for details.

coefficient used in free convection (0.25 laminar flow, default value is 0.25). see
freeparameters() for details.

"forced" or "free" - to calculate convection coefficient for either forced or free
convection. Default value is "forced".

"non "non

"sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"

Estimates an area specific rate of heat transfer (W/m2), where a negative value depicts heat loss
from surface to air, while positive value depicts heat gain from air to surface. Uses the gradient
in temperature (Ta minus Ts) multiplied by a convection coefficient to estimate heat transfer from
a surface. Designed for estimating steady state heat exchange from animal surfaces using thermal

images.

Author(s)

Glenn J Tattersall

References

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,

UK, 340 pp.

See Also

hconv, forcedparameters, freeparameters

qrad 59

Examples

The function is currently defined as
function (Ts = 30, Ta =20, V=1, L =0.1, ¢ = NULL, n = NULL, a=NULL,
b = NULL, m = NULL, type = "forced”", shape="hcylinder")

qconv <- (Ta - Ts) * hconv(Ta =20, V=1, L =0.1, ¢ = NULL, n = NULL, a=NULL,
b = NULL, m = NULL, type = "forced", shape="hcylinder")
gconv

3

Example:

Ts<-30

Ta<-20

V<-1

L<-0.1
type="forced"
shape="hcylinder”

qgconv(Ts=Ts, Ta=Ta, V=V, L=L, type=type, shape=shape)
gconv(Ts=Ts, Ta=Ta, V=V, L=L, type=type, shape="sphere")

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

grad Estimates the area specific heat transfer by radiation (W/m2)

Description

Estimates heat transfer by radiation (W/m2), using the absorbed radiation estimate from gabs() mi-
nus emitted radiation from the object surface (determined from thermal image surface temperature
estimates). Positive value = heat gain from environment to object. Negative value = heat loss from
object to environment.

Usage
grad(Ts = 30, Ta = 25, Tg = NULL, RH = 0.5, E = 0.96, rho = 0.1, cloud = @, SE = @)

Arguments
Ts Surface temperature (degrees Celsius) of the object. Default value is 30.
Ta Air temperature (degrees Celsius), or effective atmospheric temperature. De-
fault value is 25.
Tg Ground temperature (degrees Celsius) to estimate longwave ground radiation.

Default value is NULL, since Tg can be estimated from Ta unless otherwise
measured.

60 qrad

RH Relative humidity (fraction O to 1). Default value is 0.5. Used in call to Ld() to
determine incoming radiation.

E Emissivity (fraction O to 1) of the object absorbing longwave radiation. Accord-
ing to Kirschoff’s law, emissivity = absorptivity. Absorptivity is multiplied by
the average of the incoming longwave radiation to estimate absorbed radiation.

rho Reflectivity (fraction O to 1) of the object absorbing solar radiation. Used to
modify absorbed solar energy. Default is 0.1.
cloud Fractional cloud cover (fraction from O to 1). Used in call to Ld() to determine
incoming radiation. Default is 0.
SE Solar energy (W/m2), usually measured. Default is 100.
Details

Total solar radiation must be supplied at this stage. The calculation here provides the worst case
scenario since since no profile/angle metrics are yet taken into account. The animal could change
orientation to/away from solar beam.

Author(s)

Glenn J Tattersall

References

Blaxter, 1986. Energy metabolism in animals and man. Cambridge University Press, Cambridge,
UK, 340 pp.

See Also
Ld Lu Ld gabs

Examples

The function is currently defined as
function (Ts = 30, Ta = 25, Tg = NULL, RH = 0.5, E = 0.96, rho = 0.1,
cloud = @, SE = 0)
{
grad <- gabs(Ta = Ta, Tg = Tg, RH = RH, E = E, rho = rho,
cloud = cloud, SE = SE) - E * StephBoltz() * (Ts + 273.15)"4
grad
}

Example:
Ts<-30
Ta<-25
Tg<-28
RH<-0.5
E<-0.96
rho<-0.1
cloud<-0

rainbow 1234pal 61

SE<-100
grad should result in a positive gain of heat:
grad(Ts, Ta, Tg, RH, E, rho, cloud, SE)

if rho is elevated (i.e. doubles reflectance of solar energy), heat exchange by
radiation is reduced

rho<-0.2

grad(Ts, Ta, Tg, RH, E, rho, cloud, SE)

But if solar energy = 0, under similar conditions, grad is negative:
SE<-0
grad(Ts, Ta, Tg, RH, E, rho, cloud, SE)

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

rainbow1234pal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

rainbowpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

raw2temp Converts raw thermal data into temperature (oC)

Description

Converts a raw value obtained from binary thermal image video file into estimated temperature
using standard equations used in infrared thermography.

Usage

raw2temp(raw, E =1, OD = 1, RTemp = 20, ATemp = RTemp, IRWTemp = RTemp, IRT =1,
RH = 50, PR1 = 21106.77, PB = 1501, PF = 1, PO = -7340, PR2 = 0.012545258,
ATA1=0.006569, ATA2=0.01262, ATB1=-0.002276, ATB2=-0.00667, ATX=1.9)

62

Arguments

raw

oD
RTemp

ATemp

IRWTemp

IRT

RH
PR1
PB
PF
PO
PR2
ATAT
ATA2
ATBT
ATB2
ATX

Details

raw2temp

A/D bit signal from FLIR file. FLIR .seq files and .fcf files store data in a
16-bit encoded value. This means it can range from O up to 65535. This is
referred to as the raw value. The raw value is actually what the sensor detects
which is related to the radiance hitting the sensor. At the factory, each sensor
has been calibrated against a blackbody radiation source so calibration values
to conver the raw signal into the expected temperature of a blackbody radiator
are provided. Since the sensors do not pick up all wavelengths of light, the
calibration can be estimated usinga limited version of Planck’s law. But the
blackbody calibration is still critical to this.

Emissivity - default 1, should be ~0.95 to 0.97 depending on object of interest.
Determined by user.

Object distance from thermal camera in metres

Apparent reflected temperature (0C) of the enrivonment impinging on the object
of interest - one value from FLIR file (0C), default 20C.

Atmospheric temperature (0C) for infrared tranmission loss - one value from
FLIR file (oC) - default value is set to be equal to the reflected temperature.
Transmission loss is a function of absolute humidity in the air.

Infrared Window Temperature (0C). Default is set to be equivalent to reflected
temp (0C).

Infrared Window transmission - default is set to 1.0. Likely ~0.95-0.97. Should
be empirically determined. Germanium windows with anti-reflective coating
typically have IRTs ~0.95-0.97.

Relative humidity expressed as percent. Default value is 50.

