
Package ‘QurvE’
January 20, 2025

Title Robust and User-Friendly Analysis of Growth and Fluorescence
Curves

Version 1.1.1

Description High-throughput analysis of growth curves and fluorescence
data using three methods: linear regression, growth model fitting, and
smooth spline fit. Analysis of dose-response relationships via
smoothing splines or dose-response models. Complete data analysis
workflows can be executed in a single step via user-friendly wrapper
functions. The results of these workflows are summarized in detailed
reports as well as intuitively navigable 'R' data containers. A 'shiny'
application provides access to all features without
requiring any programming knowledge. The package is described in further
detail in Wirth et al. (2023) <doi:10.1038/s41596-023-00850-7>.

License GPL (>= 3)

URL https://github.com/NicWir/QurvE, https://nicwir.github.io/QurvE/

BugReports https://github.com/NicWir/QurvE/issues

Depends dplyr, methods, R (>= 4.0), stringr, tidyr

Imports doParallel, drc, DT, foreach, ggh4x, ggnewscale, ggplot2,
ggpubr, kableExtra, knitr, labeling, magrittr, minpack.lm,
plyr, purrr, RColorBrewer, readxl, rmarkdown, scales, shiny,
stats, utils

Suggests bookdown, Cairo, htmltools, plotrix, prettydoc, rlang,
shinyBS, shinycssloaders, shinyFiles, shinyjs, shinysurveys,
shinythemes, testthat (>= 3.0.0), tibble, tinytex

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.2.3

Collate 'QurvE-package.R' 'control_functions.R' 'data_parsers.R'
'dose-response-analysis.R' 'fluorescence_plots.R'
'fluorescence_summaries.R' 'fluorescence_workflows.R'

1

https://doi.org/10.1038/s41596-023-00850-7
https://github.com/NicWir/QurvE
https://nicwir.github.io/QurvE/
https://github.com/NicWir/QurvE/issues

2 Contents

'group_tables.R' 'growth_plots.R' 'growth_summaries.R'
'growth_workflows.R' 'linear_fits.R' 'nonparametric_fits.R'
'parametric_fits.R' 'utils.R' 'report_functions.R'
'shiny_app_functions.R'

Author Nicolas T. Wirth [aut, cre, cph]
(<https://orcid.org/0000-0003-0799-1321>),

Jonathan Funk [aut] (Co-developer of shiny app.),
Matthias Kahm [ctb] (Author of 'grofit' package, whose general data

structure was adopted for QurvE.),
Maik Kschischo [ctb] (Author of 'grofit' package, whose general data

structure was adopted for QurvE.),
Thomas Petzoldt [ctb] (<https://orcid.org/0000-0002-4951-6468>, Creator

of the package 'growthrates', whose function for calculating linear
regressions served as a template in QurvE.),

Andrew Stein [ctb] (Creator of 'xgxr' package from which QurvE adopted
code to plot axis ticks on log10 scale.),

Michael W. Kearney [ctb] (Creator of 'tfse' package from which QurvE
adopted the match_arg function.),

Santiago I. Hurtado [ctb] (Creator of 'RobustLinearReg' package from
which QurvE adopted the Theil Sehn Regression method.),

Mark Heckmann [ctb] (Creator of the 'zipFastener' function; source:
https://ryouready.wordpress.com/2009/03/27/r-zip-fastener-for-two-data-frames-combining-

rows-or-columns-of-two-dataframes-in-an-alternating-manner/),
Nicholas Hamilton [ctb] (Creator of the 'colFmt' function.),
Evan Friedland [ctb] (Creator of the 'inflect' function.),
Heather Turner [ctb] (Creator of the 'base_breaks' function.),
Georgi N. Boshnakov [ctb] (Creator of 'gbRd' package from which

functions are used to display function help pages within the shiny
app.)

Maintainer Nicolas T. Wirth <mail.nicowirth@gmail.com>

Repository CRAN

Date/Publication 2024-01-26 12:40:14 UTC

Contents
biosensor.eq . 4
export_RData . 5
export_Table . 6
fl.control . 6
fl.drFit . 10
fl.drFitModel . 11
fl.report . 13
fl.workflow . 15
flBootSpline . 19
flFit . 21
flFitLinear . 23

https://orcid.org/0000-0003-0799-1321
https://orcid.org/0000-0002-4951-6468

Contents 3

flFitSpline . 25
growth.control . 28
growth.drBootSpline . 32
growth.drFit . 33
growth.drFitModel . 35
growth.drFitSpline . 36
growth.gcBootSpline . 38
growth.gcFit . 39
growth.gcFitLinear . 41
growth.gcFitModel . 45
growth.gcFitSpline . 46
growth.report . 49
growth.workflow . 50
inflect . 56
lm_parms . 57
low.integrate . 58
parse_data . 59
parse_Gen5Gen6 . 61
parse_victornivo . 62
parse_victorx3 . 62
plot.drBootSpline . 63
plot.drFit . 64
plot.drFitfl . 67
plot.drFitFLModel . 69
plot.drFitModel . 71
plot.drFitSpline . 74
plot.dr_parameter . 76
plot.dual . 78
plot.flBootSpline . 81
plot.flFitLinear . 83
plot.flFitRes . 85
plot.flFitSpline . 89
plot.gcBootSpline . 92
plot.gcFitLinear . 94
plot.gcFitModel . 95
plot.gcFitSpline . 97
plot.grid . 100
plot.grodata . 103
plot.grofit . 106
plot.parameter . 109
rdm.data . 112
read_data . 113
read_file . 116
run_app . 117
summary.drBootSpline . 118
summary.drFit . 118
summary.drFitfl . 119
summary.drFitFLModel . 120

4 biosensor.eq

summary.drFitModel . 121
summary.drFitSpline . 122
summary.flBootSpline . 123
summary.flFit . 124
summary.flFitLinear . 125
summary.flFitSpline . 126
summary.gcBootSpline . 127
summary.gcFit . 128
summary.gcFitLinear . 129
summary.gcFitModel . 129
summary.gcFitSpline . 130
table_group_fluorescence_linear . 131
table_group_fluorescence_spline . 132
table_group_growth_linear . 133
table_group_growth_model . 134
table_group_growth_spline . 135
zipFastener . 136

Index 138

biosensor.eq Internal function used to fit a biosensor response model with nlsLM

Description

Calculates the values of biosensor response model for given time points and response parameters.

Usage

biosensor.eq(x, y.min, y.max, K, n)

Arguments

x A vector of concentration values

y.min The minimum fluorescence value

y.max The maximum fluorescence value

K Sensitivity parameter

n Cooperativity parameter

Value

A vector of fluorescence values

References

Meyer, A.J., Segall-Shapiro, T.H., Glassey, E. et al. Escherichia coli “Marionette” strains with 12
highly optimized small-molecule sensors. Nat Chem Biol 15, 196–204 (2019). DOI: 10.1038/s41589-
018-0168-3

export_RData 5

Examples

n <- seq(1:10)
conc <- rev(10*(1/2)^n)
fit <- biosensor.eq(conc, 300, 82000, 0.85, 2)

export_RData Export an R object as .RData file

Description

Export an R object as .RData file

Usage

export_RData(object, out.dir = tempdir(), out.nm = class(object))

Arguments

object An R object.

out.dir The path to the output directory. Default: the working directory

out.nm The output filename (with or without ’.RData’ ending). Default: the class of
object followed by ’.RData’.

Value

NULL

Examples

if(interactive()){
df <- data.frame('A' = seq(1:10), 'B' = rev(seq(1:10)))

export_RData(df)
}

6 fl.control

export_Table Export a tabular object as tab-separated .txt file

Description

Export a tabular object as tab-separated .txt file

Usage

export_Table(table, out.dir = tempdir(), out.nm = deparse(substitute(table)))

Arguments

table A tabular R object (dataframe, matrix, array)

out.dir The path to the output directory. Default: the working directory

out.nm The output filename (with or without ’.txt’ ending). Default: the name of table
followed by ’.txt’.

Value

NULL

Examples

if(interactive()){
df <- data.frame('A' = seq(1:10), 'B' = rev(seq(1:10)))

export_Table(df)
}

fl.control Create a fl.control object.

Description

A fl.control object is required to perform various computations on fluorescence data stored
within grodata objects (created with read_data or parse_data). A fl.control object is cre-
ated automatically as part of fl.workflow.

fl.control 7

Usage

fl.control(
fit.opt = c("l", "s"),
x_type = c("growth", "time"),
norm_fl = TRUE,
t0 = 0,
tmax = NA,
min.growth = NA,
max.growth = NA,
log.x.lin = FALSE,
log.x.spline = FALSE,
log.y.lin = FALSE,
log.y.spline = FALSE,
lin.h = NULL,
lin.R2 = 0.97,
lin.RSD = 0.05,
lin.dY = 0.05,
dr.parameter = "max_slope.spline",
dr.method = c("model", "spline"),
dr.have.atleast = 5,
smooth.dr = NULL,
log.x.dr = FALSE,
log.y.dr = FALSE,
nboot.dr = 0,
biphasic = FALSE,
interactive = FALSE,
nboot.fl = 0,
smooth.fl = 0.75,
growth.thresh = 1.5,
suppress.messages = FALSE,
neg.nan.act = FALSE,
clean.bootstrap = TRUE

)

Arguments

fit.opt (Character or vector of strings) Indicates whether the program should perform a
linear regression ('l') and/or spline fit ('s'). Default: fit.opt = c('l', 's').

x_type (Character) Which data type shall be used as independent variable? Options are
'growth' and 'time'.

norm_fl (Logical) use normalized (to growth) fluorescence data in fits. Has an effect only
when x_type = 'time'

t0 (Numeric) Minimum time value considered for linear and spline fits (if x_type
= 'time').

tmax (Numeric) Maximum time value considered for linear and spline fits (if x_type
= 'time')..

8 fl.control

min.growth (Numeric) Indicate whether only values above a certain threshold should be con-
sidered for linear regressions or spline fits (if x_type = 'growth').

max.growth (Numeric) Indicate whether only growth values below a certain threshold should
be considered for linear regressions or spline fits (if x_type = 'growth').

log.x.lin (Logical) Indicates whether ln(x+1) should be applied to the independent vari-
able for linear fits. Default: FALSE.

log.x.spline (Logical) Indicates whether ln(x+1) should be applied to the independent vari-
able for spline fits. Default: FALSE.

log.y.lin (Logical) Indicates whether ln(y/y0) should be applied to the fluorescence data
for linear fits. Default: FALSE

log.y.spline (Logical) Indicates whether ln(y/y0) should be applied to the fluorescence data
for spline fits. Default: FALSE

lin.h (Numeric) Manually define the size of the sliding window used in flFitLinear.
If NULL, h is calculated for each samples based on the number of measurements
in the fluorescence increase phase of the plot.

lin.R2 (Numeric) R2 threshold for flFitLinear.

lin.RSD (Numeric) Relative standard deviation (RSD) threshold for the calculated slope
in flFitLinear.

lin.dY (Numeric) Threshold for the minimum fraction of growth increase a linear re-
gression window should cover. Default: 0.05 (5%).

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See fl.drFit for further details. Default:
'max_slope.spline', which represents the maximum slope of the spline fit
Typical options include: 'max_slope.linfit', 'dY.linfit', 'max_slope.spline',
and 'dY.spline'.

dr.method (Character) Perform either a smooth spline fit on response parameter vs. con-
centration data ('spline') or fit a biosensor response model with 'model' (pro-
posed by Meyer et al., 2019).

dr.have.atleast

(Numeric) Minimum number of different values for the response parameter one
should have for estimating a dose response curve. Note: All fit procedures re-
quire at least six unique values. Default: 6.

smooth.dr (Numeric) Smoothing parameter used in the spline fit by smooth.spline dur-
ing dose response curve estimation. Usually (not necessesary) in (0; 1]. See
smooth.spline for further details. Default: NULL.

log.x.dr (Logical) Indicates whether ln(x+1) should be applied to the concentration data
of the dose response curves. Default: FALSE.

log.y.dr (Logical) Indicates whether ln(y+1) should be applied to the response data of
the dose response curves. Default: FALSE.

nboot.dr (Numeric) Defines the number of bootstrap samples for EC50 estimation. Use
nboot.dr = 0 to disable bootstrapping. Default: 0.

biphasic (Logical) Shall flFitLinear and flFitSpline try to extract fluorescence pa-
rameters for two different phases (as observed with, e.g., regulator-promoter
systems with varying response in different growth stages) (TRUE) or not (FALSE)?

fl.control 9

interactive (Logical) Controls whether the fit for each sample and method is controlled
manually by the user. If TRUE, each fit is visualized in the Plots pane and the user
can adjust fitting parameters and confirm the reliability of each fit per sample.
Default: TRUE.

nboot.fl (Numeric) Number of bootstrap samples used for nonparametric curve fitting
with flBootSpline. Use nboot.fl = 0 to disable the bootstrap. Default: 0

smooth.fl (Numeric) Parameter describing the smoothness of the spline fit; usually (not
necessary) within (0;1]. smooth.gc=NULL causes the program to query an opti-
mal value via cross validation techniques. Especially for datasets with few data
points the option NULL might cause a too small smoothing parameter. This can
result a too tight fit that is susceptible to measurement errors (thus overestimat-
ing slopes) or produce an error in smooth.spline or lead to overfitting. The
usage of a fixed value is recommended for reproducible results across samples.
See smooth.spline for further details. Default: 0.55

growth.thresh (Numeric) Define a threshold for growth. Only if any growth value in a sam-
ple is greater than growth.thresh (default: 1.5) times the start growth, further
computations are performed. Else, a message is returned.

suppress.messages

(Logical) Indicates whether messages (information about current fluorescence
curve, EC50 values etc.) should be displayed (FALSE) or not (TRUE). This option
is meant to speed up the high-throughput processing data. Note: warnings are
still displayed. Default: FALSE.

neg.nan.act (Logical) Indicates whether the program should stop when negative fluorescence
values or NA values appear (TRUE). Otherwise, the program removes these val-
ues silently (FALSE). Improper values may be caused by incorrect data or input
errors. Default: FALSE.

clean.bootstrap

(Logical) Determines if negative values which occur during bootstrap should
be removed (TRUE) or kept (FALSE). Note: Infinite values are always removed.
Default: TRUE.

Value

Generates a list with all arguments described above as entries.

References

Meyer, A.J., Segall-Shapiro, T.H., Glassey, E. et al. Escherichia coli “Marionette” strains with 12
highly optimized small-molecule sensors. Nat Chem Biol 15, 196–204 (2019). DOI: 10.1038/s41589-
018-0168-3

Examples

default option
control_default <- fl.control()
user defined
control_manual <- fl.control(fit.opt = c('s'),

smooth.fl = 0.6,

10 fl.drFit

x_type = 'time',
t0 = 2)

fl.drFit Fit a biosensor model (Meyer et al., 2019) to response vs. concentra-
tion data

Description

Fit a biosensor model (Meyer et al., 2019) to response vs. concentration data

Usage

fl.drFit(
flTable,
control = fl.control(dr.method = "model", dr.parameter = "max_slope.spline")

)

Arguments

flTable A dataframe containing the data for the dose-response model estimation. Such
table of class flTable can be obtained by running flFit with dr.method =
'model' as argument in the fl.control object.

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

dr.method (Character) Perform either a smooth spline fit on response parameter vs. con-
centration data ('spline') or fit a biosensor response model with 'model' (pro-
posed by Meyer et al., 2019).

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See fl.drFit for further details. Default:
'max_slope.spline', which represents the maximum slope of the spline fit
Typical options include: 'max_slope.linfit', 'dY.linfit', 'max_slope.spline',
and 'dY.spline'.

Details

Common response parameters used in dose-response analysis:Linear fit:- max_slope.linfit: Flu-
orescence increase rate- lambda.linfit: Lag time- dY.linfit: Maximum Fluorescence - Minimum
Fluorescence- A.linfit: Maximum fluorescenceSpline fit:- max_slope.spline: Fluorescence increase
rate- lambda.spline: Lag time- dY.spline: Maximum Fluorescence - Minimum Fluorescence- A.spline:
Maximum fluorescence- integral.spline: IntegralParametric fit:- max_slope.model: Fluorescence
increase rate- lambda.model: Lag time- dY.model: Maximum Fluorescence - Minimum Fluorescence-
A.model: Maximum fluorescence- integral.model: Integral’

fl.drFitModel 11

Value

An object of class drFit.

raw.data Data that passed to the function as flTable.

drTable Dataframe containing condition identifiers, fit options, and results of the dose-
response analysis.

drFittedModels List of all drFitModel objects generated by the call of fl.drFitModel for each
distinct experiment.

control Object of class fl.control created with the call of fl.control.

References

Meyer, A.J., Segall-Shapiro, T.H., Glassey, E. et al. Escherichia coli “Marionette” strains with 12
highly optimized small-molecule sensors. Nat Chem Biol 15, 196–204 (2019). DOI: 10.1038/s41589-
018-0168-3

Examples

Load example dataset
input <- read_data(data.fl = system.file('lac_promoters_fluorescence.txt', package = 'QurvE'),

csvsep.fl = "\t")

Run fluorescence curve analysis workflow
fitres <- flFit(fl_data = input$fluorescence,

time = input$time,
parallelize = FALSE,
control = fl.control(x_type = 'time', norm_fl = FALSE,

suppress.messages = TRUE))

Perform dose-response analysis
drFit <- fl.drFit(flTable = fitres$flTable,

control = fl.control(dr.method = 'model',
dr.parameter = 'max_slope.linfit'))

Inspect results
summary(drFit)
plot(drFit)

fl.drFitModel Perform a biosensor model fit on response vs. concentration data of a
single sample.

Description

fl.drFitModel fits the biosensor model proposed by Meyer et al. (2019) to the provided response
(e.g., max_slope.spline vs. concentration data to determine the leakiness, sensitivity, induction
fold-change, and cooperativity.

12 fl.drFitModel

Usage

fl.drFitModel(conc, test, drID = "undefined", control = fl.control())

Arguments

conc Vector of concentration values.

test Vector of response parameter values of the same length as conc.

drID (Character) The name of the analyzed condition

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

Value

A drFitFLModel object.

raw.conc Raw data provided to the function as conc.

raw.test Raw data for the response parameter provided to the function as test.

drID (Character) Identifies the tested condition

fit.conc Fitted concentration values.

fit.test Fitted response values.

model nls object generated by the nlsLM function.

parameters List of parameters estimated from dose response curve fit.

• yEC50: Response value related to EC50.

• y.min: Minimum fluorescence (’leakiness’, if lowest concentration is 0).

• y.max: Maximum fluorescence.

• fc: Fold change (y.max divided by y.min).

• K: Concentration at half-maximal response (’sensitivity’).

• n: Cooperativity.

• yEC50.orig: Response value for EC50 in original scale, if a transformation was applied.

• K.orig: K in original scale, if a transformation was applied.

• test.nm: Test identifier extracted from test.

fitFlag (Logical) Indicates whether a spline could fitted successfully to data.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

control Object of class fl.control created with the call of fl.control.

Use plot.drFitModel to visualize the model fit.

References

Meyer, A.J., Segall-Shapiro, T.H., Glassey, E. et al. Escherichia coli “Marionette” strains with 12
highly optimized small-molecule sensors. Nat Chem Biol 15, 196–204 (2019). DOI: 10.1038/s41589-
018-0168-3

fl.report 13

Examples

Create concentration values via a serial dilution
conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)

Simulate response values via biosensor equation
response <- biosensor.eq(conc, y.min = 110, y.max = 6000, K = 0.5, n = 2) +

0.01*6000*rnorm(10)

Perform fit
TestRun <- fl.drFitModel(conc, response, drID = 'test', control = fl.control())

print(summary(TestRun))
plot(TestRun)

fl.report Create a PDF and HTML report with results from a fluorescence anal-
ysis workflow

Description

fl.report requires a flFitRes object and creates a report in PDF and HTML format that summa-
rizes all results obtained.

Usage

fl.report(
flFitRes,
out.dir = tempdir(),
out.nm = NULL,
ec50 = FALSE,
format = c("pdf", "html"),
export = FALSE,
parallelize = TRUE,
...

)

Arguments

flFitRes A grofit object created with fl.workflow.

out.dir (Character) The path or name of the folder in which the report files are created.
If NULL, the folder will be named with a combination of ’Report.fluorescence_’
and the current date and time.

out.nm Character or NULL Define the name of the report files. If NULL, the files will be
named with a combination of ’FluorescenceReport_’ and the current date and
time.

ec50 (Logical) Display results of dose-response analysis (TRUE) or not (FALSE).

14 fl.report

format (Character) Define the file format for the report, PDF ('pdf') and/or HTML
('html'). Default: (c('pdf', 'html'))

export (Logical) Shall all plots generated in the report be exported as individual PDF
and PNG files TRUE or not FALSE?

parallelize (Logical) Create plots using all but one available processor cores (TRUE) or only
a single core (FALSE).

... Further arguments passed to create a report. Currently supported:

• mean.grp: Define groups to combine into common plots in the report based
on sample identifiers. Partial matches with sample/group names are ac-
cepted. Can be 'all', a vector of strings, or a list of string vectors. Note:
The maximum number of sample groups (with unique condition/concentration
indicators) is 50. If you have more than 50 groups, option 'all' will pro-
duce the error ! Insufficient values in manual scale. [Number] needed
but only 50 provided.

• mean.conc: Define concentrations to combine into common plots in the
report. Can be a numeric vector, or a list of numeric vectors.

Details

The template .Rmd file used within this function can be found within the QurvE package installation
directory.

Value

NULL

Examples

load example dataset
Not run:
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = 's',

x_type = 'time', norm_fl = TRUE,
dr.parameter = 'max_slope.spline',
suppress.messages = TRUE,
parallelize = FALSE)

fl.report(res, out.dir = tempdir(), parallelize = FALSE)

End(Not run)

fl.workflow 15

fl.workflow Run a complete fluorescence curve analysis and dose-reponse analysis
workflow.

Description

fl.workflow runs fl.control to create a fl.control object and then performs all computational
fitting operations based on the user input. Finally, if desired, a final report is created in PDF or
HTML format that summarizes all results obtained.

