
Package ‘IncDTW’
January 20, 2025

Type Package

Title Incremental Calculation of Dynamic Time Warping

Version 1.1.4.4

Author Maximilian Leodolter

Maintainer Maximilian Leodolter <maximilian.leodolter@gmail.com>

Description The Dynamic Time Warping (DTW) distance measure for time series allows non-
linear alignments of time series to match similar patterns in time series of differ-
ent lengths and or different speeds. IncDTW is characterized by (1) the incremental calcula-
tion of DTW (reduces runtime complexity to a linear level for updating the DTW distance) - es-
pecially for life data streams or subsequence matching, (2) the vector based implementa-
tion of DTW which is faster because no matrices are allocated (reduces the space complex-
ity from a quadratic to a linear level in the number of observations) - for all runtime inten-
sive DTW computations, (3) the subsequence matching algorithm runDTW, that effi-
ciently finds the k-NN to a query pattern in a long time series, and (4) C++ in the heart. For de-
tails about DTW see the original paper ``Dynamic programming algorithm optimization for spo-
ken word recognition'' by Sakoe and Chiba (1978) <DOI:10.1109/TASSP.1978.1163055>. For de-
tails about this package, Dynamic Time Warping and Incremental Dynamic Time Warp-
ing please see ``IncDTW: An R Package for Incremental Calculation of Dynamic Time Warp-
ing'' by Leodolter et al. (2021) <doi:10.18637/jss.v099.i09>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

Imports Rcpp (>= 0.12.8), RcppParallel, ggplot2, scales, parallel,
stats, data.table

LinkingTo Rcpp, RcppParallel, RcppArmadillo

NeedsCompilation yes

RoxygenNote 6.1.1

Suggests knitr, dtw, rmarkdown, gridExtra, testthat, dtwclust,
parallelDist, microbenchmark, rucrdtw, proxy, R.rsp,
dendextend, reshape2, colorspace, fastcluster

VignetteBuilder knitr, R.rsp

1

https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.18637/jss.v099.i09

2 IncDTW-package

SystemRequirements GNU make

Repository CRAN

Date/Publication 2022-03-16 15:50:08 UTC

Contents

IncDTW-package . 2
dba . 3
dec_dm . 6
drink_glass . 8
dtw . 9
dtw2vec . 12
dtw_dismat . 14
dtw_partial . 16
find_peaks . 18
idtw . 19
idtw2vec . 21
initialize_plane . 23
lowerbound . 27
plot.dba . 29
plot.idtw . 30
plot.rundtw . 32
rundtw . 33
scale . 38
simulate_timewarp . 40

Index 44

IncDTW-package Incremental Dynamic Time Warping

Description

The Dynamic Time Warping (DTW) distance for time series allows non-linear alignments of time
series to match similar patterns in time series of different lengths and or different speeds. Beside
the traditional implementation of the DTW algorithm, the specialties of this package are, (1) the
incremental calculation, which is specifically useful for life data streams due to computationally
efficiency, (2) the vector based implementation of the traditional DTW algorithm which is faster
because no matrices are allocated and is especially useful for computing distance matrices of pair-
wise DTW distances for many time series and (3) the combination of incremental and vector-based
calculation.

dba 3

Details

Main features:

• Incremental Calculation, idtw, idtw2vec and increment

• Detect k-nearest subsequences in longer time series, rundtw

• Matrix-based dtw and Vector-based dtw2vec implementation of the DTW algorithm

• Sakoe Chiba warping window

• Early abandoning and lower bounding

• Support for multivariate time series

• Fast calculation of a distance matrix of pairwise DTW distances for clustering or classification
of many multivariate time series, dtw_dismat

• Aggregate cluster members with dba or get the centroid with centroid

• C++ in the heart thanks to Rcpp

Author(s)

Maximilian Leodolter

Maintainer: Maximilian Leodolter <maximilian.leodolter@gmail.com>

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

See Also

https://ieeexplore.ieee.org/document/1163055/

https://en.wikipedia.org/wiki/Dynamic_time_warping

dba Dynamic Time Warping Barycenter Averaging

Description

Average multiple time series that are non-linearly aligned by Dynamic Time Warping. Find the
centroid of a list of time series.

