
Package ‘MOEADr’
January 20, 2025

Type Package

Title Component-Wise MOEA/D Implementation

Description Modular implementation of Multiobjective Evolutionary Algorithms
based on Decomposition (MOEA/D) [Zhang and Li (2007),
<DOI:10.1109/TEVC.2007.892759>] for quick assembling and
testing of new algorithmic components, as well as easy
replication of published MOEA/D proposals. The full framework is
documented in a paper published in the Journal of Statistical
Software [<doi:10.18637/jss.v092.i06>].

Version 1.1.3

Date 2023-01-06

Imports FNN, assertthat

Suggests smoof, scatterplot3d, MASS, grDevices, irace, testthat,
knitr, rmarkdown, emoa, ggplot2, reshape2, pkgdown

Depends R (>= 3.4.0)

Author Felipe Campelo [aut, cre],
Lucas Batista [com],
Claus Aranha [aut]

Maintainer Felipe Campelo <fcampelo@ufmg.br>

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

URL https://fcampelo.github.io/MOEADr/

BugReports https://github.com/fcampelo/MOEADr/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2023-01-08 14:50:05 UTC

1

https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.18637/jss.v092.i06
https://fcampelo.github.io/MOEADr/
https://github.com/fcampelo/MOEADr/issues

2 Contents

Contents
box_constraints . 3
calcIGD . 4
check_stop_criteria . 4
constraint_none . 5
constraint_penalty . 6
constraint_vbr . 7
create_population . 9
decomposition_msld . 10
decomposition_sld . 11
decomposition_uniform . 12
define_neighborhood . 13
evaluate_population . 14
example_problem . 15
find_nondominated_points . 15
generate_weights . 16
get_constraint_methods . 17
get_decomposition_methods . 17
get_localsearch_methods . 18
get_scalarization_methods . 19
get_stop_criteria . 19
get_update_methods . 20
get_variation_operators . 21
ls_dvls . 21
ls_tpqa . 23
make_vectorized_smoof . 24
moead . 25
order_neighborhood . 30
perform_variation . 31
plot.moead . 32
preset_moead . 34
print.moead . 35
print_progress . 36
scalarization_awt . 37
scalarization_ipbi . 38
scalarization_pbi . 39
scalarization_ws . 40
scalarization_wt . 41
scalarize_values . 42
scale_objectives . 43
stop_maxeval . 44
stop_maxiter . 45
stop_maxtime . 46
summary.moead . 47
unitary_constraints . 48
update_population . 49
updt_best . 49

box_constraints 3

updt_restricted . 51
updt_standard . 52
variation_binrec . 53
variation_diffmut . 54
variation_localsearch . 55
variation_none . 56
variation_polymut . 57
variation_sbx . 58
variation_truncate . 59

Index 60

box_constraints Box constraints routine

Description

Calculates the constraint values and violations when only box constraints are present.

Usage

box_constraints(X, ...)

Arguments

X Population matrix of the MOEA/D (each row is a candidate solution). If NULL
the function searches for X in the calling environment.

... other parameters (unused, included for compatibility with generic call)

Details

This routine calculates the constraint values and violations for a population matrix in the MOEA/D.
Each row of the matrix is considered as a candidate solution. This routine expects the candidate
solutions to be standardized, i.e., that the variable limits given in problem$xmin and problem$xmax
are mapped to 0 and 1, respectively.

Value

List objective containing a matrix of constraint values Cmatrix, a matrix of individual constraint
violations Vmatrix, and a vector of total constraint violations v.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

4 check_stop_criteria

calcIGD Inverted Generational Distance

Description

Calculate IGD

Usage

calcIGD(Y, Yref)

Arguments

Y Matrix of points in the objective space

Yref Matrix of Pareto-optimal reference points

Value

igd value (scalar)

check_stop_criteria Stop criteria for MOEA/D

Description

Verifies stop criteria for the MOEADr package.

Usage

check_stop_criteria(stopcrit, call.env)

Arguments

stopcrit list containing the parameters defining the stop handling method. See Section
Stop Criteria of the moead() documentation for details.

call.env List vector containing the stop criteria to be used. See moead() for details.

Details

This routine is intended to be used internally by moead(), and should not be called directly by the
user.

Value

Flag keep.running, indicating whether the algorithm should continue (TRUE) or terminate (FALSE).

constraint_none 5

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

constraint_none NULL constraint handling method for MOEA/D

Description

Construct the preference index matrix based only on performance values.

Usage

constraint_none(B, bigZ, bigV, ...)

Arguments

B Matrix of neighborhoods (generated by define_neighborhood(...)))

bigZ Matrix of scalarized objective values for each neighborhood and the incumbent
solution (generated by scalarize_values)

bigV Matrix of violation values for each neighborhood and the incumbent solution

... other parameters (unused, included for compatibility with generic call)

Details

This function ignores the violation values when constructing the preference index matrix, using
only the scalarized performance values.

Value
[N x (T+1)] matrix of preference indices. Each row i contains a permutation of {1, 2, ..., (T+1)},
where 1,...,T correspond to the solutions contained in the neighborhood of the i-th subproblem,
B[i,], and T+1 corresponds to the incumbent solution for that subproblem. The order of the per-
mutation is defined by the increasing values of f(xk), where f(xk) is the aggregation function
value of the k-th solution being compared.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.18637/jss.v092.i06

6 constraint_penalty

constraint_penalty "Penalty" constraint handling method for MOEA/D

Description

Uses the Penalty Function constraint handling method to generate a preference index for the MOEADr
framework.

Usage

constraint_penalty(B, bigZ, bigV, beta, ...)

Arguments

B Matrix of neighborhoods (generated by define_neighborhood()$B)

bigZ Matrix of scalarized objective values for each neighborhood and the incumbent
solution (generated by scalarize_values())

bigV Matrix of violation values for each neighborhood and the incumbent solution
(generated in order_neighborhood())

beta Penalization constant (non-negative value)

... other parameters (unused, included for compatibility with generic call)

Details

This function calculates the preference index of a set of neighborhoods based on the "penalty"
constraint handling method. Please see order_neighborhood() for more information on the pref-
erence index matrix.

Value
[N x (T+1)] matrix of preference indices. Each row i contains a permutation of {1, 2, ..., (T+1)},
where 1,...,T correspond to the solutions contained in the neighborhood of the i-th subproblem,
B[i,], and T+1 corresponds to the incumbent solution for that subproblem. The order of the per-
mutation is defined by the increasing values of f(xk) + beta * v(xk), where f(xk) is the aggre-
gation function value of the k-th solution being compared, and v(xk) is its total constraint violation
(calculated in evaluate_population()Vv).

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

constraint_vbr 7

constraint_vbr "Violation-based Ranking" constraint handling method for MOEA/D

Description

Uses the Violation-based Ranking handling method to generate a preference index for the MOEADr
framework.

Usage

constraint_vbr(bigZ, bigV, type = c("ts", "sr", "vt"), pf = NULL, ...)

Arguments

bigZ Matrix of scalarized objective values for each neighborhood and the incumbent
solution (generated by scalarize_values())

bigV Matrix of violation values for each neighborhood and the incumbent solution
(generated in order_neighborhood())

type type of c(x) function to use (see c(x) Criteria for details).

pf probability parameter for type = "sr" (ignored in other modes).

... other parameters (unused, included for compatibility with generic call)

Details

This function calculates the preference index of a set of neighborhoods based on the "violation-
based ranking" (VBR) constraint handling method. Please see order_neighborhood() for more
information on the preference index matrix.

The VBR strategy generalizes some well-known methods for handling constraints in population-
based metaheuristics (see Section c(x) Criteria). This strategy essentially ranks points within
for a given subproblem based on their aggregated function value (f^{agg}(x|w_i)) or their total
constraint violation (v(x)). Specific variations of this strategy differ on the criteria for using one or
the other.

The value used for ranking a given point x can be summarized as:

Violation | c(x) criterion | Rank using:
v(x) = 0 | c(x) = * | f^{agg}(x|w_i)
v(x) > 0 | c(x) == TRUE | f^{agg}(x|w_i)
v(x) > 0 | c(x) == FALSE | v(x)

Points compared according to their f^{agg}(x|w_i) values (i.e., feasible points and those for
which c(x) = TRUE) are ranked first (i.e., receive ranks between 1 and n_{feas}, where n_{feas}
is the number of feasible points in the i-th neighborhood), with points that are compared according
to their v(x) values receiving ranks between (n_{feas} + 1) and T + 1 (T being the size of the
neighborhood. The +1 comes from including the incumbent solution in the comparison).

