Package ‘Morpho’

January 20, 2025
Type Package

Title Calculations and Visualisations Related to Geometric
Morphometrics

Version 2.12
Date 2023-12-04

Description A toolset for Geometric Morphometrics and mesh processing. This
includes (among other stuff) mesh deformations based on reference points,
permutation tests, detection of outliers, processing of sliding
semi-landmarks and semi-automated surface landmark placement.

Suggests car, lattice, shapes, testthat
Depends R (>=3.2.0)

Imports Rvcg (>=0.7), rgl (>= 0.100.18), foreach (>= 1.4.0), Matrix
(>=1.0-1), MASS, parallel, doParallel (>= 1.0.6), colorRamps,
Rcepp, graphics, grDevices, methods, stats, utils, jsonlite, sf,
bezier

LinkingTo Rcpp, ReppArmadillo (>=0.4)
Copyright see COPYRIGHTS file for details
License GPL-2

BugReports https://github.com/zarquon42b/Morpho/issues
LazyLoad yes

URL https://github.com/zarquon42b/Morpho
Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Stefan Schlager [aut, cre, cph],
Gregory Jefferis [ctb],
Dryden Ian [cph]

Maintainer Stefan Schlager <zarquon42@gmail.com>
Repository CRAN
Date/Publication 2023-12-06 15:20:07 UTC

https://github.com/zarquon42b/Morpho/issues
https://github.com/zarquon42b/Morpho

2 Contents

Contents
Morpho-package e 5
align2procSym 6
angle.calc L 7
angleTest 7
ANONYIMNIZE . . . & v v v v v e et e e e e e e e e e e e e e e e 8
applyTransform e 9
areaSphere e e e 10
areaSpherePart 11
armaGInv L e e e e e e e 11
array2list . . .o 12
arrtMean3 L e 12
asymPermute L e e e e e 13
DAryCenter o o e e e e e e e e e e e 14
bindArr 15
boneData e 16
CAC . . e 16
cExtract e 17
checkLM e 18
checkNA L L 20
classify e e e 20
closemeshKD 21
COlOTS . . . o e 23
COMPULEATEA . « . v v v v v et e e e e e e e e e e e e e e e e e 23
computeTransform 24
covDISt L e 26
COVW L L e e 28
createAtlas L 29
CreateL e 30
createMissinglist L. L 32
crossProduct L L 33
CSIZE . . o o i e e e e 34
cutMeshPlane 35
CULSPACE . .« . o v o e e e e 35
CVA e 36
data2platonic e e e e 40
deformGrid2d 41
deformGrid3d oL 43
equidistantCurve L L e 45
EXVAr . . e e 46
fastKmeans L 48
file2mesh 49
findooutliers oL 50
XLMmMIrTOr o oo e e e e 51
AXLMIPS o e 53
getFaces L e e 55

getMeaningfulPCs 55

Contents

3
getOUterVIEWPOINES v v o ot e e e e e e e e e e e e 56
getPCSCOTES o o e e e 57
getPCtol e 58
getPLSCommonShape L 59
getPLSfromScores 60
getPLSscores e 61
getPointAlongOutline 62
getSides e e e 62
getTrafodx4 e 63
getTrafoRotaxis 64
getVisibleVertices 64
groupPCA . . . e e 65
histGroup e 67
ICPMAL L e 69
invertFaces L e 70
kendalldist 71
line2plane 72
lineplot e e e 73
List2array e e e e e e 74
LPS2RAS .« . 74
MENNINdex o e 75
mergeMeshes e 76
mesh2grey e e 77
mesh20bj L 77
meshcube L 79
meshDist 79
meshPlanelntersect L L 83
meshres Lo 84
¥ 0 (0) 85
mirror2plane Lo 87
name2factor e 88
NNshapeReg e e e 89
NOSE . v v v e e e e e e e e e e e e e 90
PCALIgN . . . 90
peaplot3d L 92
PCdist e 93
permudist e 94
PEIMUVEC . . . v v v v et e et e e e e e e e e e e e e 95
placePatch e 97
plotslider3d 100
plotAtlas 101
plotNormals e e e e e 102
PIS2B . e e e 103
pIsCoVar e e 105
plsCoVarCommonShape e 106
points2plane L e e e e e 107
preompfast 108

predict.bgPCA 109

Contents

predict.CVA e e e 110
predictPLSfromData 111
predictPLSfromScores 112
predictRelWarps e 112
predictShapedm 113
proc.weight oL e 115
ProcAOVSYM e e 116
ProcGPA e 118
PrOCSYM L L i e e e 119
projRead 123
QAMAt . . . e e e e e e 124
quad2trimesh e 125
r2morpho] e e 126
ray2mesh 127
read.esvfolder oL 128
read.fcSv . . L oL 129
readImdta 130
read.mMpPp e e e e e e e e e 130
read.PtS e e e e e 131
read.SliCerjSON 132
readallTPS 0 o 132
readLandmarks.csv L L 133
regdisto e 134
RegScore e 135
relaxLM . . . o oL 136
relWarps e e 140
render oL e e 142
resampleCurveo L e 145
restoreFromPCA L 145
restoreShapes e 146
retroDeform3d 147
retroDeformMesh L 148
rotaxis3d L e e e 149
rotaxisMat 150
rotmesh.onto L. 151
TOLONIMAL v v v ettt e e e e e e e e e e e e e e 152
401 70) 110 L 153
scalemesh 155
slider2d oL 156
slider3d L 158
solutionSpace 162
SOTtCUIVE . . . o o ot o e e e e e e 163
SYMMELTIZE . . o v v v vt e 164
PS3d . . L e e 165
typprob . . . e 167
unrefVertex L. e e 169
updatelndices L e 171

updateNormals 171

Morpho-package 5

VECK .+ v v e e e e e e e e e e e e e e e e 173
virtualMeshScan 174
warpmovie3d e 175
Write fCsV . . L L e 178
WIEE.PES o o e 179
Write.SliCerjson L e e e 180
Index 181
Morpho-package A toolbox providing methods for data-acquisition, visualisation and
statistical methods related to Geometric Morphometrics and shape
analysis
Description

A toolbox for Morphometric calculations. Including sliding operations for Semilandmarks, import-
ing, exporting and manipulating of 3D-surface meshes and semi-automated placement of surface

landmarks.

Details
Package: Morpho
Type: Package
Version: 2.12
Date: 2023-12-04
License: GPL
LazyLoad: yes

Note

The pdf-version of Morpho-help can be obtained from CRAN on https://cran.r-project.org/
package=Morpho

For more advanced operations on triangular surface meshes, check out my package Rvcg: https:
//cran.r-project.org/package=Rvcg or the code repository on github https://github.com/
zarquon42b/Rvcg

Author(s)

Stefan Schlager <zarquon42@gmail.com>

Maintainer: Stefan Schlager <zarquon42@gmail.com>

https://cran.r-project.org/package=Morpho
https://cran.r-project.org/package=Morpho
https://cran.r-project.org/package=Rvcg
https://cran.r-project.org/package=Rvcg
https://github.com/zarquon42b/Rvcg
https://github.com/zarquon42b/Rvcg

6 align2procSym

References

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universititsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

align2procSym align new data to an existing Procrustes registration

Description

align new data to an existing Procrustes registration

Usage

align2procSym(x, newdata, orp = TRUE)

Arguments
X result of a procSym call
newdata matrix or array of with landmarks corresponding to the data aligned in x
orp logical: allows to skip orthogonal projection, even if it was used in the procSym
call.
Value

an array with data aligned to the mean shape in x (and projected into tangent space)

Note

this will never yield the same result as a pooled Procrustes analysis because the sample mean is
iteratively updated and new data would change the mean.

Examples

require(Morpho)

data(boneData)

run procSym on entire data set

proc <- procSym(bonelLM)

this is the training data

arrayl <- bonelM[,,1:60]

newdata <- bonelM[,,61:80]

procl <- procSym(arrayl)

newalign <- align2procSym(proc1,newdata)

compare alignment for one specimen to Proc. registration using all data
Not run:
deformGrid3d(newalign[,,1],proc$orpdatal,,61]1)

End(Not run)

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

angle.calc

angle.calc calculate angle between two vectors

Description

calculates unsigned angle between two vectors

Usage

angle.calc(x, y)

Arguments

X numeric vector (or matrix to be interpreted as vector)

y numeric vector (or matrix to be interpreted as vector) of same length as x
Value

angle between x and y in radians.

Examples

#calculate angle between two centered and
superimposed landmark configuration
data(boneData)

opa <- rotonto(bonelLM[,,1]1,bonelLM[,,21)
angle.calc(opa$X, opas$y)

angleTest Test whether the direction of two vectors is similar

Description

Test whether the direction of two vectors is similar

Usage

angleTest(x, y)

Arguments

X vector

y vector

8 anonymize

Details

Under the assumption of all (normalized) n-vectors being represented by an n-dimensional hyper-
sphere, the probability of the angle between two vectors is <= the measured values can be estimated
as the area of a cap defined by that angle and divided by the hypersphere’s complete surface area.

Value
a list with
angle angle between vectors
p.value p-value for the probability that the angle between two random vectors is smaller
or equal to the one calculatted from x and y
References

S.Li, 2011. Concise Formulas for the Area and Volume of a Hyperspherical Cap. Asian Journal of
Mathematics & Statistics, 4: 66-70.

Examples

x <-¢(1,0); y<-c(1,1) # for a circle this should give us p = 0.25 as the angle between vectors
1is pi/4 and for any vector the segment +-pi/4 covers a quarter of the circle
angleTest(x,y)

anonymize Replace ID-strings of data and associated files.

Description

Replace ID-strings with for digits - e.g. for blind observer error testing.

Usage
anonymize(

data,
remove,
path = NULL,
dest.path = NULL,
ext = ".ply”,
split = "_",
levels = TRUE,
prefix = NULL,
suffix = NULL,
sample = TRUE

applyTransform

Arguments
data
remove
path
dest.path
ext
split

levels

prefix
suffix

sample

Value

data

anonymkey

Examples

Named array, matrix or vector containing data.

integer: which entry (separated by split) of the name is to be removed
Path of associated files to be copied to renamed versions.

where to put renamed files.

file extension of files to be renamed.

character: by which to split specimen-ID

logical: if a removed entry is to be treated as a factor. E.g. if one specimen has
a double entry, the anonymized versions will be named accordingly.

character: prefix before the alias string.
character: suffix after the alias ID-string.

logical: whether to randomize alias ID-string.

data with names replaced

map of original name and replaced name

anonymize(iris, remove=1)

applyTransform

apply affine transformation to data

Description

apply affine transformation to data

Usage

applyTransform(x, trafo, ...)

S3 method for class 'matrix'

S3 method for class 'mesh3d’

Default S3 method:

applyTransform(x, trafo, inverse = FALSE, threads =1, ...)
applyTransform(x, trafo, inverse = FALSE, threads =1, ...)
applyTransform(x, trafo, inverse = FALSE, threads =1, ...)

10 areaSphere

Arguments
X matrix or mesh3d
trafo 4x4 transformation matrix or an object of class "tpsCoeft"
additional arguments, currently not used.
inverse logical: if TRUE, the inverse of the transformation is applied (for TPS coeffi-
cients have to be recomputed)
threads threads to be used for parallel execution in tps deformation.
Value

the transformed object

See Also

rotonto, link{rotmesh.onto}, tps3d, computeTransform

Examples

data(boneData)

rot <- rotonto(bonelM[,,1],bonelM[,,2])

trafo <- getTrafo4x4(rot)

bonelLM2trafo <- applyTransform(bonelLM[,,2],trafo)

areaSphere compute the area of an n-dimensional hypersphere

Description

compute the area of an n-dimensional hypersphere

Usage

areaSphere(n, r = 1)

Arguments
n dimensionality of space the hypersphere is embedded in (e.g.3 for a 3D-sphere)
r radius of the sphere

Value

returns the area

Examples

areaSphere(2) #gives us the circumference of a circle of radius 1

areaSpherePart 11

areaSpherePart compute the area of an n-dimensional hypersphere cap

Description

compute the area of an n-dimensional hypersphere cap

Usage

areaSpherePart(n, phi, r = 1)

Arguments
n dimensionality of space the hypersphere is embedded in (e.g.3 for a 3D-sphere)
phi angle between vectors defining the cone
r radius of the sphere

Value

returns the area of the hypersphere cap

Examples

areaSpherePart(2,pi/2) # covers half the area of a circle

armaGinv calculate Pseudo-inverse of a Matrix using RcppArmadillo

Description

a simple wrapper to call Armadillo’s pinv function

Usage

armaGinv(x, tol = NULL)

Arguments

X numeric matrix

tol numeric: maximum singular value to be considered
Value

Pseudo-inverse

12 arrMean3

Examples

mat <- matrix(rnorm(12),3,4)
pinvmat <- armaGinv(mat)

array?list reverts list2array, converting an array to a list of matrices

Description

reverts list2array, converting an array to a list of matrices

Usage

array2list(x)

Arguments

X array

Value

returns a list containing the matrices

arrMean3 calculate mean of an array

Description

calculate mean of a 3D-array (e.g. containing landmarks) (fast) using the Armadillo C++ Backend

Usage

arrMean3(arr)

Arguments

arr k x m x n dimensional numeric array

Value

matrix of dimensions k x m.

Note

this is the same as apply(arr, 1:2, mean), only faster for large configurations.

asymPermute

Examples

data(boneData)

13

proc <- ProcGPA(bonelLM, silent = TRUE)
mshape <- arrMean3(proc$rotated)

asymPermute

Assess differences in amount and direction of asymmetric variation
(only object symmetry)

Description

Assess differences in amount and direction of asymmetric variation (only object symmetry)

Usage

asymPermute(x, groups, rounds = 1000, which = NULL)

Arguments

X
groups
rounds

which

Value
dist
angle
means
p.dist

p.angle
permudist
permuangle
groupmeans

levels

Note

object of class symproc result from calling procSym with pairedLM specified
factors determining grouping.
number of permutations

select which factorlevels to use, if NULL, all pairwise differences will be as-
sessed after shuffling pooled data.

difference between vector lengths of group means
angle (in radians) between vectors of group specific asymmetric deviation
actual group averages

p-value obtained by comparing the actual distance to randomly acquired dis-
tances

p-value obtained by comparing the actual angle to randomly acquired angles
vector containing differences between random group means’ vector lenghts
vector containing angles between random group means’ vectors

array with asymmetric displacement per group

character vector containing the factors used

This test is only sensible if between-group differences concerning directional asymmetry have been
established (e.g. by applying a MANOVA on the "asymmetric" PCscores (see also procSym) and
one wants to test whether these can be attributed to differences in amount and/or direction of asym-
metric displacement. Careful interpretation for very small amounts of directional asymmetry is
advised. The Null-Hypothesis is that we have the same directional asymmetry in both groups. If
you want to test whether the angle between groups is similar, please use angleTest.

14 barycenter

See Also

procSym

barycenter calculates the barycenters for all faces of a triangular mesh

Description

calculates the barycenters for all faces of a triangular mesh

Usage

barycenter(mesh)
Arguments

mesh triangular mesh of class 'mesh3d’
Value

k x 3 matrix of barycenters for all k faces of input mesh.

See Also

closemeshKD

Examples

data(nose)

bary <- barycenter(shortnose.mesh)

Not run:

require(rgl)

##visualize mesh

wire3d(shortnose.mesh)

visualize barycenters

points3d(bary, col=2)

now each triangle is equipped with a point in its barycenter

End(Not run)

bindArr 15

bindArr concatenate multiple arrays/matrices

Description

concatenate multiple 3-dimensional arrays and/or 2-dimensional matrices to one big array

Usage
bindArr(..., along = 1, collapse = FALSE)
Arguments
matrices and/or arrays with appropriate dimensionality to combine to one array,
or a single list containing suitable matrices, or arrays).
along dimension along which to concatenate.
collapse logical: if the resulting array is shallow (only 1 dimension deep), it is converted
to a matrix.
Details

dimnames, if present and if differing between entries, will be concatenated, separated by a "_".

Value

returns array of combined matrices/arrays

See Also

cbind, rbind, array

Examples

A <- matrix(rnorm(18),6,3)
B <- matrix(rnorm(18),6,3)
C <- matrix(rnorm(18),6,3)

#combine to 3D-array

newArr <- bindArr(A,B,C,along=3)
#combine along first dimension

newArr2 <- bindArr(newArr,newArr,along=1)

16 CAC

boneData Landmarks and a triangular mesh

Description

Landmarks on the osseous human nose and a triangular mesh representing this structure.

Format

boneLM: A 10x3x80 array containing 80 sets of 3D-landmarks placed on the human osseous nose.

skull_0144_ch_fe.mesh: The mesh representing the area of the first individual of bonelLM

CAC calculate common allometric component

Description

calculate common allometric component

Usage

CAC(x, size, groups = NULL, log = FALSE)

Arguments
X datamatrix (e.g. with PC-scores) or 3D-array with landmark coordinates
size vector with Centroid sizes
groups grouping variable
log logical: use log(size)
Value
CACscores common allometric component scores
CAC common allometric component
X (group-) centered data
sc CAC reprojected into original space by applying CAC %*% x
RSCscores residual shape component scores
RSC residual shape components
gmeans groupmeans

CS the centroid sizes (log transformed if 1log = TRUE)

cExtract 17

References

Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL. 2004. Comparison of cranial
ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46(6):679-97.

Examples

data(boneData)

proc <- procSym(bonelLM)

pop.sex <- name2factor(bonelLM,which=3:4)

cac <- CAC(proc$rotated,proc$size,pop.sex)
plot(cac$CACscores,cac$size)#plot scores against Centroid size
cor.test(cac$CACscores,cac$size)#check for correlation
#visualize differences between large and small on the sample's consensus
Not run:

large <- restoreShapes(max(cac$CACscores),cac$CAC,proc$mshape)
small <- restoreShapes(min(cac$CACscores),cac$CAC,proc$mshape)
deformGrid3d(small, large,ngrid=0)

End(Not run)

cExtract extract information about fixed landmarks, curves and patches from
and atlas generated by "landmark"

Description
After exporting the pts file of the atlas from "landmark" and importing it into R via "read.pts"
cExtract gets information which rows of the landmark datasets belong to curves or patches.

Usage
cExtract(pts.file)

Arguments
pts.file either a character naming the path to a pts.file or the name of an object imported
via read.pts.
Value

returns a list containing the vectors with the indices of matrix rows belonging to the in "landmark"
defined curves, patches and fix landmarks and a matrix containing landmark coordinates.

Author(s)

Stefan Schlager

See Also

read.lmdta ,read.pts

18

checkLM

checkLM

sponding surfaces.

Visually browse through a sample rendering its landmarks and corre-

Description

Browse through a sample rendering its landmarks and corresponding surfaces. This is handy e.g. to
check if the landmark projection using placePatch was successful, and to mark specific specimen.

Usage
checkLM(
dat.array,
path = NULL,
prefix = ""
suffix = ".ply",
col = "white”,
pt.size = NULL,
alpha = 1,
begin = 1,
render = c("w", "s"),
point = c("s", "p"),
add = FALSE,

meshlist = NULL,
Rdata = FALSE,

atlas = NULL,
text.lm = FALSE
)
Arguments
dat.array array or list containing landmark coordinates.
path optional character: path to files where surface meshes are stored locally. If not
specified only landmarks are displayed.
prefix prefix to attach to the filenames extracted from dimnames(dat.array)[[3]]
(in case of an array), or names(dat.array) (in case of a list)
suffix suffix to attach to the filenames extracted from dimnames(dat.array)[[3]1] (in
case of an array), or names(dat.array) (in case of a list)
col mesh color
pt.size size of plotted points/spheres. If point="s". pt.size defines the radius of the
spheres. If point="p" it sets the variable size used in point3d.
alpha value between 0 and 1. Sets transparency of mesh 1=opaque 0= fully transpar-
ent.
begin integer: select a specimen to start with.

render if render="w", a wireframe will be drawn, else the meshes will be shaded.

checkLM 19

point how to render landmarks. "s"=spheres, "p"=points.

add logical: add to existing rgl window.

meshlist list holding meshes in the same order as dat.array (Overrides path).

Rdata logical: if the meshes are previously stored as Rdata-files by calling save(), these

are simply loaded and rendered. Otherwise it is assumed that the meshes are
stored in standard file formats such as PLY, STL or OBJ, that are then imported
with the function file2mesh.

atlas provide object generated by createAtlas to specify coloring of surface patches,
curves and landmarks
text.1lm logical: number landmarks. Only applicable when atlas=NULL.
Value

returns an invisible vector of indices of marked specimen.

See Also

placePatch, createAtlas, plotAtlas,file2mesh

Examples

data(nose)

#i##create mesh for longnose

longnose.mesh <- tps3d(shortnose.mesh, shortnose.lm,longnose.1lm,threads=1)
write meshes to disk

save(shortnose.mesh, file="shortnose")

save(longnose.mesh, file="longnose")

create landmark array

data <- bindArr(shortnose.lm, longnose.lm, along=3)
dimnames(data)[[3]] <- c("shortnose”, "longnose")
Not run:

checkLM(data, path="./",Rdata=TRUE, suffix="")

End(Not run)

now visualize by using an atlas:

atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[c(1:5,20:21),1,

patch=shortnose.1lm[-c(1:5,20:21),])

if (interactive()){

checkLM(data, path="./",Rdata=TRUE, suffix="", atlas=atlas)

3

remove data from disk

unlink("shortnose")

unlink("longnose")

20 classity

checkNA check for NA values in a matrix (of landmarks)

Description

check for NA values in a matrix (of landmarks)

Usage

checkNA(x)

Arguments

X matrix containing landmarks

Value

returns a vector with missin landmarks and a vector of length=0 if none are missing

classify classify specimen based on between-group PCA or CVA or typprob-
Class

Description

classify specimen based on between-group PCA, CVA or typprobClass

Usage

classify(x, cv = TRUE, ...)

S3 method for class 'bgPCA'
classify(x, cv = TRUE, newdata = NULL, ...)

S3 method for class 'CVA'
classify(x, cv = T, newdata = NULL, prior = NULL, ...)

S3 method for class 'typprob'
classify(x, cv = TRUE, ...)

closemeshKD 21

Arguments
X result of groupPCA, CVA or typprobClass
cv logical: use cross-validated scores if available
currently not used
newdata use new data to predict scores and evaluate group affinity
prior specify prior probability for CVA evaluation if NULL prior from CVA will be
used. Be m your number of groups then to set the prior equally for all groups set
prior=rep(1,m)/m
Value
class classification result
groups original grouping variable, only available if newdata=NULL
posterior only for object of CVA and typprob, also the posterior probabilities are returned
See Also

CVA, groupPCA, typprobClass

closemeshKD Project coordinates onto a target triangular surface mesh.

Description

For a set of 3D-coordinates the closest matches on a target surface are determined and normals at
as well as distances to that point are calculated.

Usage

closemeshKD(
X,
mesh,
k = 50,
sign = FALSE,
barycoords = FALSE,
cores = 1,
method = 0,

22

Arguments

X
mesh
k

sign
barycoords
cores

method

Details

closemeshKD

k x 3 matrix containing 3D-coordinates or object of class mesh3d.
triangular surface mesh stored as object of class mesh3d.

neighbourhood of kd-tree to search - the larger, the slower - but the more likely
the absolutely closest point is hit.

logical: if TRUE, signed distances are returned.
logical: if TRUE, barycentric coordinates of the hit points are returned.
integer: how many cores to use for the search algorithm.

integer: either O or 1, if O ordinary Euclidean distance is used, if 1, the distance
suggested by Moshfeghi(1994) is calculated.

additional arguments. currently unavailable.

The search for the clostest point is designed as follows: Calculate the barycenter of each target
face. For each coordinate of x, determine the k closest barycenters and calculate the distances to
the closest point on these faces.

Value

returns an object of class mesh3d. with:

vb
normals

quality

it

Author(s)

Stefan Schlager

References

4xn matrix containing n vertices as homolougous coordinates
4xn matrix containing vertex normals

vector: containing distances to target. In case of method=1, this is not the Eu-
clidean distance but the distance of the reference point to the faceplane (orthog-
onally projected) plus the distance to the closest point on one of the face’s edges
(the target point). See the literature cited below for details.

4xm matrix containing vertex indices forming triangular faces.Only available,
when x is a mesh

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

Moshfeghi M, Ranganath S, Nawyn K. 1994. Three-dimensional elastic matching of volumes IEEE
Transactions on Image Processing: A Publication of the IEEE Signal Processing Society 3:128-138.

See Also

ply2mesh

colors 23

Examples

data(nose)

out <- closemeshKD(longnose.lm,shortnose.mesh,sign=TRUE)
show distances - they are very small because
#i##longnose.1lm is scaled to unit centroid size.
hist(out$quality)

colors predefined colors for bone and skin

Description

predefined colors for bone and skin

Details

available colors are:
bonel

bone2

bone3

skinl

skin2

skin3

skin4

computeArea Compute area enclosed within an irregular polygon

Description

Compute area enclosed within an irregular polygon - i.e. defined by curves

Usage

computeArea(x)

Arguments

X k x 2 or k x 3 matrix containing ordered coordinates forming the boundary of
the area. For 3D-cases, the area should be closed to a 2D surface (see details
below).

24 compute Transform

Details

For 3D coordinates, a PCA is computed and only the first two PCs are used to compute the area.
This is a projection of the coordinates onto a 2D plane spanned by those PCs.

Value

returns a list containing

area size of the enclosed area

xpro2D projected coordinates of x in the 2D plane.

poly object of class sp as defined by the sp package.

xpro3D For 3D-cases, this contains the projected coordinates of x rotated back into the

original coordinate system

Note

in case custom planes are preferred, the data can first be projected onto such a custom defined plane
via points2plane first.

Examples

require(shapes)

require(sf)

myarea <- computeArea(gorf.dat[c(1,6:8,2:5),,11)
myarea$area

plot(myarea$poly)

3D example

data(boneData)

myarea3D <- computeArea(bonelLM[c(4,2,3,7,5,6,8),,1]1)

plot(myarea3D$poly)

cent <- colMeans(myarea3D$xpro2D)
text(cent[1],cent[2],labels=paste@("Area=",round(myarea3D$area,digits=2)))

computeTransform calculate an affine transformation matrix

Description

calculate an affine transformation matrix

computeTransform 25

Usage

computeTransform(
X,
Y,
type = c("rigid”, "similarity"”, "affine”, "tps"),
reflection = FALSE,
lambda = 1e-08,
weights = NULL,
centerweight = FALSE,

threads = 1
)
Arguments
X fix landmarks. Can be a k x m matrix or mesh3d.
y moving landmarks. Can be a k x m matrix or mesh3d.
type set type of affine transformation: options are "rigid", "similarity" (rigid + scale)
and "affine",
reflection logical: if TRUE "rigid" and "similarity" allow reflections.
lambda numeric: regularisation parameter of the TPS.
weights vector of length k, containing weights for each landmark (only used in type="rigid"

or "similarity").

centerweight logical or vector of weights: if weights are defined and centerweigths=TRUE,
the matrix will be centered according to these weights instead of the barycenter.
If centerweight is a vector of length nrow(x), the barycenter will be weighted
accordingly.

threads number of threads to use in TPS interpolation.

Details

x and y can also be a pair of meshes with corresponding vertices.

Value

returns a 4x4 (3x3 in 2D case) transformation matrix or an object of class "tpsCoeff" in case of
type="tps".

Note

all lines containing NA, or NaN are ignored in computing the transformation.

See Also

rotonto, link{rotmesh.onto}, tps3d

26 covDist

Examples

data(boneData)
trafo <- computeTransform(bonelLM[,,1],bonelLM[,,2])
translM <- applyTransform(bonelLM[, ,2],trafo)

covDist calculates distances and PC-coordinates of covariance matrices

Description

calculates PC-coordinates of covariance matrices by using the Riemannian metric in their respective
space.

