
Package ‘OpenRepGrid’
July 8, 2025

License GPL (>= 2)

Title Tools to Analyze Repertory Grid Data

LazyData yes

Type Package

LazyLoad yes

Description Analyze repertory grids, a qualitative-quantitative
data collection technique devised by George A. Kelly in the 1950s. Today, grids are used across
various domains ranging from clinical psychology to marketing. The package contains functions
to quantitatively analyze and visualize repertory grid data (e.g. 'Fransella', 'Bell', & 'Bannister',
2004, ISBN: 978-0-470-09080-0). The package is part of the The package is part of the
<https://openrepgrid.org/> project.

Version 0.1.18

Date 2025-07-08

Encoding UTF-8

URL https://github.com/markheckmann/OpenRepGrid

Imports methods, graphics, grid, utils, stats, grDevices, crayon,
plyr, stringr, abind, colorspace, psych, XML, pvclust,
openxlsx, tidyr, dplyr, scales, igraph

Collate 'bertin.r' 'calc.r' 'data-openrepgrid.r' 'dev-functions.r'
'distance.R' 'double-entry.R' 'export.r' 'globals.R' 'gmMain.r'
'gridlist.R' 'import.r' 'measures.r' 'onair.r' 'openrepgrid.r'
'perturbate.R' 'preferred_poles.R' 'repgrid.r'
'repgrid-basicops.r' 'repgrid-constructs.r'
'repgrid-elements.r' 'repgrid-output.r' 'repgrid-plots.r'
'repgrid-ratings.r' 'resampling.R' 'rgl-3d.r' 'settings.r'
'utils-import.r' 'utils.r' 'zzz.r'

RoxygenNote 7.3.2

NeedsCompilation no

Suggests rgl, testthat (>= 2.1.0), covr, styler, vdiffr, knitr,
rmarkdown

1

https://openrepgrid.org/
https://github.com/markheckmann/OpenRepGrid

2 Contents

Author Mark Heckmann [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-0736-7417>),

Alejandro García Gutiérrez [ctb],
Diego Vitali [ctb]

Maintainer Mark Heckmann <heckmann.mark@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-07-08 15:10:02 UTC

Contents
+,repgrid,repgrid-method . 4
alignByIdeal . 5
alignByLoadings . 6
alignByPreferredPole . 7
bertin . 8
bertinCluster . 10
biplot2d . 13
biplot3d . 19
biplotEsa2d . 22
biplotEsa3d . 23
biplotEsaPseudo3d . 24
biplotPseudo3d . 25
biplotSimple . 28
biplotSlater2d . 30
biplotSlater3d . 31
biplotSlaterPseudo3d . 32
cbind.repgrid . 33
center . 34
cluster . 35
clusterBoot . 37
constructCor . 39
constructD . 40
constructPca . 41
constructPcaLoadings . 43
constructRmsCor . 43
constructs . 44
data-bell2010 . 46
data-bellmcgorry1992 . 46
data-boeker . 47
data-fbb2003 . 47
data-feixas2004 . 48
data-leach2001 . 48
data-mackay1992 . 49
data-raeithel . 49
data-slater1977a . 50

https://orcid.org/0000-0002-0736-7417

Contents 3

data-slater1977b . 50
df_construct_columns . 51
df_element_columns . 51
df_long . 52
distance . 53
distanceHartmann . 54
distanceNormalized . 57
distanceSlater . 59
elementCor . 61
elementRmsCor . 62
elements . 63
gridlist . 64
grids_leave_n_out . 65
home . 65
importDataframe . 66
importExcel . 68
importGridcor . 70
importGridstat . 71
importGridsuite . 73
importScivesco . 74
importTxt . 75
indexBias . 78
indexBieri . 79
indexConflict1 . 80
indexConflict2 . 81
indexConflict3 . 83
indexDDI . 85
indexDilemma . 87
indexDilemmatic . 91
indexIntensity . 92
indexPolarization . 94
indexPvaff . 95
indexSelfConstruction . 96
indexUncertainty . 97
indexVariability . 98
is.repgrid . 99
midpoint . 99
normalize . 100
OpenRepGrid . 101
OpenRepGrid-overview . 102
permuteConstructs . 106
perturbate . 107
preferredPoles . 107
preferredPolesByIdeal . 108
randomGrid . 109
randomGrids . 110
ratings . 111
reorder.repgrid . 112

4 +,repgrid,repgrid-method

reorder2d . 113
saveAsExcel . 114
saveAsTxt . 116
saveAsWorksheet . 117
setScale . 118
settings . 119
settingsLoad . 120
settingsSave . 120
show,repgrid-method . 121
statsElements . 121
[,repgrid-method . 123
[<-,repgrid-method . 123

Index 125

+,repgrid,repgrid-method

Concatenate repgrid objects.

Description

Simple concatenation of repgrid objects or list containing repgrid objects using the ’+’ operator.

Usage

S4 method for signature 'repgrid,repgrid'
e1 + e2

S4 method for signature 'list,repgrid'
e1 + e2

S4 method for signature 'repgrid,list'
e1 + e2

S4 method for signature 'repgrid,repgrid'
e1 / e2

Arguments

e1, e2 A repgrid object.

Examples

join constructs
x <- bell2010
x + x
x + list(x, x)
list(x, x) + x

alignByIdeal 5

alignByIdeal Align constructs using the ideal element to gain pole preferences.

Description

The direction of the constructs in a grid is arbitrary and a reflection of a scale does not affect the
information contained in the grid. Nonetheless, the direction of a scale has an effect on inter-
element correlations (Mackay, 1992) and on the spatial representation and clustering of the grid
(Bell, 2010). Hence, it is desirable to follow a protocol to align constructs that will render unique
results. A common approach is to align constructs by pole preference, i. e. aligning all positive and
negative poles. This can e. g. be achieved using swapPoles(). If an ideal element is present, this
element can be used to identify the positive and negative pole. The function alignByIdeal will
align the constructs accordingly. Note that this approach does not always yield definite results as
sometimes ratings do not show a clear preference for one pole (Winter, Bell & Watson, 2010). If a
preference cannot be determined definitely, the construct direction remains unchanged (a warning
is issued in that case).

Usage

alignByIdeal(x, ideal, high = TRUE)

Arguments

x repgrid object

ideal Number of the element that is used for alignment (the ideal).

high Logical. Whether to align the constructs so the ideal will have high ratings on
the constructs (i.e. TRUE, default) or low ratings (FALSE). High scores will lead
to the preference pole on the right side, low scores will align the preference pole
on the left side.

Value

repgrid object with aligned constructs.

References

Bell, R. C. (2010). A note on aligning constructs. Personal Construct Theory & Practice, 7, 42-48.

Mackay, N. (1992). Identification, Reflection, and Correlation: Problems in the bases of repertory
grid measures. International Journal of Personal Construct Psychology, 5(1), 57-75.

Winter, D. A., Bell, R. C., & Watson, S. (2010). Midpoint ratings on personal constructs: Constric-
tion or the middle way? Journal of Constructivist Psychology, 23(4), 337-356.

See Also

Aligning constructs alignByLoadings(), alignByPreferredPole()

6 alignByLoadings

Examples

feixas2004 # original grid
alignByIdeal(feixas2004, 13) # aligned with preference pole on the right

raeithel # original grid
alignByIdeal(raeithel, 3, high = FALSE) # aligned with preference pole on the left

alignByLoadings Align constructs by loadings on first principal component.

Description

In case a construct loads negatively on the first principal component, the function alignByLoadings()
will reverse it so that all constructs have positive loadings on the first principal component (see detail
section for more).

Usage

alignByLoadings(x, trim = 20, index = TRUE)

Arguments

x repgrid object.
trim The number of characters a construct is trimmed to (default is 10). If NA no

trimming is done. Trimming simply saves space when displaying the output.
index Whether to print the number of the construct (e.g. for correlation matrices). The

default is TRUE.

Details

The direction of the constructs in a grid is arbitrary and a reflection of a scale does not affect the
information contained in the grid. Nonetheless, the direction of a scale has an effect on inter-
element correlations (Mackay, 1992) and on the spatial representation and clustering of the grid
(Bell, 2010). Hence, it is desirable to follow a protocol to align constructs that will render unique
results. A common approach is to align constructs by pole preference, but this information is not
always accessible. Bell (2010) proposed another solution for the problem of construct alignment.
As a unique protocol he suggests to align constructs in a way so they all have positive loadings on
the first component of a grid PCA.

Value

An object of class alignByLoadings containing a list of calculations with the following entries:

• cor.before: Construct correlation matrix before reversal
• loadings.before: Loadings on PCs before reversal
• reversed: Constructs that have been reversed
• cor.after: Construct correlation matrix after reversal
• loadings.after: Loadings on PCs after reversal

alignByPreferredPole 7

Note

Bell (2010) proposed a solution for the problem of construct alignment. As construct reversal has an
effect on element correlation and thus on any measure that based on element correlation (Mackay,
1992), it is desirable to have a standard method for construct alignment independently from its
semantics (preferred pole etc.). Bell (2010) proposes to align constructs in a way so they all have
positive loadings on the first component of a grid PCA.

References

Bell, R. C. (2010). A note on aligning constructs. Personal Construct Theory & Practice, 7, 42-48.

Mackay, N. (1992). Identification, Reflection, and Correlation: Problems in the bases of repertory
grid measures. International Journal of Personal Construct Psychology, 5(1), 57-75.

See Also

Aligning constructs alignByIdeal(), alignByPreferredPole()

Examples

reproduction of the example in the Bell (2010)
constructs aligned by loadings on PC 1
bell2010
alignByLoadings(bell2010)

save results
a <- alignByLoadings(bell2010)

modify printing of resukts
print(a, digits = 5)

access results for further processing
names(a)
a$cor.before
a$loadings.before
a$reversed
a$cor.after
a$loadings.after

alignByPreferredPole Align constructs by preferred pole

Description

The direction of the constructs in a grid is arbitrary. While their reversal (see reverse()) does
not affect the information contained in the grid, it is often useful to align constructs for easier
interpretation. One way of alignment is placing all positive poles on the same side. Note that this
this is only possible if the preferred poles are defined (see preferredPoles()).

8 bertin

Usage

alignByPreferredPole(x, side_positive = "right")

Arguments

x A repgrid object.

side_positive Align all positoive poles on ’

Value

A repgrid object with aligned constructs.

See Also

Aligning constructs alignByIdeal(), alignByLoadings()

Examples

x <- preferredPolesByIdeal(boeker, "ideal self")
x <- alignByPreferredPole(x)
x

bertin Make Bertin display of grid data.

Description

One of the most popular ways of displaying grid data has been adopted from Bertin’s (1974) graph-
ical proposals, which have had an immense influence onto data visualization. One of the most
appealing ideas presented by Bertin is the concept of the reorderable matrix. It is comprised of
graphical displays for each cell, allowing to identify structures by eye-balling reordered versions
of the data matrix (see Bertin, 1974). In the context of repertory grids, the display is made up of a
simple colored rectangle where the color denotes the corresponding score. Bright values correspond
to low, dark to high scores. For an example of how to analyze a Bertin display see e.g. Dick (2000)
and Raeithel (1998).

Usage

bertin(
x,
colors = c("white", "black"),
showvalues = TRUE,
xlim = c(0.2, 0.8),
ylim = c(0, 0.6),
margins = c(0, 1, 1),
cex.elements = 0.7,
cex.constructs = 0.7,

bertin 9

cex.text = 0.6,
col.text = NA,
border = "white",
lheight = 0.75,
id = c(TRUE, TRUE),
col.e = "black",
col.c.left = "black",
col.c.right = "black",
col.e.lines = "black",
cc = 0,
cr = 0,
cc.old = 0,
cr.old = 0,
col.mark.fill = "#FCF5A4",
print = TRUE,
...

)

Arguments

x repgrid object.

colors Vector. Two or more colors defining the color ramp for the bertin (default
c("white", "black")).

showvalues Logical. Whether scores are shown in bertin

xlim Vector. Left and right limits inner bertin (default c(.2, .8)).

ylim Vector. Lower and upper limits of inner bertin default(c(.0, .6)).

margins Vector of length three (default margins=c(0,1,1)). 1st element denotes the
left, 2nd the upper and 3rd the right margin in npc coordinates (i.e. 0 to zero).

cex.elements Numeric. Text size of element labels (default .7).

cex.constructs Numeric. Text size of construct labels (default .7).

cex.text Numeric. Text size of scores in bertin cells (default .7).

col.text Color of scores in bertin (default NA). By default the color of the text is chosen
according to the background color. If the background ist bright the text will be
black and vice versa. When a color is specified the color is set independent of
background.

border Border color of the bertin cells (default white).

lheight Line height for constructs.

id Logical. Whether to print id number for constructs and elements respectively
(default c(T,T)).

col.e Color of elements.
col.c.left, col.c.right

Color of left and right conctructs poles.

col.e.lines Color of vertical elements lines.

cc Numeric. Current column to mark.

10 bertinCluster

cr Numeric. Current row to mark.

cc.old Numeric. Column to unmark.

cr.old Numeric. Row to unmark.

col.mark.fill Color of marked row or column (default "#FCF5A4").

print Print whole bertin. If FALSE only current and old row and column are printed.

... Optional arguments to be passed on to bertinBase.

Value

NULL just for the side effects, i.e. printing.

References

Bertin, J. (1974). Graphische Semiologie: Diagramme, Netze, Karten. Berlin, New York: de
Gruyter.

Dick, M. (2000). The Use of Narrative Grid Interviews in Psychological Mobility Research. Forum
Qualitative Sozialforschung / Forum: Qualitative Social Research, 1(2).

Raeithel, A. (1998). Kooperative Modellproduktion von Professionellen und Klienten - erlauetert
am Beispiel des Repertory Grid. Selbstorganisation, Kooperation, Zeichenprozess: Arbeiten zu
einer kulturwissenschaftlichen, anwendungsbezogenen Psychologie (pp. 209-254). Opladen: West-
deutscher Verlag.

Examples

bertin(feixas2004)
bertin(feixas2004, c("white", "darkblue"))
bertin(feixas2004, showvalues = FALSE)
bertin(feixas2004, border = "grey")
bertin(feixas2004, cex.text = .9)
bertin(feixas2004, id = c(FALSE, FALSE))

bertin(feixas2004, cc = 3, cr = 4)
bertin(feixas2004, cc = 3, cr = 4, col.mark.fill = "#e6e6e6")

bertinCluster Bertin display with corresponding cluster analysis.

Description

Element columns and constructs rows are ordered according to cluster criterion. Various distance
measures as well as cluster methods are supported.

bertinCluster 11

Usage

bertinCluster(
x,
dmethod = c("euclidean", "euclidean"),
cmethod = c("ward.D", "ward.D"),
p = c(2, 2),
align = TRUE,
trim = NA,
type = c("triangle"),
xsegs = c(0, 0.2, 0.7, 0.9, 1),
ysegs = c(0, 0.1, 0.7, 1),
x.off = 0.01,
y.off = 0.01,
cex.axis = 0.6,
col.axis = grey(0.4),
draw.axis = TRUE,
...

)

Arguments

x repgrid object.

dmethod The distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary", or "minkowski". Default is "euclidean".
Any unambiguous substring can be given (e.g. "euc" for "euclidean"). A vec-
tor of length two can be passed if a different distance measure for constructs and
elements is wanted (e.g.c("euclidean", "manhattan")). This will apply eu-
clidean distance to the constructs and manhattan distance to the elements. For
additional information on the different types see ?dist.

cmethod The agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward.D", "ward.D2", "single", "complete", "average",
"mcquitty", "median" or "centroid". Default is "ward.D". A vector of
length two can be passed if a different cluster method for constructs and ele-
ments is wanted (e.g.c("ward.D", "euclidean")). This will apply ward clus-
tering to the constructs and single linkage clustering to the elements. If only one
of either constructs or elements is to be clustered the value NA can be supplied.
E.g. to cluster elements only use c(NA, "ward.D").

p The power of the Minkowski distance, in case "minkowski" is used as argument
for dmethod. p can be a vector of length two if different powers are wanted for
constructs and elements respectively (e.g. c(2,1)).

align Whether the constructs should be aligned before clustering (default is TRUE). If
not, the grid matrix is clustered as is. See Details section in function cluster()
for more information.

trim The number of characters a construct is trimmed to (default is 10). If NA no
trimming is done. Trimming simply saves space when displaying the output.

type Type of dendrogram. Either or "triangle" (default) or "rectangle" form.

12 bertinCluster

xsegs Numeric vector of normal device coordinates (ndc i.e. 0 to 1) to mark the widths
of the regions for the left labels, for the bertin display, for the right labels and
for the vertical dendrogram (i.e. for the constructs).

ysegs Numeric vector of normal device coordinates (ndc i.e. 0 to 1) to mark the heights
of the regions for the horizontal dendrogram (i.e. for the elements), for the bertin
display and for the element names.

x.off Horizontal offset between construct labels and construct dendrogram and (de-
fault is 0.01 in normal device coordinates).

y.off Vertical offset between bertin display and element dendrogram and (default is
0.01 in normal device coordinates).

cex.axis cex for axis labels, default is .6.

col.axis Color for axis and axis labels, default is grey(.4).

draw.axis Whether to draw axis showing the distance metric for the dendrograms (default
is TRUE).

... additional parameters to be passed to function bertin().

Value

A list of two hclust() object, for elements and constructs respectively.

See Also

cluster()

Examples

default is euclidean distance and ward clustering
bertinCluster(bell2010)

applying different distance measures and cluster methods

euclidean distance and single linkage clustering
bertinCluster(bell2010, cmethod = "single")
manhattan distance and single linkage clustering
bertinCluster(bell2010, dmethod = "manhattan", cm = "single")
minkowksi distance with power of 2 = euclidean distance
bertinCluster(bell2010, dm = "mink", p = 2)

using different methods for constructs and elements

ward clustering for constructs, single linkage for elements
bertinCluster(bell2010, cmethod = c("ward.D", "single"))
euclidean distance measure for constructs, manhatten
distance for elements
bertinCluster(bell2010, dmethod = c("euclidean", "man"))
minkowski metric with different powers for constructs and elements
bertinCluster(bell2010, dmethod = "mink", p = c(2, 1))

clustering either constructs or elements only

biplot2d 13

euclidean distance and ward clustering for constructs no
clustering for elements
bertinCluster(bell2010, cmethod = c("ward.D", NA))
euclidean distance and single linkage clustering for elements
no clustering for constructs
bertinCluster(bell2010, cm = c(NA, "single"), align = FALSE)

changing the appearance
different dendrogram type
bertinCluster(bell2010, type = "rectangle")
no axis drawn for dendrogram
bertinCluster(bell2010, draw.axis = FALSE)

passing on arguments to bertin function via ...
grey cell borders in bertin display
bertinCluster(bell2010, border = "grey")
omit printing of grid scores, i.e. colors only
bertinCluster(bell2010, showvalues = FALSE)

changing the layout
making the vertical dendrogram bigger
bertinCluster(bell2010, xsegs = c(0, .2, .5, .7, 1))
making the horizontal dendrogram bigger
bertinCluster(bell2010, ysegs = c(0, .3, .8, 1))

biplot2d Draw a two-dimensional biplot.

Description

The biplot is the central way to create a joint plot of elements and constructs. Depending on the
parameters chosen it contains information on the distances between elements and constructs. Also
the relative values the elements have on a construct can be read off by projection the element onto
the construct vector. A lot of parameters can be changed rendering different types of biplots (ESA,
Slater’s) and different looks (colors, text size). See the example section below to get started.

Usage

biplot2d(
x,
dim = c(1, 2),
map.dim = 3,
center = 1,
normalize = 0,
g = 0,
h = 1 - g,
col.active = NA,
col.passive = NA,

14 biplot2d

e.point.col = "black",
e.point.cex = 0.9,
e.label.col = "black",
e.label.cex = 0.7,
e.color.map = c(0.4, 1),
c.point.col = "black",
c.point.cex = 0,
c.label.col = "black",
c.label.col.left = NULL,
c.label.col.right = NULL,
c.label.cex = 0.7,
c.color.map = c(0.4, 1),
c.points.devangle = 91,
c.labels.devangle = 91,
c.points.show = TRUE,
c.labels.show = TRUE,
e.points.show = TRUE,
e.labels.show = TRUE,
inner.positioning = TRUE,
outer.positioning = TRUE,
c.labels.inside = FALSE,
c.lines = TRUE,
col.c.lines = grey(0.9),
flipaxes = c(FALSE, FALSE),
strokes.x = 0.1,
strokes.y = 0.1,
offsetting = TRUE,
offset.labels = 0,
offset.e = 1,
axis.ext = 0.1,
mai = c(0.2, 1.5, 0.2, 1.5),
rect.margins = c(0.01, 0.01),
srt = 45,
cex.pos = 0.7,
xpd = TRUE,
unity = FALSE,
unity3d = FALSE,
scale.e = 0.9,
zoom = 1,
var.show = TRUE,
var.cex = 0.7,
var.col = grey(0.1),
...

)

Arguments

x repgrid object.

biplot2d 15

dim Dimensions (i.e. principal components) to be used for biplot (default is c(1,2)).

map.dim Third dimension (depth) used to map aesthetic attributes to (default is 3).

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). The default is 1 (row centering).

normalize A numeric value indicating along what direction (rows, columns) to normalize
by standard deviations. 0 = none, 1= rows, 2 = columns (default is 0).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

col.active Columns (elements) that are no supplementary points, i.e. they are used in the
SVD to find principal components. default is to use all elements.

col.passive Columns (elements) that are supplementary points, i.e. they are NOT used in the
SVD but projected into the component space afterwards. They do not determine
the solution. Default is NA, i.e. no elements are set supplementary.

e.point.col Color of the element symbols. The default is "black". Two values can be
entered that will create a color ramp. The values of map.dim are mapped onto
the ramp. If only one color color value is supplied (e.g. "black") no mapping
occurs and all elements will have the same color irrespective of their value on
the map.dim dimension.

e.point.cex Size of the element symbols. The default is .9. Two values can be entered
that will create a size ramp. The values of map.dim are mapped onto the ramp.
If only one color size value is supplied (e.g. .8) no mapping occurs and all
elements will have the same size irrespective of their value on the map.dim di-
mension.

e.label.col Color of the element label. The default is "black". Two values can be entered
that will create a color ramp. The values of map.dim are mapped onto the ramp.
If only one color color value is supplied (e.g. "black") no mapping occurs and
all labels will have the same color irrespective of their value on the map.dim
dimension.

e.label.cex Size of the element labels. The default is .7. Two values can be entered that
will create a size ramp. The values of map.dim are mapped onto the ramp. If
only one color size value is supplied (e.g. .7) no mapping occurs and all labels
will have the same size irrespective of their value on the map.dim dimension.

e.color.map Value range to determine what range of the color ramp defined in e.color will
be used for mapping the colors. Default is c(.4, ,1). Usually not important for
the user.

c.point.col Color of the construct symbols. The default is "black". Two values can be
entered that will create a color ramp. The values of map.dim are mapped onto
the ramp. If only one color color value is supplied (e.g. "black") no mapping
occurs and all construct will have the same color irrespective of their value on
the map.dim dimension.