8 constraint_vbr

Value
[N x (T+1)] matrix of preference indices. Each row i contains a permutation of {1, 2, ..., (T+1)},
where 1,...,T correspond to the solutions contained in the neighborhood of the i-th subproblem,
B[i,], and T+1 corresponds to the incumbent solution for that subproblem. The order of the per-
mutation is defined by the specific strategy defined by the input variable type).

c(x) Criteria

Specific variations of the VBR differ on how the criterion c(x) is implemented. Three variants are
currently implemented in the MOEADr package:

Method | ID | c(x)
Tournament Selection [Deb2000] | $type = "ts" | FALSE
Stochastic Ranking [Runarsson2000] | $type = "sr" | runif() < pf
Violation Threshold [Asafuddoula2014] | $type = "vt" | v(x) < eps_v^i

where pf ∈ [0, 1] is a user-defined parameter for the "sr" method, and eps_v^i is subproblem-
dependent, adaptive quantity calculated internally in the routine (see [Asafuddoula2014] and
[Campelo2017] for details).

Using an External Archive

For types "sr" and "vt", it is possible for the algorithm to lose feasible solutions during its update
step, since there is a non-zero probability of unfeasible solutions replacing feasible ones. In these
cases, it is recommended to set the moead() parameter update$UseArchive = TRUE, so that an
external archive is built with the best feasible solutions found for each subproblem.

References
[Deb2000] K. Deb, "An efficient constraint handling method for genetic algorithm", Computer
Methods in Applied Mechanics and Engineering 186(2–4):311–338, 2000.
[Runarsson2000] T. Runarsson, X. Yao, "Stochastic ranking for constrained evolutionary opti-
mization", IEEE Transactions on Evolutionary Computation4(3):284–294, 2000.

[Asafuddoula2014] M. Asafuddoula, T. Ray, R. Sarker, K. Alam, "An adaptive constraint han-
dling approach embedded MOEA/D,” 2012 IEEE Congress on Evolutionary Computation (CEC).

[Campelo2017] F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-
Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal
of Statistical Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

create_population 9

create_population Create population

Description

Create a population for the MOEADr package

Usage

create_population(N, problem)

Arguments

N population size

problem list of named problem parameters. See Section Problem Description of the
moead() documentation for details.

Details

This routine creates a population matrix for the MOEA/D. Currently only a multivariate uniform
distribution is implemented. All points are created within the standardized space 0 ≤ xi ≤ 1, i =
1, ..., nv .

Value

A population matrix X for the MOEA/D.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

ex.problem <- list(name = "example_problem",
xmin = rep(-1, 5),
xmax = rep(1, 5),
m = 2)

X <- create_population(20, ex.problem)

https://doi.org/10.18637/jss.v092.i06

10 decomposition_msld

decomposition_msld Problem Decomposition using Multi-layered Simplex-lattice Design

Description

Problem Decomposition using Multi-layered Simplex-lattice Design for MOEADr package

Usage

decomposition_msld(decomp, ...)

Arguments

decomp list containing the relevant decomposition parameters. Besides decomp$name =
"msld", this method requires the definition of the following key-value pairs in
decomp:

• decomp$H: array of positive integers representing the H values to be used
by the SLD decomposition at each layer (see decomposition_sld() for
details).

• decomp$tau: array of scale multipliers for each layer, 0 < τi ≤ 1, τi! = τj
for all i! = j. Must have the same length as decomp$H.

• decomp$.nobj: integer value, decomp$.nobj > 1. Number of objectives of
the problem.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the weight vectors for the MOEA/D using the Multi-layered Simplex-lattice
Design.

References

K. Li et al. (2014), "An Evolutionary Many-Objective Optimization Algorithm Based on Domi-
nance and Decomposition", IEEE Trans. Evol. Comp. 19(5):694-716, 2015. DOI: 10.1109/TEVC.2014.2373386

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

decomp <- list(name = "msld", H = c(5, 3), tau = c(.9, .5), .nobj = 4)
W <- decomposition_msld(decomp)

https://doi.org/10.18637/jss.v092.i06

decomposition_sld 11

decomposition_sld Problem Decomposition using Simplex-lattice Design

Description

Problem Decomposition using Simplex-lattice Design for MOEADr package

Usage

decomposition_sld(decomp, ...)

Arguments

decomp list containing the relevant decomposition parameters. Besides decomp$name =
"sld", this method requires the definition of the following key-value pairs:

• decomp$H, decomposition constant. Suggested values for decomp$H are
(use with caution):

m | H | N
2 | 99 | 100
3 | 12 | 91
5 | 6 | 210

It is important to highlight that the number of vectors generated (N) must
be greater than the number of neighbors declared in neighbors$T (see
moead() for details).

• decomp$.nobj: integer value, decomp$.nobj > 1. Number of objectives of
the problem.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the weight vectors for the MOEA/D using the Simplex-lattice Design.

References

I. Das, J. Dennis (1998), "Normal Boundary Intersection - A New Method for Generating the Pareto
Surface in Nonlinear Multicriteria Optimization Problems", SIAM J. Optim., 8(3), 631-657. DOI:
10.1137/S1052623496307510

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

12 decomposition_uniform

Examples

decomp <- list(name = "sld", H = 99, .nobj = 2)
W <- decomposition_sld(decomp)

decomposition_uniform Problem Decomposition using Uniform Design

Description

Problem Decomposition using Uniform Design for MOEADr package

Usage

decomposition_uniform(decomp, ...)

Arguments

decomp list containing the relevant decomposition parameters. Besides decomp$name =
"uniform", this method requires the definition of the following key-value pairs:

• decomp$N, number of subproblems to generate. It is important to highlight
that the number of subproblems must be greater than the number of neigh-
bors declared in neighbors$T (see moead() for details).

• decomp$.nobj: integer value, decomp$.nobj > 1. Number of objectives of
the problem.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the weight vectors for the MOEA/D using the Uniform Design:

References

R. Wang, T. Zhang, B. Guo, "An enhanced MOEA/D using uniform directions and a pre-organization
procedure". Proc. IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, pp.
2390–2397.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

decomp <- list(name = "uniform", N = 50, .nobj = 3)
W <- decomposition_uniform(decomp)

https://doi.org/10.18637/jss.v092.i06

define_neighborhood 13

define_neighborhood Calculate neighborhood relations

Description

Calculates neighborhood relations for the MOEADr package

Usage

define_neighborhood(neighbors, v.matrix, iter)

Arguments

neighbors List containing the decomposition method parameters. This list must contain
the following key-value pairs:

• neighbors$name, type of neighborhood to use. The following types are
currently available:

– neighbors$name = "lambda": defines the neighborhood using the dis-
tance matrix for the weight vectors. The calculation is performed only
once for the entire run.

– neighbors$name = "x": defines the neighborhood using the distance
matrix for the incumbent solution associated with each subproblem. In
this case the calculation is performed at each iteration.

• neighbors$T: Neighborhood size. The value of neighbors$T must be
smaller than the number of subproblems.

• neighbors$delta.p: Probability of sampling from the neighborhood when
performing variation. Must be a scalar value between 0 and 1.

v.matrix matrix of vectors to be used for defining the neighborhoods.

iter iteration counter of the MOEA/D

Details

This routine calculates the neighborhood relations for the MOEA/D.

Warning: this routine may access (but not directly modify) variables from the calling environment.

Value

List containing the matrix of selection probabilities (P) and the matrix of neighborhoods (B).

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

14 evaluate_population

evaluate_population Evaluate population

Description

Evaluate a population matrix on the objective functions for the MOEADr package

Usage

evaluate_population(X, problem, nfe)

Arguments

X Population matrix of the MOEA/D (each row is a candidate solution).

problem list of named problem parameters. See Section Problem Description of the
moead() documentation for details.

nfe counter of function evaluations from the moead() routine.

Details

This routine evaluates a population matrix for the MOEA/D. Each row of the matrix is considered
as a candidate solution. This routine expects the candidate solutions to be standardized, i.e., that the
variable limits given in problem$xmin and problem$xmax are mapped to 0 and 1, respectively.

Value

List object containing the matrix of objective function values, a list object containing information
about the constraint violations (a matrix of constraint values Cmatrix, a matrix of constraint viola-
tions Vmatrix, and a vector of total violations v), and the updated counter nfe.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

ex.problem <- list(name = "example_problem",
xmin = rep(-1, 5),
xmax = rep(1, 5),
m = 2)

X <- create_population(20, ex.problem)
Y <- evaluate_population(X, ex.problem, nfe = 0)

https://doi.org/10.18637/jss.v092.i06

example_problem 15

example_problem Example problem

Description

Example problem - minimization of shifted sphere and rastrigin functions.