Usage

fl.workflow(
grodata = NULL,
time = NULL,
growth = NULL,
fl_data = NULL,
ec50 = TRUE,
mean.grp = NA,
mean.conc = NA,
fit.opt = c("l", "s"),
x_type = c("growth", "time"),
norm_fl = TRUE,
t0 = 0,
tmax = NA,
min.growth = 0,
max.growth = NA,
log.x.lin = FALSE,
log.x.spline = FALSE,
log.y.lin = FALSE,
log.y.spline = FALSE,
lin.h = NULL,
lin.R2 = 0.97,
lin.RSD = 0.07,
lin.dY = 0.05,
biphasic = FALSE,
interactive = FALSE,
dr.parameter = "max_slope.spline",
dr.method = c("model", "spline"),
dr.have.atleast = 5,
smooth.dr = NULL,
log.x.dr = FALSE,
log.y.dr = FALSE,
nboot.dr = 0,
nboot.fl = 0,
smooth.fl = 0.75,
growth.thresh = 1.5,

16 fl.workflow

suppress.messages = FALSE,
neg.nan.act = FALSE,
clean.bootstrap = TRUE,
report = NULL,
out.dir = NULL,
out.nm = NULL,
export.fig = FALSE,
export.res = FALSE,
parallelize = TRUE,
...

)

Arguments

grodata A grodata object created with read_data or parse_data, containing fluores-
cence data and data for the independent variable (i.e., time or growth).

time (optional) A matrix containing time values for each sample (if a fl_data dataframe
is provided as separate argument).

growth (optional) A dataframe containing growth data (if a fl_data matrix is provided
as separate argument).

fl_data (optional) A dataframe containing fluorescence data (if a time matrix or growth
dataframe is provided as separate argument).

ec50 (Logical) Perform dose-response analysis (TRUE) or not (FALSE).

mean.grp ("all", a string vector, or a list of string vectors) Define groups to combine
into common plots in the final report based on sample identifiers (if report ==
TRUE). Partial matches with sample/group names are accepted. Note: The maxi-
mum number of sample groups (with unique condition/concentration indicators)
is 50. If you have more than 50 groups, option "all" will produce the error !
Insufficient values in manual scale. [Number] needed but only 50 provided.

mean.conc (A numeric vector, or a list of numeric vectors) Define concentrations to com-
bine into common plots in the final report (if report == TRUE).

fit.opt (Character or character vector) Indicates whether the program should perform
a linear regression ("l"), model fit ("m"), spline fit ("s"), or all ("a"). Com-
binations can be freely chosen by providing a character vector, e.g. fit.opt =
c("l", "s") Default: fit.opt = c("l", "s").

x_type (Character) Which data type shall be used as independent variable? Options are
'growth' and 'time'.

norm_fl (Logical) use normalized (to growth) fluorescence data in fits. Has an effect only
when x_type = 'time'

t0 (Numeric) Minimum time value considered for linear and spline fits (if x_type
= 'time').

tmax (Numeric) Maximum time value considered for linear and spline fits (if x_type
= 'time')..

min.growth (Numeric) Indicate whether only values above a certain threshold should be con-
sidered for linear regressions or spline fits (if x_type = 'growth').

fl.workflow 17

max.growth (Numeric) Indicate whether only growth values below a certain threshold should
be considered for linear regressions or spline fits (if x_type = 'growth').

log.x.lin (Logical) Indicates whether ln(x+1) should be applied to the independent vari-
able for linear fits. Default: FALSE.

log.x.spline (Logical) Indicates whether ln(x+1) should be applied to the independent vari-
able for spline fits. Default: FALSE.

log.y.lin (Logical) Indicates whether ln(y/y0) should be applied to the fluorescence data
for linear fits. Default: FALSE

log.y.spline (Logical) Indicates whether ln(y/y0) should be applied to the fluorescence data
for spline fits. Default: FALSE

lin.h (Numeric) Manually define the size of the sliding window used in flFitLinear.
If NULL, h is calculated for each samples based on the number of measurements
in the fluorescence increase phase of the plot.

lin.R2 (Numeric) R2 threshold for flFitLinear.

lin.RSD (Numeric) Relative standard deviation (RSD) threshold for the calculated slope
in flFitLinear.

lin.dY (Numeric) Threshold for the minimum fraction of growth increase a linear re-
gression window should cover. Default: 0.05 (5%).

biphasic (Logical) Shall flFitLinear and flFitSpline try to extract fluorescence pa-
rameters for two different phases (as observed with, e.g., regulator-promoter
systems with varying response in different growth stages) (TRUE) or not (FALSE)?

interactive (Logical) Controls whether the fit for each sample and method is controlled
manually by the user. If TRUE, each fit is visualized in the Plots pane and the user
can adjust fitting parameters and confirm the reliability of each fit per sample.
Default: TRUE.

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See fl.drFit for further details. Default:
"max_slope.spline", which represents the maximum slope of the spline fit
Typical options include: "max_slope.linfit", "dY.linfit", "max_slope.spline",
and "dY.spline".

dr.method (Character) Perform either a smooth spline fit on response parameter vs. concen-
tration data ("spline") or fit a biosensor response model (proposed by Meyer
et al., 2019).

dr.have.atleast

(Numeric) Minimum number of different values for the response parameter one
should have for estimating a dose response curve. Note: All fit procedures re-
quire at least six unique values. Default: 6.

smooth.dr (Numeric) Smoothing parameter used in the spline fit by smooth.spline dur-
ing dose response curve estimation. Usually (not necessesary) in (0; 1]. See
smooth.spline for further details. Default: NULL.

log.x.dr (Logical) Indicates whether ln(x+1) should be applied to the concentration data
of the dose response curves. Default: FALSE.

log.y.dr (Logical) Indicates whether ln(y+1) should be applied to the response data of
the dose response curves. Default: FALSE.

18 fl.workflow

nboot.dr (Numeric) Defines the number of bootstrap samples for EC50 estimation. Use
nboot.dr = 0 to disable bootstrapping. Default: 0.

nboot.fl (Numeric) Number of bootstrap samples used for nonparametric curve fitting
with flBootSpline. Use nboot.fl = 0 to disable the bootstrap. Default: 0

smooth.fl (Numeric) Parameter describing the smoothness of the spline fit; usually (not
necessary) within (0;1]. smooth.gc=NULL causes the program to query an opti-
mal value via cross validation techniques. Especially for datasets with few data
points the option NULL might cause a too small smoothing parameter. This can
result a too tight fit that is susceptible to measurement errors (thus overestimat-
ing slopes) or produce an error in smooth.spline or lead to overfitting. The
usage of a fixed value is recommended for reproducible results across samples.
See smooth.spline for further details. Default: 0.55

growth.thresh (Numeric) Define a threshold for growth. Only if any growth value in a sam-
ple is greater than growth.thresh (default: 1.5) times the start growth, further
computations are performed. Else, a message is returned.

suppress.messages

(Logical) Indicates whether messages (information about current fluorescence
curve, EC50 values etc.) should be displayed (FALSE) or not (TRUE). This option
is meant to speed up the high-throughput processing data. Note: warnings are
still displayed. Default: FALSE.

neg.nan.act (Logical) Indicates whether the program should stop when negative fluorescence
values or NA values appear (TRUE). Otherwise, the program removes these val-
ues silently (FALSE). Improper values may be caused by incorrect data or input
errors. Default: FALSE.

clean.bootstrap

(Logical) Determines if negative values which occur during bootstrap should
be removed (TRUE) or kept (FALSE). Note: Infinite values are always removed.
Default: TRUE.

report (Character or NULL) Create a PDF ('pdf') and/or HTML ('html') report after
running all computations. Define NULL if no report should be created. Default:
(c('pdf', 'html'))

out.dir Character or NULL Define the name of a folder in which all result files (tables
and reports) are stored. If NULL, the folder will be named with a combination of
"FluorescenceResults_" and the current date and time.

out.nm Character or NULL Define the name of the report files. If NULL, the files will be
named with a combination of "FluorescenceReport_" and the current date and
time.

export.fig (Logical) Export all figures created in the report as separate PNG and PDF files
(TRUE) or not (FALSE). Only effective if report = TRUE.

export.res (Logical) Create tab-separated TXT files containing calculated parameters and
dose-response analysis results as well as an .RData file for the resulting flFitRes
object.

parallelize Run linear fits and bootstrapping operations in parallel using all but one available
processor cores

... Further arguments passed to the shiny app.

flBootSpline 19

Value

A flFitRes object that contains all computation results, compatible with various plotting functions
of the QurvE package and with fl.report.

time Raw time matrix passed to the function as time (if no grofit object is provided.
Else, extracted from grofit).

data Raw data dataframe passed to the function as grodata.
flFit flFit object created with the call of flFit on fluorescence data.
drFit drFit or drFitfl object created with the call of growth.drFit or fl.drFit for

fluorescence data (based on the dr.method argument in control; see fl.control).
expdesign Experimental design table inherited from grodata or created from the identifier

columns (columns 1-3) in data.
control Object of class fl.control created with the call of fl.control.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
suppress.messages = TRUE,
parallelize = FALSE)

plot(res, data.type = "raw", legend.ncol = 3, basesize = 15)

flBootSpline flBootSpline: Function to generate a bootstrap

Description

fl.gcBootSpline resamples the fluorescence-’x’ value pairs in a dataset with replacement and
performs a spline fit for each bootstrap sample.

Usage

flBootSpline(
time = NULL,
growth = NULL,
fl_data,
ID = "undefined",
control = fl.control()

)

20 flBootSpline

Arguments

time Vector of the independent variable: time (if x_type = 'time' in fl.control
object.

growth Vector of the independent variable: growth (if x_type = 'growth' in fl.control
object.

fl_data Vector of dependent variable: fluorescence.

ID (Character) The name of the analyzed sample.

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

Value

A gcBootSpline object containing a distribution of fluorescence parameters and a flFitSpline
object for each bootstrap sample. Use plot.gcBootSpline to visualize all bootstrapping splines as
well as the distribution of physiological parameters.

raw.x Raw time values provided to the function as time.

raw.fl Raw growth data provided to the function as data.

ID (Character) Identifies the tested sample.

boot.x Table of time values per column, resulting from each spline fit of the bootstrap.

boot.fl Table of growth values per column, resulting from each spline fit of the boot-
strap.

boot.flSpline List of flFitSpline object, created by flFitSpline for each resample of the
bootstrap.

lambda Vector of estimated lambda (lag time) values from each bootstrap entry.

max_slope Vector of estimated max_slope (maximum slope) values from each bootstrap
entry.

A Vector of estimated A (maximum fluorescence) values from each bootstrap en-
try.

integral Vector of estimated integral values from each bootstrap entry.

bootFlag (Logical) Indicates the success of the bootstrapping operation.

control Object of class fl.control containing list of options passed to the function as
control.

See Also

Other fluorescence fitting functions: flFitSpline(), flFit()

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

flFit 21

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flBootSpline(time = time,

fl_data = data,
ID = 'TestFit',
control = fl.control(fit.opt = 's', x_type = 'time',
nboot.fl = 50))

plot(TestFit, combine = TRUE, lwd = 0.5)

flFit Perform a fluorescence curve analysis on all samples in the provided
dataset.

Description

flFit performs all computational fluorescence fitting operations based on the user input.

Usage

flFit(
fl_data,
time = NULL,
growth = NULL,
control = fl.control(),
parallelize = TRUE,
...

)

Arguments

fl_data Either...

1. a grodata object created with read_data or parse_data,
2. a list containing a 'time' matrix (for x_type == "time") or 'growth' dataframe

(for x_type == "growth") and a 'fluorescence' dataframes, or
3. a dataframe containing (normalized) fluorescence values (if a time matrix

or growth dataframe is provided as separate argument).

time (optional) A matrix containing time values for each sample.

growth (optional) A dataframe containing growth values for each sample and sample
identifiers in the first three columns.

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

22 flFit

parallelize Run linear fits and bootstrapping operations in parallel using all but one available
processor cores

... Further arguments passed to the shiny app.

Details

Common response parameters used in dose-response analysis:Linear fit:- max_slope.linfit: Flu-
orescence increase rate- lambda.linfit: Lag time- dY.linfit: Maximum Fluorescence - Minimum
Fluorescence- A.linfit: Maximum fluorescenceSpline fit:- max_slope.spline: Fluorescence increase
rate- lambda.spline: Lag time- dY.spline: Maximum Fluorescence - Minimum Fluorescence- A.spline:
Maximum fluorescence- integral.spline: IntegralParametric fit:- max_slope.model: Fluorescence
increase rate- lambda.model: Lag time- dY.model: Maximum Fluorescence - Minimum Fluorescence-
A.model: Maximum fluorescence- integral.model: Integral’

Value

An flFit object that contains all fluorescence fitting results, compatible with various plotting func-
tions of the QurvE package.

raw.x Raw x matrix passed to the function as time (for x_type = ’time’) or growth
(for x_type = ’growth’).

raw.fl Raw growth dataframe passed to the function as data.

flTable Table with fluorescence parameters and related statistics for each fluorescence
curve evaluation performed by the function. This table, which is also returned
by the generic summary.flFit method applied to a flFit object, is used as an
input for fl.drFit.

flFittedLinear List of all flFitLinear objects, generated by the call of flFitLinear. Note:
access to each object in the list via double brace: flFittedLinear[[#n]].

flFittedSplines

List of all flFitSpline objects, generated by the call of flFitSpline. Note:
access to each object via double brace: flFittedSplines[[#n]].

flBootSplines List of all flBootSpline objects, generated by the call of flBootSpline. Note:
access to each object via double brace: flFittedSplines[[#n]].

control Object of class fl.control containing list of options passed to the function as
control.

See Also

Other workflows: growth.gcFit(), growth.workflow()

Other fluorescence fitting functions: flBootSpline(), flFitSpline()

Other dose-response analysis functions: growth.drBootSpline(), growth.drFitSpline(), growth.gcFit(),
growth.workflow()

flFitLinear 23

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Define fit controls
control <- fl.control(fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
dr.method = "model",
suppress.messages = TRUE)

Run curve fitting workflow
res <- flFit(fl_data = input$norm.fluorescence,

time = input$time,
control = control,
parallelize = FALSE)

summary(res)

flFitLinear Data fit via a heuristic linear method

Description

Determine maximum slopes from using a heuristic approach similar to the “growth rates made
easy”-method of Hall et al. (2013).

Usage

flFitLinear(
time = NULL,
growth = NULL,
fl_data,
ID = "undefined",
quota = 0.95,
control = fl.control(x_type = c("growth", "time"), log.x.lin = FALSE, log.y.lin =
FALSE, t0 = 0, min.growth = NA, lin.h = NULL, lin.R2 = 0.98, lin.RSD = 0.05, lin.dY =
0.05, biphasic = FALSE)

)

Arguments

time Vector of the independent time variable (if x_type = "time" in control object).

growth Vector of the independent time growth (if x_type = "growth" in control object).

24 flFitLinear

fl_data Vector of the dependent fluorescence variable.

ID (Character) The name of the analyzed sample.

quota (Numeric, between 0 an 1) Define what fraction of max_slope the slope of re-
gression windows adjacent to the window with highest slope should have to be
included in the overall linear fit.

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

Value

A gcFitLinear object with parameters of the fit. The lag time is estimated as the intersection
between the fit and the horizontal line with y = y0, where y0 is the first value of the dependent
variable. Use plot.gcFitSpline to visualize the linear fit.

raw.x Filtered x values used for the spline fit.

raw.fl Filtered fluorescence values used for the spline fit.

filt.x Filtered x values.

filt.fl Filtered fluorescence values.

ID (Character) Identifies the tested sample.

FUN Linear function used for plotting the tangent at mumax.

fit lm object; result of the final call of lm to perform the linear regression.

par List of determined fluorescence parameters:

• y0: Minimum fluorescence value considered for the heuristic linear method.

• dY: Difference in maximum fluorescence and minimum fluorescence

• A: Maximum fluorescence

• y0_lm: Intersection of the linear fit with the abscissa.

• max_slope: Maximum slope of the linear fit.

• tD: Doubling time.

• slope.se: Standard error of the maximum slope.

• lag: Lag X.

• x.max_start: X value of the first data point within the window used for the linear regression.

• x.max_end: X value of the last data point within the window used for the linear regression.

• x.turn: For biphasic: X at the inflection point that separates two phases.

• max.slope2: For biphasic: Slope of the second phase.

• tD2: Doubling time of the second phase.

• y0_lm2: For biphasic: Intersection of the linear fit of the second phase with the abscissa.

• lag2: For biphasic: Lag time determined for the second phase..

• x.max2_start: For biphasic: X value of the first data point within the window used for the
linear regression of the second phase.

• x.max2_end: For biphasic: X value of the last data point within the window used for the linear
regression of the second phase.

flFitSpline 25

ndx Index of data points used for the linear regression.

ndx2 Index of data points used for the linear regression for the second phase.

control Object of class grofit.control containing list of options passed to the function
as control.

rsquared R2 of the linear regression.

rsquared2 R2 of the linear regression for the second phase.

fitFlag (Logical) Indicates whether linear regression was successfully performed on the
data.

fitFlag2 (Logical) Indicates whether a second phase was identified.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

References

Hall, BG., Acar, H, Nandipati, A and Barlow, M (2014) Growth Rates Made Easy. Mol. Biol. Evol.
31: 232-38, DOI: 10.1093/molbev/mst187

Petzoldt T (2022). growthrates: Estimate Growth Rates from Experimental Data. R package ver-
sion 0.8.3, https://CRAN.R-project.org/package=growthrates.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitLinear(time = time,

fl_data = data,
ID = "TestFit",
control = fl.control(fit.opt = "l", x_type = "time",
lin.R2 = 0.95, lin.RSD = 0.1,
lin.h = 20))

plot(TestFit)

flFitSpline Perform a smooth spline fit on fluorescence data

Description

flFitSpline performs a smooth spline fit on the dataset and determines the greatest slope as the
global maximum in the first derivative of the spline.

https://CRAN.R-project.org/package=growthrates

26 flFitSpline

Usage

flFitSpline(
time = NULL,
growth = NULL,
fl_data,
ID = "undefined",
control = fl.control(biphasic = FALSE, x_type = c("growth", "time"), log.x.spline =

FALSE, log.y.spline = FALSE, smooth.fl = 0.75, t0 = 0, min.growth = NA)
)

Arguments

time Vector of the independent variable: time (if x_type = 'time' in fl.control
object.

growth Vector of the independent variable: growth (if x_type = 'growth' in fl.control
object.

fl_data Vector of dependent variable: fluorescence.

ID (Character) The name of the analyzed sample.

control A fl.control object created with fl.control, defining relevant fitting op-
tions.

biphasic (Logical) Shall flFitLinear and flFitSpline try to extract fluorescence pa-
rameters for two different phases (as observed with, e.g., regulator-promoter
systems with varying response in different growth stages) (TRUE) or not (FALSE)?

x_type (Character) Which data type shall be used as independent variable? Options are
'growth' and 'time'.

log.x.spline (Logical) Indicates whether ln(x+1) should be applied to the independent vari-
able for spline fits. Default: FALSE.

log.y.spline (Logical) Indicates whether ln(y/y0) should be applied to the fluorescence data
for spline fits. Default: FALSE

smooth.fl (Numeric) Parameter describing the smoothness of the spline fit; usually (not
necessary) within (0;1]. smooth.gc=NULL causes the program to query an opti-
mal value via cross validation techniques. Especially for datasets with few data
points the option NULL might cause a too small smoothing parameter. This can
result a too tight fit that is susceptible to measurement errors (thus overestimat-
ing slopes) or produce an error in smooth.spline or lead to overfitting. The
usage of a fixed value is recommended for reproducible results across samples.
See smooth.spline for further details. Default: 0.55

t0 (Numeric) Minimum time value considered for linear and spline fits.

min.growth (Numeric) Indicate whether only values above a certain threshold should be con-
sidered for linear regressions or spline fits.

Details

If biphasic = TRUE, the following steps are performed to define a second phase:

1. Determine local minima within the first derivative of the smooth spline fit.

flFitSpline 27

2. Remove the ’peak’ containing the highest value of the first derivative (i.e., mumax) that is
flanked by two local minima.

3. Repeat the smooth spline fit and identification of maximum slope for later time values than
the local minimum after mumax.

4. Repeat the smooth spline fit and identification of maximum slope for earlier time values than
the local minimum before mumax.

5. Choose the greater of the two independently determined slopes as mumax2.

Value

A flFitSpline object. The lag time is estimated as the intersection between the tangent at the
maximum slope and the horizontal line with y = y0, where y0 is the first value of the dependent
variable. Use plot.flFitSpline to visualize the spline fit and derivative over time.

x.in Raw x values provided to the function as time or growth.
fl.in Raw fluorescence data provided to the function as fl_data.
raw.x Filtered x values used for the spline fit.
raw.fl Filtered fluorescence values used for the spline fit.
ID (Character) Identifies the tested sample.
fit.x Fitted x values.
fit.fl Fitted fluorescence values.
parameters List of determined parameters.

• A: Maximum fluorescence.
• dY: Difference in maximum fluorescence and minimum fluorescence.
• max_slope: Maximum slope of fluorescence-vs.-x data (i.e., maximum in first derivative of

the spline).
• x.max: Time at the maximum slope.
• lambda: Lag time.
• b.tangent: Intersection of the tangent at the maximum slope with the abscissa.
• max_slope2: For biphasic course of fluorescence: Maximum slope of fluorescence-vs.-x data

of the second phase.
• lambda2: For biphasic course of fluorescence: Lag time determined for the second phase.
• x.max2: For biphasic course of fluorescence: Time at the maximum slope of the second phase.
• b.tangent2: For biphasic course of fluorescence: Intersection of the tangent at the maximum

slope of the second phase with the abscissa.
• integral: Area under the curve of the spline fit.

spline smooth.spline object generated by the smooth.spline function.
spline.deriv1 list of time (’x’) and growth (’y’) values describing the first derivative of the

spline fit.
reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).
fitFlag (Logical) Indicates whether a spline fit was successfully performed on the data.
fitFlag2 (Logical) Indicates whether a second phase was identified.
control Object of class fl.control containing list of options passed to the function as

control.