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09
https://ieeexplore.ieee.org/document/1163055/
https://en.wikipedia.org/wiki/Dynamic_time_warping

4 dba

Usage

dba(lot, m0 = NULL, iterMax = 10, eps = NULL,
dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
ws = NULL,
iter_dist_method = c("dtw_norm1", "dtw_norm2",

"norm1","norm2", "max", "min"),
plotit = FALSE)

deprecated
DBA(lot, m0 = NULL, iterMax = 10, eps = NULL,

dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
ws = NULL,
iter_dist_method = c("dtw_norm1", "dtw_norm2",

"norm1","norm2", "max", "min"),
plotit = FALSE)

centroid(lot, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
normalize = TRUE, ws = NULL, ncores = NULL,
useRcppParallel = TRUE)

S3 method for class 'dba'
print(x, digits = getOption("digits"), ...)

S3 method for class 'dba'
summary(object, ...)

is.dba(x)

Arguments

lot List of time series. Each entry of the list is a time series as described in dtw2vec.

m0 time series as vector or matrix. If m0 is NULL, the initial time series m0 is deter-
mined by centroid as the centroid of lot, which is the one time series of lot
with the minimum average DTW distance to all other time series of lot.

iterMax integer, number of maximum iterations

eps numeric, threshold parameter that causes the algorithm to break if the distance
of two consecutive barycenters are closer than eps

dist_method character, describes the method of distance measure. See also dtw.

step_pattern character, describes the step pattern. See also dtw.

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

dba 5

iter_dist_method

character, that describes how the distance between two consecutive barycenter
iterations are defined (default = "dtw")

plotit logical, if the iterations should be plotted or not (only possible for univariate
time series)

normalize logical, default is TRUE, passed to dtw_dismat

ncores integer, default = NULL, passed to dtw_dismat

useRcppParallel

logical, default is TRUE, passed to dtw_dismat

x output from dba

object any R object

digits passed to round and print

... additional arguments, e.g. passed to print or summary

Details

The parameter iter_dist_method describes the method to measure the progress between two iter-
ations. For two consecutive centroid candidates m1 and m2 the following methods are implemented:

’dtw_norm1’: dtw2vec(m1, m2, dist_method = "norm1", step_pattern = "symmetric2")$normalized_distance

’idm_dtw2’: dtw2vec(m1, m2, dist_method = "norm2", step_pattern = "symmetric2")$normalized_distance

’idm_norm1’: sum(abs(m1-m2))/(ncol(m1) * 2 * nrow(m1))

’idm_norm2’: sqrt(sum((m1-m2)^2))/(ncol(m1) * 2 * nrow(m1))

’idm_max’: max(abs(m1-m2))

’idm_min’: min(abs(m1-m2))

Value

call function call

m1 new centroid/ bary center of the list of time series

iterations list of time series that are the best centroid of the respective iteration

iterDist_m2lot list of distances of the iterations to lot
iterDist_m2lot_norm

list of normalized distances of the iterations to lot

iterDist_m2m vector of distances of the iterations to their ancestors

centroid_index integer giving the index of the centroid time series of lot

dismat_result list of results of dtw_dismat called by centroid

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

6 dec_dm

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

• Petitjean, F; Ketterlin, A; Gancarski, P, A global averaging method for dynamic time warping,
with applications to clustering, Pattern Recognition, Volume 44, Issue 3, 2011, Pages 678-693,
ISSN 0031-3203

Examples

Not run:
data("drink_glass")
initialize with any time series
m1 <- dba(lot = drink_glass[1:10], m0 = drink_glass[[1]],

dist_method = "norm2", iterMax = 20)

initialize with the centroid

tmp <- centroid(drink_glass)
cent <- drink_glass[[tmp$centroid_index]]
m1 <- dba(lot = drink_glass[1:10], m0 = cent,

dist_method = "norm2", iterMax = 20)

plot all dimensions of the barycenters m_n per iteration:
plot(m1)

plot the distances of the barycenter of one iteration m_n
to the barycenter of the previous iteration m_n-1:
plot(m1, type = "m2m")

plot the average distances of the barycenter m_n
to the list of time series:
plot(m1, type = "m2lot")

End(Not run)

dec_dm Decrement the Warping Path

Description

Update the warping path to omit observations of the alignment of two time series.