Usage

example_problem(X)

Arguments

X population matrix (see moead() for details)

Value

Matrix of objective function values

find_nondominated_points

Find non-dominated points

Description

Non-dominated point finding for minimization problems

Usage

find_nondominated_points(Y)

Arguments

Y row matrix of points in the space of objectives.

Details

Non-dominated point finding, based on portions of function fastNonDominatedSorting from pack-
age NSGA2R (https://CRAN.R-project.org/package=nsga2R)

Value

logical vector of length nrow(Y) indicating the nondominated points as TRUE.

https://CRAN.R-project.org/package=nsga2R

16 generate_weights

Examples

Y <- matrix(runif(200), ncol = 2)
nd <- find_nondominated_points(Y)
plot(Y[, 1], Y[, 2], type = "p", pch = 20, las = 1)
points(Y[nd, 1], Y[nd, 2], type = "p", pch = 16, col = 2, cex = 1.5)

generate_weights Calculate weight vectors

Description

Calculates weight vectors for the MOEADr package

Usage

generate_weights(decomp, m, ...)

Arguments

decomp List containing the decomposition method parameters. See moead() for details.

m Number of objectives (m ≥ 2)

... other parameters (included for compatibility with generic call)

Details

This routine calculates the weight vectors for the MOEA/D. The list of available methods for gen-
erating the weights, as well as information about their specific parameters, can be generated using
get_decomposition_methods().

Value

Weight matrix W

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

decomp <- list(name = "sld", H = 99)
W <- generate_weights(decomp, m = 2)

https://doi.org/10.18637/jss.v092.i06

get_constraint_methods 17

get_constraint_methods

Print available constraint methods

Description

Prints the constraint handling methods available in the MOEADr package

Usage

get_constraint_methods()

Details

This routine prints the names of the constraint handling methods available in the MOEADr package,
to be used as the constraint$name parameter in the moead(...) call. Instructions for obtaining
more info on each operator are also returned.

Value

Formatted data frame containing reference name (for constraint$name) and instructions for More
Info about each method.

Examples

get_constraint_methods()

get_decomposition_methods

Print available decomposition methods

Description

Prints the decomposition methods available in the MOEADr package

Usage

get_decomposition_methods()

Details

This routine prints the names of the decomposition methods available in the MOEADr package, to
be used as the decomp$name parameter in the moead(...) call. Instructions for obtaining more info
on each operator are also returned.

18 get_localsearch_methods

Value

Formatted data frame containing reference name (for decomp$name) and instructions for More Info
about each method.

Examples

get_decomposition_methods()

get_localsearch_methods

Print available local search methods

Description

Prints the local search methods available in the MOEADr package

Usage

get_localsearch_methods()

Details

This routine prints the names of the local search methods available in the MOEADr package, to be
used as the aggfun$name parameter in the moead(...) call. Instructions for obtaining more info
on each operator are also returned.

Value

Formatted data frame containing reference name (for variation$localsearch$type) and instruc-
tions for More Info about each method.

Examples

get_localsearch_methods()

get_scalarization_methods 19

get_scalarization_methods

Print available scalarization methods

Description

Prints the scalarization methods available in the MOEADr package

Usage

get_scalarization_methods()

Details

This routine prints the names of the scalarization methods available in the MOEADr package, to be
used as the aggfun$name parameter in the moead(...) call. Instructions for obtaining more info
on each operator are also returned.

Value

Formatted data frame containing reference name (for aggfun$name) and instructions for More Info
about each method.

Examples

get_scalarization_methods()

get_stop_criteria Print available stop criteria

Description

Prints the stop criteria available in the MOEADr package

Usage

get_stop_criteria()

Details

This routine prints the names of the stop criteria available in the MOEADr package, to be used as
the stopcrit[[i]]$name parameter in the moead(...) call. Instructions for obtaining more info
on each criterion are also returned.

20 get_update_methods

Value

Formatted data frame containing reference name (for stopcrit[[i]]$name) and instructions for
More Info about each criterion.

Examples

get_stop_criteria()

get_update_methods Print available update methods

Description

Prints the update methods available in the MOEADr package

Usage

get_update_methods()

Details

This routine prints the names of the update methods available in the MOEADr package, to be used
as the update$name parameter in the moead(...) call. Instructions for obtaining more info on each
operator are also returned.

Value

Formatted data frame containing reference name (for update$name) and instructions for More Info
about each method.

Examples

get_update_methods()

get_variation_operators 21

get_variation_operators

Print available variation operators

Description

Prints the variation operators available in the MOEADr package

Usage

get_variation_operators()

Details

This routine prints the names of the variation operators available in the MOEADr package, to be
used as the variation$name parameter in the moead(...) call. Instructions for obtaining more
info on each operator are also returned.

Value

Formatted data frame containing reference name (for variation$name) and instructions for More
Info about each operator.

Examples

get_variation_operators()

ls_dvls Differential vector-based local search

Description

Differential vector-based local search (DVLS) implementation for the MOEA/D

Usage

ls_dvls(
Xt,
Yt,
Vt,
B,
W,
which.x,
trunc.x,
problem,

22 ls_dvls

scaling,
aggfun,
constraint,
...

)

Arguments

Xt Matrix of incumbent solutions

Yt Matrix of objective function values for Xt

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

B Neighborhood matrix, generated by define_neighborhood().

W matrix of weights (generated by generate_weights()).

which.x logical vector indicating which subproblems should undergo local search

trunc.x logical flag indicating whether candidate solutions generated by local search
should be truncated to the variable limits of the problem.

problem list of named problem parameters. See Section Problem Description of the
moead() documentation for details.

scaling list containing the scaling parameters (see moead() for details).

aggfun List containing the aggregation function parameters. See Section Scalar Aggregation Functions
of the moead() documentation for details.

constraint list containing the parameters defining the constraint handling method. See Sec-
tion Constraint Handling of the moead() documentation for details.

... other parameters (included for compatibility with generic call)

Details

This routine implements the differential vector-based local search for the MOEADr package. Check
the references for details.

This routine is intended to be used internally by variation_localsearch(), and should not be
called directly by the user.

Value

List object with fields X (matrix containing the modified points, with points that did not undergo
local search indicated as NA) and nfe (integer value informing how many additional function eval-
uations were performed).

References

B. Chen, W. Zeng, Y. Lin, D. Zhang, "A new local search-based multiobjective optimization algo-
rithm", IEEE Trans. Evolutionary Computation 19(1):50-73, 2015.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical

ls_tpqa 23

Software doi:10.18637/jss.v092.i06

ls_tpqa Three-point quadratic approximation local search

Description

Three-point quadratic approximation (TPQA) local search implementation for the MOEA/D

Usage

ls_tpqa(
Xt,
Yt,
W,
B,
Vt,
scaling,
aggfun,
constraint,
epsilon = 1e-06,
which.x,
...

)

Arguments

Xt Matrix of incumbent solutions

Yt Matrix of objective function values for Xt

W matrix of weights (generated by generate_weights()).

B Neighborhood matrix, generated by define_neighborhood().

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

scaling list containing the scaling parameters (see moead() for details).

aggfun List containing the aggregation function parameters. See Section Scalar Aggregation Functions
of the moead() documentation for details.

constraint list containing the parameters defining the constraint handling method. See Sec-
tion Constraint Handling of the moead() documentation for details.

epsilon threshold for using the quadratic approximation value

which.x logical vector indicating which subproblems should undergo local search

... other parameters (included for compatibility with generic call)

https://doi.org/10.18637/jss.v092.i06

24 make_vectorized_smoof

Details

This routine implements the 3-point quadratic approximation local search for the MOEADr pack-
age. Check the references for details.

This routine is intended to be used internally by variation_localsearch(), and should not be
called directly by the user.

Value

Matrix X’ containing the modified population

References

Y. Tan, Y. Jiao, H. Li, X. Wang, "A modification to MOEA/D-DE for multiobjective optimization
problems with complicated Pareto sets", Information Sciences 213(1):14-38, 2012.

Y.-C. Jiao, C. Dang, Y. Leung, Y. Hao, "A modification to the new version of the prices algorithm
for continuous global optimization problems", J. Global Optimization 36(4):609-626, 2006.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

make_vectorized_smoof Make vectorized smoof function

Description

Make a vectorized version of test functions available in package "smoof".

Usage

make_vectorized_smoof(prob.name, ...)