28 growth.control

See Also

Other fluorescence fitting functions: flBootSpline(), flFit()

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitSpline(time = time,

fl_data = data,
ID = 'TestFit',
control = fl.control(fit.opt = 's', x_type = 'time'))

plot(TestFit)

growth.control Create a grofit.control object.

Description

A grofit.control object is required to perform various computations on growth data stored within
grodata objects (created with read_data or parse_data). A grofit.control object is created
automatically as part of growth.workflow.

Usage

growth.control(
neg.nan.act = FALSE,
clean.bootstrap = TRUE,
suppress.messages = FALSE,
fit.opt = c("a"),
t0 = 0,
tmax = NA,
min.growth = NA,
max.growth = NA,
log.x.gc = FALSE,
log.y.lin = TRUE,
log.y.spline = TRUE,
log.y.model = TRUE,
lin.h = NULL,

growth.control 29

lin.R2 = 0.97,
lin.RSD = 0.1,
lin.dY = 0.05,
biphasic = FALSE,
interactive = FALSE,
nboot.gc = 0,
smooth.gc = 0.55,
model.type = c("logistic", "richards", "gompertz", "gompertz.exp", "huang", "baranyi"),
dr.method = c("model", "spline"),
dr.model = c("gammadr", "multi2", "LL.2", "LL.3", "LL.4", "LL.5", "W1.2", "W1.3",

"W1.4", "W2.2", "W2.3", "W2.4", "LL.3u", "LL2.2", "LL2.3", "LL2.3u", "LL2.4",
"LL2.5", "AR.2", "AR.3", "MM.2"),

dr.have.atleast = 6,
dr.parameter = c("mu.linfit", "lambda.linfit", "dY.linfit", "A.linfit", "mu.spline",

"lambda.spline", "dY.spline", "A.spline", "mu.model", "lambda.model",
"dY.orig.model", "A.orig.model"),

smooth.dr = NULL,
log.x.dr = FALSE,
log.y.dr = FALSE,
nboot.dr = 0,
growth.thresh = 1.5

)

Arguments

neg.nan.act (Logical) Indicates whether the program should stop when negative growth val-
ues or NA values appear (TRUE). Otherwise, the program removes these values
silently (FALSE). Improper values may be caused by incorrect data or input er-
rors. Default: FALSE.

clean.bootstrap

(Logical) Determines if negative values which occur during bootstrap should be
removed (TRUE) or kept (FALSE). Note: Infinite values are always removed.
Default: TRUE.

suppress.messages

(Logical) Indicates whether messages (information about current growth curve,
EC50 values etc.) should be displayed (FALSE) or not (TRUE). This option is
meant to speed up the processing of high throughput data. Note: warnings are
still displayed. Default: FALSE.

fit.opt (Character or character vector) Indicates whether the program should perform
a linear regression ('l'), model fit ('m'), spline fit ('s'), or all ('a'). Com-
binations can be freely chosen by providing a character vector, e.g. fit.opt =
c('l', 's') Default: fit.opt = c('l', 's').

t0 (Numeric) Minimum time value considered for linear and spline fits.

tmax (Numeric) Maximum time value considered for linear and spline fits.

min.growth (Numeric) Indicate whether only growth values above a certain threshold should
be considered for linear regressions or spline fits.

max.growth (Numeric) Indicate whether only growth values below a certain threshold should
be considered for linear regressions or spline fits.

30 growth.control

log.x.gc (Logical) Indicates whether ln(x+1) should be applied to the time data for linear
and spline fits. Default: FALSE.

log.y.lin (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
linear fits. Default: TRUE

log.y.spline (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
spline fits. Default: TRUE

log.y.model (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
model fits. Default: TRUE

lin.h (Numeric) Manually define the size of the sliding window used in growth.gcFitLinear
If NULL, h is calculated for each samples based on the number of measurements
in the growth phase of the plot.

lin.R2 (Numeric) R2 threshold for growth.gcFitLinear

lin.RSD (Numeric) Relative standard deviation (RSD) threshold for the calculated slope
in growth.gcFitLinear

lin.dY (Numeric) Threshold for the minimum fraction of growth increase a linear re-
gression window should cover. Default: 0.05 (5%).

biphasic (Logical) Shall growth.gcFitLinear and growth.gcFitSpline try to extract
growth parameters for two different growth phases (as observed with, e.g., di-
auxic shifts) (TRUE) or not (FALSE)?

interactive (Logical) Controls whether the fit of each growth curve and method is controlled
manually by the user. If TRUE, each fit is visualized in the Plots pane and the user
can adjust fitting parameters and confirm the reliability of each fit per sample.
Default: TRUE.

nboot.gc (Numeric) Number of bootstrap samples used for nonparametric growth curve
fitting with growth.gcBootSpline. Use nboot.gc = 0 to disable the bootstrap.
Default: 0

smooth.gc (Numeric) Parameter describing the smoothness of the spline fit; usually (not
necessary) within (0;1]. smooth.gc=NULL causes the program to query an opti-
mal value via cross validation techniques. Especially for datasets with few data
points the option NULL might cause a too small smoothing parameter. This can
result a too tight fit that is susceptible to measurement errors (thus overestimat-
ing growth rates) or produce an error in smooth.spline or lead to overfitting.
The usage of a fixed value is recommended for reproducible results across sam-
ples. See smooth.spline for further details. Default: 0.55

model.type (Character) Vector providing the names of the parametric models which should
be fitted to the data. Default: c('logistic', 'richards', 'gompertz', 'gompertz.exp',
'huang', 'baranyi').

dr.method (Character) Define the method used to perform a dose-responde analysis: smooth
spline fit ('spline') or model fitting ('model').

dr.model (Character) Provide a list of models from the R package ’drc’ to include in the
dose-response analysis (if dr.method = 'model'). If more than one model is
provided, the best-fitting model will be chosen based on the Akaike Information
Criterion.

growth.control 31

dr.have.atleast

(Numeric) Minimum number of different values for the response parameter one
should have for estimating a dose response curve. Note: All fit procedures re-
quire at least six unique values. Default: 6.

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See growth.drFit for further details. De-
fault: 'mu.linfit', which represents the maximum slope of the linear regres-
sion. Typical options include: 'mu.linfit', 'lambda.linfit', 'dY.linfit',
'mu.spline', 'dY.spline', 'mu.model', and 'A.model'.

smooth.dr (Numeric) Smoothing parameter used in the spline fit by smooth.spline dur-
ing dose response curve estimation. Usually (not necessesary) in (0; 1]. See
smooth.spline for further details. Default: NULL.

log.x.dr (Logical) Indicates whether ln(x+1) should be applied to the concentration data
of the dose response curves. Default: FALSE.

log.y.dr (Logical) Indicates whether ln(y+1) should be applied to the response data of
the dose response curves. Default: FALSE.

nboot.dr (Numeric) Defines the number of bootstrap samples for EC50 estimation. Use
nboot.dr = 0 to disable bootstrapping. Default: 0.

growth.thresh (Numeric) Define a threshold for growth. Only if any growth value in a sam-
ple is greater than growth.thresh (default: 1.5) times the start growth, further
computations are performed. Else, a message is returned.

Value

Generates a list with all arguments described above as entries.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

Examples

default option
control_default <- growth.control()
user defined
control_manual <- growth.control(fit.opt = c('s', 'm'),

smooth.gc = 0.5,
model.type = c('huang', 'baranyi'))

32 growth.drBootSpline

growth.drBootSpline Perform a smooth spline fit on response vs. concentration data of a
single sample

Description

growth.drBootSpline resamples the values in a dataset with replacement and performs a spline
fit for each bootstrap sample to determine the EC50.

Usage

growth.drBootSpline(conc, test, drID = "undefined", control = growth.control())

Arguments

conc Vector of concentration values.
test Vector of response parameter values of the same length as conc.
drID (Character) The name of the analyzed sample.
control A grofit.control object created with growth.control, defining relevant fit-

ting options.

Value

An object of class drBootSpline containing a distribution of growth parameters and a drFitSpline
object for each bootstrap sample. Use plot.drBootSpline to visualize all bootstrapping splines as
well as the distribution of EC50.

raw.conc Raw data provided to the function as conc.
raw.test Raw data for the response parameter provided to the function as test.
drID (Character) Identifies the tested condition.
boot.conc Table of concentration values per column, resulting from each spline fit of the

bootstrap.
boot.test Table of response values per column, resulting from each spline fit of the boot-

strap.
boot.drSpline List containing all drFitSpline objects generated by the call of growth.drFitSpline.
ec50.boot Vector of estimated EC50 values from each bootstrap entry.
ec50y.boot Vector of estimated response at EC50 values from each bootstrap entry.
BootFlag (Logical) Indicates the success of the bootstrapping operation.
control Object of class grofit.control containing list of options passed to the function

as control.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

growth.drFit 33

See Also

Other dose-response analysis functions: flFit(), growth.drFitSpline(), growth.gcFit(), growth.workflow()

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+rnorm(19)/50, 0)

TestRun <- growth.drBootSpline(conc, response, drID = 'test',
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8,

nboot.dr = 50))

print(summary(TestRun))
plot(TestRun, combine = TRUE)

growth.drFit Perform a dose-response analysis on response vs. concentration data

Description

growth.drFit serves to determine dose-response curves on every condition in a dataset. The re-
sponse parameter can be chosen from every physiological parameter in a gcTable table which is ob-
tained via growth.gcFit. growth.drFit calls the functions growth.drFitSpline and growth.drBootSpline,
or growth.drFitModel to generate a table with estimates for EC50 and respecting statistics.

Usage

growth.drFit(
gcTable,
control = growth.control(dr.method = "model", dr.model = c("gammadr", "multi2", "LL.2",
"LL.3", "LL.4", "LL.5", "W1.2", "W1.3", "W1.4", "W2.2", "W2.3", "W2.4", "LL.3u",
"LL2.2", "LL2.3", "LL2.3u", "LL2.4", "LL2.5", "AR.2", "AR.3", "MM.2"),

dr.have.atleast = 6, dr.parameter = "mu.linear", nboot.dr = 0, smooth.dr = NULL,
log.x.dr = FALSE, log.y.dr = FALSE)

)

Arguments

gcTable A dataframe containing the data for the dose-response curve estimation. Such
table of class gcTable can be obtained by running growth.gcFit.

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

dr.method (Character) Define the method used to perform a dose-responde analysis: smooth
spline fit ('spline') or model fitting ('model').

34 growth.drFit

dr.model (Character) Provide a list of models from the R package ’drc’ to include in the
dose-response analysis (if dr.method = 'model'). If more than one model is
provided, the best-fitting model will be chosen based on the Akaike Information
Criterion.

dr.have.atleast

(Numeric) Minimum number of different values for the response parameter one
should have for estimating a dose response curve. Note: All fit procedures re-
quire at least six unique values. Default: 6.

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See growth.drFit for further details. De-
fault: 'mu.linfit', which represents the maximum slope of the linear regres-
sion. Typical options include: 'mu.linfit', 'lambda.linfit', 'dY.linfit',
'mu.spline', 'dY.spline', 'mu.model', and 'A.model'.

smooth.dr (Numeric) Smoothing parameter used in the spline fit by smooth.spline dur-
ing dose response curve estimation. Usually (not necessesary) in (0; 1]. See
smooth.spline for further details. Default: NULL.

log.x.dr (Logical) Indicates whether ln(x+1) should be applied to the concentration data
of the dose response curves. Default: FALSE.

log.y.dr (Logical) Indicates whether ln(y+1) should be applied to the response data of
the dose response curves. Default: FALSE.

nboot.dr (Numeric) Defines the number of bootstrap samples for EC50 estimation. Use
nboot.dr = 0 to disable bootstrapping. Default: 0.

Details

Common response parameters used in dose-response analysis:Linear fit:- mu.linfit: Growth rate-
lambda.linfit: Lag time- dY.linfit: Density increase- A.linfit: Maximum measurementSpline fit:-
mu.spline: Growth rate- lambda.spline: Lag time- A.spline: Maximum measurement- dY.spline:
Density increase- integral.spline: IntegralParametric fit:- mu.model: Growth rate- lambda.model:
Lag time- A.model: Maximum measurement- integral.model: Integral’

Value

An object of class drFit.

raw.data Data that passed to the function as gcTable.

drTable Dataframe containing condition identifiers, fit options, and results of the dose-
response analysis.

drBootSplines List of all drBootSpline objects generated by the call of growth.drBootSpline
for each distinct experiment.

drFittedSplines

List of all drFitSpline objects generated by the call of growth.drFitSpline
for each distinct experiment.

control Object of class grofit.control containing list of options passed to the function
as control.

growth.drFitModel 35

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

See Also

Other growth fitting functions: growth.gcBootSpline(), growth.gcFitLinear(), growth.gcFitModel(),
growth.gcFitSpline(), growth.gcFit(), growth.workflow()

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',

suppress.messages = TRUE))

Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,

control = growth.control(dr.parameter = 'mu.spline'))

Inspect results
summary(drFit)
plot(drFit)

growth.drFitModel Fit various models to response vs. concentration data of a single sam-
ple to determine the EC50.

Description

Fit various models to response vs. concentration data of a single sample to determine the EC50.

Usage

growth.drFitModel(conc, test, drID = "undefined", control = growth.control())

36 growth.drFitSpline

Arguments

conc Vector of concentration values.

test Vector of response parameter values of the same length as conc.

drID (Character) The name of the analyzed condition

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

Value

A drFitModel object.

References

Christian Ritz, Florent Baty, Jens C. Streibig, Daniel Gerhard (2015). Dose-Response Analysis
Using R. PLoS ONE 10(12): e0146021. DOI: 10.1371/journal.pone.0146021

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+rnorm(19)/50, 0)

TestRun <- growth.drFitModel(conc, response, drID = 'test')

print(summary(TestRun))
plot(TestRun)

growth.drFitSpline Perform a smooth spline fit on response vs. concentration data of a
single sample to determine the EC50.

Description

growth.drFitSpline performs a smooth spline fit determines the EC50 as the concentration at the
half-maximum value of the response parameter of the spline.

Usage

growth.drFitSpline(conc, test, drID = "undefined", control = growth.control())

Arguments

conc Vector of concentration values.

test Vector of response parameter values of the same length as conc.

drID (Character) The name of the analyzed condition

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

growth.drFitSpline 37

Details

During the spline fit with smooth.spline, higher weights are assigned to data points with a con-
centration value of 0, as well as to x-y pairs with a response parameter value of 0 and pairs at
concentration values before zero-response parameter values.

Value

A drFitSpline object.

raw.conc Raw data provided to the function as conc.

raw.test Raw data for the response parameter provided to the function as test.

drID (Character) Identifies the tested condition

fit.conc Fitted concentration values.

fit.test Fitted response values.

spline smooth.spline object generated by the smooth.spline function.

spline.low x and y values of lowess spline fit on raw data. Used to call smooth.spline.

parameters List of parameters estimated from dose response curve fit.

• EC50: Concentration at half-maximal response.

• yEC50: Response value related to EC50.

• EC50.orig: EC50 value in original scale, if a transformation was applied.

• yEC50.orig: Response value for EC50 in original scale, if a transformation was applied.

fitFlag (Logical) Indicates whether a spline could fitted successfully to data.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

control Object of class grofit.control containing list of options passed to the function
as control.

Use plot.drFitSpline to visualize the spline fit.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

Christian Ritz, Florent Baty, Jens C. Streibig, Daniel Gerhard (2015). Dose-Response Analysis
Using R. PLoS ONE 10(12): e0146021. DOI: 10.1371/journal.pone.0146021

See Also

Other dose-response analysis functions: flFit(), growth.drBootSpline(), growth.gcFit(),
growth.workflow()

38 growth.gcBootSpline

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+rnorm(19)/50, 0)

TestRun <- growth.drFitSpline(conc, response, drID = 'test',
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8))

print(summary(TestRun))

plot(TestRun)

growth.gcBootSpline Perform a bootstrap on growth vs. time data followed by spline fits for
each resample

Description

growth.gcBootSpline resamples the growth-time value pairs in a dataset with replacement and
performs a spline fit for each bootstrap sample.

Usage

growth.gcBootSpline(time, data, gcID = "undefined", control = growth.control())

Arguments

time Vector of the independent variable (usually: time).

data Vector of dependent variable (usually: growth values).

gcID (Character) The name of the analyzed sample.

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

Value

A gcBootSpline object containing a distribution of growth parameters and a gcFitSpline object
for each bootstrap sample. Use plot.gcBootSpline to visualize all bootstrapping splines as well
as the distribution of physiological parameters.

raw.time Raw time values provided to the function as time.

raw.data Raw growth data provided to the function as data.

gcID (Character) Identifies the tested sample.

boot.time Table of time values per column, resulting from each spline fit of the bootstrap.

boot.data Table of growth values per column, resulting from each spline fit of the boot-
strap.

boot.gcSpline List of gcFitSpline object, created by growth.gcFitSpline for each resam-
ple of the bootstrap.

growth.gcFit 39

lambda Vector of estimated lambda (lag time) values from each bootstrap entry.

mu Vector of estimated mu (maximum growth rate) values from each bootstrap en-
try.

A Vector of estimated A (maximum growth) values from each bootstrap entry.

integral Vector of estimated integral values from each bootstrap entry.

bootFlag (Logical) Indicates the success of the bootstrapping operation.

control Object of class grofit.control containing list of options passed to the function
as control.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

See Also

Other growth fitting functions: growth.drFit(), growth.gcFitLinear(), growth.gcFitModel(),
growth.gcFitSpline(), growth.gcFit(), growth.workflow()

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Introduce some noise into the measurements
data <- data + stats::runif(97, -0.01, 0.09)

Perform bootstrapping spline fit
TestFit <- growth.gcBootSpline(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 's', nboot.gc = 50))

plot(TestFit, combine = TRUE, lwd = 0.5)

growth.gcFit Perform a growth curve analysis on all samples in the provided
dataset.

Description

growth.gcFit performs all computational growth fitting operations based on the user input.

40 growth.gcFit

Usage

growth.gcFit(time, data, control = growth.control(), parallelize = TRUE, ...)

Arguments

time (optional) A matrix containing time values for each sample.

data Either...

1. a grodata object created with read_data or parse_data,
2. a list containing a 'time' matrix as well as 'growth' and, if appropriate, a

'fluorescence' dataframes, or
3. a dataframe containing growth values (if a time matrix is provided as sep-

arate argument).

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

parallelize Run linear fits and bootstrapping operations in parallel using all but one available
processor cores

... Further arguments passed to the shiny app.

Value

A gcFit object that contains all growth fitting results, compatible with various plotting functions
of the QurvE package.

raw.time Raw time matrix passed to the function as time.

raw.data Raw growth dataframe passed to the function as data.

gcTable Table with growth parameters and related statistics for each growth curve eval-
uation performed by the function. This table, which is also returned by the
generic summary.gcFit method applied to a gcFit object, is used as an input
for growth.drFit.

gcFittedLinear List of all gcFitLinear objects, generated by the call of growth.gcFitLinear.
Note: access to each object in the list via double brace: gcFittedLinear[[#n]].

gcFittedModels List of all gcFitModel objects, generated by the call of growth.gcFitModel.
Note: access to each object in the list via double brace: gcFittedModels[[#n]].

gcFittedSplines

List of all gcFitSpline objects, generated by the call of growth.gcFitSpline.
Note: access to each object via double brace: gcFittedSplines[[#n]].

gcBootSplines List of all gcBootSpline objects, generated by the call of growth.gcBootSpline.
Note: access to each object via double brace: gcFittedSplines[[#n]].

control Object of class grofit.control containing list of options passed to the function
as control.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

growth.gcFitLinear 41

See Also

Other workflows: flFit(), growth.workflow()

Other growth fitting functions: growth.drFit(), growth.gcBootSpline(), growth.gcFitLinear(),
growth.gcFitModel(), growth.gcFitSpline(), growth.workflow()

Other dose-response analysis functions: flFit(), growth.drBootSpline(), growth.drFitSpline(),
growth.workflow()

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
res <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(suppress.messages = TRUE,

fit.opt = 's'))

growth.gcFitLinear Fit an exponential growth model with a heuristic linear method

Description

Determine maximum growth rates from the log-linear part of a growth curve using a heuristic
approach similar to the “growth rates made easy”-method of Hall et al. (2013).

Usage

growth.gcFitLinear(
time,
data,
gcID = "undefined",
quota = 0.95,
control = growth.control(t0 = 0, tmax = NA, log.x.gc = FALSE, log.y.lin = TRUE,
min.growth = NA, max.growth = NA, lin.h = NULL, lin.R2 = 0.97, lin.RSD = 0.1, lin.dY
= 0.05, biphasic = FALSE)

)

42 growth.gcFitLinear

Arguments

time Vector of the independent variable (usually: time).

data Vector of dependent variable (usually: growth values).

gcID (Character) The name of the analyzed sample.

quota (Numeric, between 0 an 1) Define what fraction of mumax the slope of re-
gression windows adjacent to the window with highest slope should have to be
included in the overall linear fit.

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

log.x.gc (Logical) Indicates whether ln(x+1) should be applied to the time data for linear
and spline fits. Default: FALSE.

log.y.lin (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
linear fits. Default: TRUE

min.growth (Numeric) Indicate whether only growth values above a certain threshold should
be considered for linear regressions.

max.growth (Numeric) Indicate whether only growth values below a certain threshold should
be considered for linear regressions.

t0 (Numeric) Minimum time value considered for linear and spline fits.

tmax (Numeric) Minimum time value considered for linear and spline fits.

lin.h (Numeric) Manually define the size of the sliding window . If NULL, h is cal-
culated for each samples based on the number of measurements in the growth
phase of the plot.

lin.R2 (Numeric) R2 threshold for growth.gcFitLinear

lin.RSD (Numeric) Relative standard deviation (RSD) threshold for calculated slope in
growth.gcFitLinear

lin.dY (Numeric) Enter the minimum percentage of growth increase that a linear re-
gression should cover.

biphasic (Logical) Shall growth.gcFitLinear try to extract growth parameters for two
different growth phases (as observed with, e.g., diauxic shifts) (TRUE) or not
(FALSE)?

Details

The algorithm works as follows:

1. Fit linear regressions (Theil-Sen estimator) to all subsets of h consecutive, log-transformed
data points (sliding window of size h). If for example h = 5, fit a linear regression to points 1
. . . 5, 2 . . . 6, 3 . . . 7 and so on.