16 biplot2d

c.point.cex Size of the construct symbols. The default is .8. Two values can be entered
that will create a size ramp. The values of map.dim are mapped onto the ramp.
If only one color size value is supplied (e.g. .8) no mapping occurs and all
construct will have the same size irrespective of their value on the map.dim
dimension.

c.label.col Color of the construct label. The default is "black". Two values can be entered
that will create a color ramp. The values of map.dim are mapped onto the ramp.
If only one color color value is supplied (e.g. "black") no mapping occurs and
all labels will have the same color irrespective of their value on the map.dim
dimension.

c.label.col.left, c.label.col.right
Explicit color values for left and right construct poles. NULL by default. Will
overwrite c.label.col.

c.label.cex Size of the construct labels. The default is .7. Two values can be entered that
will create a size ramp. The values of map.dim are mapped onto the ramp. If
only one color size value is supplied (e.g. .7) no mapping occurs and all labels
will have the same size irrespective of their value on the map.dim dimension.

c.color.map Value range to determine what range of the color ramp defined in c.color will
be used for mapping. Default is c(.4, ,1). Usually not important for the user.

c.points.devangle

The deviation angle from the x-y plane in degrees. These can only be calculated
if a third dimension map.dim is specified. Only the constructs that do not depart
more than the specified degrees from the x-y plane will be printed. This facili-
tates the visual interpretation, as only vectors represented near the current plane
are shown. Set the value to 91 (default) to show all vectors.

c.labels.devangle

The deviation angle from the x-y plane in degrees. These can only be calculated
if a third dimension map.dim is specified. Only the labels of constructs that do
not depart more than the specified degrees from the x-y plane will be printed.
Set the value to 91 (default) to show all construct labels.

c.points.show Whether the constructs are printed (default is TRUE). FALSE will suppress the
printing of the constructs. To only print certain constructs a numeric vector can
be provided (e.g. c(1:10)).

c.labels.show Whether the construct labels are printed (default is TRUE). FALSE will suppress
the printing of the labels. To only print certain construct labels a numeric vector
can be provided (e.g. c(1:10)).

e.points.show Whether the elements are printed (default is TRUE). FALSE will suppress the
printing of the elements. To only print certain elements a numeric vector can
be provided (e.g. c(1:10)).

e.labels.show Whether the element labels are printed (default is TRUE). FALSE will suppress
the printing of the labels. To only print certain element labels a numeric vector
can be provided (e.g. c(1:10)).

inner.positioning

Logical. Whether to calculate positions to minimize overplotting of elements
and construct labels (default isTRUE). Note that the positioning may slow down
the plotting.

biplot2d 17

outer.positioning

Logical. Whether to calculate positions to minimize overplotting of of construct
labels on the outer borders (default isTRUE). Note that the positioning may slow
down the plotting.

c.labels.inside

Logical. Whether to print construct labels next to the points. Can be useful
during inspection of the plot (default FALSE).

c.lines Logical. Whether construct lines from the center of the biplot to the surrounding
box are drawn (default is FALSE).

col.c.lines The color of the construct lines from the center to the borders of the plot (default
is gray(.9)).

flipaxes Logical vector of length two. Whether x and y axes are reversed (default is
c(F,F)).

strokes.x Length of outer strokes in x direction in NDC.

strokes.y Length of outer strokes in y direction in NDC.

offsetting Do offsetting? (TODO)

offset.labels Offsetting parameter for labels (TODO).

offset.e offsetting parameter for elements (TODO).

axis.ext Axis extension factor (default is .1). A bigger value will zoom out the plot.

mai Margins available for plotting the labels in inch (default is c(.2, 1.5, .2,
1.5)).

rect.margins Vector of length two (default is c(.07, .07)). Two values specifying the addi-
tional horizontal and vertical margin around each label.

srt Angle to rotate construct label text. Only used in case offsetting=FALSE.

cex.pos Cex parameter used during positioning of labels if prompted. Does usually not
have to be changed by user.

xpd Logical (default is TRUE). Whether to extend text labels over figure region. Usu-
ally not needed by the user.

unity Scale elements and constructs coordinates to unit scale in 2D (maximum of 1)
so they are printed more neatly (default TRUE).

unity3d Scale elements and constructs coordinates to unit scale in 3D (maximum of 1)
so they are printed more neatly (default TRUE).

scale.e Scaling factor for element vectors. Will cause element points to move a bit more
to the center. (but only if unity or unity3d is TRUE). This argument is for visual
appeal only.

zoom Scaling factor for all vectors. Can be used to zoom the plot in and out (default
1).

var.show Show explained sum-of-squares in biplot? (default TRUE).

var.cex The cex value for the percentages shown in the plot.

var.col The color value of the percentages shown in the plot.

... parameters passed on to come.

18 biplot2d

Details

For the construction of a biplot the grid matrix is first centered and normalized according to the
prompted options.

Next, the matrix is decomposed by singular value decomposition (SVD) into

X = UDV T

The biplot is made up of two matrices
X = GHT

These matrices are construed on the basis of the SVD results.

X̂ = UDgDhV T

Note that the grid matrix values are only recovered and the projection property is only given if
g + h = 1

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

biplot2d(boeker) # biplot of boeker data
Not run:
biplot2d(boeker, c.lines = T) # add construct lines
biplot2d(boeker, center = 2) # with column centering
biplot2d(boeker, center = 4) # midpoint centering
biplot2d(boeker, normalize = 1) # normalization of constructs

biplot2d(boeker, dim = 2:3) # plot 2nd and 3rd dimension
biplot2d(boeker, dim = c(1, 4)) # plot 1st and 4th dimension

biplot2d(boeker, g = 1, h = 1) # assign singular values to con. & elem.
biplot2d(boeker, g = 1, h = 1, center = 1) # row centering (Slater)
biplot2d(boeker, g = 1, h = 1, center = 4) # midpoint centering (ESA)

biplot2d(boeker, e.color = "red", c.color = "blue") # change colors
biplot2d(boeker, c.color = c("white", "darkred")) # mapped onto color range

biplot2d(boeker, unity = T) # scale con. & elem. to equal length
biplot2d(boeker, unity = T, scale.e = .5) # scaling factor for element vectors

biplot2d(boeker, e.labels.show = F) # do not show element labels
biplot2d(boeker, e.labels.show = c(1, 2, 4)) # show labels for elements 1, 2 and 4
biplot2d(boeker, e.points.show = c(1, 2, 4)) # only show elements 1, 2 and 4

biplot3d 19

biplot2d(boeker, c.labels.show = c(1:4)) # show constructs labels 1 to 4
biplot2d(boeker, c.labels.show = c(1:4)) # show constructs labels except 1 to 4

biplot2d(boeker, e.cex.map = 1) # change size of texts for elements
biplot2d(boeker, c.cex.map = 1) # change size of texts for constructs

biplot2d(boeker, g = 1, h = 1, c.labels.inside = T) # constructs inside the plot
biplot2d(boeker,

g = 1, h = 1, c.labels.inside = T, # different margins and elem. color
mai = c(0, 0, 0, 0), e.color = "red"

)

biplot2d(boeker, strokes.x = .3, strokes.y = .05) # change length of strokes

biplot2d(boeker, flipaxes = c(T, F)) # flip x axis
biplot2d(boeker, flipaxes = c(T, T)) # flip x and y axis

biplot2d(boeker, outer.positioning = F) # no positioning of con.-labels

biplot2d(boeker, c.labels.devangle = 20) # only con. within 20 degree angle

End(Not run)

biplot3d Draw grid in rgl (3D device).

Description

The 3D biplot opens an interactive 3D device that can be rotated and zoomed using the mouse. A
3D device facilitates the exploration of grid data as significant proportions of the sum-of-squares
are often represented beyond the first two dimensions. Also, in a lot of cases it may be of interest
to explore the grid space from a certain angle, e.g. to gain an optimal view onto the set of elements
under investigation (e.g. Raeithel, 1998).

Usage

biplot3d(
x,
dim = 1:3,
labels.e = TRUE,
labels.c = TRUE,
lines.c = 2,
lef = 1.3,
center = 1,
normalize = 0,
g = 0,
h = 1,
col.active = NA,

20 biplot3d

col.passive = NA,
c.axis.show = TRUE,
c.sphere.show = FALSE,
c.sphere.col = grey(0.4),
c.cex = 0.6,
c.text.col = grey(0.4),
e.sphere.show = TRUE,
e.labels.show = TRUE,
e.sphere.col = grey(0),
e.cex = 0.6,
e.text.col = grey(0),
alpha.sphere = 0.05,
col.sphere = "black",
unity = FALSE,
unity3d = FALSE,
scale.e = 0.9,
zoom = 1,
...

)

Arguments

x repgrid object.

dim Dimensions to display.

labels.e Logical. whether element labels are displayed.

labels.c Logical. whether construct labels are displayed.

lines.c Numeric. The way lines are drawn through the construct vectors. 0 = no lines,
1 = lines from constructs to outer frame, 2 = lines from the center to outer
frame.

lef Construct lines extension factor

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Default is 1 (row centering).

normalize A numeric value indicating along what direction (rows, columns) to normalize
by standard deviations. 0 = none, 1= rows, 2 = columns (default is 0).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

col.active Columns (elements) that are no supplementary points, i.e. they are used in the
SVD to find principal components. default is to use all elements.

col.passive Columns (elements) that are supplementary points, i.e. they are NOT used in the
SVD but projected into the component space afterwards. They do not determine
the solution. Default is NA, i.e. no elements are set supplementary.

biplot3d 21

c.axis.show Whether the construct axes are shown (default is TRUE). FALSE will suppress the
printing all axes. To only print certain axes, a numeric vector can be provided
(e.g. c(1:10)).

c.sphere.show Whether the construct speheres are shown (default is FALSE). To only print cer-
tain speheres, a numeric vector can be provided (e.g. c(1:10)).

c.sphere.col Color of construct spheres.

c.cex Size of construct text.

c.text.col Color for construct text.

e.sphere.show Whether the elements are printed (default is TRUE). FALSE will suppress the
printing of the elements. To only print certain elements, a numeric vector can be
provided (e.g. c(1:10)).

e.labels.show Whether the element labels are printed (default is TRUE). FALSE will suppress
the printing of the labels. To only print certain element labels, a numeric vector
can be provided (e.g. c(1:10)).

e.sphere.col Color of elements.

e.cex Size of element labels.

e.text.col Color of element labels.

alpha.sphere Numeric. alpha blending of the surrounding sphere (default".05").

col.sphere Color of surrounding sphere (default"black").

unity Scale elements and constructs coordinates to unit scale (maximum of 1) so they
are printed more neatly (default TRUE).

unity3d To come.

scale.e Scaling factor for element vectors. Will cause element points to move a bit more
to the center (but only if unity or unity3d is TRUE). This argument is for visual
appeal only.

zoom Not yet used. Scaling factor for all vectors. Can be used to zoom the plot in and
out (default 1).

... Parameters to be passed on.

References

Raeithel, A. (1998). Kooperative Modellproduktion von Professionellen und Klienten - erlauetert
am Beispiel des Repertory Grid. Selbstorganisation, Kooperation, Zeichenprozess: Arbeiten zu
einer kulturwissenschaftlichen, anwendungsbezogenen Psychologie (pp. 209-254). Opladen: West-
deutscher Verlag.

See Also

Unsophisticated biplot: biplotSimple();
2D biplots: biplot2d(), biplotEsa2d(), biplotSlater2d();
Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();
Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();
Function to set view in 3D: home().

22 biplotEsa2d

Examples

Not run:
biplot3d(boeker)

biplot3d(boeker, e.sphere.show = 1:4)
biplot3d(boeker, e.sphere.show = 1:4, e.labels.show = 1:2)
biplot3d(boeker, c.axis.show = 1:2)

biplot3d(boeker, e.sphere.col = "red", c.text.col = "blue")
biplot3d(boeker, e.cex = 1)
biplot3d(boeker, col.sphere = "red")

biplot3d(boeker, g = 1, h = 1) # INGRID biplot
biplot3d(boeker, g = 1, h = 1, center = 4) # ESA biplot

End(Not run)

biplotEsa2d Plot an eigenstructure analysis (ESA) biplot in 2D.

Description

The ESA is a special type of biplot suggested by Raeithel (e.g. 1998). It uses midpoint centering
as a default. Note that the eigenstructure analysis is just a special case of a biplot that can also be
produced using the biplot2d() function with the arguments center=4, g=1, h=1. Here, only the
arguments that are modified for the ESA biplot are described. To see all the parameters that can be
changed see biplot2d().

Usage

biplotEsa2d(x, center = 4, g = 1, h = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Eigenstructure analysis uses midpoint centering (4).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs. Eigenstructure analysis uses g=1.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements. Eigenstructure analysis uses h=1.

... Additional parameters for be passed to biplot2d().

biplotEsa3d 23

References

Raeithel, A. (1998). Kooperative Modellproduktion von Professionellen und Klienten. Erlaeutert
am Beispiel des Repertory Grid. In A. Raeithel (1998). Selbstorganisation, Kooperation, Zeichen-
prozess. Arbeiten zu einer kulturwissenschaftlichen, anwendungsbezogenen Psychologie (p. 209-
254). Opladen: Westdeutscher Verlag.

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

Not run:
See examples in [biplot2d()] as the same arguments
can used for this function.

End(Not run)

biplotEsa3d Draw the eigenstructure analysis (ESA) biplot in rgl (3D device).

Description

The 3D biplot opens an interactive 3D device that can be rotated and zoomed using the mouse. A
3D device facilitates the exploration of grid data as significant proportions of the sum-of-squares
are often represented beyond the first two dimensions. Also, in a lot of cases it may be of inter-
est to explore the grid space from a certain angle, e.g. to gain an optimal view onto the set of
elements under investigation (e.g. Raeithel, 1998). Note that the eigenstructure analysis just a spe-
cial case of a biplot that can also be produced using the biplot3d() function with the arguments
center=4, g=1, h=1.

Usage

biplotEsa3d(x, center = 1, g = 1, h = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Default is 4 (scale midpoint centering).

24 biplotEsaPseudo3d

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

... Additional arguments to be passed to biplot3d().

See Also

Unsophisticated biplot: biplotSimple();
2D biplots: biplot2d(), biplotEsa2d(), biplotSlater2d();
Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();
Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();
Function to set view in 3D: home().

Examples

Not run:

biplotEsa3d(boeker)
biplotEsa3d(boeker, unity3d = T)

biplotEsa3d(boeker,
e.sphere.col = "red",
c.text.col = "blue"

)
biplotEsa3d(boeker, e.cex = 1)
biplotEsa3d(boeker, col.sphere = "red")

End(Not run)

biplotEsaPseudo3d Plot an eigenstructure analysis (ESA) in 2D grid with 3D impression
(pseudo 3D).

Description

The ESA is a special type of biplot suggested by Raeithel (e.g. 1998). It uses midpoint centering
as a default. Note that the eigenstructure analysis is just a special case of a biplot that can also be
produced using the biplot2d() function with the arguments center=4, g=1, h=1. Here, only the
arguments that are modified for the ESA biplot are described. To see all the parameters that can be
changed see biplot2d() and biplotPseudo3d().

Usage

biplotEsaPseudo3d(x, center = 4, g = 1, h = 1, ...)

biplotPseudo3d 25

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Eigenstructure analysis uses midpoint centering (4).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs. Eigenstructure analysis uses g=1.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements. Eigenstructure analysis uses h=1.

... Additional parameters for be passed to biplotPseudo3d().

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

Not run:
See examples in [biplotPseudo3d()] as the same arguments
can used for this function.

End(Not run)

biplotPseudo3d Draws a biplot of the grid in 2D with depth impression (pseudo 3D).

Description

This version is basically a 2D biplot. It only modifies color and size of the symbols in order to
create a 3D impression of the data points. This function will call the standard biplot2d() function
with some modified arguments. For the whole set of arguments that can be used see biplot2d().
Here only the arguments special to biplotPseudo3d are outlined.

26 biplotPseudo3d

Usage

biplotPseudo3d(
x,
dim = 1:2,
map.dim = 3,
e.point.col = c("white", "black"),
e.point.cex = c(0.6, 1.2),
e.label.col = c("white", "black"),
e.label.cex = c(0.6, 0.8),
e.color.map = c(0.4, 1),
c.point.col = c("white", "darkred"),
c.point.cex = c(0.6, 1.2),
c.label.col = c("white", "darkred"),
c.label.cex = c(0.6, 0.8),
c.color.map = c(0.4, 1),
...

)

Arguments

x repgrid object.

dim Dimensions (i.e. principal components) to be used for biplot (default is c(1,2)).

map.dim Third dimension (depth) used to map aesthetic attributes to (default is 3).

e.point.col Color(s) of the element symbols. Two values can be entered that will create a
color ramp. The values of map.dim are mapped onto the ramp. The default is
c("white", "black"). If only one color color value is supplied (e.g. "black")
no mapping occurs and all elements will have the same color irrespective of their
value on the map.dim dimension.

e.point.cex Size of the element symbols. Two values can be entered that will represents
the lower and upper size of a range of cex the values of map.dim are mapped
onto. The default is c(.6, 1.2). If only one cex value is supplied (e.g. .7)
no mapping occurs and all elements will have the same size irrespective of their
value on the map.dim dimension.

e.label.col Color(s) of the element labels. Two values can be entered that will create a
color ramp. The values of map.dim are mapped onto the ramp. The default is
c("white", "black"). If only one color color value is supplied (e.g. "black")
no mapping occurs and all element labels will have the same color irrespective
of their value on the map.dim dimension.

e.label.cex Size of the element labels. Two values can be entered that will represents the
lower and upper size of a range of cex the values of map.dim are mapped onto.
The default is c(.6, .8). If only one cex value is supplied (e.g. .7) no mapping
occurs and all element labels will have the same size irrespective of their value
on the map.dim dimension.

e.color.map Value range to determine what range of the color ramp defined in e.color will
be used for mapping the colors. Default is c(.4, ,1). Usually not important for
the user.

biplotPseudo3d 27

c.point.col Color(s) of the construct symbols. Two values can be entered that will cre-
ate a color ramp. The values of map.dim are mapped onto the ramp. The de-
fault is c("white", "darkred"). If only one color color value is supplied (e.g.
"black") no mapping occurs and all elements will have the same color irrespec-
tive of their value on the map.dim dimension.

c.point.cex Size of the construct symbols. Two values can be entered that will represents
the lower and upper size of a range of cex the values of map.dim are mapped
onto. The default is c(.6, 1.2). If only one cex value is supplied (e.g. .7)
no mapping occurs and all elements will have the same size irrespective of their
value on the map.dim dimension.

c.label.col Color(s) of the construct labels. Two values can be entered that will create a
color ramp. The values of map.dim are mapped onto the ramp. The default is
c("white", "black"). If only one color color value is supplied (e.g. "black")
no mapping occurs and all construct labels will have the same color irrespective
of their value on the map.dim dimension.

c.label.cex Size of the construct labels. Two values can be entered that will represents the
lower and upper size of a range of cex the values of map.dim are mapped onto.
The default is c(.6, .9). If only one cex value is supplied (e.g. .7) no mapping
occurs and all construct labels will have the same size irrespective of their value
on the map.dim dimension.

c.color.map Value range to determine what range of the color ramp defined in c.color will
be used for mapping. Default is c(.4, ,1). Usually not important for the user.

... Additional parameters passed to biplot2d().

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

Not run:
biplot with 3D impression
biplotPseudo3d(boeker)
Slater's biplot with 3D impression
biplotPseudo3d(boeker, g = 1, h = 1, center = 1)

show 2nd and 3rd dim. and map 4th
biplotPseudo3d(boeker, dim = 2:3, map.dim = 4)

change elem. colors
biplotPseudo3d(boeker, e.color = c("white", "darkgreen"))
change con. colors
biplotPseudo3d(boeker, c.color = c("white", "darkgreen"))

28 biplotSimple

change color mapping range
biplotPseudo3d(boeker, c.colors.map = c(0, 1))

set uniform con. text size
biplotPseudo3d(boeker, c.cex = 1)
change text size mapping range
biplotPseudo3d(boeker, c.cex = c(.4, 1.2))

End(Not run)

biplotSimple A graphically unsophisticated version of a biplot.

Description

It will draw elements and constructs vectors using similar arguments as biplot2d(). It is a version
for quick exploration used during development.

Usage

biplotSimple(
x,
dim = 1:2,
center = 1,
normalize = 0,
g = 0,
h = 1 - g,
unity = T,
col.active = NA,
col.passive = NA,
scale.e = 0.9,
zoom = 1,
e.point.col = "black",
e.point.cex = 1,
e.label.col = "black",
e.label.cex = 0.7,
c.point.col = grey(0.6),
c.label.col = grey(0.6),
c.label.cex = 0.6,
...