PlanckR1 - a calibration constant for FLIR cameras

PlanckB - a calibration constant for FLIR cameras

PlanckF - a calibration constant for FLIR cameras

PlanckO - a calibration constant for FLIR cameras

PlanckR2 - a calibration constant for FLIR cameras

ATAL1 - an atmospheric attenuation constant to calculate atmospheric tau
ATA?2 - an atmospheric attenuation constant to calculate atmospheric tau
ATBI1 - an atmospheric attenuation constant to calculate atmospheric tau
ATB2 - an atmospheric attenuation constant to calculate atmospheric tau

ATX - an atmospheric attenuation constant to calculate atmospheric tau

Note: PR1, PR2, PB, PF, and PO are specific to each camera and result from the calibration at
factory of the camera’s Raw data signal recording from a blackbody radiation source. Sample
calibration constants for three different cameras (FLIR SC660 with 24x18 degree lens, FLIR T300
with 25x19 degree lens, FLIR T300 with 2xtelephoto.

Calibration Constants by cameras: SC660, T300(250), T300(250 with telephoto)

raw2temp 63

Constant FLIR SC660 FLIR T300 FLIR T300(t)

PR1: 21106.77 14364.633 14906.216
PB: 1501 1385.4 1396.5
PF: 1 1 1

PO: -7340 -5753 -7261
PR2: 0.012545258 0.010603162 0.010956882

PR1: PlanckR1 calibration constant PB: PlanckB calibration constant PF: PlanckF calibration con-
stant PO: PlanckO calibration constant PR2: PlanckR2 calibration constant

The calibration constants allow for the raw digital signal conversion to and from the predicted
radiance of a blackbody, using the standard equation:

temperature<-PB/log(PR1/(PR2*(raw+PO))+PF)-273.15
Also used in calculations for transmission loss are the following constants:

ATA1: Atmospheric Trans Alpha 1 0.006569 ATA2: Atmospheric Trans Alpha 2 0.012620 ATB1:
Atmospheric Trans Beta 1 -0.002276 ATB2: Atmospheric Trans Beta 2 -0.006670 ATX: Atmo-
spheric Trans X 1.900000

Some files may return slightly different ATA1, ATA2, ATB1, ATB2, and ATX values. Use the
flirsettings function to find out what constants are used for your files.

Value

Returns numeric value in degrees C. Can handle vector or matrix objects

Warning

Raw values need to be greater than PlanckO constant

Author(s)

Glenn J. Tattersall

References

1. http://130.15.24.88/exiftool/forum/index.php/topic,4898.60.html

2. Minkina, W. and Dudzik, S. 2009. Infrared Thermography: Errors and Uncertainties. Wiley
Press, 192 pp.

See Also

temp2raw

64 readflirJPG

Examples

General Usage:
raw2temp(raw,E,OD,RTemp,ATemp, IRWTemp, IRT,RH,PR1,PB,PF,P0O,PR2,ATA1,ATA2,ATB1,ATB2,ATX)

#

Example with all settings at default/blackbody levels:
raw2temp(18109,1,0,20,20,20,1,50,PR1=21106.77,PB=1501,PF=1,P0=-7340,PR2=0.012545258,
ATA1=0.006569, ATA2=0.01262, ATB1=-0.002276, ATB2=-0.00667, ATX=1.9)

Example with emissivity=0.95, distance=1m, window transmission=0.96, all temperatures=20C,
50 RH:

raw2temp(18109,0.95,1,20,20,20,0.96,50)
Note: default calibration constants for the FLIR camera will be used if you leave out the
calibration data

Vector example

r<-17000:25000
t1.0<-raw2temp(r,1,0,20,20,20,0.96,50)
t0.9<-raw2temp(r,0.9,0,20,20,20,0.96,50)

dev.off()

plot(r,t1.0,type="1",col="red")

lines(r,t0.9,col="black")

legend("topleft”, bty = "n", c("E=1.0", "E=0.9"), lty=c(1,1), col=c("red”, "black"))

Create a templookup vector - faster calculations when working with huge binary data files
suppressWarnings remove the NaN warning that results from the low values falling outside the
range of temperatures relevant

suppressWarnings (templookup<-raw2temp(raw=1:65535))
r<-floor(runif (10000000, 16000,25000)) # create a long vector of raw binary values

calculate temperature using the lookup vector:
system.time(templookup[r]) # 0.109 seconds

calculate temperature using the raw2temp function on the raw vector:
system.time(raw2temp(r)) # 0.248 seconds

For information on the effectiveness of the raw2temp and temp2raw
functions at estimating temperature properly, see the following:
https://github.com/gtatters/ThermimageCalibration

readflirJPG Reads an image from a FLIR JPG file into an integer array.

Description

Reads an image from a FLIR JPG file into an integer matrix, w pixels wide x h pixels high, depend-
ing on image size.

readflir’PG 65

Usage

readflirJPG(imagefile, exiftoolpath = "installed”, headerindex=1)

Arguments

imagefile Name of the FLIR JPG file to read from, as captured by the thermal camera. A
character string.

exiftoolpath A character string that determines whether Exiftool has been "installed" (http://www.sno.phy.queensu.ca/~
or not. If Exiftool has been installed in a specific location, use to direct to the
folder location.

headerindex An integer defining which TIFF or PNG detected header to use as the thermal
image data. Default = 1, since most files will only have one detected header, but
sometimes when exiftool extracts the raw thermal data, it produces more than
one head in the tempfile. This might be the case with FLIR cameras and files
with fused digital and thermal image data.

Details

Only tested on a select number of FLIR JPGs. Usage depends on functionality provided by Exiftool.
At present this function first makes use of readBin to read in thermal image jpgs and searches for the
magic start byte sequence ("54", "49", "46", "46","49", "49") for TIFF type images or ("89", "50",
"4e", "47","0d", "0a", "1a", "0a") for PNG type images, and then uses the readTIFF or readPNG
functions to load into R.

Exiftool should install on most operating systems. Consult with http://www.sno.phy.queensu.ca/~phil/exiftool/
for information on installing Exiftool. If trouble installing, download Exiftool and set exiftoolpath

to the custom folder location. To test if the custom path to Exiftool will work on your OS, try your

own system or system?2 call: system2("/custompath/exiftool") to see if you get an error or not.

v 2.2.3: updated to fix a problem calling shell commands requiring folder write access on a windows
OS (thanks to John Al-Alawneh)

Value

Returns a matrix of integer values, corresponding the calibrated raw thermal image radiance values.
Can be converted to temperature estimates using the raw2temp() function.

Note

Loading image files and manipulating them in R is slow. Consider using command line tools like
exiftool, imagemagick, and ffmpeg to convert the files into a format to analyse in ImageJ, where
more powerful plug-ins can be accessed.

Alternatively, convertflirjpg and convertflirvid functions are wrappers that will call command line
tools and convert flir files in the shell environment.