Arguments

prob.name name of the problem to build

... other parameters passed to each specific function

Details

This routine builds MOEADr-compliant versions of the classic multiobjective test functions avail-
able in package smoof. The most commonly used ones are:

• prob.name = ZDT1, ... , ZDT6, in which case the function requires additional parameter dimensions
(positive integer)

https://doi.org/10.18637/jss.v092.i06

moead 25

• prob.name = DTLZ1, ..., DTLZ7, in which case the function requires additional parameters
dimensions (positive integer), n.objectives (= 2 or 3) and, for DTLZ4, alpha (positive
integer, defaults to 100).

• prob.name = UF, in which case the function requires additional parameters dimensions (pos-
itive integer) and id (= 1, ..., 10).

Examples

Not run:
library(smoof)
DTLZ2 <- make_vectorized_smoof(prob.name = "DTLZ2",

dimensions = 10,
n.objectives = 2)

DTLZ2(X = matrix(runif(100), ncol = 10))

End(Not run)

moead MOEA/D

Description

MOEA/D implementation in R

Usage

moead(
preset = NULL,
problem = NULL,
decomp = NULL,
aggfun = NULL,
neighbors = NULL,
variation = NULL,
update = NULL,
constraint = NULL,
scaling = NULL,
stopcrit = NULL,
showpars = NULL,
seed = NULL,
...

)

Arguments

preset List object containing preset values for one or more of the other parameters of
the moead function. Values provided in the preset list will override any other
value provided. Presets should be generated by the preset_moead() function.

26 moead

problem List containing the problem parameters. See Problem Description for details.

decomp List containing the decomposition method parameters See Decomposition methods
for details.

aggfun List containing the aggregation function parameters See Scalarization methods
for details.

neighbors List containing the decomposition method parameters See Neighborhood strategies
for details.

variation List containing the variation operator parameters See Variation operators for
details.

update List containing the population update parameters See Update strategies for
details.

constraint List containing the constraint handing parameters See Constraint operators
for details.

scaling List containing the objective scaling parameters See Objective scaling for
details.

stopcrit list containing the stop criteria parameters. See Stop criteria for details.

showpars list containing the echoing behavior parameters. See print_progress() for
details.

seed seed for the pseudorandom number generator. Defaults to NULL, in which case
as.integer(Sys.time()) is used for the definition.

... Other parameters (useful for development and debugging, not necessary in reg-
ular use)

Details

Component-wise implementation of the Multiobjective Evolutionary Algorithm based on decom-
position - MOEA/D.

Value

List object of class moead containing:

• information on the final population (X), its objective values (Y) and constraint information list
(V) (see evaluate_population() for details);

• Archive population list containing its corresponding X, Y and V fields (only if update$UseArchive
= TRUE).

• Estimates of the ideal and nadir points, calculated for the final population;

• Number of function evaluations, iterations, and total execution time;

• Random seed employed in the run, for reproducibility

Problem Description

The problem parameter consists of a list with all necessary definitions for the multiobjective opti-
mization problem to be solved. problem must contain at least the following fields:

moead 27

• problem$name: name of the problem instance function, that is, a routine that calculates Y =
f(X);

• problem$xmin: vector of lower bounds of each variable

• problem$xmax: vector of upper bounds of each variable

• problem$m: integer indicating the number of objectives

Besides these fields, problem should contain any other relevant inputs for the routine listed in
$name. problem may also contain the (optional) field problem$constraints, which is a list object
containing information about the problem constraints. If present, this list must have the following
fields:

• problem$constraints$name - (required) name of the function that calculates the constraint
values (see below for details)

• problem$constraints$epsilon - (optional) a small non-negative value indicating the toler-
ance to be considered for equality constraints. Defaults to zero.

Besides these fields, problem$constraint should contain any other relevant inputs for the routine
listed in problem$constraint$name.

Detailed instructions for defining the routines for calculating the objective and constraint functions
are provided in the vignette Defining Problems in the MOEADr Package. Check that documentation
for details.

Decomposition Methods

The decomp parameter is a list that defines the method to be used for the generation of the weight
vectors. decomp must have at least the $name parameter. Currently available methods can be ver-
ified using get_decomposition_methods(). Check generate_weights() and the information
provided by get_decomposition_methods() for more details.

Neighborhood Strategies

The neighbors parameter is a list that defines the method for defining the neighborhood relations
among subproblems. neighbors must have at least three parameters:

• neighbors$name, name of the strategy used to define the neighborhoods. Currently available
methods are: - $name = "lambda": uses the distances between weight vectors. The calcula-
tion is performed only once for the entire run, since the weight vectors are assumed static. -
$name = "x": uses the distances between the incumbent solutions associated with each sub-
problem. In this case the calculation is performed at each iteration, since incumbent solutions
may change.

• neighbors$T: defines the neighborhood size. This parameter must receive a value smaller
than the number of subproblems defined for the MOEA/D.

• neighbors$delta.p: parameter that defines the probability of sampling from the neighbor-
hood when performing variation.

Check define_neighborhood() for more details.

28 moead

Variation Operators

The variation parameter consists of a list vector, in which each sublist defines a variation operator
to be used as part of the variation block. Each sublist must have at least a field $name, containing the
name of the i-th variation operator to be applied. Use get_variation_operators() to generate a
list of available operators, and consult the vignette Variation Stack in the MOEADr Package
for more details.

Scalar Aggregation Functions

The aggfun parameter is a list that defines the scalar aggregation function to be used. aggfun must
have at least the $name parameter. Currently available methods can be verified using get_scalarization_methods().
Check scalarize_values() and the information provided by get_scalarization_methods()
for more details.

Update Methods

The update parameter is a list that defines the population update strategy to be used. update must
have at least the $name parameter. Currently available methods can be verified using get_update_methods().
Check update_population() and the information provided by get_update_methods() for more
details.

Another (optional) field of the update parameter is update$UseArchive, which is a binary flag
defining whether the algorithm should keep an external solution archive (TRUE) or not (FALSE).
Since it adds to the computational burden and memory requirements of the algorithm, the use of
an archive population is recommended only in the case of constrained problems with constraint
handling method that can occasionally accept unfeasible solutions, leading to the potential loss of
feasible efficient solutions for certain subproblems (e.g., constraint_vbr() with type = "sr" or
"vt").

Constraint Handling Methods

The constraint parameter is a list that defines the constraint-handling technique to be used.
constraint must have at least the $name parameter. Currently available methods can be verified
using get_constraint_methods(). Check update_population() and the information provided
by get_constraint_methods() for more details.

Objective Scaling

Objective scaling refers to the re-scaling of the objective values at each iteration, which is generally
considered to prevent problems arising from differently-scaled objective functions. scaling is a list
that must have at least the $name parameter. Currently available options are $name = "none", which
does not perform any scaling, and $name = "simple", which performs a simple linear scaling of
the objectives to the interval [0, 1].

Stop Criteria

The stopcrit parameter consists of a list vector, in which each sublist defines a termination crite-
rion to be used for the MOEA/D. Each sublist must have at least a field $name, containing the name
of the i-th criterion to be verified. The iterative cycle of the MOEA/D is terminated whenever any

moead 29

criterion is met. Use get_stop_criteria() to generate a list of available criteria, and check the
information provided by that function for more details.

Echoing Options

The showpars parameter is a list that defines the echoing options of the MOEA/D. showpars must
contain two fields:

• showpars$show.iters, defining the type of echoing output. $show.iters can be set as
"none", "numbers", or "dots".