Usage

covDist(s1, s2)

covPCA(
data,
groups,
rounds = 1000,
bootrounds = @,

lower.bound = 0.05,
upper.bound = 0.95
)
Arguments
s1 m X m covariance matrix
s2 m X m covariance matrix
data matrix containing data with one row per observation
groups factor: group assignment for each specimen
rounds integer: rounds to run permutation of distances by randomly assigning group
membership
bootrounds integer: perform bootstrapping to generate confidence intervals (lower bound-
ary, median and upper boundary) for PC-scores.
lower.bound numeric: set probability (quantile) for lower boundary estimate from bootstrap-
ping.
upper .bound numeric: set probability (quantile) for upper boundary estimate from bootstrap-

ping.

covDist 27

Details

covDist calculates the Distance between covariance matrices while covPCA uses a MDS (multidi-
mensional scaling) approach to obtain PC-coordinates from a distance matrix derived from multiple
groups. P-values for pairwise distances can be computed by permuting group membership and com-
paring actual distances to those obtained from random resampling. To calculate confidence intervals
for PC-scores, within-group bootstrapping can be performed.

Value

covDist returns the distance between s1 and s2
covPCA returns a list containing:

if scores = TRUE

PCscores PCscores

eigen eigen decomposition of the centered inner product
if rounds > @

dist distance matrix

p.matrix p-values for pairwise distances from permutation testing

if bootrounds > 0

bootstrap list containing the lower and upper bound of the confidence intervals of PC-
scores as well as the median of bootstrapped values.
boot.data array containing all results generated from bootstrapping.
Author(s)
Stefan Schlager
References

Mitteroecker P, Bookstein F. 2009. The ontogenetic trajectory of the phenotypic covariance matrix,
with examples from craniofacial shape in rats and humans. Evolution 63:727-737.

Hastie T, Tibshirani R, Friedman JJH. 2013. The elements of statistical learning. Springer New
York.

See Also

prcomp

Examples

cpca <- covPCA(iris[,1:4],iris[,51)

cpcas$p.matrix #show pairwise p-values for equal covariance matrices
Not run:

require(car)

28 covW

sp(cpca$PCscores[,1],cpca$PCscores[,2],groups=levels(iris[,5]),
smooth=FALSE, xlim=range(cpca$PCscores),ylim=range(cpca$PCscores))

data(boneData)

proc <- procSym(bonelLM)

pop <- name2factor(bonelLM, which=3)

compare covariance matrices for PCscores of Procrustes fitted data
cpcal <- covPCA(proc$PCscores, groups=pop, rounds = 1000)

view p-values:

cpcal$p.matrix # differences between covariance matrices

are significant

visualize covariance ellipses of first 5 PCs of shape
spm(proc$PCscores[,1:5], groups=pop, smooth=FALSE,ellipse=TRUE, by.groups=TRUE)
covariance seems to differ between 1st and 5th PC

for demonstration purposes, try only first 4 PCs

cpca2 <- covPCA(proc$PCscores[,1:4], groups=pop, rounds = 1000)

view p-values:

cpca2$p.matrix # significance is gone

End(Not run)

#do some bootstrapping 1000 rounds

cpca <- covPCA(iris[,1:4],iris[,5],rounds=0, bootrounds=1000)

#plot bootstrapped data of PC1 and PC2 for first group

plot(t(cpcas$boot.datal1,1:2,]),xlim=range(cpcas$boot.datal,1,]),
ylim=range(cpcas$boot.datal,2,]))

points(t(cpca$PCscores[1,]1),col="white",pch=8,cex=1.5)#i#plot actual values

for (i in 2:3) {
points(t(cpca$boot.datali,1:2,]1),col=i)##plot other groups
points(t(cpca$PCscores[i,]),col=1,pch=8,cex=1.5)##plot actual values
3

covW calculate the pooled within groups covariance matrix

Description

calculate the pooled within groups covariance matrix

Usage

covW(data, groups, robust = c("classical”, "mve”, "mcd"), ...)
Arguments

data a matrix containing data

groups grouping variables

createAtlas 29

robust character: determines covariance estimation methods in case sep=TRUE, when
covariance matrices and group means can be estimated robustly using MASS: : cov. rob.
Default is the standard product-moment covariance matrix.

additional parameters passed to MASS: : cov. rob for robust covariance and mean
estimations.
Value
Returns the pooled within group covariance matrix. The attributes contain the entry means, con-
taining the respective group means.
Author(s)

Stefan Schlager

See Also

cov, typprobClass

Examples

data(iris)
poolCov <- covW(iris[,1:4],iris[,5])

createAtlas Create an atlas needed in placePatch

Description

Create an atlas needed in placePatch

Usage

createAtlas(
mesh,
landmarks,
patch,
corrCurves = NULL,
patchCurves = NULL,
keep.fix = NULL

30 CreateL

Arguments
mesh triangular mesh representing the atlas’ surface
landmarks matrix containing landmarks defined on the atlas, as well as on each specimen
in the corresponding sample.
patch matrix containing semi-landmarks to be projected onto each specimen in the
corresponding sample.
corrCurves a vector or a list containing vectors specifiyng the rowindices of landmarks
to be curves that are defined on the atlas AND each specimen. e.g. if land-
marks 2:4 and 5:10 are two distinct curves, one would specifiy corrCurves =
list(c(2:4), c(5:10)).
patchCurves a vector or a list containing vectors specifiyng the rowindices of landmarks to
be curves that are defined ONLY on the atlas. E.g. if coordinates 5:10 and
20:40 on the patch are two distinct curves, one would specifiy patchCurves =
list(c(5:10),c(20:40)).
keep.fix in case corrCurves are set, specify explicitly which landmarks are not allowed
to slide during projection (with placePatch)
Value

Returns a list of class "atlas". Its content is corresponding to argument names.

Note

This is a helper function of placePatch.

See Also

placePatch, plotAtlas

Examples

data(nose)
atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[c(1:5,20:21),], patch=shortnose.lm[-c(1:5,20:21),])

CreatelL Create Matrices necessary for Thin-Plate Spline

Description

Create (Bending Engergy) Matrices necessary for Thin-Plate Spline, and sliding of Semilandmarks

CreateL

Usage

Createl(
matrix,
lambda
output =
threads

Arguments

matrix
lambda

output

threads

Value

31

1e-08,
C(HKH’ ”LII’ IlLinVlI’ HLsuka’ llLSubk3H),

k x 3 or k x 2 matrix containing landmark coordinates.
numeric: regularization factor

character vector: select which matrices to create. Can be a vector containing
any combination of the strings: "K", "L","Linv", "Lsubk”, "Lsubk3".

threads to be used for parallel execution calculating K. sliding of semilandmarks.

depending on the choices in output:

L

L

Linv
Lsubk
Lsubk3

Note

Matrix K as specified in Bookstein (1989)

Matrix L as specified in Bookstein (1989)

Inverse of matrix L as specified in Bookstein (1989)
uper left k x k submatrix of Linv

Matrix used for sliding in slider3d and relaxLM

This function is not intended to be called directly - except for playing around to grasp the mechan-
sims of the Thin-Plate Spline.

References

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11(6).

See Also

tps3d

32 createMissingList

Examples

data(boneData)

L <- CreatelL(bonelLM[,,11)

calculate Bending energy between first and second specimen:
be <- t(bonelLM[, ,2]1)%*%L$Lsubk¥%x%bonelLM[, , 2]

calculate Frobenius norm

sgrt(sum(be*2))

the amount is dependant on on the squared scaling factor

scale landmarks by factor 5 and compute bending energy matrix
be2 <- t(bonelLM[, ,2]%5)%*%L$Lsubk%x%(bonelLM[, ,2]%5)
sqrt(sum(be2”2)) # exactly 25 times the result from above

also this value is not symmetric:

L2 <- CreatelL(bonelLM[,,2]1)

be3 <- t(bonelM[,,1]1)%*x%L2$Lsubk%*x%bonelLM[,,1]
sqrt(sum(be3*2))

createMissinglist create a list with empty entries to be used as missingList in slider3d

Description

create a list with empty entries to be used as missingList in slider3d

Usage

createMissinglist(x)
Arguments

X length of the list to be created
Value

returns a list of length x filled with numerics of length zero.

See Also

fixLMtps, fixLMmirror, slider3d

Examples

Assume in a sample of 10, the 9th individual has (semi-)landmarks 10:50
hanging in thin air (e.g. estimated using fixLMtps)

while the others are complete.

create empty list

missinglist <- createMissinglList(10)

missinglist[[9]] <- 10:50

crossProduct 33

crossProduct calculate the orthogonal complement of a 3D-vector

Description

calculate the orthogonal complement of a 3D-vector

Usage

crossProduct(x, y, normalize = TRUE)

tangentPlane(x)
Arguments

X vector of length 3.

y vector of length 3.

normalize logical: if TRUE, the resulting vector is normalized
Details

calculate the orthogonal complement of a 3D-vector or the 3D-crossproduct, finding an orthogonal
vector to a plane in 3D.

Value

tangentPlane:

crossProduct: returns a vector of length 3.

y vector orthogonal to x

vector orthogonal to x and y

Author(s)

Stefan Schlager

Examples

require(rgl)

x <- ¢(1,0,0)
y <- ¢(90,1,0)

#example tangentPlane

z <- tangentPlane(x)

#visualize result

Not run:

lines3d(rbind(@, x), col=2, lwd=2)

34

show complement
lines3d(rbind(z$y, 0, z$z), col=3, lwd=2)

End(Not run)

example crossProduct

z <- crossProduct(x, y)

show x and y

Not run:

lines3d(rbind(x, @, y), col=2, lwd=2)
show z

lines3d(rbind(@, z), col=3, lwd=2)

End(Not run)

cSize

cSize calculate Centroid Size for a landmark configuration

Description

calculate Centroid Size for a landmark configuration

Usage

cSize(x)

Arguments

X k x 3 matrix containing landmark coordinates or mesh of class "mesh3d"

Value

returns Centroid size

Examples

data(boneData)
cSize(bonelM[,,11)

cutMeshPlane 35

cutMeshPlane cut a mesh by a hyperplane and remove parts above/below that plane

Description

cut a mesh by a hyperplane and remove parts above/below that plane

Usage

cutMeshPlane(mesh, v1, v2 = NULL, v3 = NULL, normal = NULL, keep.upper = TRUE)

Arguments

mesh triangular mesh of class "mesh3d"

vl numeric vector of length=3 specifying a point on the separating plane

v2 numeric vector of length=3 specifying a point on the separating plane

v3 numeric vector of length=3 specifying a point on the separating plane

normal plane normal (overrides specification by v2 and v3)

keep.upper logical specify whether the points above or below the plane are should be kept
Details

see cutSpace for more details.

Value

mesh with part above/below hyperplane removed

cutSpace separate a 3D-pointcloud by a hyperplane

Description

separate a 3D-pointcloud by a hyperplane

Usage

cutSpace(pointcloud, v1, v2 = NULL, v3 = NULL, normal = NULL, upper = TRUE)

36

Arguments

pointcloud
v

v2

v3

normal

upper

Details

CVA

numeric n x 3 matrix

numeric vector of length=3 specifying a point on the separating plane
numeric vector of length=3 specifying a point on the separating plane
numeric vector of length=3 specifying a point on the separating plane
plane normal (overrides specification by v2 and v3)

logical specify whether the points above or below the plane are to be reported as
TRUE.

As above and below are specified by the normal calculated from (v2 — v1) x (v3 — v1), where
x denotes the vector crossproduct. This means the normal points "upward" when viewed from the
positon where v1, v2 and v3 are arranged counter-clockwise. Thus, which side is "up" depends on
the ordering of v1, v2 and v3.

Value

logical vector of length n. Reporting for each point if it is above or below the hyperplane

Examples

data(nose)

vl <- shortnose.1m[1,]
v2 <- shortnose.1lm[2,]
v3 <- shortnose.1m[3,]
pointcloud <- vert2points(shortnose.mesh)
upper <- cutSpace(pointcloud, v1, v2, v3)

Not run:

require(rgl)

normal <- crossProduct(v2-vi1,v3-v1)

zeroPro <- points2plane(rep(@,3),v1,normal)
get sign of normal displacement from zero
sig <- sign(crossprod(-zeroPro,normal))

d <- sig*norm(zeroPro,"2")
planes3d(normal[1],normal[2],normal[3],d=d)
points3d(pointcloud[upper,])

End(Not run)

CVA

Canonical Variate Analysis

Description

performs a Canonical Variate Analysis.

CVA 37

Usage

CVA(
dataarray,
groups,
weighting = TRUE,
tolinv = 1e-10,

plot = TRUE,
rounds = 0,
cv = FALSE,
p.adjust.method = "none”,
robust = c("classical”, "mve", "mcd"),
prior = NULL,
)
Arguments
dataarray Either a k x m x n real array, where k is the number of points, m is the number
of dimensions, and n is the sample size. Or alternatively a n x m Matrix where
n is the numeber of observations and m the number of variables (this can be PC
scores for example)
groups a character/factor vector containgin grouping variable.
weighting Logical: Determines whether the between group covariance matrix and Grand-
mean is to be weighted according to group size.
tolinv Threshold for the eigenvalues of the pooled within-group-covariance matrix to
be taken as zero - for calculating the general inverse of the pooled withing groups
covariance matrix.
plot Logical: determins whether in the two-sample case a histogramm ist to be plot-
ted.
rounds integer: number of permutations if a permutation test of the Mahalanobis dis-
tances (from the pooled within-group covariance matrix) and Euclidean distance
between group means is requested If rounds = 0, no test is performed.
cv logical: requests a Jackknife Crossvalidation.

p.adjust.method

method to adjust p-values for multiple comparisons see p.adjust.methods for
options.

robust character: determines covariance estimation methods, allowing for robust esti-
mations using MASS: : cov. rob

prior vector assigning each group a prior probability.

additional parameters passed to MASS: : cov. rob for robust covariance and mean
estimations

Value

cv A matrix containing the Canonical Variates

38

CVscores

Grandm

groupmeans

Var
CVvis

Dist

CVcv
groups

class

posterior

prior

Author(s)

Stefan Schlager

References

CVA

A matrix containing the individual Canonical Variate scores

a vector or a matrix containing the Grand Mean (depending if the input is an
array or a matrix)

a matrix or an array containing the group means (depending if the input is an
array or a matrix)

Variance explained by the Canonical Variates

Canonical Variates projected back into the original space - to be used for visual-
ization purposes, for details see example below

Mahalanobis Distances between group means - if requested tested by permuta-
tion test if the input is an array it is assumed to be superimposed Landmark Data
and Procrustes Distance will be calculated

A matrix containing crossvalidated CV scores
factor containing the grouping variable

classification results based on posteriror probabilities. If cv=TRUE, this will be
done by a leaving-one-out procedure

posterior probabilities

prior probabilities

Cambell, N. A. & Atchley, W. R.. 1981 The Geometry of Canonical Variate Analysis: Syst. Zool.,

30(3), 268-280.

Klingenberg, C. P. & Monteiro, L. R. 2005 Distances and directions in multidimensional shape
spaces: implications for morphometric applications. Systematic Biology 54, 678-688.

See Also

groupPCA

Examples

all examples are kindly provided by Marta Rufino

if (require(shapes)) {
perform procrustes fit on raw data
alldat<-procSym(abind(gorf.dat,gorm.dat))

create factors

groups<-as.factor(c(rep("female”,30),rep("male”,29)))

perform CVA and test Mahalanobis distance

between groups with permutation test by 100 rounds)
cvall<-CVA(alldat$orpdata, groups, rounds=10000)

visualize a shape change from score -5 to 5:

cvvis5 <- 5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm

CVA 39

cvvisNegh <- -5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
plot(cvvis5,asp=1)
points(cvvisNeg5,col=2)
for (i in 1:nrow(cvvisNeg5))
lines(rbind(cvvis5[i,],cvvisNeg5[i, 1))
3
Morpho CVA
data(iris)
vari <- iris[,1:4]
facto <- iris[,5]

cva.1=CVA(vari, groups=facto)

get the typicality probabilities and resulting classifications - tagging

all specimens with a probability of < .01 as outliers (assigned to no class)

typprobs <- typprobClass(cva.1$CVscores,groups=facto)

print(typprobs)

visualize the CV scores by their groups estimated from (cross-validated)

typicality probabilities:

if (require(car)) {

scatterplot(cva.1$CVscores[,1],cva.1$CVscores[, 2], groups=typprobs$groupaffinCV,

smooth=FALSE, reg.line=FALSE)

}

plot the CVA

plot(cva.1$CVscores, col=facto, pch=as.numeric(facto), typ="n",asp=1,
xlab=paste("”1st canonical axis"”, paste(round(cva.1$Var[1,2],1),"%")),
ylab=paste(”2nd canonical axis"”, paste(round(cva.l1$Var[2,2]1,1),"%")))

text(cva.1$CVscores, as.character(facto), col=as.numeric(facto), cex=.7)

add chull (merge groups)
for(jj in 1:length(levels(facto))){
ii=levels(facto)[jj]
kk=chull(cva.1$CVscores[facto==ii,1:2])
lines(cva.1$CVscores[facto==ii,1][c(kk, kk[11)],
cva.1$CVscores[facto==ii,2]1[c(kk, kk[1])], col=jj)
}

add 80% ellipses
if (require(car)) {
for(ii in 1:length(levels(facto))){
dataEllipse(cva.1$CVscores[facto==levels(facto)[ii], 1],
cva.1$CVscores[facto==levels(facto)[iil, 2],
add=TRUE, levels=.80, col=c(1:7)[iil])}
}
histogram per group
if (require(lattice)) {
histogram(~cva.1$CVscores[,1]|facto,
layout=c(1,length(levels(facto))),
xlab=paste("”1st canonical axis"”, paste(round(cva.1$var[1,2]1,1),"%")))
histogram(~cva.1$CVscores[,2]|facto, layout=c(1,length(levels(facto))),
xlab=paste(”2nd canonical axis"”, paste(round(cva.l1$Var[2,2],1),"%")))

}
plot Mahalahobis

40

data2platonic

dendroS=hclust(cva.1$Dist$GroupdistMaha)

dendroS$labels=levels(facto)

par(mar=c(4,4.5,1,1))

dendroS=as.dendrogram(dendroS)

plot(dendroS, main='', 6sub='"', xlab="Geographic areas”,
ylab="'Mahalahobis distance')

Variance explained by the canonical roots:
cva.1$Var

or plot it:

barplot(cva.1$Var[,2])

another landmark based example in 3D:

data(boneData)

groups <- name2factor(bonelM,which=3:4)

proc <- procSym(bonelLM)

cvall<-CVA(proc$orpdata, groups)

#' ## visualize a shape change from score -5 to 5:

cvvis5 <- 5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
cvvisNegh <- -5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
Not run:

#visualize it

deformGrid3d(cvvis5,cvvisNeg5,ngrid = 0)

End(Not run)

#for using (e.g. the first 5) PCscores, one will do:

cvall <- CVA(proc$PCscores[,1:5],groups)

#' ## visualize a shape change from score -5 to 5:

cvvish <- 5xcvall$CVvis[,1]+cvall$Grandm

cvvisNeg5 <- -5%cvall$CVvis[,1]+cvall$Grandm

cvvis5 <- restoreShapes(cvvis5,proc$PCs[,1:5],proc$mshape)
cvvisNeg5 <- restoreShapes(cvvisNeg5,proc$PCs[,1:5],proc$mshape)
Not run:

#visualize it

deformGrid3d(cvvis5,cvvisNeg5,ngrid = @)

End(Not run)

data2platonic creates 3D shapes from data to be saved as triangular meshes

Description

creates 3D shapes from 3-dimensional data that can be saved as triangular meshes

Usage

data2platonic(

deformGrid2d 41

datamatrix,
shape = Rvcg::vcgSphere(),
col = "red”,

scale = FALSE,
scalefactor = 1

)
Arguments
datamatrix k x 3 data matrix
shape a 3D shape
col color value
scale logical: whether to scale the data to unit sd.
scalefactor scale the resulting shapes.
Value

returns all shapes merged into a single mesh

Examples

mymesh <- data2platonic(iris[iris$Species=="setosa",1:3],scalefactor=0.1)

mymesh <- mergeMeshes(mymesh,data2platonic(iris[iris$Species=="versicolor”,1:3],
shape=Rvcg: :vcglcosahedron(),scalefactor=0.1,col="green"))

mymesh <- mergeMeshes(mymesh,data2platonic(iris[iris$Species=="virginica”,61:3],
shape=Rvcg: :vcgTetrahedron(),scalefactor=0.1,col="blue"))

Not run:

rgl::shade3d(mymesh)

save to disk

Rvcg: :vcgPlyWrite(mymesh, filename="3D_Data.ply")

End(Not run)

deformGrid2d visualise differences between two superimposed sets of 2D landmarks

Description

visualise differences between two superimposed sets of 2D landmarks by deforming a square grid
based on a thin-plate spline interpolation

Usage

deformGrid2d(
matrix,
tarmatrix,
ngrid = 0,

42

Iwd =1

’

deformGrid2d

show = c(1:2),
TRUE,

lines =
lcol =
1ty = 2
coll =
col2

1 ’

2,
3,

pcaxis = FALSE,
add = FALSE,
= NULL,

wireframe

margin

0.2,

gridcol = "grey”,
gridlty = 1,

cexl =
cex2 =

Arguments

matrix
tarmatrix
ngrid

lwd

show

lines
lcol
1ty
coll
col2
pcaxis
add
wireframe
margin
gridcol
gridlty
cex1

cex2

Value

1,
1,

reference matrix containing 2D landmark coordinates or mesh of class "mesh3d"
target matrix containing 2D landmark coordinates or mesh of class "mesh3d"
number of grid lines to be plotted; ngrid=0 suppresses grid creation.

width of lines connecting landmarks.

integer (vector): if c(1:2) both configs will be plotted, show = 1 only plots the
reference and show = 2 the target. plotted. Options are combinations of 1,2 and
3.

logical: if TRUE, lines between landmarks will be plotted.
color of lines

line type

color of "matrix"

color of "tarmat"

logical: align grid by shape’s principal axes.

logical: if TRUE, output will be drawn on existing plot.
list/vector containing row indices to be plotted as wireframe (see lineplot.)
margin around the bounding box to draw the grid

color of the grid

linetype for grid

control size of points belonging to matrix

control size of points belonging to tarmatrix

additional parameters passed to plot

if ngrid > 1 the coordinates of the displaced grid knots are returned.

deformGrid3d 43

Author(s)

Stefan Schlager

See Also
tps3d

Examples

if (require(shapes)) {

proc <- procSym(gorf.dat)
deformGrid2d(proc$mshape,proc$rotated[,,1],ngrid=5,pch=19)
3

deformGrid3d visualise differences between two superimposed sets of 3D landmarks

Description

visualise differences between two superimposed sets of 3D landmarks by deforming a cubic grid
based on a thin-plate spline interpolation

Usage

deformGrid3d(
matrix,
tarmatrix,
ngrid = 0,
align = FALSE,
Iwd =1,
showaxis = c(1, 2),
show = c(1, 2),

lines = TRUE,

lcol =1,

add = FALSE,

coll = 2,

col2 = 3,

type = c("s", "p"),
size = NULL,

pcaxis = FALSE,

ask = TRUE,

margin = 0.2,
createMesh = FALSE,
slicel = NULL,
slice2 = NULL,
slice3 = NULL,

44 deformGrid3d

gridcol = 1,
gridwidth = 1,
)
Arguments

matrix reference matrix containing 3D landmark coordinates or mesh of class "mesh3d"

tarmatrix target matrix containing 3D landmark coordinates or mesh of class "mesh3d"

ngrid number of grid lines to be plotted; ngrid=0 suppresses grid creation.

align logical: if TRUE, tarmatrix will be aligned rigidly to matrix

lwd width of lines connecting landmarks.

showaxis integer (vector): which dimensions of the grid to be plotted. Options are combi-
nations of 1,2 and 3.

show integer (vector): if c(1:2) both configs will be plotted, show = 1 only plots the
reference and show = 2 the target

lines logical: if TRUE, lines between landmarks will be plotted.

lcol color of lines

add logical: add to existing rgl window.

coll color of "matrix"

col2 color of "tarmat"

type "s" renders landmarks as spheres; "p" as points - much faster for very large
pointclouds.

size control size/radius of points/spheres

pcaxis logical: align grid by shape’s principal axes.

ask logical: if TRUE for > 1000 coordinates the user will be asked to prefer points
over spheres.

margin margin around the bounding box to draw the grid

createMesh logical: if TRUE, a triangular mesh of spheres and displacement vectors (can
take some time depending on number of reference points and grid density).

slicel integer or vector of integers: select slice(s) for the dimensions

slice? integer or vector of integers: select slice(s) for the dimensions

slice3 integer or vector of integers: select slice(s) for the dimensions

gridcol define color of grid

gridwidth integer: define linewidth of grid
additional parameters passed to rotonto in case align=TRUE

Value

if createMesh=TRUE, a mesh containing spheres of reference and target as well as the displacement
vectors is returned. Otherwise the knots of the displaced grid is returned.

equidistantCurve

Author(s)

Stefan Schlager

See Also

tps3d

Examples

45

if (interactive()){

data(nose)

deformGrid3d(shortnose.1lm,longnose.1lm,ngrid=10)

select some slices
deformGrid3d(shortnose.1lm,longnose.1lm,showaxis=1:3,ngrid=10,slicel1=2,slice2=5,slice3=7)

}

equidistantCurve

make a curve equidistant (optionally up/downsampling)

Description

make a curve equidistant (optionally up/downsampling)

Usage

equidistantCurve(

X,

n = NULL,

open = TRUE,
subsample = 0,
increment = 2,
smoothit = 0,
mesh = NULL,
iterations = 1

Arguments

X

n

open

subsample

k x m matrix containing the 2D or 3D coordinates

integer: number of coordinates to sample. If NULL, the existing curve will be
made equidistant.

logical: specifies whether the curve is open or closed.

integer: number of subsamples to draw from curve for interpolation. For curves
with < 1000 points, no subsampling is required.

46 exVar

increment integer: if > 1, the curve is estimated iteratively by incrementing the original
points by this factor. The closer this value to 1, the smoother the line but possibly
farther away from the control points.

smoothit integer: smoothing iterations after each step

mesh specify mesh to project point to

iterations integer: how many iterations to run equidistancing.
Details

Equidistancy is reached by iteratively deforming (using TPS) a straight line with equidistantly
placed points to the target using control points with the same spacing as the actual curve. To avoid
singularity, the straight line containes a small amount of noise, which can (optionally) be accounted
for by smoothing the line by its neighbours.

Value

matrix containing equidistantly placed points

Note

if n » number of original points, the resulting curves can show unwanted distortions.

Examples

Not run:

data(nose)

x <- shortnose.1lm[c(304:323),]

xsample <- equidistantCurve(x,n=50,iterations=10,increment=2)

require(rgl)
points3d(xsample, size=5)

spheres3d(x,col=2,radius=0.3,alpha=0.5)

End(Not run)

exVar calculate variance of a distribution stemming from prediction models

Description

calculates a quotient of the overall varriance within a predicted distribution to that from the original
one. This function calculates a naive extension of the univariate R*2-value by dividing the variance
in the predicted dat by the variance of the original data. No additional adjustments are made!!

ex Var 47

Usage

exVar(model, ...)

S3 method for class 'lm'
exVar(model, ...)

S3 method for class 'mvr'

exVar(model, ncomp, val = FALSE, ...)
Arguments
model a model of classes "Im" or "mvr" (from the package "pls")

currently unused additional arguments.

ncomp How many latent variables to use (only for mvr models)
val use cross-vaildated predictions (only for mvr models)
Value

returns the quotient.

Note

The result is only!! a rough estimate of the variance explained by a multivariate model. And the
result can be misleading - especially when there are many predictor variables involved. If one is
interested in the value each factor/covariate explains, we recommend a 50-50 MANOVA perfomed
by the R-package "ffmanova", which reports this value factor-wise.

Author(s)

Stefan Schlager

References

Langsrud O, Juergensen K, Ofstad R, Naes T. 2007. Analyzing Designed Experiments with Multi-
ple Responses Journal of Applied Statistics 34:1275-1296.