Author(s)

Glenn J Tattersall

66

References

readflirJPG

1. Exiftool Command line tool: http://www.sno.phy.queensu.ca/~phil/exiftool/
2. Simon Urbanek (2013). tiff: Read and write TIFF images. R package version 0.1-5. https://CRAN.R-
project.org/package=tiff

3. Simon Urbanek (2013). png: Read and write PNG images. R package version 0.1-7. https://CRAN.R-
project.org/package=png

See Also

temp2raw raw2temp convertflirJPG convertflirVID

Examples

Not run:

Example using the flirsettings and readflirjpg functions

library(Thermimage)
Sample flir jpg included with Thermimage package:

imagefile<-paste@(system.file("extdata/IR_2412.jpg", package="Thermimage"))

Extract meta-tags from thermal image file
cams<-flirsettings(imagefile, exiftool="installed”, camvals="")

cams

Set variables for calculation of temperature values from raw A/D sensor data
Image Saved Emissivity - should be ~0.95 or 0.96
Object Emissivity - should be ~0.95 or 0.96

Emissivity<-cams$Info$Emissivity
ObjectEmissivity<-0.96

dateOriginal<-cams$Dates$DateTimeOriginal

dateModif<-
PlanckR1<-
PlanckB<-
PlanckF<-
PlanckO<-
PlanckR2<-
0oD<-

FD<-
ReflT<-
AtmosT<-
IRWinT<-
IRWinTran<-
RH<-

h<-

w<-

cams$Dates$FileModificationDateTime
cams$Info$PlanckR1
cams$Info$PlanckB

cams$Info$PlanckF

cams$Info$PlanckO
cams$Info$PlanckR2
cams$Info$ObjectDistance
cams$Info$FocusDistance
cams$Info$ReflectedApparentTemperature
cams$Info$AtmosphericTemperature
cams$Info$IRWindowTemperature
cams$Info$IRWindowTransmission
cams$Info$RelativeHumidity

cams$Info$RawThermalImageHeight

cams$Info$RawThermalImageWidth

Import image from flir jpg to obtain binary data
img<-readflirJPG(imagefile)

Rotate image before plotting
imgr<-rotate270.matrix(img)

HHHH

Planck R1 constant for camera
Planck B constant for camera
Planck F constant for camera
Planck O constant for camera
Planck R2 constant for camera
object distance in metres
focus distance in metres
Reflected apparent temperature
Atmospheric temperature

IR Window Temperature

IR Window transparency
Relative Humidity

sensor height (i.e. image height)
sensor width (i.e. image width)

R E E E E R R

Reynolds 67

Plot initial image of raw binary data
library(fields)
image.plot(imgr, useRaster=TRUE, col=ironbowpal)

Convert binary data to temperature

Consider whether you should change any of the following:
ObjectEmissivity, OD, RH, ReflT, AtmosT, IRWinT, IRWinTran

temperature<-raw2temp(imgr,ObjectEmissivity,0D,ReflT,AtmosT,IRWinT,IRWinTran,RH,
PlanckR1,PlanckB,PlanckF,PlanckO,PlanckR2)

colnames(temperature)<-NULL

rownames (temperature)<-NULL

Plot temperature image using fields package
t<-temperature
image.plot(t, asp=h/w, bty="n", useRaster=TRUE, xaxt="n", yaxt="n", col=ironbowpal)

Plot temperature image using ggplot2
library(ggplot2)

library(reshape2)

d<-melt(temperature)

p<-ggplot(d, aes(Varl, Var2))+
geom_raster(aes(fill=value))+coord_fixed()+
scale_fill_gradientn(colours=ironbowpal)+
theme_void()+
theme(legend.key.height=unit(2, "cm"), legend.key.width=unit(@.5, "cm"))

Export Temperature Data to CSV file

Must rotate image 90 degrees before exporting

This csv file can be imported into imageJ (File-Import-Text Image) for open source image
analysis options of accurate thermal image data. If you have many csv files, consider
writing a macro, see:

http://imagej.1557.x6.nabble.com/open-text-image-sequence-td4999149.html

f.temperature<-"IR_2412.csv"
write.csv(rotate90.matrix(temperature), f.temperature, row.names=FALSE)

End(Not run)

See also https://github.com/gtatters/Thermimage/README.md

Reynolds Calculates the Reynolds number.

68 Reynolds

Description

Calculates the Reynolds number, a unitless measure.

Usage

Reynolds(V, L, v)

Arguments
\ Air velocity in m/s
L The characteristic dimension, usually the vertical dimension. For reference, a
cylinder’s characteristic L would be its height, assuming it is standing on its end
This L should be the same L as is used for the convective coefficient calculation
v The kinematic viscosity returned from function airviscosity (Ta).
Author(s)
Glenn J Tattersall
References

Blaxter, K. 1989. Energy Metabolism in Animals and Man Gates, D. M. 2003. Biophysical Ecol-
ogy. Dover Publications, Mineola, New York. 611 pp.

Examples

The function is currently defined as
function (V, L, v)

{
v<-airviscosity(Ta)
Re<-V*L/v
}

Typical values for Reynolds numbers range from 6.6 to 6.6e+5

Example calculation:
V<-1

L<-1

Ta<-20
v<-airviscosity(Ta)
Reynolds(V, L, v)

rotate180.matrix 69

rotate180.matrix Rotate a matrix by 180 degrees. Used for adjusting image plotting in
R.

Description

Rotate a matrix by 180 degrees. Used for adjusting image plotting in R.

Usage

rotate18@.matrix(x)

Arguments

X A matrix corresponding to raster or image data.

Value

Returns a matrix

Author(s)

Glenn J Tattersall

References

1. http://www.inside-r.org/packages/cran/RSEIS/docs/mirror.matrix

2. Based on similar code in package <RSEIS>

See Also

flip.matrix mirror.matrix rotate9@.matrix rotate270.matrix

Examples

The function is currently defined as
function (x)

{
XX <= rev(x)
dim(xx) <- dim(x)
XX
}

set.seed(5)

par(mfrow=c(1,2),mar=c(1,1,1,1))
r<-c(1:100, rnorm(1:100)*10,1:100)
m<-matrix(r,50)

70 rotate270.matrix

image(m, axes=FALSE)

box ()

text(.5,.5,"Matrix")
mf<-rotate180.matrix(m)

image (mf, axes=FALSE)

box ()
text(.5,.5,"Rotate180",col="white")

od o H

rotate270.matrix Rotate a matrix by 270 degrees counterclockwise (or 90 degree clock-
wise). Used for adjusting image plotting in R.

Description
Rotate a matrix by 270 degrees counterclockwise (or 90 degree clockwise). Used for adjusting
image plotting in R.

Usage

rotate270.matrix(x)

Arguments

X A matrix corresponding to raster or image data.