• showpars$showevery, defining the period of echoing (in iterations). $showevery must be a
positive integer.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

Prepare a test problem composed of minimization of the (shifted)
sphere and Rastrigin functions
sphere <- function(x){sum((x + seq_along(x) * 0.1) ^ 2)}
rastringin <- function(x){

x.shift <- x - seq_along(x) * 0.1
sum((x.shift) ^ 2 - 10 * cos(2 * pi * x.shift) + 10)}

problem.sr <- function(X){
t(apply(X, MARGIN = 1,
FUN = function(X){c(sphere(X), rastringin(X))}))}

Set the input parameters for the moead() routine
This reproduces the Original MOEA/D of Zhang and Li (2007)
(with a few changes in the computational budget, to make it run faster)
problem <- list(name = "problem.sr",

xmin = rep(-1, 30),
xmax = rep(1, 30),
m = 2)

decomp <- list(name = "SLD", H = 49) # <-- H = 99 in the original
neighbors <- list(name = "lambda",

T = 20,
delta.p = 1)

aggfun <- list(name = "wt")
variation <- list(list(name = "sbx",

etax = 20, pc = 1),
list(name = "polymut",

etam = 20, pm = 0.1),
list(name = "truncate"))

update <- list(name = "standard", UseArchive = FALSE)
scaling <- list(name = "none")

https://doi.org/10.18637/jss.v092.i06

30 order_neighborhood

constraint<- list(name = "none")
stopcrit <- list(list(name = "maxiter",

maxiter = 50)) # <-- maxiter = 200 in the original
showpars <- list(show.iters = "dots",

showevery = 10)
seed <- 42

Run MOEA/D
out1 <- moead(preset = NULL,

problem, decomp, aggfun, neighbors, variation, update,
constraint, scaling, stopcrit, showpars, seed)

Examine the output:
summary(out1)

Alternatively, the standard MOEA/D could also be set up using the
preset_moead() function. The code below runs the original MOEA/D with
exactly the same configurations as in Zhang and Li (2007).
Not run:

out2 <- moead(preset = preset_moead("original"),
problem = problem,
showpars = showpars,
seed = 42)

Examine the output:
summary(out2)
plot(out2, suppress.pause = TRUE)

End(Not run)

Rerun with MOEA/D-DE configuration and AWT scalarization
out3 <- moead(preset = preset_moead("moead.de"),

problem = problem,
aggfun = list(name = "awt"),
stopcrit = list(list(name = "maxiter",

maxiter = 50)),
seed = seed)

plot(out3, suppress.pause = TRUE)

order_neighborhood Order Neighborhood for MOEA/D

Description

Calculates the ordering of competing solutions for each subproblem in the MOEA/D, based on their
scalarized performance and violation values.

Usage

order_neighborhood(bigZ, B, V, Vt, constraint)

perform_variation 31

Arguments

bigZ Matrix of scalarized performance values by neighborhood, generated by scalarize_values()

B Neighborhood matrix, generated by define_neighborhood().

V List object containing information about the constraint violations of the candi-
date solutions, generated by evaluate_population()

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

constraint list containing the parameters defining the constraint handling method. See Sec-
tion Constraint Handling of the moead() documentation for details.

Details

This routine receives a matrix of scalarized performance values (returned by scalarize_values()),
a neighborhood matrix, and the list of violation values for the candidate and incumbent populations.
It calculates the preference order of the candidates for each neighborhood based on the performance
values and constraint handling method.

The list of available constraint handling methods can be generated using get_constraint_methods().

Value
[N x (T+1)] matrix of preference indexes. Each row contains the T indexes of the candidate
solutions in the neighborhood of a given subproblem, plus a value (column T+1) for the incumbent
solution of that subproblem, in an order defined by the constraint handling method specified in
moead.env$constraint.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

perform_variation Run variation operators

Description

Sequentially apply variation operators for the MOEADr package

Usage

perform_variation(variation, X, iter, ...)

https://doi.org/10.18637/jss.v092.i06

32 plot.moead

Arguments

variation List vector containing the variation operators to be used. See moead() for de-
tails.

X Population matrix of the MOEA/D (each row is a candidate solution).

iter iterations counter of the moead() function.

... other parameters to be passed down to the individual variation operators (see
documentation of the specific variation_xyz() functions for details)

Details

This routine performs the variation block for the MOEA/D. The list of available variation operators
can be generated using get_variation_operators().

If the localsearch operator is included, it is executed whenever its conditions (period of occur-
rence or probability of occurrence) are verified. See variation_localsearch() for details.

Value

List object containing a modified population matrix X, a local search argument list ls.arg, and the
number of function evaluations used by the variation operators, var.nfe.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

plot.moead plot.moead

Description

S3 method for plotting moead objects (the output of moead()).

Usage

S3 method for class 'moead'
plot(
x,
...,
useArchive = FALSE,
feasible.only = TRUE,
viol.threshold = 1e-06,
nondominated.only = TRUE,
plot.weights = FALSE,
which.objectives = NULL,

https://doi.org/10.18637/jss.v092.i06

plot.moead 33

suppress.pause = FALSE,
color.by.obj = 1

)

Arguments

x list object of class moead (generated by moead())

... other parameters to be passed down to specific plotting functions (currently un-
used)

useArchive logical flag to use information from x$Archive. Only used if x$Archive is not
NULL.

feasible.only logical flag to use only feasible points in the plots.

viol.threshold threshold of tolerated constraint violation, used to determine feasibility if feasible.only
== TRUE.

nondominated.only

logical flag to use only nondominated points in the plots.

plot.weights logical flag to plot the weight vectors for 2 and 3-objective problems.
which.objectives

integer vector of which objectives to plot. Defaults to NULL (use all objectives)

suppress.pause logical flag to prevent pause messages from being show after every image. De-
faults to FALSE (show pause messages)

color.by.obj integer, determines which objective is used as the basis for coloring the parallel
coordinates plot.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

problem.1 <- list(name = "example_problem",
xmin = rep(-1,30),
xmax = rep(1,30),
m = 2)

out <- moead(preset = preset_moead("original2"),
problem = problem.1,
stopcrit = list(list(name = "maxiter",

maxiter = 100)),
showpars = list(show.iters = "dots",

showevery = 10))
plot(out, suppress.pause = TRUE)

https://doi.org/10.18637/jss.v092.i06

34 preset_moead

preset_moead preset_moead

Description

Generate a preset configuration for moead()].

Usage

preset_moead(name = NULL)

Arguments

name name of the preset to be generated. Use preset_moead() to obtain the list of
available options.

Details

This function returns a list of configuration presets taken from the literature to be used with the
moead() function in package MOEADr.

Use these configurations as a starting point. We strongly recommend that you play around with the
particular configurations (see example).

Value

List object containing the preset, to be used as an input to moead(); or, if name == NULL (the default),
returns a logical flag invisibly.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

Generate list of available presets
preset_moead(name = NULL)

Not run:
library(smoof) # < Install package smoof if needed
ZDT1 <- make_vectorized_smoof(prob.name = "ZDT1",

dimensions = 30)
problem <- list(name = "ZDT1",

xmin = rep(0, 30),
xmax = rep(1, 30),
m = 2)

https://doi.org/10.18637/jss.v092.i06

print.moead 35

Get preset configuration for original MOEA/D
configuration <- preset_moead("original")

Modify whatever you fancy:
stopcrit <- list(list(name = "maxiter", maxiter = 50))
showpars <- list(show.iters = "dots", showevery = 10)
seed <- 42

output <- moead(problem = problem,
preset = configuration,
showpars = showpars,
stopcrit = stopcrit,
seed = seed)

End(Not run)

print.moead print.moead

Description

S3 method for printing moead objects (the output of moead()).

Usage

S3 method for class 'moead'
print(x, ...)

Arguments

x list object of class moead (generated by moead())

... other parameters to be passed down to specific summary functions (currently
unused)

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

problem.1 <- list(name = "example_problem",
xmin = rep(-1,30),
xmax = rep(1,30),
m = 2)

https://doi.org/10.18637/jss.v092.i06

36 print_progress

out <- moead(preset = preset_moead("original2"),
problem = problem.1,
stopcrit = list(list(name = "maxiter",

maxiter = 100)),
showpars = list(show.iters = "dots",

showevery = 10))
print(out)

print_progress Print progress of MOEA/D

Description

Echoes progress of MOEA/D to the terminal for the MOEADr package

Usage

print_progress(iter.times, showpars)

Arguments

iter.times vector of iteration times of the moead() routine.

showpars list object containing parameters that control the printed output of moead().
Parameter showpars can have the following key-value pairs:

• $show.iters: type of output ("dots", "numbers", or "none"). If not present
in showpars, it defaults to "numbers";

• $showevery: positive integer that determines how frequently the routine
echoes something to the terminal. If not present in showpars, it defaults to
10.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

scalarization_awt 37

scalarization_awt Adjusted Weighted Tchebycheff Scalarization

Description

Perform Adjusted Weighted Tchebycheff Scalarization for the MOEADr package.

Usage

scalarization_awt(Y, W, minP, eps = 1e-16, ...)

Arguments

Y matrix of objective function values

W matrix of weights.

minP numeric vector containing estimated ideal point

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the scalarized performance values for the MOEA/D using the Adjusted
Weighted Tchebycheff method.

Value

Vector of scalarized performance values.

References

Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive weight adjustment,” Evo-
lutionary Computation, vol. 22, no. 2, pp. 231–264, 2013.

R. Wang, T. Zhang, and B. Guo, “An enhanced MOEA/D using uniform directions and a pre-
organization procedure,” in IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013,
pp. 2390–2397.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

38 scalarization_ipbi

Examples

W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_awt(Y, W, minP)

scalarization_ipbi Inverted Penalty-based Boundary Intersection Scalarization

Description

Perform inverted PBI Scalarization for the MOEADr package.