Examples

Im1 <- Im(as.matrix(iris[,1:4]) ~ iris[,5])
exVar(1m1)

48 fastKmeans

fastKmeans fast kmeans clustering for 2D or 3D point clouds

Description
fast kmeans clustering for 2D or 3D point clouds - with the primary purpose to get a spatially
equally distributed samples

Usage

fastKmeans(x, k, iter.max = 10, project = TRUE, threads = 0)

Arguments
X matrix containing coordinates or mesh3d
k number of clusters
iter.max maximum number of iterations
project logical: if x is a triangular mesh, the centers will be projected onto the surface.
threads integer number of threads to use
Value

returns a list containing

selected coordinates closest to the final centers

centers cluster center

class vector with cluster association for each coordinate
Examples

require(Rvcg)

data(humface)

set.seed(42)
clust <- fastKmeans(humface,k=1000, threads=1)
Not run:
require(rgl)

plot the cluster centers
spheres3d(clust$centers)

now look at the vertices closest to the centers
wire3d(humface)

spheres3d(vert2points(humface)[clust$selected,], col=2)

End(Not run)

file2mesh

49

file2mesh

Import 3D surface mesh files

Description

Import 3D surface mesh files

Usage

file2mesh(filename, clean = TRUE, readcol = FALSE)

obj2mesh(filename, adnormals = TRUE)

ply2mesh(
filename,
adnormals

readnormals

TRUE,

FALSE,

readcol = FALSE,
silent = FALSE

Arguments

filename
clean
readcol

adnormals

readnormals

silent

Details

character: path to file
Logical: Delete dumpfiles.
Logical: Import vertex colors (if available).

Logical: If the file does not contain normal information, they will be calculated
in R: Can take some time.

Logical: Import vertex normals (if available), although no face information is
present.

logical: suppress messages.

imports 3D mesh files and store them as an R .object of class mesh3d

Value

mesh

list of class mesh3d - see rgl manual for further details, or a matrix containing
vertex information or a list containing vertex and normal information

50 find.outliers

Examples

data(nose)
mesh2ply(shortnose.mesh)
mesh <- ply2mesh(”shortnose.mesh.ply”)

mesh2obj(shortnose.mesh)

mesh2 <- obj2mesh(”shortnose.mesh.obj")

cleanup

unlink(c("shortnose.mesh.obj", "shortnose.mesh.ply"))

find.outliers Graphical interface to find outliers and/or to switch mislabeld land-
marks

Description

Graphical interface to find outliers and/or to switch mislabeld landmarks

Usage
find.outliers(
A,
color = 4,
lwd = 1,
lcol = 2,
mahalanobis = FALSE,
PCuse = NULL,
text = TRUE,
reflection = FALSE
)
Arguments
A Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
color color of Landmarks points to be plotted
lwd linewidth visualizing distances of the individual landmarks from mean.
lcol color of lines visualizing distances of the individual landmarks from mean.
mahalanobis logical: use mahalanobis distance to find outliers.
PCuse integer: Restrict mahalanobis distance to the first n Principal components.
text logical: if TRUE, landmark labels (rownumbers) are displayed

reflection logical: specify whether reflections are allowed for superimpositioning.

fixLMmirror 51

Details

This function performs a procrustes fit and sorts all specimen according to their distances (either
Procrustes or Mahalanobis-distance) to the sample’s consensus. It provides visual help for rearrang-
ing landmarks and/or excluding outliers.

Value

data.cleaned array (in original coordinate system) containing the changes applied and outliers

eliminated
outlier vector with integers indicating the positions in the original array that have been
marked as outliers
dist.sort table showing the distance to mean for each observation - decreasing by distance
type what kind of distance was used
Author(s)
Stefan Schlager
See Also

typprob,typprobClass

Examples

data(boneData)

look for outliers using the mahalanobis distance based on the first

10 PCscores

to perform the example below, you need,of course, uncomment the answers
if (interactive()){

outliers <- find.outliers(bonelLM, mahalanobis= TRUE, PCuse=10)

n # everything is fine

proceed to next

let's switch some landmarks (3 and 4)

n # we are done
y # yes, because now it is an outlier
s #enough for now

T R EE R TR

fixLMmirror estimate missing landmarks from their bilateral counterparts

Description

estimate missing landmarks from their bilateral counterparts

52 fixLMmirror
Usage
fixLMmirror(x, pairedLM, ...)

S3 method for class 'array'
fixLMmirror(x, pairedLM, ...)

S3 method for class 'matrix'

fixLMmirror(x, pairedLM, ...)
Arguments
X a matrix or an array containing landmarks (3D or 2D)
pairedLM a k x 2 matrix containing the indices (rownumbers) of the paired LM. E.g. the

left column contains the lefthand landmarks, while the right side contains the
corresponding right hand landmarks.

additional arguments

Details

the configurations are mirrored and the relabled version is matched onto the original using a thin-
plate spline deformation. The missing landmark is now estimated using its bilateral counterpart.
If one side is completely missing, the landmarks will be mirrored and aligned by the unilateral
landmarks.

Value

a matrix or array with fixed missing bilateral landmarks.

Note

in case both landmarks of a bilateral pair are missing a message will be issued. As well if there are
missing landmarks on the midsaggital plane are detected.

Examples

data(boneData)

left <- c(4,6,8)

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left, right)

exampmat <- bonelLM[,,1]

exampmat[4,] <- NA #set 4th landmark to be NA
fixed <- fixLMmirror(exampmat, pairedLM=pairedLM)
Not run:

deformGrid3d(fixed, bonelLM[,,1],ngrid=0)

result is a bit off due to actual asymmetry

End(Not run)
example with one side completely missing

fixLMtps 53

oneside <- bonelLM[,,1]

oneside[pairedLM[,1],] <- NA

onesidefixed <- fixLMmirror(oneside,pairedLM)
Not run:

deformGrid3d(onesidefixed, bonelLM[,,1],ngrid=0)
result is a bit off due to actual asymmetry

End(Not run)

fixLMtps estimate missing landmarks

Description

Missing landmarks are estimated by deforming a sample average or a weighted estimate of the
configurations most similar onto the deficient configuration. The deformation is performed by a
Thin-plate-spline interpolation calculated by the available landmarks.

Usage

fixLMtps(data, comp = 3, weight = TRUE, weightfun = NULL)

Arguments
data array containing landmark data
comp integer: select how many of the closest observations are to be taken to calculate
an initial estimate.
weight logical: requests the calculation of an estimate based on the procrustes distance.
Otherwise the sample’s consensus is used as reference.
weightfun custom function that operates on a vector of distances (see examples) and gen-
erates weights accordingly.
Details

This function tries to estimate missing landmark data by mapping weighted averages from complete
datasets onto the missing specimen. The weights are the inverted Procrustes (see proc.weight)
distances between the comp’ closest specimen (using the available landmark configuration).

Value
out array containing all data, including fixed configurations - same order as input
mshape meanshape - calculated from complete datasets
checklist list containing information about missing landmarks
check vector containing position of observations in data where at least one missing

coordinate was found

54 fixLMtps

Note

Be aware that these estimates might be grossly wrong when the missing landmark is quite far off
the rest of the landmarks (due to the radial basis function used in the Thin-plate spline interpolation.

Author(s)

Stefan Schlager

References

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations
IEEE Transactions on pattern analysis and machine intelligence 11.

See Also

proc.weight, tps3d

Examples

if (require(shapes)) {

data <- gorf.dat

set first landmark of first specimen to NA

datal1,,1] <- NA

repair <- fixLMtps(data,comp=5)

view difference between estimated and actual landmark
plot(repairs$outl,,1],asp=1,pch=21,cex=0.7,col=2)#estimated landmark
points(gorf.dat[,,1],col=3,pch=20)#actual landmark

3

3D-example:

data(boneData)

data <- bonelLM

set first and 5th landmark of first specimen to NA
datalc(1,5),,1] <= NA

repair <- fixLMtps(data,comp=10)

view difference between estimated and actual landmark
Not run:

deformGrid3d(repair$out[,,1], bonelM[,,1],ngrid=0)

End(Not run)

Now use a gaussian kernel to compute the weights and use all other configs
gaussWeight <- function(r,sigma=0.05) {
sigma <- 2%sigma’2
return(exp(-r*2/ sigma))
3
repair <- fixLMtps(data,comp=79,weightfun=gaussWeight)

getFaces 55

getFaces find indices of faces that contain specified vertices

Description

find indices of faces that contain specified vertices

Usage

getFaces(mesh, index)

Arguments
mesh triangular mesh of class "mesh3d"
index vector containing indices of vertices
Value

vector of face indices

getMeaningfulPCs get number of meaningful Principal components

Description

get number of meaningful Principal components

Usage

getMeaningfulPCs(values, n, expect = 2, sdev = FALSE)

Arguments

values eigenvalues from a PCA

n sample size

expect expectation value for chi-square distribution of df=2

sdev logical: if TRUE, it is assumed that the values are square roots of eigenvalues.
Details

This implements the method suggested by Bookstein (2014, pp. 324), to determine whether a PC is
entitled to interpretation. L.e. a PC is regarded meaningful (its direction) if the ratio of this PC and
its successor is above a threshold based on a log-likelihood ratio (and dependend on sample size).

56 getOuter Viewpoints

Value

tol threshold of ratio specific for n

good integer vector specifying the meaningful Principal Components
References

Bookstein, F. L. Measuring and reasoning: numerical inference in the sciences. Cambridge Univer-
sity Press, 2014

See Also

getPCtol

Examples

data(boneData)

proc <- procSym(bonelLM)
getMeaningfulPCs(proc$eigenvalues,n=nrow(proc$PCscores))
the first 3 PCs are reported as meaningful

show barplot that seem to fit the bill
barplot(proc$eigenvalues)

getOuterViewpoints Get viewpoints on a sphere around a 3D mesh

Description

Get viewpoints on a sphere around a 3D mesh to be used with virtualMeshScan

Usage

getOuterViewpoints(
X,
n,
inflate = 1.5,
radius = NULL,
subdivision = 3,

PCA = FALSE
)
Arguments
X triangular mesh of class mesh3d’
n number of viewpoint to generate
inflate factor for the size of the sphere: inflate=1 means that the sphere around the

object just touches the point farthest away from the mesh’s centroid.

getPCscores 57

radius defines a fix radius for the sphere (overrides arg inflate).
subdivision parameter passed to vcgSphere
PCA logical: if TRUE, the sphere will be deformed to match the principle axes of the
mesh. NOTE: this may result in the sphere not necessarily completely enclosing
the mesh.
Value

a list containing

viewpoints n X 3 matrix containing viewpoints.
sphere sphere from which the points are sampled
radius radius of the sphere

Examples
Not run:
data(boneData)

vp <- getOuterViewpoints(skull_0144_ch_fe.mesh,n=100)

require(rgl)
shade3d(skull_0144_ch_fe.mesh,col="white")
spheres3d(vp$viewpoints)

wire3d(vp$sphere)

Fit to principal axes
vppca <- getOuterViewpoints(skull_0144_ch_fe.mesh,n=100,PCA=TRUE, inflate=1.5)

require(rgl)
shade3d(skull_0144_ch_fe.mesh,col="white")
spheres3d(vppca$viewpoints)
wire3d(vppca$sphere)

End(Not run)

getPCscores Obtain PC-scores for new landmark data

Description

Obtain PC-scores for new landmark data

Usage

getPCscores(x, PC, mshape)

58 getPCtol

Arguments
X landmarks aligned (e.g. using align2procSym to the meanshape of data the PCs
are derived from.
PC Principal components (eigenvectors of the covariance matrix)
mshape matrix containing the meanshape’s landmarks (used to center the data)
Value

returns a matrix containing the PC scores

See Also

restoreShapes

Examples

Not run:

data(boneData)

proc <- procSym(bonelM[,,-c(1:2)])

newdata <- bonelM[,,c(1:2)]

newdataAlign <- align2procSym(proc,newdata)

scores <- getPCscores(newdataAlign,proc$PCs,proc$mshape)

End(Not run)

getPCtol determine the minimum ratio for two subsequent eigenvalues to be
considered different

Description

determine the minimum ratio for two subsequent eigenvalues to be considered different

Usage

getPCtol(n, expect = 2)

Arguments

n sample size

expect expectation value for chi-square distribution of df=2
Value

returns the minimum ratio between two subsequent subsequent eigenvalues to be considered differ-
ent.

getPLSCommonShape 59

References

Bookstein, F. L. Measuring and reasoning: numerical inference in the sciences. Cambridge Univer-
sity Press, 2014

See Also

getMeaningfulPCs

Examples

reproduce the graph from Bookstein (2014, p. 324)

and then compare it to ratios for values to be considered
statistically significant

myseq <- seq(from=10,to = 50, by = 2)

myseq <- c(myseq,seq(from=50,to=1000, by =20))

ratios <- getPCtol(myseq)

plot(log(myseq),ratios,cex=0,xaxt = "n",ylim=c(1,5.2))

ticks <- c(10,20,50,100,200,300,400,500,600,700,800,900,1000)
axis(1,at=log(ticks),labels=ticks)

lines(log(myseq),ratios)

abline(v=log(ticks), col="lightgray"”, lty="dotted")
abline(h=seq(from=1.2,t0=5, by = 0.2), col="lightgray"”, lty="dotted")

now we raise the bar and compute the ratios for values
to be beyond the 95th percentile of

the corresponding chi-square distribution:

ratiosSig <- getPCtol(myseq,expect=qchisq(0.95,df=2))
lines(log(myseq),ratiosSig,col=2)

getPLSCommonShape Get the linear combinations associated with the common shape change
in each latent dimension of a pls2B

Description
Get the linear combinations associated with the common shape change in each latent dimension of
apls2B

Usage

getPLSCommonShape (pls)

Arguments

pls object of class "pls2B"

60 getPLSfromScores

Value

returns a list containing

shapevectors matrix with each containing the shapevectors (in column- major format) of com-
mon shape change associated with each latent dimension

XscoresScaled Xscores scaled according to shapevectors

YscoresScaled Yscores scaled according to shapevectors

commoncenter Vector containing the common mean

Imdim dimension of landmarks

References

Mitteroecker P, Bookstein F. 2007. The conceptual and statistical relationship between modularity
and morphological integration. Systematic Biology 56(5):818-836.

See Also

plsCoVarCommonShape

Examples

data(boneData)

proc <- procSym(bonelLM)

pls <- pls2B(proc$orpdatall1:4,,],proc$orpdatal5:10,,1)

commShape <- getPLSCommonShape(pls)

get common shape for first latent dimension at +-2 sd of the scores

(you can do this much more convenient using \code{\link{plsCoVarCommonShape}}

scores <- c(-2,2) * sd(c(commShape$XscoresScaled[,1],commShape$YscoresScaled[,1]))

pred <- restoreShapes(scores,commShape$shapevectors[,1],matrix(commShape$commoncenter,10,3))
Not run:

deformGrid3d(pred[,,1],pred[,,2])

End(Not run)

getPLSfromScores compute changes associated with 2-Block PLS-scores

Description

compute changes associated with 2-Block PLS-scores

Usage

getPLSfromScores(pls, x, y)

getPLSscores 61

Arguments
pls output of pls2B
X scores associated with dataset x in original pls2B
y scores associated with dataset y in original pls2B
Details

other than predictPLSfromScores, providing Xscores will not compute predictions of y, but the
changes in the original data x that is associated with the specific scores

Value

returns data in the original space associated with the specified values.

getPLSscores compute 2-Block PLS scores for new data

Description

compute 2-Block PLS scores for new data from an existing pls2B

Usage

getPLSscores(pls, x, y)

Arguments
pls output of pls2B
X matrix or vector representing new dataset(s) - same kind as in original pls2B
y matrix or vector representing new dataset(s) - same kind as in original pls2B
Value

returns a vector of pls-scores

Note

either x or y must be missing

See Also

pls2B, predictPLSfromScores,predictPLSfromData

62 getSides

getPointAlongOutline Get a point along a line with a given distance from the start of the line

Description

Get a point along a line with a given distance from the start of the line

Usage

getPointAlongOutline(mat, dist = 15, reverse = FALSE)

Arguments
mat matrix with rows containing sequential coordinates
dist numeric: distance from the first point on the line.
reverse logical: if TRUE start from the end of the line
Value

returns a vector containing the resulting coordinate

getSides try to identify bilateral landmarks and sort them by side

Description

try to identify bilateral landmarks and sort them by side

Usage
getSides(x, tol = 3, pcAlign = TRUE, icpiter = 100, ...)
Arguments
X matrix containing landmarks (see details)
tol maximal distance allowed between original and mirrored set.
pcAlign logical: if TRUE orginal and mirrored landmarks will be initally aligned by their
PC-axes
icpiter integer: number of iterations in ICP alignment.

more arguments passed to mirror.

getTrafo4x4 63

Details

This function mirrors the landmark set and aligns it to the original. Then it tries to find pairs. If you
have a sample, run a Procrustes registration first (without scaling to unit centroid size, or you later
have to adapt tol - see examples) and then use the mean as it is usually more symmetrical.

Value

returns a list containing

sidel integer vector containing indices of landmarks on one side

side2 integer vector containing indices of landmarks on the other side

unilat integer vector containing indices unilateral landmarks
Examples

data(boneData)

proc <- procSym(bonelLM,CSinit=FALSE)

mysides <- getSides(proc$mshape)

if (interactive()){

#visualize bilateral landmarks
deformGrid3d(boneLM[mysides$sidel,,1],boneLM[mysides$side2,,1])
visualize unilateral landmarks
rgl::spheres3d(bonelLM[mysides$unilat,,1],radius=0.5)

}

getTrafo4x4 get 4x4 Transformation matrix

Description

get 4x4 Transformation matrix
Usage
getTrafodx4(x)

S3 method for class 'rotonto'
getTrafod4x4(x)

Arguments

X object of class "rotonto"

Value

returns a 4x4 transformation matrix

64 getVisible Vertices

Examples

data(boneData)
rot <- rotonto(bonelM[,,1],bonelLM[,,2])
trafo <- getTrafo4x4(rot)

getTrafoRotaxis compute a 4x4 Transformation matrix for rotation around an arbitrary
axis

Description

compute a 4x4 Transformation matrix for rotation around an arbitrary axis

Usage
getTrafoRotaxis(ptl, pt2, theta)

Arguments
pt1 numeric vector of length 3, defining first point on the rotation axis.
pt2 numeric vector of length 3, defining second point on the rotation axis.
theta angle to rotate in radians. With ptl being the viewpoint, the rotation is counter-
clockwise.
Note

the resulting matrix can be used in applyTransform

getVisibleVertices find vertices visible from a given viewpoints

Description

find vertices visible from a given viewpoints

Usage

getVisibleVertices(mesh, viewpoints, offset = 0.001, cores = 1)

Arguments
mesh triangular mesh of class mesh3d’
viewpoints vector or k X 3 matrix containing a set of viewpoints
offset value to generate an offset at the meshes surface (see notes)

cores integer: number of cores to use (not working on windows)

groupPCA 65

Value

a vector with (1-based) indices of points visible from at least one of the viewpoints

Note

The function tries to filter out all vertices where the line connecting each vertex with the viewpoints
intersects with the mesh itself. As, technically speaking this always occurs at a distance of value=0,
a mesh with a tiny offset is generated to avoid these false hits.

Examples

SCP1 <- file2mesh(system.file("extdata”,"”SCP1.ply",package="Morpho"))
viewpoints <- read.fcsv(system.file("extdata”,"”SCP1_Endo.fcsv",package="Morpho"))
visivert <- getVisibleVertices(SCP1,viewpoints)

groupPCA Perform PCA based of the group means’ covariance matrix

Description

Calculate covariance matrix of the groupmeans and project all observations into the eigenspace of
this covariance matrix. This displays a low dimensional between group structure of a high dimen-
sional problem.

Usage

groupPCA(
dataarray,
groups,
rounds = 10000,
tol = le-10,
cv = TRUE,
mc.cores = parallel::detectCores(),
weighting = TRUE

)
Arguments

dataarray Either a k x m x n real array, where k is the number of points, m is the number
of dimensions, and n is the sample size. Or alternatively a n x m Matrix where
n is the numeber of observations and m the number of variables (this can be PC
scores for example)

groups a character/factor vector containgin grouping variable.

rounds integer: number of permutations if a permutation test of the euclidean distance

between group means is requested.If rounds = 0, no test is performed.

tol threshold to ignore eigenvalues of the covariance matrix.

66

Ccv

mc.cores

weighting

Value

eigenvalues
groupPCs

Variance

Scores
probs
groupdists

groupmeans

Grandmean

Ccv

groups
resPCs
resPCscores

resVar

Author(s)

Stefan Schlager

References

groupPCA

logical: requests leaving-one-out crossvalidation

integer: how many cores of the Computer are allowed to be used. Default is
use autodetection by using detectCores() from the parallel package. Parallel
processing is disabled on Windows due to occasional errors.

logical:weight between groups covariance matrix according to group sizes.

Non-zero eigenvalues of the groupmean covariance matrix
PC-axes - i.e. eigenvectors of the groupmean covariance matrix

table displaying the between-group variance explained by each between group
PC - this only reflects the variability of the group means and NOT the variability
of the data projected into that space

Scores of all observation in the PC-space
p-values of pairwise groupdifferences - based on permuation testing
Euclidean distances between groups’ averages

matrix with rows containing the Groupmeans, or a k x m x groupsize array if the
input is a k x m x n landmark array

vector containing the Grand mean, or a matrix if the input is a k x m x n landmark
array

Cross-validated scores

grouping Variable

PCs orthogonal to the between-group PCs
Scores of the residualPCs

table displaying the residual variance explained by each residual PC.

Mitteroecker P, Bookstein F 2011. Linear Discrimination, Ordination, and the Visualization of
Selection Gradients in Modern Morphometrics. Evolutionary Biology 38:100-114.

Boulesteix, A. L. 2005: A note on between-group PCA, International Journal of Pure and Applied
Mathematics 19, 359-366.

See Also

CVA

histGroup

Examples

data(iris)

vari <- iris[,1:4]

facto <- iris[,5]

pca.1 <-groupPCA(vari,groups=facto,rounds=100,mc.cores=1)

#i## plot scores

if (require(car)) {

scatterplotMatrix(pca.1$Scores, groups=facto, ellipse=TRUE,
by.groups=TRUE,var.labels=c("PC1","PC2","PC3"))

3

example with shape data

data(boneData)

proc <- procSym(bonelLM)

pop_sex <- name2factor(boneLM, which=3:4)

gpca <- groupPCA(proc$orpdata, groups=pop_sex, rounds=0, mc.cores=2)

Not run:

visualize shape associated with first between group PC

dims <- dim(proc$mshape)

calculate matrix containing landmarks of grandmean

grandmean <-gpca$Grandmean

calculate landmarks from first between-group PC

(+2 and -2 standard deviations)

gpcavis2sd<- restoreShapes(c(-2,2)*sd(gpca$Scores[,1]), gpca$groupPCs[,1], grandmean)

deformGrid3d(gpcavis2sd[,,1], gpcavis2sd[,,2], ngrid = 0,size=0.01)

require(rgl)

visualize grandmean mesh

grandm.mesh <- tps3d(skull_0144_ch_fe.mesh, bonelLM[,,1],grandmean,threads=1)
wire3d(grandm.mesh, col="white")

spheres3d(grandmean, radius=0.01)

End(Not run)

67

histGroup plot histogram for multiple groups.

Description

plot a histogram for multiple groups, each group colored individually

Usage

histGroup(
data,
groups,
main = paste("Histogram of"”, dataname),

68

histGroup

xlab = dataname,

ylab,
col = NULL,
alpha = 0.5,

breaks = "Sturges",
legend = TRUE,
legend.x = 80,
legend.y = 80,

legend.pch =
freq = TRUE

Arguments

data
groups
main, xlab, ylab

col

alpha

breaks

legend
legend.x
legend.y
legend.pch
freq

Details

15,

vector containing data.
grouping factors
these arguments to title have useful defaults here.

vector containing color for each group. If NULL, the function "rainbow" is
called.

numeric between 0 and 1. Sets the transparency of the colors
one of:

* a vector giving the breakpoints between histogram cells,
* asingle number giving the number of cells for the histogram,

* acharacter string naming an algorithm to compute the number of cells (see
‘Details’),

* a function to compute the number of cells.
In the last three cases the number is a suggestion only.
logical: if TRUE, a legend is plotted
x position of the legend from the upper left corner
y position of the legend from the upper left corners
integer: define the symbol to visualise group colors (points)

logical: if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities are plotted for
each group.

Just a wrapper for the function hist from the "graphics" package

Author(s)

Stefan Schlager

See Also

hist

icpmat

69

Examples

data(iris)
histGroup(iris$Petal.Length,iris$Species)

icpmat match two landmark configurations using iteratively closest point

search

Description

match two landmark configurations using iteratively closest point search

Usage

icpmat(

X)

Y,

iterations,

mindist = le+15,

subsample = NULL,

type = c("rigid”, "similarity"”, "affine"),
weights = NULL,

threads = 1,

centerweight = FALSE

)
Arguments
X moving landmarks
y target landmarks
iterations integer: number of iterations
mindist restrict valid points to be within this distance
subsample use a subsample determined by kmean clusters to speed up computation
type character: select the transform to be applied, can be "rigid","similarity" or "affine"
weights vector of length nrow(x) containing weights for each row in x
threads integer: number of threads to use.

centerweight logical: if weights are defined and centerweigths=TRUE, the matrix will be

Value

centered according to these weights instead of the barycenter.

returns the rotated landmarks

70 invertFaces

Examples

data(nose)
icp <- icpmat(shortnose.lm,longnose.lm,iterations=10)

example using weights

we want to assign high weights to the first three cordinates

icpw <- icpmat(shortnose.lm,longnose.lm,iterations=10,
weights=c(rep(100,3),rep(1,620)),centerweight = TRUE)

the RMSE between those four points and the target is now smaller:

require(Rvcg)

RMSE <- sqgrt(sum(vcgKDtree(longnose.lm,icp[1:3,],k=1)$distance"2))

RMSEW<- sqrt(sum(vcgKDtree(longnose.lm,icpw[1:3,],k=1)$distance”2))

barplot (c(RMSE,RMSEW),names.arg=c("RMSE weighted"”,"RMSE unweighted"))

Not run:

plot the differences between unweighted and weighted icp

deformGrid3d(icp,icpw)

plot the first four coordinates from the icps:

spheres3d(icp[1:3,],col="red",radius = 0.5)

spheres3d(icpw[1:3,],col="green",radius = 0.5)

plot the target

spheres3d(longnose.1lm,col="yellow"”, radius = 0.2)

End(Not run)

##2D example using icpmat to determine point correspondences

if (require(shapes)) {

we scramble rows to show that this is independent of point order
moving <- gorf.dat[sample(1:8),,1]

plot(moving,asp=1) ## starting config

icpgorf <- icpmat(moving,gorf.dat[,,2],iterations = 20)
points(icpgorf,asp = 1,col=2)

points(gorf.datl,,2],col=3)## target

get correspondences using nearest neighbour search
index <- mcNNindex(icpgorf,gorf.dat[,,2],k=1,cores=1)
icpsort <- icpgorfl[index,]

for (i in 1:8)
lines(rbind(icpsort[i,],gorf.dat[i,,2]))

3

invertFaces invert faces’ orientation of triangular mesh

Description

inverts faces’ orientation of triangular mesh and recomputes vertex normals

Usage

invertFaces(mesh)

kendalldist

Arguments

mesh triangular mesh of class mesh3d

Value

returns resulting mesh

Author(s)

Stefan Schlager

See Also

updateNormals

Examples

data(nose)
Not run:
rgl::shade3d(shortnose.mesh,col=3)

End(Not run)

noseinvert <- invertFaces(shortnose.mesh)
show normals

Not run:
plotNormals(noseinvert,long=0.01)

End(Not run)

71

kendalldist Calculates the Riemannian distance between two superimposed land-
mark configs.

Description

Calculates the Riemannian distance between two superimposed landmark configs.

Usage
kendalldist(x, y)

Arguments

X Matrix containing landmark coordinates.

y Matrix containing landmark coordinates.