)

Arguments

x repgrid object.

dim Dimensions (i.e. principal components) to be used for biplot (default is c(1,2)).

biplotSimple 29

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). The default is 1 (row centering).

normalize A numeric value indicating along what direction (rows, columns) to normalize
by standard deviations. 0 = none, 1= rows, 2 = columns (default is 0).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

unity Scale elements and constructs coordinates to unit scale in 2D (maximum of 1)
so they are printed more neatly (default TRUE).

col.active Columns (elements) that are no supplementary points, i.e. they are used in the
SVD to find principal components. default is to use all elements.

col.passive Columns (elements) that are supplementary points, i.e. they are NOT used in the
SVD but projected into the component space afterwards. They do not determine
the solution. Default is NA, i.e. no elements are set supplementary.

scale.e Scaling factor for element vectors. Will cause element points to move a bit more
to the center. This argument is for visual appeal only.

zoom Scaling factor for all vectors. Can be used to zoom the plot in and out (default
1).

e.point.col Color of the element symbols (default is "black".

e.point.cex Size of the element symbol (default is 1.

e.label.col Color of the element labels (default is "black".

e.label.cex Size of the element labels (default is .7.

c.point.col Color of the construct lines (default is grey(.6).

c.label.col Color of the construct labels (default is grey(.6).

c.label.cex Size of the construct labels (default is .6.

... Parameters to be passed on to center() and normalize.

Value

repgrid object.

See Also

Unsophisticated biplot: biplotSimple();
2D biplots: biplot2d(), biplotEsa2d(), biplotSlater2d();
Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();
Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();
Function to set view in 3D: home().

30 biplotSlater2d

Examples

Not run:

biplotSimple(boeker)
biplotSimple(boeker, unity = F)

biplotSimple(boeker, g = 1, h = 1) # INGRID biplot
biplotSimple(boeker, g = 1, h = 1, center = 4) # ESA biplot

biplotSimple(boeker, zoom = .9) # zooming out
biplotSimple(boeker, scale.e = .6) # scale element vectors

biplotSimple(boeker, e.point.col = "brown") # change colors
biplotSimple(boeker,

e.point.col = "brown",
c.label.col = "darkblue"

)

End(Not run)

biplotSlater2d Draws Slater’s INGRID biplot in 2D.

Description

The default is to use row centering and no normalization. Note that Slater’s biplot is just a spe-
cial case of a biplot that can be produced using the biplot2d() function with the arguments
center=1, g=1, h=1. The arguments that can be used in this function are the same as in biplot2d().
Here, only the arguments that are set for Slater’s biplot are described. To see all the parameters that
can be changed see biplot2d().

Usage

biplotSlater2d(x, center = 1, g = 1, h = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Slater’s biplot uses 1 (row centering).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

... Additional parameters for be passed to biplot2d().

biplotSlater3d 31

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

Not run:
See examples in [biplot2d()] as the same arguments
can used for this function.

End(Not run)

biplotSlater3d Draw the Slater’s INGRID biplot in rgl (3D device).

Description

The 3D biplot opens an interactive 3D device that can be rotated and zoomed using the mouse. A
3D device facilitates the exploration of grid data as significant proportions of the sum-of-squares
are often represented beyond the first two dimensions. Also, in a lot of cases it may be of interest
to explore the grid space from a certain angle, e.g. to gain an optimal view onto the set of elements
under investigation (e.g. Raeithel, 1998). Note that Slater’s biplot is just a special case of a biplot
that can be produced using the biplot3d() function with the arguments center=1, g=1, h=1.

Usage

biplotSlater3d(x, center = 1, g = 1, h = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Default is 1 (row i.e. construct centering).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

... Additional arguments to be passed to biplot3d.

32 biplotSlaterPseudo3d

See Also

Unsophisticated biplot: biplotSimple();
2D biplots: biplot2d(), biplotEsa2d(), biplotSlater2d();
Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();
Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();
Function to set view in 3D: home().

Examples

Not run:

biplotSlater3d(boeker)
biplotSlater3d(boeker, unity3d = T)

biplotSlater3d(boeker,
e.sphere.col = "red",
c.text.col = "blue"

)
biplotSlater3d(boeker, e.cex = 1)
biplotSlater3d(boeker, col.sphere = "red")

End(Not run)

biplotSlaterPseudo3d Draws Slater’s biplot in 2D with depth impression (pseudo 3D).

Description

The default is to use row centering and no normalization. Note that Slater’s biplot is just a special
case of a biplot that can be produced using the biplotPseudo3d() function with the arguments
center=1, g=1, h=1. Here, only the arguments that are modified for Slater’s biplot are described.
To see all the parameters that can be changed see biplot2d() and biplotPseudo3d().

Usage

biplotSlaterPseudo3d(x, center = 1, g = 1, h = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). Slater’s biplot uses 1 (row centering).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

cbind.repgrid 33

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

... Additional parameters for be passed to biplotPseudo3d().

See Also

• Unsophisticated biplot: biplotSimple();

• 2D biplots:biplot2d(), biplotEsa2d(), biplotSlater2d();

• Pseudo 3D biplots: biplotPseudo3d(), biplotEsaPseudo3d(), biplotSlaterPseudo3d();

• Interactive 3D biplots: biplot3d(), biplotEsa3d(), biplotSlater3d();

• Function to set view in 3D: home()

Examples

Not run:
See examples in [biplotPseudo3d()] as the same arguments
can used for this function.

End(Not run)

cbind.repgrid Concatenate the elements of two grids

Description

Concatenate the elements of two grids

Usage

S3 method for class 'repgrid'
cbind(..., .reorder = TRUE, .unique = FALSE)

Arguments

... repgrid objects or list of objects.

.reorder If TRUE (default), matches construct order of y to x.

.unique If FALSE (default), x and y may have common elements. If FALSE, they must be
mutually exclusive.

Value

repgrid with combined elements.

34 center

Examples

x <- boeker[, 1:2]
y <- boeker[, 5:7]
cbind(x, y)
x / y
y_reordered <- y[sample(nrow(y)),]
cbind(x, y, y_reordered)

center Centering of rows (constructs) and/or columns (elements).

Description

Centering of rows (constructs) and/or columns (elements).

Usage

center(x, center = 1, ...)

Arguments

x repgrid object.

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). of the scale(default FALSE). Default is 1 (row centering).

... Not evaluated.

Value

matrix containing the transformed values.

Note

If scale midpoint centering is applied no row or column centering can be applied simultaneously.
TODO: After centering the standard representation mode does not work any more as it remains
unclear what color values to attach to the centered values.

Examples

center(bell2010) # no centering
center(bell2010, rows = T) # row centering of grid
center(bell2010, cols = T) # column centering of grid
center(bell2010, rows = T, cols = T) # row and column centering

cluster 35

cluster Cluster analysis (of constructs or elements).

Description

cluster is a preliminary implementation of a cluster function. It supports various distance mea-
sures as well as cluster methods. More is to come.

Usage

cluster(
x,
along = 0,
dmethod = "euclidean",
cmethod = "ward.D",
p = 2,
align = TRUE,
trim = NA,
main = NULL,
mar = c(4, 2, 3, 15),
cex = 0,
lab.cex = 0.8,
cex.main = 0.9,
print = TRUE,
...

)

Arguments

x repgrid object.

along Along which dimension to cluster. 1 = constructs only, 2= elements only, 0=both
(default).

dmethod The distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring
can be given. For additional information on the different types type ?dist.

cmethod The agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward.D", "ward.D2", "single", "complete", "average",
"mcquitty", "median" or "centroid".

p The power of the Minkowski distance, in case "minkowski" is used as argument
for dmethod.

align Whether the constructs should be aligned before clustering (default is TRUE). If
not, the grid matrix is clustered as is. See Details section for more information.

trim the number of characters a construct is trimmed to. If NA (default), no trimming
is done. Trimming simply saves space when displaying the output.

36 cluster

main Title of plot. The default is a name indicating the distance function and cluster
method.

mar Define the plot region (bottom, left, upper, right).

cex Size parameter for the nodes. Usually not needed.

lab.cex Size parameter for the constructs on the right side.

cex.main Size parameter for the plot title (default is .9).

print Logical. Whether to print the dendrogram (default is TRUE).

... Additional parameters to be passed to plotting function from as.dendrogram.
Type ?as.dendrogram for further information. This option is usually not needed,
except if special designs are needed.

Details

align: Aligning will reverse constructs if necessary to yield a maximal similarity between con-
structs. In a first step the constructs are clustered including both directions. In a second step the
direction of a construct that yields smaller distances to the adjacent constructs is preserved and used
for the final clustering. As a result, every construct is included once but with an orientation that
guarantees optimal clustering. This approach is akin to the procedure used in FOCUS (Jankowicz
& Thomas, 1982).

Value

Reordered repgrid object.

References

Jankowicz, D., & Thomas, L. (1982). An Algorithm for the Cluster Analysis of Repertory Grids in
Human Resource Development. Personnel Review, 11(4), 15-22. doi:10.1108/eb055464.

See Also

bertinCluster()

Examples

cluster(bell2010)
cluster(bell2010, main = "My cluster analysis") # new title
cluster(bell2010, type = "t") # different drawing style
cluster(bell2010, dmethod = "manhattan") # using manhattan metric
cluster(bell2010, cmethod = "single") # do single linkage clustering
cluster(bell2010, cex = 1, lab.cex = 1) # change appearance
cluster(bell2010, lab.cex = .7, edgePar = list(lty = 1:2, col = 2:1)) # advanced appearance changes

clusterBoot 37

clusterBoot Multiscale bootstrap cluster analysis.

Description

p-values are calculated for each branch of the cluster dendrogram to indicate the stability of a spe-
cific partition. clusterBoot will yield the same clusters as the cluster() function (i.e. standard
hierarchical clustering) with additional p-values. Two kinds of p-values are reported: bootstrap
probabilities (BP) and approximately unbiased (AU) probabilities (see Details section for more in-
formation).

Usage

clusterBoot(
x,
along = 1,
align = TRUE,
dmethod = "euclidean",
cmethod = "ward.D",
p = 2,
nboot = 1000,
r = seq(0.8, 1.4, by = 0.1),
seed = NULL,
trim = NA,
...

)

Arguments

x grid object

along Along which dimension to cluster. 1 = constructs, 2= elements.

align Whether the constructs should be aligned before clustering (default is TRUE). If
not, the grid matrix is clustered as is. See Details section for more information.

dmethod The distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring
can be given. For additional information on the different types type ?dist.

cmethod The agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward.D", "ward.D2", "single", "complete", "average",
"mcquitty", "median" or "centroid".

p Power of the Minkowski metric. Not yet passed on to pvclust!

nboot the number of bootstrap replications. The default is 1000.

r numeric vector which specifies the relative sample sizes of bootstrap replica-
tions. For original sample size n and bootstrap sample size n′, this is defined as
r = n′/n.

38 clusterBoot

seed Random seed for bootstrapping. Can be set for reproducibility (see set.seed()).
Usually not needed.

trim the number of characters a construct is trimmed to. If NA (default), no trimming
is done. Trimming simply saves space when displaying the output.

... Arguments to pass on to pvclust::pvclust().

Details

In standard (hierarchical) cluster analysis the question arises which of the identified structures are
significant or just emerged by chance. Over the last decade several methods have been developed
to test structures for robustness. One line of research in this area is based on resampling. The
idea is to resample the rows or columns of the data matrix and to build the dendrogram for each
bootstrap sample (Felsenstein, 1985). The p-values indicates the percentage of times a specific
structure is identified across the bootstrap samples. It was shown that the p-value is biased (Hillis
& Bull, 1993; Zharkikh & Li, 1995). In the literature several methods for bias correction have been
proposed. In clusterBoot a method based on the multiscale bootstrap is used to derive corrected
(approximately unbiased) p-values (Shimodaira, 2002, 2004). In conventional bootstrap analysis
the size of the bootstrap sample is identical to the original sample size. Multiscale bootstrap varies
the bootstrap sample size in order to infer a correction formula for the biased p-value on the basis
of the variation of the results for the different sample sizes (Suzuki & Shimodaira, 2006).

align: Aligning will reverse constructs if necessary to yield a maximal similarity between con-
structs. In a first step the constructs are clustered including both directions. In a second step the
direction of a construct that yields smaller distances to the adjacent constructs is preserved and used
for the final clustering. As a result, every construct is included once but with an orientation that
guarantees optimal clustering. This approach is akin to the procedure used in FOCUS (Jankowicz
& Thomas, 1982).

Value

A pvclust object as returned by the function pvclust::pvclust()

References

Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap.
Evolution, 39(4), 783. doi:10.2307/2408678

Hillis, D. M., & Bull, J. J. (1993). An Empirical Test of Bootstrapping as a Method for Assessing
Confidence in Phylogenetic Analysis. Systematic Biology, 42(2), 182-192.

Jankowicz, D., & Thomas, L. (1982). An Algorithm for the Cluster Analysis of Repertory Grids in
Human Resource Development. Personnel Review, 11(4), 15-22. doi:10.1108/eb055464.

Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Syst, Biol.,
51, 492-508.

Shimodaira,H. (2004) Approximately unbiased tests of regions using multistep- multiscale boot-
strap resampling. Ann. Stat., 32, 2616-2614.

Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hier-
archical clustering. Bioinformatics, 22(12), 1540-1542. doi:10.1093/bioinformatics/btl117

Zharkikh, A., & Li, W.-H. (1995). Estimation of confidence in phylogeny: the complete-and-partial
bootstrap technique. Molecular Phylogenetic Evolution, 4(1), 44-63.

constructCor 39

Examples

Not run:

pvclust must be loaded
library(pvclust)

p-values for construct dendrogram
s <- clusterBoot(boeker)
plot(s)
pvrect(s, max.only = FALSE)

p-values for element dendrogram
s <- clusterBoot(boeker, along = 2)
plot(s)
pvrect(s, max.only = FALSE)

End(Not run)

constructCor Calculate correlations between constructs.

Description

Different types of correlations can be requested: PMC, Kendall tau rank correlation, Spearman rank
correlation.

Usage

constructCor(
x,
method = c("pearson", "kendall", "spearman"),
trim = 20,
index = FALSE

)

Arguments

x repgrid object.

method A character string indicating which correlation coefficient is to be computed.
One of "pearson" (default), "kendall" or "spearman", can be abbreviated.
The default is "pearson".

trim The number of characters a construct is trimmed to (default is 20). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

index Whether to print the number of the construct.

40 constructD

Value

Returns a matrix of construct correlations.

See Also

elementCor()

Examples

three different types of correlations
constructCor(mackay1992)
constructCor(mackay1992, method = "kendall")
constructCor(mackay1992, method = "spearman")

format output
constructCor(mackay1992, trim = 6)
constructCor(mackay1992, index = TRUE, trim = 6)

save correlation matrix for further processing
r <- constructCor(mackay1992)
r
print(r, digits = 5)

accessing the correlation matrix
r[1, 3]

constructD Calculate Somers’ d for the constructs.

Description

Somer’s d is an asymmetric association measure as it depends on which variable is set as dependent
and independent. The direction of dependency needs to be specified.

Usage

constructD(x, dependent = "columns", trim = 30, index = TRUE)

Arguments

x repgrid object.

dependent A string denoting the direction of dependency in the output table (as d is asym-
metrical). Possible values are "columns" (the default) for setting the columns as
dependent, "rows" for setting the rows as the dependent variable and "symmetric"
for the symmetrical Somers’ d measure (the mean of the two directional values
for "columns" and "rows").

constructPca 41

trim The number of characters a construct is trimmed to (default is 30). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

index Whether to print the number of the construct (default is TRUE).

Value

matrix of construct correlations.

Note

Thanks to Marc Schwartz for supplying the code to calculate
Somers' d.

References

Somers, R. H. (1962). A New Asymmetric Measure of Association for Ordinal Variables. American
Sociological Review, 27(6), 799-811.

Examples

Not run:

constructD(fbb2003) # columns as dependent (default)
constructD(fbb2003, "c") # row as dependent
constructD(fbb2003, "s") # symmetrical index

suppress printing
d <- constructD(fbb2003, out = 0, trim = 5)
d

more digits
constructD(fbb2003, dig = 3)

add index column, no trimming
constructD(fbb2003, col.index = TRUE, index = F, trim = NA)

End(Not run)

constructPca Principal component analysis (PCA) of inter-construct correlations.

Description

Various methods for rotation and methods for the calculation of the correlations are available. Note
that the number of factors has to be specified. For more information on the PCA function itself type
?principal.

42 constructPca

Usage

constructPca(
x,
nfactors = 3,
rotate = "varimax",
method = "pearson",
trim = NA

)

Arguments

x repgrid object.

nfactors Number of components to extract (default is 3).

rotate "none", "varimax", "promax" and "cluster" are possible rotations (default is
none).

method A character string indicating which correlation coefficient is to be computed.
One of "pearson" (default), "kendall" or "spearman", can be abbreviated.
The default is "pearson".

trim The number of characters a construct is trimmed to (default is 7). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

Value

Returns an object of class constructPca.

References

Fransella, F., Bell, R. & Bannister, D. (2003). A Manual for Repertory Grid Technique (2. Ed.).
Chichester: John Wiley & Sons.

See Also

To extract the PCA loadings for further processing see constructPcaLoadings().

Examples

constructPca(bell2010)

data from grid manual by Fransella et al. (2003, p. 87)
note that the construct order is different
constructPca(fbb2003, nfactors = 2)

no rotation
constructPca(fbb2003, rotate = "none")

use a different type of correlation (Spearman)
constructPca(fbb2003, method = "spearman")

constructPcaLoadings 43

save output to object
m <- constructPca(fbb2003, nfactors = 2)
m

different printing options
print(m, digits = 5)
print(m, cutoff = .3)

constructPcaLoadings Extract loadings from PCA of constructs.

Description

Extract loadings from PCA of constructs.

Usage

constructPcaLoadings(x)

Arguments

x repgrid object. This object is returned by the function constructPca().

Value

A matrix containing the factor loadings.

Examples

p <- constructPca(bell2010)
l <- constructPcaLoadings(p)
l[1,]
l[, 1]
l[1, 1]

constructRmsCor Root mean square (RMS) of inter-construct correlations.

Description

The RMS is also known as ’quadratic mean’ of the inter-construct correlations. The RMS serves as
a simplification of the correlation table. It reflects the average relation of one construct to all other
constructs. Note that as the correlations are squared during its calculation, the RMS is not affected
by the sign of the correlation (cf. Fransella, Bell & Bannister, 2003, p. 86).

44 constructs

Usage

constructRmsCor(x, method = "pearson", trim = NA)

Arguments

x repgrid object

method A character string indicating which correlation coefficient is to be computed.
One of "pearson" (default), "kendall" or "spearman", can be abbreviated.
The default is "pearson".

trim The number of characters a construct is trimmed to (default is NA). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

Value

dataframe of the RMS of inter-construct correlations

References

Fransella, F., Bell, R. C., & Bannister, D. (2003). A Manual for Repertory Grid Technique (2. Ed.).
Chichester: John Wiley & Sons.

See Also

elementRmsCor(), constructCor()

Examples

data from grid manual by Fransella, Bell and Bannister
constructRmsCor(fbb2003)
constructRmsCor(fbb2003, trim = 20)

modify output
r <- constructRmsCor(fbb2003)
print(r, digits = 5)

access calculation results
r[2, 1]

constructs Get or replace construct poles

Description

Allows to get and set construct poles. Replaces the older functions getConstructNames, getConstructNames2,
and eNames which are deprecated.

constructs 45

Usage

constructs(x, collapse = FALSE, sep = " - ")

constructs(x, i, j) <- value

leftpoles(x)

leftpoles(x, position) <- value

rightpoles(x)

rightpoles(x, position) <- value

Arguments

x A repgrid object.

collapse Return vector with both poles instead.

sep Separator if collapse = TRUE, default is " - ".

i, j Row and column Index of repgrid matrix.

value Character vector of construct poles names.

position Index where to insert construct

Examples

shorten object name
x <- boeker

get construct poles
constructs(x) # both left and right poles
leftpoles(x) # left poles only
rightpoles(x)
constructs(x, collapse = TRUE)

replace construct poles
constructs(x)[1, 1] <- "left pole 1"
constructs(x)[1, "leftpole"] <- "left pole 1" # alternative
constructs(x)[1:3, 2] <- paste("right pole", 1:3)
constructs(x)[1:3, "rightpole"] <- paste("right pole", 1:3) # alternative
constructs(x)[4, 1:2] <- c("left pole 4", "right pole 4")

l <- leftpoles(x)
leftpoles(x) <- sample(l) # brind poles into random order
leftpoles(x)[1] <- "new left pole 1" # replace name of first left pole

replace left poles of constructs 1 and 3
leftpoles(x)[c(1, 3)] <- c("new left pole 1", "new left pole 3")

46 data-bellmcgorry1992

data-bell2010 Grid data from Bell (2010).

Description

Grid data originated (but is not shown in the paper) from a study by Haritos, Gindinis, Doan and
Bell (2004) on element role titles. It was used to demonstrate the effects of construct alignment in
Bell (2010, p. 46).

References

Bell, R. C. (2010). A note on aligning constructs. Personal Construct Theory and Practice, 7,
43-48.

Haritos, A., Gindidis, A., Doan, C., & Bell, R. C. (2004). The effect of element role titles on
construct structure and content. Journal of constructivist psychology, 17(3), 221-236.

Examples

bell2010

data-bellmcgorry1992 Grid data from Bell and McGorry (1992).

Description

The grid data set is used in Bell’s technical report "Using SPSS to Analyse Repertory Grid Data"
(1997, p. 6). Originally, the data comes from a study by Bell and McGorry (1992).

References

Bell, R. C. (1977). Using SPSS to Analyse Repertory Grid Data. Technical Report, University of
Melbourne.

Bell, R. C., & McGorry, P. (1992). The analysis of repertory grids used to monitor the perceptions
of recovering psychotic patients. In A. Thomson & P. Cummins (Eds.), European Perspectives in
Personal Construct Psychology (p. 137-150). Lincoln, UK: European Personal Construct Associa-
tion.

Examples

bellmcgorry1992

data-boeker 47

data-boeker Grid data from Boeker (1996).

Description

Grid data from a schizophrenic patient undergoing psychoanalytically oriented psychotherapy. The
data was taken during the last stage of therapy (Boeker, 1996, p. 163).

References

Boeker, H. (1996). The reconstruction of the self in the psychotherapy of chronic schizophrenia:
a case study with the Repertory Grid Technique. In: Scheer, J. W., Catina, A. (Eds.): Empirical
Constructivism in Europe - The Personal Construct Approach (p. 160-167). Giessen: Psychosozial-
Verlag.