Usage

scalarization_ipbi(Y, W, maxP, aggfun, eps = 1e-16, ...)

Arguments

Y matrix of objective function values

W matrix of weights.

maxP numeric vector containing estimated ideal point

aggfun list containing parameters for the aggregation function. Must contain the non-
negative numeric constant aggfun$theta.

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the scalarized performance values for the MOEA/D using the inverted PBI
method.

Value

Vector of scalarized performance values.

References

H. Sato, "Inverted PBI in MOEA/D and its impact on the search performance on multi and many-
objective optimization." Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (GECCO), 2014.

H. Sato, "Analysis of inverted PBI and comparison with other scalarizing functions in decomposi-
tion based MOEAs." Journal of Heuristics 21(6):819-849, 2015

scalarization_pbi 39

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
aggfun <- aggfun <- list(name = "ipbi", theta = 5)
Z <- scalarization_ipbi(Y, W, minP, aggfun)

scalarization_pbi Penalty-based Boundary Intersection Scalarization

Description

Perform PBI Scalarization for the MOEADr package.

Usage

scalarization_pbi(Y, W, minP, aggfun, eps = 1e-16, ...)

Arguments

Y matrix of objective function values

W matrix of weights.

minP numeric vector containing estimated ideal point

aggfun list containing parameters for the aggregation function. Must contain the non-
negative numeric constant aggfun$theta.

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the scalarized performance values for the MOEA/D using the PBI method.

Value

Vector of scalarized performance values.

https://doi.org/10.18637/jss.v092.i06

40 scalarization_ws

References

Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposi-
tion", IEEE Trans. Evol. Comp. 11(6): 712-731, 2007.

H. Li, Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D
and NSGA-II", IEEE. Trans. Evol. Comp. 12(2):284-302, 2009.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
aggfun <- aggfun <- list(name = "pbi", theta = 5)
Z <- scalarization_pbi(Y, W, minP, aggfun)

scalarization_ws Weighted Sum Scalarization

Description

Perform Weighted Sum Scalarization for the MOEADr package.

Usage

scalarization_ws(Y, W, minP, eps = 1e-16, ...)

Arguments

Y matrix of objective function values

W matrix of weights.

minP numeric vector containing estimated ideal point

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the scalarized performance values for the MOEA/D using the Weighted Sum
method.

https://doi.org/10.18637/jss.v092.i06

scalarization_wt 41

Value

vector of scalarized performance values.

References

Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposi-
tion", IEEE Trans. Evol. Comp. 11(6): 712-731, 2007.

H. Li, Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D
and NSGA-II", IEEE. Trans. Evol. Comp. 12(2):284-302, 2009.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_ws(Y, W, minP)

scalarization_wt Weighted Tchebycheff Scalarization

Description

Perform Weighted Tchebycheff Scalarization for the MOEADr package.

Usage

scalarization_wt(Y, W, minP, eps = 1e-16, ...)

Arguments

Y matrix of objective function values

W matrix of weights.

minP numeric vector containing estimated ideal point

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine calculates the scalarized performance values for the MOEA/D using the Weighted
Tchebycheff method.

https://doi.org/10.18637/jss.v092.i06

42 scalarize_values

Value

Vector of scalarized performance values.

References

Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposi-
tion", IEEE Trans. Evol. Comp. 11(6): 712-731, 2007.

H. Li, Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D
and NSGA-II", IEEE. Trans. Evol. Comp. 12(2):284-302, 2009.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Examples

W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_wt(Y, W, minP)

scalarize_values Scalarize values for MOEA/D

Description

Perform scalarization for the MOEADr package.

Usage

scalarize_values(normYs, W, B, aggfun)

Arguments

normYs List generated by scale_objectives(), containing two matrices of scaled ob-
jective values (normYs$Y and normYs$Yt) and two vectors, containing the cur-
rent estimates of the ideal (normYs$minP) and nadir (normYs$maxP) points. See
scale_objectives() for details.

W matrix of weights, generated by generate_weights().

B neighborhood matrix, generated by define_neighborhood().

aggfun List containing the aggregation function parameters. See Section Scalar Aggregation Functions
of the moead() documentation for details.

https://doi.org/10.18637/jss.v092.i06

scale_objectives 43

Details

This routine calculates the scalarized performance values for the MOEA/D.

The list of available scalarization methods can be generated using get_scalarization_methods()

Value
[(T+1) x N] matrix of scalarized performance values. Each column contains the T scalar-
ized performances of the candidate solutions in the neighborhood of a given subproblem, plus the
scalarized performance value for the incumbent solution for that subproblem.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

scale_objectives Scaling of the objective function values

Description

Performs scaling of the objective function values for the MOEADr package

Usage

scale_objectives(Y, Yt, scaling, eps = 1e-16, ...)

Arguments

Y matrix of objective function values for the incumbent solutions

Yt matrix of objective function values for the candidate solutions

scaling list containing the scaling parameters (see moead() for details).

eps tolerance value for avoiding divisions by zero.

... other parameters (included for compatibility with generic call)

Details

This routine scales the matrices of objective function values for the current (Yt) and candidate (Y)
solutions. The following methods are currently available:

• scaling$name = "none": no scaling

• scaling$name = "simple": simple linear scaling between estimated ideal and nadir points,
calculated from the available points in Y and Yt at each iteration.

https://doi.org/10.18637/jss.v092.i06

44 stop_maxeval

Value

List object containing scaled objective function value matrices Y and Yt, as well as estimates of the
"ideal" point minP`` and "nadir" point maxP‘.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

stop_maxeval Stop criterion: maximum number of evaluations

Description

Verifies stop criterion "maximum number of evaluations" for the MOEADr package. For internal
use only, not to be called directly by the user.

Usage

stop_maxeval(stopcrit, nfe, ...)

Arguments

stopcrit list containing the parameters defining the stop handling method. See Section
Constraint Handling of the moead() documentation for details.

nfe evaluations counter of moead().
... other parameters (included for compatibility with generic call)

Details

When this stop criterion is used, one element of the stopcrit parameter (see moead()) must have
the following structure:

• stopcrit$name = "maxeval"

• stopcrit$maxeval, containing a positive integer representing the desired maximum number
of evaluations.

Value

boolean value: TRUE if this criterion has been met, FALSE otherwise.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.18637/jss.v092.i06

stop_maxiter 45

stop_maxiter Stop criterion: maximum number of iterations

Description

Verifies stop criterion "maximum number of iterations" for the MOEADr package. For internal use
only, not to be called directly by the user.

Usage

stop_maxiter(stopcrit, iter, ...)

Arguments

stopcrit list containing the parameters defining the stop handling method. See Section
Constraint Handling of the moead() documentation for details.

iter iterations counter of moead().

... other parameters (included for compatibility with generic call)

Details

When this stop criterion is used, one element of the stopcrit parameter (see moead()) must have
the following structure:

• stopcrit$name = "maxiter"

• stopcrit$maxiter, containing a positive integer representing the desired maximum number
of iterations.

Value

boolean value: TRUE if this criterion has been met, FALSE otherwise.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

46 stop_maxtime

stop_maxtime Stop criterion: maximum runtime

Description

Verifies stop criterion "run time limit" for the MOEADr package. For internal use only, not to be
called directly by the user.

Usage

stop_maxtime(stopcrit, iter.times, ...)

Arguments

stopcrit list containing the parameters defining the stop handling method. See Section
Constraint Handling of the moead() documentation for details.

iter.times vector containing the times spent by each iteration of the moead() routine, up to
the current one.

... other parameters (included for compatibility with generic call)

Details

When this stop criterion is used, one element of the stopcrit parameter (see moead()) must have
the following structure:

• stopcrit$name = "maxtime"

• stopcrit$maxtime, containing a positive integer representing the desired time limit (in sec-
onds).

Value

boolean value: TRUE if this criterion has been met, FALSE otherwise.

Warning

This function uses Sys.time() for verifying the total run time, i.e., it counts wall-clock time, not
CPU time.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

summary.moead 47

summary.moead summary.moead

Description

S3 method for summarizing moead objects (the output of moead()).