2. Find the subset with the highest slope mumax. Do the R2 and relative standard deviation
(RSD) values of the regression meet the in lin.R2 and lin.RSD defined thresholds and do the
data points within the regression window account for a fraction of at least lin.dY of the total
growth increase? If not, evaluate the subset with the second highest slope, and so on.

3. Include also the data points of adjacent subsets that have a slope of at least quota ·mumax,
e.g., all regression windows that have at least 95% of the maximum slope.

growth.gcFitLinear 43

4. Fit a new linear model to the extended data window identified in step 3.

If biphasic = TRUE, the following steps are performed to define a second growth phase:

1. Perform a smooth spline fit on the data with a smoothing factor of 0.5.

2. Calculate the second derivative of the spline fit and perform a smooth spline fit of the derivative
with a smoothing factor of 0.4.

3. Determine local maxima and minima in the second derivative.

4. Find the local minimum following mumax and repeat the heuristic linear method for later time
values.

5. Find the local maximum before mumax and repeat the heuristic linear method for earlier time
values.

6. Choose the greater of the two independently determined slopes as mumax2.

Value

A gcFitLinear object with parameters of the fit. The lag time is estimated as the intersection
between the fit and the horizontal line with y = y0, where y0 is the first value of the dependent
variable. Use plot.gcFitSpline to visualize the linear fit.

raw.time Raw time values provided to the function as time.

raw.data Raw growth data provided to the function as data.

filt.time Filtered time values used for the heuristic linear method.

filt.data Filtered growth values.

log.data Log-transformed, filtered growth values used for the heuristic linear method.

gcID (Character) Identifies the tested sample.

FUN Linear function used for plotting the tangent at mumax.

fit lm object; result of the final call of lm to perform the linear regression.

par List of determined growth parameters:

• y0: Minimum growth value considered for the heuristic linear method.

• dY: Difference in maximum growth and minimum growth.

• A: Maximum growth.

• y0_lm: Intersection of the linear fit with the abscissa.

• mumax: Maximum growth rate (i.e., slope of the linear fit).

• tD: Doubling time.

• mu.se: Standard error of the maximum growth rate.

• lag: Lag time.

• tmax_start: Time value of the first data point within the window used for the linear regres-
sion.

• tmax_end: Time value of the last data point within the window used for the linear regression.

• t_turn: For biphasic growth: Time of the inflection point that separates two growth phases.

• mumax2: For biphasic growth: Growth rate of the second growth phase.

44 growth.gcFitLinear

• tD2: Doubling time of the second growth phase.

• y0_lm2: For biphasic growth: Intersection of the linear fit of the second growth phase with
the abscissa.

• lag2: For biphasic growth: Lag time determined for the second growth phase..

• tmax2_start: For biphasic growth: Time value of the first data point within the window used
for the linear regression of the second growth phase.

• tmax2_end: For biphasic growth: Time value of the last data point within the window used
for the linear regression of the second growth phase.

ndx Index of data points used for the linear regression.

ndx2 Index of data points used for the linear regression for the second growth phase.

control Object of class grofit.control containing list of options passed to the function
as control.

rsquared R2 of the linear regression.

rsquared2 R2 of the linear regression for the second growth phase.

fitFlag (Logical) Indicates whether linear regression was successfully performed on the
data.

fitFlag2 (Logical) Indicates whether a second growth phase was identified.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

References

Hall, BG., Acar, H, Nandipati, A and Barlow, M (2014) Growth Rates Made Easy. Mol. Biol. Evol.
31: 232-38, DOI: 10.1093/molbev/mst187

Petzoldt T (2022). growthrates: Estimate Growth Rates from Experimental Data. R package version
0.8.3, https://CRAN.R-project.org/package=growthrates.

Theil, H.(1992). A rank-invariant method of linear and polynomial regression analysis. In: Henri
Theil’s contributions to economics and econometrics. Springer, pp. 345–381. DOI: 10.1007/978-
94-011-2546-8_20

See Also

Other growth fitting functions: growth.drFit(), growth.gcBootSpline(), growth.gcFitModel(),
growth.gcFitSpline(), growth.gcFit(), growth.workflow()

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- growth.gcFitLinear(time, data, gcID = "TestFit",

https://CRAN.R-project.org/package=growthrates

growth.gcFitModel 45

control = growth.control(fit.opt = "l"))

plot(TestFit)

growth.gcFitModel Fit nonlinear growth models to growth data

Description

growth.gcFitModel determines a parametric growth model that best describes the data.

Usage

growth.gcFitModel(time, data, gcID = "undefined", control = growth.control())

Arguments

time Vector of the independent variable (usually time).

data Vector of dependent variable (usually growth values).

gcID (Character) The name of the analyzed sample.

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

Value

A gcFitModel object that contains physiological parameters and information about the best fit. Use
plot.gcFitModel to visualize the parametric fit and growth equation.

raw.time Raw time values provided to the function as time.

raw.data Raw growth data provided to the function as data.

gcID (Character) Identifies the tested sample.

fit.time Fitted time values.

fit.data Fitted growth values.

parameters List of determined growth parameters.

• A: Maximum growth.

• dY: Difference in maximum growth and minimum growth of the fitted model.

• mu: Maximum growth rate (i.e., maximum in first derivative of the spline).

• lambda: Lag time.

• b.tangent: Intersection of the tangent at the maximum growth rate with the abscissa.

• fitpar: For some models: list of additional parameters used in the equations describing the
growth curve.

• integral: Area under the curve of the parametric fit.

46 growth.gcFitSpline

model (Character) The model that obtained the fit with the lowest AIC, determined by
AIC.

nls nls object for the chosen model generated by the nls function.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

fitFlag (Logical) Indicates whether a parametric model was successfully fitted on the
data.

control Object of class grofit.control containing list of options passed to the function
as control.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

See Also

Other growth fitting functions: growth.drFit(), growth.gcBootSpline(), growth.gcFitLinear(),
growth.gcFitSpline(), growth.gcFit(), growth.workflow()

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform parametric fit
TestFit <- growth.gcFitModel(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 'm'))

plot(TestFit, basesize = 18, eq.size = 1.5)

growth.gcFitSpline Perform a smooth spline fit on growth data

Description

growth.gcFitSpline performs a smooth spline fit on the dataset and determines the highest growth
rate as the global maximum in the first derivative of the spline.

growth.gcFitSpline 47

Usage

growth.gcFitSpline(
time,
data,
gcID = "undefined",
control = growth.control(biphasic = FALSE)

)

Arguments

time Vector of the independent variable (usually time).

data Vector of dependent variable (usually: growth values).

gcID (Character) The name of the analyzed sample.

control A grofit.control object created with growth.control, defining relevant fit-
ting options.

biphasic (Logical) Shall growth.gcFitSpline try to extract growth parameters for two
different growth phases (as observed with, e.g., diauxic shifts) (TRUE) or not
(FALSE)?

Details

If biphasic = TRUE, the following steps are performed to define a second growth phase:

1. Determine local minima within the first derivative of the smooth spline fit.

2. Remove the ’peak’ containing the highest value of the first derivative (i.e., mumax) that is
flanked by two local minima.

3. Repeat the smooth spline fit and identification of maximum slope for later time values than
the local minimum after mumax.

4. Repeat the smooth spline fit and identification of maximum slope for earlier time values than
the local minimum before mumax.

5. Choose the greater of the two independently determined slopes as mumax2.

Value

A gcFitSpline object. The lag time is estimated as the intersection between the tangent at the
maximum slope and the horizontal line with y = y0, where y0 is the first value of the dependent
variable. Use plot.gcFitSpline to visualize the spline fit and derivative over time.

time.in Raw time values provided to the function as time.

data.in Raw growth data provided to the function as data.

raw.time Filtered time values used for the spline fit.

raw.data Filtered growth values used for the spline fit.

gcID (Character) Identifies the tested sample.

fit.time Fitted time values.

fit.data Fitted growth values.

48 growth.gcFitSpline

parameters List of determined growth parameters.

• A: Maximum growth.

• dY: Difference in maximum growth and minimum growth.

• mu: Maximum growth rate (i.e., maximum in first derivative of the spline).

• tD: Doubling time.

• t.max: Time at the maximum growth rate.

• lambda: Lag time.

• b.tangent: Intersection of the tangent at the maximum growth rate with the abscissa.

• mu2: For biphasic growth: Growth rate of the second growth phase.

• tD2: Doubling time of the second growth phase.

• lambda2: For biphasic growth: Lag time determined for the second growth phase.

• t.max2: For biphasic growth: Time at the maximum growth rate of the second growth phase.

• b.tangent2: For biphasic growth: Intersection of the tangent at the maximum growth rate of
the second growth phase with the abscissa.

• integral: Area under the curve of the spline fit.

spline smooth.spline object generated by the smooth.spline function.

spline.deriv1 list of time (’x’) and growth (’y’) values describing the first derivative of the
spline fit.

reliable (Logical) Indicates whether the performed fit is reliable (to be set manually).

fitFlag (Logical) Indicates whether a spline fit was successfully performed on the data.

fitFlag2 (Logical) Indicates whether a second growth phase was identified.

control Object of class grofit.control containing list of options passed to the function
as control.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

See Also

Other growth fitting functions: growth.drFit(), growth.gcBootSpline(), growth.gcFitLinear(),
growth.gcFitModel(), growth.gcFit(), growth.workflow()

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

growth.report 49

Perform spline fit
TestFit <- growth.gcFitSpline(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 's'))

plot(TestFit)

growth.report Create a PDF and HTML report with results from a growth curve anal-
ysis workflow

Description

growth.report requires a grofit object and creates a report in PDF and HTML format that sum-
marizes all results.

Usage

growth.report(
grofit,
out.dir = tempdir(),
out.nm = NULL,
ec50 = FALSE,
format = c("pdf", "html"),
export = FALSE,
parallelize = TRUE,
...

)

Arguments

grofit A grofit object created with growth.workflow.

out.dir (Character) The path or name of the folder in which the report files are created.
If NULL, the folder will be named with a combination of ’Report.growth_’ and
the current date and time.

out.nm Character or NULL Define the name of the report files. If NULL, the files will be
named with a combination of ’GrowthReport_’ and the current date and time.

ec50 (Logical) Display results of dose-response analysis (TRUE) or not (FALSE).

format (Character) Define the file format for the report, PDF ('pdf') and/or HTML
('html'). Default: (c('pdf', 'html'))

export (Logical) Shall all plots generated in the report be exported as individual PDF
and PNG files TRUE or not FALSE?

parallelize (Logical) Create plots using all but one available processor cores (TRUE) or only
a single core (FALSE).

50 growth.workflow

... Further arguments passed to create a report. Currently supported:

• mean.grp: Define groups to combine into common plots in the report based
on sample identifiers. Partial matches with sample/group names are ac-
cepted. Can be 'all', a string vector, or a list of string vectors. Note: The
maximum number of sample groups (with unique condition/concentration
indicators) is 50. If you have more than 50 groups, option 'all' will pro-
duce the error ! Insufficient values in manual scale. [Number] needed
but only 50 provided.

• mean.conc: Define concentrations to combine into common plots in the
report. Can be a numeric vector, or a list of numeric vectors.

Details

The template .Rmd file used within this function can be found within the QurvE package installation
directory.

Value

NULL

Examples

Not run:
Create random growth data set

rnd.data <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = 's',
ec50 = FALSE,
export.res = FALSE,
suppress.messages = TRUE,
parallelize = FALSE)

growth.report(res, out.dir = tempdir(), parallelize = FALSE)

End(Not run)

growth.workflow Run a complete growth curve analysis and dose-reponse analysis
workflow.

Description

growth.workflow runs growth.control to create a grofit.control object and then performs all
computational fitting operations based on the user input. Finally, if desired, a final report is created
in PDF or HTML format that summarizes all results obtained.

growth.workflow 51

Usage

growth.workflow(
grodata = NULL,
time = NULL,
data = NULL,
ec50 = TRUE,
mean.grp = NA,
mean.conc = NA,
neg.nan.act = FALSE,
clean.bootstrap = TRUE,
suppress.messages = FALSE,
fit.opt = c("a"),
t0 = 0,
tmax = NA,
min.growth = NA,
max.growth = NA,
log.x.gc = FALSE,
log.y.lin = TRUE,
log.y.spline = TRUE,
log.y.model = TRUE,
biphasic = FALSE,
lin.h = NULL,
lin.R2 = 0.97,
lin.RSD = 0.1,
lin.dY = 0.05,
interactive = FALSE,
nboot.gc = 0,
smooth.gc = 0.55,
model.type = c("logistic", "richards", "gompertz", "gompertz.exp", "huang", "baranyi"),
dr.method = c("model", "spline"),
dr.model = c("gammadr", "multi2", "LL.2", "LL.3", "LL.4", "LL.5", "W1.2", "W1.3",

"W1.4", "W2.2", "W2.3", "W2.4", "LL.3u", "LL2.2", "LL2.3", "LL2.3u", "LL2.4",
"LL2.5", "AR.2", "AR.3", "MM.2"),

growth.thresh = 1.5,
dr.have.atleast = 6,
dr.parameter = c("mu.linfit", "lambda.linfit", "dY.linfit", "A.linfit", "mu.spline",

"lambda.spline", "dY.spline", "A.spline", "mu.model", "lambda.model",
"dY.orig.model", "A.orig.model"),

smooth.dr = 0.1,
log.x.dr = FALSE,
log.y.dr = FALSE,
nboot.dr = 0,
report = NULL,
out.dir = NULL,
out.nm = NULL,
export.fig = FALSE,
export.res = FALSE,
parallelize = TRUE,

52 growth.workflow

...
)

Arguments

grodata A grodata object created with read_data or parse_data, or a list containing
a 'time' matrix as well as a 'growth' dataframe.

time (optional) A matrix containing time values for each sample.

data (optional) A dataframe containing growth data (if a time matrix is provided as
separate argument).

ec50 (Logical) Perform dose-response analysis (TRUE) or not (FALSE).

mean.grp ('all', a string vector, or a list of string vectors) Define groups to combine
into common plots in the final report based on sample identifiers (if report ==
TRUE). Partial matches with sample/group names are accepted. Note: The maxi-
mum number of sample groups (with unique condition/concentration indicators)
is 50. If you have more than 50 groups, option 'all' will produce the error !
Insufficient values in manual scale. [Number] needed but only 50 provided.

mean.conc (A numeric vector, or a list of numeric vectors) Define concentrations to com-
bine into common plots in the final report (if report == TRUE).

neg.nan.act (Logical) Indicates whether the program should stop when negative growth val-
ues or NA values appear (TRUE). Otherwise, the program removes these values
silently (FALSE). Improper values may be caused by incorrect data or input er-
rors. Default: FALSE.

clean.bootstrap

(Logical) Determines if negative values which occur during bootstrap should be
removed (TRUE) or kept (FALSE). Note: Infinite values are always removed.
Default: TRUE.

suppress.messages

(Logical) Indicates whether grofit messages (information about current growth
curve, EC50 values etc.) should be displayed (FALSE) or not (TRUE). This option
is meant to speed up the high-throughput processing data. Note: warnings are
still displayed. Default: FALSE.

fit.opt (Character or character vector) Indicates whether the program should perform
a linear regression ('l'), model fit ('m'), spline fit ('s'), or all ('a'). Com-
binations can be freely chosen by providing a character vector, e.g. fit.opt =
c('l', 's') Default: fit.opt = c('l', 's').

t0 (Numeric) Minimum time value considered for linear and spline fits.

tmax (Numeric) Maximum time value considered for linear and spline fits.

min.growth (Numeric) Indicate whether only growth values above a certain threshold should
be considered for linear regressions or spline fits.

max.growth (Numeric) Indicate whether only growth values below a certain threshold should
be considered for linear regressions or spline fits.

log.x.gc (Logical) Indicates whether ln(x+1) should be applied to the time data for linear
and spline fits. Default: FALSE.

growth.workflow 53

log.y.lin (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
linear fits. Default: TRUE

log.y.spline (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
spline fits. Default: TRUE

log.y.model (Logical) Indicates whether ln(y/y0) should be applied to the growth data for
model fits. Default: TRUE

biphasic (Logical) Shall growth.gcFitLinear and growth.gcFitSpline try to extract
growth parameters for two different growth phases (as observed with, e.g., di-
auxic shifts) (TRUE) or not (FALSE)?

lin.h (Numeric) Manually define the size of the sliding window used in growth.gcFitLinear
If NULL, h is calculated for each samples based on the number of measurements
in the growth phase of the plot.

lin.R2 (Numeric) R2 threshold for growth.gcFitLinear

lin.RSD (Numeric) Relative standard deviation (RSD) threshold for calculated slope in
growth.gcFitLinear

lin.dY (Numeric) Threshold for the minimum fraction of growth increase a linear re-
gression window should cover. Default: 0.05 (5%).

interactive (Logical) Controls whether the fit of each growth curve and method is controlled
manually by the user. If TRUE, each fit is visualized in the Plots pane and the user
can adjust fitting parameters and confirm the reliability of each fit per sample.
Default: TRUE.

nboot.gc (Numeric) Number of bootstrap samples used for nonparametric growth curve
fitting with growth.gcBootSpline. Use nboot.gc = 0 to disable the bootstrap.
Default: 0

smooth.gc (Numeric) Parameter describing the smoothness of the spline fit; usually (not
necessary) within (0;1]. smooth.gc=NULL causes the program to query an opti-
mal value via cross validation techniques. Especially for datasets with few data
points the option NULL might cause a too small smoothing parameter. This
can result a too tight fit that is susceptible to measurement errors (thus over-
estimating growth rates) or produce an error in smooth.spline or lead to an
overestimation. The usage of a fixed value is recommended for reproducible
results across samples. See ?smooth.spline for further details. Default: 0.55

model.type (Character) Vector providing the names of the parametric models which should
be fitted to the data. Default: c('logistic', 'richards', 'gompertz', 'gompertz.exp',
'huang', 'baranyi').

dr.method (Character) Define the method used to perform a dose-responde analysis: smooth
spline fit ('spline') or model fitting ('model').

dr.model (Character) Provide a list of models from the R package ’drc’ to include in the
dose-response analysis (if dr.method = 'model'). If more than one model is
provided, the best-fitting model will be chosen based on the Akaike Information
Criterion.

growth.thresh (Numeric) Define a threshold for growth. Only if any growth value in a sam-
ple is greater than growth.thresh (default: 1.5) times the start growth, further
computations are performed. Else, a message is returned.

54 growth.workflow

dr.have.atleast

(Numeric) Minimum number of different values for the response parameter one
should have for estimating a dose response curve. Note: All fit procedures re-
quire at least six unique values. Default: 6.

dr.parameter (Character or numeric) The response parameter in the output table to be used
for creating a dose response curve. See growth.drFit for further details. De-
fault: 'mu.linfit', which represents the maximum slope of the linear regres-
sion. Typical options include: 'mu.linfit', 'lambda.linfit', 'dY.linfit',
'mu.spline', 'dY.spline', 'mu.model', and 'A.model'.

smooth.dr (Numeric) Smoothing parameter used in the spline fit by smooth.spline during
dose response curve estimation. Usually (not necessesary) in (0; 1]. See docu-
mentation of smooth.spline for further details. Default: NULL.

log.x.dr (Logical) Indicates whether ln(x+1) should be applied to the concentration data
of the dose response curves. Default: FALSE.

log.y.dr (Logical) Indicates whether ln(y+1) should be applied to the response data of
the dose response curves. Default: FALSE.

nboot.dr (Numeric) Defines the number of bootstrap samples for EC50 estimation. Use
nboot.dr = 0 to disable bootstrapping. Default: 0.

report (Character or NULL) Create a PDF ('pdf') and/or HTML ('html') report after
running all computations. Define NULL if no report should be created. Default:
(c('pdf', 'html'))

out.dir Character or NULL Define the name of a folder in which all result files are stored.
If NULL, the folder will be named with a combination of ’GrowthResults_’ and
the current date and time.

out.nm Character or NULL Define the name of the report files. If NULL, the files will be
named with a combination of ’GrowthReport_’ and the current date and time.

export.fig (Logical) Export all figures created in the report as separate PNG and PDF files
(TRUE) or not (FALSE). Only effective if report != NULL.

export.res (Logical) Create tab-separated TXT files containing calculated growth parame-
ters and dose-response analysis results as well as an .RData file for the resulting
grofit object.

parallelize Run linear fits and bootstrapping operations in parallel using all but one available
processor cores

... Further arguments passed to the shiny app.

Details

Common response parameters used in dose-response analysis:Linear fit:- mu.linfit: Growth rate-
lambda.linfit: Lag time- dY.linfit: Density increase- A.linfit: Maximum measurementSpline fit:-
mu.spline: Growth rate- lambda.spline: Lag time- A.spline: Maximum measurement- dY.spline:
Density increase- integral.spline: IntegralParametric fit:- mu.model: Growth rate- lambda.model:
Lag time- A.model: Maximum measurement- integral.model: Integral’

growth.workflow 55

Value

A grofit object that contains all computation results, compatible with various plotting functions
of the QurvE package and with growth.report.

time Raw time matrix passed to the function as time (if no grofit object is pro-
vided).

data Raw growth dataframe passed to the function as data (if no grofit object is
provided).

gcFit gcFit object created with the call of growth.gcFit.

drFit drFit object created with the call of growth.drFit.

expdesign Experimental design table inherited from grodata or created from the identifier
columns (columns 1-3) in data.

control Object of class grofit.control created with the call of growth.control.

See Also

Other workflows: flFit(), growth.gcFit()

Other growth fitting functions: growth.drFit(), growth.gcBootSpline(), growth.gcFitLinear(),
growth.gcFitModel(), growth.gcFitSpline(), growth.gcFit()

Other dose-response analysis functions: flFit(), growth.drBootSpline(), growth.drFitSpline(),
growth.gcFit()

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = 's',
ec50 = FALSE,
export.res = FALSE,
suppress.messages = TRUE,
parallelize = FALSE)

Load custom dataset
input <- read_data(data.growth = system.file('2-FMA_toxicity.csv', package = 'QurvE'))

res <- growth.workflow(grodata = input,
fit.opt = 's',
ec50 = TRUE,
export.res = FALSE,
suppress.messages = TRUE,

56 inflect

parallelize = FALSE)

plot(res)

inflect Find indices of maxima an minima in a data series

Description

Find indices of maxima an minima in a data series

Usage

inflect(x, threshold = 1)

Arguments

x vector of values with minima and maxima
threshold Threshold to consider minima or maxima

Value

a list with 1. a vector of minima and 2. a vector of maxima.