Usage

dec_dm(dm, Ndec, diffM = NULL)

dec_dm 7

Arguments

dm direction matrix, output from dtw(Q=Q, C=C, ws=ws)

Ndec integer, number of observations (columns) to be reduced

diffM matrix of differences

Value

wp warping path

ii indices of Q of the optimal path

jj indices of C of the optimal path

diffp path of differences (only returned if diffM is not NULL)

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

Examples

Q <- cos(1:100)
C <- cumsum(rnorm(80))
the ordinary calculation
result_base <- dtw(Q=Q, C=C, return_wp = TRUE)

the ordinary calculation without the last 4 observations
result_decr <- dtw(Q=Q, C=C[1:(length(C) - 4)], return_wp = TRUE)
the decremental step: reduce C for 4 observation
result_decr2 <- dec_dm(result_base$dm, Ndec = 4)

compare ii, jj and wp of result_decr and those of
result_decr$ii
result_decr2$ii
identical(result_decr$ii, result_decr2$ii)

result_decr$jj
result_decr2$jj
identical(result_decr$jj, result_decr2$jj)

result_decr$wp
result_decr2$wp
identical(result_decr$wp, result_decr2$wp)

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

8 drink_glass

drink_glass Accelerometer: drink a glass, walk, brush teeth.

Description

3-dimensional acceleration time series recorded during the activities of walking, drinking a glass or
brushing teeth.

Usage

data("drink_glass")

Format

A list of matrices, where each matrix has 3 columns (x, y, and z axis of the accelerometer). The
number of rows differ.

Details

list of 3-dimensional time series stored as matrix. The data is recorded with 32Hz. The data is
z-scaled (z-normalized).

Source

UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/Dataset+for+
ADL+Recognition+with+Wrist-worn+Accelerometer

Examples

Not run:
data(drink_glass)
class(drink_glass)
length(drink_glass)
dim(drink_glass[[1]])
matplot(drink_glass[[1]], type="l")

data(walk)
class(walk)
length(walk)
dim(walk[[1]])
matplot(walk[[1]], type="l")

data(brush_teeth)
class(brush_teeth)
length(brush_teeth)
dim(brush_teeth[[1]])
matplot(brush_teeth[[1]], type="l")

End(Not run)

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

dtw 9

dtw Dynamic Time Warping

Description

Calculate the DTW distance, cost matrices and direction matrices including the warping path two
multivariate time series.

Usage

dtw(Q, C, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"), ws = NULL,
return_cm = FALSE,
return_diffM = FALSE,
return_wp = FALSE,
return_diffp = FALSE,
return_QC = FALSE)

cm(Q, C, dist_method = c("norm1", "norm2", "norm2_square"),
ws = NULL, ...)

S3 method for class 'idtw'
print(x, digits = getOption("digits"), ...)

S3 method for class 'idtw'
summary(object, ...)

is.idtw(x)

Arguments

Q Query time series. Q needs to be one of the following: (1) a one dimensional
vector, (2) a matrix where each row is one observations and each column is one
dimension of the time series, or (3) a matrix of differences/ costs (diffM, cm). If
Q and C are matrices they need to have the same number of columns.

C Candidate time series. C needs to be one of the following: (1) a one dimensional
vector, (2) a matrix where each row is one observations and each column is one
dimension of the time series, or (3) if Q is a matrix of differences or costs C
needs to be the respective character string ’diffM’ or ’cm’.

dist_method character, describes the method of distance measure for multivariate time se-
ries (this parameter is ignored for univariate time series). Currently supported
methods are ’norm1’ (default, is the Manhattan distance), ’norm2’ (is the Eu-
clidean distance) and ’norm2_square’. For the function cm() the parameter
dist_method can also be a user defined distance function (see details and ex-
amples).

10 dtw

step_pattern character, describes the step pattern. Currently implemented are the patterns
symmetric1 and symmetric2, see details.