Examples

boeker

data is also available as Excel file
path <- system.file("extdata", "boeker.xlsx", package = "OpenRepGrid")
x <- importExcel(path)

data-fbb2003 Grid data from Fransella, Bell and Bannister (2003).

Description

A dataset used throughout the book "A Manual for Repertory Grid Technique" (Fransella, Bell and
Bannister, 2003, p. 60).

References

Fransella, F., Bell, R. & Bannister, D. (2003). A Manual for Repertory Grid Technique (2. Ed.).
Chichester: John Wiley & Sons.

Examples

fbb2003

48 data-leach2001

data-feixas2004 Grid data from Feixas and Saul (2004).

Description

A description by the authors: "When Teresa, 22 years old, was seen by the second author (LAS) at
the psychological services of the University of Salamanca, she was in the final year of her studies
in chemical sciences. Although Teresa proves to be an excellent student, she reveals serious doubts
about her self worth. She cries frequently, and has great difficulty in meeting others, even though
she has a boyfriend who is extremely supportive. Teresa is anxiously hesitant about accepting a new
job which would involve moving to another city 600 Km away from home." (Feixas & Saul, 2004,
p. 77).

References

Feixas, G., & Saul, L. A. (2004). The Multi-Center Dilemma Project: an investigation on the role
of cognitive conflicts in health. The Spanish Journal of Psychology, 7(1), 69-78.

Examples

feixas2004

data-leach2001 Pre- and post therapy dataset from Leach et al. (2001).

Description

Case as described by the authors: "Sarah, aged 32, was referred with problems of depression and
sexual difficulties relating to childhood sexual abuse. She had three children and was living with
her male partner. From the age of 9, her brother, an adult, had sexually abused Sarah. She attended
a group for survivors of child sexual abuse and completed repertory grids prior to the group, imme-
diately after the group and at 3- and 6-month follow-up." (Leach et al. 2001, p. 230).

Details

leach2001a is the pre-therapy, leach2001b is the post-therapy therapy dataset. The construct and
elements are identical.

References

Leach, C., Freshwater, K., Aldridge, J., & Sunderland, J. (2001). Analysis of repertory grids in
clinical practice. The British Journalof Clinical Psychology, 40, 225-248.

data-mackay1992 49

Examples

leach2001a
leach2001b

data-mackay1992 Grid data from Mackay (1992).

Description

Data set ’Grid C’ used in Mackay’s paper on inter-element correlation (1992, p. 65).

References

Mackay, N. (1992). Identification, reflection, and correlation: Problems in the bases of repertory
grid measures. International Journal of Personal Construct Psychology, 5(1), 57-75.

Examples

mackay1992

data-raeithel Grid data from Raeithel (1998).

Description

Grid data to demonstrate the use of Bertin diagrams (Raeithel, 1998, p. 223). The context of its
administration is unknown.

References

Raeithel, A. (1998). Kooperative Modellproduktion von Professionellen und Klienten. Erlaeutert
am Beispiel des Repertory Grid. In A. Raeithel (1998). Selbstorganisation, Kooperation, Zeichen-
prozess. Arbeiten zu einer kulturwissenschaftlichen, anwendungsbezogenen Psychologie (p. 209-
254). Opladen: Westdeutscher Verlag.

Examples

raeithel

50 data-slater1977b

data-slater1977a Drug addict’s grid data set from Slater (1977, p. 32).

Description

Drug addict’s grid data set from Slater (1977, p. 32).

References

Slater, P. (1977). The measurement of intrapersonal space by grid technique. London: Wiley.

Examples

slater1977a

data-slater1977b Grid data from Slater (1977).

Description

Grid data (ranked) from a seventeen year old female psychiatric patient (Slater, 1977, p. 110). She
was depressed, anxious and took to cutting herself. The data was originally reported by Watson
(1970).

References

Slater, P. (1977). The measurement of intrapersonal space by grid technique. London: Wiley.

Watson, J. P. (1970). The relationship between a self-mutilating patient and her doctor. Psychother-
apy and Psychosomatics, 18(1), 67-73.

Examples

slater1977b

df_construct_columns 51

df_construct_columns Sample dataframe with grid data (constructs are columns)

Description

This dataframe can be converted into a repgrid object via importDataframe(). The columns
names are elements followed by the constructs (left_pole_1:right_pole_1 to left_pole_3:right_pole_3).
The poles are separated by a colon by default (change via arg pole_sep). The rows contain the el-
ements’ entries (element name and ratings). The min and max of the rating scale should be passed
explicitly via the args rmin and rmax. See sample data df_construct_columns.

Details

elements left_pole_1:right_pole_1 left_pole_2:right_pole_2 left_pole_3:right_pole_3
element_1 5 3 2
element_2 3 3 4
element_3 1 5 2
element_4 4 3 3

See Also

importDataframe()

Other grid dataframes: df_element_columns, df_long

Examples

df_construct_columns
importDataframe(df_construct_columns, format = "construct_columns", rmin = 1, rmax = 5)

df_element_columns Sample dataframe with grid data (elements are columns)

Description

This dataframe can be converted into a repgrid object via importDataframe(). The dataframe
column names are the minimum of the rating scale (1), the element names (element_1 to element_4),
the maximum of the rating scale (5), and optionally a column indicating the preferred pole.
Each row contains the constructs’ entries (left pole, ratings, right pole, preferred pole). The pre-
ferred pole must be one of left, right, none, NA (see preferredPoles()). See sample data
df_element_columns.

52 df_long

Details

1 element_1 element_2 element_3 element_4 5 preferred
left_pole_1 1 5 3 4 right_pole_1 left
left_pole_2 3 1 1 3 right_pole_2 right
left_pole_3 4 2 5 1 right_pole_3 none

See Also

importDataframe()

Other grid dataframes: df_construct_columns, df_long

Examples

df_element_columns
importDataframe(df_element_columns)

df_long Sample dataframe with grid data (long)

Description

This dataframe can be converted into a repgrid object via importDataframe(). The long format
has this name because it has few columns and many rows. It is a common format in data analytics.
Here, each row contains a different element-construct combination and the corresponding rating
value. The format looks like this:

Details

element left_pole right_pole rating preferred_pole rmin rmax
element 1 left pole 1 right pole 1 5 left 1 5
element_2 left pole 1 right pole 1 3 left 1 5
element_3 left pole 1 right pole 1 1 left 1 5

The columns element, left_pole, right_pole, and rating are mandatory, the columns preferred_pole,
rmin, and rmax are optional. rmin and rmax contain the min and max of the rating scale. Alterna-
tively, you may pass rmin and rmax as arguments in the function call.

See Also

importDataframe()

Other grid dataframes: df_construct_columns, df_element_columns

distance 53

Examples

df_long
importDataframe(df_long, format = "long")

distance Distance measures (between constructs or elements).

Description

Various distance measures between elements or constructs are calculated.

Usage

distance(
x,
along = 1,
dmethod = "euclidean",
p = 2,
normalize = FALSE,
trim = 20,
index = TRUE,
...

)

Arguments

x repgrid object.

along Whether to calculate distance for 1 = constructs (default) or for 2= elements.

dmethod The distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring
can be given. For additional information on the different types type ?dist.

p The power of the Minkowski distance, in case "minkowski" is used as argument
for dmethod.

normalize Use normalized distances. The distances are divided by the highest possible
value given the rating scale fo the grid, so all distances are in the interval [0,1].

trim The number of characters a construct or element is trimmed to (default is 20). If
NA no trimming occurs. Trimming simply saves space when displaying correla-
tion of constructs with long names.

index Whether to print the number of the construct or element in front of the name
(default is TRUE). This is useful to avoid identical row names, which may cause
an error.

... Additional parameters to be passed to function dist. Type dist for further
information.

54 distanceHartmann

Value

matrix object.

Examples

between constructs
distance(bell2010, along = 1)
distance(bell2010, along = 1, normalize = TRUE)

between elements
distance(bell2010, along = 2)

several distance methods
distance(bell2010, dm = "man") # manhattan distance
distance(bell2010, dm = "mink", p = 3) # minkowski metric to the power of 3

to save the results without printing to the console
d <- distance(bell2010, trim = 7)
d

some more options when printing the distance matrix
print(d, digits = 5)
print(d, col.index = FALSE)
print(d, upper = FALSE)

accessing entries from the matrix
d[1, 3]

distanceHartmann ’Hartmann distance’ (standardized Slater distances).

Description

Calculate Hartmann distance

Usage

distanceHartmann(
x,
method = "simulate",
reps = 10000,
prob = NULL,
progress = TRUE,
distributions = FALSE

)

distanceHartmann 55

Arguments

x repgrid object.

method The method used for distance calculation, on of "paper", "simulate", "new".
"paper" uses the parameters as given in Hartmann (1992) for calculation. "simulate"
(default) simulates a Slater distribution for the calculation. In a future version
the time consuming simulation may be replaced by more accurate parameters
for Hartmann distances than used in Hartmann (1992).

reps Number of random grids to generate sample distribution for Slater distances
(default is 10000). Note that a lot of samples may take a while to calculate.

prob The probability of each rating value to occur. If NULL (default) the distribution
is uniform. The number of values must match the length of the rating scale.

progress Whether to show a progress bar during simulation (default is TRUE) (for method="simulate").
May be useful when the distribution is estimated on the basis of many quasis.

distributions Whether to additionally return the values of the simulated distributions (Slater
etc.) The default is FALSE as it will quickly boost the object size.

Details

Hartmann (1992) showed in a simulation study that Slater distances (see distanceSlater()) based
on random grids, for which Slater coined the expression quasis, have a skewed distribution, a mean
and a standard deviation depending on the number of constructs elicited. He suggested a linear
transformation (z-transformation) which takes into account the estimated (or expected) mean and
the standard deviation of the derived distribution to standardize Slater distance scores across differ-
ent grid sizes. ’Hartmann distances’ represent a more accurate version of ’Slater distances’. Note
that Hartmann distances are multiplied by -1. Hence, negative Hartmann values represent dissimi-
larity, i.e. a big Slater distance.

There are two ways to use this function. Hartmann distances can either be calculated based on the
reference values (i.e. means and standard deviations of Slater distance distributions) as given by
Hartmann in his paper. The second option is to conduct an instant simulation for the supplied grid
size for each calculation. The second option will be more accurate when a big number of quasis is
used in the simulation.

It is also possible to return the quantiles of the sample distribution and only the element distances
considered ’significant’ according to the quantiles defined.

Value

A matrix containing Hartmann distances. In the attributes several additional parameters can be
found:

• arguments: A list of several parameters including mean and sd of Slater distribution.

• quantiles: Quantiles for Slater and Hartmann distance distribution.

• distributions: List with values of the simulated distributions.

56 distanceHartmann

Calculation

The ’Hartmann distance’ is calculated as follows (Hartmann 1992, p. 49).

D = −1(
Dslater −Mc

sdc
)

Where Dslater denotes the Slater distances of the grid, Mc the sample distribution’s mean value
and sdc the sample distribution’s standard deviation.

References

Hartmann, A. (1992). Element comparisons in repertory grid technique: Results and consequences
of a Monte Carlo study. International Journal of Personal Construct Psychology, 5(1), 41-56.

See Also

distanceSlater()

Examples

Not run:

basics

distanceHartmann(bell2010)
distanceHartmann(bell2010, method = "simulate")
h <- distanceHartmann(bell2010, method = "simulate")
h

printing options
print(h)
print(h, digits = 6)
'significant' distances only
print(h, p = c(.05, .95))

access cells of distance matrix
h[1, 2]

advanced

histogram of Slater distances and indifference region
h <- distanceHartmann(bell2010, distributions = TRUE)
l <- attr(h, "distributions")
hist(l$slater, breaks = 100)
hist(l$hartmann, breaks = 100)

End(Not run)

distanceNormalized 57

distanceNormalized Calculate power-transformed Hartmann distances.

Description

Hartmann (1992) suggested a transformation of Slater (1977) distances to make them independent
from the size of a grid. Hartmann distances are supposed to yield stable cutoff values used to de-
termine ’significance’ of inter-element distances. It can be shown that Hartmann distances are still
affected by grid parameters like size and the range of the rating scale used (Heckmann, 2012). The
function distanceNormalize applies a Box-Cox (1964) transformation to the Hartmann distances
in order to remove the skew of the Hartmann distance distribution. The normalized values show to
have more stable cutoffs (quantiles) and better properties for comparison across grids of different
size and scale range.

Usage

distanceNormalized(
x,
reps = 1000,
prob = NULL,
progress = TRUE,
distributions = TRUE

)

Arguments

x repgrid object.

reps Number of random grids to generate to produce sample distribution for Hart-
mann distances (default is 1000). Note that a lot of samples may take a while to
calculate.

prob The probability of each rating value to occur. If NULL (default) the distribution
is uniform. The number of values must match the length of the rating scale.

progress Whether to show a progress bar during simulation (default is TRUE) (for method="simulate").
May be useful when the distribution is estimated on the basis of many quasis.

distributions Whether to additionally return the values of the simulated distributions (Slater
etc.) The default is FALSE as it will quickly boost the object size.

Details

The function distanceNormalize can also return the quantiles of the sample distribution and only
the element distances considered ’significant’ according to the quantiles defined.

58 distanceNormalized

Value

A matrix containing the standardized distances.
Further data is contained in the object’s attributes:

"arguments" A list of several parameters including mean and sd of Slater distribution.

"quantiles" Quantiles for Slater, Hartmann and power transformed distance distributions.
"distributions"

List with values of the simulated distributions, if distributions=TRUE.

Calculations

The ’power transformed Hartmann distance’ are calculated as follows: The simulated Hartmann
distribution is added a constant as the Box-Cox transformation can only be applied to positive val-
ues. Then a range of values for lambda in the Box-Cox transformation (Box & Cox, 1964) are
tried out. The best lambda is the one maximizing the correlation of the quantiles with the standard
normal distribution. The lambda value maximizing normality is used to transform Hartmann dis-
tances. As the resulting scale of the power transformation depends on lambda, the resulting values
are z-transformed to derive a common scaling.

The code for the calculation of the optimal lambda was written by Ioannis Kosmidis.

References

Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Hartmann, A. (1992). Element comparisons in repertory grid technique: Results and consequences
of a Monte Carlo study. International Journal of Personal Construct Psychology, 5(1), 41-56.

Heckmann, M. (2012). Standardizing inter-element distances in grids - A revision of Hartmann’s
distances, 11th Biennal Conference of the European Personal Construct Association (EPCA), Dublin,
Ireland, Paper presentation, July 2012.

Slater, P. (1977). The measurement of intrapersonal space by Grid technique. London: Wiley.

See Also

distanceHartmann() and distanceSlater().

Examples

Not run:

basics

distanceNormalized(bell2010)
n <- distanceNormalized(bell2010)
n

printing options
print(n)

distanceSlater 59

print(n, digits = 4)
'significant' distances only
print(n, p = c(.05, .95))

access cells of distance matrix
n[1, 2]

advanced

histogram of Slater distances and indifference region
n <- distanceNormalized(bell2010, distributions = TRUE)
l <- attr(n, "distributions")
hist(l$bc, breaks = 100)

End(Not run)

distanceSlater Slater distances (standardized Euclidean distances).

Description

The euclidean distance is often used as a measure of similarity between elements (see distance().
A drawback of this measure is that it depends on the range of the rating scale and the number of
constructs used, i. e. on the size of a grid.
An approach to standardize the euclidean distance to make it independent from size and range of
ratings and was proposed by Slater (1977, pp. 94). The ’Slater distance’ is the Euclidean distance di-
vided by the expected distance. Slater distances bigger than 1 are greater than expected, lesser than 1
are smaller than expected. The minimum value is 0 and values bigger than 2 are rarely found. Slater
distances have been be used to compare inter-element distances between different grids, where the
grids do not need to have the same constructs or elements. Hartmann (1992) showed that Slater
distance is not independent of grid size. Also the distribution of the Slater distances is asymmetric.
Hence, the upper and lower limit to infer ’significance’ of distance is not symmetric. The practical
relevance of Hartmann’s findings have been demonstrated by Schoeneich and Klapp (1998). To
calculate Hartmann’s version of the standardized distances see distanceHartmann()

Usage

distanceSlater(x, trim = 20, index = TRUE)

Arguments

x repgrid object.
trim The number of characters a construct or element is trimmed to (default is 20). If

NA no trimming occurs. Trimming simply saves space when displaying correla-
tion of constructs with long names.

index Whether to print the number of the construct or element in front of the name
(default is TRUE). This is useful to avoid identical row names, which may cause
an error.

60 distanceSlater

Value

A matrix with Slater distances.

Calculation

The Slater distance is calculated as follows. For a derivation see Slater (1977, p.94).
Let matrix D contain the row centered ratings. Then

P = DTD

and
S = tr(P)

The expected ’unit of expected distance’ results as

U = (2S/(m− 1))1/2

where m denotes the number of elements of the grid. The standardized Slater distances is the matrix
of Euclidean distances E divided by the expected distance U .

E/U

References

Hartmann, A. (1992). Element comparisons in repertory grid technique: Results and consequences
of a Monte Carlo study. International Journal of Personal Construct Psychology, 5(1), 41-56.

Schoeneich, F., & Klapp, B. F. (1998). Standardization of interelement distances in repertory grid
technique and its consequences for psychological interpretation of self-identity plots: An empirical
study. Journal of Constructivist Psychology, 11(1), 49-58.

Slater, P. (1977). The measurement of intrapersonal space by Grid technique. Vol. II. London:
Wiley.

See Also

distanceHartmann()

Examples

distanceSlater(bell2010)
distanceSlater(bell2010, trim = 40)

d <- distanceSlater(bell2010)
print(d)
print(d, digits = 4)

using Norris and Makhlouf-Norris (problematic) cutoffs
print(d, cutoffs = c(.8, 1.2))

elementCor 61

elementCor Calculate the correlations between elements.

Description

Note that simple element correlations as a measure of similarity are flawed as they are not invariant
to construct reflection (Mackay, 1992; Bell, 2010). A correlation index invariant to construct reflec-
tion is Cohen’s rc measure (1969), which can be calculated using the argument rc=TRUE which is
the default option.

Usage

elementCor(x, rc = TRUE, method = "pearson", trim = 20, index = TRUE)

Arguments

x repgrid object.

rc Use Cohen’s rc which is invariant to construct reflection (see description above).
It is used as the default.

method A character string indicating which correlation coefficient is to be computed.
One of "pearson" (default), "kendall" or "spearman", can be abbreviated.
The default is "pearson".

trim The number of characters a construct is trimmed to (default is 20). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

index Whether to print the number of the construct.

Value

matrix of element correlations

References

Bell, R. C. (2010). A note on aligning constructs. Personal Construct Theory & Practice, (7),
42-48.

Cohen, J. (1969). rc: A profile similarity coefficient invariant over variable reflection. Psychological
Bulletin, 71(4), 281-284.

Mackay, N. (1992). Identification, Reflection, and Correlation: Problems In The Bases Of Reper-
tory Grid Measures. International Journal of Personal Construct Psychology, 5(1), 57-75.

See Also

constructCor()

62 elementRmsCor

Examples

elementCor(mackay1992) # Cohen's rc
elementCor(mackay1992, rc = FALSE) # PM correlation
elementCor(mackay1992, rc = FALSE, method = "spearman") # Spearman correlation

format output
elementCor(mackay1992, trim = 6)
elementCor(mackay1992, index = FALSE, trim = 6)

save as object for further processing
r <- elementCor(mackay1992)
r

change output of object
print(r, digits = 5)
print(r, col.index = FALSE)
print(r, upper = FALSE)

accessing elements of the correlation matrix
r[1, 3]

elementRmsCor Root mean square (RMS) of inter-element correlations.

Description

The RMS is also known as ’quadratic mean’ of the inter-element correlations. The RMS serves as
a simplification of the correlation table. It reflects the average relation of one element with all other
elements. Note that as the correlations are squared during its calculation, the RMS is not affected
by the sign of the correlation (cf. Fransella, Bell & Bannister, 2003, p. 86).

Usage

elementRmsCor(x, rc = TRUE, method = "pearson", trim = NA)

Arguments

x repgrid object.

rc Whether to use Cohen’s rc which is invariant to construct reflection (see descrip-
tion above). It is used as the default.

method A character string indicating which correlation coefficient to be computed. One
of "pearson" (default), "kendall" or "spearman", can be abbreviated. The
default is "pearson".

trim The number of characters an element is trimmed to (default is NA). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs with long names.

elements 63

Details

Note that simple element correlations as a measure of similarity are flawed as they are not invariant
to construct reflection (Mackay, 1992; Bell, 2010). A correlation index invariant to construct reflec-
tion is Cohen’s rc measure (1969), which can be calculated using the argument rc=TRUE which is
the default option in this function.

Value

dataframe of the RMS of inter-element correlations.

References

Fransella, F., Bell, R. C., & Bannister, D. (2003). A Manual for Repertory Grid Technique (2. Ed.).
Chichester: John Wiley & Sons.

See Also

constructRmsCor(), elementCor()

Examples

data from grid manual by Fransella, Bell and Bannister
elementRmsCor(fbb2003)
elementRmsCor(fbb2003, trim = 10)

modify output
r <- elementRmsCor(fbb2003)
print(r, digits = 5)

access second row of calculation results
r[2, "RMS"]

elements Get or replace element names

Description

Allows to get and set element names. Replaces the older functions getElementNames, getElementNames2,
and eNames which are deprecated.

Usage

elements(x)

elements(x, position) <- value

64 gridlist

Arguments

x A repgrid object.

position Index where to insert element.

value Character vector of element names.

Examples

copy Boeker grid to x
x <- boeker

get element names
e <- elements(x)
e

replace element names
elements(x) <- rev(e) # reverse all element names
elements(x)[1] <- "Hannes" # replace name of first element

replace names of elements 1 and 3
elements(x)[c(1, 3)] <- c("element 1", "element 3")

gridlist Add repgrids into a gridlist

Description

Add repgrids into a gridlist

Test or create object of class gridlist

Usage

gridlist(...)

is.gridlist(x)

as.gridlist(x)

Arguments

... Objects to be converted into gridlist

x Any object.

grids_leave_n_out 65

grids_leave_n_out Resample constructs

Description

The goal of resampling is to build variations of a single grid. Two variants are implemented: The
first is the leave-n-out approach which builds all possible grids when dropping n constructs. The
second is a bootstrap approach, randomly drawing n constructs from the grid.