72 line2plane
Value

returns Riemannian distance
Examples

if(require(shapes)) {

OPA <- rotonto(gorf.dat[,,1],gorf.dat[,,2])

kendalldist (OPA$X,0PA$Y)

3

line2plane get intersection between a line and a plane

Description

get intersection between a line and a plane
Usage

line2plane(ptLine, ptDir, planePt, planeNorm)
Arguments

ptLine vector of length 3: point on line

ptDir vector of length 3: direction vector of line

planePt vector of length 3: point on plane

planeNorm vector of length 3: plane normal vector
Value

hit point
Note

in case you only have three points on a plane (named pt1, pt2, pt3 you can get the plane’s normal
by calling crossProduct (pt1-pt2,pt1-pt3).

lineplot

73

lineplot

plot lines between landmarks

Description

add lines connecting landmarks to visualise a sort of wireframe

Usage

lineplot(
X,
point,
col =1,
lwd =1,
line_
1ty =1,
add TRUE

Arguments

X

point

col
lwd
line_antialias
1ty
add

Note

antialias = FALSE,

matrix containing 2D or 3D landmarks

vector or list of vectors containing rowindices of x, determining which land-
marks to connect.

color of lines

line width

logical: smooth lines

line type (only for 2D case)

logical: add to existing plot

works with 2D and 3D configurations

Author(s)

Stefan Schlager

See Also

pcaplot3d

74 LPS2RAS

Examples

if (require(shapes)) {

##2D example

plot(gorf.dat[,,1],asp=1)
lineplot(gorf.dat[,,1],point=c(1,5:2,8:6,1),col=2)
3

##3D example

Not run:

require(rgl)

data(nose)

points3d(shortnose.1m[1:9,])
lineplot(shortnose.1m[1:9,],point=1ist(c(1,3,2),c(3,4,5),c(8,6,5,7,9)),col=2)

End(Not run)

list2array converts a list of matrices to an array

Description

converts a list of matrices to an array

Usage
list2array(x)

Arguments

X a list containing matrices of the same dimensionality

Value

returns an array concatenating all matrices

LPS2RAS convert data from LPS to RAS space and back

Description

convert data from LPS to RAS space and back

Usage
LPS2RAS(x)

mcNNindex 75

Arguments

X mesh of class mesh3d or a matrix with 3D Landmarks

Details

As e.g. the Slicer versions >=4.11 are using LPS space, it might be needed to transform data like
fiducials and surface models from and back to that space.

Value

returns the rotated data

mcNNindex find nearest neighbours for 2D and 3D point clouds

Description

find nearest neighbours for point clouds using a kd-tree search. This is just a wrapper of the func-
tion vegKDtree from package Rvcg. Wwraps the function vcgkDtree from package 'Rvcg’ (for
backward compatibility)

Usage
mcNNindex(target, query, cores = parallel::detectCores(), k =k, ...)
Arguments
target k x m matrix containing data which to search.
query 1 x m matrix containing data for which to search.
cores integer: amount of CPU-cores to be used. Only available on systems with
OpenMP support.
k integer: how many closest points are sought.
additional arguments - currently unused.
Value

1 x k matrix containing indices of closest points.

See Also

closemeshKD

76 mergeMeshes

Examples

require(rgl)

data(nose)

find closest vertex on surface for each landmark

clost <- mcNNindex(vert2points(shortnose.mesh),shortnose.lm, k=1,
mc.cores=1)

Not run:
spheres3d(vert2points(shortnose.mesh)[clost,],col=2,radius=0.3)
spheres3d(shortnose.1lm,radius=0.3)

wire3d(shortnose.mesh)

End(Not run)

mergeMeshes merge multiple triangular meshes into a single one

Description

merge multiple triangular meshes into a single one, preserving color and vertex normals.

Usage

mergeMeshes(...)

Arguments

triangular meshes of class 'mesh3d’' to merge or a list of triangular meshes.

Value

returns the meshes merged into a single one.

See Also
mesh2ply, file2mesh, ply2mesh

Examples

Not run:

require(rgl)

data(boneData)

data(nose)

mergedMesh <- mergeMeshes(shortnose.mesh, skull_0144_ch_fe.mesh)
require(rgl)

shade3d(mergedMesh, col=3)

End(Not run)

mesh2grey

77

mesh2grey convert a colored mesh to greyscale.

Description

convert the colors of a colored mesh to greyscale values

Usage

mesh2grey(mesh)

Arguments

mesh Object of class mesh3d

Value

returns a mesh with material$color replaced by greyscale rgb values.

Author(s)

Stefan Schlager

See Also

ply2mesh,file2mesh

mesh2obj export mesh objects to disk

Description

export mesh objects to disk.

Usage

mesh2obj(x, filename = dataname, writeNormals = TRUE)

mesh2ply(x, filename = dataname, col = NULL, writeNormals

FALSE)

78 mesh2obj
Arguments
X object of class mesh3d - see rgl documentation for further details or a matrix
containing vertices, this can either be a k x 3 or a 3 x k matrix, with rows or
columns containing vertex coordinates.
filename character: Path/name of the requested output - extension will be added atuomat-
ically. If not specified, the file will be named as the exported object.
writeNormals logical: if TRUE, existing normals of a mesh are written to file - can slow things
down for very large meshes.
col Writes color information to ply file. Can be either a single color value or a vector
containing a color value for each vertex of the mesh.
Details
export an object of class mesh3d or a set of coordinates to a common mesh file.
Note
meshes containing quadrangular faces will be converted to triangular meshes by splitting the faces.
Additionally, mesh2obj is now simply a wrapper of Rvcg: : vegObjWrite.
Author(s)
Stefan Schlager
See Also
ply2mesh, quad2trimesh
Examples
require(rgl)
vb <- ¢(-1.8,-1.8,-1.8,1.0,1.8,-1.8,-1.8,1.0,-1.8,1.8,-1.8,1.0,1.8,
1.8,-1.8,1.0,- ,-1.8,1.8,1.0,1.8
-1.8,1.8,1.0,-1.8,

it <- c(2,1,3,3,

1.8,1.8,1.0,1.8,1.8,1.8,1.0)
,2,3,1,5,5,7,3,5,1,2,2,6,5,6,8,7,7,5,6,7,8,4,4,3,7,4,8,6,6,2,4)

vb <- matrix(vb,4,8) #i#create vertex matrix
it <- matrix(it,3,12) ## create face matrix
cube<-list(vb=vb,it=it)

class(cube) <-
Not run:

"mesh3d”

shade3d(cube,col=3) ## view the green cube

End(Not run)
mesh2ply(cube, filename="cube") # write cube to a file called cube.ply
unlink("cube.ply™)

meshcube 79

meshcube calculate the corners of a mesh’s bouning box

Description

calculate the corners of a mesh’s bouning box

Usage

meshcube (x)

Arguments

X object of class 'mesh3d’

Value

returns a 8 x 3 matrix with the coordinates of the corners of the bounding box.

Examples

require(rgl)

data(boneData)

mc <- meshcube(skull_0144_ch_fe.mesh)
Not run:

spheres3d(mc)
wire3d(skull_@144_ch_fe.mesh)

End(Not run)

meshDist calculates and visualises distances between surface meshes or 3D co-
ordinates and a surface mesh.

Description

calculates and visualises distances between surface meshes or 3D coordinates and a surface mesh.

80 meshDist

Usage
meshDist(x, ...)

S3 method for class 'mesh3d’

meshDist(
X,
mesh2 = NULL,
distvec = NULL,
from = NULL,
to = NULL,
steps = 20,

ceiling = FALSE,

rampcolors = colorRamps: :blue2green2red(steps - 1),
NAcol = "white",

file = "default”,

imagedim = "100x800",

uprange = 1,

ray = FALSE,

raytol = 50,

raystrict = FALSE,

save = FALSE,

plot = TRUE,

sign = TRUE,

tol = NULL,

tolcol = "green”,

displace = FALSE,

shade = TRUE,

method = c("vcglib”, "morpho”),

add = FALSE,
scaleramp =
threads = 1,
titleplot =

TRUE,

"Distance in mm",

)

S3 method for class 'matrix'
meshDist(

X,

mesh2 = NULL,

distvec = NULL,

from = NULL,

to = NULL,

steps = 20,

ceiling = FALSE,

rampcolors = colorRamps: :blue2green2red(steps - 1),

NAcol = "white",

uprange = 1,

plot = TRUE,

meshDist 81

sign = TRUE,
tol = NULL,
tolcol = "green”,

type = C("S", Ilp”)7
radius = NULL,
displace = FALSE,

add = FALSE,
scaleramp = FALSE,
titleplot = "Distance in mm",
Arguments
X reference mesh; object of class "mesh3d" or a n x 3 matrix containing 3D coor-
dinates.
additional arguments passed to shade3d. See material3d for details.
mesh?2 target mesh: either object of class "mesh3d" or a character pointing to a surface
mesh (ply, obj or stl file)
distvec vector: optional, a vector containing distances for each vertex/coordinate of x,
if distvec != NULL, mesh2 will be ignored.
from numeric: minimum distance to be colorised; default is set to 0 mm
to numeric: maximum distance to be colorised; default is set to the maximum
distance
steps integer: determines break points for color ramp: n steps will produce n-1 colors.
ceiling logical: if TRUE, the next larger integer of "to" is used
rampcolors character vector: specify the colors which are used to create a colorramp.
NAcol character: specify color for values outside the range defined by from and to.
file character: filename for mesh and image files produced. E.g. "mydist" will
produce the files mydist.ply and mydist.png
imagedim character of type 100x200 where 100 determines the width and 200 the height
of the image.
uprange numeric between 0 and 1: restricts "to" to a quantile of "to", if to is NULL.
ray logical: if TRUE, the search is along vertex normals.
raytol maximum distance to follow a normal.
raystrict logical: if TRUE, only outward along normals will be sought for closest points.
save logical: save a colored mesh.
plot logical: visualise result as 3D-plot and distance charts
sign logical: request signed distances. Only meaningful, if mesh2 is specified or
distvec contains signed distances.
tol numeric: threshold to color distances within this threshold green.
tolcol a custom color to color vertices below a threshold defined by tol. Default is

green.

82

displace

shade

method

add

scaleramp

threads
titleplot
type

radius

Details

meshDist

logical: if TRUE, displacement vectors between original and closest points are
drawn colored according to the distance.

logical: if FALSE, the rendering of the colored surface will be supressed.

accepts: "veglib" and "morpho” (and any abbreviation). vcglib uses a command
line tool using veglib headers, morpho uses fortran routines based on a kd-tree
search for closest triangles.

logical: if TRUE, visualization will be added to the rgl window currently in
focus

logical: if TRUE, the colorramp will be symmetrical for signed distances: span-
ning from -max (from, to) to max(from, to).

integer: number of threads to use. 0 = let system decide.
character: axis description of heatmap.
character: "s" shows coordinates as spheres, while "p" shows 3D dots.

determines size of spheres; if not specified, optimal radius size will be estimated
by centroid size of the configuration.

calculates the distances from a mesh or a set of 3D coordinates to another at each vertex; either
closest point or along the normals

Value

Returns an object of class "meshDist" if the input is a surface mesh and one of class "matrixDist" if
input is a matrix containing 3D coordinates.

colMesh
dists
cols

params

Author(s)

Stefan Schlager

References

object of mesh3d with colors added
vector with distances
vector with color values

list of parameters used

Detection of inside/outside uses the algorithm proposed in:

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling, .

See Also

render.meshDist, , export.meshDist, shade3d

meshPlanelntersect 83

Examples

data(nose)##load data

##warp a mesh onto another landmark configuration:

longnose.mesh <- tps3d(shortnose.mesh, shortnose.lm, longnose.lm,threads=1)
Not run:

mD <- meshDist(longnose.mesh, shortnose.mesh)

#i#now change the color ramp

render (mD, rampcolors = c("white”,"red"))

End(Not run)

#use unsigned distances and a ramp from blue to red

#color distances < 0.01 green:

Not run:

meshDist (longnose.mesh, shortnose.mesh, rampcolors = c("blue”, "red"),sign=FALSE, t0l=0.5)

End(Not run)

meshPlanelntersect get intersections between mesh and a plane

Description

get intersections between mesh and a plane

Usage
meshPlaneIntersect(mesh, v1, v2 = NULL, v3 = NULL, normal = NULL)

Arguments
mesh triangular mesh of class "mesh3d"
vl numeric vector of length=3 specifying a point on the separating plane
v2 numeric vector of length=3 specifying a point on the separating plane
v3 numeric vector of length=3 specifying a point on the separating plane
normal plane normal (overrides specification by v2 and v3)

Value

returns the intersections of edges and the plane

Examples

data(nose)

vl <- shortnose.1lm[1,]

v2 <- shortnose.1m[2,]

v3 <- shortnose.1m[3,]

intersect <- meshPlanelntersect(shortnose.mesh,v1,v2,v3)
Not run:

84 meshres

require(rgl)

wire3d(shortnose.mesh)
spheres3d(shortnose.1m[1:3,],col=2)#the plane
spheres3d(intersect,col=3,radius = @.2)#intersections

End(Not run)

meshres calculate average edge length of a triangular mesh

Description

calculate average edge length of a triangular mesh, by iterating over all faces.

Usage

meshres(mesh)

Arguments

mesh triangular mesh stored as object of class "mesh3d"

Value

returns average edge length (a.k.a. mesh resolution)

Author(s)

Stefan Schlager

Examples

data(boneData)
mres <- meshres(skull_0144_ch_fe.mesh)

mirror

mirror mirror landmarks or triangular mesh in place

Description

mirror landmarks or triangular mesh in place

Usage

mirror(
X,
icpiter = 50,
subsample = NULL,
pcAlign = FALSE,
mirroraxis = 1,
initPC = TRUE,
initCenter = TRUE,

vl = NULL,
v2 = NULL,
v3 = NULL,

normal = NULL,
mc.cores = 2

)
S3 method for class 'matrix'
mirror(

X)

icpiter = 50,

subsample = NULL,
pcAlign = FALSE,
mirroraxis = 1,
initPC = TRUE,
initCenter = TRUE,

vl = NULL,
v2 = NULL,
v3 = NULL,

normal = NULL,
mc.cores = 2

)
S3 method for class 'mesh3d'
mirror(

X)

icpiter = 50,

subsample = NULL,
pcAlign = FALSE,
mirroraxis = 1,

86 mirror

initPC = TRUE,
initCenter = TRUE,

vl = NULL,
v2 = NULL,
v3 = NULL,

normal = NULL,
mc.cores = 2

)
Arguments
X k x 3 matrix or mesh3d
icpiter integer: number of iterations to match reflected configuration onto original one
subsample integer: use only a subset for icp matching
pcAlign if TRUE, the icp will be preceeded by an alignment of the principal axis (only
used if icpiter > 0), currently only works for 3D data.
mirroraxis integer: which axis to mirror at
initPC logical: if TRUE the data will be prealigned by its principal axes.
initCenter logical: if TRUE and initPC=FALSE, x will be translated to its centroid before
mirroring.
v point on plane
v2 if normal=NULL, the plane will be defined by three points v1, v2, v3
v3 if normal=NULL, the plane will be defined by three points v1, v2, v3
normal plane normal (overrides specification by v2 and v3)
mc.cores use parallel processing to find best alignment to original shape.
Details

reflect a mesh configuration at the plane spanned by its first 2 principal axis, then try to rigidily
register the reflected configuration onto the original one using iterative closest point search to es-
tablish correspondences. Also, if a reflection plane is defined, pcAlign, initPC, initCenter and
mirroraxis will be ignored and the object will be mirrored on the defined plane (and optionally
aligned using an ICP approach).

Value

returns the reflected object

Examples

data(boneData)

boneMir <- mirror(bonelLM[,,1],icpiter=50,mc.cores=2,mirroraxis=3)

mirror on 3 midsaggital landmarks and then optimize it with an ICP
boneMirPlane <- mirror(bonelLM[,,1],v1=bonelLM[1,,1],v2=bonelLM[2,,1],v3=bonelM[9,,1])

2D Example:

mirror2plane 87

if (require(shapes)) {

gorfMir <- mirror(gorf.dat[,,1],mirroraxis=2,pcAlign=TRUE,icpiter = @)

plot(gorfMir,asp = 1)

points(gorf.dat[,,1],col=3)

3

Not run:

now mirror a complete mesh

require(rgl)

skullMir <- mirror(skull_0144_ch_fe.mesh,icpiter=10,subsample = 30,
mc.cores=2,mirroraxis=3,pcAlign=TRUE)

#i##compare result to original

wire3d(skull_0144_ch_fe.mesh,col=3)

wire3d(skullMir,col=2)

End(Not run)

mirror2plane mirror points or mesh on an arbitrary plane

Description

mirror points or mesh on an arbitrary plane

Usage
mirror2plane(x, v1, normal = NULL, v2 = NULL, v3 = NULL)
S3 method for class 'matrix'
mirror2plane(x, v1, normal = NULL, v2 = NULL, v3 = NULL)

S3 method for class 'mesh3d’
mirror2plane(x, v1, normal = NULL, v2

NULL, v3 = NULL)

Arguments
X x 3D-vector or a k x 3 matrix with 3D vectors stored in rows. Or a triangular
mesh of class mesh3d
vl point on plane
normal plane normal (overrides specification by v2 and v3)
v2 if pPNorm=NULL, the plane will be defined by three points v1, v2, v3
v3 if pNorm=NULL, the plane will be defined by three points v1, v2, v3
Value

mirrored coordinates mesh

88 name2factor

Examples

mirror mesh on plane spanned by 3 midsagital landmarks
data(boneData)
mirrmesh <- mirror2plane(skull_0144_ch_fe.mesh,v1=bonelLM[1,,1],v2=bonelLM[9,,1],v3=bonelLM[10,,1])

name2factor extract data from array names

Description

extract data from array names

Usage
name2factor(x, sep = "_", which, collapse = sep, as.factor = TRUE)
name2num(x, sep = "_", which, collapse = sep, dif = TRUE)
Arguments
X data, can be a three-dimensional array, a matrix, a named list or a vector con-
taining names to split
sep character by which to split the strings
which integer or vector of integers, if more entries are selected, they will be concate-
nated by the string specified with the option ’collapse’.
collapse character by which to collapse data if two strings are to be concatenated
as.factor logical: if TRUE, a factor vector will be returned, strings otherwise.
dif logical: calculate difference if two fields containing numbers are selected.
Details

extract data from array names and convert to factors or numbers

If an array is used as input, the data info is expected to be in the 3rd dimension, for a matrix,
rownames are used.

Value

returns a vector containing factors or numbers

Author(s)

Stefan Schlager

NNshapeReg 89

Examples

data <- matrix(rnorm(200),100,2)

id <- paste(”id",1:100,sep="")

pop <- c(rep("popl1”,50),rep("pop2",50))

sex <- c(rep("male”,50),rep("female”,50))

age <- floor(rnorm(100,mean=50,sd=10))
rownames(data) <- paste(id,pop,sex,age,sep="_")
infos <- data.frame(pop=name2factor(data,which=2))
infos$age <- name2num(data,which=4)

infos$pop.sex <- name2factor(data,which=2:3)

NNshapeReg Estimate the shape by averaging the shape of the nearest neighbours.

Description

Estimate the shape of one set of landmarks by averaging the shape of the nearest neighbours ob-
tained by a second set of landmarks. Weights are calculated either form Mahalanobis or Procrustes
distances. This can be useful for data with missing landmarks.

Usage
NNshapeReg (
X’
y = NULL,
n =3,

mahalanobis = FALSE,
mc.cores = parallel::detectCores()

)
Arguments
X an array or matrix (one row per specim) with data used for estimating weights.
y an array or matrix (one row per specim) with landmark data on which the weighted
averaging is applied for prediction. If NULL, x will be used for both tasks.
n amount of nearest neighbours to consider
mahalanobis logical: use mahalanobis distance
mc.cores integer: amount of cores used for parallel processing.
Details

This function calculates weights from one set of shape data and then estimates the shape of another
(or same) set of landmarks. CAUTION: landmark data has to be registered beforehand.

90 pcAlign

Value

matrix or array of estimates.

See Also

proc.weight, fixLMtps

Examples

if (require(shapes)) {

proc <- procSym(gorf.dat)

#use the closest 3 specimen based on the first 4 landmarks

#to estimate the shape

estim <- NNshapeReg(proc$rotated[1:4,,],proc$rotated,n=3,mc.cores=1)
#compare estimation and true config

plot(proc$rotated[,,1],asp=1)

points(estim[,,1],col=2)

3

nose landmarks and a triangular mesh representing a human nose

Description

triangular mesh representing a human nose and two matrices containing landmark data

Format

shortnose.mesh: A triangular mesh of class *'mesh3d’.
shortnose.lm: matrix containing example landmark data placed on shortnose.mesh.

longnose. 1m: matrix containing example landmark data representing a caricaturesquely deformed
human nose.

pcAlign align two 3D-pointclouds/meshes by their principal axes

Description

align two 3D-pointclouds/meshes by their principal axes

pcAlign 91
Usage
pcAlign(x, y, optim = TRUE, subsample = NULL, iterations = 1@, mc.cores = 2)

S3 method for class 'matrix’
pcAlign(x, y, optim = TRUE, subsample = NULL, iterations = 10, mc.cores = 2)

S3 method for class 'mesh3d'
pcAlign(x, y, optim = TRUE, subsample = NULL, iterations = 10, mc.cores = 2)

Arguments
X matrix or mesh3d
y matrix or mesh3d, if missing, x will be centered by its centroid and aligned by
its princial axis.
optim logical if TRUE, the RMSE between reference and target will be minimized
testing all possible axes alignments and (if iterations > 0) followed by a rigid
ICP procedure.
subsample integer: use subsampled points to decrease computation time of optimization.
iterations integer: number of iterations for optimization (the higher the more accurate but
also more time consuming).
mc.cores use parallel processing to find best alignment to original shape.
Details

x and y will first be centered and aligned by their PC-axes. If optim=TRUE,all possible 8 ordinations
of PC-axes will be tested and the one with the smallest RMSE between the transformed version of
x and the closest points on y will be used. Then the rotated version of x is translated to the original
center of mass of y.

Value

rotated and translated version of x to the center and principal axes of y.

Examples

data(boneData)

blm1 <- pcAlign(bonelLM[,,1],bonelM[,,2])

Not run:

require(rgl)
spheres3d(bonelM[,,1])#original position
spheres3d(blm1,col=2)#aligned configuration
spheres3d(bonelLM[, ,2],col=3)#target

End(Not run)

92 pcaplot3d
pcaplot3d visualization of shape variation
Description
visualization of shape change
Usage
pcaplot3d(x, ...)
S3 method for class 'symproc'
pcaplot3d(
X ’
pcshow = c(1, 2, 3),
mag = 3,
color = 4,
lwd =1,
sym = TRUE,
legend = TRUE,
type = c("spheres”, "points"),
)
S3 method for class 'nosymproc'
pcaplot3d(
X,
pcshow = c(1, 2, 3),
mag = 3,
color = 4,
Iwd = 1,
legend = TRUE,
type = c("spheres”, "points"),
)
Arguments
X a object derived from the function procSym calculated on 3D coordinates.
Additional parameters which will be passed to the methods.
pcshow a vector containing the PCscores to be visualized.
mag a vector or an integer containing which standard deviation of which PC has to
be visualized.
color color of the 3d points/spheres.

lwd width of the lines representing the shape change.

PCdist 93

sym logical: if TRUE the symmetric component of shape is displayed. Otherwise the
asymmetric one.

legend logical: if TRUE a legend explaining the color coding of the PCs is plotted.

type character: for type="spheres”, the landmarks will be rendered using rgl’s

spheres3d function and for type="points"” by points3d respectivly.

Details

visualization of the shape changes explained by Principal components

Value

returns an invisible array containing the shapes associated with the Principal components selected.

See Also

procSym

Examples

Not run:

data(boneData)

proc <- procSym(bonelLM)
pcaplot3d(proc,pcshow=1:3,mag=-3)#only one PC available

End(Not run)

PCdist correlation between a reduced space and the original space

Description

Calculates the correlation between distances in a reduced space and the original space

Usage

PCdist(PCs, PCscores, x = 5, plot.type = "b")

Arguments
PCs m x k matrix of Principal Components where m is the k is the number of PCs.
PCscores n x m matrix of Principal Component scores where n is the number of observa-
tions.
X integer: increment for every x-th PC the subspace to fullspace correlation will

be calculated.

plot. type "b"=barplot of correlation values, "s"=line between correlation values.

94 permudist

Value

a vector of R-squared values between subspace and fullspace distances and a barplot depicting the
correlations belonging to the subspace.

Author(s)

Stefan Schlager

Examples

if (require(shapes)) {

a <- procSym(gorf.dat)
PCdist(aPCs, aPCscores, x = 2)
3

permudist performs permutation testing for group differences.

Description

This function compares the distance between two groupmeans to the distances obtained by random
assignment of observations to this groups.

Usage
permudist(
data,
groups,
rounds = 1000,
which = NULL,
p.adjust.method = "none”,
median = FALSE
)
Arguments
data array or matrix containing data
groups factors determining grouping.
rounds number of permutations
which integer (optional): in case the factor levels are > 2 this determins which factor-

levels to use

p.adjust.method
method to adjust p-values for multiple comparisons see p.adjust.methods for
options.

median logical: if TRUE, comparison will be median instead of mean.

permuvec 95

Value

dist distance matrix with distances between actual group means

p.adjust.method
method used for p-value adjustion

p.value distance matrix containing pairwise p-values obtained by comparing the actual
distance to randomly acquired distances

Examples

data(boneData)

proc <- procSym(bonelLM)

groups <- name2factor(bonelLM,which=3)

perm <- permudist(proc$PCscores[,1:10], groups=groups, rounds=10000)

now we concentrate only on sex dimorphism between Europeans

groups <- name2factor(bonelM,which=3:4)

levels(groups)

perml <- permudist(proc$PCscores, groups=groups,which=3:4, rounds=10000)

permuvec perfom permutation testing on angles and distances between sub-
groups of two major groups.

Description

perform permutation test on length and angle of the vectors connecting the subgroup means of two
groups: e.g. compare if length and angle between sex related differences in two populations differ
significantly.

Usage

permuvec(
data,
groups,
subgroups = NULL,
rounds = 9999,
scale = TRUE,
tol = le-10,
mc.cores = parallel::detectCores()

96 permuvec
Arguments
data array or matrix containing data.
groups factors of firs two grouping variables.
subgroups factors of the subgrouping.
rounds number of requested permutation rounds
scale if TRUE: data will be scaled by pooled within group covarivance matrix. Other-
wise Euclidean distance will be used for calculating distances.
tol threshold for inverting covariance matrix.
mc.cores integer: determines how many cores to use for the computation. The default
is autodetect. But in case, it doesn’t work as expected cores can be set manu-
ally.Parallel processing is disabled on Windows due to occasional errors.
Details

This function calculates means of all four subgroups and compares the residual vectors of the major
grouping variables by angle and distance.

Value
angle angle between the vectors of the subgroups means
dist distances between subgroups
meanvec matrix containing the means of all four subgroups

permutangles vector containing angles (in radians) from random permutation

permudists vector containing distances from random permutation
p.angle p-value of angle between residual vectors
p.dist p-value of length difference between residual vectors
subdist length of residual vectors connecting the subgroups
means.
Examples
data(boneData)
proc <- procSym(bonelLM)
pop <- name2factor(bonelLM,which=3)
sex <- name2factor(bonelLM,which=4)
use non scaled distances by setting \code{scale = FALSE}
and only use first 10 PCs

perm <- permuvec(proc$PCscores[,1:10], groups=pop, subgroups=sex,

scale=FALSE, rounds=100, mc.cores=2)

visualize if the amount of sexual dimorphism differs between

(lenghts of vectors connecting population specific sex's averages)

differs between European and Chines

hist(perm$permudist, xlim=c(0,0.1),main="measured vs. random distances”,

placePatch 97

xlab="distances")
points(perm$dist,10,col=2,pch=19)#actual distance
text(perm$dist,15,label=paste(”actual distance\n
(p=",perm$p.dist,"”)"))
not significant!!

visualize if the direction of sexual dimorphism

(angle between vectors connecting population specific sex's averages)

differs between European and Chines

hist(perm$permutangles, main="measured vs. random angles”,
xlab="angles")

points(perm$angle,10,col=2,pch=19)#actual distance

text(perm$angle, 15, label=paste("actual distance\n
(p=",perm$p.angle,”)"))

also non-significant

placePatch Project semi-landmarks from a predefined atlas onto all specimen in a
sample

Description

Project semi-landmarks from a predefined atlas onto all specimen in a sample. Various mechanisms
are implemented to avoid errorneous placement on the wrong surface layer (e.g. inside the bone).