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

return_cm logical, if TRUE then the Matrix of costs (the absolute value) is returned. (de-
fault = FALSE)

return_diffM logical, if TRUE then the Matrix of differences (not the absolute value) is re-
turned. (default = FALSE)

return_wp logical, if TRUE then the warping path is returned. (default = FALSE) If re-
turn_diffp == TRUE, then return_wp is set to TRUE as well.

return_diffp logical, if TRUE then the path of differences (not the absolute value) is returned.
(default = FALSE)

return_QC logical, if TRUE then the input vectors Q and C are appended to the returned
list. This is useful for the plot.idtw function. (default = FALSE)

x output from dtw or idtw.

object any R object

... additional arguments, e.g. passed to print, summary, or a user defined distance
function for cm()

digits passed to round and print

Details

The dynamic time warping distance is the element in the last row and last column of the global cost
matrix.

For the multivariate case where Q is a matrix of n rows and k columns and C is a matrix of m rows
and k columns the dist_method parameter defines the following distance measures:

norm1:
dist(Qi,., Cj,.) =

∑
l = 1 : k|Qi,l − Cj,l|

norm2:
dist(Qi,., Cj,.) = (

∑
l = 1 : k(Qi,l − Cj,l)

2)0.5

norm2_square:
dist(Qi,., Cj,.) =

∑
l = 1 : k(Qi,l − Cj,l)

2

The parameter step_pattern describes how the two time series are aligned. If step_pattern ==
"symmetric1" then

gcmi,j = cmi, j +min(gcmi−1,j , gcmi− 1, j − 1, gcmi, i− 1

.

If step_pattern == "symmetric2" then

gcmi,j = cmi, j +min(gcmi−1,j , cmi, j + gcmi− 1, j − 1, gcmi, i− 1

.

dtw 11

To make DTW distances comparable for many time series of different lengths use the normlized_distance
with the setting step_method = 'symmetric2'. Please find a more detailed discussion and further
references here: http://dtw.r-forge.r-project.org/.

User defined distance function: To calculate the DTW distance measure of two time series a distance
function for the local distance of two observations Q[i,] and C[j,] of the time series Q and C has
to be selected. The predefined distance function are ’norm1’, ’norm2’ and ’norm2-square’. It is also
possible to define a customized distance function and use the cost matrix cm as input for the DTW
algorithm, also for the incremental functions. In the following experiment we apply the cosine
distance as local distance function:

dcos(Ci, Qj) = 1− (
∑

o = 1 : OQio ∗ Cjo)/((
∑

o = 1 : OQ2
io)

0.5 ∗ (
∑

o = 1 : OC2
jo)

0.5).

Value

distance the DTW distance, that is the element of the last row and last column of gcm
normalized_distance

the normalized DTW distance, that is the distance divided by N+M, where N and
M are the lengths of the time series Q and C, respectively. If step_pattern ==
'symmetric1' no normalization is performed and NA is returned (see details).

gcm global cost matrix

dm direction matrix (3=up, 1=diagonal, 2=left)

wp warping path

ii indices of Q of the optimal path

jj indices of C of the optimal path

cm Matrix of costs

diffM Matrix of differences

diffp path of differences

Q input Q

C input C

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

Examples

#--- univariate
Q <- cumsum(rnorm(100))
C <- Q[11:100] + rnorm(90, 0, 0.5)

http://dtw.r-forge.r-project.org/
https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

12 dtw2vec

tmp <- dtw(Q = Q, C = C, ws = 15, return_diffM = FALSE,
return_QC = TRUE, return_wp = TRUE)

names(tmp)
print(tmp, digits = 3)
plot(tmp)
plot(tmp, type = "warp")

#--- compare different input variations
dtw_base <- dtw(Q = Q, C = C, ws = 15, return_diffM = TRUE)
dtw_diffM <- dtw(Q = dtw_base$diffM, C = "diffM", ws = 15,

return_diffM = TRUE)
dtw_cm <- dtw(Q = abs(dtw_base$diffM), C = "cm", ws = 15,

return_diffM = TRUE)

identical(dtw_basegcm, dtw_cmgcm)
identical(dtw_basegcm, dtw_diffMgcm)

of course no diffM is returned in the 'cm'-case
dtw_cm$diffM

#--- multivariate case
Q <- matrix(rnorm(100), ncol=2)
C <- matrix(rnorm(80), ncol=2)
dtw(Q = Q, C = C, ws = 30, dist_method = "norm2")