Usage

grids_leave_n_out(x, n = 0)

grids_bootstrap(x, n = nrow(x), reps = 100, replace = TRUE)

Arguments

x A repgrid object.

n Number of constructs to drop or to sample in each generated grid.

reps Number of grids to generate.

replace Resample constructs with replacement?

Value

List of grids.

Examples

All results for PVAFF index when one construct is left out
p <- indexPvaff(boeker)
l <- grids_leave_n_out(boeker, n = 1)
pp <- sapply(l, indexPvaff) # apply indexPvaff function to all grids
range(pp) # min and max PVAFF
hist(pp, xlab = "PVAFF values") # visualize
abline(v = p, col = "blue", lty = 2)

home Rotate the interactive 3D device to default views.

Description

Rotate the interactive 3D device to a default viewpoint or to a position defined by theta and phi in
Euler angles. Three default viewpoints are implemented rendering a view so that two axes span a
plane and the third axis is pointing out of the screen.

66 importDataframe

Usage

home(view = 1, theta = NULL, phi = NULL)

Arguments

view Numeric. Specifying one of three default views. 1 = XY, 2=XZ and 3=YZ-
plane.

theta Numeric. Euler angle. Overrides view setting.

phi Numeric. Euler angle. Overrides view setting.
return NULL.

See Also

Interactive 3D biplots: biplot3d(), biplotSlater3d(), biplotEsa3d().

Examples

Not run:

biplot3d(boeker)
home(2)
home(3)
home(1)
home(theta = 45, phi = 45)

End(Not run)

importDataframe Convert a dataframe into a repgrid object.

Description

There are three different dataframe formats from which a repgrid object can be created: Columns
are a) element_columns, b) construct_columns, c) long. Three corresponding sample dataframes,
(df_element_columns, df_construct_columns, and df_long) are included in the package (see exam-
ples). See Detail section below for more info.

Usage

importDataframe(
x,
format = "element_columns",
rmin = NULL,
rmax = NULL,
pole_sep = ":"

)

importDataframe 67

Arguments

x A dataframe. See Detail section and examples for required format.

format One of element_columns (default), construct_columns, or long. See corre-
sponding sections below.

rmin, rmax Min and max of rating scale.

pole_sep Character(s) to seperate the constructs poles (defaults to a colon) for format
construct_columns. Without a separator, constructs are used as right poles, all
left poles will be NA.

Value

A ‘repgrid“ object.

Format element_columns

In this format, each element has a separate column, and each row contains the ratings for one
construct. It is a common way to represent grid data and looks like this.

1 element_1 element_2 element_3 element_4 5 preferred
left_pole_1 1 5 3 4 right_pole_1 left
left_pole_2 3 1 1 3 right_pole_2 right
left_pole_3 4 2 5 1 right_pole_3 NA

The columns names contains the minimum of the rating scale (1), the names of the elements
(element_1 to element_4), the maximum of the rating scale (5), and optionally the column preferred,
indicating the preferred pole. Each row contains the constructs entries (left pole, ratings, right pole,
preferred pole). The preferred pole must be one of left, right, none, NA (see preferredPoles()).
See sample dataframe df_element_columns.

Format construct_columns

In this format, each construct has a separate column, and each row contains represents element.
This format often results when summarising data (see examples). It looks like this:

The first column is named elements followed by the constructs. The construct poles are separated
by a colon by default (see arg pole_sep). The rows below contain the elements’ entries (element
name, ratings). The min and max of the rating scale should be passed explicitly via the args rmin
and rmax. See sample dataframe df_construct_columns.

elements left_pole_1:right_pole_1 left_pole_2:right_pole_2 left_pole_3:right_pole_3
element_1 1 5 3
element_2 3 1 1
element_3 4 2 5

68 importExcel

Format long

The long format gets its name from the fact, that it has less columns, but many more rows. It is a
common format in data analytics. Here, each row contains a different element-construct combina-
tion and the corresponding rating value. The format looks like this:

element left_pole right_pole rating preferred_pole rmin rmax
element 1 left pole 1 right pole 1 1 left 1 5
element_2 left pole 1 right pole 1 5 left 1 5
element_3 left pole 1 right pole 1 4 left 1 5

The columns element, left_pole, right_pole, and rating are mandatory, the columns preferred_pole,
rmin, and rmax are optional. rmin and rmax contain the min and max of the rating scale. Alter-
natively, you may pass rmin and rmax as arguments in the function call. See sample dataframe
df_long.

See Also

Import data importExcel(), importGridcor(), importGridstat(), importGridsuite(), importScivesco(),
importTxt()

Examples

dataframe with elements as columns (preferred way)
importDataframe(df_element_columns)

dataframe with constructs as columns
importDataframe(df_construct_columns, format = "construct_columns", rmin = 1, rmax = 5)

dataframe with long format
importDataframe(df_long, format = "long", rmin = 1, rmax = 5)

importExcel Import grid data from an Excel file.

Description

You can define a grid in a Microsoft Excel file (suffix .xlsx). The file must have one of two formats
(wide or long, see format sections below).

Usage

importExcel(file, sheet = 1, format = "wide", rmin = NULL, rmax = NULL)

importExcel 69

Arguments

file Path(s) to Excel file(s) (suffix .xlsx).
sheet Names or indexes of sheet with grid data to import.
format Two formats are supported. wide (default): each column represents one element,

each row represent one constructs. long: each row contains one rating value for
a element-construct combination. See sections below and examples.

rmin, rmax Min and max of the rating scale (numeric, default NULL).

Value

A repgrid object (one input file) or a named list with repgrid objects (several input files). List
names are filename + sheet.

Format wide

In the wide format, each element has a separate column, and each row contains the ratzings for one
construct. It is a common way to represent grid data and looks like this:

1 element_1 element_2 element_3 element_4 5 preferred
left_pole_1 1 5 3 4 right_pole_1 left
left_pole_2 3 1 1 3 right_pole_2 right
left_pole_3 4 2 5 1 right_pole_3 NA

The header row contains the minimum of the rating scale (1), the names of the elements (element_1
to element_4), the maximum of the rating scale (5), and optionally the column preferred, indi-
cating the preferred pole. Each row contains the constructs entries (left pole, ratings, right pole,
preferred pole). The preferred pole must be one of left, right, none, NA (see preferredPoles()).

Format long

The long format has this name because it has few columns and many rows. It is a common for-
mat in data analytics. Here, each row contains a different element-construct combination and the
corresponding rating value. The format looks like this:

element left_pole right_pole rating preferred_pole rmin rmax
element 1 left pole 1 right pole 1 1 left 1 5
element_2 left pole 1 right pole 1 5 left 1 5
element_3 left pole 1 right pole 1 4 left 1 5

The columns element, left_pole, right_pole, and rating are mandatory, the columns preferred_pole,
rmin, and rmax are optional. rmin and rmax contain the min and max of the rating scale. Alterna-
tively, you may pass rmin and rmax as arguments in the function call.

See Also

Import data importDataframe(), importGridcor(), importGridstat(), importGridsuite(),
importScivesco(), importTxt()

70 importGridcor

Examples

file <- system.file("extdata", "grid_01.xlsx", package = "OpenRepGrid")
rg_1 <- importExcel(file, sheet = "wide")
rg_2 <- importExcel(file, sheet = "long", format = "long")

Open sample file to inspect it (requires Excel to be installed).
Not run:
browseURL(file) # may not work on all systems
End(Not run)

Import more than one Excel file
files <- system.file("extdata", c("grid_01.xlsx", "grid_02.xlsx"), package = "OpenRepGrid")
rgs <- importExcel(files) # returns a list of grids

Impoort from several sheets at once (all must have same format)
file <- system.file("extdata", "grid_03.xlsx", package = "OpenRepGrid")
rgs <- importExcel(file, sheet = 1:3) # by index
rgs <- importExcel(file, sheet = c("grid 1", "grid 2", "grid 3")) # or by name

importGridcor Import GRIDCOR data files.

Description

Reads the file format that is used by the grid program GRIDCOR (Feixas & Cornejo, 2002).

Usage

importGridcor(file, dir = NULL)

Arguments

file filename including path if file is not in current working directory. File can also
be a complete URL. The fileformat is .dat.

dir alternative way to supply the directory where the file is located (default NULL).

Value

a single repgrid object in case one file and a list of repgrid objects in case multiple files are
imported.

Note

Note that the GRIDCOR data sets the minimum ratings scale range to 1. The maximum value can
differ and is defined in the data file.

Also note that both Gridcor and Gridstat data files do have the same suffix .dat. Make sure not to
mix them up.

importGridstat 71

References

Feixas, G., & Cornejo, J. M. (2002). GRIDCOR: Correspondence Analysis for Grid Data (version
4.0). Barcelona: Centro de Terapia Cognitiva. Retrieved from https://repertorygrid.net/en/.

See Also

Import data importDataframe(), importExcel(), importGridstat(), importGridsuite(), importScivesco(),
importTxt()

Examples

Not run:

supposing that the data file gridcor.dat is in the current directory
file <- "gridcor.dat"
rg <- importGridcor(file)

specifying a directory (arbitrary example directory)
dir <- "/Users/markheckmann/data"
rg <- importGridcor(file, dir)

using a full path
rg <- importGridcor("/Users/markheckmann/data/gridcor.dat")

End(Not run)

importGridstat Import Gridstat data files.

Description

Reads the file format that is used by the latest version of the grid program gridstat (Bell, 1998).

Usage

importGridstat(file, dir = NULL, min = NULL, max = NULL)

Arguments

file Filename including path if file is not in current working directory. File can also
be a complete URL. The fileformat is .dat.

dir Alternative way to supply the directory where the file is located (default NULL).

min Optional argument (numeric, default NULL) for minimum rating value in grid.

max Optional argument (numeric, default NULL) for maximum rating value in grid.

https://repertorygrid.net/en/

72 importGridstat

Value

A single repgrid object in case one file and a list of repgrid objects in case multiple files are
imported.

Note

Note that the gridstat data format does not contain explicit information about the range of the rating
scale used (minimum and maximum). By default the range is inferred by scanning the ratings and
picking the minimal and maximal values as rating range. You can set the minimal and maximal
value by hand using the min and max arguments or by using the setScale() function. Note that if
the rating range is not set, it may cause several functions to not work properly. A warning will be
issued if the range is not set explicitly when using the importing function.

The function only reads data from the latest GridStat version. The latest version allows the separa-
tion of the left and right pole by using on of the following symbols /:- (hyphen, colon and dash).
Older versions may not separate the left and right pole. This will cause all labels to be assigned
to the left pole only when importing. You may fix this by simply entering one of the construct
separator symbols into the GridStat file between each left and right construct pole.

The third line of a GridStat file may contain a no labels statement (i.e. a line containing any string
of ’NOLA’, ’NO L’, ’NoLa’, ’No L’, ’Nola’, ’No l’, ’nola’ or ’no l’). In this case only ratings are
supplied, hence, default names are assigned to elements and constructs.

References

Bell, R. C. (1998) GRIDSTAT: A program for analyzing the data of a repertory grid. Melbourne:
Author.

See Also

Import data importDataframe(), importExcel(), importGridcor(), importGridsuite(), importScivesco(),
importTxt()

Examples

Not run:

supposing that the data file gridstat.dat is in the current working directory
file <- "gridstat.dat"
rg <- importGridstat(file)

specifying a directory (example)
dir <- "/Users/markheckmann/data"
rg <- importGridstat(file, dir)

using a full path (example)
rg <- importGridstat("/Users/markheckmann/data/gridstat.dat")

setting rating scale range
rg <- importGridstat(file, dir, min = 1, max = 6)

End(Not run)

importGridsuite 73

importGridsuite Import Gridsuite data files.

Description

Import Gridsuite data files.

Usage

importGridsuite(file, dir = NULL)

Arguments

file Filename including path if file is not in current working directory. File can also
be a complete URL. The fileformat is .dat.

dir Alternative way to supply the directory where the file is located (default NULL).

Value

A single repgrid object in case one file and a list of repgrid objects in case multiple files are
imported.

Note

The developers of Gridsuite have proposed to use an XML scheme as a standard exchange format
for repertory grid data (Walter, Bacher & Fromm, 2004).

TODO: The element and construct IDs are not used yet. Thus, if the output should be in different
order the current mechanism will cause false assignments.

References

http://www.gridsuite.de/

Walter, O. B., Bacher, A., & Fromm, M. (2004). A proposal for a common data exchange format for
repertory grid data.Journal of Constructivist Psychology, 17(3), 247. doi:10.1080/10720530490447167

See Also

Import data importDataframe(), importExcel(), importGridcor(), importGridstat(), importScivesco(),
importTxt()

http://www.gridsuite.de/
https://doi.org/10.1080/10720530490447167

74 importScivesco

Examples

Not run:

supposing that the data file gridsuite.xml is in the current directory
file <- "gridsuite.xml"
rg <- importGridsuite(file)

specifying a directory (arbitrary example directory)
dir <- "/Users/markheckmann/data"
rg <- importGridsuite(file, dir)

using a full path
rg <- importGridsuite("/Users/markheckmann/data/gridsuite.xml")

End(Not run)

importScivesco Import sci:vesco data files.

Description

Import sci:vesco data files.

Usage

importScivesco(file, dir = NULL)

Arguments

file Filename including path if file is not in current working directory. File can also
be a complete URL. The fileformat is .dat.

dir Alternative way to supply the directory where the file is located (default NULL).

Value

A single repgrid object in case one file and a list of repgrid objects in case multiple files are
imported.

Note

Sci:Vesco offers the options to rate the construct poles separately or using a bipolar scale. The
separated rating is done using the "tetralemma" field. The field is a bivariate plane on which each of
the four (tetra) corners has a different meaning in terms of rating. Using this approach also allows
ratings like: "both poles apply", "none of the poles apply" and all intermediate ratings can be chosen.
This relaxes the bipolarity assumption often assumed in grid theory and allows for deviation from
a strict bipolar rating if the constructs are not applied in a bipolar way. Using the tetralemma field
for rating requires to analyze each construct separately though. This means we get a double entry

importTxt 75

grid where the emergent and contrast pole ratings might not simply be a reflection of on another.
The tetralemma field is not yet supported and importing will fail. Currently only bipolar ratings are
supported.

If a tetralemma field has been used for rating, OpenRepGrid will offer the option to transform the
scores into "normal" grid ratings (i.e. restricted to bipolarity) by projecting the ratings from the
bivariate tetralemma field onto the diagonal of the tetralemma field and thus forcing a bipolar rating
type. This option is not recommended due to the fact that the conversion is susceptible to error
when both ratings are near to zero.

TODO: For developers: The element IDs are not used yet. This might cause wrong assignments.

References

Menzel, F., Rosenberger, M., Buve, J. (2007). Emotionale, intuitive und rationale Konstrukte ver-
stehen. Personalfuehrung, 4(7), 91-99.

See Also

Import data importDataframe(), importExcel(), importGridcor(), importGridstat(), importGridsuite(),
importTxt()

Examples

Not run:

supposing that the data file scivesco.scires is in the current directory
file <- "scivesco.scires"
rg <- importScivesco(file)

specifying a directory (arbitrary example directory)
dir <- "/Users/markheckmann/data"
rg <- importScivesco(file, dir)

using a full path
rg <- importScivesco("/Users/markheckmann/data/scivesco.scires")

End(Not run)

importTxt Import grid data from a text file.

Description

You can define a grid using a standard text editor and saving it as a .txt file. The Details section
describes the required format of the .txt file. However, you may also consider using the Excel
format instead, as it has a more intuitive format (see importExcel()).

Usage

importTxt(file, dir = NULL, min = NULL, max = NULL)

76 importTxt

Arguments

file A vector of filenames including the full path if file is not in current working
directory. File can also be a complete URL. The file suffix has to be .txt.

dir Alternative way to supply the directory where the file is located (default NULL).

min Optional argument (numeric, default NULL) for minimum rating value in grid.

max Optional argument (numeric, default NULL) for maximum rating value in grid.

Details

The .txt file has to be in a fixed format. There are three mandatory blocks each starting and ending
with a predefined tag in uppercase letters. The first block starts with ELEMENTS and ends with
END ELEMENTS. It contains one element per line. The other mandatory blocks are CONSTRUCTS and
RATINGS (see below). In the block containing the constructs the left and right pole are separated by
a colon (:). To define missing values use NA. The block PREFERRED is optional. Each line indicated
the preferred construct pole. Allowed values are left, right, none (no pole preferred), and NA
(unknown). The block RANGE is optional but recommended. It gives the rating scale range defined
by two numbers. The order of the blocks is arbitrary. All text oustide the blocks is discarded and
can be used for comments.

The content of a sample .txt file is shown below. The package also contains a sample file (see
Examples).

---------------- sample .txt file -------------------

Note: anything outside the tag pairs is discarded

ELEMENTS
element 1
element 2
element 3
END ELEMENTS

CONSTRUCTS
left pole 1 : right pole 1
left pole 2 : right pole 2
left pole 3 : right pole 3
left pole 4 : right pole 4
END CONSTRUCTS

PREFERRED
left
left
right
none
END PREFERRED

RATINGS
1 3 2

importTxt 77

4 1 1
1 4 4
3 1 1
END RATINGS

RANGE
1 4
END RANGE

------------------ end of file ------------------

Note that the maximum and minimum value has to be defined using the min and max arguments if no
RANGE block is contained in the data file. Otherwise the scaling range is inferred from the available
data and a warning is issued as the range may be erroneous. This may effect other functions that
depend on knowing the correct range and it is thus strongly recommended to set the scale range
correctly.

Value

A single `repgrid` object in case one file and
a list of `repgrid` objects in case multiple files are imported.

See Also

Import data importDataframe(), importExcel(), importGridcor(), importGridstat(), importGridsuite(),
importScivesco()

Examples

Import a .txt file delivered along with the package
file <- system.file("extdata", "grid_01.txt", package = "OpenRepGrid")
rg <- importTxt(file)

To see the structure of the file, try opening it as follows.
(may not work on all systems)
Not run:
file.show(file)

End(Not run)

Import more than one .txt file
files <- system.file("extdata", c("grid_01.txt", "grid_02.txt"), package = "OpenRepGrid")
rgs <- importTxt(files)

78 indexBias

indexBias Calculate ’bias’ of grid as defined by Slater (1977).

Description

"Bias records a tendency for responses to accumulate at one end of the grading scale" (Slater, 1977,
p.88).

Usage

indexBias(x, min = NULL, max = NULL, digits = 2)

Arguments

x repgrid object.

min, max Minimum and maximum grid scale values. Nor needed if they are set for the
grid.

digits Numeric. Number of digits to round to (default is 2).

Value

Numeric.

Note

STATUS: Working and checked against example in Slater, 1977, p. 87.

References

Slater, P. (1977). The measurement of intrapersonal space by Grid technique. London: Wiley.

See Also

indexVariability()

Examples

indexBias(boeker)

indexBieri 79

indexBieri Bieri’s index of cognitive complexity

Description

The index builds on the number of rating matches between pairs of constructs. It is the relation
between the total number of matches and the possible number of matches.

Usage

indexBieri(x, deviation = 0)

Arguments

x A repgrid object.

deviation Maximal difference between ratings to be considered a match (default 0 = iden-
tical scores for a match).

Details

CAVEAT: The Bieri index will change when constructs are reversed.

Value

List of class indexBieri:

• grid: The grid used to calculate the index

• deviation The deviation parameter.

• matches_max Maximum possible number of matches across constructs.

• matches Total number of matches across constructs.

• constructs: Matrix with no. of matches for constructs.

• bieri: Bieri index (= matches / matches_max)

Examples

m <- indexBieri(boeker)

several output options
print(m)
print(m, output = "IC") # construct matches

extract the matrix of matches
m$constructs

CAVEAT: Bieri's index changes when constructs are reversed
nr <- nrow(boeker)
l <- replicate(1000, swapPoles(boeker, sample(nr, sample(nr, 1))))

80 indexConflict1

bieri <- sapply(l, function(x) indexBieri(x)$bieri)
hist(bieri, breaks = 50)
abline(v = mean(bieri), col = "red", lty = 2)

indexConflict1 Conflict measure for grids (Slade & Sheehan, 1979) based on correla-
tions.

Description

Conflict measure as proposed by Slade and Sheehan (1979)

Usage

indexConflict1(x)

Arguments

x repgrid object.

Details

The first approach to mathematically derive a conflict measure based on grid data was presented
by Slade and Sheehan (1979). Their operationalization is based on an approach by Lauterbach
(1975) who applied the balance theory (Heider, 1958) for a quantitative assessment of psychological
conflict. It is based on a count of balanced and imbalanced triads of construct correlations. A triad is
imbalanced if one or all three of the correlations are negative, i. e. leading to contrary implications.
This approach was shown by Winter (1982) to be flawed. An improved version was proposed by
Bassler et al. (1992) and has been implemented in the function indexConflict2.

The table below shows when a triad made up of the constructs A, B, and C is balanced and imbal-
anced:

cor(A,B) cor(A,C) cor(B,C) Triad characteristic
+ + + balanced
+ + - imbalanced
+ - + imbalanced
+ - - balanced
- + + imbalanced
- + - balanced
- - + balanced
- - - imbalanced

indexConflict2 81

Value

A list with the following elements:

• total: Total number of triads

• imbalanced: Number of imbalanced triads

• prop.balanced: Proportion of balanced triads

• prop.imbalanced: Proportion of imbalanced triads

References

Bassler, M., Krauthauser, H., & Hoffmann, S. O. (1992). A new approach to the identification
of cognitive conflicts in the repertory grid: An illustrative case study. Journal of Constructivist
Psychology, 5(1), 95-111.

Heider, F. (1958). The Psychology of Interpersonal Relation. John Wiley & Sons.

Lauterbach, W. (1975). Assessing psychological conflict. The British Journal of Social and Clinical
Psychology, 14(1), 43-47.

Slade, P. D., & Sheehan, M. J. (1979). The measurement of ’conflict’ in repertory grids. British
Journal of Psychology, 70(4), 519-524.

