Package ‘R6’

February 15, 2025
Title Encapsulated Classes with Reference Semantics
Version 2.6.1

Description Creates classes with reference semantics, similar to R's
built-in reference classes. Compared to reference classes, R6 classes
are simpler and lighter-weight, and they are not built on S4 classes
so they do not require the methods package. These classes allow public
and private members, and they support inheritance, even when the
classes are defined in different packages.

License MIT + file LICENSE
URL https://r6.r-1ib.org, https://github.com/r-1ib/R6

BugReports https://github.com/r-1ib/R6/issues
Depends R (>=3.6)
Suggests lobstr, testthat (>= 3.0.0)

Config/Needs/website tidyverse/tidytemplate, ggplot2, microbenchmark,
scales

Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Winston Chang [aut, cre],
Posit Software, PBC [cph, fnd]

Maintainer Winston Chang <winston@posit.co>
Repository CRAN
Date/Publication 2025-02-15 00:50:02 UTC

Contents
aslistRO e
1SS RO . e
ROCIass e e
Index

https://r6.r-lib.org
https://github.com/r-lib/R6
https://github.com/r-lib/R6/issues

2 is.R6

as.list.R6 Create a list from an R6 object

Description

This returns a list of public members from the object. It simply calls as.list.environment.

Usage
S3 method for class 'R6'
as.list(x, ...)

Arguments
X An R6 object.

Other arguments, which will be ignored.

is.R6 Is an object an R6 Class Generator or Object?

Description

Checks for R6 class generators and R6 objects.

Usage

is.R6(x)

is.R6Class(x)

Arguments

X An object.

Value

A logical value.

* is.R6Class returns TRUE when the input is an R6 class generator and FALSE otherwise.

* is.R6 returns TRUE when the input is an R6 object and FALSE otherwise.

R6Class 3

Examples

class_generator <- R6Class()
object <- class_generator$new()

is.R6Class(class_generator)
is.R6(class_generator)

is.R6Class(object)
is.R6(object)

R6Class Create an R6 reference object generator

Description

R6 objects are essentially environments, structured in a way that makes them look like an object in
a more typical object-oriented language than R. They support public and private members, as well
as inheritance across different packages.

Usage

R6Class(
classname = NULL,
public = list(),
private = NULL,
active = NULL,
inherit = NULL,
lock_objects = TRUE,
class = TRUE,
portable = TRUE,
lock_class = FALSE,
cloneable = TRUE,
parent_env = parent.frame()

)

Arguments
classname Name of the class. The class name is useful primarily for S3 method dispatch.
public A list of public members, which can be functions (methods) and non-functions

(fields).

private An optional list of private members, which can be functions and non-functions.
active An optional list of active binding functions.
inherit A R6ClassGenerator object to inherit from; in other words, a superclass. This is

captured as an unevaluated expression which is evaluated in parent_env each
time an object is instantiated.

4 R6Class

lock_objects Should the environments of the generated objects be locked? If locked, new
members can’t be added to the objects.

class Should a class attribute be added to the object? Default is TRUE. If FALSE, the
objects will simply look like environments, which is what they are.

portable If TRUE (the default), this class will work with inheritance across different pack-
ages. Note that when this is enabled, fields and members must be accessed with
self$x or private$x; they can’t be accessed with just x.

lock_class If TRUE, it won’t be possible to add more members to the generator object with
$set. If FALSE (the default), then it will be possible to add more members with
$set. The methods $is_locked, $1ock, and $unlock can be used to query and
change the locked state of the class.

cloneable If TRUE (the default), the generated objects will have method named $clone,
which makes a copy of the object.
parent_env An environment to use as the parent of newly-created objects.
Details

An R6 object consists of a public environment, and may also contain a private environment, as well
as environments for superclasses. In one sense, the object and the public environment are the same;
a reference to the object is identical to a reference to the public environment. But in another sense,
the object also consists of the fields, methods, private environment and so on.

The active argument is a list of active binding functions. These functions take one argument. They
look like regular variables, but when accessed, a function is called with an optional argument. For
example, if obj$x2 is an active binding, then when accessed as obj$x2, it calls the x2() function
that was in the active list, with no arguments. However, if a value is assigned to it, as in obj$x2
<- 50, then the function is called with the right-side value as its argument, as in x2(50). See
makeActiveBinding for more information.

If the public or private lists contain any items that have reference semantics (for example, an envi-
ronment), those items will be shared across all instances of the class. To avoid this, add an entry for
that item with a NULL initial value, and then in the initialize method, instantiate the object and
assign it.

The print method

R6 object generators and R6 objects have a default print method to show them on the screen: they
simply list the members and parameters (e.g. lock_objects, portable, etc., see above) of the object.