Author(s)

Evan Friedland

Examples

Pick a desired threshold to plot up to
n <- 3
Generate Data
randomwalk <- 100 + cumsum(rnorm(50, 0.2, 1)) # climbs upwards most of the time
bottoms <- lapply(1:n, function(x) inflect(randomwalk, threshold = x)$minima)
tops <- lapply(1:n, function(x) inflect(randomwalk, threshold = x)$maxima)
Color functions
cf.1 <- grDevices::colorRampPalette(c('pink','red'))
cf.2 <- grDevices::colorRampPalette(c('cyan','blue'))
plot(randomwalk, type = 'l', main = 'Minima & Maxima\nVariable Thresholds')
for(i in 1:n){
points(bottoms[[i]], randomwalk[bottoms[[i]]], pch = 16, col = cf.1(n)[i], cex = i/1.5)

}
for(i in 1:n){

points(tops[[i]], randomwalk[tops[[i]]], pch = 16, col = cf.2(n)[i], cex = i/1.5)
}
legend('topleft', legend = c('Minima',1:n,'Maxima',1:n),

pch = rep(c(NA, rep(16,n)), 2), col = c(1, cf.1(n),1, cf.2(n)),
pt.cex = c(rep(c(1, c(1:n) / 1.5), 2)), cex = .75, ncol = 2)

lm_parms 57

lm_parms Helper functions for handling linear fits.

Description

lm_window performs a linear regression with the Theil-Sen estimator on a subset of data.

Usage

lm_parms(m)

lm_window(x, y, i0, h = 5)

Arguments

m linear model (lm) object

x vector of independent variable (e.g. time).

y vector of dependent variable (concentration of organisms).

i0 index of first value used for a window.

h with of the window (number of data).

Value

linear model object of class lm (lm_window) resp. vector with parameters of the fit (lm_parms).

References

Hall, B. G., H. Acar and M. Barlow 2013. Growth Rates Made Easy. Mol. Biol. Evol. 31: 232-238
doi:10.1093/molbev/mst197

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- as.numeric(rnd.dataset$data[1,-(1:3)]) # Remove identifier columns
data.log <- log(data/data[1])

Perform linear fit on 8th window of size 8
linreg <- lm_window(time, data.log, 8, h=8)

summary(linreg)

lm_parms(linreg)

https://doi.org/10.1093/molbev/mst197

58 low.integrate

low.integrate Function to estimate the area under a curve given as x and y(x) values

Description

Function to estimate the area under a curve given as x and y(x) values

Usage

low.integrate(x, y)

Arguments

x Numeric vector of x values.

y Numeric vector of y values with the same length as x.

Details

The function uses the the R internal function smooth.spline.

Value

Numeric value: Area under the smoothed spline.

See Also

smooth.spline

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- as.numeric(rnd.dataset$data[1,-(1:3)]) # Remove identifier columns

plot(time, data)

print(low.integrate(time, data))

parse_data 59

parse_data Parse raw plate reader data and convert it to a format compatible with
QurvE

Description

parse_data takes a raw export file from a plate reader experiment (or similar device), extracts
relevant information and parses it into the format required to run growth.workflow. If more than
one read type is found the user is prompted to assign the correct reads to growth or fluorescence.

Usage

parse_data(
data.file = NULL,
map.file = NULL,
software = c("Gen5", "Gen6", "Biolector", "Chi.Bio", "GrowthProfiler", "Tecan",

"VictorNivo", "VictorX3"),
convert.time = NULL,
sheet.data = 1,
sheet.map = 1,
csvsep.data = ";",
dec.data = ".",
csvsep.map = ";",
dec.map = ".",
subtract.blank = TRUE,
calib.growth = NULL,
calib.fl = NULL,
calib.fl2 = NULL,
fl.normtype = c("growth", "fl2")

)

Arguments

data.file (Character) A table file with extension ’.xlsx’, ’.xls’, ’.csv’, ’.tsv’, or ’.txt’ con-
taining raw plate reader (or similar device) data.

map.file (Character) A table file in column format with extension ’.xlsx’, ’.xls’, ’.csv’,
’.tsv’, or ’.txt’ with ’well’, ’ID’, ’replicate’, and ’concentration’ in the first row.
Used to assign sample information to wells in a plate.

software (Character) The name of the software/device used to export the plate reader data.

convert.time (NULL or string) Convert time values with a formula provided in the form 'y =
function(x)'. For example: convert.time = 'y = 24 * x'

sheet.data, sheet.map
(Numeric or Character) Number or name of the sheets in XLS or XLSX files
containing experimental data or mapping information, respectively (optional).

60 parse_data

csvsep.data, csvsep.map
(Character) separator used in CSV data files (ignored for other file types). De-
fault: ";"

dec.data, dec.map
(Character) decimal separator used in CSV, TSV or TXT files with measure-
ments and mapping information, respectively.

subtract.blank (Logical) Shall blank values be subtracted from values within the same experi-
ment (TRUE, the default) or not (FALSE).

calib.growth, calib.fl, calib.fl2
(Character or NULL) Provide an equation in the form ’y = function(x)’ (for exam-
ple: ’y = x^2 * 0.3 - 0.5’) to convert growth and fluorescence values. This can be
used to, e.g., convert plate reader absorbance values into OD600 or fluorescence
intensity into molecule concentrations. Caution!: When utilizing calibration,
carefully consider whether or not blanks were subtracted to determine the cali-
bration before selecting the input subtract.blank = TRUE.

fl.normtype (Character string) Normalize fluorescence values by either diving by 'growth'
or by fluorescence2 values ('fl2').

Details

Metadata provided as map.file needs to have the following layout:

Value

A grodata object suitable to run growth.workflow. See read_data for its structure.

parse_Gen5Gen6 61

Examples

if(interactive()){
grodata <- parse_data(data.file = system.file("fluorescence_test_Gen5.xlsx", package = "QurvE"),

sheet.data = 1,
map.file = system.file("fluorescence_test_Gen5.xlsx", package = "QurvE"),

sheet.map = "mapping",
software = "Gen5",
convert.time = "y = x * 24", # convert days to hours
calib.growth = "y = x * 3.058") # convert absorbance to OD values

}

parse_Gen5Gen6 Extract relevant data from a raw data export file generated with the
"Gen5" or "Gen6" software.

Description

Extract relevant data from a raw data export file generated with the "Gen5" or "Gen6" software.

Usage

parse_Gen5Gen6(input)

Arguments

input A dataframe created by reading a table file with read_file

Value

a list of length two containing growth and/or fluorescence dataframes in the first and second element,
respectively. The first column in these dataframes represents a time vector.

Examples

if(interactive()){
input <- read_file(filename = system.file("fluorescence_test_Gen5.xlsx", package = "QurvE"))
parsed <- parse_Gen5Gen6(input)
}

62 parse_victorx3

parse_victornivo Extract relevant data from a raw data export file generated from the
software of Perkin Elmer’s "Victor Nivo" plate readers.

Description

Extract relevant data from a raw data export file generated from the software of Perkin Elmer’s
"Victor Nivo" plate readers.

Usage

parse_victornivo(input)

Arguments

input A dataframe created by reading a table file with read_file

Value

a list of length two containing growth and/or fluorescence dataframes in the first and second element,
respectively. The first column in these dataframes represents a time vector.

Examples

if(interactive()){
input <- read_file(filename = system.file("nivo_output.csv", package = "QurvE"), csvsep = ",")
parsed <- parse_victornivo(input)
}

parse_victorx3 Extract relevant data from a raw data export file generated from the
software of Perkin Elmer’s "Victor X3" plate readers.

Description

Extract relevant data from a raw data export file generated from the software of Perkin Elmer’s
"Victor X3" plate readers.

Usage

parse_victorx3(input)

Arguments

input A dataframe created by reading a table file with read_file

plot.drBootSpline 63

Value

a list of length two containing growth and/or fluorescence dataframes in the first and second element,
respectively. The first column in these dataframes represents a time vector.

Examples

if(interactive()){
input <- read_file(filename = system.file("victorx3_output.txt", package = "QurvE"))
parsed <- parse_victorx3(input)
}

plot.drBootSpline Generic plot function for gcBootSpline objects.

Description

Generic plot function for gcBootSpline objects.

Usage

S3 method for class 'drBootSpline'
plot(
x,
pch = 19,
colData = 1,
colSpline = "black",
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
lwd = 2,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
combine = FALSE,
...

)

Arguments

x A drBootSpline object created with growth.drBootSpline or stored within
a grofit or drFit object created with growth.workflow or growth.drFit,
respectively.

pch (Numeric) Shape of the raw data symbols.

colData (Numeric or Character) Color used to plot the raw data.

64 plot.drFit

colSpline (Numeric or Character) Color used to plot the splines.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

lwd (Numeric) Spline line width.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

combine (Logical) Indicate whether both dose-response curves and parameter plots shall
be shown within the same window.

... Further arguments to refine the generated base R plot.

Value

A plot with the all dose-response spline fits from the bootstrapping operation.

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+stats::rnorm(19)/50, 0)

TestRun <- growth.drBootSpline(conc, response, drID = "test",
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8, nboot.dr = 50))

print(summary(TestRun))
plot(TestRun, combine = TRUE)

plot.drFit Generic plot function for drFit objects.

Description

plot.drFit calls plot.drFitSpline for each group used in a dose-response analysis

plot.drFit 65

Usage

S3 method for class 'drFit'
plot(
x,
combine = TRUE,
names = NULL,
exclude.nm = NULL,
pch = 16,
cex.point = 2,
basesize = 15,
colors = NULL,
lwd = 0.7,
ec50line = TRUE,
y.lim = NULL,
x.lim = NULL,
y.title = NULL,
x.title = NULL,
log.y = FALSE,
log.x = FALSE,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

Arguments

x object of class drFit, created with growth.drFit.

combine (Logical) Combine the dose-response analysis results of all conditions into a
single plot (TRUE) or not (FALSE).

names (String or vector of strings) Define conditions to combine into a single plot (if
combine = TRUE). Partial matches with sample/group names are accepted. If
NULL, all samples are considered. Note: Ensure to use unique substrings to
extract groups of interest. If the name of one condition is included in its entirety
within the name of other conditions, it cannot be extracted individually.

exclude.nm (String or vector of strings) Define conditions to exclude from the plot (if combine
= TRUE). Partial matches with sample/group names are accepted.

pch (Numeric) Shape of the raw data symbols.

cex.point (Numeric) Size of the raw data points.

basesize (Numeric) Base font size.

colors (Numeric or character) Define colors for different conditions.

lwd (Numeric) Line width of the individual splines.

66 plot.drFit

ec50line (Logical) Show pointed horizontal and vertical lines at the EC50 values (TRUE)
or not (FALSE).

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

y.title (Character) Optional: Provide a title for the y-axis.

x.title (Character) Optional: Provide a title for the x-axis.

log.y (Logical) Log-transform the y-axis of the plot (TRUE) or not (FALSE)?

log.x (Logical) Log-transform the x-axis of the plot (TRUE) or not (FALSE)?

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

One plot per condition tested in the dose-response analysis or a single plot showing all conditions
if control = growth.control(dr.method = "spline") was used in growth.drFit and combine
= TRUE.

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

rnd.data <- list()
rnd.data[["time"]] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[["data"]] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = "s",

suppress.messages = TRUE))

plot.drFitfl 67

Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,

control = growth.control(dr.parameter = "mu.spline"))

Inspect results
summary(drFit)

plot(drFit)

plot.drFitfl Generic plot function for drFitFL objects.

Description

drFitfl calls plot.drFitFLModel for each group used in a dose-response analysis with dr.method
= "model"

Usage

S3 method for class 'drFitfl'
plot(
x,
ec50line = TRUE,
log = c("xy"),
pch = 1,
broken = TRUE,
bp,
n.xbreaks,
n.ybreaks,
colSpline = 1,
colData = 1,
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
y.lim = NULL,
x.lim = NULL,
lwd = 2,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
...

)

68 plot.drFitfl

Arguments

x object of class drFit, created with growth.drFit.

ec50line (Logical) Show pointed horizontal and vertical lines at the EC50 values (TRUE)
or not (FALSE).

log (Character) String which contains ’"x"’ if the x axis is to be logarithmic, ’"y"’
if the y axis is to be logarithmic and ’"xy"’ or ’"yx"’ if both axes are to be
logarithmic. The default is "x". The empty string "" yields the original axes.

pch (Numeric) Shape of the raw data symbols.

broken (Logical) If TRUE the x axis is broken provided this axis is logarithmic (using
functionality in the CRAN package ’plotrix’).

bp (Numeric) Specifying the break point below which the dose is zero (the amount
of stretching on the dose axis above zero in order to create the visual illusion of
a logarithmic scale including 0). The default is the base-10 value corresponding
to the rounded value of the minimum of the log10 values of all positive dose
values. This argument is only working for logarithmic dose axes.

n.xbreaks (Numeric) Number of breaks on the x-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.

n.ybreaks (Numeric) Number of breaks on the y-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.

colSpline (Numeric or character) Spline line colour.

colData (Numeric or character) Contour color of the raw data circles.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

lwd (Numeric) Line width of the individual splines.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

plot.drFitFLModel 69

Value

One plot per condition tested in the dose-response analysis (fl.drFit with control = fl.control(dr.method
= "model")).

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Define fit controls
control <- fl.control(fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
dr.method = "model",
suppress.messages = TRUE)

Run curve fitting workflow
res <- flFit(fl_data = input$norm.fluorescence,

time = input$time,
parallelize = FALSE,
control = control)

Perform dose-response analysis with biosensor model
drFitfl <- fl.drFit(flTable = res$flTable, control = control)

plot(drFitfl)

plot.drFitFLModel Generic plot function for drFitFLModel objects.

Description

Generic plot function for drFitFLModel objects.

Usage

S3 method for class 'drFitFLModel'
plot(
x,
ec50line = TRUE,
broken = TRUE,
bp,
n.xbreaks,
n.ybreaks,
log = c("xy"),

70 plot.drFitFLModel

pch = 1,
colSpline = 1,
colData = 1,
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
y.lim = NULL,
x.lim = NULL,
lwd = 2,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
...

)

Arguments

x Object of class drFitFLModel, created with fl.drFitModel.

ec50line (Logical) Show pointed horizontal and vertical lines at the EC50 value (TRUE)
or not (FALSE).

broken (Logical) If TRUE the x axis is broken provided this axis is logarithmic (using
functionality in the CRAN package ’plotrix’).

bp (Numeric) Specifying the break point below which the dose is zero (the amount
of stretching on the dose axis above zero in order to create the visual illusion of
a logarithmic scale including 0). The default is the base-10 value corresponding
to the rounded value of the minimum of the log10 values of all positive dose
values. This argument is only working for logarithmic dose axes.

n.xbreaks (Numeric) Number of breaks on the x-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.

n.ybreaks (Numeric) Number of breaks on the y-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.#’ @param pch (Numeric) Size of the raw data circles.

log (Character) String which contains ’"x"’ if the x axis is to be logarithmic, ’"y"’
if the y axis is to be logarithmic and ’"xy"’ or ’"yx"’ if both axes are to be
logarithmic. The default is "x". The empty string "" yields the original axes.

pch (Numeric) Symbol used to plot data points.

colSpline (Numeric or Character) Color used to plot the splines.

colData (Numeric or Character) Color used to plot the raw data.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

plot.drFitModel 71

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis as a vector in the form c(l, u).

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u).

lwd (Numeric) Line width.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated base R plot.

Value

A plot with the biosensor dose-response model fit.

Examples

Create concentration values via a serial dilution
conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)

Simulate response values via biosensor equation
response <- biosensor.eq(conc, y.min = 110, y.max = 6000, K = 0.5, n = 2) +

0.01*6000*rnorm(10)

Perform fit
TestRun <- fl.drFitModel(conc, response, drID = "test", control = fl.control())

print(summary(TestRun))
plot(TestRun)

plot.drFitModel Generic plot function for drFitModel objects.

Description

Generic plot function for drFitModel objects.

72 plot.drFitModel

Usage

S3 method for class 'drFitModel'
plot(
x,
type = c("confidence", "all", "bars", "none", "obs", "average"),
ec50line = TRUE,
add = FALSE,
broken = TRUE,
bp,
gridsize = 200,
log = "x",
n.xbreaks,
n.ybreaks,
x.lim,
y.lim,
pch = 1,
cex.point,
cex.axis = 1,
cex.lab = 1.3,
col = 1,
lwd = 2,
lty = 2,
xlab,
ylab,
legend = TRUE,
legendText,
legendPos,
cex.legend = NULL,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
...

)

Arguments

x object of class drFitModel, created with growth.drFitModel.

type (Character) Specify how to plot the data. There are currently 5 options: "av-
erage" (averages and fitted curve(s); default), "none" (only the fitted curve(s)),
"obs" (only the data points), "all" (all data points and fitted curve(s)), "bars" (av-
erages and fitted curve(s) with model-based standard errors (see Details)), and
"confidence" (confidence bands for fitted curve(s)).

ec50line (Logical) Show pointed horizontal and vertical lines at the EC50 values (TRUE)
or not (FALSE).

add (Logical) If TRUE then add to already existing plot.

plot.drFitModel 73

broken (Logical) If TRUE the x axis is broken provided this axis is logarithmic (using
functionality in the CRAN package ’plotrix’).

bp (Numeric) Specifying the break point below which the dose is zero (the amount
of stretching on the dose axis above zero in order to create the visual illusion of
a logarithmic scale including 0). The default is the base-10 value corresponding
to the rounded value of the minimum of the log10 values of all positive dose
values. This argument is only working for logarithmic dose axes.

gridsize (Numeric) Number of points in the grid used for plotting the fitted curves.

log (Character) String which contains ’"x"’ if the x axis is to be logarithmic, ’"y"’
if the y axis is to be logarithmic and ’"xy"’ or ’"yx"’ if both axes are to be
logarithmic. The default is "x". The empty string "" yields the original axes.

n.xbreaks (Numeric) Number of breaks on the x-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.

n.ybreaks (Numeric) Number of breaks on the y-axis (if not log-transformed). The breaks
are generated using pretty. Thus, the final number of breaks can deviate from
the user input.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis of the growth curve plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

pch (Numeric) Symbol used to plot data points.

cex.point (Numeric) Size of the raw data points.

cex.axis (Numeric) Font size of axis annotations.

cex.lab (Numeric) Font size of axis titles.

col (Logical or a vector of colors) If TRUE default colours are used. If FALSE (de-
fault) no colors are used.

lwd (Numeric) Line width.

lty (Numeric) Specify the line type.

xlab (Character) An optional label for the x axis.

ylab (Character) An optional label for the y axis.

legend (Logical) If TRUE a legend is displayed.

legendText (Character) Specify the legend text (the position of the upper right corner of the
legend box).

legendPos (Numeric) Vector of length 2 giving the position of the legend.

cex.legend numeric specifying the legend text size.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

74 plot.drFitSpline

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A plot with the dose-response model fit.

References

Christian Ritz, Florent Baty, Jens C. Streibig, Daniel Gerhard (2015). Dose-Response Analysis
Using R. PLoS ONE 10(12): e0146021. DOI: 10.1371/journal.pone.0146021

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+stats::rnorm(19)/50, 0)

TestRun <- growth.drFitModel(conc, response, drID = "test")

print(summary(TestRun))
plot(TestRun)

plot.drFitSpline Generic plot function for drFitSpline objects.

Description

plot.drFitSpline generates the spline fit plot for response-parameter vs. concentration data

Usage

S3 method for class 'drFitSpline'
plot(
x,
add = FALSE,
ec50line = TRUE,
log = "",
pch = 16,
colSpline = 1,
colData = 1,
cex.point = 1,
cex.lab = 1.5,

plot.drFitSpline 75

cex.axis = 1.3,
y.lim = NULL,
x.lim = NULL,
y.title = NULL,
x.title = NULL,
lwd = 2,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
...

)

Arguments

x object of class drFitSpline, created with growth.drFitSpline.
add (Logical) Shall the fitted spline be added to an existing plot? TRUE is used inter-

nally by plot.drBootSpline.
ec50line (Logical) Show pointed horizontal and vertical lines at the EC50 value (TRUE)

or not (FALSE).
log ("x", "y", or "xy") Display the x- or y-axis on a logarithmic scale.
pch (Numeric) Shape of the raw data symbols.
colSpline (Numeric or character) Spline line colour.
colData (Numeric or character) Contour color of the raw data circles.
cex.point (Numeric) Size of the raw data symbols.
cex.lab (Numeric) Font size of axis titles.
cex.axis (Numeric) Font size of axis annotations.
y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds on the y-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

y.title (Character) Optional: Provide a title for the y-axis.
x.title (Character) Optional: Provide a title for the x-axis.
lwd (Numeric) Line width of spline.
plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).
export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).
height (Numeric) Height of the exported image in inches.
width (Numeric) Width of the exported image in inches.
out.dir (Character) Name or path to a folder in which the exported files are stored. If

NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated base R plot.

76 plot.dr_parameter

Value

A plot with the nonparametric dose-response fit.

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+stats::rnorm(19)/50, 0)

TestRun <- growth.drFitSpline(conc, response, drID = "test",
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8))

print(summary(TestRun))
plot(TestRun)

plot.dr_parameter Compare calculated dose-response parameters between conditions.

Description

plot.dr_parameter gathers parameters from the results of a dose-response analysis and compares
a chosen parameter between each condition in a column plot. Error bars represent the 95% confi-
dence interval (only shown for > 2 replicates).