Winter, D. A. (1982). Construct relationships, psychological disorder and therapeutic change. The
British Journal of Medical Psychology, 55 (Pt 3), 257-269.

See Also

indexConflict2() for an improved version of this measure; see indexConflict3() for a measure
based on distances.

Examples

indexConflict1(feixas2004)
indexConflict1(boeker)

indexConflict2 Conflict measure for grids (Bassler et al., 1992) based on correlations.

Description

The function calculates the conflict measure as devised by Bassler et al. (1992). It is an improved
version of the ideas by Slade and Sheehan (1979) that have been implemented in the function
indexConflict1(). The new approach also takes into account the magnitude of the correlations
in a trait to assess whether it is balanced or imbalanced. As a result, small correlations that are
psychologically meaningless are considered accordingly. Also, correlations with a small magnitude,
i. e. near zero, which may be positive or negative due to chance alone will no longer distort the
measure (Bassler et al., 1992).

82 indexConflict2

Usage

indexConflict2(x, crit = 0.03)

Arguments

x A repgrid object.

crit Sensitivity criterion with which triads are marked as unbalanced. A bigger val-
ues will lead to less imbalanced triads. The default is 0.03. The value should
be adjusted with regard to the researchers interest.

Details

Description of the balance / imbalance assessment:

1. Order correlations of the triad by absolute magnitude, so that rmax > rmdn > rmin, rmax >
rmdn > rmin.

2. Apply Fisher’s Z-transformation and division by 3 to yield values between 1 and -1 (Zmax >
Zmdn > Zmin, Zmax > Zmdn > Zmin).

3. Check whether the triad is balanced by assessing if the following relation holds:

• If ZmaxZmdn > 0, ZmaxxZmdn > 0, the triad is balanced if ZmaxZmdn − Zmin <=
crit, ZmaxxZmdn − Zmin <= crit.

• If ZmaxZmdn < 0, ZmaxxZmdn < 0, the triad is balanced if Zmin − ZmaxZmdn <=
crit, Zmin − ZmaxxZmdn <= crit.

Personal remarks (MH)

I am a bit suspicious about step 2 from above. To devide by 3 appears pretty arbitrary. The r for
a z-values of 3 is 0.9950548 and not 1. The r for 4 is 0.9993293. Hence, why not a value of
4, 5, or 6? Denoting the value to devide by with a, the relation for the first case translates into
aZmaxZmdn <= crit

a +Zmin, axZmaxxZmdn =< crit/a+Zmin. This shows that a bigger value
of a will make it more improbable that the relation will hold.

References

Bassler, M., Krauthauser, H., & Hoffmann, S. O. (1992). A new approach to the identification
of cognitive conflicts in the repertory grid: An illustrative case study. Journal of Constructivist
Psychology, 5(1), 95-111.

Slade, P. D., & Sheehan, M. J. (1979). The measurement of ’conflict’ in repertory grids. British
Journal of Psychology, 70(4), 519-524.

See Also

See indexConflict1() for the older version of this measure; see indexConflict3() for a measure
based on distances instead of correlations.

indexConflict3 83

Examples

indexConflict2(bell2010)

x <- indexConflict2(bell2010)
print(x)

show conflictive triads
print(x, output = 2)

accessing the calculations for further use
x$total
x$imbalanced
x$prop.balanced
x$prop.imbalanced
x$triads.imbalanced

indexConflict3 Conflict or inconsistency measure for grids (Bell, 2004) based on dis-
tances.

Description

Measure of conflict or inconsistency as proposed by Bell (2004). The identification of conflict is
based on distances rather than correlations as in other measures of conflict indexConflict1() and
indexConflict2(). It assesses if the distances between all components of a triad, made up of
one element and two constructs, satisfies the "triangle inequality" (cf. Bell, 2004). If not, a triad
is regarded as conflictive. An advantage of the measure is that it can be interpreted not only as a
global measure for a grid but also on an element, construct, and element by construct level making
it valuable for detailed feedback. Also, differences in conflict can be submitted to statistical testing
procedures.

Usage

indexConflict3(
x,
p = 2,
e.out = NA,
e.threshold = NA,
c.out = NA,
c.threshold = NA,
trim = 20

)

Arguments

x repgrid object.

84 indexConflict3

p The power of the Minkowski distance. p=2 (default) will result in euclidean
distances, p=1 in city block distances.

e.out Numeric. A vector giving the indexes of the elements for which detailed stats
(number of conflicts per element, discrepancies for triangles etc.) are prompted
(default NA, i.e. no detailed stats for any element).

e.threshold Numeric. Detailed stats are prompted for those elements with a an attributable
percentage to the overall conflicts higher than the supplied threshold (default
NA).

c.out Numeric. A vector giving the indexes of the constructs for which detailed stats
(discrepancies for triangles etc.) are prompted (default NA, i. e. no detailed
stats).

c.threshold Numeric. Detailed stats are prompted for those constructs with a an attributable
percentage to the overall conflicts higher than the supplied threshold (default
NA).

trim The number of characters a construct (element) is trimmed to (default is 10).
If NA no trimming is done. Trimming simply saves space when displaying the
output.

Details

Status: working; output for euclidean and manhattan distance checked against Gridstat output.
TODO: standardization and z-test for discrepancies; Index of Conflict Variation.

Value

A list (invisibly) containing:

• potential: number of potential conflicts

• actual: count of actual conflicts

• overall: percentage of conflictive relations

• e.count: number of involvements of each element in conflictive relations

• e.perc: percentage of involvement of each element in total of conflictive relations

• c.count: number of involvements of each construct in conflictive relation

• c.perc: percentage of involvement of each construct in total of conflictive relations

• e.stats: detailed statistics for prompted elements

• c.stats: detailed statistics for prompted constructs

• e.threshold: threshold percentage. Used by print method

• c.threshold: threshold percentage. Used by print method

• enames: trimmed element names. Used by print method

• cnames: trimmed construct names. Used by print method

output

For further control over the output see print.indexConflict3().

indexDDI 85

References

Bell, R. C. (2004). A new approach to measuring inconsistency or conflict in grids. Personal
Construct Theory & Practice, (1), 53-59.

See Also

See indexConflict1() and indexConflict2() for conflict measures based on triads of correla-
tions.

Examples

calculate conflicts
indexConflict3(bell2010)

show additional stats for elements 1 to 3
indexConflict3(bell2010, e.out = 1:3)

show additional stats for constructs 1 and 5
indexConflict3(bell2010, c.out = c(1, 5))

finetune output
change number of digits
x <- indexConflict3(bell2010)
print(x, digits = 4)

omit discrepancy matrices for constructs
x <- indexConflict3(bell2010, c.out = 5:6)
print(x, discrepancies = FALSE)

indexDDI Dispersion of dependency index (DDI)

Description

Measures the degree of dispersion of dependency in a situation-resource grid (dependency grid),
i.e. the degree to which a person dispersed critical situations over resource persons (Walker et al.,
1988, p. 66). The index is a renamed adoption of the diversity index from the field of ecology
where it is used to measure the diversity of species in a sample. Both are computationally identical.
The index is applicable to dependency grids (e.g., situation-resource) only, i.e., all grid ratings must
be 0 or 1.

Usage

indexDDI(x, ds)

86 indexDDI

Arguments

x A repgrid object with 0/1 ratings only, where 1 indicates a dependency.

ds Predetermined size of sample of dependencies.

Details

Caveat: The DDI depends on the chosen sample size ds. Also, its measurement range is not
normalized between 0 and 1, allowing only comparison between similarly sized grids (see Bell,
2001).

Theoretical Background: Dispersion of Dependency: Kelly (1969) proposed that it is problematic
to view people as either independent or dependent because everyone is, to greater or lesser degrees,
dependent upon others in life. What Kelly felt was important was how well people disperse their
dependencies across different people. Whereas young children tend to have their dependencies
concentrated on a small number of people (typically parents), adults are more likely to spread their
dependencies across a variety of others. Dispersing one’s dependencies is generally considered
more psychologically adjusted for adults (Walker et al., 1988).

References

Bell, R. C. (2001). Some new Measures of the Dispersion of Dependency in a Situation-Resource
Grid. Journal of Constructivist Psychology, 14(3), 227-234, doi:10.1080/713840106.

Kelly, G. A. (1962). In whom confide: On whom depend for what. In Maher, B. (Ed.). Clinical
psychology and personality: The selected papers of George Kelly, 189-206. New York Krieger.

Walker, B. M., Ramsey, F. L., & Bell, R. (1988). Dispersed and Undispersed Dependency. Interna-
tional Journal of Personal Construct Psychology, 1(1), 63-80, doi:10.1080/10720538808412765.

See Also

indexUncertainty

Examples

sample grid from Walker et al. (1988), p. 67
file <- system.file("extdata", "dep_grid_walker_1988_2.xlsx" , package = "OpenRepGrid")
x <- importExcel(file)

indexDDI(x, ds = 2:5)

using named vector
ds = c("2"=2, "3"=3, "4"=4, "5"=5)
indexDDI(x, ds)

https://doi.org/10.1080/713840106
https://doi.org/10.1080/10720538808412765

indexDilemma 87

indexDilemma Implicative Dilemmas

Description

Implicative dilemmas are closely related to the notion of conflict. An implicative dilemma arises
when a desired change on one construct is associated with an undesired implication on another
construct. E. g. a timid subject may want to become more socially skilled but associates being
socially skilled with different negative characteristics (selfish, insensitive etc.). Hence, he may
anticipate that becoming less timid will also make him more selfish (cf. Winter, 1982). As a
consequence, the subject will resist to the change if the negative presumed implications will threaten
the patients identity and the predictive power of his construct system. From this stance the resistance
to change is a logical consequence coherent with the subjects construct system (Feixas, Saul, &
Sanchez, 2000). The investigation of the role of cognitive dilemma in different disorders in the
context of PCP is a current field of research (e.g. Feixas & Saul, 2004, Dorough et al. 2007).

Usage

indexDilemma(
x,
self = 1,
ideal = ncol(x),
diff.mode = 1,
diff.congruent = NA,
diff.discrepant = NA,
diff.poles = 1,
r.min = 0.35,
exclude = FALSE,
digits = 2,
show = FALSE,
output = 1,
index = TRUE,
trim = 20

)

Arguments

x A repgrid object.

self Numeric. Index of self element.

ideal Numeric. Index of ideal self element.

diff.mode Numeric. Method adopted to classify construct pairs into congruent and dis-
crepant. With diff.mode=1, the minimal and maximal score difference crite-
rion is applied. With diff.mode=0 the Mid-point rating criterion is applied.
Default is diff.mode=1.

88 indexDilemma

diff.congruent Is used if diff.mode=1. Maximal difference between element ratings to define
construct as congruent (default diff.congruent=1). Note that the value needs
to be adjusted by the user according to the rating scale used.

diff.discrepant

Is used if diff.mode=1. Minimal difference between element ratings to define
construct as discrepant (default diff.discrepant=3). Note that the value needs
to be adjusted by the user according to the rating scale used.

diff.poles Not yet implemented.

r.min Minimal correlation to determine implications between constructs.

exclude Whether to exclude the elements self and ideal self during the calculation of the
inter-construct correlations. (default is FALSE).

digits Numeric. Number of digits to round to (default is 2).

show Whether to additionally plot the distribution of correlations to help the user as-
sess what level is adequate for r.min.

output The type of output to return.

index Whether to print index numbers in front of each construct (default is TRUE).

trim The number of characters a construct (element) is trimmed to (default is 20).
If NA no trimming is done. Trimming simply saves space when displaying the
output.

Details

The detection of implicative dilemmas happens in two steps. First the constructs are classified as
being ’congruent’ or ’discrepant’. Secondly, the correlation between a congruent and discrepant
construct pair is assessed if it is big enough to indicate an implication.

Classifying the construct
To detect implicit dilemmas the construct pairs are first identified as ’congruent’ or ’discrepant’.
The assessment is based on the rating differences between the elements ’self’ and ’ideal self’. A
construct is ’congruent’ if the construction of the ’self’ and the preferred state (i.e. ideal self) are
the same or similar. A construct is discrepant if the construction of the ’self’ and the ’ideal’ is
dissimilar.

There are two popular accepted methods to identify congruent and discrepant constructs:

1. "Scale Midpoint criterion" (cf. Grice 2008)

2. "Minimal and maximal score difference" (cf. Feixas & Saul, 2004)

"Scale Midpoint criterion" (cf. Grice 2008)

As reported in the Idiogrid (v. 2.4) manual: "... The Scale Midpoint uses the scales as the ’dividing
line’ for discrepancies; for example, if the actual element is rated above the midpoint, then the
discrepancy exists (and vice versa). If the two selves are the same as the actual side of the scale,
then a discrepancy does not exist". As an example:

Assuming a scoring range of 1-7, the midpoint score will be 4, we then look at self and ideal-self
scoring on any given construct and we proceed as follow:

• If the scoring of Self AND Ideal Self are both < 4: construct is "Congruent"

indexDilemma 89

• If the scoring of Self AND Ideal Self are both > 4: construct is "Congruent"

• If the scoring of Self is < 4 AND Ideal Self is > 4 (OR vice versa): construct is "discrepant"

• If scoring Self OR Ideal Self = 4 then the construct is NOT Discrepant and it is "Undifferenti-
ated"

Minimal and maximal score difference criterion (cf. Feixas & Saul, 2004)

This other method is more conservative and it is designed to minimize Type I errors by a) setting a
default minimum correlation between constructs of r=.34; b) discarding cases where the ideal Self
and self are neither congruent or discrepant; c) discarding cases where ideal self is "not oriented",
i.e. scored at the midpoint.

E.g. suppose the element ’self’ is rated 2 and ’ideal self’ 5 on a scale from 1 to 6. The ratings
differences are 5-2 = 3. If this difference is smaller than e.g. 1 the construct is ’congruent’, if it is
bigger than 3 it is ’discrepant’.

The values used to classify the constructs ’congruent’ or ’discrepant’ can be determined in several
ways (cf. Bell, 2009):

1. They are set ’a priori’.

2. They are implicitly derived by taking into account the rating differences to the other constructs.
(Not yet implemented)

The value mode is determined via the argument diff.mode.

If no ’a priori’ criteria to determine whether the construct is congruent or discrepant is supplied as
an argument, the values are chosen according to the range of the rating scale used. For the following
scales the defaults are chosen as:

Scale ’A priori’ criteria
1 2 –> con: <=0 disc: >=1
1 2 3 –> con: <=0 disc: >=2
1 2 3 4 –> con: <=0 disc: >=2
1 2 3 4 5 –> con: <=1 disc: >=3
1 2 3 4 5 6 –> con: <=1 disc: >=3
1 2 3 4 5 6 7 –> con: <=1 disc: >=4
1 2 3 4 5 6 7 8 –> con: <=1 disc: >=5
1 2 3 4 5 6 7 8 9 –> con: <=2 disc: >=5
1 2 3 4 5 6 7 8 9 10 –> con: <=2 disc: >=6

Defining the correlations
As the implications between constructs cannot be derived from a rating grid directly, the correlation
between two constructs is used as an indicator for implication. A large correlation means that one
construct pole implies the other. A small correlation indicates a lack of implication. The minimum
criterion for a correlation to indicate implication is set to .35 (cf. Feixas & Saul, 2004). The user
may also choose another value. To get a an impression of the distribution of correlations in the grid,
a visualization can be prompted via the argument show. When calculating the correlation used to
assess if an implication is given or not, the elements under consideration (i. e. self and ideal self)
can be included (default) or excluded. The options will cause different correlations (see argument
exclude).

90 indexDilemma

Example of an implicative dilemma
A depressive person considers herself as ’timid’ and wished to change to the opposite pole she
defines as ’extraverted’. This construct is called discrepant as the construction of the ’self’ and the
desired state (e.g. described by the ’ideal self’) on this construct differ. The person also considers
herself as ’sensitive’ (preferred pole) for which the opposite pole is ’selfish’. This construct is
congruent, as the person construes herself as she would like to be. If the person now changed on
the discrepant construct from the undesired to the desired pole, i.e. from timid to extraverted, the
question can be asked what consequences such a change has. If the person construes being timid
and being sensitive as related and that someone who is extraverted will not be timid, a change on
the first construct will imply a change on the congruent construct as well. Hence, the positive shift
from timid to extraverted is presumed to have a undesired effect in moving from sensitive towards
selfish. This relation is called an implicative dilemma. As the implications of change on a construct
cannot be derived from a rating grid directly, the correlation between two constructs is used as an
indicator of implication.

Value

List object of class indexDilemma, containing the result from the calculations.

Author(s)

Mark Heckmann, Alejandro García, Diego Vitali

References

Bell, R. C. (2009). Gridstat version 5 - A Program for Analyzing the Data of A Repertory Grid
(manual). University of Melbourne, Australia: Department of Psychology.

Dorough, S., Grice, J. W., & Parker, J. (2007). Implicative dilemmas and psychological well-being.
Personal Construct Theory & Practice, (4), 83-101.

Feixas, G., & Saul, L. A. (2004). The Multi-Center Dilemma Project: an investigation on the role
of cognitive conflicts in health. The Spanish Journal of Psychology, 7(1), 69-78.

Feixas, G., Saul, L. A., & Sanchez, V. (2000). Detection and analysis of implicative dilemmas:
implications for the therapeutic process. In J. W. Scheer (Ed.), The Person in Society: Challenges
to a Constructivist Theory. Giessen: Psychosozial-Verlag.

Winter, D. A. (1982). Construct relationships, psychological disorder and therapeutic change.
British Journal of Medical Psychology, 55 (Pt 3), 257-269.

Grice, J. W. (2008). Idiogrid: Idiographic Analysis with Repertory Grids (Version 2.4). Oklahoma:
Oklahoma State University.

See Also

print.indexDilemma(), plot.indexDilemma()

Examples

id <- indexDilemma(boeker, self = 1, ideal = 2)
id

indexDilemmatic 91

adjust minimal correlation
indexDilemma(boeker, self = 1, ideal = 2, r.min = .5)

adjust congruence and discrepance ranges
indexDilemma(boeker, self = 1, ideal = 2, diff.congruent = 0, diff.discrepant = 4)

print options (see ?print.indexDilemma for help)
print(id, output = "D") # dilemmas only
print(id, output = "OD") # overview and dilemmas

plot dilemmas as network graph (see ?plot.indexDilemma for help)
set a seed for reproducibility
plot(id, layout = "rows")
plot(id, layout = "circle")
plot(id, layout = "star")

indexDilemmatic Dilemmatic constructs

Description

A Dilemmatic Construct (DC) is one where the ideal element is rated on the scale midpoint. This
means, the person cannot decide which of the poles is preferable. Such constructs are called "dilem-
matic". For example, on a rating scale from 1 to 7, a rating of 4 on the ideal element means that
the construct is dilemmatic. By definition, DCs can only emerge in scales with an uneven number
of rating options, i.e. 5-point scale, 7-point scale etc. However, the function makes it possible to
allow for a deviation from the midpoint, to still count as dilemmatic. This is useful if the grid uses a
large rating scale, e.g. from 0 to 100 or a visual analog scale, as some grid administration programs
do. In this case you may want to set ratings, for example, between 45 and 55 as close enough to the
midpoint to indicate that both poles are equally desirable.

Usage

indexDilemmatic(x, ideal, deviation = 0, warn = TRUE)

Arguments

x A repgrid object.

ideal Index of ideal element.

deviation The maximal deviation from the scale midpoint for an ideal rating to be consid-
ered dilemmatic (default = 0). For scales larger than a 17-point rating scale a
warning is raised, if deviation is 0 (see details).

warn Show warnings?

92 indexIntensity

Value

List of class indexDilemmatic:

• ideal: Name of the ideal element.

• n_constructs Number of grid’s constructs.

• scale: Minimum and maximum of grid rating scale.

• midpoint: Midpoint of rating scale.
• lower,upper: Lower and upper value to for a rating to be considered in the midpoint range.

• midpoint_range: Midpoint range as interval.

• n_dilemmatic: Number of dilemmatic constructs.

• perc_dilemmatic: Percentage of constructs which are dilemmatic.

• i_dilemmatic: Index of dilemmatic constructs.

• dilemmatic_constructs: Labels of dilemmatic constructs.

• summary: Summary dataframe.

Examples

dc <- indexDilemmatic(feixas2004, ideal = 13)
dc

control the output
print(dc, output = "S") # Summary
print(dc, output = "D") # Details

indexIntensity Intensity index

Description

Calculate intensity index.

Usage

indexIntensity(x, rc = FALSE, trim = 30)

Arguments

x A repgrid object.

rc Whether to use Cohen’s rc for the calculation of inter-element correlations. See
elementCor() for further explanations of this measure.

trim The number of characters a construct is trimmed to (default is 30). If NA no
trimming occurs. Trimming simply saves space when displaying correlation of
constructs or elements with long names.

indexIntensity 93

Details

The Intensity index has been suggested by Bannister (1960) as a measure of the amount of construct
linkage. Bannister suggested that the score reflects the degree of organization of the construct
system under investigation (Bannister & Mair, 1968). The index resulted from his and his colleagues
work on construction systems of patient suffering schizophrenic thought disorder. The concept of
intensity has a theoretical connection to the notion of "tight" and "loose" construing as proposed by
Kelly (1991). While tight constructs lead to unvarying prediction, loose constructs allow for varying
predictions. Bannister hypothesized that schizophrenic thought disorder is liked to a process of
extremely loose construing leading to a loss of predictive power of the subject’s construct system.
The Intensity score as a structural measure is thought to reflect this type of system disintegration
(Bannister, 1960).

Implementation as in the Gridcor program and explained on the correspoding help pages: ". . . the
sum of the squared values of the correlations of each construct with the rest of the constructs,
averaged by the total number of constructs minus one. This process is repeated with each element,
and the overall Intensity is calculated by averaging the intensity scores of constructs and elements."
(Gridcor manual). Currently the total is calculated as the unweighted average of all single scores
(for elements and construct).

Value

An object of class indexIntensity containing a list with the following elements:

c.int: Intensity scores by construct. e.int: Intensity scores by element. c.int.mean: Average
intensity score for constructs. e.int.mean: Average intensity score for elements. total.int: Total
intensity score.

Development

TODO: Results have not been tested against other programs’ results.