#--- user defined distance function
We define the distance function d_cos and use it as input for the cost matrix function cm.
We can pass the output from cm() to dtw2vec(), and also to idtw2vec() for the
incrermental calculation:

d_cos <- function(x, y){
1 - sum(x * y)/(sqrt(sum(x^2)) * sqrt(sum(y^2)))

}

Q <- matrix(rnorm(100), ncol=5, nrow=20)
C <- matrix(rnorm(150), ncol=5, nrow=30)
cm1 <- cm(Q, C, dist_method = d_cos)
dtw2vec(Q = cm1, C = "cm")$distance

res0 <- idtw2vec(Q = cm1[,1:20], newObs = "cm")
idtw2vec(Q = cm1[,21:30], newObs = "cm", gcm_lc = res0$gcm_lc_new)$distance

The DTW distances -- based on the customized distance function -- of the
incremental calculation and the one from scratch are identical.

dtw2vec Fast vector-based Dynamic Time Warping

dtw2vec 13

Description

Calculates the Dynamic Time Warping distance by hand of a vector-based implementation and is
much faster than the traditional method dtw(). Also allows early abandoning and sakoe chiba
warping window, both for univariate and multivariate time series.

Usage

dtw2vec(Q, C, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
ws = NULL, threshold = NULL)

Arguments

Q Either Q is (a) a time series (vector or matrix for multivariate time series) or (b)
Q is a cost matrix, so a matrix storing the local distances of the time series Q
and C. If Q and C are matrices, they need to have the same number of columns.
If Q is a cost matrix, C needs to be equal the character string "cm".

C time series as vector or matrix, or for case (b) C equals "cm"

dist_method character, describes the method of distance measure. See also dtw. If Q is a cost
matrix, the dist_method parameter is not necessary.

step_pattern character, describes the step pattern. See also dtw.

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

threshold numeric, the threshold for early abandoning. In the calculation of the global
cost matrix a possible path stops as soon as the threshold is reached. Facilitates
faster calculations in case of low threshold. The threshold relates to the non-
normalized distance measure. (default = NULL, no early abandoning)

Details

no matrices are allocated, no matrices are returned

Value

distance the DTW distance
normalized_distance

the normalized DTW distance, see also dtw

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

14 dtw_dismat

Examples

Q <- cumsum(rnorm(100))
C <- Q[11:100] + rnorm(90, 0, 0.5)
dtw2vec(Q = Q, C = C)
dtw2vec(Q = Q, C = C, ws = 30)
dtw2vec(Q = Q, C = C, threshold = 100)
dtw2vec(Q = Q, C = C, ws = 30, threshold = 100)

cm0 <- cm(Q, C)
dtw2vec(Q = cm0, C = "cm", ws = 30, threshold = 100)

dtw_dismat DTW Distance Matrix/ Distance Vector

Description

Calculate a matrix of pairwise DTW distances for a set of univariate or multivariate time series. The
output matrix (or dist object) of DTW distances can easily be applied for clustering the set of time
series. Or calculate a vector of DTW distances of a set of time series all relative to one query time
series. Parallel computations are possible.

Usage

dtw_dismat(lot, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"), normalize = TRUE,
ws = NULL, threshold = NULL,
return_matrix = FALSE, ncores = NULL, useRcppParallel = TRUE)

dtw_disvec(Q, lot, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"), normalize = TRUE,
ws = NULL, threshold = NULL, ncores = NULL)

Arguments

Q time series, vector (univariate) or matrix (multivariate)

lot List of time series. Each entry of the list is a time series as described in dtw2vec.

dist_method character, describes the method of distance measure. See also dtw.

step_pattern character, describes the step pattern. See also dtw.

normalize logical, whether to return normalized pairwise distances or not. If step_pattern
== 'symmetric1' only non-normalized distances can be returned (default =
TRUE)