Usage

placePatch(
atlas,
dat.array,
path,
prefix = NULL,
fileext = ".ply”,
ray = TRUE,
inflate = NULL,
tol = inflate,
relax.patch = TRUE,
keep.fix = NULL,
rhotol = NULL,

silent = FALSE,
mc.cores = 1
)
Arguments
atlas object of class "atlas" created by createAtlas
dat.array k x 3 x n array containing reference landmarks of the sample or a matrix in case

of only one target specimen.

98

path

prefix

fileext

ray

inflate

tol

relax.patch

keep.fix

rhotol

silent

mc.cores

Details

placePatch

character: specify the directory where the surface meshes of the sample are
stored.

character: prefix to the specimens names (stored in dimnames(dat.array)[[3]1])
to match the corresponding file names. If dat.array has no dimnames (e.g. be-
cause it is a matrix - see example below), this can also be a character vector
containing the filenames to which fileext will be appended.

character: file extension of the surface meshes.

logical: projection will be along surface normals instead of simple closest point
search.

inflate (or deflate - if negative sign) the semilandmarks along the normals of the
deformed atlas to make sure that they stay on the outside (inside) of the target
mesh.

numeric: threshold to follow the ray back after inflation. See details below. If
no surface is hit after tol mm, the simple closest point will be used.

logical: request relaxation minimising bending energy toward the atlas.

integer: rowindices of those landmarks that are not allowed to be relaxed in
case relax.patch=TRUE. If not specified, all landmarks will be kept fix. This
is preferably set during atlas creation with createAtlas: In case you specified
corrCurves on the atlas, you should define explicitly which landmarks (also on
the curves) are supposed to fix to prevent them from sliding.

numeric: maximum amount of deviation a hit point’s normal is allowed to de-
viate from the normal defined on the atlas. If relax.patch=TRUE, those points
exceeding this value will be relaxed freely (i.e. not restricted to tangent plane).

logical: suppress messages.

run in parallel (experimental stuff now even available on Windows). On win-
dows this will only lead to a significant speed boost for many configurations,
as all required packages (Morpho and Rvcg) need to be loaded by each newly
spawned process.

This function allows the (relatively) easy projection of surface points defined on an atlas onto all
surface of a given sample by Thin-Plate Spline deformation and additional mechanisms to avoid
distortions. The algorithm can be outlined as followed.

. relax curves (if specified) against atlas.

. deform atlas onto targets by TPS based on predefined landmarks (and curves).

1
2
3. project coordinates on deformed atlas onto target mesh
4

. ’inflate’ or ’deflate’ configuration along their normals to make sure all coordinates are on the
outside/inside

0 3 N W

. Project inflated points back onto surface along these normals.
. Check if normals are roughly pointing into the same direction as those on the (deformed) atlas.
. Relax all points against atlas.

. the predefined coordinates will note change afterwards!

placePatch 99

Value

array containing the projected coordinates appended to the data.array specified in the input. In case
dat.array is a matrix only a matrix is returned.

Author(s)

Stefan Schlager

References

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universitétsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

See Also

createAtlas, relaxLM, checklM,slider3d, tps3d

Examples

Not run:
data(nose)
require(rgl)
###create mesh for longnose
longnose.mesh <- tps3d(shortnose.mesh, shortnose.lm,longnose.1lm,threads=1)
create atlas
fix <- ¢(1:5,20:21)
atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[fix,], patch=shortnose.lm[-c(1:5,20:21),1)
view atlas

plotAtlas(atlas)

create landmark array with only fix landmarks
data <- bindArr(shortnose.lm[fix,], longnose.lm[fix,], along=3)
dimnames(data)[[3]] <- c("shortnose”, "longnose")

write meshes to disk
mesh2ply(shortnose.mesh, filename="shortnose")
mesh2ply(longnose.mesh, filename="longnose")

patched <- placePatch(atlas, data, path="./", inflate=5)
now browse through placed patches
checkLM(patched, path="./", atlas=atlas)

same example with only one target specimen
data <- longnose.lm[fix, 1]

patched <- placePatch(atlas, data, prefix="longnose"”, path="./", inflate=5)
wire3d(longnose.mesh,col=3)
spheres3d(patched)

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

100

End(Not run)

plot.slider3d

plot.slider3d

plot the result of slider3d

Description

plot the result of slider3d

Usage

S3 method for class 'slider3d'

plot(
X,

cols =

pt.size = NULL,
point = c("sphere”, "point"),

specimen
add = TRUE,

Arguments

X

cols

pt.size

point
specimen

add

result of slider3d call

vector containing colors for each coordinate type cols[1]=landmarks, cols[2]=surface
landmarks, cols[3]=outlines.

size of plotted points/spheres. If point="s". pt.size defines the radius of the

n.n

spheres. If point="p" it sets the variable size used in point3d.
how to render landmarks.

integer: select the specimen to plot

logical: if TRUE, a new rgl window is opened.

additonal, currently unused parameters

plotAtlas 101

plotAtlas visualize an atlas defined by createAtlas

Description

visualize an atlas defined by createAtlas

Usage
plotAtlas(
atlas,
pt.size = NULL,
alpha = 1,
render = C(HWH’ ”S"),
point = C(nsn , upn) ,
meshcol = "white”,
add = TRUE,
legend = TRUE,
cols = 2:5
)
Arguments
atlas object of class atlas created by createAtlas.
pt.size size of plotted points/spheres. If point="s". pt.size defines the radius of the
spheres. If point="p" it sets the variable size used in point3d.
alpha value between 0 and 1. Sets transparency of mesh 1=opaque 0= fully transpar-
ent.
render if render="w", a wireframe will be drawn, if render="s", the mesh will be
shaded.
point how to render landmarks. "s"=spheres, "p"=points.
meshcol color to render the atlas mesh
add logical: if TRUE, a new rgl window is opened.
legend logical: request plot of legend specifying landmark coloring.
cols vector containing colors for each coordinate type cols[1]=landmarks, cols[2]=patch,
cols[3]=corrCurves, cols[4]=patchCurves.
Details

If legend=TRUE, a plot with a legend will open where coloring of the 3D-spheres is specified.

Value

returns invisible vector containing rgl. id of rendered objects.

102 plotNormals

See Also

placePatch, createAtlas

Examples

data(nose)

atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[c(1:5,20:21),], patch=shortnose.lm[-c(1:5,20:21),1)

Not run:

plotAtlas(atlas)

End(Not run)

plotNormals plots the normals of a triangular surface mesh.

Description

visualises the vertex normals of a triangular surface mesh of class mesh3d. If no normals are
contained, they are computed.

Usage
plotNormals(x, length = 1, lwd =1, col =1, ...)
Arguments
X object of class "mesh3d"
length either a single numeric value or a numeric vector defining per-normals lenght
(default is 1)
lwd width of the normals
col color of the normals
addtional parameters, currently not in use.
Author(s)
Stefan Schlager
Examples
Not run:
require(rgl)
data(nose)

plotNormals(shortnose.mesh,col=4,1length=0.01)
shade3d(shortnose.mesh, col=3)

End(Not run)

pls2B

103

pls2B

Two-Block partial least square regression.

Description

Performs a Two-Block PLS on two sets of data and assesses the significance of each score by

permutation testing

Usage
pls2B(
X ’
Y,
tol = le-12,
same.config = FALSE,
rounds = 0,
useCor = FALSE,
cv = FALSE,
cvlv = NULL,
mc.cores = parallel::detectCores(),
)
Arguments
X array containing superimposed landmark data second block.Matrices are also
allowed but the option ’same.config’ will not work.
y array containing superimposed landmark data of the first block. Matrices are
also allowed but the option ’same.config’ will not work.
tol threshold for discarding singular values.

same.config

rounds
useCor
cv
cvlv

mc.cores

logical: if TRUE each permutation includes new superimposition of permuted
landmarks. This is necessary if both blocks originate from landmarks that are
superimposed together.

rounds of permutation testing.

if TRUE, the correlation matrix instead of the covariance matrix is used.
logical: if TRUE, a leave-one-out cross-validation is performed

integer: number of latent variables to test

integer: determines how many cores to use for the

arguments passed to ProcGPA computation. The default is autodetect. But in
case, it doesn’t work as expected cores can be set manually. Parallel processing
is disabled on Windows due to occasional errors.

104 pls2B

Details

The Two-Block PLS tries to find those linear combinations in each block maximising the covariance
between blocks. The significance of each linear combination is assessed by comparing the singu-
lar value to those obtained from permuted blocks. If both blocks contain landmarks superimposed
TOGETHER, the option same.config=TRUE requests superimposition of the permuted configura-
tions (i.e. where the the landmarks of block x are replaced by corresponding landmarks of other

specimen.
Value
svd singular value decomposition (see svd) of the ’common’ covariance block
Xscores PLS-scores of x
Yscores PLS-scores of y
CoVar Dataframe containing singular values, explained covariation, correlation coef-
fictient between PLS-scores and p-values for singular values obtained from per-
mutation testing
x1m linear model: 1m(Xscores ~ Yscores - 1)
ylm linear model: Im(Yscores ~ Xscores - 1)
predicted.x array containing matrices of cross-validated predictions for x(landmarks arrays
will be vectorized using vecx)
predicted.y array containing matrices of cross-validated predictions for y (landmarks arrays
will be vectorized using vecx)
rv RV-coefficient
p.value.RV p-value for RV-coefficient determined by permutation testing
Author(s)
Stefan Schlager
References

Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study covariation in shape.
Systematic Biology 49:740-753.

See Also

plsCoVar, getPLSfromScores, predictPLSfromScores, getPLSscores, predictPLSfromData, svd
, plsCoVarCommonShape, getPLSCommonShape

Examples

if (require(shapes)) {

very arbitrary test:

check if first 4 landmarks covaries with the second 4
proc <- procSym(gorf.dat)

we do only 50 rounds to minimize computation time

Not run: #same.config takes too long for CRAN check

plsCoVar 105

pls1 <- pls2B(proc$rotated[1:4,,],proc$rotated[5:8,,],
same.config=TRUE, rounds=50,mc.cores=2)

End(Not run)

plsl <- pls2B(proc$rotated[1:4,,],proc$rotated[5:8,,],
same.config=FALSE, rounds=50,mc.cores=1)

plsi

layout(matrix(1:4,2,2,byrow=TRUE))

for(i in 1:4)

plot(plsi$Xscores[,il~plsi$Yscores[,i])

predict first 4 landmarks from second 4 for first config
layout (1)

predPLS <- predictPLSfromData(pls1,y=proc$rotated[5:8,,1])
show differences between prediction and original
deformGrid2d(predPLS,proc$rotated[1:4,,1],pch=19)

##plot the complete first config

points(proc$rotated[,,1])

#i#tshow effects of first latent variable

plsEffects <- plsCoVar(plsl,i=1)
deformGrid2d(plsEffects$x[,,1],plsEffects$x[,,2])##show on x
deformGrid2d(plsEffects$yl,,1],plsEffects$yl,,2],add=TRUE, pch=19)##show on y

#i#show effects of 2nd latent variable

plsEffects2 <- plsCoVar(plsil,i=2)
deformGrid2d(plsEffects2$x[,,1],plsEffects2$x[,,2])##show on x
deformGrid2d(plsEffects2$y[,,1],plsEffects2$yl,,2],add=TRUE,pch=19)##show on y
3

plsCoVar Get the shape changes from pls2B associated with each latent variable

Description

Get the shape changes from pls2B associated with each latent variable

Usage
plsCoVar(pls, i, sdx = 3, sdy = 3)

Arguments
pls output of pls2B
i integer: which latent variable to show. E.g. i=3 will show the changes associated
with the 3rd latent variable.
sdx standard deviation on the xscores. sdx=3 will show the effecs of -3sd vs +3sd

sdy standard deviation on the yscores. sdy=3 will show the effecs of -3sd vs +3sd

106 plsCoVarCommonShape

Value

X matrix/array with reconstructed x

y matrix/array with reconstructed y, with each prediction named accordingly: e.g.

neg_x_sd_3 means the prediction of x at a score of -3*sd(Xscores)

See Also

pls2B, getPLSfromScores, predictPLSfromScores, getPLSscores, predictPLSfromData, svd,

plsCoVarCommonShape

plsCoVarCommonShape Compute the shape changes along the common axis of deformations

Description

Compute the shape changes between two blocks of 2D or 3D shape coordiantes along the common
axis of deformations defined by each dimension of the latent space

Usage

plsCoVarCommonShape(pls, i, sdcommon = 1)

Arguments
pls object of class "pls2B"
i integer: dimension of latent space to show shape changes for
sdcommon standard deviations derived from scores scaled to a consensus scale
Value

returns an k x m x 2 array with the common shape changes associated with +-sdcommon SD of the
i-th latent dimension

Note
this give the same results as plsCoVar, however, using common shape vectors as suggested by
Mitteroecker and Bookstein (2007)

References

Mitteroecker P, Bookstein F. 2007. The conceptual and statistical relationship between modularity
and morphological integration. Systematic Biology 56(5):818-836.

points2plane 107

See Also

pls2B, getPLSfromScores, predictPLSfromScores, getPLSscores, predictPLSfromData,svd,
plsCoVar, getPLSCommonShape

Examples

data(boneData)

proc <- procSym(bonelLM)

pls <- pls2B(proc$orpdatall1:4,,],proc$orpdatal5:10,,1)

commShape <- getPLSCommonShape(pls)

get common shape for first latent dimension at +-2 sd of the scores
pred <- plsCoVarCommonShape(pls,1,2)

Not run:

deformGrid3d(pred[,,1],pred[,,2])

End(Not run)

points2plane projects a 3D coordinate orthogonally onto a plane

Description

projects a 3D coordinate orthogonally onto a plane

Usage

points2plane(x, v1, normal = NULL, v2 = NULL, v3 = NULL)

Arguments
X 3D-vector or a k x 3 matrix with 3D vectors stored in rows
v point on plane
normal plane normal (overrides specification by v2 and v3)
v2 if pPNorm=NULL, the plane will be defined by three points v1, v2, v3
v3 if pPNorm=NULL, the plane will be defined by three points v1, v2, v3
Value

projected point

108 prcompfast

Examples

data(boneData)
##project rhinion onto plane spanned by Nasion and both Nariales
rpro <- points2plane(boneLM[1@,,1],v1=bonelLM[9,,1],v2=bonelM[3,,1],v3=bonelLM[4,,1])

Not run:

require(rgl)

#visualize

wire3d(skull_0144_ch_fe.mesh,col="white")

#i#get plane normal

normal <- crossProduct(bonelLM[3,,1]-bonelLM[9,,1],boneLM[4,,1]1-boneLM[9,,1])
#' ## get plane offset

d <- norm(points2plane(c(0,0,0),vi=boneLM[9,,1],normal=normal),"2")
spheres3d(bonelM[,,1],radius=0.5)
spheres3d(bonelLM[c(3,4,9),,1],radius=0.6,col=3)

##original position of Rhinion
spheres3d(bonelM[10,,1],radius=0.6,col=2)

##projected onto plane

spheres3d(rpro,radius=0.9,col=6)
lines3d(rbind(rpro,boneLM[10,,1]),1wd=3)

##plot plane
planes3d(normal[1],normal[2],normal[3],d=d,col=2,alpha=0.5)

##now we project all points onto that plane:
spheres3d(points2plane(bonelLM[, ,1]1,v1=bonelLM[9,,1],v2=bonelM[3,,1],v3=bonelLM[4,,1]),col=3)

and finally project the vertices of the mesh onto the plane
meshpro <- points2plane(vert2points(skull_0144_ch_fe.mesh),vi=bonelLM[9,,1],normal=normal)
points3d(meshpro,col=2)

End(Not run)

prcompfast fast Principal Component Analysis (PCA)

Description

fast Principal Component Analysis (PCA)

Usage

prcompfast(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL, ...)
Arguments

X a numeric or complex matrix (or data frame) which provides the data for the

principal components analysis.

retx a logical value indicating whether the rotated variables should be returned

predict.bgPCA

center

scale.

tol

Value

109

a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length

a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns of x can be supplied. The value is passed to scale. equal
the number of columns of x can be supplied. The value is passed to scale.

a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal to
tol times the standard deviation of the first component.) With the default null
setting, no components are omitted. Other settings for tol could be tol =0
or tol = sqrt(.Machine$double.eps), which would omit essentially constant
components.

arguments passed to or from other methods.

prcomp returns a list with class prcomp containing the followin components:

sdev

rotation:

center, scale:

the standard deviations of the principal components (i.e., the square roots of
the eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix).

the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). The function princomp returns this in the element loadings.

if retx is true the value of the rotated data (the centred (and scaled if requested)
data multiplied by the rotation matrix) is returned. Hence, cov(x) is the di-
agonal matrix diag(sdev*2). For the formula method, napredict() is applied
to handle the treatment of values omitted by the na.action.

the centering and scaling used, or FALSE

. pcafast <- prcompfast(iris[,1:4]) pcadefault <- prcompfast(iris[,1:4]) ## check if both results are
idential (ignoring the sign) all.equal(lapply(pcafast,abs),lapply(pcadefault,abs))

Note

this function returns the same results as prcomp (apart from sign differences) but uses smarter matrix
decompositions making it faster for nrow(x) » ncol(x) and nrow(x) « ncol(x).

predict.bgPCA

Compute between-group-PC scores from new data

Description

Compute between-group-PC scores from new data

110 predict. CVA

Usage
S3 method for class 'bgPCA'
predict(object, newdata, ...)
Arguments
object object of class bgPCA returned from groupPCA
newdata matrix or 3D array containing data in the same format as originally used to
compute groupPCA

currently not used.

Value

returns the between-group-PC scores for new data

Examples

data(boneData)

bonelLMPart <- bonelM[,,-(1:2)]

procPart <- procSym(bonelLMPart)

pop_sex <- name2factor(boneLMPart, which=3:4)

compute group PCA without first 2 specimens

gpcaPart <- groupPCA(procPart$orpdata, groups=pop_sex, rounds=0, mc.cores=2,cv=FALSE)
align new data to Procrustes analysis

newdata <- align2procSym(procPart,bonelM[,,1:2])

get scores for new data

newscores <- predict(gpcaPart,newdata)

predict.CVA Compute CV-scores from new data

Description

Compute CV-scores from new data

Usage
S3 method for class 'CVA'
predict(object, newdata, ...)
Arguments
object object of class CVA
newdata matrix or 3D array containing data in the same format as originally used to
compute CVA

currently not used.

predictPLSfromData 111

Value

returns the CV-scores for new data

predictPLSfromData predict 2 Block-PLS from new data

Description

predict 2 Block-PLS from new data

Usage

predictPLSfromData(pls, x, y, ncomp = NULL)

Arguments
pls output of pls2B
X data in the same format as in original pls2B (for landmarks this can be an array
or a matrix and for other data a matrix of a vector)
y data in the same format as in original pls2B (for landmarks this can be an array
or a matrix and for other data a matrix of a vector)
ncomp number of (latent) components to use for prediction.
Value

returns an array/matrix/vector of predictions - depending on input for computing pls

Note

either x or y must be missing

See Also

pls2B, getPLSscores,predictPLSfromScores

Examples

##see examples in pls2B

112 predictRelWarps

predictPLSfromScores predict data from 2-Block PLS-scores

Description

predict data from 2-Block PLS-scores

Usage

predictPLSfromScores(pls, x, y)

Arguments
pls output of pls2B
X scores associated with dataset x in original pls2B
y scores associated with dataset y in original pls2B
Value

returns an array/matrix of landmarks or original values, depending on input for computing pls

Note

either x or y must be missing. If x-scores are provided, the yscores will be estimated and the
predictions calculated.

See Also

pls2B, getPLSscores,predictPLSfromData

predictRelWarps predict relative warps for data not included in the training data set

Description

predict relative warps for data not included in the training data set

Usage
predictRelWarps(x, newdata, noalign = FALSE)

Arguments
X output from relWarps
newdata k x m x n array holding new landmark data
noalign logical: if TRUE, data is assumed to be already aligned to training data and

alignment is skipped.

predictShape.Im 113

Details
This function aligns the new data to the mean from x and transforms it into the relative warp space
computed from the training data.

Value

returns a list containing

bescores relative warp scores (PC-scores if alpha = 0)

uniscores uniform scores, NULL if alpha =0
Examples

data(boneData)

set.seed(42)

training <- sample(1:80,size=60)

rwl <- relWarps(bonelM[,,training], alpha = -1)
predict scores for the entire sample
predAll <- predictRelWarps(rW1,bonelLM)

now compare the scores predicted scores to the original ones

layout(matrix(1:4,2,2))

for (i in 1:2) {
plot(rWi$bescores[,i],predAll$bescores[training,i],main=paste("RW",i))
plot(rWi$uniscores[,i],predAll$uniscores[training,il,main=paste("UC",1i))

}

predictShape.1lm Predict shapes based on linear models calculated from PCscores

Description

Predict shapes based on linear models calculated from PCscores.

Usage
predictShape.1lm(fit, datamod, PC, mshape)

Arguments

fit model of class 1m where the PCscores are fitted onto

datamod a one-sided "model" formula, of the form ~ x1 + x2 + ... + xk, corresponding
to the right hand term in the model used in fit. If omitted, the predicted shapes
of all specimen are calculated based on the fitted values.

PC Matrix/vector containing Principal components (rotation matrix) corresponding
to PC-scores used in fit.

mshape matrix of the meanshape’s landmarks by which the data was centered before

rotation in covariance eigenspace.

114 predictShape.Im

Details

This function predicts the landmarks based on models calculated from PCscores.

Value
predicted array or matrix containing predicted landmark coordinates
predictedPC matrix containing predicted PC-scores

Warning

Make sure that the levels of the variables used in datamod correspond exactly to those used in fit.
Otherwise model matrix will be calculated erroneous.

See Also

model .matrix, 1Im, formula

Examples

data(boneData)

proc <- procSym(bonelLM)

pop <- name2factor(bonelLM,which=3)

#i#teasy model with only one factor based on the first four PCs
fit <- 1m(proc$PCscores[,1:4] ~ pop)

get shape for Europeans only

datamod <- ~as.factor(levels(pop))[2]

Eu <- predictShape.1lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

get shape for Europeans and Chinese

datamod <- ~as.factor(levels(pop))

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)
Not run:

deformGrid3d(pred$predicted[,,1], pred$predicted[,,2], ngrid = @)

End(Not run)
more complicated model

sex <- name2factor(bonelLM,which=4)

fit <- Im(proc$PCscores[,1:4] ~ pop*sex)

predict female for chinese and European

datamod <- ~(as.factor(levels(pop))*rep(as.factor(levels(sex))[1],2))
pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

predict female and malefor chinese and European

popmod <- factor(c(rep("eu”,2),rep("ch",2)))

sexmod <- rep(as.factor(levels(sex)),2)

datamod <- ~(popmod*sexmod)

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

add some (randomly generated) numeric covariate

proc.weight

115

somevalue <- rnorm(80,sd=10)

fit <- Im(proc$PCscores[,1:4] ~ pop+somevalue)

probs <- quantile(somevalue, probs=c(0.05, 0.95))

make model for European at 5% and 95% quantile

popmod <- rep(factor(levels(pop))[2],2)

datamod <- ~(popmod+probs)

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

proc.weight

calculate weights inverse to the distances from the specified observa-
tion.

Description

for calculation of a shape model by averaging the observations neighbouring the configuration in
question, it is necessary to calculate weights by similarity.

Usage

proc.weight(
data,
number,
ref,
report = TRUE
reg = 0,
log = FALSE,
mahalanobis =

’

FALSE,

weightfun = NULL

Arguments

data
number
ref
report

reg

log
mahalanobis

weightfun

array containing landmark configurations

integer: how many of the neighbours are to be involved.
integer: position in the array that is used as reference.
logical: require report about name of the reference.

numeric: regularise mahalanobis distance by adding reg to the diagonal of eigen-
values of the covariance matrix.

logical: use the logarithm of the distances.
logical: use mahalanobis distance.

custom function that operates on a vector of distances (see examples) and gen-
erates weights accordingly.

116 procAOVsym

Details

distances of zero will get a weight of 1el2 (this is scaled to all weights summing to one), thus
weights for observations further away are converging to zero.

Value
data dataframe containing id, procrustes/mahalanobis distance and weight according
to the reference
reference returns observations’ names if available
rho.all dataframe containing distances to references of all observations
Examples

if (require(shapes)) {

proc <- procSym(gorf.dat)

#i#tget weights for the the four specimen closest to the first observation.
weights <- proc.weight(proc$rotated,4,1)

#i#testimate the first specimen by weighted neighbour shapes.

estim <- proc$mshapex*0;

for (i in 1:4)

{estim <-estimt+proc$rotated[, ,weights$data$nr[i]Irweights$datasweight[i]}

visualise
plot(estim,asp=1)## show estimation
points(proc$rotated[,,1],col=3)##show original

use a gaussian smoother to compute weights using a bandwidth of .05
gaussWeight <- function(r,sigma=0.05) {

sigma <- 2*sigma”2

return(exp(-r*2/ sigma))

3
weights <- proc.weight(proc$rotated,4,1,weightfun=gaussWeight)
3
procAOVsym Procrustes ANOVA for structures with object symmetry
Description

Procrustes ANOVA for structures with object symmetry, currently only supporting the factors ’spec-
imen’, ’side’ and the interaction term.

Usage

procAOVsym(symproc, indnames = NULL)

procAOVsym 117

Arguments
symproc object returned by procSym, where pairedLM is specified
indnames vector containing specimen identifiers. Only necessary, if data does not contain
dimnames containing identifiers
Details

performs a Procrustes ANOVA for configurations with object symmetry (as described in Klingen-
berg et al. 2002).

Value

returns a dataframe containing Sums of Squares for each factor.

Note

In future releases the implementation of support for bilateral symmetry and more factors is intended.

Author(s)

Stefan Schlager

References

Klingenberg CP, Barluenga M, Meyer A. 2002. Shape analysis of symmetric structures: quantifying
variation among individuals and asymmetry. Evolution 56:1909-20.

See Also

procSym

Examples

data(boneData)

left <- c(4,6,8)

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left,right)

symproc <- procSym(bonelLM, pairedLM=pairedLM)
procAOVsym(symproc)

118

ProcGPA

ProcGPA

Workhorse function for procSym, responsible for Procrustes registra-
tion

Description

Workhorse function for procSym, responsible for Procrustes registration

Usage
ProcGPA(
dat.array,
tol = 1e-05,
scale = TRUE,
CSinit = FALSE,
silent = TRUE,
weights = NULL,
centerweight = FALSE,
reflection = TRUE,
pcAlign = TRUE
)
Arguments
dat.array Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
tol numeric: Threshold for convergence during iterative superimpositioning.
scale logical: indicating if scaling is requested
CSinit logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.
silent logical: suppress output of elapsed time.
weights numeric vector: assign per landmark weights.
centerweight logical: if TRUE, the landmark configuration is scaled according to weights
during the rotation process, instead of being scaled to the Centroid size.
reflection logical: allow reflections.
pcAlign logical: if TRUE, the shapes are aligned by the principal axis of the first speci-
men, otherwise the orientation of the first specimen is used.
Value

returns a list with

rotated

mshape

k x m x n array of the rotated configurations

sample meanshape

procSym

Author(s)

Stefan Schlager

References

119

Goodall C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society. Series B. Statistical Methodology 53:285-239.

Dryden IL, Mardia KV. 1998. Statistical shape analysis. John Wiley and sons, Chichester.