Usage

S3 method for class 'dr_parameter'
plot(
x,
param = c("EC50", "EC50.Estimate", "y.max", "y.min", "fc", "K", "n", "yEC50",
"drboot.meanEC50", "drboot.meanEC50y", "EC50.orig", "yEC50.orig"),

names = NULL,
exclude.nm = NULL,
basesize = 12,
reference.nm = NULL,
label.size = NULL,
plot = TRUE,
export = FALSE,
height = 7,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

plot.dr_parameter 77

Arguments

x A grofit, drFit, drTable, or flFitRes object obtained with growth.workflow,
growth.drFit, fl.drFit, or fl.workflow.

param (Character) The parameter used to compare different sample groups. Any name
of a column containing numeric values in gcTable (which is stored within
grofit or gcFit objects) can be used as input. Useful options are: ’y.max’,
’y.min’, ’fc’, ’K’, or ’n’ for fluorescence dose-response analyses with dr.type
= 'model' in the control argument, or ’EC50’, ’yEC50’, ’drboot.meanEC50’,
’drboot.meanEC50y’.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

basesize (Numeric) Base font size.

reference.nm (Character) Name of the reference condition, to which parameter values are nor-
malized. Partially matching strings are tolerated as long as they can uniquely
identify the condition.

label.size (Numeric) Font size for sample labels below x-axis.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A column plot comparing a selected parameter of a dose-response analysis between tested condi-
tions.

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

78 plot.dual

rnd.data <- list()
rnd.data[["time"]] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[["data"]] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = "s",

suppress.messages = TRUE))

Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,

control = growth.control(dr.parameter = "mu.spline"))

plot.dr_parameter(drFit, param = 'EC50')

plot.dual Compare fluorescence and growth over time

Description

plot.dual creates a two-panel plot in which fluorescence or growth values are shown over time,
allowing for the identification of, e.g., expression patterns in different growth stages.

Usage

S3 method for class 'dual'
plot(
x,
fluorescence = c("fl", "norm.fl"),
IDs = NULL,
names = NULL,
conc = NULL,
mean = TRUE,
exclude.nm = NULL,
exclude.conc = NULL,
log.y.growth = FALSE,
log.y.fl = FALSE,
n.ybreaks = 6,
colors = NULL,
color_groups = TRUE,
group_pals = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red",

"Cyan", "Brown", "Mint"),
basesize = 20,
y.lim.growth = NULL,

plot.dual 79

y.lim.fl = NULL,
x.lim = NULL,
x.title = NULL,
y.title.growth = NULL,
y.title.fl = NULL,
lwd = 1.1,
legend.position = "bottom",
legend.ncol = 2,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

Arguments

x A flFit, flFitRes, or grodata object created with flFit, fl.workflow or
read_data

fluorescence (Character) Indicate, which type of fluorescence data should be displayed.

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

mean (Logical) Display the mean and standard deviation of groups with replicates
(TRUE) or plot each sample individually (FALSE)?

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

log.y.growth (Logical) Log-transform the y-axis of the growth plot (TRUE) or not (FALSE)?

log.y.fl (Logical) Log-transform the y-axis of the fluorescence plot (TRUE) or not (FALSE)?

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

80 plot.dual

colors (vector of strings) Define a color palette used to draw the plots. If NULL, de-
fault palettes are chosen based on the number of groups/samples within the
plot. Note: The number of provided colors should at least match the number
of groups/samples.

color_groups (Logical) Shall samples within the same group but with different concentrations
be shown in different shades of the same color?

group_pals (String vector) Define the colors used to display sample groups with identical
concentrations. The number of selected color palettes must be at least the num-
ber of displayed groups. The order of the chosen palettes corresponds to the oder
of conditions in the legend. Available options: "Green", "Oranges", "Purple",
"Cyan", "Grey", "Red", "Blue", and "Magenta".

basesize (Numeric) Base font size.

y.lim.growth (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the y-axis of the growth plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

y.lim.fl (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the y-axis of the fluorescence plot as a vector in the form c(l, u).

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the x-axis of both fluorescence and growth plots as a vector in the
form c(l, u). If only the lower or upper bound should be fixed, provide c(l,
NA) or c(NA, u), respectively.

x.title (Character) Optional: Provide a title for the x-axis of both growth curve and
derivative plots.

y.title.growth (Character) Optional: Provide a title for the y-axis of the growth plot.

y.title.fl (Character) Optional: Provide a title for the y-axis of the fluorescence plot.

lwd (Numeric) Line width of the individual plots.
legend.position

(Character) Position of the legend. One of "bottom", "top", "left", "right".

legend.ncol (Numeric) Number of columns in the legend.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

plot.flBootSpline 81

Value

A two-panel plot, showing raw fluorescence (fluorescence = "fl") or normalized fluorescence
(fluorescence = "norm.fl") over time in the top panel, and growth over time in the bottom panel.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
suppress.messages = TRUE,
parallelize = FALSE)

plot.dual(res, legend.ncol = 3, basesize = 15)

plot.flBootSpline Generic plot function for flBootSpline objects.

Description

Generic plot function for flBootSpline objects.

Usage

S3 method for class 'flBootSpline'
plot(
x,
pch = 1,
colData = 1,
deriv = TRUE,
colSpline = "dodgerblue3",
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
lwd = 2,
y.lim = NULL,
x.lim = NULL,
y.lim.deriv = NULL,
plot = TRUE,
export = FALSE,

82 plot.flBootSpline

height = 7,
width = 9,
out.dir = NULL,
combine = FALSE,
...

)

Arguments

x Object of class flBootSpline, created with flBootSpline.

pch (Numeric) Size of the raw data circles.

colData (Numeric or Character) Color used to plot the raw data.

deriv (Logical) Show the derivatives (i.e., slope) over time in a secondary plot (TRUE)
or not (FALSE).

colSpline (Numeric or Character) Color used to plot the splines.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

lwd (Numeric) Spline line width.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis of the fluorescence curve plot as a vector in the form c(l,
u). If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis of both fluorescence curve and derivative plots as a
vector in the form c(l, u). If only the lower or upper bound should be fixed,
provide c(l, NA) or c(NA, u), respectively.

y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

combine (Logical) Indicate whether both growth curves and parameter plots shall be
shown within the same window.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

plot.flFitLinear 83

Value

A single plot with the all spline fits from the bootstrapping operation and statistical distribution of
parameters if combine = TRUE or separate plots for fits and parameter distributions (if combine =
FALSE).

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flBootSpline(time = time,

fl_data = data,
ID = "TestFit",
control = fl.control(fit.opt = "s", x_type = "time",
nboot.fl = 50))

plot(TestFit, combine = TRUE, lwd = 0.5)

plot.flFitLinear Generic plot function for flcFittedLinear objects. Plot the results
of a linear regression on ln-transformed data

Description

plot.flFitLinear shows the results of a linear regression and visualizes raw data, data points
included in the fit, the tangent obtained by linear regression, and the lag time.

Usage

S3 method for class 'flFitLinear'
plot(
x,
log = "",
which = c("fit", "diagnostics", "fit_diagnostics"),
pch = 21,
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
lwd = 2,
color = "firebrick3",

84 plot.flFitLinear

y.lim = NULL,
x.lim = NULL,
plot = TRUE,
export = FALSE,
height = ifelse(which == "fit", 7, 5),
width = ifelse(which == "fit", 9, 9),
out.dir = NULL,
...

)

Arguments

x A flFittedLinear object created with flFitLinear or stored within a flFitRes
or flFit object created with fl.workflow or flFit, respectively.

log ("x" or "y") Display the x- or y-axis on a logarithmic scale.

which ("fit" or "diagnostics") Display either the results of the linear fit on the raw data
or statistical evaluation of the linear regression.

pch (Numeric) Shape of the raw data symbols.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

lwd (Numeric) Line width.

color (Character string) Enter color either by name (e.g., red, blue, coral3) or via their
hexadecimal code (e.g., #AE4371, #CCFF00FF, #0066FFFF). A full list of col-
ors available by name can be found at http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis as a vector in the form c(l, u).

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u).

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated base R plot.

Value

A plot with the linear fit.

plot.flFitRes 85

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitLinear(time = time,

fl_data = data,
ID = "TestFit",
control = fl.control(fit.opt = "l", x_type = "time",
lin.R2 = 0.95, lin.RSD = 0.1,
lin.h = 20))

plot(TestFit)

plot.flFitRes Combine different groups of samples into a single plot

Description

Visualize fluorescence, normalized fluorescence, or spline fits of multiple sample groups in a single
plot.

Usage

S3 method for class 'flFitRes'
plot(
x,
data.type = c("spline", "raw", "norm.fl"),
IDs = NULL,
names = NULL,
conc = NULL,
mean = TRUE,
exclude.nm = NULL,
exclude.conc = NULL,
log.y = FALSE,
deriv = FALSE,
n.ybreaks = 6,
colors = NULL,
color_groups = TRUE,
group_pals = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red",

"Cyan", "Brown", "Mint"),

86 plot.flFitRes

basesize = 20,
y.lim = NULL,
x.lim = NULL,
y.title = NULL,
x.title = NULL,
y.lim.deriv = NULL,
y.title.deriv = NULL,
lwd = 1.1,
legend.position = "bottom",
legend.ncol = 2,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

S3 method for class 'flFit'
plot(
x,
data.type = c("spline", "raw", "norm.fl"),
IDs = NULL,
names = NULL,
conc = NULL,
mean = TRUE,
exclude.nm = NULL,
exclude.conc = NULL,
log.y = FALSE,
deriv = FALSE,
n.ybreaks = 6,
colors = NULL,
color_groups = TRUE,
group_pals = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red",

"Cyan", "Brown", "Mint"),
basesize = 20,
y.lim = NULL,
x.lim = NULL,
y.title = NULL,
x.title = NULL,
y.lim.deriv = NULL,
y.title.deriv = NULL,
lwd = 1.1,
legend.position = "bottom",
legend.ncol = 2,
plot = TRUE,
export = FALSE,

plot.flFitRes 87

height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

Arguments

x A flFitRes, flFit, or grodata object created with fl.workflow containing
fluorescence data.

data.type (Character) Indicate, which type of fluorescence data should be displayed.

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

mean (Logical) Display the mean and standard deviation of groups with replicates
(TRUE) or plot each sample individually (FALSE)?

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

log.y (Logical) Log-transform the y-axis of the plot (TRUE) or not (FALSE)?

deriv (Logical) Show derivatives over time in a separate panel below the plot (TRUE)
or not (FALSE)?

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
axisTicks(). Thus, the final number of breaks can deviate from the user input.

colors (vector of strings) Define a color palette used to draw the plots. If NULL, de-
fault palettes are chosen based on the number of groups/samples within the
plot. Note: The number of provided colors should at least match the number
of groups/samples.

color_groups (Logical) Shall samples within the same group but with different concentrations
be shown in different shades of the same color?

group_pals (String vector) Define the colors used to display sample groups with identical
concentrations. The number of selected color palettes must be at least the num-
ber of displayed groups. The order of the chosen palettes corresponds to the oder

88 plot.flFitRes

of conditions in the legend. Available options: "Green", "Oranges", "Purple",
"Cyan", "Grey", "Red", "Blue", and "Magenta".

basesize (Numeric) Base font size.
y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds of the y-axis of the fluorescence curve plot as a vector in the form
c(l, u). If only the lower or upper bound should be fixed, provide c(l, NA) or
c(NA, u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the x-axis of both fluorescence curve and derivative plots as a
vector in the form c(l, u). If only the lower or upper bound should be fixed,
provide c(l, NA) or c(NA, u), respectively.

y.title (Character) Optional: Provide a title for the y-axis of the fluorescence curve
plot.

x.title (Character) Optional: Provide a title for the x-axis of both fluorescence curve
and derivative plots.

y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

y.title.deriv (Character) Optional: Provide a title for the y-axis of the derivative plot.
lwd (Numeric) Line width of the individual plots.
legend.position

(Character) Position of the legend. One of "bottom", "top", "left", "right".
legend.ncol (Numeric) Number of columns in the legend.
plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If

FALSE, a ggplot object is returned.
export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).
height (Numeric) Height of the exported image in inches.
width (Numeric) Width of the exported image in inches.
out.dir (Character) Name or path to a folder in which the exported files are stored. If

NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A plot with all curves (nonparametric fits, raw fluorescence measurements, or raw normalized fluo-
rescence over time) in a flFitRes object created with fl.workflow, with replicates combined by
the group averages (if mean = TRUE) or not (mean = FALSE).

A plot with all curves (raw fluorescence measurements or raw normalized fluorescence over time)
in a flFit object with flFit, with replicates combined by the group averages (if mean = TRUE) or
not (mean = FALSE).

plot.flFitSpline 89

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
suppress.messages = TRUE,
parallelize = FALSE)

plot(res, legend.ncol = 3, basesize = 15)

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run curve fitting workflow
res <- flFit(fl_data = input$norm.fluorescence,

time = input$time,
parallelize = FALSE,
control = fl.control(fit.opt = "s", suppress.messages = TRUE,
x_type = "time", norm_fl = TRUE))

plot(res, legend.ncol = 3, basesize = 15)

plot.flFitSpline Generic plot function for flFitSpline objects.

Description

plot.flFitSpline generates the spline fit plot for a single sample.

Usage

S3 method for class 'flFitSpline'
plot(
x,
add = FALSE,
raw = TRUE,
slope = TRUE,

90 plot.flFitSpline

deriv = TRUE,
spline = TRUE,
log.y = FALSE,
basesize = 16,
pch = 1,
colData = 1,
colSpline = "dodgerblue3",
cex.point = 2,
lwd = 0.7,
y.lim = NULL,
x.lim = NULL,
y.lim.deriv = NULL,
n.ybreaks = 6,
y.title = NULL,
x.title = NULL,
y.title.deriv = NULL,
plot = TRUE,
export = FALSE,
width = 8,
height = ifelse(deriv == TRUE, 8, 6),
out.dir = NULL,
...

)

Arguments

x Object of class flFitSpline, created with flFitSpline.

add (Logical) Shall the fitted spline be added to an existing plot? TRUE is used inter-
nally by plot.flBootSpline.

raw (Logical) Display raw growth as circles (TRUE) or not (FALSE).

slope (Logical) Show the slope at the maximum slope (TRUE) or not (FALSE).

deriv (Logical) Show the derivative (i.e., slope) over time in a secondary plot (TRUE)
or not (FALSE).

spline (Logical) Only for add = TRUE: add the current spline to the existing plot (FALSE).

log.y (Logical) Log-transform the y-axis (TRUE) or not (FALSE).

basesize (Numeric) Base font size.

pch (Numeric) Symbol used to plot data points.

colData (Numeric or character) Contour color of the raw data circles.

colSpline (Numeric or character) Spline line colour.

cex.point (Numeric) Size of the raw data points.

lwd (Numeric) Spline line width.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis of the fluorescence curve plot as a vector in the form c(l,
u). If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

plot.flFitSpline 91

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis of both fluorescence curve and derivative plots as a
vector in the form c(l, u). If only the lower or upper bound should be fixed,
provide c(l, NA) or c(NA, u), respectively.

y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
axisTicks(). Thus, the final number of breaks can deviate from the user input.

y.title (Character) Optional: Provide a title for the y-axis of the growth curve plot.
x.title (Character) Optional: Provide a title for the x-axis of both growth curve and

derivative plots.
y.title.deriv (Character) Optional: Provide a title for the y-axis of the derivative plot.
plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If

FALSE, a ggplot object is returned.
export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).
width (Numeric) Width of the exported image in inches.
height (Numeric) Height of the exported image in inches.
out.dir (Character) Name or path to a folder in which the exported files are stored. If

NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A plot with the nonparametric fit.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitSpline(time = time,

fl_data = data,
ID = "TestFit",
control = fl.control(fit.opt = "s", x_type = "time"))

plot(TestFit)

92 plot.gcBootSpline

plot.gcBootSpline Generic plot function for gcBootSpline objects.

Description

Generic plot function for gcBootSpline objects.

Usage

S3 method for class 'gcBootSpline'
plot(
x,
pch = 1,
colData = 1,
deriv = TRUE,
colSpline = "dodgerblue3",
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
lwd = 2,
y.lim = NULL,
x.lim = NULL,
y.lim.deriv = NULL,
plot = TRUE,
export = FALSE,
height = 7,
width = 9,
out.dir = NULL,
combine = FALSE,
...

)

Arguments

x object of class gcBootSpline, created with growth.gcBootSpline.

pch (Numeric) Symbol used to plot data points.

colData (Numeric or character) Contour color of the raw data circles.

deriv (Logical) Show the derivatives (i.e., slope) over time in a secondary plot (TRUE)
or not (FALSE).

colSpline (Numeric or character) Spline line colour.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

lwd (Numeric) Spline line width.

plot.gcBootSpline 93

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis of the growth curve plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

combine (Logical) Indicate whether both growth curves and parameter plots shall be
shown within the same window.

... Further arguments to refine the generated base R plot.

Value

A single plot with the all spline growth fits from the bootstrapping operation and statistical dis-
tribution of growth parameters if combine = TRUE or separate plots for growth fits and parameter
distributions (if combine = FALSE).

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Introduce some noise into the measurements
data <- data + stats::runif(97, -0.01, 0.09)

Perform bootstrapping spline fit
TestFit <- growth.gcBootSpline(time, data, gcID = "TestFit",

control = growth.control(fit.opt = "s", nboot.gc = 50))

plot(TestFit, combine = TRUE, lwd = 0.5)

94 plot.gcFitLinear

plot.gcFitLinear Generic plot function for gcFittedLinear objects. Plot the results of
a linear regression on ln-transformed data

Description

plot.gcFitLinear shows the results of a linear regression on log-transformed data and visualizes
raw data, data points included in the fit, the tangent obtained by linear regression, and the lag time.

Usage

S3 method for class 'gcFitLinear'
plot(
x,
log = "y",
which = c("fit", "diagnostics", "fit_diagnostics"),
pch = 21,
cex.point = 1,
cex.lab = 1.5,
cex.axis = 1.3,
lwd = 2,
color = "firebrick3",
y.lim = NULL,
x.lim = NULL,
plot = TRUE,
export = FALSE,
height = ifelse(which == "fit", 7, 5),
width = ifelse(which == "fit", 9, 9),
out.dir = NULL,
...

)

Arguments

x A gcFittedLinear object created with growth.gcFitLinear or stored within
a grofit or gcFit object created with growth.workflow or growth.gcFit,
respectively.

log ("x" or "y") Display the x- or y-axis on a logarithmic scale.

which ("fit" or "diagnostics") Display either the results of the linear fit on the raw data
or statistical evaluation of the linear regression.

pch (Numeric) Shape of the raw data symbols.

cex.point (Numeric) Size of the raw data points.

cex.lab (Numeric) Font size of axis titles.

cex.axis (Numeric) Font size of axis annotations.

lwd (Numeric) Line width.

plot.gcFitModel 95

color (Character string) Enter color either by name (e.g., red, blue, coral3) or via their
hexadecimal code (e.g., #AE4371, #CCFF00FF, #0066FFFF). A full list of col-
ors available by name can be found at http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis as a vector in the form c(l, u).

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis as a vector in the form c(l, u).

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE).

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated base R plot.

Value

A plot with the linear fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- growth.gcFitLinear(time, data, gcID = "TestFit",

control = growth.control(fit.opt = "l"))

plot(TestFit)

plot.gcFitModel Generic plot function for gcFitModel objects.

Description

Plot the results of a parametric model fit on growth vs. time data

96 plot.gcFitModel

Usage

S3 method for class 'gcFitModel'
plot(
x,
raw = TRUE,
pch = 1,
colData = 1,
equation = TRUE,
eq.size = 1,
colModel = "forestgreen",
basesize = 16,
cex.point = 2,
lwd = 0.7,
x.lim = NULL,
y.lim = NULL,
n.ybreaks = 6,
plot = TRUE,
export = FALSE,
height = 6,
width = 8,
out.dir = NULL,
...

)

Arguments

x A gcFittedModel object created with growth.gcFitModel or stored within
a grofit or gcFit object created with growth.workflow or growth.gcFit,
respectively.

raw (Logical) Show the raw data within the plot (TRUE) or not (FALSE).
pch (Numeric) Symbol used to plot data points.
colData (Numeric or Character) Color used to plot the raw data.
equation (Logical) Show the equation of the fitted model within the plot (TRUE) or not

(FALSE).
eq.size (Numeric) Provide a value to scale the size of the displayed equation.
colModel (Numeric or Character) Color used to plot the fitted model.
basesize (Numeric) Base font size.
cex.point (Numeric) Size of the raw data points.
lwd (Numeric) Spline line width.
x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds on the x-axis as a vector in the form c(l, u). If only the lower or
upper bound should be fixed, provide c(l, NA) or c(NA, u), respectively.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on y-axis of the growth curve plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

plot.gcFitSpline 97

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated ggplot2 plot.

Value

A plot with the parametric fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform parametric fit
TestFit <- growth.gcFitModel(time, data, gcID = "TestFit",

control = growth.control(fit.opt = "m"))

plot(TestFit, basesize = 18, eq.size = 1.5)

plot.gcFitSpline Generic plot function for gcFitSpline objects.

Description

plot.gcFitSpline generates the spline fit plot for a single sample.

Usage

S3 method for class 'gcFitSpline'
plot(
x,
add = FALSE,
raw = TRUE,

98 plot.gcFitSpline

slope = TRUE,
deriv = TRUE,
spline = TRUE,
log.y = TRUE,
pch = 1,
colData = 1,
colSpline = "dodgerblue3",
basesize = 16,
cex.point = 2,
lwd = 0.7,
y.lim = NULL,
x.lim = NULL,
y.lim.deriv = NULL,
n.ybreaks = 6,
y.title = NULL,
x.title = NULL,
y.title.deriv = NULL,
plot = TRUE,
export = FALSE,
width = 8,
height = ifelse(deriv == TRUE, 8, 6),
out.dir = NULL,
...