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

dtw_dismat 15

threshold numeric, the threshold for early abandoning. In the calculation of the global
cost matrix a possible path stops as soon as the threshold is reached. Facilitates
faster calculations in case of low threshold. (default = FALSE)

return_matrix logical, If FALSE (default) the distance matrix is returned as dist object. If
TRUE a symmetric matrix of differences is returned.

ncores integer, number of cores to be used for parallel computation of the distance
matrix. If ncores = NULL (default) then ncores is set to the number of available
cores minus 1. If ncores = 0 then no parallel computation is performed and
standard sapply instead of parallel::parSapply is applied.

useRcppParallel

logical, if the package RcppParallel (TRUE, default) or parallel (FALSE) is used
for parallel computation

Details

By setting the parameter return_matrix = FALSE (default) the output value dismat of dtw_dismat
is a dist object and can easily be passed to standard clustering functions (see examples).

No matrices are allocated for calculating the pairwise distances.

Value

input the function input parameters

dismat the matrix of pairwise DTW distances, either as matrix or dist object

disvec the vector DTW distances

Examples

Not run:

#--- Example for clustering a set of time series by feeding well known
clustering methods with DTW-distance objects. First we simulate
two prototype random walks and some cluster members. The cluster
members are simulated by adding noise and randomly stretching and
comressing the time series, to get time warped time series of
varying lengths. The built clusters are 1:6 and 7:12.
set.seed(123)
N <- 100
rw_a <- cumsum(rnorm(N))
rw_b <- cumsum(rnorm(N))
sth <- sample(seq(0, 0.2, 0.01), size = 10)
cmp <- sample(seq(0, 0.2, 0.01), size = 10)
lot <- c(list(rw_a),

lapply(1:5, function(i){
simulate_timewarp(rw_a + rnorm(N), sth[i], cmp[i])

}),
list(rw_b),
lapply(6:10, function(i){

simulate_timewarp(rw_b + rnorm(N), sth[i], cmp[i])
}))

16 dtw_partial

Next get the distance matrix, as dist object. Per default all
minus 1 available cores are used:
result <- dtw_dismat(lot = lot, dist_method = "norm2", ws = 50,

return_matrix = FALSE)
class(result$dismat)

Finally you can cluster the result with the following
well known methods:
require(cluster)
myclus <- hclust(result$dismat)
plot(myclus)
summary(myclus)

myclus <- agnes(result$dismat)
plot(myclus)
summary(myclus)

myclus <- pam(result$dismat, k=2)
plot(myclus)
summary(myclus)
myclus$medoids

End(Not run)

dtw_partial Partial Dynamic Time Warping

Description

Get the cheapest partial open end alignment of two time series

Usage

dtw_partial(x, partial_Q = TRUE, partial_C = TRUE, reverse = FALSE)

Arguments

x result object of either dtw() or idtw2vec()

partial_Q logical (default = TRUE), whether Q is aligned completely to C or open ended.

partial_C logical (default = TRUE), whether C is aligned completely to Q or open ended.

reverse logical (default = FALSE), whether Q and C are in original or reverse order.

dtw_partial 17

Details

Q is the time series that describes the vertical dimension of the global cost matrix, so length(Q)
is equal to nrow(x$gcm). So C describes the horizontal dimension of the global cost matrix,
length(C) is equal to ncol(x$gcm).

dtw_partial() returns the open-end alignment of Q and C with the minimal normalized distance.
If partial_Q and partial_C both are TRUE the partial alignment with the smaller normalized
distance is returned.

If Q and C are in reverse order, then the optimal solution for the reverse problem is found, that is
the alignment with minimal normalized distance allowing and open-start alignment.

Value

rangeQ Vector of initial and ending index for best alignment

rangeC Vector of initial and ending index for best alignment
normalized_distance

the normalized DTW distance (see details in dtw).