References

Bannister, D. (1960). Conceptual structure in thought-disordered schizophrenics. The Journal of
mental science, 106, 1230-49.

Examples

indexIntensity(bell2010)
indexIntensity(bell2010, trim = NA)

using Cohen's rc for element correlations
indexIntensity(bell2010, rc = TRUE)

save output
x <- indexIntensity(bell2010)
x

printing options
print(x, digits = 4)

94 indexPolarization

accessing the objects' content
x$c.int
x$e.int
x$c.int.mean
x$e.int.mean
x$total.int

indexPolarization Polarization (percentage of extreme ratings)

Description

Polarization is the percentage of extreme ratings, e.g. the values 1 and 7 for a grid with a 7-point
ratings scale.

Usage

indexPolarization(x, deviation = 0)

Arguments

x A repgrid object.

deviation The maximal deviation from the end of the rating scale for values to be consid-
ered an ’extreme’ rating. By default only values that lie directly on ends of the
ratings scales are considered ’extreme’ (default = 0).

Value

List of class indexPolarization:

• scale: Minimum and maximum of grid rating scale.
• lower,upper Lower and upper value to decide which ratings are considered extreme.

• polarization_total: Grid’s overall polarization.

• polarization_constructs: Polarization per construct.

• polarization_elements: Polarization per element.

Examples

p <- indexPolarization(boeker)
p

control the output
print(p, output = "T") # total polarization
print(p, output = "C") # construct polarization
print(p, output = "E") # element polarization

indexPvaff 95

indexPvaff Percentage of Variance Accounted for by the First Factor (PVAFF)

Description

The PVAFF is used as a measure of cognitive complexity. It was introduced in an unpublished PhD
thesis by Jones (1954, cit. Bonarius, 1965). To calculate it, the ’first factor’ two different methods
may be used. One applies principal component analysis (PCA) to the construct centered raw data
(default), the second applies SVD to the construct correlation matrix. The PVAFF reflects the
amount of variation that is accounted for by a single linear component. If a single latent component
is able to explain the variation in the grid, the cognitive complexity is said to be low. In this case
the construct system is regarded as ’simple’ (Bell, 2003).

Usage

indexPvaff(x, method = 1)

Arguments

x repgrid object.

method Method to compute PVAFF: 1 = PCA is applied to raw data with centered con-
structs (default), 2 = SVD of construct correlation matrix.

References

Bell, R. C. (2003). An evaluation of indices used to represent construct structure. In G. Chiari &
M. L. Nuzzo (Eds.), Psychological Constructivism and the Social World (pp. 297-305). Milan:
FrancoAngeli.

Bonarius, J. C. J. (1965). Research in the personal construct theory of George A. Kelly: role
construct repertory test and basic theory. In B. A. Maher (Ed.), Progress in experimental personality
research (Vol. 2). New York: Academic Press.

James, R. E. (1954). Identification in terms of personal constructs (Unpublished doctoral thesis).
Ohio State University, Columbus, OH.

Examples

indexPvaff(bell2010)

96 indexSelfConstruction

indexSelfConstruction Self construction profile

Description

TBD

Usage

indexSelfConstruction(
x,
self,
ideal,
others = c(-self, -ideal),
method = "euclidean",
p = 2,
normalize = TRUE,
round = FALSE

)

Arguments

x A repgrid object.

self Numeric. Index of self element.

ideal Numeric. Index of ideal element.

others Numeric. Index(es) of self related "other" elements (e.g. father, friend).

method The distance or correlation measure:

• Distances: euclidean, manhattan, maximum, canberra, binary, minkowski
• Correlations: pearson, kendall, spearman

p The power of the Minkowski distance, in case minkowski is used as argument
for method, otherwise it is ignored.

normalize Normalize values?

round Round average rating scores for ’others’ to closest integer?

Value

List object of class indexSelfConstruction, containing the results from the calculations:

• grid: Reduced grid with self, ideal and others

• method_type: method type (correlation or distance)

• method: correlation or distance method used

• self_element: name of the self element

• ideal_element: name of the ideal element

indexUncertainty 97

• other_elements: name(s) of other elements

• self_ideal: measure between self and ideal

• self_others: measure between self and others

• ideal_others: measure betwen ideal and others

References

TBD

Examples

using distance measures
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "euclidean")
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "manhattan")
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "minkowski", p = 3)

using correlation measures
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "pearson")
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "spearman")

using not-normalized distances
indexSelfConstruction(boeker, 1, 2, c(3:11), method = "euclidean", normalize = FALSE)

printing the results (biplot only works with)
cp <- indexSelfConstruction(boeker, 1, 2, c(3:11))
cp$grid # grid with self, ideal and others
biplot2d(cp$grid, center = 4) # midopoint centering

indexUncertainty Uncertainty index

Description

A measure for the degree of dispersion of dependency in a dependency grid (Bell, 2001). It is
normalized measure with a value range between 0 and 1. The index is applicable to dependency
grids (e.g., situation-resource) only, i.e., all grid ratings must be 0 or 1.

Usage

indexUncertainty(x)

Arguments

x A repgrid object with 0/1 ratings only, where 1 indicates a dependency.

98 indexVariability

Details

Theoretical Background: Dispersion of Dependency: Kelly (1969) proposed that it is problematic
to view people as either independent or dependent because everyone is, to greater or lesser degrees,
dependent upon others in life. What Kelly felt was important was how well people disperse their
dependencies across different people. Whereas young children tend to have their dependencies
concentrated on a small number of people (typically parents), adults are more likely to spread their
dependencies across a variety of others. Dispersing one’s dependencies is generally considered
more psychologically adjusted for adults (Walker et al., 1988).

References

Bell, R. C. (2001). Some new Measures of the Dispersion of Dependency in a Situation-Resource
Grid. Journal of Constructivist Psychology, 14(3), 227-234, doi:10.1080/713840106.

See Also

indexDDI

Examples

sample grid from Bell (2001, p.231)
file <- system.file("extdata", "dep_grid_bell_2001.xlsx" , package = "OpenRepGrid")
x <- importExcel(file)

indexUncertainty(x)

indexVariability Calculate ’variability’ of a grid as defined by Slater (1977).

Description

Variability records a tendency for the responses to gravitate towards both end of the gradings scale.
(Slater, 1977, p.88).

Usage

indexVariability(x, min = NULL, max = NULL, digits = 2)

Arguments

x repgrid object.

min, max Minimum and maximum grid scale values. Nor needed if they are set for the
grid.

digits Numeric. Number of digits to round to (default is 2).

Value

Numeric.

https://doi.org/10.1080/713840106

is.repgrid 99

Note

STATUS: working and checked against example in Slater, 1977 , p.88.

References

Slater, P. (1977). The measurement of intrapersonal space by Grid technique. London: Wiley.

See Also

indexBias()

Examples

indexVariability(boeker)

is.repgrid Test if object has class repgrid

Description

Test if object has class repgrid

Usage

is.repgrid(x)

Arguments

x Any object.

midpoint Midpoint of the grid rating scale

Description

Midpoint of the grid rating scale

Usage

midpoint(x)

Arguments

x repgrid object.

100 normalize

Value

Midpoint of scale.

Examples

midpoint(bell2010)

normalize Normalize rows or columns by its standard deviation.

Description

Normalize rows or columns by its standard deviation.

Usage

normalize(x, normalize = 0, ...)

Arguments

x matrix

normalize A numeric value indicating along what direction (rows, columns) to normalize
by standard deviations. 0 = none, 1= rows, 2 = columns (default is 0).

... Not evaluated.

Value

Not yet defined TODO!

Examples

x <- matrix(sample(1:5, 20, rep = TRUE), 4)
normalize(x, 1) # normalizing rows
normalize(x, 2) # normalizing columns

OpenRepGrid 101

OpenRepGrid OpenRepGrid: an R package for the analysis of repertory grids.

Description

The OpenRepGrid package provides tools for the analysis of repertory grid data. The repertory
grid is a method devised by George Alexander Kelly in his seminal work "The Psychology of
Personal Constructs" published in 1955. The repertory grid has been used in and outside the context
of Personal Construct Psychology (PCP) in a broad range of fields. For an introduction into the
technique see e.g. Fransella, Bell and Bannister (2003).

Note

To get started with OpenRepGrid visit the project’s home under openrepgrid.org. On this site you
will find tutorials, explanation about the theory, the analysis methods and the corresponding R code.

To see how to cite the OpenRepGrid package, type citation("OpenRepGrid") into the R console.

Author(s)

• Maintainer: Mark Heckmann (@markheckmann)

• Contributors: Richard C. Bell, Alejandro García Gutiérrez (@j4n7), Diego Vitali (@artoo-
git), José Antonio González Del Puerto (@MindCartographer), Jonathan D. Raskin

• How to contribute: You can contribute in various ways. The OpenRepGrid code is hosted on
GitHub, where you can issue bug reports or feature requests. You may email your request to
the package maintainer.

References

Fransella, F., Bell, R. C., & Bannister, D. (2003). A Manual for Repertory Grid Technique (2. Ed.).
Chichester: John Wiley & Sons.

Kelly, G. A. (1955). The psychology of personal constructs. Vol. I, II. New York: Norton, (2nd
printing: 1991, Routledge, London, New York).

See Also

Useful links:

• https://github.com/markheckmann/OpenRepGrid

https://openrepgrid.org
https://markheckmann.de
https://docs.openrepgrid.org/CONTRIBUTING.html
https://github.com/markheckmann/OpenRepGrid
https://github.com/markheckmann/OpenRepGrid

102 OpenRepGrid-overview

OpenRepGrid-overview OpenRepGrid: Annotated overview of package functions.

Description

This documentation page contains an overview over the package functions ordered by topics. The
best place to start learning OpenRepGrid will be the package website https://openrepgrid.org
though.

Functions sorted by topic

Manipulating grids

left() Move construct(s) to the left
right() Move construct(s) to the right
up() Move construct(s) upwards
down() Move construct(s) downwards

Loading and saving data

importGridcor() Import GRIDCOR data files
importGridstat() Import Gridstat data files
importGridsuite() Import Gridsuite data files
importScivesco() Import sci:vesco data files
importTxt() Import grid data from a text file

saveAsTxt() Save grid in a text file (txt)

Analyzing constructs

Descriptive statistics of constructs Construct correlations distance Root mean square of inter-construct
correlations Somers’ D Principal component analysis (PCA) of construct correlation matrix Cluster
analysis of constructs

Analyzing elements

Visual representation

Bertin plots

bertin() Make Bertin display of grid data

https://openrepgrid.org

OpenRepGrid-overview 103

bertinCluster() Bertin display with corresponding cluster analysis

Biplots

biplot2d() Draw a two-dimensional biplot
biplotEsa2d() Plot an eigenstructure analysis (ESA) biplot in 2D
biplotSlater2d() Draws Slater’s INGRID biplot in 2D

biplotPseudo3d() See ’biplotPseudo3d’ for its use. Draws a biplot of the grid in 2D with depth impression (pseudo 3D)
biplotEsaPseudo3d() Plot an eigenstructure analysis (ESA) in 2D grid with 3D impression (pseudo 3D)
biplotSlaterPseudo3d() Draws Slater’s biplot in 2D with depth impression (pseudo 3D)

biplot3d() Draw grid in rgl (3D device)
biplotEsa3d() Draw the eigenstructure analysis (ESA) biplot in rgl (3D device)
biplotSlater3d() Draw the Slater’s INGRID biplot in rgl (3D device)

biplotSimple() A graphically unsophisticated version of a biplot

Index measures

indexConflict1() Conflict measure for grids (Slade & Sheehan, 1979) based on correlations
indexConflict2() Conflict measure for grids (Bassler et al., 1992) based on correlations
indexConflict3() Conflict or inconsistency measure for grids (Bell, 2004) based on distances
indexDilemma() Detect implicative dilemmas (conflicts)

indexIntensity() Intensity index
indexPvaff() Percentage of Variance Accounted for by the First Factor (PVAFF)

indexBias() Calculate ’bias’ of grid as defined by Slater (1977)
indexVariability() Calculate ’variability’ of a grid as defined by Slater (1977)

Special features

alignByIdeal() Align constructs using the ideal element to gain pole preferences
alignByLoadings() Align constructs by loadings on first principal component
reorder2d() Order grid by angles between construct and/or elements in 2D

Settings

OpenRepGrid uses several default settings e.g. to determine how many construct characters to
display by default when displaying a grid. The function settings can be used to show and change

104 OpenRepGrid-overview

these settings. Also it is possible to store the settings to a file and load the settings file to restore the
settings.

settings() Show and modify global settings for OpenRepGrid
settingsSave() Save OpenRepGrid settings to file
settingsLoad() Load OpenRepGrid settings from file

Grid datasets

OpenRepGrid already contains some ready to use grid data sets. Most of the datasets are taken
from the literature. To output the data simply type Type the name of the dataset to the console and
press enter.

Single grids

bell2010() Grid data from a study by Haritos et al. (2004) on role titles; used for demonstration of construct alignment in Bell (2010, p. 46).
bellmcgorry1992() Grid from a psychotic patient used in Bell (1997, p. 6). Data originated from a study by Bell and McGorry (1992).
boeker() Grid from seventeen year old female schizophrenic patient undergoing last stage of psychoanalytically oriented psychotherapy (Boeker, 1996, p. 163).
fbb2003() Dataset used in A manual for Repertory Grid Technique (Fransella, Bell, & Bannister, 2003b, p. 60).
feixas2004() Grid from a 22 year old Spanish girl suffering self-worth problems (Feixas & Saul, 2004, p. 77).
mackay1992() Dataset Grid C used in Mackay’s paper on inter-element correlation (1992, p. 65).
leach2001a(), leach2001b() Pre- (a) and post-therapy (b) dataset from sexual child abuse survivor (Leach, Freshwater, Aldridge, & Sunderland, 2001, p. 227).
raeithel() Grid data to demonstrate the use of Bertin diagrams (Raeithel, 1998, p. 223). The context of its administration is unknown.
slater1977a() Drug addict grid dataset from (Slater, 1977, p. 32).
slater1977b() Grid dataset (ranked) from a seventeen year old female psychiatric patient (Slater, 1977, p. 110) showing depression, anxiety and self-mutilation. The data was originally reported by Watson (1970).

Multiple grids

NOT YET AVAILABLE

Functions for developers

OpenRepGrid: internal functions overview for developers.

Below you find a guide for developers: these functions are usually not needed by the casual user.
The internal functions have a twofold goal

1. to provide means for advanced numerical grid analysis and 2) to facilitate function develop-
ment. The function for these purposes are internal, i.e. they are not visible in the package
documentation. Nonetheless they do have a documentation that can be accesses in the same
way as for other functions. More in the details section.

Functions for advanced grid analysis

OpenRepGrid-overview 105

The package provides functions to facilitate numerical research for grids. These comprise the gener-
ation of random data, permutation of grids etc. to facilitate Monte Carlo simulations, batch analysis
of grids and other methods. With R as an underlying framework, the results of grid analysis easily
lend themselves to further statistical processing and analysis within R. This is one of the central ad-
vantages for researchers compared to other standard grid software. The following table lists several
functions for these purposes.

randomGrid()
randomGrids()
permuteConstructs()
permuteGrid()
quasiDistributionDistanceSlater()

Modules for function development

Beside the advanced analysis feature the developer’s functions comprise low-level modules to create
new functions for grid analysis. Though the internal structure of a repgrid object in R is simple (type
e.g. str(bell2010, 2) to get an impression), it is convenient to not have to deal with access on this
level. Several function like e.g. getElementNames are convenient wrappers that perform standard
tasks needed when implementing new functions. The following table lists several functions for
these purposes.

getRatingLayer() Retrieve grid scores from grid object.
getNoOfConstructs() Get the number of constructs in a grid object.
getNoOfElements() Get the number of elements in a grid object.
dim() Get grid dimensions, i.e. constructs x elements.
getScale() Get minimum and maximum scale value used in grid.
getScaleMidpoint() Get midpoint of the grid rating scale.
getConstructNames() Get construct names.
getConstructNames2() Get construct names (another newer version).
getElementNames() Retrieve element names of repgrid object.
bindConstructs() Concatenate the constructs of two grids.
doubleEntry() Join the constructs of a grid with the same reversed constructs.

Author(s)

Current members of the OpenRepGrid development team: Mark Heckmann. Everyone who is
interested in developing the package is invited to join.

The \pkg{OpenRepGrid} package development is hosted on github (<https://github.com/markheckmann/OpenRepGrid>).
The github site provides information and allows to file bug reports or feature requests.

Bug reports can also be emailed to the package maintainer or issued on
<https://openrepgrid.org> under section *Suggestions/Issues*.

The package maintainer is Mark Heckmann <heckmann(dot)mark(at)gmail(dot)com>.

106 permuteConstructs

See Also

Useful links:

• https://github.com/markheckmann/OpenRepGrid

permuteConstructs Generate a list with all possible construct reflections of a grid.

Description

Generate a list with all possible construct reflections of a grid.

Usage

permuteConstructs(x, progress = TRUE)

Arguments

x repgrid object.

progress Whether to show a progress bar (default is TRUE). This may be sensible for a
larger number of elements.

Value

A list of repgrid objects with all possible permutations of the grid.

Examples

Not run:

l <- permuteConstructs(mackay1992)
l

End(Not run)

https://github.com/markheckmann/OpenRepGrid

perturbate 107

perturbate Perturbate grid ratings

Description

Randomly subtract or add an amount to a proportion of the grid ratings. This emulates randomness
during the rating process, producing a grid which might also have resulted.

Usage

perturbate(x, prop = 0.1, amount = c(-1, 1), prob = c(0.5, 0.5))

grids_perturbate(x, n = 10, prop = 0.1, amount = c(-1, 1), prob = c(0.5, 0.5))

Arguments

x A repgrid object.

prop The proportion of ratings to be perturbated.

amount The amount set of possible perturbations. Will depend on scale range. Usually
{-1, 1} are reasonable settings.

prob Probability for each amount to occur.

n Number of perturbated grid to generate.

Examples

All results for PVAFF index when ratings are slightly perturbated
p <- indexPvaff(boeker)
l <- grids_perturbate(boeker, n = 100, prop = .1)
pp <- sapply(l, indexPvaff) # apply indexPvaff function to all perturbated grids
range(pp) # min and max PVAFF
hist(pp, xlab = "PVAFF values") # visualize
abline(v = p, col = "blue", lty = 2)

preferredPoles Get / set preferred construct poles

Description

Constructs are bipolar, usually with one pole being preferred (positive). Setting the preferred poles
may is useful in some analyses.

Usage

preferredPoles(x)

preferredPoles(x) <- value

108 preferredPolesByIdeal

Arguments

x A repgrid object.

value Vector of with preferred poles. One of 'left', 'right', 'none' or NA. Abbre-
viations are allowsd ('l' for 'left').

Examples

x <- fbb2003

preferredPoles(x) # no preferences assigned yet

set preference by ideal rating
x <- preferredPolesByIdeal(x, ideal = "as I would love to be")
x <- preferredPolesByIdeal(x, ideal = 7) # same with element index
x

set preferred poles manually
preferredPoles(x) <- c("left", "right", "left", "r", "l", "l", "l", "r", "r")
x

change preferance for constructs 1 and 5
preferredPoles(x)[2] <- "left"
x

remove prefernces
preferredPoles(x) <- NA
x

preferredPolesByIdeal Set preferred pole by ideal element

Description

The preferred construct pole is inferred from the rating of the ideal element. The preferred pole is
the side of the ideal element. If the ideal is rated on the scale midpoint (or within none_range),
none of the poles is preferred.

Usage

preferredPolesByIdeal(x, ideal, none_range = NULL, align = FALSE)

Arguments

x A repgrid object.

ideal Index or name of ideal element.

none_range Range of ratings that do not allow assining a preferred pole (NULL be default).

align Align preferred poles on same side (default FALSE). See alignByPreferredPole().

randomGrid 109

randomGrid Generate a random grid (quasis) of prompted size.

Description

This feature is useful for research purposes like exploring distributions of indexes etc.

Usage

randomGrid(
nc = 10,
ne = 15,
nwc = 8,
nwe = 5,
range = c(1, 5),
prob = NULL,
options = 1,
preferred = TRUE

)

Arguments

nc Number of constructs (default 10).

ne Number of elements (default 15).

nwc Number of random words per construct.

nwe Number of random words per element.

range Minimal and maximal scale value (default c(1, 5)).

prob The probability of each rating value to occur. If NULL (default) the distribution
is uniform.

options Use random sentences as constructs and elements (1) or not (0). If not, the
elements and constructs are given default names and are numbered.

preferred Add preferred pole info? (default TRUE)

Value

repgrid object.

Examples

Not run:
x <- randomGrid()
x
x <- randomGrid(10, 25, preferred = FALSE)
x
x <- randomGrid(10, 25, options = 0)
x

110 randomGrids

End(Not run)

randomGrids Generate a list of random grids (quasis) of prompted size.

Description

This feature is useful for research purposes like exploring distributions of indexes etc. The function
is a simple wrapper around randomGrid().

Usage

randomGrids(
rep = 3,
nc = 10,
ne = 15,
nwc = 8,
nwe = 5,
range = c(1, 5),
prob = NULL,
options = 1

)

Arguments

rep Number of grids to be produced (default is 3).

nc Number of constructs (default 10).

ne Number of elements (default 15).

nwc Number of random words per construct.

nwe Number of random words per element.

range Minimal and maximal scale value (default c(1, 5)).

prob The probability of each rating value to occur. If NULL (default) the distribution
is uniform.

options Use random sentences as constructs and elements (1) or not (0). If not, the
elements and constructs are given default names and are numbered.

Value

A list of repgrid objects.

ratings 111

Examples

Not run:

x <- randomGrids()
x
x <- randomGrids(5, 3, 3)
x
x <- randomGrids(5, 3, 3, options = 0)
x

End(Not run)

ratings Extract ratings (wide or long format)

Description

Extract ratings (wide or long format)

Usage

ratings(x, names = TRUE, trim = 10)

ratings_df(x, long = FALSE, names = TRUE, trim = NA)

ratings(x, i, j) <- value

Arguments

x A repgrid object.

names Extract row and columns names (constructs and elements).

trim The number of characters a row or column name is trimmed to (default is 10).
If NA no trimming is done. Trimming simply saves space when displaying the
output.

long Return as long format? (default FALSE)

i, j Row and column indices.

value Numeric replacement value(s).