)

Arguments

x object of class gcFitSpline, created with growth.gcFitSpline.
add (Logical) Shall the fitted spline be added to an existing plot? TRUE is used inter-

nally by plot.gcBootSpline.
raw (Logical) Display raw growth as circles (TRUE) or not (FALSE).
slope (Logical) Show the slope at the maximum growth rate (TRUE) or not (FALSE).
deriv (Logical) Show the derivative (i.e., slope) over time in a secondary plot (TRUE)

or not (FALSE).
spline (Logical) Only for add = TRUE: add the current spline to the existing plot (FALSE).
log.y (Logical) Log-transform the y-axis (TRUE) or not (FALSE).
pch (Numeric) Symbol used to plot data points.
colData (Numeric or character) Contour color of the raw data circles.
colSpline (Numeric or character) Spline line colour.
basesize (Numeric) Base font size.
cex.point (Numeric) Size of the raw data points.
lwd (Numeric) Spline line width.
y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds on y-axis of the growth curve plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

plot.gcFitSpline 99

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

y.title (Character) Optional: Provide a title for the y-axis of the growth curve plot.

x.title (Character) Optional: Provide a title for the x-axis of both growth curve and
derivative plots.

y.title.deriv (Character) Optional: Provide a title for the y-axis of the derivative plot.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

width (Numeric) Width of the exported image in inches.

height (Numeric) Height of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

... Further arguments to refine the generated base R plot (if add = TRUE.

Value

A plot with the nonparametric fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform spline fit
TestFit <- growth.gcFitSpline(time, data, gcID = "TestFit",

control = growth.control(fit.opt = "s"))

plot(TestFit)

100 plot.grid

plot.grid Plot a matrix of growth curve panels

Description

plot.grid takes a grofit or flFitRes object and returns a facet grid of individual growth and
fluorescence plots

Usage

S3 method for class 'grid'
plot(
x,
data.type = c("spline", "raw", "norm.fl"),
param = c("mu.linfit", "lambda.linfit", "dY.linfit", "A.linfit", "mu2.linfit",
"lambda2.linfit", "mu.model", "lambda.model", "A.model", "A.orig.model", "dY.model",
"dY.orig.model", "tD.linfit", "tD2.linfit", "tD.spline", "tD2.spline", "mu.spline",
"lambda.spline", "A.spline", "dY.spline", "integral.spline", "mu2.spline",

"lambda2.spline", "mu.bt", "lambda.bt", "A.bt", "integral.bt", "max_slope.linfit",
"max_slope.spline"),

pal = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red", "Cyan",
"Brown", "Mint"),

invert.pal = FALSE,
IDs = NULL,
sort_by_ID = FALSE,
names = NULL,
conc = NULL,
exclude.nm = NULL,
exclude.conc = NULL,
mean = TRUE,
log.y = TRUE,
n.ybreaks = 6,
sort_by_conc = TRUE,
nrow = NULL,
basesize = 20,
y.lim = NULL,
x.lim = NULL,
legend.lim = NULL,
y.title = NULL,
x.title = NULL,
lwd = 1.1,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,

plot.grid 101

...
)

Arguments

x A grofit or flFitRes object created with growth.workflow or fl.workflow
containing spline fits.

data.type (Character) Plot either raw data (data.type = "raw") or the spline fit results

param (Character) The parameter used to compare different sample groups. Any name
of a column containing numeric values in gcTable (which is stored within
grofit or gcFit objects) can be used as input. Useful options are: ’mu.linfit’,
’lambda.linfit’, ’dY.linfit’, ’A.linfit’, ’mu.model’, ’lambda.model’, ’A.model’,
’mu.spline’, ’lambda.spline’, ’A.spline’, ’dY.spline’, ’integral.spline’, ’mu.bt’,
’lambda.bt’, ’A.bt’, ’integral.bt’

pal (Character string) Choose one of ’Green’, ’Orange’, ’Purple’, ’Magenta’, ’Grey’,
’Blue’, ’Grey’, ’Red’, ’Cyan’, ’Brown’, or ’Mint’ to visualize the value of the
parameter chosen as param for each sample or condition.

invert.pal (Logical) Shall the colors in the chosen pal be inverted (TRUE) or not FALSE?

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign. The order of strings within the
vector defines the order of samples within the grid.

sort_by_ID (Logical) Shall samples/conditions be ordered as entered in IDs (TRUE) or al-
phabetically (FALSE)?

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

mean (Logical) Display the mean and standard deviation of groups with replicates
(TRUE) or plot each sample individually (FALSE)?

log.y (Logical) Log-transform the y-axis of the plot (TRUE) or not (FALSE)?#’

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

102 plot.grid

sort_by_conc (Logical) Shall the samples/conditions be sorted with concentrations in rows and
groups in columns?

nrow (Numeric) Defines the number of rows in the grid if sort_by_conc is FALSE.

basesize (Numeric) Base font size.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the y-axis of the growth curve plot as a vector in the form c(l,
u). If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

legend.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the color scale applied to param as a vector in the form c(l, u).
If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

y.title (Character) Optional: Provide a title for the y-axis of the growth curve plot.

x.title (Character) Optional: Provide a title for the x-axis of both growth curve and
derivative plots.

lwd (Numeric) Line width of the individual plots.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A plot matrix with all growth curves (raw measurements or nonparametric fits) in a dataset, with
replicates combined by the group averages (if mean = TRUE) or not (mean = FALSE).

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

rnd.data <- list()

plot.grodata 103

rnd.data[["time"]] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[["data"]] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = "s",
ec50 = FALSE,
export.res = FALSE,
suppress.messages = TRUE,
parallelize = FALSE)

plot.grid(res, param = "mu.spline")

plot.grodata Generic plot function for grodata objects. Plots raw growth, fluores-
cence, or normalized fluorescence data of multiple samples or condi-
tions.

Description

plot.grodata calls plot.grofit or plot.flFitRes based on the chosen data.type, respec-
tively.

Usage

S3 method for class 'grodata'
plot(
x,
data.type = c("growth", "fl", "norm.fl"),
IDs = NULL,
names = NULL,
conc = NULL,
mean = TRUE,
exclude.nm = NULL,
exclude.conc = NULL,
log.y = FALSE,
n.ybreaks = 6,
colors = NULL,
color_groups = TRUE,
group_pals = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red",

"Cyan", "Brown", "Mint"),
basesize = 20,
y.lim = NULL,
x.lim = NULL,
y.title = NULL,

104 plot.grodata

x.title = NULL,
lwd = 1.1,
legend.position = "bottom",
legend.ncol = 2,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

Arguments

x A grodata object created with read_data or parse_data.

data.type (Character) Plot either raw growth (data.type = "growth"), raw fluorescence
(data.type = "fl"), or fluorescence normalized to growth (data.type = "norm.fl").

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

mean (Logical) Display the mean and standard deviation of groups with replicates
(TRUE) or plot each sample individually (FALSE)?

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

log.y (Logical) Log-transform the y-axis of the plot (TRUE) or not (FALSE)?

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

colors (vector of strings) Define a color palette used to draw the plots. If NULL, de-
fault palettes are chosen based on the number of groups/samples within the
plot. Note: The number of provided colors should at least match the number
of groups/samples.

plot.grodata 105

color_groups (Logical) Shall samples within the same group but with different concentrations
be shown in different shades of the same color?

group_pals (String vector) Define the colors used to display sample groups with identical
concentrations. The number of selected color palettes must be at least the num-
ber of displayed groups. The order of the chosen palettes corresponds to the oder
of conditions in the legend. Available options: "Green", "Oranges", "Purple",
"Cyan", "Grey", "Red", "Blue", and "Magenta".

basesize (Numeric) Base font size.

y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the y-axis of the growth curve plot as a vector in the form c(l,
u). If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

y.title (Character) Optional: Provide a title for the y-axis of the growth curve plot.

x.title (Character) Optional: Provide a title for the x-axis of both growth curve and
derivative plots.

lwd (Numeric) Line width of the individual plots.

legend.position

(Character) Position of the legend. One of "bottom", "top", "left", "right".

legend.ncol (Numeric) Number of columns in the legend.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A plot with all growth curves (raw measurements) in a dataset, with replicates combined by the
group averages (if mean = TRUE) or not (mean = FALSE).

106 plot.grofit

Examples

Create random growth data sets
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

Create dataframe with both data sets and a single time vector
time <- as.data.frame(matrix(t(c("Time",NA,NA, rnd.data1$time[1,])),nrow=1),

stringsAsFactors=FALSE)
colnames(time) <- colnames(rnd.data1$data)
data <- rbind(time, rnd.data1$data, rnd.data2$data)

Create a grodata object
grodata <- read_data(data.growth = data, data.format = "row")

plot(grodata, exclude.nm = "Test1", legend.ncol = 4)

plot.grofit Generic plot function for grofit objects. Combine different groups of
samples into a single plot

Description

plot.grofit extracts the spline fits of a subset of samples in a grofit object calculates averages
and standard deviations of conditions with replicates and combines them into a single plot.

Usage

S3 method for class 'grofit'
plot(
x,
...,
data.type = c("spline", "raw"),
IDs = NULL,
names = NULL,
conc = NULL,
exclude.nm = NULL,
exclude.conc = NULL,
mean = TRUE,
log.y = TRUE,
deriv = TRUE,
n.ybreaks = 6,
colors = NULL,
color_groups = TRUE,
group_pals = c("Green", "Orange", "Purple", "Magenta", "Grey", "Blue", "Grey", "Red",

"Cyan", "Brown", "Mint"),
basesize = 20,

plot.grofit 107

y.lim = NULL,
x.lim = NULL,
y.title = NULL,
x.title = NULL,
y.lim.deriv = NULL,
y.title.deriv = NULL,
lwd = 1.1,
legend.position = "bottom",
legend.ncol = 2,
plot = TRUE,
export = FALSE,
height = NULL,
width = NULL,
out.dir = NULL,
out.nm = NULL

)

Arguments

x A grofit object created with growth.workflow containing spline fits.

... (optional) Additional grofit objects created in separate workflows for joint
plotting in a single graph.

data.type (Character) Plot either raw data (data.type = "raw") or the spline fit results

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

mean (Logical) Display the mean and standard deviation of groups with replicates
(TRUE) or plot each sample individually (FALSE)?

log.y (Logical) Log-transform the y-axis of the plot (TRUE) or not (FALSE)?

deriv (Logical) Show derivatives over time in a separate panel below the plot (TRUE)
or not (FALSE)?

108 plot.grofit

n.ybreaks (Numeric) Number of breaks on the y-axis. The breaks are generated using
scales::pretty_breaks. Thus, the final number of breaks can deviate from
the user input.

colors (vector of strings) Define a color palette used to draw the plots. If NULL, de-
fault palettes are chosen based on the number of groups/samples within the
plot. Note: The number of provided colors should at least match the number
of groups/samples.

color_groups (Logical) Shall samples within the same group but with different concentrations
be shown in different shades of the same color?

group_pals (String vector) Define the colors used to display sample groups with identical
concentrations. The number of selected color palettes must be at least the num-
ber of displayed groups. The order of the chosen palettes corresponds to the oder
of conditions in the legend. Available options: "Green", "Oranges", "Purple",
"Cyan", "Grey", "Red", "Blue", and "Magenta".

basesize (Numeric) Base font size.
y.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds of the y-axis of the growth curve plot as a vector in the form c(l,
u). If only the lower or upper bound should be fixed, provide c(l, NA) or c(NA,
u), respectively.

x.lim (Numeric vector with two elements) Optional: Provide the lower (l) and upper
(u) bounds of the x-axis of both growth curve and derivative plots as a vector
in the form c(l, u). If only the lower or upper bound should be fixed, provide
c(l, NA) or c(NA, u), respectively.

y.title (Character) Optional: Provide a title for the y-axis of the growth curve plot.
x.title (Character) Optional: Provide a title for the x-axis of both growth curve and

derivative plots.
y.lim.deriv (Numeric vector with two elements) Optional: Provide the lower (l) and upper

(u) bounds on the y-axis of the derivative plot as a vector in the form c(l, u). If
only the lower or upper bound should be fixed, provide c(l, NA) or c(NA, u),
respectively.

y.title.deriv (Character) Optional: Provide a title for the y-axis of the derivative plot.
lwd (Numeric) Line width of the individual plots.
legend.position

(Character) Position of the legend. One of "bottom", "top", "left", "right".
legend.ncol (Numeric) Number of columns in the legend.
plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If

FALSE, a ggplot object is returned.
export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).
height (Numeric) Height of the exported image in inches.
width (Numeric) Width of the exported image in inches.
out.dir (Character) Name or path to a folder in which the exported files are stored. If

NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

plot.parameter 109

Value

A plot with all growth curves (raw measurements or nonparametric fits) in a dataset, with replicates
combined by the group averages (if mean = TRUE) or not (mean = FALSE).

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

rnd.data <- list()
rnd.data[["time"]] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[["data"]] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = "s",
ec50 = FALSE,
export.res = FALSE,
suppress.messages = TRUE,
parallelize = FALSE)

plot(res, names = "Test1", legend.ncol = 4) # Show only samples for condition "Test1"

plot.parameter Compare growth parameters between samples or conditions

Description

plot.parameter gathers physiological parameters from the results of a growth fit analysis and
compares a chosen parameter between each sample or condition in a column plot. Error bars repre-
sent the 95% confidence interval (only shown for > 2 replicates).

Usage

S3 method for class 'parameter'
plot(
x,
param = c("mu.linfit", "lambda.linfit", "dY.linfit", "A.linfit", "mu2.linfit",
"lambda2.linfit", "mu.model", "lambda.model", "A.model", "A.orig.model", "dY.model",
"dY.orig.model", "tD.linfit", "tD2.linfit", "tD.spline", "tD2.spline", "mu.spline",
"lambda.spline", "A.spline", "dY.spline", "integral.spline", "mu2.spline",

"lambda2.spline", "mu.bt", "lambda.bt", "A.bt", "integral.bt", "max_slope.linfit",
"max_slope.spline"),

IDs = NULL,

110 plot.parameter

names = NULL,
conc = NULL,
exclude.nm = NULL,
exclude.conc = NULL,
reference.nm = NULL,
reference.conc = NULL,
order_by_conc = FALSE,
colors = NULL,
basesize = 12,
label.size = NULL,
shape.size = 2.5,
legend.position = "right",
legend.ncol = 1,
plot = TRUE,
export = FALSE,
height = 7,
width = NULL,
out.dir = NULL,
out.nm = NULL,
...

)

Arguments

x A grofit, gcFit, or gcTable object obtained with growth.workflow or growth.gcFit.

param (Character) The parameter used to compare different sample groups. Any name
of a column containing numeric values in gcTable (which is stored within
grofit or gcFit objects) can be used as input. Useful options are: ’mu.linfit’,
’lambda.linfit’, ’dY.linfit’, ’A.linfit’, ’mu.model’, ’lambda.model’, ’A.model’,
’mu.spline’, ’lambda.spline’, ’A.spline’, ’dY.spline’, ’integral.spline’, ’mu.bt’,
’lambda.bt’, ’A.bt’, ’integral.bt’

IDs (String or vector of strings) Define samples or groups (if mean = TRUE) to com-
bine into a single plot based on exact matches with entries in the label or
condition columns of grofit$expdesign.

names (String or vector of strings) Define groups to combine into a single plot. Partial
matches with sample/group names are accepted. If NULL, all samples are con-
sidered. Note: Ensure to use unique substrings to extract groups of interest. If
the name of one condition is included in its entirety within the name of other
conditions, it cannot be extracted individually.

conc (Numeric or numeric vector) Define concentrations to combine into a single
plot. If NULL, all concentrations are considered. Note: Ensure to use unique
concentration values to extract groups of interest. If the concentration value
of one condition is included in its entirety within the name of other conditions
(e.g., the dataset contains ’1’, ’10’, and ’100’, code = 10 will select both ’10 and
’100’), it cannot be extracted individually.

exclude.nm (String or vector of strings) Define groups to exclude from the plot. Partial
matches with sample/group names are accepted.

plot.parameter 111

exclude.conc (Numeric or numeric vector) Define concentrations to exclude from the plot.

reference.nm (Character) Name of the reference condition, to which parameter values are nor-
malized. Partially matching strings are tolerated as long as they can uniquely
identify the condition.

reference.conc (Numeric) Concentration of the reference condition, to which parameter values
are normalized.

order_by_conc (Logical) Shall the columns be sorted in order of ascending concentrations (TRUE)
or by sample groups FALSE?

colors (vector of strings) Define a color palette used to draw the columns. If NULL,
default palettes are chosen. Note: The number of provided colors should at least
match the number of groups.

basesize (Numeric) Base font size.

label.size (Numeric) Font size for sample labels below x-axis.

shape.size (Numeric) The size of the symbols indicating replicate values. Default: 2.5
legend.position

(Character) Position of the legend. One of "bottom", "top", "left", "right".

legend.ncol (Numeric) Number of columns in the legend.

plot (Logical) Show the generated plot in the Plots pane (TRUE) or not (FALSE). If
FALSE, a ggplot object is returned.

export (Logical) Export the generated plot as PDF and PNG files (TRUE) or not (FALSE).

height (Numeric) Height of the exported image in inches.

width (Numeric) Width of the exported image in inches.

out.dir (Character) Name or path to a folder in which the exported files are stored. If
NULL, a "Plots" folder is created in the current working directory to store the files
in.

out.nm (Character) The name of the PDF and PNG files if export = TRUE. If NULL, a
name will be automatically generated including the chosen parameter.

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A column plot comparing a selected growth parameter between tested conditions.

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = "Test2")

rnd.data <- list()
rnd.data[["time"]] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[["data"]] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow

112 rdm.data

res <- growth.workflow(time = rnd.data$time,
data = rnd.data$data,
fit.opt = "s",
ec50 = FALSE,
export.res = FALSE,
parallelize = FALSE,
suppress.messages = TRUE)

plot.parameter(res,
param = "mu.spline",
legend.ncol = 4,
legend.position = "bottom",
basesize = 15,
label.size = 11)

rdm.data The function calls the baranyi function to generate curves between
time zero and t and adds some random noise to the x- and y-axes. The
three growth parameters given as input values will be slightly changed
to produce different growth curves. The resulting datasets can be used
to test the growth.workflow function.

Description

The function calls the baranyi function to generate curves between time zero and t and adds some
random noise to the x- and y-axes. The three growth parameters given as input values will be
slightly changed to produce different growth curves. The resulting datasets can be used to test the
growth.workflow function.

Usage

rdm.data(d, y0 = 0.05, tmax = 24, mu = 0.6, lambda = 5, A = 3, label = "Test1")

Arguments

d Numeric value, number of data sets. If d is a vector, only the first entry is used.

y0 Numeric value, start growth. If t is a vector, only the first entry is used.

tmax Numeric value, number of time points per data set. If t is a vector, only the first
entry is used.

mu Numeric value, maximum slope. If mu is a vector, only the first entry is used.

lambda Numeric value, lag-phase. If lambda is a vector, only the first entry is used.

A Numeric value, maximum growth. If A is a vector, only the first entry is used.

label Character string, condition label If label is a vector, only the first entry is used.

read_data 113

Value

A list containing simulated data for three tests (e.g., ’organisms’):

time numeric matrix of size dxt, each row represent the time points for which growth
data is simulated and stored in each row of data.

data data.frame of size dx(3+t), 1. column, character as an experiment identifier;
2. column: Replicate number; 3. column: concentration of substrate of a com-
pound under which the experiment is obtained; 4.-(3+t). column: growth data
corresponding to the time points in time.

References

Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010).
grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI:
10.18637/jss.v033.i07

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',

suppress.messages = TRUE))

Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,

control = growth.control(dr.parameter = 'mu.spline'))

Inspect results
summary(drFit)
plot(drFit)

read_data Read growth and fluorescence data in table format

114 read_data

Description

read_data reads table files or R dataframe objects containing growth and fluorescence data and
extracts datasets, sample and group information, performs blank correction, applies data transfor-
mation (calibration), and combines technical replicates.

Usage

read_data(
data.growth = NA,
data.fl = NA,
data.fl2 = NA,
data.format = "col",
csvsep = ";",
dec = ".",
csvsep.fl = ";",
dec.fl = ".",
csvsep.fl2 = ";",
dec.fl2 = ".",
sheet.growth = 1,
sheet.fl = 1,
sheet.fl2 = 1,
fl.normtype = c("growth", "fl2"),
subtract.blank = TRUE,
convert.time = NULL,
calib.growth = NULL,
calib.fl = NULL,
calib.fl2 = NULL

)

Arguments

data.growth An R dataframe object or a table file with extension ’.xlsx’, ’.xls’, ’.csv’, ’.tsv’,
or ’.txt’ containing growth data. The data must be either in the ’QurvE custom
layout’ or in ’tidy’ (long) format. The first three table rows in the ’custom QurvE
layout’ contain:

1. Sample description
2. Replicate number (optional: followed by a letter to indicate technical repli-

cates)
3. Concentration value (optional)

Data in ’tidy’ format requires the following column headers:

1. "Time": time values
2. "Description": sample description
3. "Replicate": replicate number (optional)
4. "Concentration": concentration value (optional)
5. "Values": growth values (e.g., optical density)

read_data 115

data.fl (optional) An R dataframe object or a table file with extension ’.xlsx’, ’.xls’,
’.csv’, ’.tsv’, or ’.txt’ containing fluorescence data. Table layout must mimic
that of data.growth.

data.fl2 (optional) An R dataframe object or a table file with extension ’.xlsx’, ’.xls’,
’.csv’, ’.tsv’, or ’.txt’ containing measurements from a second fluorescence chan-
nel (used only to normalize fluorescence data). Table layout must mimic that
of data.growth.

data.format (Character) "col" for samples in columns, or "row" for samples in rows. Default:
"col"

csvsep (Character) separator used in CSV file storing growth data (ignored for other file
types). Default: ";"

dec (Character) decimal separator used in CSV, TSV or TXT file storing growth
data. Default: "."

csvsep.fl, csvsep.fl2
(Character) separator used in CSV file storing fluorescence data (ignored for
other file types). Default: ";"

dec.fl, dec.fl2 (Character) decimal separator used in CSV, TSV or TXT file storing fluores-
cence data. Default: "."

sheet.growth, sheet.fl, sheet.fl2
(Numeric or Character) Number or name of the sheet with the respective data
type in XLS or XLSX files (optional).

fl.normtype (Character string) Normalize fluorescence values by either diving by 'growth'
or by fluorescence2 values ('fl2').

subtract.blank (Logical) Shall blank values be subtracted from values within the same experi-
ment (TRUE, the default) or not (FALSE).

convert.time (NULL or string) Convert time values with a formula provided in the form 'y =
function(x)'. For example: convert.time = 'y = 24 * x'

calib.growth, calib.fl, calib.fl2
(Character or NULL) Provide an equation in the form ’y = function(x)’ (for exam-
ple: ’y = x^2 * 0.3 - 0.5’) to convert growth and fluorescence values. This can be
used to, e.g., convert plate reader absorbance values into OD600 or fluorescence
intensity into molecule concentrations. Caution!: When utilizing calibration,
carefully consider whether or not blanks were subtracted to determine the cali-
bration before selecting the input subtract.blank = TRUE.