Examples

#--- Open-end alignment for multivariate time series.
First simulate a 2-dim time series Q
Q <- matrix(cumsum(rnorm(50 * 2)), ncol = 2)

Then simulate C as warped version of Q,
C <- simulate_timewarp(Q, stretch = 0.2, compress = 0.2,

preserve_length = TRUE)

add some noise
C <- C + rnorm(prod(dim(C)))

and append noise at the end
C <- rbind(C, matrix(rnorm(30), ncol = 2))

tmp <- dtw(Q = Q, C = C, ws = 50, return_QC = TRUE, return_wp = TRUE)
par <- dtw_partial(tmp, partial_C = TRUE)
par
plot(tmp, partial = par, type = "QC")
plot(tmp, partial = par, type = "warp")
plot(tmp, partial = par, type = "QC", selDim = 2)

#--- Open-start is possible as well:
Q <- sin(1:100)
C <- c(rnorm(50), Q)
tmp <- dtw(Q = rev(Q), C = rev(C))
dtw_partial(tmp, reverse = TRUE)

18 find_peaks

find_peaks find_peaks

Description

Find negative or positive peaks of a vector in a predefined neighborhood w

Usage

find_peaks(x, w, get_min = TRUE, strict = TRUE)

Arguments

x vector

w window, at least w-many values need to be in-between two consecutive peaks to
find both, otherwise only the bigger one is returned

get_min logical (default TRUE) if TRUE, then minima are returned, else maxima

strict logical, if TRUE (default) then a local minimum needs to be smaller then all
neighbors. If FALSE, then a local minimum needs to be smaller or equal all
neighbors.

Value

integer vector of indices where x has local extreme values

Examples

#--- Find the peaks (local minima and maxima),
and also the border peak at index 29. First the local maxima:
x <- c(1:10, 9:1, 2:11)
peak_indices <- find_peaks(x, w=3, get_min=FALSE)
peak_indices
x[peak_indices]

and now the local minima
peak_indices <- find_peaks(x, w=3, get_min=TRUE)
peak_indices
x[peak_indices]

#--- What exactly does the neigbohood parameter 'w' mean?
At least w-many values need to be inbetween two consecutive peaks:
x <- -c(1:10, 9, 9, 11, 9:8, 7)
peak_indices <- find_peaks(x, w=3)
peak_indices
x[peak_indices]

x <- -c(1:10, 9, 9,9, 11, 9:8, 7)

idtw 19

peak_indices <- find_peaks(x, w=3)
peak_indices
x[peak_indices]

#--- What does the parameter 'strict' mean?
If strict = TRUE, then the peak must be '<' (or '>')
then the neighbors, other wise '<=' (or '>=')
x <- c(10:1, 1:10)
peak_indices <- find_peaks(x, w=3, strict = TRUE)
peak_indices
x[peak_indices]

peak_indices <- find_peaks(x, w=3, strict = FALSE)
peak_indices
x[peak_indices]

idtw Incremental DTW

Description

Update the DTW distance, cost matrices and direction matrices including the warping path for new
observations of two time series.

Usage

idtw(Q, C, newObs, gcm, dm,
dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
diffM = NULL, ws = NULL,
return_cm = FALSE,
return_diffM = FALSE,
return_wp = FALSE,
return_diffp = FALSE,
return_QC = FALSE)

Arguments

Q numeric vector, or matrix (see also dtw)

C numeric vector, or matrix

newObs vector or matrix of new observations to be appended to C

gcm global cost matrix, output from dtw(Q, C, ...)

dm direction matrix, output from dtw(Q, C, ...)

dist_method character, describes the method of distance measure. See also dtw.

step_pattern character, describes the step pattern. See also dtw.

20 idtw

diffM differences matrix, output from dtw(Q, C, ...). This matrix is an optional
input parameter (default = NULL) that is necessary to return the path of differ-
ences. Only for univariate time series Q and C.

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

return_cm logical, if TRUE then the Matrix of costs (the absolute value) is returned. (de-
fault = FALSE)

return_diffM logical, if TRUE then the Matrix of differences (not the absolute value) is re-
turned. (default = FALSE)

return_wp logical, if TRUE then the warping path is returned. (default = FALSE) If re-
turn_diffp == TRUE, then return_wp is set to TRUE as well.

return_diffp logical, if TRUE then the path of differences (not the absolute value) is returned.
(default = FALSE)

return_QC logical, if TRUE then the input vectors Q and C are appended to the returned
list. This is useful for the plot.idtw function. (default = FALSE)

Details

The dynamic time warping distance is the element in the last row and last column of the global cost
matrix.