Value

Returns a matrix

Author(s)

Glenn J Tattersall

References

1. http://www.inside-r.org/packages/cran/RSEIS/docs/mirror.matrix

2. Based on similar code in package <RSEIS>

See Also

flip.matrix mirror.matrix rotate9@.matrix rotate180@.matrix

rotate90.matrix 71

Examples

The function is currently defined as
function (x)
{

mirror.matrix(t(x))

}

set.seed(5)
par(mfrow=c(1,2),mar=c(1,1,1,1))
r<-c(1:100,rnorm(1:100)*10,1:100)
m<-matrix(r,50)

image(m, axes=FALSE)

box ()
text(.5,.5,"Matrix",col="white")
mf<-rotate270.matrix(m)

image (mf, axes=FALSE)

box ()
text(.5,.5,"Rotate270",col="white")

rotate9@.matrix Rotate a matrix by 90 degrees counterclockwise (270 degrees clock-
wise). Used for adjusting image plotting in R.

Description
Rotate a matrix by 90 degrees counterclockwise (270 degrees clockwise). Used for adjusting image
plotting in R.

Usage

rotate90.matrix(x)

Arguments

X A matrix corresponding to raster or image data.

Value

Returns a matrix.

Author(s)

Glenn J. Tattersall

References

1. http://www.inside-r.org/packages/cran/RSEIS/docs/mirror.matrix

2. Based on similar code in package <RSEIS>

See Also

flip.matrix mirror.matrix rotate270.matrix rotate180.matrix

Examples

The function is currently defined as
function (x)
{

t(mirror.matrix(x))

3

set.seed(5)
par(mfrow=c(1,2),mar=c(1,1,1,1))
r<-c(1:100,rnorm(1:100)*10,1:100)
m<-matrix(r,50)

image(m, axes=FALSE)

box ()
text(.5,.5,"Matrix"”,col="white")
mf<-rotate90.matrix(m)

image (mf, axes=FALSE)

box ()
text(.5,.5,"Rotate90",col="white")

samp.image

samp. image

A sample thermal image to demonstrate thermal colour palette use.

Description

A sample thermal image to demonstrate thermal colour palette use.

Usage

data("samp.image")

Format

A sample thermal image to demonstrate thermal colour palette use. The format is: num [1:480,
1:640] 23.223.223.423.323.3 ...

slopebypoint 73

Examples

#iHHHH Example ####HE
palnames<-c("flir", "ironbow”, "mikronprism”, "glowbow", "grey120", "grey10", "greyred",
"hotiron”, "medical”, "midgreen”, "midgrey”, "mikroscan”, "yellowpal”, "rainbowpal”)

m<-rotate90.matrix(samp.image)
par(mfrow=c(2,1),mar=c(0.3,2,1,2))

Show palettes

image(m, axes=FALSE, useRaster=TRUE, col=flirpal, main="Flir Standard Palette")
image(m, axes=FALSE, useRaster=TRUE, col=ironbowpal, main="Ironbow Palette”)

smaller palette for faster plotting

image(m, axes=FALSE, useRaster=TRUE, col=mikronprismpal, main="Mikron Prism Palette")
image(m, axes=FALSE, useRaster=TRUE, col=glowbowpal, main="Glowbow Palette")
image(m, axes=FALSE, useRaster=TRUE, col=grey120pal, main="Grey120 Palette")
image(m, axes=FALSE, useRaster=TRUE, col=greyl@pal, main="Greyl1@ Palette")
image(m, axes=FALSE, useRaster=TRUE, col=greyredpal, main="Greyred Palette")
image(m, axes=FALSE, useRaster=TRUE, col=hotironpal, main="Hotiron Palette")
image(m, axes=FALSE, useRaster=TRUE, col=medicalpal, main="Medical Palette")
image(m, axes=FALSE, useRaster=TRUE, col=midgreypal, main="Midgrey Palette”)
image(m, axes=FALSE, useRaster=TRUE, col=mikroscanpal, main="Mikroscan Palette")
image(m, axes=FALSE, useRaster=TRUE, col=rainbowpal, main="Rainbow Palette")
image(m, axes=FALSE, useRaster=TRUE, col=yellowpal, main="Yellow Palette")

slopebypoint Returns the slope from linear regression with x values as equally
spaced 1:length

Description

Returns the slope from linear regression with x values as equally spaced 1:length

Usage

slopebypoint(data)
Arguments

data Returns the slope from linear regression with x values as equally spaced 1:length
Details

Returns the slope (i.e. localised tangent) from linear regression with x values as equally spaced
1:length. The usefulness of this function is to reduce a time series type of data collected at equal
time intervals.

N=number of data points over which to calculate the slope.

74 slopeEveryN

Value

An object of type numeric.

Author(s)

Glenn J. Tattersall

See Also
Im

Examples

Define a vector of 50 random numbers from 1 to 100
y<-ceiling(runif(50, @, 100))

Calculate the slope with respect to the index values (i.e. 1 to 50)
instead of an x axis, this will provide a slope value of y vs. index
s<-slopebypoint(y)

s

same as if typing:
Im(y~seq(@,length(y)-1,1))

slopeEveryN Calculate the slope every nth data point.

Description

slopeEveryN calculates the slope of a vectorised data set (x) at N intervals. Slopes are calculated
using the Im() function centred around every nth data point in the vector. Upon running the function,
it attempts to subdivide the vector into n discrete intervals. If the vector length is not fully divisible
by n, then the remainder elements are forced to NA values and the final slope calculated.

The function returns a labelled matrix, with the average index as the first column and the slope over
that range of data. Units for slope then are technically in un

Usage
slopeEveryN(x, n = 2, lag = round(n/2))

Arguments
X numeric vector containing the data over which slope is required. Typically this
is a vector of data that has been sampled at even time intervals (represented by
n).
n the sample interval over which the slope will be calculated. Default is 2 (as in

every 2nd data point). At minimum this must be >1.

StephBoltz 75

lag default value is half the sample interval, n, which will ensure the calculation is
centred over the new sample interval. Not tested for any other situation. Leave
blank to have function operate as intended.

Details

The general purpose of this function is to provide a moving average of a data stream typically
sampled at evenly recorded time intervals common computerised data acquisition systems. Akin to
a moving average function, except that it also resamples the data.

Value

A matrix object returned

Author(s)

Glenn J. Tattersall

See Also

slopebypoint

Examples

Define a vector of 50 random numbers from 1 to 100
s<-ceiling(runif (50, @, 100))

x<-seq(1,50,1)

Calculate the slope value every 4th point
s10<-slopeEveryN(s,4)

plot(x,s,type="1",col="red")
lines(s10,col="black")

StephBoltz The Stephan Boltzman constant.