See Also

procSym, rotonto

Examples

data(boneData)

proc <- ProcGPA(bonelLM, CSinit=TRUE, silent=TRUE)

#now we landmarks 5 - 9 double the weight as the others

weights <- c(rep(1,4),rep(2,5),1)

proc.wt <- ProcGPA(bonelLM, CSinit=TRUE, weights=weights, silent=TRUE)

procSym

Procrustes registration

Description

procSym performs Procrustes superimposition including sliding of semi-landmarks on curves/outlines

in 2D and 3D.

Usage

procSym(
dataarray,
scale = TRUE,
reflect = TRUE,
CSinit = TRUE,
orp = TRUE,

proctol = 1e-05,

tol = 1e-05,

pairedLM = NULL,
sizeshape = FALSE,

use.lm = NULL,

center.part = FALSE,

weights = NULL,

centerweight = FALSE,

pcAlign = TRUE,

120

distfun = c("angle"”, "riemann"),
SMvector = NULL,

outlines = NULL,

deselect = FALSE,

recursive = TRUE,

iterations = 0,

initproc = FALSE,

procSym

bending = TRUE,

stepsize =

Arguments

dataarray
scale
reflect
CSinit
orp

proctol

tol

pairedLM

sizeshape

use.lm

center.part

weights

centerweight

pcAlign

distfun

SMvector

outlines

Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.

logical: indicating if scaling is requested to minimize the General Procrustes
distance. To avoid all scaling, one has to set CSinit=FALSE, too.

logical: allow reflections.

logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.
logical: if TRUE, an orthogonal projection at the meanshape into tangent space
is performed.

numeric: Threshold for convergence in the alignment process

numeric: Threshold for convergence in the sliding process

A X x 2 matrix containing the indices (rownumbers) of the paired LM. E.g. the

left column contains the lefthand landmarks, while the right side contains the
corresponding right hand landmarks.

Logical: if TRUE, a log transformed variable of Centroid Size will be added to
the shapedata as first variable before performing the PCA.

vector of integers to define a subset of landmarks to be used for Procrustes reg-
istration.

Logical: if TRUE, the data superimposed by the subset defined by use.lm will
be centered according to the centroid of the complete configuration. Otherwise
orp will be set to FALSE to avoid erroneous projection into tangent space.

numeric vector: assign per landmark weights.

logical: if TRUE, the landmark configuration is scaled according to weights
during the rotation process, instead of being scaled to the Centroid size.

logical: if TRUE, the shapes are aligned by the principal axis of the first speci-
men

character: "riemann" requests a Riemannian distance for calculating distances

to mean, while "angle" uses an approximation by calculating the angle between
rotated shapes on the unit sphere.

A vector containing the landmarks on the curve(s) that are allowed to slide

A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

procSym

deselect

recursive

iterations

initproc

bending

stepsize

Details

121

Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

Logical: if TRUE, during the iterations of the sliding process, the outcome of
the previous iteration will be used. Otherwise the original configuration will be
used in all iterations.

integer: select manually how many iterations will be performed during the slid-
ing process (usefull, when there is very slow convergence). 0 means iteration
until convergence.

Logical: indicating if the first Relaxation step is performed against the mean of
an initial Procrustes superimposition. Symmetric configurations will be relaxed
against a perfectly symmetrical mean.

if TRUE, bending energy will be minimized, Procrustes distance otherwise (not
suggested with large shape differences)

integer: dampening factor for the sliding. Useful to keep semi-landmarks from
sliding too far off the surface. The displacement is calculated as
stepsize * displacement.

This function performs Procrustes registration, allowing a variety of options, including scaling, or-
thogonal projection into tangentspace and relaxation of semi-landmarks on curves (without repro-
jection onto the surface/actual outline). It also allows the superimpositioning to be performed using
only a subset of the available landmark. For taking into account object symmetry, pairedLM needs
to be set. This generates an object of class "symproc”. Otherwise an object of class "nosymproc”.

Value
size
rotated

Sym

Asym

asymmean
mshape
symmean

tan

PCs

PCsym
PCasym

PCscores

a vector containing the Centroid Size of the configurations
k x m x n array of the rotated configurations

k x m x n array of the Symmetrical component - only available for the "Symmetry"-
Option (when pairedLM is defined)

k x m x n array of the Asymmetrical component. It contains the per-landmark
asymmetric displacement for each specimen. Only available for the "Symmetry"-
Option (when pairedLM is defined)

k x m matrix of mean asymmetric deviation from symmetric mean
sample meanshape
meanshape of symmetrized configurations

if orp=TRUE: Residuals in tangentspace else, Procrustes residuals - only avail-
able without the "Symmetrie"-Option

Principal Components - if sizeshape=TRUE, the first variable of the PCs is size
information (as log transformed Centroid Size)

Principal Components of the Symmetrical Component
Principal Components of the Asymmetrical Component

PC scores

PCscore_sym

PCscore_asym

procSym

PC scores of the Symmetrical Component

PC scores of the Asymmetrical Component

eigenvalues eigenvalues of the Covariance matrix
eigensym eigenvalues of the "Symmetrical" Covariance matrix
eigenasym eigenvalues of the "Asymmetrical" Covariance matrix
Variance Table of the explained Variance by the PCs
SymVar Table of the explained "Symmetrical" Variance by the PCs
AsymVar Table of the explained "Asymmetrical" Variance by the PCs
orpdata k x m x n array of the rotated configurations projected into tangent space
rho vector of Riemannian distance from the mean
dataslide array containing slidden Landmarks in the original space - not yet processed by
a Procrustes analysis. Only available if a sliding process was requested
meanlogCSs mean log-transformed centroid size
Note

For processing of surface landmarks or including the reprojection of slid landmarks back onto 3D-
surface representations, the usage of slider3d is recommended.

Author(s)

Stefan Schlager

References

Dryden IL, and Mardia KV. 1998. Statistical shape analysis. Chichester.

Klingenberg CP, Barluenga M, and Meyer A. 2002. Shape analysis of symmetric structures: quan-
tifying variation among individuals and asymmetry. Evolution 56(10):1909-1920.

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

See Also
slider3d

Examples

require(rgl)
data(boneData)

do an analysis of symmetric landmarks
visualize landmarks on surface

Not run:

spheres3d(bonelM[,,11)
wire3d(skull_0144_ch_fe.mesh,col=3)

projRead 123

get landmark numbers
text3d(bonelM[,,1], text=paste(1:10),adj = 1, cex=3)

End(Not run)

determine paired Landmarks left side:

left <- c(4,6,8)

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left,right)

symproc <- procSym(bonelLM, pairedLM=pairedLM)
Not run:

visualize first 3 PCs of symmetric shape
pcaplot3d(symproc, sym=TRUE)

visualize first 3 PCs of asymmetric shape
pcaplot3d(symproc, sym=FALSE)

visualze distribution of symmetric PCscores population
pop <- name2factor(bonelLM, which=3)

if (require(car)) {

spm(~symproc$PCscore_sym[,1:5], groups=pop)

visualze distribution of asymmetric PCscores population
spm(~symproc$PCscore_asym[,1:5], groups=pop)

3

End(Not run)

projRead Project points onto the closest point on a mesh

Description

project points onto a given surface and return projected points and normals.

Usage

projRead(lm, mesh, readnormals = TRUE, smooth = FALSE, sign = TRUE, ...)
Arguments

1m m x 3 matrix containing 3D coordinates.

mesh character: specify path to mesh file.

readnormals logical: return normals of projected points.

smooth logical: rerturn smoothed normals.

sign logical: request signed distances.

additional arguments currently not used.

124 gqqgmat

Value

if readnormals = FALSE, a m x 3 matrix containing projected points is returned, otherwise a list,
where

vb 3 x m matrix containing projected points
normals 3 X m matrix containing normals

quality vector containing distances

Author(s)

Stefan Schlager

References

Detection of inside/outside uses the algorithm proposed in:

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

See Also

closemeshKD

Examples

data(nose)
Not run:
repro <- projRead(shortnose.1lm,shortnose.mesh)

End(Not run)

qgmat Q-0 plot to assess normality of data

Description

gqmat plots Mahalanobisdistances of a given sample against those expected from a Gaussian distri-
bution

Usage

ggmat(x, output = FALSE, square = FALSE)

quad2trimesh
Arguments

X sample data: matrix or vector

output logical: if TRUE results are returned

square plot in a square window - outliers might be cut off.
Value

if output=TRUE, the following values are returned

X distances from an expected Gaussian distribution
y observed distances - sorted

observed distances - unsorted

Author(s)

Stefan Schlager

See Also

qgplot

Examples

require(MASS)

create normally distributed data

data <- mvrnorm(100,mu=rep(@,5),Sigma = diag(5:1))
qggmat (data)

#i##tcreate non normally distributed data
datal <- rchisq(100,df=3)
qgmat(datal, square=FALSE)

125

quad2trimesh converts a mesh containing quadrangular faces into one only consist-

ing of triangles

Description

converts a mesh containing quadrangular faces into one only consisting of triangles

Usage
quad2trimesh(mesh, updateNormals = TRUE)

126

Arguments

mesh

updateNormals

Value

r2morphoj

object of class "mesh3d"

logical: request recalculation of (angle weighted) vertex normals.

triangular mesh with updated normals

Examples

Sigma <- diag(3:1) #create a 3D-covariance matrix

require(rgl)

quadmesh <- ellipse3d(Sigma)#i#create quadmesh
trimesh <- quad2trimesh(quadmesh)# convert to trimesh

r2morphoj

Export data to MorphoJ and Morphologika

Description

Export data to MorphoJ and Morphologika

Usage

r2morphoj(x, file, id.string = NULL)

r2morphologika(x, file = file, labels = NULL, labelname = NULL, ...)
Arguments
X 3-dimensionla array containing landmark data. E.g. the input/output from procSym.
file character: name the output file
id.string a string with ids or factors to append
labels character vector specify labels to create for Morphologika
labelname character: name the labels for Morphologika.
unused at the moment
Details

Export data to MorphoJ and Morphologika

ray2mesh 127

Examples

if (require(shapes)) {
r2morphoj(gorf.dat,file="gorf.dat")

data <- bindArr(gorf.dat, gorm.dat, along=3)
datalabels <- c(rep("female”,dim(gorf.dat)[3]),
rep("male”,dim(gorm.dat)[3]))

labelname <- "sex
r2morphologika(data, labels=datalabels, labelname= labelname, file="data.dat")

”

cleanup
unlink(c("gorf.dat”,"data.dat"))
}
ray2mesh projects the vertices of a mesh along its normals onto the surface of
another one.
Description

projects the vertices of a mesh onto the surface of another one by searching for the closest point
along vertex normals on the target by for each vertex.

Usage
ray2mesh(mesh1, tarmesh, tol = le+12, inbound = FALSE, mindist = FALSE, ...)
Arguments
mesh1 mesh to project. Can be an object of class "mesh3d" or path to an external mesh
file (ply, obj, stl).
tarmesh mesh to project onto. Can be an object of class "mesh3d" or path to an external
mesh file (ply, obj, stl).
tol numeric: maximum distance to search along ray, closest Euclidean distance will
be used, if tol is exceeded.
inbound inverse search direction along rays.
mindist search both ways (ray and -ray) and select closest point.
additional arguments not used at the moment.
Value

returns projected mesh with additional list entries:

quality integer vector containing a value for each vertex of x: 1 indicates that a ray has
intersected ’tarmesh’ within the given threshold, while 0 means not

distance numeric vector: distances to intersection

128

Author(s)

Stefan Schlager

See Also

ply2mesh, closemeshKD

read.csv.folder

read.csv.folder

batch import data from files

Description

imports all data files contained in a specified folder.

Usage

read.csv.folder(

folder,
X,
y = 2:4,

rownames = NULL,
header = TRUE,

either a vector specifiing which rows are to be imported, or character vector

dec = ".",

Sep = n ; n ,

pattern = "csv",

addSpec = NULL,

back = TRUE
)

Arguments
folder character: path to folder
X
containing variable names to be sought for.

y a vector specifiing, which columns of the speradsheet ist to be imported.
rownames integer: specifies columns, where variable names are stored.
header logical : if spreadsheet contains header-row.
dec character: defines decimal sepearator.
sep character: defines column seperator.
pattern character: specify file format (e.g. csv).
addSpec character: add a custom specifier to the dimnames of the array.
back logical: where to place the specifier.

read.fcsv 129

Value
arr array containing imported data
NAs vector containing position of observations with NAs
NA.list list: containing vectors containing information which LMs are missing in which
observation
Author(s)
Stefan Schlager
See Also
read.table
read.fcsv read fiducials from slicer4
Description

read fiducials from slicer4

Usage

read.fcsv(x, na = NULL, lps2ras = FALSE)

Arguments
X filename
na value to be replaced by NA
1ps2ras logical: if the coordinate system is LPS and 1ps2ras=TRUE, the data will be
rotated into the RAS space by inverting the first two dimensions using LPS2RAS.
Value

a k x 3 matrix with landmarks

130 read.mpp

read.lmdta read dta files

Description

reads .dta files created by the software Landmark http://graphics.idav.ucdavis.edu/research/EvoMorph

Usage

read.lmdta(file = "x", na = 9999)

Arguments
file a dta file
na specifies a value that indicates missing values
Value
arr array containing landmarks dimnames will be Information of ID and landmark
names specified in Landmark
info Information extracted from the header of the dta file
idnames character vector containing the names of the individuals as specified in the dta
file
read.mpp Read saved pick-points from meshlab
Description

imports pick points selected with meshlab

Usage

read.mpp(file, info = FALSE)

Arguments

file file to import

info logical: if TRUE, addtional infos are returned

read.pts 131

Value

if info=FALSE:
a matrix containing picked-points coordinates (only those tagged as active).

if info=TRUE: a list containing
data matrix containing coordinates - including points tagged as inactive

info additional info contained in file.

Author(s)

Stefan Schlager

See Also

read.pts

read.pts reads pts files

Description

reads Landmark data exported from the software Landmark from http://graphics.idav.ucdavis.edu/research/EvoMorph

Usage
read.pts(file = "x", na = 9999)

Arguments

file pts file

na specifies a value that indicates missing values

Value
matrix matrix containing landmark information rownames will be the names given to
the landmarks in Landmark
See Also

read.pts

Examples

data(nose)
write.pts(shortnose.lm, filename="shortnose")
data <- read.pts(”shortnose.pts")

132 readallTPS

read.slicerjson read Landmarks from Slicer in Json format

Description

read Landmarks from Slicer in Json format

Usage

read.slicerjson(x, lps2ras = FALSE, na = NULL)

Arguments
X path to json file
lps2ras logical: if the coordinate system is LPS and l1ps2ras=TRUE, the data will be
rotated into the RAS space by inverting the first two dimensions using LPS2RAS.
na value to be replaced by NA
Value

returns matrix or list of matrices with imported landmark coordinates

readallTPS Import landmarks and outlines from TPS files

Description

Imports outlines and landmarks from files generated by tpsdig2

Usage
readallTPS(file, scale = TRUE)

Arguments
file A TPS-file generated by tpsdig2
scale logical: if TRUE the data will be scaled according to the SCALE entry.
Value
ID Specimen IDs read from TPS file
LM list of landmarks contained in the TPS-file
outlines a list containing sublists for each specimen with all the outlines read from TPS

file

SCALE vector containing the scale factors for each landmark config.

readLandmarks.csv 133

Note

currently only landmarks, ID and outlines are read from the TPS-file

Author(s)

Stefan Schlager

References

http://life.bio.sunysb.edu/ee/rohlf/software.html

See Also

read.lmdta, read.pts

readLandmarks.csv import landmark data from csv files

Description

import landmark data from csv files

Usage

readLandmarks.csv(
file,
X,
y = 2:4,
rownames = NULL,
header = TRUE,

dec = ".",
sep = ";"
)
Arguments
file character: path to file containing landmark data.
X either a vector specifiing which rows are to be imported, or character vector
containing variable names to be sought for.
y a vector specifiing, which columns of the speradsheet ist to be imported.
rownames integer: specifies columns, where variable names are stored.
header logical : if spreadsheet contains header-row.
dec character: defines decimal sepearator.

sep character: defines column seperator.

134 regdist

Value

LM matrix containing imported data

NAs vector containing rows containing NAs

Author(s)

Stefan Schlager

See Also

read.table

regdist correlation between shape space and tangent space

Description

performs a partial Procrustes superimposition of landmark data and calculates the correlation be-
tween tangent and shape space.

Usage

regdist(
dataarray,
plot = TRUE,
main = ""
rho = "angle”,
dist.mat.out = FALSE,

)
Arguments
dataarray Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
plot Logical: whether to plot the distances between observations.
main character string: Title of the plot.
rho chose how to calculate distances in shape space. Options: "riemdist"=Riemannian

distance (function from the shapes package-takes along time to calculate), "an-
gle"=calculates the angle between shape vectors, "sindist"=sinus of length of
residual vector between shape vectors.

dist.mat.out Logical: If TRUE, output will contain distance matrices.

additional parameters passed to procSym

RegScore 135

Value
cor correlation coefficient between distances in shape space and tangent space
procSS Procrustes Sums of Squares (of full procrustes distance)
tanSS Tangent Sums of Squares
rhosSs Procrustes Sums of Squares (of angle)
euc.dist distance matrix of euclidean distance in Tangent space
proc.dist distance matrix of Procrustes distance in Shape space
1m linear model regressing tangent space distances onto Procrustes distances
Author(s)
Stefan Schlager
See Also
regdist
Examples

if (require(shapes)) {
regdist(gorf.dat)
3

RegScore calulate regression scores for linear model

Description

calulate regression scores for linear model as specified in Drake & Klingenberg(2008)

Usage

RegScore(model, x = NULL)

Arguments
model linear model
X optional: matrix containing fitted data to be projected onto the regression lines.
If omitted the model’s fitted values will be used.
Details

the data are orthogonally projected onto the regression lines associated with each factor.

136 relaxLM

Value

returns a n X m matrix containing the regression scores for each specimen.

Warning

if model contains factors with more than 2 levels, R calculates one regression line per 2 factors.
Check the colnames of the returned matrix to select the appropriate one. See examples for details.

References

Drake, AG. & Klingenberg, CP. The pace of morphological change: historical transformation of
skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, The
Royal Society, 2008, 275, 71-76.

Examples

model <- lm(as.matrix(iris[,1:3]) ~ iris[,4])
rs <- RegScore(model)
plot(rs,iris[,4])

##now use a random subsample for model fitting

rand <- sample(nrow(iris))

x <= iris[rand[1:100],4]

newmod <- lm(as.matrix(iris[rand[1:100],1:31) ~ x)

##predict the rest of data and get their regression scores

rsPred <- RegScore(newmod,as.matrix(iris[rand[101:150],1:3]))
plot(rsPred,iris[rand[101:150],4])

Not run:

data(boneData)

proc <- procSym(bonelLM)

pop.sex <- name2factor(boneLM,which=3:4) # generate a factor with 4 levels
Im.ps.size <- 1m(proc$PCscores ~ pop.sex+proc$size)

rs <- RegScore(lm.ps.size)

colnames(rs) # in this case, the last column contains the regression
scores associated with proc$size

validate by using a subsample for fitting

rand <- sample(dim(bonelLM)[3])

Im.ps.size® <- lm(proc$PCscores[rand[1:50],]1 ~ proc$size[rand[1:50]1])
rs@ <- RegScore(lm.ps.size@,proc$PCscores[rand[-c(1:50)]1,]1)
plot(rs@,proc$size[rand[-c(1:50)17)

End(Not run)

relaxLM relax one specific landmark configuration against a reference

Description

relax one specific landmark configuration against a reference (e.g. a sample mean)

relaxLM 137

Usage

relaxLM(1m, ...)

S3 method for class 'matrix'
relaxLM(

Im,

reference,

SMvector,

outlines = NULL,

surp = NULL,

sur.name = NULL,

mesh = NULL,

tol = 1e-05,

deselect = FALSE,

inc.check = TRUE,

iterations = 0,

fixRepro = TRUE,

missing = NULL,

bending = TRUE,

stepsize = ifelse(bending, 1, 0.5),

use.lm = NULL,

silent = FALSE,

)

S3 method for class 'mesh3d’
relaxLM(

1m,

reference,

tol = 1e-05,

deselect = FALSE,

inc.check = TRUE,

iterations = 0,

fixRepro = TRUE,

missing = NULL,

bending = FALSE,

stepsize = ifelse(bending, 1, 0.5),

use.lm = NULL,

silent = FALSE,

Arguments

1m k x 3 or k x 2 matrix containing landmark data to be slidden - or a triangular
mesh of class "mesh3d". See details

additonal arguments - currently unused

138

reference

SMvector

outlines

surp

sur.name

mesh

tol

deselect

inc.check

iterations

fixRepro

missing

bending

stepsize

use.lm

silent

Details

relaxLM

k x 3 or k x 2 matrix containing landmark of the reference, or a mesh with the
same amount of vertices as there are landmarks in 1m.

A vector containing the row indices of (semi-) landmarks on the curve(s) that
are allowed to slide

A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

integer vector containing the row indices of semi-landmarks positioned on sur-
faces.

character: containing the filename of the corresponding surface. When specified,
mesh has to be NULL. If sur.name=NULL and mesh=NULL, the tangent planes
will be estimated from the point cloud.

triangular mesh of class "mesh3d" loaded into the R workspace, when specified,
"sur.name" has to be NULL.

numeric: Threshold for convergence in the sliding proces. Full Procrustes dis-
tance between actual result and previous iteration.

Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

Logical: if TRUE, the program stops when convergence criterion starts increas-
ing and reports result from last iteration.

integer: maximum amounts the algorithm runs - even when ’tol’ is not reached.
When iterations=0, the algorithm runs until convergence.

logical: if TRUE, fix landmarks will also be projected onto the surface. If you
have landmarks not on the surface, select fixRepro=FALSE

vector of integers, specifying row indices of missing (semi-)landmarks. They
will be relaxed freely in 3D and not projected onto the target (works only for 2D
data).

if TRUE, bending energy will be minimized, Procrustes distance otherwise (not
suggested with large shape differences)

integer: dampening factor for the amount of sliding. Useful to keep semi-
landmarks from sliding too far off the surface. The displacement is calculated
as T = Y9 + stepsize x UT. Default is set to 1 for bending=TRUE and 0.5 for
bending=FALSE.

indices specifying a subset of (semi-)landmarks to be used in the rotation step -
only used if bending=FALSE.

logical: if TRUE, console output is suppressed.

if Im is a surface mesh, all vertices will be treated as semilandmarks and a allowed to freely slide

along the surface.

Value

returns kx3 matrix of slidden landmarks

relaxLM 139

Author(s)

Stefan Schlager

References

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

See Also
slider3d

Examples

require(rgl)
data(nose)
relax shornose against longnose

define fix landmarks

fix <- ¢(1:5,20:21)

define surface patch by specifying row indices of matrices
all except those defined as fix

surp <- c(1:dim(shortnose.1Im)[1])[-fix]

relax <- relaxLM(shortnose.lm,
longnose.1lm, mesh=shortnose.mesh, iterations=1,
SMvector=fix, deselect=TRUE, surp=surp)

example minimizing Procrustes distance when displacement is not
dampened by stepsize
relaxProcD <- relaxLM(shortnose.lm,
longnose.1lm, mesh=shortnose.mesh, iterations=1,
SMvector=fix, deselect=TRUE, surp=c(1:623)[-fix],bending=FALSE,stepsize=1)

Not run:
visualize differences red=before and green=after sliding
deformGrid3d(shortnose.1lm, relax, ngrid=e)

visualize differences minimizing Procrusted distances red=before and green=after sliding

deformGrid3d(shortnose.1lm, relaxProcD, ngrid=0)

no smooth displacement, now let's check the distances:

rot2ref <- rotonto(relaxProcD,longnose.1lm)
angle.calc(rot2ref$X,rot2refs$yY)

0.2492027 Procrustes distance between reference and slided shape
(minimizing Procrustes distance)

rot2refBend <- rotonto(relax,longnose.lm)
angle.calc(rot2refBend$X, rot2refBend$Y)

0.2861322 Procrustes distance between reference and slided shape
(minimizing bending energy)

140 relWarps

rot2refOrig <- rotonto(shortnose.1lm,longnose.1lm)
angle.calc(rot2refOrig$X,rot2refOrigs$yY)

0.3014957 Procrustes distance between reference and original shape
##result: while minimizing Procrustes distance, displacement is not
##guaranteed to be smooth

add surface

wire3d(shortnose.mesh, col="white")

finally relax two meshes with corresponding vertices:

mediumnose.mesh <- tps3d(shortnose.mesh,shortnose.lm, (shortnose.lm+longnose.1lm)/2,threads=1)
we use Procrustes distance as criterion as bending energy is pretty slow because

of too many coordinates (more than 3000 is very unreasonable).

relaxMesh <- relaxLM(shortnose.mesh,mediumnose.mesh,iterations=2,bending=FALSE, stepsize=0.05)

End(Not run)

relWarps calculate relative Warp analysis

Description

After Procrustes registration the data is scaled by the bending energy or its inverse to emphasize
global/local differences when exploring a sample’s shape.

Usage
relWarps(

data,
scale = TRUE,
CSinit = TRUE,
alpha = 1,
tol = le-10,
orp = TRUE,

pcAlign = TRUE,
computeBasis = TRUE,
noalign = FALSE

)
Arguments
data Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
scale Logical: indicating if scaling is requested

CSinit Logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.

relWarps 141

alpha integer: power of the bending energy matrix. If alpha = O then standard Pro-
crustes PCA is carried out. If alpha = 1 then large scale differences are empha-
sized, if alpha = -1 then small scale variations are emphasised.

tol tolerance for the eigenvalues of the bending energy matrix to be zero

orp logical: request orthogonal projection into tangent space.

pcAlign logical: if TRUE, the shapes are aligned by the principal axis of the first speci-
men

computeBasis logical: whether to compute the basis of the resulting vector space (takes a lot
of memory and time for configurations with > 1000 coordinates.

noalign logical: if TRUE, data is assumed to be already aligned and alignment and or-
thogonal projection are skipped.

Value

bescores relative warp scores (PC-scores if alpha = 0)

uniscores uniform scores, NULL if alpha =0

Var non-affine variation explained by each relative warp

mshape sample’s conensus shape

rotated Procrustes superimposed data

bePCs vector basis of nonaffine shape variation- relative warps (plain PCs if alpha =

0)

uniPCs vector basis of affine shape variation - uniform component. NULL if alpha = @

Author(s)

Stefan Schlager

References

Bookstein FL 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11.

Bookstein FL, 1991. Morphometric tools for landmark data. Geometry and biology. Cambridge
Univ. Press, Cambridge.

Rohlf FJ, Bookstein FL 2003. Computing the Uniform Component of Shape Variation. Systematic
Biology 52:66-69.

Examples

data(boneData)

pop <- name2factor(bonelLM,which=3)

rW <- relWarps(bonelM, alpha = -1)

Not run:

if (require(car)) {

plot first 5 relative warps scores grouped by population
spm(rW$bescores[,1:5], group=pop)

plot uniform component scores grouped by population

142 render

spm(rW$uniscores[,1:5], group=pop)

3

##plot non-affine variance associated with each relative warp

barplot(rW$var[,2], xlab="relative Warps")

visualize first relative warp +-3 sd of the scores

rwl <- restoreShapes(as.matrix(c(-3,3)*sd(rW$bescores[,1]1)),rW$bePCs[,1,drop=FALSE], rW$mshape)
deformGrid3d(rwl[,,1],rw1[,,2],ngrid=5)

2D example:

if (require(shapes)) {

data <- bindArr(gorf.dat, gorm.dat, along=3)

sex <- factor(c(rep("fem”, dim(gorf.dat)[3]), rep("male”,dim(gorm.dat)[3]1)))
rW <- relWarps(data, alpha = -1)

if (require(car)) {

plot first 3 relative warps scores grouped by population
spm(rW$bescores[,1:3], group=sex)

plot uniform component scores grouped by population
spm(rW$uniscores[,1:2], group=sex)

}

##plot non-affine variance associated with each relative warp
barplot(rW$var[,2], xlab="relative Warps")

visualize first relative warp +-3 sd of the scores

rwl <- restoreShapes(as.matrix(c(-3,3)*sd(rW$bescores[,1]1)),rW$bePCs[,1,drop=FALSE], rW$mshape)
deformGrid2d(rwl[,,11,rw1[,,2],ngrid=10)

}

End(Not run)

render plot or save the results of meshDist

Description

plot or save the results of meshDist

Usage

render(x, ...)