Value

A matrix.#’

See Also
[<--method

112 reorder.repgrid

Examples

store Bell's dataset in x
x <- bell2010

get ratings
ratings(x)

replace ratings

ratings(x)[1, 1] <- 1
noet that this is even simpler using the repgrid object directly
x[1, 1] <- 2

replace several values

ratings(x)[1, 1:5] <- 1
x[1, 1:5] <- 2 # the same

ratings(x)[1:3, 5:6] <- matrix(5, 3, 2)
x[1:3, 5:6] <- matrix(5, 3, 2) # the same

ratings as dataframe in wide or long format

ratings_df(x)
ratings_df(x, long = TRUE)

reorder.repgrid Invert construct and element order

Description

Invert construct and element order

Usage

S3 method for class 'repgrid'
reorder(x, what = "CE", ...)

Arguments

x A repgrid object.

what A string or numeric to indicate if constructs ("C", 1) or elements ("C", 1), or
both ("CE", 12) should be reversed.

... Ignored.

reorder2d 113

Examples

invert order of constructs
reorder(boeker, "C")
reorder(boeker, 1)

invert order of elements
reorder(boeker, "E")
reorder(boeker, 2)

invert both (default)
reorder(boeker)
reorder(boeker, "CE")
reorder(boeker, 12)

not reordering
reorder(boeker, NA)

reorder2d Order grid by angles between construct and/or elements in 2D.

Description

The approach is to reorder the grid matrix by their polar angles on the first two principal components
from a data reduction technique (here the biplot, i.e. SVD). The function reorder2d reorders the
grid according to the angles between the x-axis and the element (construct) vectors derived from a
2D biplot solution. This approach is apt to identify circumplex structures in data indicated by the
diagonal stripe in the display (see examples).

Usage

reorder2d(
x,
dim = c(1, 2),
center = 1,
normalize = 0,
g = 0,
h = 1 - g,
rc = TRUE,
re = TRUE,
...

)

Arguments

x repgrid object.

dim Dimension of 2D solution used to calculate angles (default c(1,2)).

114 saveAsExcel

center Numeric. The type of centering to be performed. 0= no centering, 1= row
mean centering (construct), 2= column mean centering (elements), 3= double-
centering (construct and element means), 4= midpoint centering of rows (con-
structs). The default is 1 (row centering).

normalize A numeric value indicating along what direction (rows, columns) to normalize
by standard deviations. 0 = none, 1= rows, 2 = columns (default is 0).

g Power of the singular value matrix assigned to the left singular vectors, i.e. the
constructs.

h Power of the singular value matrix assigned to the right singular vectors, i.e. the
elements.

rc Logical. Reorder constructs by similarity (default TRUE).

re Logical. Reorder elements by similarity (default TRUE).

... Not evaluated.

Value

Reordered repgrid object.

Examples

x <- feixas2004
reorder2d(x) # reorder grid by angles in first two dimensions
reorder2d(x, rc = FALSE) # reorder elements only
reorder2d(x, re = FALSE) # reorder constructs only

saveAsExcel Save grids as Microsoft Excel file (.xlsx)

Description

saveAsExcel will save one or more grids in an Excel file (.xlsx).

Usage

saveAsExcel(x, file, format = "wide", sheet = NULL, default_sheet = "grid")

Arguments

x A repgrid object or a list of grids.

file File path. Suffix must be .xlsx.

format Two output formats are supported: wide (default) where each column represents
one element, each row represent one constructs (a common grid representation),
and long where each row contains an element-construct combination and the
corresponding rating value. See importExcel() for details and examples.

saveAsExcel 115

sheet Vector of sheet names with same length as x. If NULL (default), default_sheet
is used. If x is a list if grids, a sequential index is appended. For named list
entries (if x is a list of grids), the name overwrites the default sheet name.

default_sheet Default sheet name to use if not supplied in sheet or via list names of x.

Value

Invisibly returns file path.

See Also

importExcel(), saveAsWorksheet()

Examples

save one grid in wide format (default)
file <- tempfile(fileext = ".xlsx")
saveAsExcel(boeker, file)
Not run:
browseURL(file) # open file, requires Excel, may not work on all system

End(Not run)

save one grid in log format
file <- tempfile(fileext = ".xlsx")
saveAsExcel(boeker, file, format = "long")
Not run:
browseURL(file)

End(Not run)

save a list of grids
file <- tempfile(fileext = ".xlsx")
l <- list(boeker, feixas2004, bell2010)
saveAsExcel(l, file)
Not run:

browseURL(file)

End(Not run)

pass some sheet names (2nd with named sheet)
file <- tempfile(fileext = ".xlsx")
l <- list(boeker, "feixas' grid" = feixas2004)
saveAsExcel(l, file)
Not run:

browseURL(file)

End(Not run)

116 saveAsTxt

saveAsTxt Save grid in a text file (txt).

Description

saveAsTxt will save the grid as a .txt file in format used by OpenRepGrid. This file format can
also easily be edited by hand (see importTxt() for a description).

Usage

saveAsTxt(x, file = NA)

Arguments

x repgrid object.

file Filename to save the grid to. The name should have the suffix .txt.

Value

Invisibly returns the name of the file.

Note

Structure of a txt file that can be read by importTxt().
---------------- .txt file -----------------
anything not contained within the tags will be discarded

ELEMENTS
element 1
element 2
element 3
END ELEMENTS

CONSTRUCTS
left pole 1 : right pole 1
left pole 2 : right pole 2
left pole 3 : right pole 3
left pole 4 : right pole 4
END CONSTRUCTS

RATINGS
1 3 2
4 1 1
1 4 4
3 1 1
END RATINGS

saveAsWorksheet 117

RANGE
1 4
END RANGE

---------------- end of file ----------------

See Also

importTxt()

Examples

Not run:

x <- randomGrid()
saveAsTxt(x, "random.txt")

End(Not run)

saveAsWorksheet Add grids as sheets to an openxlsx Workbook

Description

saveAsWorksheet will add one or more grids to an a openxlsx Workbook object.

Usage

saveAsWorksheet(x, wb, format = "wide", sheet = NULL, default_sheet = "grid")

Arguments

x A repgrid object or a list of grids.

wb A openxlsx Workbook object.

format Two output formats are supported: wide (default) where each column represents
one element, each row represent one constructs (a common grid representation),
and long where each row contains an element-construct combination and the
corresponding rating value. See importExcel() for details and examples.

sheet Vector of sheet names with same length as x. If NULL (default), default_sheet
is used. If x is a list if grids, a sequential index is appended. For named list
entries (if x is a list of grids), the name overwrites the default sheet name.

default_sheet Default sheet name to use if not supplied in sheet or via list names of x.

Value

Invisibly returns Workbook object.

https://CRAN.R-project.org/package=openxlsx
https://CRAN.R-project.org/package=openxlsx

118 setScale

See Also

saveAsExcel()

Examples

library(openxlsx)

wb <- createWorkbook()

add grid to worksheet
saveAsWorksheet(boeker, wb, sheet = "boeker")

add several grids with explicit sheet names
l <- list(bell2010, feixas2004)
saveAsWorksheet(l, wb, sheet = c("Bell 2010", "Feixas 2004"))

list names are used as sheet names. Without name, the default applies.
l <- list(boeker, "Fransella et al. 2003" = fbb2003)
saveAsWorksheet(l, wb)

save as Excel file
file <- tempfile(fileext = ".xlsx")
saveWorkbook(wb, file)
Not run:

browseURL(file) # may not work on all systems

End(Not run)

setScale Set the scale range of a grid.

Description

The scale must be known for certain operations, e.g. to swap the construct poles. If the user
construes a grid he should make sure that the scale range is set correctly.

Usage

setScale(x, min, max, step, ...)

Arguments

x repgrid object.

min Minimal possible scale value for ratings.

max Maximal possible scale value for ratings.

step Steps the scales uses (not yet in use).

... Not evaluated.

settings 119

Value

repgrid object

Examples

Not run:

x <- bell2010
x <- setScale(x, 0, 8) # not set correctly
x
x <- setScale(x, 1, 7) # set correctly
x

End(Not run)

settings global settings for OpenRepGrid

Description

global settings for OpenRepGrid

Usage

settings(...)

Arguments

... Use parameter value pairs (par1=val1, par2=val2) to change a parameter.
Use parameter names to request parameter’s value ("par1", "par2").

Note

Currently the following parameters can be changed, ordered by topic. The default value is shown
in the brackets at the end of a line.

• show.scale: Show grid scale info? (TRUE)

• show.meta: Show grid meta data? (TRUE)

• show.trim: Number of chars to trim strings to (30)

• show.cut: Maximum number of characters printed on the sides of a grid (20)

• e.no: Print element ID number? (TRUE)

• c.no: Print construct ID number? (TRUE)

• preferred: Print preferred pole indicator? (TRUE)

120 settingsSave

Examples

Not run:
get current settings
settings()

get some parameters
settings("show.scale", "show.meta")

change parameters
bell2010

settings(show.meta = F)
bell2010

settings(show.scale = F, show.cut = 30)
bell2010

End(Not run)

settingsLoad Load OpenRepGrid settings

Description

OpenRepGrid settings saved in an a settings file with the extension .orgset can be loaded to restore
the settings.

Usage

settingsLoad(file)

Arguments

file Path of the file to be loaded.

settingsSave Save OpenRepGrid settings

Description

The current settings of OpenRepGrid can be saved into a file with the extension .orgset.

Usage

settingsSave(file)

show,repgrid-method 121

Arguments

file Path of the file to be saved to.

show,repgrid-method Show method for repgrid

Description

Show method for repgrid

Usage

S4 method for signature 'repgrid'
show(object)

Arguments

object A repgrid object.

statsElements Descriptive statistics for constructs and elements

Description

Several descriptive measures for constructs and elements.

Usage

statsElements(x, index = TRUE, trim = 20)

statsConstructs(x, index = T, trim = 20)

Arguments

x repgrid object.

index Whether to print the number of the element.

trim The number of characters an element or a construct is trimmed to (default is
20). If NA no trimming occurs. Trimming simply saves space when displaying
correlation of constructs or elements with long names.

122 statsElements

Value

A dataframe containing the following measures is returned invisibly (see psych::describe()):

• item name

• item number

• number of valid cases

• mean standard deviation

• trimmed mean (default .1)

• median (standard or interpolated)

• mad: median absolute deviation (from the median)

• minimum

• maximum

• skew

• kurtosis

• standard error

Note

Note that standard deviation and variance are estimations, i.e. including Bessel’s correction. For
more info type ?describe.

Examples

statsConstructs(fbb2003)
statsConstructs(fbb2003, trim = 10)
statsConstructs(fbb2003, trim = 10, index = FALSE)

statsElements(fbb2003)
statsElements(fbb2003, trim = 10)
statsElements(fbb2003, trim = 10, index = FALSE)

save the access the results
d <- statsElements(fbb2003)
d
d["mean"]
d[2, "mean"] # mean rating of 2nd element

d <- statsConstructs(fbb2003)
d
d["sd"]
d[1, "sd"] # sd of ratings on first construct

[,repgrid-method 123

[,repgrid-method Extract parts of the repgrid object.

Description

Methods for "[", i.e., subsetting of repgrid objects.

Usage

S4 method for signature 'repgrid'
x[i, j, ..., drop = TRUE]

Arguments

x A repgrid object.

i Row index (numeric)

j Column index. Either numeric or character (elements names).

... Not evaluated.

drop Not used.

Examples

x <- boeker
x[1:4,]
x[, 1:3]
x[1:4, 1:3]
x[1:4, c("self", "ideal self", "mother")]

[<-,repgrid-method Method for "<-" assignment of the repgrid ratings.

Description

It should be possible to use it for ratings on all layers.

Usage

S4 replacement method for signature 'repgrid'
x[i, j, ...] <- value

124 [<-,repgrid-method

Arguments

x A repgrid object.

i, j Row and column indices.

... Not evaluated.

value Numeric replacement value(s).

Examples

Not run:
x <- randomGrid()
x[1, 1] <- 2
x[1,] <- 4
x[, 2] <- 3

settings values outside defined rating scale
range throws an error
x[1, 1] <- 999

removing scale range allows arbitary values to be set
x <- setScale(x, min = NA, max = NA)
x[1, 1] <- 999

End(Not run)

Index

∗ align_constructs
alignByIdeal, 5
alignByLoadings, 6
alignByPreferredPole, 7

∗ data
data-bell2010, 46
data-bellmcgorry1992, 46
data-boeker, 47
data-fbb2003, 47
data-feixas2004, 48
data-leach2001, 48
data-mackay1992, 49
data-raeithel, 49
data-slater1977a, 50
data-slater1977b, 50
df_construct_columns, 51
df_element_columns, 51
df_long, 52

∗ grid_dataframe
df_construct_columns, 51
df_element_columns, 51
df_long, 52

∗ import
importDataframe, 66
importExcel, 68
importGridcor, 70
importGridstat, 71
importGridsuite, 73
importScivesco, 74
importTxt, 75

∗ package
OpenRepGrid, 101
OpenRepGrid-overview, 102

∗ repgrid
OpenRepGrid, 101

+,list,repgrid-method
(+,repgrid,repgrid-method), 4

+,repgrid,list-method
(+,repgrid,repgrid-method), 4

+,repgrid,repgrid-method, 4
/,repgrid,repgrid-method

(+,repgrid,repgrid-method), 4
[,repgrid-method, 123
[<-,repgrid-method, 123

alignByIdeal, 5, 7, 8
alignByIdeal(), 103
alignByLoadings, 5, 6, 8
alignByLoadings(), 6, 103
alignByPreferredPole, 5, 7, 7
alignByPreferredPole(), 108
as.gridlist (gridlist), 64

bell2010 (data-bell2010), 46
bell2010(), 104
bellmcgorry1992 (data-bellmcgorry1992),

46
bellmcgorry1992(), 104
bertin, 8
bertin(), 12, 102
bertinCluster, 10
bertinCluster(), 36, 103
bindConstructs(), 105
biplot2d, 13
biplot2d(), 18, 21–25, 27–33, 103
biplot3d, 19
biplot3d(), 18, 21, 23–25, 27, 29, 31–33, 66,

103
biplotEsa2d, 22
biplotEsa2d(), 18, 21, 23–25, 27, 29, 31–33,

103
biplotEsa3d, 23
biplotEsa3d(), 18, 21, 23–25, 27, 29, 31–33,

66, 103
biplotEsaPseudo3d, 24
biplotEsaPseudo3d(), 18, 21, 23–25, 27, 29,

31–33, 103
biplotPseudo3d, 25

125

126 INDEX

biplotPseudo3d(), 18, 21, 23–25, 27, 29,
31–33, 103

biplotSimple, 28
biplotSimple(), 18, 21, 23–25, 27, 29,

31–33, 103
biplotSlater2d, 30
biplotSlater2d(), 18, 21, 23–25, 27, 29,

31–33, 103
biplotSlater3d, 31
biplotSlater3d(), 18, 21, 23–25, 27, 29,

31–33, 66, 103
biplotSlaterPseudo3d, 32
biplotSlaterPseudo3d(), 18, 21, 23–25, 27,

29, 31–33, 103
boeker (data-boeker), 47
boeker(), 104

cbind.repgrid, 33
center, 34
cluster, 35
cluster(), 11, 12, 37
clusterBoot, 37
constructCor, 39
constructCor(), 44, 61
constructD, 40
constructPca, 41
constructPca(), 43
constructPcaLoadings, 43
constructPcaLoadings(), 42
constructRmsCor, 43
constructRmsCor(), 63
constructs, 44
constructs<- (constructs), 44

data-bell2010, 46
data-bellmcgorry1992, 46
data-boeker, 47
data-fbb2003, 47
data-feixas2004, 48
data-leach2001, 48
data-mackay1992, 49
data-raeithel, 49
data-slater1977a, 50
data-slater1977b, 50
df_construct_columns, 51, 51, 52, 66, 67
df_element_columns, 51, 51, 52, 66, 67
df_long, 51, 52, 52, 66, 68
dim(), 105
distance, 53

distance(), 59
distanceHartmann, 54
distanceHartmann(), 58–60
distanceNormalized, 57
distanceSlater, 59
distanceSlater(), 55, 56, 58
doubleEntry(), 105
down(), 102

elementCor, 61
elementCor(), 40, 63, 92
elementRmsCor, 62
elementRmsCor(), 44
elements, 63
elements<- (elements), 63

fbb2003 (data-fbb2003), 47
fbb2003(), 104
feixas2004 (data-feixas2004), 48
feixas2004(), 104

getConstructNames(), 105
getConstructNames2(), 105
getElementNames(), 105
getNoOfConstructs(), 105
getNoOfElements(), 105
getRatingLayer(), 105
getScale(), 105
getScaleMidpoint(), 105
gridlist, 64
grids_bootstrap (grids_leave_n_out), 65
grids_leave_n_out, 65
grids_perturbate (perturbate), 107

hclust(), 12
home, 65
home(), 18, 21, 23–25, 27, 29, 31–33

importDataframe, 66, 69, 71–73, 75, 77
importDataframe(), 51, 52
importExcel, 68, 68, 71–73, 75, 77
importExcel(), 75, 114, 115, 117
importGridcor, 68, 69, 70, 72, 73, 75, 77
importGridcor(), 102
importGridstat, 68, 69, 71, 71, 73, 75, 77
importGridstat(), 102
importGridsuite, 68, 69, 71, 72, 73, 75, 77
importGridsuite(), 102
importScivesco, 68, 69, 71–73, 74, 77

INDEX 127

importScivesco(), 102
importTxt, 68, 69, 71–73, 75, 75
importTxt(), 102, 116, 117
indexBias, 78
indexBias(), 99, 103
indexBieri, 79
indexConflict1, 80
indexConflict1(), 81–83, 85, 103
indexConflict2, 81
indexConflict2(), 81, 83, 85, 103
indexConflict3, 83
indexConflict3(), 81, 82, 103
indexDDI, 85, 98
indexDilemma, 87
indexDilemma(), 103
indexDilemmatic, 91
indexIntensity, 92
indexIntensity(), 103
indexPolarization, 94
indexPvaff, 95
indexPvaff(), 103
indexSelfConstruction, 96
indexUncertainty, 86, 97
indexVariability, 98
indexVariability(), 78, 103
is.gridlist (gridlist), 64
is.repgrid, 99

leach2001a (data-leach2001), 48
leach2001a(), 104
leach2001b (data-leach2001), 48
leach2001b(), 104
left(), 102
leftpoles (constructs), 44
leftpoles<- (constructs), 44

mackay1992 (data-mackay1992), 49
mackay1992(), 104
midpoint, 99

normalize, 100

OpenRepGrid, 101
OpenRepGrid-overview, 102
OpenRepGrid-package (OpenRepGrid), 101

permuteConstructs, 106
permuteConstructs(), 105
permuteGrid(), 105

perturbate, 107
plot.indexDilemma(), 90
preferredPoles, 107
preferredPoles(), 7, 51, 67, 69
preferredPoles<- (preferredPoles), 107
preferredPolesByIdeal, 108
print.indexConflict3(), 84
print.indexDilemma(), 90
psych::describe(), 122
pvclust::pvclust(), 38

quasiDistributionDistanceSlater(), 105

raeithel (data-raeithel), 49
raeithel(), 104
randomGrid, 109
randomGrid(), 105, 110
randomGrids, 110
randomGrids(), 105
ratings, 111
ratings<- (ratings), 111
ratings_df (ratings), 111
reorder.repgrid, 112
reorder2d, 113
reorder2d(), 103
reverse(), 7
right(), 102
rightpoles (constructs), 44
rightpoles<- (constructs), 44

saveAsExcel, 114
saveAsExcel(), 118
saveAsTxt, 116
saveAsTxt(), 102
saveAsWorksheet, 117
saveAsWorksheet(), 115
set.seed(), 38
setScale, 118
settings, 119
settings(), 104
settingsLoad, 120
settingsLoad(), 104
settingsSave, 120
settingsSave(), 104
show,repgrid-method, 121
slater1977a (data-slater1977a), 50
slater1977a(), 104
slater1977b (data-slater1977b), 50
slater1977b(), 104

128 INDEX

statsConstructs (statsElements), 121
statsElements, 121
swapPoles(), 5

up(), 102

	+,repgrid,repgrid-method
	alignByIdeal
	alignByLoadings
	alignByPreferredPole
	bertin
	bertinCluster
	biplot2d
	biplot3d
	biplotEsa2d
	biplotEsa3d
	biplotEsaPseudo3d
	biplotPseudo3d
	biplotSimple
	biplotSlater2d
	biplotSlater3d
	biplotSlaterPseudo3d
	cbind.repgrid
	center
	cluster
	clusterBoot
	constructCor
	constructD
	constructPca
	constructPcaLoadings
	constructRmsCor
	constructs
	data-bell2010
	data-bellmcgorry1992
	data-boeker
	data-fbb2003
	data-feixas2004
	data-leach2001
	data-mackay1992
	data-raeithel
	data-slater1977a
	data-slater1977b
	df_construct_columns
	df_element_columns
	df_long
	distance
	distanceHartmann
	distanceNormalized
	distanceSlater
	elementCor
	elementRmsCor
	elements
	gridlist
	grids_leave_n_out
	home
	importDataframe
	importExcel
	importGridcor
	importGridstat
	importGridsuite
	importScivesco
	importTxt
	indexBias
	indexBieri
	indexConflict1
	indexConflict2
	indexConflict3
	indexDDI
	indexDilemma
	indexDilemmatic
	indexIntensity
	indexPolarization
	indexPvaff
	indexSelfConstruction
	indexUncertainty
	indexVariability
	is.repgrid
	midpoint
	normalize
	OpenRepGrid
	OpenRepGrid-overview
	permuteConstructs
	perturbate
	preferredPoles
	preferredPolesByIdeal
	randomGrid
	randomGrids
	ratings
	reorder.repgrid
	reorder2d
	saveAsExcel
	saveAsTxt
	saveAsWorksheet
	setScale
	settings
	settingsLoad
	settingsSave
	show,repgrid-method
	statsElements
	[,repgrid-method
	[<-,repgrid-method
	Index