Description

The Stephan Boltzman constant. Units: W/m”"2/K*4

Usage

StephBoltz()

Author(s)

Glenn J Tattersall

76

Examples

The function i
function ()

{
s <- 5.67e-08

S

}

Example

Te

s currently defined as

This is simply the Stephan Boltzmann constant, saves having to remember the exact value
and it allows easier coding. To call it, type:

StephBoltz()

Te

Operative temperature estimate.

Description

Operative temperature (degrees Celsius) is a measure of the effective temperature an object/animal
will be given a specific radiative and convective environment. Basal heat production and evaporative
heat loss are assumed to balance each other out.

Usage

Te(Ts=30, Ta=25

, Tg=NULL, RH=0.5, E=0.96, rho=0.1, cloud=0, SE=0, V=1,

L=0.1, c=NULL, n=NULL, a=NULL, b=NULL, m=NULL, type="forced"”, shape="hcylinder")

Arguments

Ts

Ta

Tg

RH

rho

Surface temperature (degrees Celsius). Default value is 30. Used in free con-
vection calculation.

Air temperature (degrees Celsius). Default value is 20. Used to estimate ground
temperature if Tg is unavailable.

Ground temperature (degrees Celsius). Default value is NULL, but a measured
Tg can be substituted or estimated with other functions.

Relative humidity (fraction O to 1). Default value is 0.5. Used in call to Ld() to
determine incoming radiation.

Emissivity (fraction O to 1) of the object absorbing longwave radiation. Accord-
ing to Kirschoff’s law, emissivity = absorptivity. Absorptivity is multiplied by
the average of the incoming longwave radiation to estimate absorbed radiation.

Reflectivity (fraction O to 1) of the object absorbing solar radiation. Used to
modify absorbed solar energy. Default is 0.1.

Te

cloud

SE

m

type

shape

Details

77

Fractional cloud cover (fraction from O to 1). Used in call to Ld() to determine
incoming radiation. Default is 0.

Solar energy (W/m2), usually measured. Default is 100.
Air velocity (m/s). Default value is 1.

Characteristic dimension (m) of object. Usually the vertical dimension (i.e.
height). Default value is 1.

coefficient used in forced convection (see Blaxter, 1986, default value is 0.24)
coefficient used in forced convection (see Blaxter, 1986, default value is 0.6)
coefficient used in free convection (see Gates, 2003, default value is 1)

coefficient used in free convection (0.58 upright cylinder, 0.48 flat cylinder, de-
fault value is 0.58)

coefficient used in free convection (0.25 laminar flow, default value is 0.25)

"forced" or "free" - to calculate convection coefficient for either forced or free
convection. Default value is "forced"

ron non

"sphere", "hplate", "vplate", "hcylinder", "vcylinder" to denote shape and orien-
tation. h=horizontal, v=vertical. Default shape is "hcylinder"

Estimates operative temperature according to calculations in Gates (2003) and Angiletta ()

Author(s)

Glenn J Tattersall

References

Angiletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford Uni-
versity Press, Oxford, UK, 304 pp. Gates, D.M. 2003. Biophysical Ecology. Courier Corporation,

656 pp.

See Also

gabs hconv

Examples

Example

Ts<-40
Ta<-30

SE<-seq(9, 1500, 100)

Toperative<-NULL

for(rho in seq(o,
temp<-Te(Ts=Ts,
L=0.1,

1, 0.1)){
Ta=Ta, Tg=NULL, RH=0.5, E=0.96, rho=rho, cloud=1, SE=SE, V=0.1,
type="free", shape="hcylinder")

78

temp2raw

Toperative<-cbind(Toperative, temp)
3
Toperative<-data.frame(SE=seq(@,1500,100), Toperative)
colnames(Toperative)<-c("SE", seq(0,1,0.1))
matplot(Toperative$SE, Toperativel[,-1], ylim=c(30, 50), type="1", xlim=c(0,1000),
ylab="Operative Temperature (C)", xlab="Solar Radiation (W/m2)", 1lty=1,
col=flirpal[rev(seq(1,380,35))1)

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

temp2raw Converts temperature (0C) to raw thermal data

Description

Inverse of the function raw2temp. Typically used when incorrect settings were used during thermal
imaging analysis, and the raw values need to be extracted in order to re-calculate temperature using
raw2temp. Parameters under which the temperatures were estimated should be known, since the
conversion to raw will take those into account.

Usage

temp2raw(temp, E =1, OD = 1, RTemp = 20, ATemp = RTemp, IRWTemp = RTemp, IRT =1,
RH = 50, PR1 = 21106.77, PB = 1501, PF = 1, PO = -7340, PR2 = 0.012545258,
ATA1=0.006569, ATA2=0.01262, ATB1=-0.002276, ATB2=-0.00667, ATX=1.9)

Arguments

temp estimate temperature (0C) from an infrared thermal imaging file

E Emissivity - default 1, should be ~0.95 to 0.97 depending on object of interest.
Determined by user.

oD Object distance from thermal camera in metres

RTemp Apparent reflected temperature (0C) of the enrivonment impinging on the object
of interest - one value from FLIR file (0C), default 20C.

ATemp Atmospheric temperature (0C) for infrared tranmission loss - one value from
FLIR file (0C) - default value is set to be equal to the reflected temperature.
Transmission loss is a function of absolute humidity in the air.

IRWTemp Infrared Window Temperature (0C). Default is set to be equivalent to reflected
temp (0C).

IRT Infrared Window transmission - default is set to 1.0. Likely ~0.95-0.97. Should

be empirically determined. Germanium windows with anti-reflective coating
typically have IRTs ~0.95-0.97.

RH Relative humidity expressed as percent. Default value is 50.

temp2raw 79

PR1 PlanckR1 - a calibration constant for FLIR cameras

PB PlanckB - a calibration constant for FLIR cameras

PF PlanckF - a calibration constant for FLIR cameras

PO PlanckO - a calibration constant for FLIR cameras

PR2 PlanckR2 - a calibration constant for FLIR cameras

ATA1 ATAL1 - an atmospheric attenuation constant to calculate atmospheric tau

ATA2 ATA?2 - an atmospheric attenuation constant to calculate atmospheric tau

ATB1 ATBI - an atmospheric attenuation constant to calculate atmospheric tau

ATB2 ATB?2 - an atmospheric attenuation constant to calculate atmospheric tau

ATX ATX - an atmospheric attenuation constant to calculate atmospheric tau
Details

Note: PR1, PR2, PB, PF, and PO are specific to each camera and result from the calibration at
factory of the camera’s Raw data signal recording from a blackbody radiation source. Sample
calibration constants for three different cameras (FLIR SC660 with 24x18 degree lens, FLIR T300
with 25x19 degree lens, FLIR T300 with 2xtelephoto.