Usage

S3 method for class 'moead'
summary(
object,
...,
useArchive = FALSE,
viol.threshold = 1e-06,
ndigits = 3,
ref.point = NULL,
ref.front = NULL

)

Arguments

object list object of class moead (generated by moead())

... other parameters to be passed down to specific summary functions (currently
unused)

useArchive logical flag to use information from object$Archive. Only used if object$Archive
is not NULL.

viol.threshold threshold of tolerated constraint violation, used to determine feasibility of points
in object.

ndigits number of decimal places to use for the ideal and nadir estimates

ref.point reference point for calculating the dominated hypervolume (only if package
emoa is available). If NULL the estimated nadir point is used instead.

ref.front Np x Nobj matrix containing a sample of the true Pareto-optimal front, for
calculating IGD.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

48 unitary_constraints

Examples

problem.1 <- list(name = "example_problem",
xmin = rep(-1,30),
xmax = rep(1,30),
m = 2)

out <- moead(preset = preset_moead("original2"),
problem = problem.1,
stopcrit = list(list(name = "maxiter",

maxiter = 100)),
showpars = list(show.iters = "dots",

showevery = 10))
summary(out)

unitary_constraints Unitary constraints routine

Description

Calculates the constraint values and violations when only unitary constraints (i.e., the sum of all
variables equals one) are present.

Usage

unitary_constraints(X, epsilon = 0, ...)

Arguments

X Population matrix of the MOEA/D (each row is a candidate solution). If NULL
the function searches for X in the calling environment.

epsilon small non-negative value indicating the tolerance to be considered for the equal-
ity constraint. Defaults to zero.

... other parameters (unused, included for compatibility with generic call)

Details

This routine calculates the constraint values and violations for a population matrix in the MOEA/D.
Each row of the matrix is considered as a candidate solution. This routine expects the candidate
solutions to be standardized, i.e., that the variable limits given in problem$xmin and problem$xmax
are mapped to 0 and 1, respectively.

Value

List objective containing a matrix of constraint values Cmatrix, a matrix of individual constraint
violations Vmatrix, and a vector of total constraint violations v.

update_population 49

update_population Update population

Description

Selection and population update procedures for the MOEA/D

Usage

update_population(update, ...)

Arguments

update List containing the population update parameters. See Section Update Strategies
of the moead() documentation for details.

... other parameters to be passed down to the specific updt_xyz() routines.

Details

This update routine is intended to be used internally by the main moead() function, and should
not be called directly by the user. The list of available update methods can be generated using
get_update_methods().

Value

List object containing the updated values of the population matrix X, objective function matrix Y, and
constraint values list V, as well as an updated Archive list containing its corresponding components
X, Y and V.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

updt_best Best Neighborhood Replacement Update for MOEA/D

Description

Population update using the best neighborhood replacement method for the MOEADr package.

Usage

updt_best(update, X, Xt, Y, Yt, V, Vt, normYs, W, BP, constraint, aggfun, ...)

https://doi.org/10.18637/jss.v092.i06

50 updt_best

Arguments

update List containing the population update parameters. See Section Update Strategies
of the moead() documentation for details. update must have the following key-
value pairs:

• update$Tr: positive integer, neighborhood size for the update operation
• update$nr: positive integer, maximum number of copies of a given candi-

date solution.

X Matrix of candidate solutions

Xt Matrix of incumbent solutions

Y Matrix of objective function values of X

Yt Matrix of objective function values of Xt

V List object containing information about the constraint violations of the candi-
date solutions, generated by evaluate_population()

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

normYs List generated by scale_objectives(), containing two matrices of scaled ob-
jective values (normYs$Y and normYs$Yt) and two vectors, containing the cur-
rent estimates of the ideal (normYs$minP) and nadir (normYs$maxP) points. See
scale_objectives() for details.

W matrix of weights, generated by generate_weights().

BP Neighborhood list, generated by define_neighborhood().

constraint list containing the parameters defining the constraint handling method. See Sec-
tion Constraint Handling of the moead() documentation for details.

aggfun List containing the aggregation function parameters. See Section Scalar Aggregation Functions
of the moead() documentation for details.

... other parameters (included for compatibility with generic call)

Details

The Best Neighborhood Replacement method consists of three steps:

• For each subproblem i, the best candidate solution x_j from the entire population is deter-
mined.

• The neighborhood of subproblem i is replaced by the neighborhood of subproblem j. The size
of this neighborhood is given by a parameter Tr.

• The Restricted replacement (see updt_restricted()) is then applied using this new neigh-
borhood.

This update routine is intended to be used internally by the main moead() function, and should not
be called directly by the user.

Value

List object containing the update population matrix (X), and its corresponding matrix of objective
function values (Y) and constraint value list (V).

updt_restricted 51

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

updt_restricted Restricted Neighborhood Replacement Update for MOEA/D

Description

Population update using the restricted neighborhood replacement method for the MOEADr pack-
age.

Usage

updt_restricted(update, X, Xt, Y, Yt, V, Vt, sel.indx, B, ...)

Arguments

update List containing the population update parameters. See Section Update Strategies
of the moead() documentation for details. update must contain a field update$nr,
a positive integer that determines the maximum number of copies of each can-
didate solution.

X Matrix of candidate solutions

Xt Matrix of incumbent solutions

Y Matrix of objective function values of X

Yt Matrix of objective function values of Xt

V List object containing information about the constraint violations of the candi-
date solutions, generated by evaluate_population()

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

sel.indx matrix of selection indices, generated by order_neighborhood()

B Neighborhood matrix, generated by define_neighborhood().

... other parameters (included for compatibility with generic call)

Details

The restricted neighborhood replacement method behaves like the "standard" replacement method,
except that each individual can only be selected up to nr times. After this limit has been reached,
the next best individual in the same neighborhood is selected.

This update routine is intended to be used internally by the main moead() function, and should not
be called directly by the user.

https://doi.org/10.18637/jss.v092.i06

52 updt_standard

Value

List object containing the update population matrix (X), and its corresponding matrix of objective
function values (Y) and constraint value list (V).

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

updt_standard Standard Neighborhood Replacement Update for MOEA/D

Description

Population update using the standard neighborhood replacement method for the MOEADr package.

Usage

updt_standard(X, Xt, Y, Yt, V, Vt, sel.indx, B, ...)

Arguments

X Matrix of candidate solutions

Xt Matrix of incumbent solutions

Y Matrix of objective function values of X

Yt Matrix of objective function values of Xt

V List object containing information about the constraint violations of the candi-
date solutions, generated by evaluate_population()

Vt List object containing information about the constraint violations of the incum-
bent solutions, generated by evaluate_population()

sel.indx matrix of selection indices, generated by order_neighborhood()

B Neighborhood matrix, generated by define_neighborhood().

... other parameters (included for compatibility with generic call)

Details

This routine executes the standard neighborhood replacement operation to update the population
matrix of the MOEA/D. This update routine is intended to be used internally by the main moead()
function, and should not be called directly by the user.

Value

List object containing the update population matrix (X), and its corresponding matrix of objective
function values (Y) and constraint value list (V).

https://doi.org/10.18637/jss.v092.i06

variation_binrec 53

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

variation_binrec Binomial Recombination

Description

Binomial recombination implementation for the MOEA/D.

Usage

variation_binrec(X, Xt, rho, ...)

Arguments

X Population matrix

Xt Original population matrix

rho mutation probability

... other parameters (included for compatibility with generic call)

Details

This variation operator only works if at least one other variation operator is performed prior to its
execution, otherwise it becomes an identity operator (returns an unchanged matrix X).

Value

Matrix X’ containing the recombined population

References

K. Price, R.M. Storn, J.A. Lampinen, "Differential Evolution: A Practical Approach to Global Op-
timization", Springer 2005

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.18637/jss.v092.i06

54 variation_diffmut

variation_diffmut Differential Mutation

Description

Differential Mutation implementation for the MOEA/D

Usage

variation_diffmut(X, P, B, Phi = NULL, basis = "rand", ...)

Arguments

X Population matrix

P Matrix of selection probabilities (generated by define_neighborhood())

B Matrix of neighborhoods (generated by define_neighborhood())

Phi Mutation parameter. Either a scalar numeric constant, or NULL for randomly
chosen between 0 and 1 (independently sampled for each operation).

basis how to select the basis vector. Currently supported methods are:

• basis = "rand", for using a randomly sampled vector from the population;

• basis = "mean", for using the mean point of the neighborhood;

• basis = "wgi", for using the the weighted mean point of the neighborhood.

... other parameters to be passed down to specific options of basis vector generation
(e.g., Y, Yt, W, scaling and aggfun, required when basis = "wgi").

Details

This function generalizes many variations of the Differential Mutation operator with general form:

u = x_basis + Phi(x_a - x_b)

Where u is the new candidate vector, Phi != 0 is a real number, and x_basis, x_a and x_b are
distinct vectors.

This routine is intended to be used internally by perform_variation(), and should not be called
directly by the user.