S3 method for class 'meshDist'

render(
X,
from = NULL,
to = NULL,
steps = NULL,

ceiling = NULL,
uprange = NULL,
tol = NULL,

tolcol = NULL,

render

rampcolors = NULL,

NAcol = NULL,

displace = FALSE,

shade = TRUE,

sign = NULL,

add = FALSE,

scaleramp = NULL,

titleplot = "Distance in mm”,

)

S3 method for class 'matrixDist'
render (

X,

from = NULL,

to = NULL,

steps = NULL,

ceiling = NULL,

uprange = NULL,

tol = NULL,

tolcol = NULL,

type = c("s", "p"),

radius = NULL,

rampcolors = NULL,

NAcol = NULL,

displace = FALSE,

sign = NULL,

add = FALSE,

scaleramp = FALSE,

titleplot = "Distance in mm",

)
export(x, ...)

S3 method for class 'meshDist'
export(

X,

file = "default”,

imagedim = "100x800",

titleplot = "Distance in mm",
)
Arguments
X object of class meshDist

for render.meshDist: additional arguments passed to shade3d

143

. See material3d

144

from

to
steps
ceiling
uprange
tol
tolcol

rampcolors
NAcol

displace
shade
sign

add

scaleramp

titleplot
type

radius

file

imagedim

Details

render

for details.

numeric: minimum distance to color; default is set to 0 mm

numeric: maximum distance to color; default is set to the maximum distance
integer: determines how many intermediate colors the color ramp has.

logical: if TRUE, the next larger integer of "to" is used

numeric between 0 and 1: restricts "to" to a quantile of "to", if to is NULL.
numeric: threshold to color distances within this threshold according to tolcol.

a custom color to color vertices below a threshold defined by tol. Default is
green.

character vector: specify the colors which are used to create a colorramp.
character: specify color for values outside the range defined by from and to.

logical: if TRUE, displacement vectors between original and closest points are
drawn colored according to the distance.

logical: if FALSE, the rendering of the colored surface will be supressed.
logical: request signed distances to be visualised.

logical: if TRUE, visualization will be added to the rgl window currently in
focus

if TRUE the ramp colors get scaled symmetrically into positive and negative
direction.

character: axis description of heatmap.
character: "s" shows coordinates as spheres, while "p" shows 3D dots.

determines size of spheres; if not specified, optimal radius size will be estimated
by centroid size of the configuration.

character: filename for mesh and image files produced. E.g. "mydist" will
produce the files mydist.ply and mydist.png

character of pattern "100x200" where 100 determines the width and 200 the
height of the image.

Visualise or save the results of meshDist to disk.

render.meshDist renders the colored mesh and displays the color ramp and returns an object of class
"meshDist". export.meshDist exports the colored mesh as ply file and the color chart as png file.

Author(s)

Stefan Schlager

See Also

meshDist, shade3d

resampleCurve 145

resampleCurve Resample a curve equidistantly

Description

Resample a curve equidistantly (optionally with smoothing)

Usage

resampleCurve(x, n, smooth = FALSE, smoothn = n, open = TRUE)

Arguments
X matrix containing coordinates
n number of resulting points on the resampled curve
smooth logical: if TRUE, the resulting curve will be smoothed by using bezier curves.
smoothn integer: define the refinement of the bezier curve. The higher this value, the
closer the final curve will be to the original.
open logical: define whether it is a closed curve or not.
Value

returns a matrix containing the resampled curve

Examples

data(nose)
X <- shortnose.lm[c(304:323),]
xsample <- resampleCurve(x,n=50)

restoreFromPCA restore original data from PCA

Description

restore original data from PCA by reverting rotation and centering

Usage

restoreFromPCA(scores, rotation, center)

Arguments
scores matrix containing the PC-scores
rotation matrix containing the PCs

center vector containing the center

146

Examples

restoreShapes

myirispca <- prcomp(iris[,1:4])
myirisRecovered <- restoreFromPCA(myirispca$x,myirispca$rotation,myirispca$center)
all.equal(myirisRecovered,as.matrix(iris[,1:41))

restoreShapes

restore shapes from PC-Scores or similar projections

Description

restore shapes from PC-Scores or similar projections

Usage

restoreShapes(
scores,
PC,
mshape,
sizeshape =

FALSE,

origsize = FALSE,

meanlogCS

Arguments

scores
PC

mshape

sizeshape

origsize

meanlogCS

Details

vector of PC-scores, or matrix with rows containing PC-scores

Principal components (eigenvectors of the covariance matrix) associated with
b 9
scores’.

matrix containing the meanshape’s landmarks (used to center the data by the
PCA)

logical: if TRUE, it is assumed that the data is the output of procSym run with
sizeshape=TRUE.

logical: if sizeshape = TRUE, this will apply the scaling to the original size from
the corresponding entry from the PC basis matrix.

numeric: provide the average log Centroid Size of the original sample (see ex-
amples below). Only needed if sizeshape = TRUE and origsize = TRUE

Rotates and translates PC-scores (or similar) derived from shape data back into configuration space.

Value

returns matrix or array containing landmarks

retroDeform3d 147

Author(s)

Stefan Schlager

See Also

prcomp, procSym

getPCscores

Examples

if (require(shapes)) {
generate landmarks using
##the first PC-score of the first specimen

proc <- procSym(gorf.dat)
Im <- restoreShapes(proc$PCscores[1,1],proc$PCs[, 1], proc$mshape)
plot(lm,asp=1)

##now the first 3 scores
Im2 <- restoreShapes(proc$PCscores[1,1:3],proc$PCs[,1:3],proc$mshape)
points(1m2,col=2)

Now restore some sizeshape data

procSize <- procSym(gorf.dat,sizeshape=TRUE)

estl <- restoreShapes(range(procSize$PCscores[,1]),procSize$PCs[,1],procSize$mshape,
sizeshape=TRUE, origsize=TRUE,meanlogCS=procSize$meanlogCs)

3

retroDeform3d symmetrize a bilateral landmark configuration

Description

symmetrize a bilateral landmark configuration by removing bending and stretching

Usage

retroDeform3d(mat, pairedLM, hmult = 5, alpha = 0.01)

Arguments
mat matrix with bilateral landmarks
pairedLM 2-column integer matrix with the 1st columns containing row indices of left side
landmarks and 2nd column the right hand landmarks
hmult factor controlling the bandwidth for calculating local weights (which will be

hmult * average distance between landmarks and their closest neighbour).

alpha factor controlling spacing along x-axis

148 retroDeformMesh

Value
deformed matrix containing deformed landmarks
orig matrix containing original landmarks
References

Ghosh, D.; Amenta, N. & Kazhdan, M. Closed-form Blending of Local Symmetries. Computer
Graphics Forum, Wiley-Blackwell, 2010, 29, 1681-1688

retroDeformMesh symmetrize a triangular mesh

Description

symmetrize a triangular mesh

Usage
retroDeformMesh(
mesh,
mat,
pairedLM,
hmult = 5,
alpha = 0.01,
rot = TRUE,
lambda = 1e-08,
threads = @
)
Arguments
mesh triangular mesh of class mesh3d
mat matrix with bilateral landmarks
pairedLM 2-column integer matrix with the 1st columns containing row indices of left side
landmarks and 2nd column the right hand landmarks
hmult damping factor for calculating local weights which is calculated as humult times
the average squared distance between a landmark and its closest neighbor (on
each side).
alpha factor controlling spacing along x-axis
rot logical: if TRUE the deformed landmarks are rotated back onto the original ones
lambda control parameter passed to tps3d

threads integer: number of threads to use for TPS deform

rotaxis3d 149

Details

this function performs retroDeform3d and deforms the mesh accordingly using the function tps3d.

Value
mesh symmetrized mesh
landmarks a list containing the deformed and original landmarks
rotaxis3d Rotate an object (matrix or mesh) around an arbitrary axis in 3D
Description

Rotate an object around an arbitrary axis in 3D
Usage
rotaxis3d(x, ptl, pt2 = c(@, 0, @), theta)

S3 method for class 'matrix'
rotaxis3d(x, pt1, pt2 = c(0, 0, 0), theta)

S3 method for class 'mesh3d'
rotaxis3d(x, pt1, pt2 = c(@, 0, @), theta)

Arguments
X k x 3 matrix containing 3D-coordinates or a triangular mesh of class "mesh3d".
pt1 numeric vector of length 3, defining first point on the rotation axis.
pt2 numeric vector of length 3, defining second point on the rotation axis.
theta angle to rotate in radians. With ptl being the viewpoint, the rotation is counter-
clockwise.
Details

Rotate an object (matrix or triangular mesh) around an 3D-axis defined by two points.

Value

returns rotated object (including updated normals for mesh3d objects)

Author(s)

Stefan Schlager

150 rotaxisMat

References

http://en.wikipedia.org/wiki/Rotation_matrix

See Also

rotonto, rotmesh.onto

Examples

require(rgl)

data(nose)

shrot.rot <- rotaxis3d(shortnose.mesh,pti=c(1,1,1),theta=pi)
Not run:

shade3d(shortnose.mesh, col=3, specular=1)
shade3d(shrot.rot,col=2)

###print rotation axis
#' lines3d(rbind(rep(-0.1,3),rep(0.1,3)))

End(Not run)

rotaxisMat calculate a rotation matrix around an arbitrary axis through the origin
in 3D

Description

calculate a rotation matrix around an arbitrary axis in 3D

Usage

rotaxisMat(u, theta, homogeneous = FALSE)

Arguments

u a vector around which to rotate

theta angle in radians to rotate

homogeneous logical: if TRUE a 4x4 rotation matrix is returned
Value

returns 3x3 rotation matrix

References

http://en.wikipedia.org/wiki/Rotation_matrix

See Also

rotaxis3d

rotmesh.onto

151

rotmesh.onto

rotate ,scale and translate a mesh based on landmark information.

Description

rotates and reflects a mesh onto by calculating the transformation from two sets of referenced land-

marks.

Usage

rotmesh.onto(

mesh,
refmat,
tarmat,

adnormals =

FALSE,

scale = FALSE,

reflection

Arguments

mesh
refmat
tarmat

adnormals

scale

reflection

Value

mesh
yrot

trafo

Author(s)
Stefan Schlager

See Also

FALSE,

object of class mesh3d.
k x m matrix with landmarks on the mesh
k x m matrix as target configuration

logical - if TRUE, vertex normals will be recomputed after rotation. If mesh has
normals and adnormals=FALSE, the existing normals are rotated by the same
rotation matrix as the mesh’s vertices.

logical: if TRUE the mesh will be scaled according to the size of the target.
logical: allow reflection.

additional parameters passed on to rotonto.

rotated mesh
rotated refmat

4x4 transformation matrix

file2mesh,tps3d ,rotonto,mesh2ply

152

Examples

require(rgl)
data(boneData)

rotate, translate and scale the mesh belonging to the first specimen
onto the landmark configuration of the 10th specimen
rotmesh <- rotmesh.onto(skull_0144_ch_fe.mesh,bonelM[, 1],

Not run:

bonelLM[,,10], scale=TRUE)

render rotated mesh and landmarks
shade3d(rotmesh$mesh, col=2, specular=1)
spheres3d(bonelM[,,11)

render original mesh
shade3d(skull_0144_ch_fe.mesh, col=3, specular=1)
spheres3d(bonelM[,,101)

End(Not run)

rotonmat

rotonmat

rotate matrix of landmarks

Description

rotate matrix of landmarks by using a rotation determined by two matrices.

Usage

rotonmat (
X,
refmat,
tarmat,
scale = TRUE,
reflection =

FALSE,

weights = NULL,

centerweight

= FALSE,

getTrafo = FALSE

Arguments

X

refmat
tarmat
scale
reflection

weights

Matrix to be rotated

reference matrix used to estimate rotation parameters

target matrix used to estimate rotation parameters

logical: requests scaling to minimize sums of squared distances
logical: if TRUE, reflections are allowed.

vector of length k, containing weights for each landmark.

rotonto 153

centerweight logical: if weights are defined and centerweigths=TRUE, the matrix will be
centered according to these weights instead of the barycenter.

getTrafo logical: if TRUE, a 4x4 transformation matrix will also be returned.

Details
A matrix is rotated by rotation parameters determined by two different matrices. This is usefull, if
the rotation parameters are to be estimated by a subset of landmark coordinates.

Value

if getTrafo=FALSE the transformed X will be returned, else alist containing:

Xrot the transformed matrix X
trafo a 4x4 transformation matrix
Author(s)

Stefan Schlager

See Also

rotonto,rotmesh.onto

Examples

data(nose)
shortnose.rot <-
rotonmat (shortnose.1lm,shortnose.1lm[1:9,],longnose.1m[1:9,])

##view result
Not run:

deformGrid3d(shortnose.rot, shortnose.lm,ngrid=0)

End(Not run)

rotonto rotates, translates and scales one matrix onto an other using Pro-
crustes fitting

Description

rotates, translates and scales one matrix onto an other using Procrustes fitting

154

Usage

rotonto(
X’
Y,

rotonto

scale = FALSE,
signref = TRUE,
reflection = TRUE,

weights =

NULL,

centerweight = FALSE,

rotreverse(mat, rot)

S3 method for class 'matrix'
rotreverse(mat, rot)

S3 method for class 'mesh3d'
rotreverse(mat, rot)

Arguments

X
y

scale
signref
reflection
weights

centerweight

mat

rot

Details

k x m matrix to be rotated onto (targetmatrix)

k x m matrix which will be rotated (reference matrix)
logical: scale matrix to minimize sums of squares
logical: report if reflections were involved in the rotation
allow reflections.

vector of length k, containing weights for each landmark.

logical or vector of weights: if weights are defined and centerweigths=TRUE,
the matrix will be centered according to these weights instead of the barycenter.
If centerweight is a vector of length nrow(x), the barycenter will be weighted
accordingly.

currently not used
matrix on which the reverse transformations have to be applied

an object resulting from the former application of rotonto

rotate a matrix onto an other without loosing information about the location of the targetmatrix and
reverse this transformations using rotreverse

Value

yrot
Y

rotated and translated matrix

centred and rotated reference matrix

scalemesh 155

X centred target matrix

trans vector between original position of target and centered reference (during rotation
process)

transy vector between original position of reference and centered reference (during

rotation process)

gamm rotation matrix

bet scaling factor applied

reflect if reflect =1, reflections are involved in the superimposition. Else, reflect = 0
Note

all lines containing NA, or NaN are ignored in computing the transformation.

Author(s)

Stefan Schlager

References

Lissitz, R. W., Schoenemann, P. H., & Lingoes, J. C. (1976). A solution to the weighted Procrustes
problem in which the transformation is in agreement with the loss function. Psychometrika, 41,547-
550.

See Also

rotmesh.onto

Examples

if (require(shapes)) {

lims <- c(min(gorf.dat[,,1:2]),max(gorf.dat[,,1:2]))

rot <- rotonto(gorf.dat[,,1],gorf.dat[,,2]) ### rotate the second onto the first config
plot(rot$yrot,pch=19,xlim=1lims,ylim=1ims) ## view result

points(gorf.dat [,,2],pch=19,col=2) ## view original config

revl <- rotreverse(rot$yrot,rot)

points(revl,cex=2) ### show inversion by larger circles around original configuration

}

scalemesh scale a mesh of class "mesh3d"

Description

scales (the vertices of a mesh by a scalar

156 slider2d

Usage
scalemesh(mesh, size, center = c("bbox”, "mean"”, "none"))
Arguments
mesh object of class "mesh3d"
size numeric: scale factor
center character: method to position center of mesh after scaling: values are "bbox",
and "mean". See Details for more info.
Details

The mesh’s center is determined either as mean of the bounding box (center="bbox") or mean of ver-
tex coordinates (center="mean") and then scaled according to the scaling factor. If center="none",
vertex coordinates will simply be multiplied by "size".

Value

returns a scaled mesh

Author(s)

Stefan Schlager

See Also

rotmesh.onto

Examples

data(nose)
#inflate mesh by factor 4
largenose <- scalemesh(shortnose.mesh,4)

slider2d slides Semilandmarks along curves 2D by minimising bending energy
of a thin-plate spline deformation.

Description

slides Semilandmarks along curves 2D. The positions are sought by minimising bending energy (of
a thin-plate spline deformation) or Procrustes distance

slider2d 157

Usage

slider2d(
dataframe,
SMvector,
outlines,
tol = 1e-05,
deselect = FALSE,
recursive = TRUE,
iterations = 0,
initproc = FALSE,
pairedLM = NULL,
bending = TRUE,
stepsize = 1,
silent = FALSE

)
Arguments

dataframe Input k x 2 x n real array, where k is the number of points and n is the sample
size. Ideally the

SMvector A vector containing the row indices of (semi-) landmarks on the curve(s) and
surfaces that are allowed to slide

outlines A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

tol numeric: Threshold for convergence in the sliding process

deselect Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

recursive Logical: if TRUE, during the iterations of the sliding process, the outcome of
the previous iteration will be used. Otherwise the original configuration will be
used in all iterations.

iterations integer: select manually the max. number of iterations that will be performed
during the sliding process (usefull, when there is very slow convergence). 0
means iteration until convergence.

initproc requests initial Procrustes fit before sliding.

pairedLM A X x 2 numeric matrix with the indices of the rows containing paired Land-
marks. E.g. the left column contains the lefthand landmarks, while the right
side contains the corresponding right hand landmarks. - This will ideally create
symmetric mean to get rid of assymetry.

bending if TRUE, bending energy will be minimized, Procrustes distance otherwise.

stepsize integer: dampening factor for the amount of sliding. Useful to keep semi-

landmarks from sliding too far off the surface. The displacement is calculated
as T = YV + stepsize x UT. Default is set to 1 for bending=TRUE and 0.5 for
bending=FALSE.

silent logical: if TRUE, console output is suppressed.

158

Value

returns an array containing slided coorndinates in the original space - not yet processed by a Pro-

crustes analysis.

Warning

Depending on the amount of landmarks this can use an extensive amount of your PC’s resources,
especially when running in parallel. As the computation time and RAM usage of matrix algebra
involved is quadratic to the amount of landmarks used, doubling the amount of semi-landmarks will
quadruple computation time and system resource usage. You can easily stall you computer with this

slider3d

function with inappropriate data.

Author(s)

Stefan Schlager

See Also

relaxLM, slider3d

slider3d

slides Semilandmarks along curves and surfaces in 3D by minimising
bending energy of a thin-plate spline deformation.

Description

slides Semilandmarks along curves and surfaces in 3D. The positions on the surface are sought

which minimise bending energy (of a thin-plate spline deformation)

Usage

slider3d(
dat.array,
SMvector,

outlines = NULL,

surp = NULL,

sur.path = NULL,
sur.name = NULL,
meshlist = NULL,
ignore = NULL,
sur.type = "ply”,
tol = 1e-05,
deselect = FALSE,
inc.check = TRUE,
recursive = TRUE,
iterations = 0,
initproc = TRUE,

slider3d

159

fullGPA = FALSE,

pairedLM = 0,

bending = TRUE,

stepsize
mc.cores
fixRepro

ifelse(bending, 1, 0.5),
parallel::detectCores(),
TRUE,

missinglist = NULL,
NULL,
smoothnormals = FALSE,
silent = FALSE

use.lm =

Arguments

dat.array

SMvector

outlines

surp

sur.path

sur.name

meshlist

ignore

sur.type

tol

deselect

inc.check

recursive

Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size. Ideally the dimnames[[3]] vector contains
the names of the surface model (without file extension) - e.g. if the model is
named "surface.ply”, the name of the corresponding matrix of the array would
be "surface"

A vector containing the row indices of (semi-) landmarks on the curve(s) and
surfaces that are allowed to slide

A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

integer vector containing the row indices of semi-landmarks positioned on sur-
faces.

Path to the surface models (e.g. ply, obj, stl files)

character vector: containing the filenames of the corresponding surfaces - e.g.
if the dat.array[,,i] belongs to surface_i.ply, sur.name[i] would be surface_i.ply.
Only necessary if dat.array does not contain surface names.

list containing triangular meshes of class *'mesh3d’, for example imported with
mesh2ply or file2mesh in the same order as the specimen in the array (see
examples below).

vector containing indices of landmarks that are to be ignored. Indices of out-
lines/surfaces etc will be updated automatically.

character:if all surfaces are of the same file format and the names stored in
dat.array, the file format will be specified here.

numeric: Threshold for convergence in the sliding process

Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

Logical: if TRUE, the program stops when convergence criterion starts increas-
ing and reports result from last iteration.

Logical: if TRUE, during the iterations of the sliding process, the outcome of
the previous iteration will be used. Otherwise the original configuration will be
used in all iterations.

160

iterations

initproc
fullGPA
pairedLM

bending
stepsize

mc.cores

fixRepro

missinglist

use.lm
smoothnormals
silent

Value

dataslide
vn.array

Warning

slider3d

integer: select manually the max. number of iterations that will be performed
during the sliding process (usefull, when there is very slow convergence). 0
means iteration until convergence.

requests initial Procrustes fit before sliding.

Logical: if FALSE, only a partial procrustes fit will be performed.

A X x 2 numeric matrix with the indices of the rows containing paired Land-
marks. E.g. the left column contains the lefthand landmarks, while the right
side contains the corresponding right hand landmarks. - This will ideally create
symmetric mean to get rid of assymetry.

if TRUE, bending energy will be minimized, Procrustes distance otherwise.

integer: dampening factor for the amount of sliding. Useful to keep semi-
landmarks from sliding too far off the surface. The displacement is calculated
as T = YV + stepsize x UT. Default is set to 1 for bending=TRUE and 0.5 for
bending=FALSE.

integer: determines how many cores to use for the computation. The default is
autodetect. But in case, it doesn’t work as expected cores can be set manually.

logical: if TRUE, fix landmarks will also be projected onto the surface. If you
have landmarks not on the surface, select fixRepro=FALSE

a list of length samplesize containing integer vectors of row indices specifying
missing landmars for each specimen. For specimens without missing landmarks
enter numeric(0).

indices specifying a subset of (semi-)landmarks to be used in the rotation step -
only used if bending=FALSE.

logical: if TRUE, tangent planes will be computed from locally smoothed nor-
mals

logical: if TRUE, console output is suppressed.

array containing slidden Landmarks in the original space - not yet processed by
a Procrustes analysis

array containing landmark normals

Depending on the size of the suface meshes and especially the amount of landmarks this can use an
extensive amount of your PC’s resources, especially when running in parallel. As the computation
time and RAM usage of matrix algebra involved is quadratic to the amount of landmarks used, dou-
bling the amount of semi-landmarks will quadruple computation time and system resource usage.
You can easily stall you computer with this function with inappropriate data.

Note

if sur.path =NULL and meshlist = NULL, surface landmarks are relaxed based on a surface nor-
mals approximated by the pointcloud, this can lead to bad results for sparse sets of semilandmarks.
Obviously, no projection onto the surfaces will be occur and landmarks will likely be off the original

surface.

slider3d 161

Author(s)

Stefan Schlager

References

Klingenberg CP, Barluenga M, and Meyer A. 2002. Shape analysis of symmetric structures: quan-
tifying variation among individuals and asymmetry. Evolution 56(10):1909-1920.

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

Schlager S. 2012. Sliding semi-landmarks on symmetric structures in three dimensions. American
Journal of Physical Anthropology, 147(S52):261. URL.: http://dx.doi.org/10.1002/ajpa.21502.

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universititsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

See Also

relaxLM, createMissinglList

Examples

Not run:

data(nose)

#i#tcreate mesh for longnose

longnose.mesh <- tps3d(shortnose.mesh,shortnose.1lm,longnose.1lm,threads=1)
write meshes to disk

mesh2ply(shortnose.mesh, filename="shortnose")

mesh2ply(longnose.mesh, filename="longnose")

create landmark array
data <- bindArr(shortnose.lm, longnose.lm, along=3)
dimnames(data)[[3]1] <- c("shortnose”, "longnose")

define fix landmarks

fix <- ¢(1:5,20:21)

define surface patch by specifying row indices of matrices
all except those defined as fix

surp <- c(1:nrow(shortnose.1lm))[-fix]

slide <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,

sur.path="." iterations=1,mc.cores=1)
"." is the current working directory

sur.path=".
now one example with meshes in workspace

meshlist <- list(shortnose.mesh,longnose.mesh)

slide <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,
iterations=1, meshlist=meshlist,

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

162 solutionSpace

mc.cores=1,fixRepro=FALSE)
require(rgl)
visualize sliding
deformGrid3d(slide$dataslide[,,1],shortnose.lm,ngrid = @)
these are fix
spheres3d(slide$dataslide[fix,,1],col=4,radius=0.7)

###finally an example with missing landmarks:
we assume that coordinates 185:189, 205:209 and 225:229 are in the second config are missing
missinglist <- createMissinglList(2)
missinglist[[2]] <- c(185:189,205:209,225:229)
slideMissing <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,
iterations=1, meshlist=meshlist,
mc.cores=1,fixRepro=FALSE,missinglist=missinglList)

example with two curves

Example with surface semilandmarks and two curves

fix <= ¢(1:5,20:21)

outlinel <- c(304:323)

outline2 <- c(604:623)

outlines <- list(outlinel,outline2)

surp <- c(1:623)[-c(fix,outlinel,outline2)]

slideWithCurves <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,
meshlist=meshlist,iterations=1,mc.cores=1,outlines=outlines)

deformGrid3d(slideWithCurves$dataslide[,,1],shortnose.lm,ngrid = @)

plot(slideWithCurves)

finally an example with sliding without meshes by estimating the surface from the
semi-landmarks

slideWithCurvesNoMeshes <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,
iterations=1,mc.cores=1,outlines=outlines)

compare it to the data with surfaces

deformGrid3d(slideWithCurves$dataslide[,,1],slideWithCurvesNoMeshes$dataslide[,,1],ngrid = @)

not too bad, only lonely surface semi-landmarks are a bit off

End(Not run)

solutionSpace returns the solution space (basis and translation vector) for an equa-
tion system

Description

returns the solution space (basis and translation vector) for an equation system

Usage

solutionSpace(A, b)

sortCurve 163

Arguments
A numeric matrix
b numeric vector
Details

For a linear equationsystem, Ax = b, the solution space then is
x=A+ (I —A*A)y

where A* is the Moore-Penrose pseudoinverse of A. The QR decomposition of — A* A determines
the dimension of and basis of the solution space.

Value
basis matrix containing the basis of the solution space
translate translation vector

Examples

A <- matrix(rnorm(21),3,7)

b <-c(1,2,3)

subspace <- solutionSpace(A,b)

dims <- ncol(subspace$basis) # we now have a 4D solution space

now pick any vector from this space. E.g

y <= 1:dims

solution <- subspace$basis%x%y+subspace$translate # this is one solution for the equation above
A%*x%hsolution ## pretty close

sortCurve sort curvepoints by using the subsequent neighbours

Description

sort curvepoints by using the subsequent neighbours

Usage

sortCurve(x, k = 5, start = NULL)

Arguments
k x m matrix containing the 2D or 3D coordinates
k number of nearest neighbours to look at. Set high for very irregularly clustered
curves.
start integer: which row of x to use as a starting point. If NULL, it is assumed that the

curve is open and the point where the angle between the two nearest neighbours
is closest will be chosen.

164 symmetrize

Value
xsorted matrix with coordinates sorted along a curve
index vector containing the sorting indices
Examples

generate a curve from a polynome

x <- ¢(32,64,96,118,126,144,152.5,158)

y <- ¢(99.5,104.8,108.5,100,86,64,35.3,15)

fit <- 1Im(y~poly(x,2,raw=TRUE))

xx <- seq(30,160, length=50)
layout(matrix(1:3,3,1))

curve <- cbind(xx,predict(fit, data.frame(x=xx)))
permute order

set.seed(42)

plot(curve);lines(curve)

curveunsort <- curve[sample(1:50),]

now the curve is scrambled
plot(curveunsort);lines(curveunsort,col=2)
curvesort <- sortCurve(curveunsort)

after sorting lines are nice again
plot(curvesort$xsorted);lines(curvesort$xsorted,col=3)

symmetrize create a perfectly symmetric version of landmarks

Description

create a perfectly symmetric version of landmarks

Usage

symmetrize(x, pairedLM)

Arguments
X k x m matrix or k x m X n array, with rows containing landmark coordinates
pairedLM A X x 2 matrix containing the indices (rownumbers) of the paired LM. E.g. the
left column contains the lefthand landmarks, while the right side contains the
corresponding right hand landmarks.
Details

the landmarks are reflected and relabled according to pairedLM and then rotated and translated onto
x. Both configurations are then averaged to obtain a perfectly symmetric one.