Calibration Constants by cameras: SC660, T300(250), T300(250 with telephoto)

Constant FLIR SC660 FLIR T300 FLIR T300(t)

PR1: 21106.77 14364.633 14906.216
PB: 1501 1385.4 1396.5
PF: 1 1 1

PO: -7340 -5753 -7261
PR2: 0.012545258 0.010603162 0.010956882

PR1: PlanckR1 calibration constant PB: PlanckB calibration constant PF: PlanckF calibration con-
stant PO: PlanckO calibration constant PR2: PlanckR2 calibration constant

The calibration constants allow for the raw digital signal conversion to and from the predicted
radiance of a blackbody, using the standard equation:

temperature<-PB/log(PR1/(PR2*(raw+PO))+PF)-273.15

Also used in calculations for transmission loss are the following constants: ATA1l: Atmospheric
Trans Alpha 1 0.006569 ATA2: Atmospheric Trans Alpha 2 0.012620 ATB1: Atmospheric Trans
Beta 1-0.002276 ATB2: Atmospheric Trans Beta 2 -0.006670 ATX: Atmospheric Trans X 1.900000

Some files may return slightly different ATA1, ATA2, ATB1, ATB2, and ATX values. Use the
flirsettings function to find out what constants are used for your files.

Value

Returns numeric value. Can handle vector or matrix objects.

Author(s)

Glenn J. Tattersall

80 Teq

References

1. http://130.15.24.88/exiftool/forum/index.php/topic,4898.60.html

2. Minkina, W. and Dudzik, S. 2009. Infrared Thermography: Errors and Uncertainties. Wiley
Press, 192 pp.

See Also

raw2temp

Examples

General Usage:
temp2raw(temp,E,OD,RTemp,ATemp, IRWTemp, IRT,RH,PR1,PB,PF,PO,PR2)

Example with all settings at default/blackbody levels:
temp2raw(23,1,9,20,20,20,1,50,PR1=21106.77,PB=1501,PF=1,P0=-7340,PR2=0.012545258)

Example with emissivity=0.95, distance=1m, window transmission=0.96, all temperatures=20C,
50 RH:

temp2raw(23,0.95,1,20,20,20,0.96,50)
Note: default calibration constants for my FLIR camera will be used if you leave out the
calibration data

t<-10:50
ri1.0<-temp2raw(t,1,9,20,20,20,0.96,50)
ro.9<-temp2raw(t,0.9,0,20,20,20,0.96,50)

dev.off()

plot(t,r1.0,type="1",col="red")

lines(t,r0.9,col="black")

legend("topleft”, bty = "n", c("E=1.0", "E=0.9"), lty=c(1,1), col=c("red”, "black"))

For information on the effectiveness of the raw2temp and temp2raw
functions at estimating temperature properly, see the following:
https://github.com/gtatters/ThermimageCalibration

Teq Estimates equivalent temperature.

Description
Estimates equivalent black-body temperature of an object. Analagous to other measures of operative
temperature

Usage

Teq(Ts =30, Ta=25, Tg =NULL, RH=0.5, E=0.96, rho=0.1, cloud=0, SE=0, V=1,
L =0.1, type = "forced")

Teq

Arguments

Ts

Ta

Tg

RH

rho

cloud

SE

type

Author(s)

Glenn J Tattersall

References

81

Surface temperature (degrees Celsius). Default value is 30. Not used in this
calculation but kept for similar structure to other functions in package.

Air temperature (degrees Celsius). Default value is 20. Used to estimate ground
temperature if Tg is unavailable.

Ground temperature (degrees Celsius). Default value is NULL, but a measured
Tg can be substituted or estimated with other functions. Used in estimating long
wave radiation from the ground.

Relative humidity (fraction O to 1). Default value is 0.5. Used in call to Ld() to
determine incoming radiation.

Emissivity (fraction O to 1) of the object absorbing longwave radiation. Accord-
ing to Kirschoff’s law, emissivity = absorptivity. Absorptivity is multiplied by
the average of the incoming longwave radiation to estimate absorbed radiation.

Reflectivity (fraction O to 1) of the object absorbing solar radiation. Used to
modify absorbed solar energy. Default is 0.1.

Fractional cloud cover (fraction from O to 1). Used in call to Ld() to determine
incoming radiation. Default is 0.

Solar energy (W/m2), usually measured. Default is 100.
Air velocity (m/s). Default value is 1.

Characteristic dimension (m) of object. Usually the vertical dimension (i.e.
height). Default value is 1.

"forced" or "free" - to calculate convection coefficient for either forced or free
convection. Default value is "forced"

Mabhoney, S.A. and King, J. R. (1977). The use of the equivalent black-body temperautre in the
thermal energetics of small birds. J Thermal Biol. 2: 115-120

Examples

The function is currently defined as
function (Ts = 30, Ta = 25, Tg = NULL, RH = 0.5, E = 0.96, rho = 0.1,
cloud =0, SE=0, V=1, L =0.1, type = "forced")

{
if (type
k <-
if (type
k <=

== "forced")

0.7

* 310

== "free")

310

rr <- airdensity(Ta) * airspecificheat(Ta)/(4 * E x StephBoltz() *
(Ta + 273.15)*3)
ra <- k x (L/V)*0.5

82 Tground

re <- 1/(1/ra + 1/rr)
Rni <- gabs(Ta = Ta, Tg = Tg, RH = RH, E = E, rho = rho,
cloud = cloud, SE = SE) - StephBoltz() * E * (Ta + 273.15)"4
Teq <- Ta + Rni * re/(airdensity(Ta) * airspecificheat(Ta))
Teq
}

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

Tground Estimates ground temperature from ambient temperature and solar ra-
diation.

Description

Estimates ground temperature from ambient temperature and solar radiation.

Usage
Tground(Ta = 20, SE = 100)

Arguments

Ta Air temperature (degrees Celsius). Default is 20.

SE Solar energy (radiation in W per m2). Default is 100.
Details

If ground temperature is not measured, but air temperature and solar energy are provided, ground
temperature can be estimated from empirical relationships. Ground temperature is used in obtain
incoming longwave radiation from the ground.

Value

Returns a vector of one, with an estimate of ground temperature.

Author(s)

Glenn J Tattersall

References

Bartlett et al. 2006. A decade of ground-air temperature tracking at emigrant pass observatory,
Utah. Journal of Climate. 19: 3722-3731.

thermsum 83

Examples

Example:
Ta<-25

SE<-200
Tground(Ta, SE)

For detailed examples and explanations, see:
https://github.com/gtatters/Thermimage/blob/master/HeatTransferCalculations.md

thermsum Return summary of thermal image data.

Description

Provides typical summary data (min, max, mean, sd, median) of a vector of raw binary thermal
encoded data. If templookup is not provided, the summary info is conducted on the data provided. If
a templookup vector is provided (see Examples in raw2temp function), the dat values are converted
to temperature before summary information is extracted.