Details

116 read_file

Value

An R list object of class grodata containing a time matrix, dataframes with growth and fluores-
cence data (if applicable), and an experimental design table. The grodata object can be directly
used to run growth.workflow/fl.workflow or, together with a growth.control/fl.control ob-
ject, in growth.gcFit/flFit.

time Matrix with raw time values extracted from data.growth.

growth Dataframe with raw growth values and sample identifiers extracted from data.growth.

fluorescence Dataframe with raw fluorescence values and sample identifiers extracted from
data.fl. NA, if no fluorescence data is provided.

norm.fluorescence

fluorescence data divided by growth values. NA, if no fluorescence data is pro-
vided.

expdesign Experimental design table created from the first three identifier rows/columns
(see argument data.format) (data.growth.

Examples

Load CSV file containing only growth data
data_growth <- read_data(data.growth = system.file("2-FMA_toxicity.csv",

package = "QurvE"), csvsep = ";")

Load XLS file containing both growth and fluorescence data
data_growth_fl <- read_data(

data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),
data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),

csvsep = "\t",
csvsep.fl = "\t")

read_file Call the appropriate function required to read a table file and return
the table as a dataframe object.

Description

read_file automatically detects the format of a file provided as filename and calls the appropriate
function to read the table file.

Usage

read_file(filename, csvsep = ";", dec = ".", sheet = 1)

run_app 117

Arguments

filename (Character) Name or path of the table file to read. Can be of type CSV, XLS,
XLSX, TSV, or TXT.

csvsep (Character) separator used in CSV file (ignored for other file types).

dec (Character) decimal separator used in CSV, TSV and TXT files.

sheet (Numeric or Character) Number or name of a sheet in XLS or XLSX files (op-
tional). Default: ";"

Value

A dataframe object with headers in the first row.

Examples

input <- read_file(filename = system.file("2-FMA_toxicity.csv", package = "QurvE"), csvsep = ";")

run_app Run Shiny QurvE App

Description

Run Shiny QurvE App

Usage

run_app()

Value

Launches a browser with the shiny app

Examples

if(interactive()){
Run the app
run_app()
}

118 summary.drFit

summary.drBootSpline Generic summary function for drBootSpline objects

Description

Generic summary function for drBootSpline objects

Usage

S3 method for class 'drBootSpline'
summary(object, ...)

Arguments

object object of class drBootSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with statistical parameters extracted from the dose-response bootstrapping analysis.

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+stats::rnorm(19)/50, 0)

TestRun <- growth.drBootSpline(conc, response, drID = 'test',
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8, nboot.dr = 50))

print(summary(TestRun))

summary.drFit Generic summary function for drFit objects

Description

Generic summary function for drFit objects

Usage

S3 method for class 'drFit'
summary(object, ...)

summary.drFitfl 119

Arguments

object object of class drFit

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters for all samples extracted from the dose-response analysis.

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',

suppress.messages = TRUE))

Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,

control = growth.control(dr.parameter = 'mu.spline'))

Inspect results
summary(drFit)

summary.drFitfl Generic summary function for drFitfl objects

Description

Generic summary function for drFitfl objects

Usage

S3 method for class 'drFitfl'
summary(object, ...)

120 summary.drFitFLModel

Arguments

object object of class drFitfl

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters for all samples extracted from a dose-response analysis.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Define fit controls
control <- fl.control(fit.opt = 's',

x_type = 'time', norm_fl = TRUE,
dr.parameter = 'max_slope.spline',
dr.method = 'model',
suppress.messages = TRUE)

Run curve fitting workflow
res <- flFit(fl_data = input$norm.fluorescence,

time = input$time,
parallelize = FALSE,
control = control)

Perform dose-response analysis with biosensor model
drFitfl <- fl.drFit(flTable = res$flTable, control = control)

summary(drFitfl)

summary.drFitFLModel Generic summary function for drFitFLModel objects

Description

Generic summary function for drFitFLModel objects

Usage

S3 method for class 'drFitFLModel'
summary(object, ...)

summary.drFitModel 121

Arguments

object object of class drFitModel

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with biosensor response parameters.

Examples

Create concentration values via a serial dilution
conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)

Simulate response values via biosensor equation
response <- biosensor.eq(conc, y.min = 110, y.max = 6000, K = 0.5, n = 2) +

0.01*6000*rnorm(10)

Perform fit
TestRun <- fl.drFitModel(conc, response, drID = 'test', control = fl.control())

print(summary(TestRun))

summary.drFitModel Generic summary function for drFitModel objects

Description

Generic summary function for drFitModel objects

Usage

S3 method for class 'drFitModel'
summary(object, ...)

Arguments

object object of class drFitModel

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from the dose-response analysis of a single sample.

122 summary.drFitSpline

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+rnorm(19)/50, 0)

TestRun <- growth.drFitModel(conc, response, drID = 'test')

print(summary(TestRun))

summary.drFitSpline Generic summary function for drFitSpline objects

Description

Generic summary function for drFitSpline objects

Usage

S3 method for class 'drFitSpline'
summary(object, ...)

Arguments

object object of class drFitSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from the dose-response analysis of a single sample.

Examples

conc <- c(0, rev(unlist(lapply(1:18, function(x) 10*(2/3)^x))),10)
response <- c(1/(1+exp(-0.7*(4-conc[-20])))+rnorm(19)/50, 0)

TestRun <- growth.drFitSpline(conc, response, drID = 'test',
control = growth.control(log.x.dr = TRUE, smooth.dr = 0.8))

print(summary(TestRun))

summary.flBootSpline 123

summary.flBootSpline Generic summary function for flBootSpline objects

Description

Generic summary function for flBootSpline objects

Usage

S3 method for class 'flBootSpline'
summary(object, ...)

Arguments

object object of class flBootSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with statistical parameters extracted from a dose-response bootstrapping analysis.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flBootSpline(time = time,

fl_data = data,
ID = 'TestFit',
control = fl.control(fit.opt = 's', x_type = 'time',
nboot.fl = 50))

summary(TestFit)

124 summary.flFit

summary.flFit Generic summary function for flFit objects

Description

Generic summary function for flFit objects

Usage

S3 method for class 'flFit'
summary(object, ...)

Arguments

object object of class flFit

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from all fits of a workflow.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run curve fitting workflow
res <- flFit(fl_data = input$norm.fluorescence,

time = input$time,
parallelize = FALSE,
control = fl.control(fit.opt = 's', suppress.messages = TRUE,
x_type = 'time', norm_fl = TRUE, nboot.fl = 20))

summary(res)

summary.flFitLinear 125

summary.flFitLinear Generic summary function for flFitLinear objects

Description

Generic summary function for flFitLinear objects

Usage

S3 method for class 'flFitLinear'
summary(object, ...)

Arguments

object object of class flFitLinear

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from a linear fit.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitLinear(time = time,

fl_data = data,
ID = 'TestFit',
control = fl.control(fit.opt = 'l', x_type = 'time',
lin.R2 = 0.95, lin.RSD = 0.1,
lin.h = 20))

summary(TestFit)

126 summary.flFitSpline

summary.flFitSpline Generic summary function for flFitSpline objects

Description

Generic summary function for flFitSpline objects

Usage

S3 method for class 'flFitSpline'
summary(object, ...)

Arguments

object object of class flFitSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from a nonparametric fit.

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Extract time and normalized fluorescence data for single sample
time <- input$time[4,]
data <- input$norm.fluorescence[4,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- flFitSpline(time = time,

fl_data = data,
ID = 'TestFit',
control = fl.control(fit.opt = 's', x_type = 'time'))

summary(TestFit)

summary.gcBootSpline 127

summary.gcBootSpline Generic summary function for gcBootSpline objects

Description

Generic summary function for gcBootSpline objects

Usage

S3 method for class 'gcBootSpline'
summary(object, ...)

Arguments

object object of class gcBootSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with statistical parameters extracted from the spline fit bootstrapping computation.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Introduce some noise into the measurements
data <- data + stats::runif(97, -0.01, 0.09)

Perform bootstrapping spline fit
TestFit <- growth.gcBootSpline(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 's', nboot.gc = 50))

summary(TestFit)

128 summary.gcFit

summary.gcFit Generic summary function for gcFit objects

Description

Generic summary function for gcFit objects

Usage

S3 method for class 'gcFit'
summary(object, ...)

Arguments

object object of class gcFit

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from all fits of a workflow.

Examples

Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')

rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)

Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,

data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',

suppress.messages = TRUE,
nboot.gc = 20))

summary(gcFit)

summary.gcFitLinear 129

summary.gcFitLinear Generic summary function for gcFitLinear objects

Description

Generic summary function for gcFitLinear objects

Usage

S3 method for class 'gcFitLinear'
summary(object, ...)

Arguments

object object of class gcFitLinear

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from the linear fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- growth.gcFitLinear(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 'l'))

summary(TestFit)

summary.gcFitModel Generic summary function for gcFitModel objects

Description

Generic summary function for gcFitModel objects

130 summary.gcFitSpline

Usage

S3 method for class 'gcFitModel'
summary(object, ...)

Arguments

object object of class gcFitModel

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

Value

A dataframe with parameters extracted from the growth model fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform parametric fit
TestFit <- growth.gcFitModel(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 'm'))

summary(TestFit)

summary.gcFitSpline Generic summary function for gcFitSpline objects

Description

Generic summary function for gcFitSpline objects

Usage

S3 method for class 'gcFitSpline'
summary(object, ...)

Arguments

object object of class gcFitSpline

... Additional arguments. This has currently no effect and is only meant to fulfill
the requirements of a generic function.

table_group_fluorescence_linear 131

Value

A dataframe with parameters extracted from the nonparametric fit.

Examples

Create random growth dataset
rnd.dataset <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')

Extract time and growth data for single sample
time <- rnd.dataset$time[1,]
data <- rnd.dataset$data[1,-(1:3)] # Remove identifier columns

Perform linear fit
TestFit <- growth.gcFitSpline(time, data, gcID = 'TestFit',

control = growth.control(fit.opt = 's'))

summary(TestFit)

table_group_fluorescence_linear

Generate a grouped results table for linear fits with average and stan-
dard deviations

Description

Generate a grouped results table for linear fits with average and standard deviations

Usage

table_group_fluorescence_linear(flTable, html = FALSE)

Arguments

flTable An object of class flTable

html (Logical) Should column headers contain html formatting?

Value

A data frame with grouped linear fit results. Empty cells indicate that no reliable fit could be
determined.

132 table_group_fluorescence_spline

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = "l",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
suppress.messages = TRUE,
parallelize = FALSE)

table_group_fluorescence_linear(res$flFit$flTable)

with HTML formatting
DT::datatable(table_group_fluorescence_linear(res$flFit$flTable, html = TRUE),

escape = FALSE) # Do not escape HTML entities

table_group_fluorescence_spline

Generate a grouped results table for spline fits with average and stan-
dard deviations

Description

Generate a grouped results table for spline fits with average and standard deviations

Usage

table_group_fluorescence_spline(flTable, html = FALSE)

Arguments

flTable An object of class flTable

html (Logical) Should column headers contain html formatting?

Value

A data frame with grouped spline fit results. Empty cells indicate that no reliable fit could be
determined.

table_group_growth_linear 133

Examples

load example dataset
input <- read_data(data.growth = system.file("lac_promoters_growth.txt", package = "QurvE"),

data.fl = system.file("lac_promoters_fluorescence.txt", package = "QurvE"),
csvsep = "\t",
csvsep.fl = "\t")

Run workflow
res <- fl.workflow(grodata = input, ec50 = FALSE, fit.opt = "s",

x_type = "time", norm_fl = TRUE,
dr.parameter = "max_slope.spline",
suppress.messages = TRUE,
parallelize = FALSE)

table_group_fluorescence_spline(res$flFit$flTable)

with HTML formatting
DT::datatable(table_group_fluorescence_spline(res$flFit$flTable, html = TRUE),

escape = FALSE) # Do not escape HTML entities

table_group_growth_linear

Generate a grouped results table for linear fits with average and stan-
dard deviations

Description

Generate a grouped results table for linear fits with average and standard deviations

Usage

table_group_growth_linear(gcTable, html = FALSE)

Arguments

gcTable An object of class gcTable

html (Logical) Should column headers contain html formatting?

Value

A data frame with grouped linear fit results. Empty cells indicate that no reliable fit could be
determined.

134 table_group_growth_model

Examples

Create random growth data set
rnd.data <- rdm.data(d = 30, mu = 0.6, A = 4.5, label = "Test2")

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = "l",
ec50 = FALSE,
export.res = FALSE,
parallelize = FALSE,
suppress.messages = TRUE)

table_group_growth_linear(res$gcFit$gcTable)

with HTML formatting
DT::datatable(table_group_growth_linear(res$gcFit$gcTable, html = TRUE),

escape = FALSE) # Do not escape HTML entities

table_group_growth_model

Generate a grouped results table for parametric fits with average and
standard deviations

Description

Generate a grouped results table for parametric fits with average and standard deviations

Usage

table_group_growth_model(gcTable, html = FALSE)

Arguments

gcTable An object of class gcTable

html (Logical) Should column headers contain html formatting?

Value

A data frame with grouped model fit results. Empty cells indicate that no reliable fit could be
determined.

table_group_growth_spline 135

Examples

Create random growth data set
rnd.data <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = "m",
ec50 = FALSE,
export.res = FALSE,
parallelize = FALSE,
suppress.messages = TRUE)

table_group_growth_model(res$gcFit$gcTable)

with HTML formatting
DT::datatable(table_group_growth_model(res$gcFit$gcTable, html = TRUE),

escape = FALSE) # Do not escape HTML entities

table_group_growth_spline

Generate a grouped results table for spline fits with average and stan-
dard deviations

Description

Generate a grouped results table for spline fits with average and standard deviations

Usage

table_group_growth_spline(gcTable, html = FALSE)

Arguments

gcTable An object of class gcTable

html (Logical) Should column headers contain html formatting?

Value

A data frame with grouped spline fit results. Empty cells indicate that no reliable fit could be
determined.

136 zipFastener

Examples

Create random growth data set
rnd.data <- rdm.data(d = 35, mu = 0.8, A = 5, label = "Test1")

Run growth curve analysis workflow
res <- growth.workflow(time = rnd.data$time,

data = rnd.data$data,
fit.opt = "s",
ec50 = FALSE,
export.res = FALSE,
parallelize = FALSE,
suppress.messages = TRUE)

table_group_growth_spline(res$gcFit$gcTable)

with HTML formatting
DT::datatable(table_group_growth_spline(res$gcFit$gcTable, html = TRUE),

escape = FALSE) # Do not escape HTML entities

zipFastener Combine two dataframes like a zip-fastener

Description

Combine rows or columns of two dataframes in an alternating manner

Usage

zipFastener(df1, df2, along = 2)

Arguments

df1 A first dataframe.

df2 A second dataframe with the same dimensions as df1.

along 1 to alternate rows or 2 to alternate columns.

Value

A dataframe with combined rows (or columns) of df1 and df2.

Author(s)

Mark Heckmann

zipFastener 137

Examples

data frames equal dimensions
df1 <- plyr::rdply(3, rep('o',4))[,-1]
df2 <- plyr::rdply(3, rep('X',4))[,-1]

zipFastener(df1, df2)
zipFastener(df1, df2, 2)
zipFastener(df1, df2, 1)

data frames unequal in no. of rows
df1 <- plyr::rdply(10, rep('o',4))[,-1]
zipFastener(df1, df2, 1)
zipFastener(df2, df1, 1)

data frames unequal in no. of columns
df2 <- plyr::rdply(10, rep('X',3))[,-1]
zipFastener(df1, df2)
zipFastener(df2, df1, 2)

Index

∗ dose-response analysis functions
flFit, 21
growth.drBootSpline, 32
growth.drFitSpline, 36
growth.gcFit, 39
growth.workflow, 50

∗ fluorescence fitting functions
flBootSpline, 19
flFit, 21
flFitSpline, 25

∗ growth fitting functions
growth.drFit, 33
growth.gcBootSpline, 38
growth.gcFit, 39
growth.gcFitLinear, 41
growth.gcFitModel, 45
growth.gcFitSpline, 46
growth.workflow, 50

∗ reports
growth.report, 49

∗ workflows
flFit, 21
growth.gcFit, 39
growth.workflow, 50

AIC, 46

biosensor.eq, 4

export_RData, 5
export_Table, 6

FALSE, 60, 115
fl.control, 6, 10–12, 15, 19–21, 24, 26
fl.drFit, 8, 10, 10, 17, 19, 22, 69, 77
fl.drFitModel, 11, 11, 70
fl.report, 13, 19
fl.workflow, 6, 13, 15, 77, 79, 84, 87, 88,

101, 116
flBootSpline, 9, 18, 19, 22, 28, 82

flFit, 10, 19, 20, 21, 28, 33, 37, 41, 55, 79,
84, 88, 116

flFitLinear, 8, 17, 22, 23, 26, 84
flFitSpline, 8, 17, 20, 22, 25, 26, 90

growth.control, 28, 32, 33, 36, 38, 40, 42,
45, 47, 50, 55

growth.drBootSpline, 22, 32, 33, 34, 37, 41,
55, 63

growth.drFit, 19, 31, 33, 33, 34, 39–41, 44,
46, 48, 54, 55, 63, 65, 66, 68, 77

growth.drFitModel, 33, 35, 72
growth.drFitSpline, 22, 32–34, 36, 41, 55,

75
growth.gcBootSpline, 30, 35, 38, 40, 41, 44,

46, 48, 53, 55, 92
growth.gcFit, 22, 33, 35, 37, 39, 39, 44, 46,

48, 55, 94, 96, 110, 116
growth.gcFitLinear, 30, 35, 39–41, 41, 42,

46, 48, 53, 55, 94
growth.gcFitModel, 35, 39–41, 44, 45, 48,

55, 96
growth.gcFitSpline, 30, 35, 38–41, 44, 46,

46, 53, 55, 98
growth.report, 49, 55
growth.workflow, 22, 28, 33, 35, 37, 39, 41,

44, 46, 48, 49, 50, 59, 60, 63, 77, 94,
96, 101, 107, 110, 112, 116

inflect, 56

lm, 24, 43
lm_parms, 57
lm_window (lm_parms), 57
low.integrate, 58
lowess, 37

nls, 46
nlsLM, 4, 12

parse_data, 6, 16, 21, 28, 40, 52, 59, 104

138

INDEX 139

parse_Gen5Gen6, 61
parse_victornivo, 62
parse_victorx3, 62
plot.dr_parameter, 76
plot.drBootSpline, 32, 63, 75
plot.drFit, 64
plot.drFitfl, 67
plot.drFitFLModel, 67, 69
plot.drFitModel, 12, 71
plot.drFitSpline, 37, 74
plot.dual, 78
plot.flBootSpline, 81, 90
plot.flFit (plot.flFitRes), 85
plot.flFitLinear, 83
plot.flFitRes, 85, 103
plot.flFitSpline, 27, 89
plot.gcBootSpline, 20, 38, 92, 98
plot.gcFitLinear, 94
plot.gcFitModel, 45, 95
plot.gcFitSpline, 24, 43, 47, 97
plot.grid, 100
plot.grodata, 103
plot.grofit, 103, 106
plot.parameter, 109

rdm.data, 112
read_data, 6, 16, 21, 28, 40, 52, 60, 79, 104,

113
read_file, 61, 62, 116
run_app, 117

smooth.spline, 8, 9, 17, 18, 26, 27, 30, 31,
34, 37, 48, 58

summary.drBootSpline, 118
summary.drFit, 118
summary.drFitfl, 119
summary.drFitFLModel, 120
summary.drFitModel, 121
summary.drFitSpline, 122
summary.flBootSpline, 123
summary.flFit, 124
summary.flFitLinear, 125
summary.flFitSpline, 126
summary.gcBootSpline, 127
summary.gcFit, 128
summary.gcFitLinear, 129
summary.gcFitModel, 129
summary.gcFitSpline, 130

table_group_fluorescence_linear, 131
table_group_fluorescence_spline, 132
table_group_growth_linear, 133
table_group_growth_model, 134
table_group_growth_spline, 135
TRUE, 60, 115

zipFastener, 136

	biosensor.eq
	export_RData
	export_Table
	fl.control
	fl.drFit
	fl.drFitModel
	fl.report
	fl.workflow
	flBootSpline
	flFit
	flFitLinear
	flFitSpline
	growth.control
	growth.drBootSpline
	growth.drFit
	growth.drFitModel
	growth.drFitSpline
	growth.gcBootSpline
	growth.gcFit
	growth.gcFitLinear
	growth.gcFitModel
	growth.gcFitSpline
	growth.report
	growth.workflow
	inflect
	lm_parms
	low.integrate
	parse_data
	parse_Gen5Gen6
	parse_victornivo
	parse_victorx3
	plot.drBootSpline
	plot.drFit
	plot.drFitfl
	plot.drFitFLModel
	plot.drFitModel
	plot.drFitSpline
	plot.dr_parameter
	plot.dual
	plot.flBootSpline
	plot.flFitLinear
	plot.flFitRes
	plot.flFitSpline
	plot.gcBootSpline
	plot.gcFitLinear
	plot.gcFitModel
	plot.gcFitSpline
	plot.grid
	plot.grodata
	plot.grofit
	plot.parameter
	rdm.data
	read_data
	read_file
	run_app
	summary.drBootSpline
	summary.drFit
	summary.drFitfl
	summary.drFitFLModel
	summary.drFitModel
	summary.drFitSpline
	summary.flBootSpline
	summary.flFit
	summary.flFitLinear
	summary.flFitSpline
	summary.gcBootSpline
	summary.gcFit
	summary.gcFitLinear
	summary.gcFitModel
	summary.gcFitSpline
	table_group_fluorescence_linear
	table_group_fluorescence_spline
	table_group_growth_linear
	table_group_growth_model
	table_group_growth_spline
	zipFastener
	Index