The default print method of R6 objects can be redefined, by supplying a public print method.
(print members that are not functions are ignored.) This method is automatically called when-
ever the object is printed, e.g. when the object’s name is typed at the command prompt, or when
print(obj) is called. It can also be called directly via obj$print(). All extra arguments from a
print(obj, ...) call are passed on to the obj$print(...) method.

Portable and non-portable classes

When R6 classes are portable (the default), they can be inherited across packages without compli-
cation. However, when in portable mode, members must be accessed with self and private, asin
self$x and private$y.

R6Class 5

When used in non-portable mode, R6 classes behave more like reference classes: inheritance across
packages will not work well, and self and private are not necessary for accessing fields.

Cloning objects

R6 objects have a method named clone by default. To disable this, use cloneable=FALSE. Having
the clone method present will slightly increase the memory footprint of R6 objects, but since the
method will be shared across all R6 objects, the memory use will be negligible.

By default, calling x$clone() on an R6 object will result in a shallow clone. That is, if any fields
have reference semantics (environments, R6, or reference class objects), they will not be copied;
instead, the clone object will have a field that simply refers to the same object.

To make a deep copy, you can use x$clone(deep=TRUE). With this option, any fields that are R6
objects will also be cloned; however, environments and reference class objects will not be.

If you want different deep copying behavior, you can supply your own private method called
deep_clone. This method will be called for each field in the object, with two arguments: name,
which is the name of the field, and value, which is the value. Whatever the method returns will
be used as the value for the field in the new clone object. You can write a deep_clone method
that makes copies of specific fields, whether they are environments, R6 objects, or reference class
objects.

S3 details

Normally the public environment will have two classes: the one supplied in the classname argu-
ment, and "R6". It is possible to get the public environment with no classes, by using class=FALSE.
This will result in faster access speeds by avoiding class-based dispatch of $. The benefit is negli-
gible in most cases.

If a class is a subclass of another, the object will have as its classes the classname, the superclass’s
classname, and "R6"

The primary difference in behavior when class=FALSE is that, without a class attribute, it won’t be
possible to use S3 methods with the objects. So, for example, pretty printing (with print.R6Class)
won’t be used.

Examples

A QUEUE ——— = m o m
Queue <- R6Class("Queue”,
public = list(
initialize = function(...) {
for (item in list(...)) {
self$add(item)
3
h
add = function(x) {
private$queue <- c(private$queue, list(x))
invisible(self)
+
remove = function() {
if (private$length() == @) return(NULL)
Can use private$queue for explicit access

R6Class

head <- private$queue[[1]]
private$queue <- private$queue[-1]
head
3
),
private = list(
queue = list(),
length = function() base::length(private$queue)
)
)

g <- Queue$new(5, 6, "foo")

Add and remove items
g$add("something")
g$add("another thing")
q$add(17)

g$remove()

#> [1] 5

g$remove()

#> [1] 6

Private members can't be accessed directly
g$queue

#> NULL

g$length()

#> Error: attempt to apply non-function

add() returns self, so it can be chained
g$add(10)$add(11)$add(12)

remove() returns the value removed, so it's not chainable
g$remove()

#> [1] "foo"

q$remove ()

#> [1] "something”

g$remove ()

#> [1] "another thing”

g$remove()

#> [1] 17

Active bindings -----------—---------
Numbers <- R6Class(”Numbers”,
public = list(
x = 100
),
active = list(
x2 = function(value) {
if (missing(value)) return(self$x * 2)
else self$x <- value/2

}’

rand = function() rnorm(1)

R6Class

)
)
n <- Numbers$new()
n$x
#> [1] 100
n$x2
#> [1] 200
n$x2 <- 1000
n$x
#> [1] 500

If the function takes no arguments, it's not possible to use it with <-:
n$rand

#> [1] 0.2648

n$rand

#> [1]1 2.171

n$rand <- 3

#> Error: unused argument (quote(3))

Inheritance —-————=———=————— -
Note that this isn't very efficient - it's just for illustrating inheritance.
HistoryQueue <- R6Class("HistoryQueue”,
inherit = Queue,
public = list(
show = function() {
cat("Next item is at index”, private$head_idx + 1, "\n")
for (i in seqg_along(private$queue)) {
cat(i, ": ", private$queue[[i]], "\n", sep = "")
}
h
remove = function() {
if (private$length() - private$head_idx == @) return(NULL)
private$head_idx <<- private$head_idx + 1
private$queuel[[private$head_idx]1]
}
),
private = list(
head_idx = @
)
)

hg <- HistoryQueue$new(5, 6, "foo")
hg$show()

#> Next item is at index 1

#> 1: 5

#> 2: 6

#> 3: foo

hg$remove ()

#> [11 5

hg$show()