Usage

thermsum(dat, templookup = NULL)

Arguments

dat An integer vector of raw binary thermal information (usually) extracted from
a thermal video or image using the getFrames or readflirJPG functions to be
converted to temperature and summarised. Instead, this can be a vector of tem-
perature values (numeric); if so, then templookup should be set to NULL or
ignored.

templookup A vector of temperatures converted using the raw2temp function, corresponding
to the conversion from raw binary thermal information to calibrated temperature
estimates. Typically will be vector of numbers 216 long, for a 16-bit camera.
Default is NULL, which assumes that dat has already been converted to temper-
ature.

Details

A simple summary function for thermal imaging data to allow for extraction of basic statistical data
from a thermal image dataset. If dat is supplied as an integer vector of raw binary values, then
templookup should be supplied to use as an indexing function.

Using raw2temp(1:65535) will produce a vector of temperatures that correspond to the indexed in-
tegers 1:65535. This method of calculation can be faster on large video files. The default settings for

84

thermsum

raw2temp() will not be appropriate, and all camera settings should be used according to calibration
constants.

If dat is supplied as a vector of temperatures, then templookup must be left blank or NULL as
the default. Summary information will be calculated on the dat variable assuming it is properly
calibrated temperature values.

As written, this is a vectorised function, so will only calculate summary on the vector provided.
To perform thermal summaries on multiple frames from the raw binary video data, use a for-loop
(usually slow) or the apply function to process (faster processing) or parallel apply functions (best).

Value

Returns a named vector: Mintemp, Maxtemp, Meantemp, SDtemp, and Mediantemp

Warning

This function simply calculates summary data, and does not detect objects in the image frame. Use
only as rapid way to extract thermal information. This is not a replacement for doing analysis by
hand, and may only be useful for objects that are stationary and remain within the image frame over
time.

Author(s)

Glenn J Tattersall

See Also

raw2temp, thermsumcent

Examples

set w to 640 and h to 480

w<-640

h<-480

f<-system.file("extdata"”, "SampleSEQ.seq", package = "Thermimage")
x<-framelLocates(f, w=w, h=h)
suppressWarnings(templookup<-raw2temp(1:65535))
alldata<-unlist(lapply(x$f.start, getFrames, vidfile=f, w=w, h=h))
alldata<-matrix(alldata, nrow=wxh, byrow=TRUE)

Summary on one image or frame of data
thermsum(alldatal,1], templookup)

Summary on multi-frame seq file
tsum<-data.frame(t(apply(alldata, 2, thermsum, templookup)))
tsum

Randomly generated data
alldata<-floor(runif(wxh*10, 17000, 25000))

alldata<-matrix(alldata, nrow=wxh)

depending on the size of alldata, directly calculating temperature can slow down processing

thermsumcent

85

For a 10 frame file:
system.time(alltemperature<-raw2temp(alldata))

But summary calculations using raw binary with lookup are slightly slower than
using numeric temperatures:

Perform calculations on the raw binary but supply the templookup vector
system. time(tsum<-data.frame(t(apply(alldata, 2, thermsum, templookup))))

Perform calculations on the converted temperature values
system. time(tsum<-data.frame(t(apply(alltemperature, 2, thermsum))))

tsum
thermsumcent Summary thermal calculations on a centrally located region of interest
from a thermal image dataset
Description

Similarly to the thermsum except this provides thermal summary data on a central region of interest,
commonly used in thermal imaging. The size of the region is a rectangular region corresponding to
a fraction of the total image area set by boxsize.

Usage

thermsumcent(dat, templookup = NULL, w = 640, h = 480, boxsize = 0.05)

Arguments

dat

templookup

boxsize

An integer vector of raw binary thermal information (usually) extracted from
a thermal video or image using the getFrames or readflirJPG functions to be
converted to temperature and summarised. Instead, this can be a vector of tem-
perature values (numeric); if so, then templookup should be set to NULL or
ignored.

A vector of temperatures converted using the raw2temp function, corresponding
to the conversion from raw binary thermal information to calibrated temperature
estimates. Typically will be vector of numbers 216 long, for a 16-bit camera.
Default is NULL, which assumes that dat has already been converted to temper-
ature.

Width resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

Height resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

Fractional area of the desired rectangular region of interest. Default is set to
0.05. Dimensions of the region will depend on w and h dimensions.

86 thermsumcent

Details

A simple summary function for thermal imaging data to allow for extraction of basic statistical data
from a thermal image dataset. If dat is supplied as an integer vector of raw binary values, then
templookup should be supplied to use as an indexing function.

Using raw2temp(1:65535) will produce a vector of temperatures that correspond to the indexed in-
tegers 1:65535. This method of calculation can be faster on large video files. The default settings for
raw2temp() will not be appropriate, and all camera settings should be used according to calibration
constants.

If dat is supplied as a vector of temperatures, then templookup must be left blank or NULL as
the default. Summary information will be calculated on the dat variable assuming it is properly
calibrated temperature values.

As written, this is a vectorised function, so will only calculate summary on the vector provided.
To perform thermal summaries on multiple frames from the raw binary video data, use a for-loop
(usually slow) or the apply function to process (faster processing) or parallel apply functions (best).

Similar to thermsum, except this assesses only the centrally located region of interest in the image
frame centre.

Value

Returns a named vector: CentrePoint, CentreBoxMin, CentreBoxMax, CentreBoxMean, Centre-
BoxSD, CentreBoxMedian)

Warning

This function simply calculates summary data, and does not detect objects in the image frame. Use
only as rapid way to extract thermal information. This is not a replacement for doing analysis by
hand, and may only be useful for objects that are stationary and remain within the image frame over
time.

Author(s)

Glenn J Tattersall

See Also

raw2temp, thermsum

Examples

set w to 640 and h to 480

w<-640

h<-480

f<-system.file("extdata"”, "SampleSEQ.seq", package = "Thermimage")
x<-frameLocates(f)

suppressWarnings(templookup<-raw2temp(1:65535))
alldata<-unlist(lapply(x$f.start, getFrames, vidfile=f, w=w, h=h))
alldata<-matrix(alldata, nrow=wxh, byrow=TRUE)

writeFlirBin 87

Summary on one image or frame of data
thermsumcent(alldatal,1], templookup)

Summary on multi-frame seq file
tsum<-data.frame(t(apply(alldata, 2, thermsumcent, templookup)))
tsum

Randomly generated data
alldata<-floor(runif(wxh*20, 17000, 25000))
alldata<-matrix(alldata, nrow=wxh)

depending on the size of alldata, directly calculating temperature can slow down processing
For a 20 frame file:
system.time(alltemperature<-raw2temp(alldata))

But summary calculations using raw binary with lookup are slightly slower than
using numeric temperatures:

Perform calculations on the raw binary but supply the templookup vector
system.time(tsum<-data.frame(t(apply(alldata, 2, thermsumcent, templookup))))

Perform calculations on the converted temperature values
system.time(tsum<-data.frame(t(apply(alltemperature, 2, thermsumcent))))
tsum

writeFlirBin Saves thermal image data to a binary file

Description

Saves thermal image data to a binary file. This function serves to allow thermal images that have
been imported into R to be exported to a raw, 32-bit real format that can then be imported and
analysed in Image].