Value

a symmetrized version of x

tps3d 165

References

Klingenberg CP, Barluenga M, and Meyer A. 2002. Shape analysis of symmetric structures: quan-
tifying variation among individuals and asymmetry. Evolution 56(10):1909-1920.

Examples

data(boneData)

left <- c(4,6,8)

right <- ¢(3,5,7)

pairedLM <- cbind(left,right)

symx <- symmetrize(bonelM[,,2],pairedLM)
Not run:
deformGrid3d(symx,bonelLM[,,21)

End(Not run)

tps3d thin plate spline mapping (2D and 3D) for coordinates and triangular
meshes

Description

maps landmarks or a triangular mesh via thin plate spline based on a reference and a target config-
uration in 2D and 3D

Usage
tps3d(x, refmat, tarmat, lambda = 1e-08, threads = 0,)
tps2d(x, refmat, tarmat, lambda = 1e-08, threads = 0,)
Arguments
X matrix - e.g. the matrix information of vertices of a given surface or a triangular
mesh of class "mesh3d"
refmat reference matrix - e.g. landmark configuration on a surface
tarmat target matrix - e.g. landmark configuration on a target surface
lambda numeric: regularisation parameter of the TPS.
threads threads to be used for parallel execution in tps deformation.
additional arguments, currently not used.
Value

returns the deformed input

166 tps3d

Note

tps2d is simply an alias for tps3d that can handle both cases.

Author(s)
Stefan Schlager

References

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11(6).

See Also

computeTransform, applyTransform

Examples

data(nose)

define some landmarks

refind <- ¢(1:3,4,19:20)

use a subset of shortnose.lm as anchor points for a TPS-deformation
reflm <- shortnose.lm[refind,]

tarlm <- reflm

##replace the landmark at the tip of the nose with that of longnose.lm
tarlm[4,] <- longnose.1lm[4,]

deform a set of semilandmarks by applying a TPS-deformation

based on 5 reference points

deformed <- tps3d(shortnose.lm, reflm, tarlm,threads=1)

Not run:

##visualize results by applying a deformation grid
deformGrid3d(shortnose.1lm,deformed,ngrid = 5)

data(nose)##load data
##warp a mesh onto another landmark configuration:
longnose.mesh <- tps3d(shortnose.mesh, shortnose.lm,longnose.1lm,threads=1)

require(rgl)
shade3d(longnose.mesh,col=skin1)

End(Not run)

data(boneData)
deform mesh belonging to the first specimen
onto the landmark configuration of the 10th specimen

Not run:

warpskull <- tps3d(skull_0144_ch_fe.mesh,bonelLM[,,1],
bonelM[,,10], threads=1)

render deformed mesh and landmarks

typprob 167

shade3d(warpskull, col=2, specular=1)
spheres3d(bonelM[,,11)

render original mesh
shade3d(skull_0144_ch_fe.mesh, col=3, specular=1)
spheres3d(bonelM[,,10])

End(Not run)

typprob calculate typicality probabilities

Description

calculate typicality probabilities

Usage
typprob(
X,
data,
small = FALSE,
method = c("chisquare”, "wilson"),
center = NULL,
cova = NULL,
robust = c("classical”, "mve", "mcd"),
)
typprobClass(
X,
data,
groups,
small = FALSE,
method = c("chisquare”, "wilson"),
outlier = 0.01,
sep = FALSE,
cv = TRUE,
robust = c(”classical”, "mve”, "mcd"),
)
Arguments
X vector or matrix of data the probability is to be calculated.
data Reference data set. If missing x will be used.
small adjustion of Mahalanobis D/2 for small sample sizes as suggested by Wilson

(1981), only takes effect when method="wilson".

168

method

center

cova

robust

groups
outlier

sep

Ccv

Details

typprob

select method for probability estimation. Available options are "chisquare" (or
any abbreviation) or "wilson". "chisquare" exploits simply the chisquare distri-
bution of the mahalanobisdistance, while "wilson" uses the methods suggested

by Wilson(1981). Results will be similar in general.

vector: specify custom vector to calculate distance to. If not defined, group
mean will be used.

covariance matrix to calculate mahalanobis-distance: specify custom covariance
matrix to calculate distance.

character: determines covariance estimation methods, allowing for robust esti-
mations using MASS: : cov. rob. Default is the standard product-moment covari-
ance matrix.

additional parameters passed to MASS: : cov. rob for robust covariance and mean
estimations.

vector containing grouping information.

probability threshold below which a specimen will not be assigned to any group-
logical: if TRUE, probability will be calculated from the pooled within group
covariance matrix.

logical: if data is missing and cv=TRUE, the resulting classification will be vali-
dated by leaving-one-out crossvalidation.

get the probability for an observation belonging to a given multivariate nromal distribution

Value

typprob: returns a vector of probabilities.

typprobClass:

probs
groupaffin

probsCV
groupaffinCV

self

Author(s)

Stefan Schlager

References

matrix of probabilities for each group

vector of groups each specimen has been assigned to. Outliers are classified
" n
none

cross-validated matrix of probabilities for each group

cross-validated vector of groups each specimen has been assigned to. Outliers
are classified "none"

logical: if TRUE, the data has been classified by self-inference.

Albrecht G. 1992. Assessing the affinities of fossils using canonical variates and generalized dis-
tances Human Evolution 7:49-69.

Wilson S. 1981. On comparing fossil specimens with population samples Journal of Human Evo-
lution 10:207 - 214.

unrefVertex 169

Examples

if (require(shapes)) {
data <- procSym(gorf.dat)$PCscores[,1:3]
probas <- typprob(data,data,small=TRUE)### get probability for each specimen

now we check how this behaves compared to the mahalanobis distance
maha <- mahalanobis(data,colMeans(data),cov(data))
plot(probas,maha,xlab="Probability”,ylab="Mahalanobis D*2")

data2 <- procSym(abind(gorf.dat,gorm.dat))$PCscores[,1:3]

fac <- as.factor(c(rep(”female”,dim(gorf.dat)[3]),rep("male”,dim(gorm.dat)[3])))
typClass <- typprobClass(data2,groups=fac,method="w",small=TRUE, cv=TRUE)

only 59 specimen is rather small.

typClass2 <- typprobClass(data2,groups=fac,method="c",cv=TRUE)## use default settings

#i## check results for first method:
typClass

check results for second method:
typClass?2
3

unrefVertex some little helpers for vertex operations on triangular meshes

Description

some little helpers for vertex operations on triangular meshes

Usage
unrefVertex(mesh)
rmVertex(mesh, index, keep = FALSE)
vert2points(mesh)
rmUnrefVertex(mesh, silent = FALSE)
Arguments
mesh triangular mesh of class mesh3d.
index vector containing indices of vertices to be removed.
keep logical: if TRUE, the vertices specified by index are kept and the rest is removed.

silent logical: suppress output about info on removed vertices.

170 unrefVertex

Details

extract vertex coordinates from meshes, find and/or remove (unreferenced) vertices from triangular
meshes

unrefVertex finds unreferenced vertices in triangular meshes of class mesh3d or tmesh3d.
rmVertex removes specified vertices from triangular meshes.
vert2points extacts vertex coordinates from triangular meshes.

rmUnrefVertex removes unreferenced vertices from triangular meshes.

Value

unrefVertex: vector with indices of unreferenced vertices.
rmVertex: returns mesh with specified vertices removed and faces and normals updated.
vert2points: k x 3 matrix containing vertex coordinates.

rmUnrefVertex: mesh with unreferenced vertices removed.

Author(s)

Stefan Schlager

See Also

ply2mesh, file2mesh

Examples

require(rgl)

data(nose)

testmesh <- rmVertex(shortnose.mesh,1:50) ## remove first 50 vertices
Not run:

shade3d(testmesh,col=3)### view result

End(Not run)

testmesh$vb <- cbind(testmesh$vb, shortnose.mesh$vb[,1:50]) ## add some unreferenced vertices
Not run:

points3d(vert2points(testmesh),col=2)## see the vertices in the holes?

End(Not run)
cleanmesh <- rmUnrefVertex(testmesh)## remove those lonely vertices!
Not run:

pop3d()
points3d(vert2points(cleanmesh),col=2) ### now the holes are empty!!

End(Not run)

updatelndices 171

updateIndices update a vector of indices after removal of some referenced items

Description

update a vector of indices after removal of some referenced items

Usage

updateIndices(x, ignore, indexrange)

Arguments
X vector containing indices (e.g. to matrix rows)
ignore integer vector: remove those items from the original structure
indexrange maximum range of the index in the referenced item structure
Examples

refItem <- matrix(1:10,5,2)

index <- ¢(1,3,5) # this indexes some rows of the matrix we are interested in

now we want to ignore row 2 and 5 and want to update the index so it will still fit
indexNew <- updatelndices(index,c(2,5),indexrange=5)

Here a more useful example:
data(boneData)
left <- c(4,6,8)
determine corresponding Landmarks on the right side:
important: keep same order
right <- ¢(3,5,7)
pairedLM <- cbind(left,right)
now we want to remove some landmarks and need to updated the pairedLM indices
ignore <- c(5,6)
mynewbonelLM <- bonelLM[-ignore,,]
pairedLMnew <- apply(pairedLM,?2,updateIndices, ignore=ignore,indexrange=dim(bonelLM)[1])

updateNormals Compute face or vertex normals of a triangular mesh

Description

Compute face or vertex normals of a triangular mesh of class "mesh3d"

Usage
updateNormals(x, angle = TRUE)

facenormals(x)

172 updateNormals

Arguments

X triangular mesh of class "mesh3d"

angle logical: if TRUE, angle weighted normals are used.
Value

updateNormals returns mesh with updated vertex normals.

facenormals returns an object of class "mesh3d" with

vb faces’ barycenters
normals faces’ normals
Note

only supports triangular meshes

Author(s)

Stefan Schlager

References

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling, .

See Also

ply2mesh

Examples

require(rgl)

require(Morpho)

data(nose)

calculate vertex normals
shortnose.mesh$normals <- NULL ##remove normals
Not run:

shade3d(shortnose.mesh, col=3)##render

End(Not run)

shortnose.mesh <- updateNormals(shortnose.mesh)

Not run:

clear3d()

shade3d(shortnose.mesh, col=3)##smoothly rendered now

End(Not run)

calculate facenormals

facemesh <- facenormals(shortnose.mesh)
Not run:
plotNormals(facemesh,long=0.01)

vecx 173

points3d(vert2points(facemesh),col=2)
wire3d(shortnose.mesh)

End(Not run)

vecx convert an 3D array into a matrix and back

Description

converts a 3D-array (e.g. containing landmark coordinates) into a matrix, one row per specimen or
reverse this.

Usage

vecx(x, byrow = FALSE, revert = FALSE, Imdim)

Arguments
X array or matrix
byrow logical: if TRUE, the resulting vector for each specimen will be x1,y1,z1,x2,y2,z2, ...,
and x1,x2,...,y1,y2,...,z1,z2,... otherwise (default). The same is for re-
verting the process: if the matrix contains the coordinates as rows like: x1,y1,z1,x2,y2,z2, ...
set byrow=TRUE
revert revert the process and convert a matrix with vectorized landmarks back into an
array.
Imdim number of columns for reverting
Value

returns a matrix with one row per specimen

Author(s)

Stefan Schlager

Examples

if (require(shapes)) {

data <- vecx(gorf.dat)

#trevert the procedure

gdat.restored <- vecx(data,revert=TRUE,1mdim=2)
range(gdat.restored-gorf.dat)

3

174 virtualMeshScan

virtualMeshScan remove all parts of a triangular mesh, not visible from a set of view-
points

Description

remove all parts of a triangular mesh, not visible from a set of viewpoints

Usage

virtualMeshScan(x, viewpoints, offset = 0.001, cores = 1)

Arguments
X triangular mesh of class 'mesh3d’
viewpoints vector or k x 3 matrix containing a set of viewpoints
offset value to generate an offset at the meshes surface (see notes)
cores integer: number of cores to use (not working on windows)
Value

returns a list containing subsets of the original mesh

visible the parts visible from at least one of the viewpoints
invisible the parts not visible from the viewpoints
Note

The function tries to filter out all vertices where the line connecting each vertex with the viewpoints
intersects with the mesh itself. As, technically speaking this always occurs at a distance of value=0,
a mesh with a tiny offset is generated to avoid these false hits.

Examples

SCP1 <- file2mesh(system.file("extdata"”,"SCP1.ply",package="Morpho"))

viewpoints <- read.fcsv(system.file("extdata"”,"SCP1_Endo.fcsv",package="Morpho"))
Create a quick endocast

quickEndo <- virtualMeshScan(SCP1,viewpoints)

Not run:

rgl::shade3d(quickEndo$visible,col="orange")
rgl::shade3d(SCP1,col="white",alpha=0.5)

End(Not run)

warpmovie3d

175

warpmovie3d

Creates a sequence of images showing predefined steps of warping two
meshes or landmark configurations (2D and 3D) into each other

Description

Creates a sequence of images showing predefined steps of warping two meshes or landmark con-

figurations (2D and 3D) into each other

Usage
warpmovie3d(
X,
y)
n)
col = "green",

palindrome = FALSE,
folder = NULL,

movie = "warpmovie”,
)
S3 method for class
warpmovie3d(

X7

Y,

n’

col = "green”,

palindrome = FALSE,
folder = NULL,

movie = "warpmovie”,
add = FALSE,
close = TRUE,
countbegin = 0,
ask = TRUE,
radius = NULL,
links = NULL,
lwd =1,

)

warpmovie2d(
X)
Y,
n)
col = "green",

palindrome = FALSE,

'matrix’

176

folder =
movie =
links =
Iwd =1,

warpmovie3d

NULL,
"warpmovie”,

NULL,

imagedim = "800x800",
par = list(xaxt = "n", yaxt = "n", bty = "n"),

)

S3 method for class 'mesh3d’
warpmovie3d(
X ’
Y,
n ’
col = NULL,
palindrome = FALSE,
folder = NULL,
movie = "warpmovie”,
add = FALSE,
close = TRUE,
countbegin = 0,
ask = TRUE,
radius = NULL,
xland = NULL,
yland = NULL,
Imcol = "black”,
)
Arguments
X mesh to start with (object of class mesh3d)
y resulting mesh (object of class mesh3d), having the same amount of vertices and
faces than the starting mesh
n integer: amount of intermediate steps.
col color of the mesh
palindrome logical: if TRUE, the procedure will go forth and back.
folder character: output folder for created images (optional)
movie character: name of the output files
additional arguments passed to shade3d (3D) or points (2D).
add logical: if TRUE, the movie will be added to the focussed rgl-windows.
close logical: if TRUE, the rgl window will be closed when finished. width and 200
the height of the image.
countbegin integer: number to start image sequence.
ask logical: if TRUE, the viewpoint can be selected manually.

warpmovie3d 177

radius numeric: define size of spheres (overides atuomatic size estimation).

links vector or list of vectors containing wireframe information to connect landmarks
(optional).

lwd numeric: controls width of lines defined by "links".

imagedim character of pattern "100x200" where 100 determines the width and 200 the
height of the image.

par list of graphial parameters: details can be found here: par.

xland optional argument: add landmarks on mesh x

yland optional argument: add landmarks on mesh y

1mcol optional argument: color of landmarks xland and yland

Details

given two landmark configurations or two meshes with the same amount of vertices and faces (e.g a
mesh and its warped counterpart), the starting configuration/mesh will be subsequently transformed
into the final configuration/mesh by splitting the differences into a predefined set of steps.

A series of png files will be saved to disk. These can be joined to animated gifs by external pro-
grams such as imagemagick or used to create animations in PDFs in a latex environment (e.g. latex
package: aninmate).

Author(s)

Stefan Schlager

See Also
ply2mesh, file2mesh,mesh2ply, tps3d

Examples

###3D example

data(nose)##load data

if (interactive()){

##warp a mesh onto another landmark configuration:

longnose.mesh <- tps3d(shortnose.mesh,shortnose.lm,longnose.1lm,threads=1)

warpmovie3d(shortnose.mesh, longnose.mesh,n=15)## create 15 images.
ad some landmarks

warpmovie3d(shortnose.mesh, longnose.mesh,n=15,xland=shortnose.1lm,
yland=longnose.lm)## create 15 images.

restrict to landmarks
warpmovie3d(shortnose.1lm,longnose.lm,n=15movie="matrixmovie")## create 15 images.

the images are now stored in your current working directory and can

178 write.fcsv

be concatenated to a gif using an external program such as

imagemagick.

3

#i## 2D example

if (require(shapes)) {

bb <- procSym(gorf.dat)

morph superimposed first specimen onto sample mean
warpmovie2d(bb$rotated[,,1],bb$mshape,n=20,1links=c(1,5,4:2,8:6,1),imagedim="600x400")
remove files

unlink("warpmovie@@x")

}

write.fcsv write fiducials in slicer4 format

Description

write fiducials in slicer4 format

Usage

write.fcsv(x, filename = dataname, description = NULL, slicer4.11 = FALSE)

Arguments
X matrix with row containing 2D or 3D coordinates
filename will be substituted with ".fcsv"
description optional: character vector containing a description for each landmark
slicer4.11 logical: Slicer changed their fiducial format in version >= 4.11. Set TRUE if
you use the latest Slicer version
Examples
require(Rvcg)
data(dummyhead)

write.fcsv(dummyhead.1lm)
remove file
unlink("dummyhead.1m.fcsv")

write.pts 179

write.pts exports a matrix containing landmarks into .pts format

Description

exports a matrix containing landmarks into .pts format that can be read by IDAV Landmark.

Usage

write.pts(x, filename = dataname, rownames = NULL, NA.string = 9999)

Arguments
X k x m matrix containing landmark configuration
filename character: Path/name of the requested output - extension will be added atuomat-
ically. If not specified, the file will be named as the exported object.
rownames provide an optional character vector with rownames
NA.string specify the string to use for encoding missing values
Details

you can import the information into the program landmarks available at http://graphics.idav.ucdavis.edu/research/EvoMorph

Author(s)

Stefan Schlager

See Also

read.pts

Examples

data(nose)
write.pts(shortnose.lm, filename="shortnose")
unlink("shortnose.pts")

180 write.slicerjson

write.slicerjson Export landmarks (or any 3D coordinates) to the new slicer json for-
mat

Description

Export landmarks (or any 3D coordinates) to the new slicer json format

Usage

write.slicerjson(
X,
filename = dataname,
type = c("Fiducial”, "Curve"”, "ClosedCurve"),
coordinateSystem = c("LPS", "RAS"),
labels = dataname

)
Arguments
X k x 3 matrix containing 3D coordinates
filename will be substituted with ".mrk.json"
type character: specify type of coordinates. Can be any of "Fiducial", "Curve",
"ClosedCurve".
coordinateSystem

character: specify coordinate system the data are in. Can be "LPS" or "RAS".

labels character or character vector containing landmark labels.

Index

* datasets coVvPCA (covDist), 26
boneData, 16 covW, 28
colors, 23 createAtlas, 719, 29, 97, 99, 101, 102
nose, 90 CreatelL, 30
+ package createMissinglist, 32, 161
Morpho-package, 5 crossProduct, 33
cSize, 34
align2procSym, 6, 58 cutMeshPlane, 35
angle.calc,7 cutSpace, 35, 35
angleTest, 7, I3 CVA, 21, 36, 66, 110
anonymize, 8
applyTransform, 9, 64, 166 data2platonic, 40
areaSphere, 10 deformGrid2d, 41
areaSpherePart, 11 deformGrid3d, 43
armaGinv, 11
array, 15 equidistantCurve, 45
array2list, 12 export (render), 142
arrMean3, 12 export.meshDist, 82
asymPermute, 13 exVar, 46
barycenter, 14 facenormals (updateNormals), 171
bindArr, 15 fastKmeans, 48
bone1 (colors), 23 file2mesh, 19,49, 76, 77,151, 159, 170, 177
bone2 (colors), 23 find.outliers, 50
bone3 (colors), 23 fixLMmirror, 32, 51
boneData, 16 fixLMtps, 32, 53, 90
bonelLM (boneData), 16 formula, 714
CAC, 16 getFaces, 55
cbind, /5 getMeaningfulPCs, 55, 59
cExtract, 17 getOuterViewpoints, 56
checkLM, 18, 99 getPCscores, 57, 147
checkNA, 20 getPCtol, 56, 58
classify, 20 getPLSCommonShape, 59, 104, 107
closemeshKD, 14, 21, 75, 124, 128 getPLSfromScores, 60, 104, 106, 107
colors, 23 getPLSscores, 61, 104, 106, 107,111, 112
computeArea, 23 getPointAlongOutline, 62
computeTransform, 10, 24, 166 getSides, 62
cov, 29 getTrafo4x4, 63
covDist, 26 getTrafoRotaxis, 64

181

182

getVisibleVertices, 64
groupPCA, 21, 38, 65, 110

hist, 68
histGroup, 67

icpmat, 69
invertFaces, 70

kendalldist, 71

line2plane, 72
lineplot, 42,73
list2array, 74

1m, 7114
longnose. 1m (nose), 90
LPS2RAS, 74, 129, 132

material3d, 81, 143
mcNNindex, 75
mergeMeshes, 76
mesh2grey, 77
mesh2obj, 77
mesh2ply, 76, 151, 159, 177
mesh2ply (mesh2obj), 77
meshcube, 79
meshDist, 79, /44
meshPlanelntersect, 83
meshres, 84

mirror, 62, 85
mirror2plane, 87
model.matrix, /74

Morpho (Morpho-package), 5
Morpho-package, 5

name2factor, 88

name2num (name2factor), 88
NNshapeReg, 89

nose, 90

obj2mesh (file2mesh), 49

p.adjust.methods, 37, 94
par, 177

pcAlign, 90

pcaplot3d, 73,92
PCdist, 93

permudist, 94
permuvec, 95
placePatch, 19, 30,97, 102

INDEX

plot.slider3d, 100

plotAtlas, 19, 30, 101

plotNormals, 102

pls2B, 61,103, 106, 107, 111, 112

plsCoVar, 104, 105, 107

plsCoVarCommonShape, 60, 104, 106, 106

ply2mesh, 22, 76-78, 128, 170, 172, 177

ply2mesh (file2mesh), 49

points, 68, 176

points2plane, 24, 107

prcomp, 27, 147

prcompfast, 108

predict.bgPCA, 109

predict.CVA, 110

predictPLSfromData, 61, 104, 106, 107, 111,
112

predictPLSfromScores, 61, 104, 106, 107,
111,112

predictRelWarps, 112

predictShape.1lm, 113

proc.weight, 53, 54, 90, 115

procAOVsym, 116

ProcGPA, 103, 118

procSym, 13, 14,93, 117, 119, 119, 126, 134,
147

projRead, 123

qgmat, 124
qgplot, 125
quad2trimesh, 78, 125

r2morphoj, 126
r2morphologika (r2morphoj), 126
ray2mesh, 127

rbind, 75
read.csv.folder, 128
read.fcsv, 129
read.lmdta, /7, 130, 133
read.mpp, 130
read.pts, 17, 131,131, 133,179
read.slicerjson, 132

read. table, 129, 134
readallTPS, 132
readLandmarks.csv, 133
regdist, 134, 135
RegScore, 135
relaxLM, 31, 99, 136, 158, 161
relWarps, 140

render, 142

INDEX 183

render.meshDist, 82 warpmovie3d, 175
resampleCurve, 145 write.fcsv, 178
restoreFromPCA, 145 write.pts, 179
restoreShapes, 58, 146 write.slicerjson, 180

retroDeform3d, 147, 149
retroDeformMesh, 148

rmUnrefVertex (unrefVertex), 169
rmVertex (unrefVertex), 169
rotaxis3d, 149, 150

rotaxisMat, 150
rotmesh.onto, 150, 151, 153, 155, 156
rotonmat, 152

rotonto, 10, 25,44, 119, 150, 151, 153, 153
rotreverse (rotonto), 153

scalemesh, 155
shade3d, 81, 82, 143, 144, 176
shortnose. lm (nose), 90
shortnose.mesh (nose), 90

skinl (colors), 23

skin2 (colors), 23

skin3 (colors), 23

skin4 (colors), 23
skull_0144_ch_fe.mesh (boneData), 16
slider2d, 156
slider3d, 31, 32,99, 122, 139, 158, 158
solutionSpace, 162

sortCurve, 163

svd, 104, 106, 107

symmetrize, 164

tangentPlane (crossProduct), 33

tps2d (tps3d), 165

tps3d, 10, 25, 31, 43, 45, 54, 99, 148, 149,
151,165,177

typprob, 51, 167

typprobClass, 21, 29, 51

typprobClass (typprob), 167

unrefVertex, 169
updateIndices, 171
updateNormals, 71, 171

vcgSphere, 57

vecx, 104, 173

vert2points (unrefVertex), 169
virtualMeshScan, 174

warpmovie2d (warpmovie3d), 175

	Morpho-package
	align2procSym
	angle.calc
	angleTest
	anonymize
	applyTransform
	areaSphere
	areaSpherePart
	armaGinv
	array2list
	arrMean3
	asymPermute
	barycenter
	bindArr
	boneData
	CAC
	cExtract
	checkLM
	checkNA
	classify
	closemeshKD
	colors
	computeArea
	computeTransform
	covDist
	covW
	createAtlas
	CreateL
	createMissingList
	crossProduct
	cSize
	cutMeshPlane
	cutSpace
	CVA
	data2platonic
	deformGrid2d
	deformGrid3d
	equidistantCurve
	exVar
	fastKmeans
	file2mesh
	find.outliers
	fixLMmirror
	fixLMtps
	getFaces
	getMeaningfulPCs
	getOuterViewpoints
	getPCscores
	getPCtol
	getPLSCommonShape
	getPLSfromScores
	getPLSscores
	getPointAlongOutline
	getSides
	getTrafo4x4
	getTrafoRotaxis
	getVisibleVertices
	groupPCA
	histGroup
	icpmat
	invertFaces
	kendalldist
	line2plane
	lineplot
	list2array
	LPS2RAS
	mcNNindex
	mergeMeshes
	mesh2grey
	mesh2obj
	meshcube
	meshDist
	meshPlaneIntersect
	meshres
	mirror
	mirror2plane
	name2factor
	NNshapeReg
	nose
	pcAlign
	pcaplot3d
	PCdist
	permudist
	permuvec
	placePatch
	plot.slider3d
	plotAtlas
	plotNormals
	pls2B
	plsCoVar
	plsCoVarCommonShape
	points2plane
	prcompfast
	predict.bgPCA
	predict.CVA
	predictPLSfromData
	predictPLSfromScores
	predictRelWarps
	predictShape.lm
	proc.weight
	procAOVsym
	ProcGPA
	procSym
	projRead
	qqmat
	quad2trimesh
	r2morphoj
	ray2mesh
	read.csv.folder
	read.fcsv
	read.lmdta
	read.mpp
	read.pts
	read.slicerjson
	readallTPS
	readLandmarks.csv
	regdist
	RegScore
	relaxLM
	relWarps
	render
	resampleCurve
	restoreFromPCA
	restoreShapes
	retroDeform3d
	retroDeformMesh
	rotaxis3d
	rotaxisMat
	rotmesh.onto
	rotonmat
	rotonto
	scalemesh
	slider2d
	slider3d
	solutionSpace
	sortCurve
	symmetrize
	tps3d
	typprob
	unrefVertex
	updateIndices
	updateNormals
	vecx
	virtualMeshScan
	warpmovie3d
	write.fcsv
	write.pts
	write.slicerjson
	Index