Value

Matrix X’ containing the mutated population

variation_localsearch 55

References

K. Price, R.M. Storn, J.A. Lampinen, "Differential Evolution: A Practical Approach to Global Op-
timization", Springer 2005

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

D. V. Arnold, “Weighted multirecombination evolution strategies,” Theoretical Computer Science
361(1):18–37, 2006.

variation_localsearch Local search Operators

Description

Local search operators for the MOEA/D

Usage

variation_localsearch(...)

Arguments

... arguments to be passed down to the specific ls_xyz() functions. A list of avail-
able local search methods can be generated by get_localsearch_methods().
Consult the documentation of the specific functions for details.

Details

This routine calls the local search operator for the MOEADr package, as part of the call to perform_variation().
This operator requires its entry in the variation stack (see Section Variation Operators of moead())
to contain the following fields:

• name = "localsearch"

• type (see get_localsearch_methods() for details)

• gamma.ls (optional): probability of application of local search to a given subproblem at any
given iteration (numeric between 0 and 1)

• tau.ls (optional): period of application of local search to each subproblem (positive integer)

• trunc.x (optional): logical flag for truncating the results of the local search operator to the
limits defined by problem$xmin, problem$xmax (logical). Defaults to TRUE.

Whenever local search is triggered for a given subproblem, it cancels all other variation operators
for that subproblem and is executed directly on the incumbent solution.

This routine is intended to be used internally by perform_variation(), and should not be called
directly by the user.

https://doi.org/10.18637/jss.v092.i06

56 variation_none

Value

Either a matrix Xls containing the modified points (points that did not undergo local search are
indicated as NA in this output matrix), or a list object containing the Xls matrix and an integer nfe,
informing how many additional function evaluations were performed by the local search operator.
The specific output is defined by the ls_xyz() method used.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

variation_none Identity operator

Description

Identity operator (no variation performed)

Usage

variation_none(X, ...)

Arguments

X Population matrix

... other parameters (included for compatibility with generic call)

Details

Performs the identity operator (no variation). This routine is included to simplify the use of auto-
mated tuning / design tools such as Iterated Racing.

Value

Input matrix X

https://doi.org/10.18637/jss.v092.i06

variation_polymut 57

variation_polymut Polynomial mutation

Description

Polynomial mutation implementation for the MOEA/D

Usage

variation_polymut(X, etam, pm, eps = 1e-06, ...)

Arguments

X Population matrix

etam mutation constant

pm variable-wise probability of mutation (numeric value 0 <= pm <= 1, or use "n"
for setting it as (1 / problem dimension).)

eps small constant used to prevent divisions by zero

... other parameters (included for compatibility with generic call)

Details

This R implementation of the Polynomial Mutation reproduces the C code implementation available
in the R package emoa 0.5-0, by Olaf Mersmann. The differences between the present version and
the original one are:

• The operator is performed on the variables scaled to the [0, 1] interval, which simplifies the
calculations.

• Calculations are vectorized over variables, which also simplifies the implementation.

Value

Matrix X’ containing the mutated population

References

K. Deb and S. Agrawal (1999). A Niched-Penalty Approach for Constraint Handling in Genetic
Algorithms. In: Artificial Neural Nets and Genetic Algorithms, pp. 235-243, Springer.

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Olaf Mersmann (2012). emoa: Evolutionary Multiobjective Optimization Algorithms. R package
version 0.5-0.
http://CRAN.R-project.org/package=emoa

https://doi.org/10.18637/jss.v092.i06

58 variation_sbx

variation_sbx Simulated binary crossover

Description

SBX implementation for the MOEA/D

Usage

variation_sbx(X, P, etax, pc = 1, eps = 1e-06, ...)

Arguments

X Population matrix
P Matrix of probabilities of selection for variation (created by define_neighborhood()).
etax spread constant
pc variable-wise probability of recombination
eps smallest difference considered for recombination
... other parameters (included for compatibility with generic call)

Details

This R implementation of the Simulated Binary Crossover reproduces the C code implementation
available in the R package emoa 0.5-0, by Olaf Mersmann. The differences between the present
version and the original one are:

• The operator is performed on the variables scaled to the [0, 1] interval, which simplifies the
calculations.

• Calculations are vectorized over variables, which also simplifies the implementation.

Value

Matrix X’ containing the recombined population

References

Deb, K. and Agrawal, R. B. (1995) Simulated binary crossover for continuous search space. Com-
plex Systems, 9 115-148

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

Olaf Mersmann (2012). emoa: Evolutionary Multiobjective Optimization Algorithms. R package
version 0.5-0.
http://CRAN.R-project.org/package=emoa

https://doi.org/10.18637/jss.v092.i06

variation_truncate 59

variation_truncate Truncate

Description

Truncation variation operator

Usage

variation_truncate(X, ...)

Arguments

X Population matrix

... other parameters (included for compatibility with generic call)

Details

Truncate the solution matrix X to the [0, 1] interval.

Value

Truncated matrix X’.

References

F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A Component-Based Frame-
work for Multiobjective Evolutionary Algorithms Based on Decomposition. Journal of Statistical
Software doi:10.18637/jss.v092.i06

https://doi.org/10.18637/jss.v092.i06

Index

box_constraints, 3

calcIGD, 4
check_stop_criteria, 4
constraint_none, 5
constraint_penalty, 6
constraint_vbr, 7
constraint_vbr(), 28
create_population, 9

decomposition_msld, 10
decomposition_sld, 11
decomposition_sld(), 10
decomposition_uniform, 12
define_neighborhood, 13
define_neighborhood(), 6, 22, 23, 27, 31,

42, 50–52, 54, 58

evaluate_population, 14
evaluate_population(), 6, 22, 23, 26, 31,

50–52
example_problem, 15

find_nondominated_points, 15

generate_weights, 16
generate_weights(), 22, 23, 27, 42, 50
get_constraint_methods, 17
get_constraint_methods(), 28, 31
get_decomposition_methods, 17
get_decomposition_methods(), 27
get_localsearch_methods, 18
get_localsearch_methods(), 55
get_scalarization_methods, 19
get_scalarization_methods(), 28
get_stop_criteria, 19
get_stop_criteria(), 29
get_update_methods, 20
get_update_methods(), 28, 49
get_variation_operators, 21
get_variation_operators(), 28, 32

ls_dvls, 21
ls_tpqa, 23

make_vectorized_smoof, 24
moead, 25
moead(), 4, 8, 9, 11, 12, 14–16, 22, 23, 31–36,

42–47, 49–52, 55

order_neighborhood, 30
order_neighborhood(), 6, 7, 51, 52

perform_variation, 31
perform_variation(), 54, 55
plot.moead, 32
preset_moead, 34
preset_moead(), 25
print.moead, 35
print_progress, 36
print_progress(), 26

scalarization_awt, 37
scalarization_ipbi, 38
scalarization_pbi, 39
scalarization_ws, 40
scalarization_wt, 41
scalarize_values, 42
scalarize_values(), 6, 7, 28, 31
scale_objectives, 43
scale_objectives(), 42, 50
stop_maxeval, 44
stop_maxiter, 45
stop_maxtime, 46
summary.moead, 47

unitary_constraints, 48
update_population, 49
update_population(), 28
updt_best, 49
updt_restricted, 51
updt_restricted(), 50
updt_standard, 52

60

INDEX 61

variation_binrec, 53
variation_diffmut, 54
variation_localsearch, 55
variation_localsearch(), 22, 24, 32
variation_none, 56
variation_polymut, 57
variation_sbx, 58
variation_truncate, 59

	box_constraints
	calcIGD
	check_stop_criteria
	constraint_none
	constraint_penalty
	constraint_vbr
	create_population
	decomposition_msld
	decomposition_sld
	decomposition_uniform
	define_neighborhood
	evaluate_population
	example_problem
	find_nondominated_points
	generate_weights
	get_constraint_methods
	get_decomposition_methods
	get_localsearch_methods
	get_scalarization_methods
	get_stop_criteria
	get_update_methods
	get_variation_operators
	ls_dvls
	ls_tpqa
	make_vectorized_smoof
	moead
	order_neighborhood
	perform_variation
	plot.moead
	preset_moead
	print.moead
	print_progress
	scalarization_awt
	scalarization_ipbi
	scalarization_pbi
	scalarization_ws
	scalarization_wt
	scalarize_values
	scale_objectives
	stop_maxeval
	stop_maxiter
	stop_maxtime
	summary.moead
	unitary_constraints
	update_population
	updt_best
	updt_restricted
	updt_standard
	variation_binrec
	variation_diffmut
	variation_localsearch
	variation_none
	variation_polymut
	variation_sbx
	variation_truncate
	Index