#> Next item is at index 2

R6Class

#> 1: 5
#> 2: 6

#> 3: foo
hg$remove ()
#> [1] 6

Calling superclass methods with super$ ---------—-------------—-
CountingQueue <- R6Class("CountingQueue”,
inherit = Queue,
public = list(
add = function(x) {
private$total <<- private$total + 1
super$add(x)
h
get_total = function() private$total
),
private = list(
total = @

)

cq <- CountingQueue$new("x", "y")
cq$get_total()

#> [1] 2

cq$add("z")

cq$remove()

#> [1] "x"

cq$remove ()

#> [1]1 "y"

cqs$get_total()

#> [1] 3

Non-portable classes --—-—-—------———-—————————————

By default, R6 classes are portable, which means they can be inherited
across different packages. Portable classes require using self$ and
private$ to access members.

When used in non-portable mode, members can be accessed without self$,
and assignments can be made with <<-.

N

NP <- R6Class("NP",
portable = FALSE,
public = list(
x = NA,
getx = function() x,
setx = function(value) x <<- value
)
)

np <- NP$new()
np$setx(10)

R6Class

np$getx()
#> [1] 10

Setting new values ------------—-------————mmoo
It is possible to add new members to the class after it has been created,
by using the $set() method on the generator.

Simple <- R6Class("”Simple”,
public = list(
x =1,
getx = function() self$x
)
)

Simple$set("public”, "getx2", function() self$x*2)

Use overwrite = TRUE to overwrite existing values

nyn

Simple$set("public”, "x", 10, overwrite = TRUE)

s <- Simple$new()
s$x
s$getx2()

Cloning objects --------------———------———————o
a <- Queue$new(5, 6)

a$remove()

#> [1]1 5

Clone a. New object gets a's state.
b <- a$clone()

Can add to each queue separately now.
a$add(10)
b$add(20)

a$remove()
#> [1] 6

a$remove()
#> [1] 10

b$remove ()
#> [1] 6

b$remove ()
#> [1] 20

Deep clones —---------—--——=--——--———--——--—————

Simple <- R6Class("”Simple"”,
public = list(
x = NULL,
initialize = function(val) self$x <- val

10

R6Class

)
)

Cloner <- R6Class("Cloner”,
public = list(
s = NULL,
y =1,
initialize = function() self$s <- Simple$new(1)
)
)

a <- Cloners$new()
b <- as$clone()
c <- a$clone(deep = TRUE)

Modify a
asx <- 2
a$y <- 2

b is a shallow clone. b$s is the same as a$s because they are R6 objects.
bsx

#> [1] 2

But a$y and b$y are different, because y is just a value.

b$y

#> [1] 1

c is a deep clone, so c$s is not the same as a$s.
csx

#1711

c$y

#> [1] 1

Deep clones with custom deep_clone method -------------------———-

CustomCloner <- R6Class(”CustomCloner”,
public = list(

e = NULL,
s1 = NULL,
s2 = NULL,
s3 = NULL,

initialize = function() {
self$e <- new.env(parent = emptyenv())
self$edx <- 1
self$s1 <- Simple$new(1)
self$s2 <- Simple$new(1)
self$s3 <- Simple$new(1)
3
),
private = list(
When x$clone(deep=TRUE) is called, the deep_clone gets invoked once for
each field, with the name and value.
deep_clone = function(name, value) {

R6Class 11

if (name == "e") {
el is an environment, so use this quick way of copying
list2env(as.list.environment(value, all.names = TRUE),
parent = emptyenv())

} else if (name %in% c("s1", "s2")) {
s1 and s2 are R6 objects which we can clone
value$clone()

} else {
For everything else, just return it. This results in a shallow
copy of s3.
value

3
)
)

a <- CustomCloner$new()
b <- a$clone(deep = TRUE)

Change some values in a's fields

asex <- 2
a%$s1$x <- 3
a$s2%$x <- 4
a$s3$x <- 5

b has copies of e, s1, and s2, but shares the same s3
bex

[1]1

b$s1$x

#> [1]1 1

b$s2$x

#> [1]1 1

b$s3$x

#> [11 5

Debugging ----------—=———————-———-———

Not run:

This will enable debugging the getx() method for objects of the 'Simple’
class that are instantiated in the future.

Simple$debug(”getx")

s <- Simple$new()

s$getx()

Disable debugging for future instances:
Simple$undebug(”getx")

s <- Simple$new()

s$getx()

To enable and disable debugging for a method in a single instance of an
R6 object (this will not affect other objects):

12

s <- Simple$new()
debug(s$getx)
s$getx()

undebug (s$getx)

End(Not run)

R6Class

Index

as.list.R6,2

is.R6, 2
is.R6Class (is.R6), 2

makeActiveBinding, 4

R6 (R6Class), 3
R6Class, 3

13

	as.list.R6
	is.R6
	R6Class
	Index