Usage

writeFlirBin(bindata, templookup, w, h, Interval, rootname)

Arguments

bindata Vector of raw binary data imported from a thermal image file, using the get-
Frames function. Each value corresponds to the raw binary sensor value for
each pixel. Should be supplied as a vector, not a dataframe or matrix.

88

templookup

Interval

rootname

Details

writeFlirBin

A vector of values from 1:65535 (2716) that serves as a rapid means to convert
the above bindata into calibrated temperature data for each pixel. This makes
use of the raw2temp function. This value must be supplied and properly cali-
brated, otherwise the conversion will not be correct. Default is set to NULL. If
calibrated temperature data is supplised as bindata, then templookup should be
set to NULL.

Width resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

Height resolution (pixels) of thermal camera. Can be found by using the flirset-
tings function.

Time inverval (in seconds = 1 / Frame rate) of the thermal video file. Used for
encoding in filename.

Root name (character) for saving the binary file

This function exports raw binary information from the getFrames function in a 32-bit real file format
(4 bytes). This file format can be relatively easily imported into ImageJ using the Import-Raw
option, choose 32-bit Real, set your image width and height and # of frames. Little endian and
hyperstack options must be enabled during import.

The file naming takes the rootname and appends image width, height, number of frames, and image
interval, appending .raw to the end to make ImageJ import easier.

If rootname = *Thermvid’, w=640, h=480, number of frames=100, and image interval is 0.0333
seconds, the file name will be saved as:

"Thermvid_W640_H480_F100_10.0333.raw’

Value

Returns nothing, but saves a new file to the current working directory.

Warning

This function has not been fully tested with all possible video/camera combinations. Users are
advised to compare the exported values in ImageJ on sample images to standard FLIR software
values before proceeding with analysis.

Author(s)

Glenn J Tattersall

See Also

raw2temp, getFrames, readBin, writeBin

yellowpal 89

Examples

bindata<-floor(runif (307200, 17000, 25000))
templookup<-raw2temp(bindata)

w<-640

h<-480

Interval<-0.03

f.root<-"Thermalvid”

Usage:
writeFlirBin(bindata, templookup=templookup, w=w, h=h, Interval=Interval, rootname=f.root)

yellowpal Colour palette extracted from FLIR thermal camera files

Description

A text file containing the palette information for use in thermal images

Index

* datasets
flirpal, 22
glowbowpal, 33
greylopal, 35
grey120pal, 35
greyredpal, 35
hotironpal, 37
ironbowpal, 38
medicalpal, 44
midgreenpal, 44
midgreypal, 44
mikronprismpal, 45
mikroscanpal, 45
rainbowl1234pal, 61
rainbowpal, 61
samp.image, 72
yellowpal, 89

airdensity, 4
airspecificheat, 5
airtconductivity, 6
airviscosity, 6,7, 34
areacone, 8
areacylinder, 9
areasphere, 10

convertflirJPG, 11, 14, 20, 66

getTimes, 27, 31, 32

glowbowpal, 33
Grashof, 34

greyl@pal, 35
grey120pal, 35
greyredpal, 35

hconv, 36, 58, 77
hotironpal, 37

ironbowpal, 38

Ld, 38,41, 42, 55, 60

1m, 74
locate.fid, 39
Lu, 40, 55, 60
Lw, 39, 42

match, 40
meanEveryN, 43
medicalpal, 44
midgreenpal, 44
midgreypal, 44

mikronprismpal, 45

mikroscanpal, 45

mirror.matrix, 21, 45, 69, 70, 72

nameleadzero, 46

convertflirVID, 12, 13, 20, 31, 66

cumulDiff, 15, 18, 33 Nusseltforced, 25, 47

Nusseltfree, 28, 48

diffFrame, 16, 17
palette.choose, 50

ffmpegcall, 12, 14, 19 plotTherm, 51

flip.matrix, 21, 45, 69, 70, 72 Prandtl, 54
flirpal, 22

flirsettings, 22 gabs, 55, 60, 77
forcedparameters, 24, 28, 58 qcond, 56

framelLocates, 26, 31, 33
freeparameters, 25, 28, 58

qconv, 37, 57,57
grad, 55, 57, 59

getFrames, 27, 30, 33, 88 rainbowl1234pal, 61

90

INDEX

rainbowpal, 61
raw2temp, 31, 61, 66, 80, 84, 86, 88
readBin, 27, 31, 88
readflirJPG, 12, 14, 64
Reynolds, 67
rotate180.matrix, 21,45, 69, 70, 72
rotate270.matrix, 21,45, 69,70, 72
rotate90.matrix, 21, 45, 69, 70,71

samp.image, 72
slopebypoint, 73, 75
slopeEveryN, 44, 74
StephBoltz, 75

Te, 76

temp2raw, 63, 66, 78

Teq, 80

Tground, 82

Thermimage (Thermimage-package), 3
Thermimage-package, 3
thermsum, 83, 86
thermsumcent, 84, 85

which, 40
writeBin, 88
writeFlirBin, 87

yellowpal, 89

91

	Thermimage-package
	airdensity
	airspecificheat
	airtconductivity
	airviscosity
	areacone
	areacylinder
	areasphere
	convertflirJPG
	convertflirVID
	cumulDiff
	diffFrame
	ffmpegcall
	flip.matrix
	flirpal
	flirsettings
	forcedparameters
	frameLocates
	freeparameters
	getFrames
	getTimes
	glowbowpal
	Grashof
	grey10pal
	grey120pal
	greyredpal
	hconv
	hotironpal
	ironbowpal
	Ld
	locate.fid
	Lu
	Lw
	meanEveryN
	medicalpal
	midgreenpal
	midgreypal
	mikronprismpal
	mikroscanpal
	mirror.matrix
	nameleadzero
	Nusseltforced
	Nusseltfree
	palette.choose
	plotTherm
	Prandtl
	qabs
	qcond
	qconv
	qrad
	rainbow1234pal
	rainbowpal
	raw2temp
	readflirJPG
	Reynolds
	rotate180.matrix
	rotate270.matrix
	rotate90.matrix
	samp.image
	slopebypoint
	slopeEveryN
	StephBoltz
	Te
	temp2raw
	Teq
	Tground
	thermsum
	thermsumcent
	writeFlirBin
	yellowpal
	Index