Value

distance the DTW distance, that is the element of the last row and last column of gcm

gcm global cost matrix

dm direction matrix (3=up, 1=diagonal, 2=left)

wp warping path

ii indices of Q of the optimal path

jj indices of C of the optimal path

cm Matrix of costs

diffM Matrix of differences

diffp path of differences

Q input Q

C input C
normalized_distance

the normalized DTW distance, see also link{dtw}

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

idtw2vec 21

Examples

#--- Compare the incremental calculation with the basic
calculation from scratch.
Q <- cumsum(rnorm(100))
C <- Q[11:100] + rnorm(90, 0, 0.5)
newObs <- c(2, 3)# new observation
base <- dtw(Q = Q, C = C, ws = 15, return_diffM = TRUE)
base

recalculation from scratch with new observations
result0 <- dtw(Q = Q, C = c(C, newObs), ws = 15, return_diffM = TRUE)

the incremental step with new observations
result1 <- idtw(Q, C, ws = 15, newO = newObs, gcm = base$gcm,

dm = base$dm, diffM = base$diffM, return_diffp = TRUE,
return_diffM = TRUE, return_QC = TRUE)

print(result1, digits = 2)
plot(result1)

#--- Compare the incremental calculation with external calculated
costMatrix cm_add with the basic calculation from scratch.
cm_add <- cm(Q, newObs)
result2 <- idtw(Q = cm_add, C = "cm_add", ws = 15, newO = newObs,

gcm = base$gcm, dm = base$dm)

c(result0$distance, result1$distance, result2$distance)

idtw2vec Incremental vector-based DTW

Description

Update the DTW distance for new observations of two time series.

Usage

idtw2vec(Q, newObs, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"),
gcm_lc = NULL, gcm_lr = NULL, nC = NULL, ws = NULL)

Arguments

Q Either Q is (a) a time series (vector or matrix for multivariate time series) or (b)
Q is a cost matrix, so a matrix storing the local distances of the time series Q and
newObs. If Q and newObs are matrices, they need to have the same number of
columns. If Q is a cost matrix, see details...

22 idtw2vec

newObs time series as vector or matrix, or if Q is a cost matrix newObs must equals "cm".
If newObs is a time series, see details...

dist_method character, describes the method of distance measure. See also dtw.
step_pattern character, describes the step pattern. See also dtw.
gcm_lc vector, last column of global cost matrix of previous calculation. If NULL (nec-

essary for the initial calculation), then DTW is calculated and the last column
and last row are returned to start upcoming incremental calculations. (default =
NULL)

gcm_lr vector, last row of global cost matrix of previous calculation (default = NULL).
nC integer, is the length of the original time series C, of which newObs are the

new observations. Length of time series C exclusive new observations, such
that length(c(C, newObs)) = nC + length(newObs). Necessary if ws is not
NULL. (default = NULL)

ws integer, describes the window size for the sakoe chiba window. If NULL, then
no window is applied. (default = NULL)

Details

If new observations are recorded only for C and the only interest is a fast update of the DTW
distance, the last row is not required, neither for the current nor for future incremental calculations.

If Q is a cost matrix, it needs to store either the distances of Q and new observations of C (running
calculations, in that case gcm_lc != NULL), or it stores the distances of Q and the entire time series
C (initial calculation, in that case gcm_lc = NULL).

If newObs is a time series, it stores either new Observations of C (running calculations) or the
complete time series C (initial calculation).

no matrices are allocated, no matrices are returned

Value

distance the DTW distance
gcm_lc_new the last column of the new global cost matrix
gcm_lr_new the last row of the new global cost matrix. Only if the input vector gcm_lr is not

NUll and represents the last row of the previous global cost matrix, gcm_lr_new
actually is the last row of the updated global cost matrix. Otherwise, if gcm_lr
is NULL then gcm_lr_new is only the last row of the new part (concerning the
new observations) of the global cost matrix.

normalized_distance

the normalized DTW distance, see also dtw

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Sakoe, H.; Chiba, S., Dynamic programming algorithm optimization for spoken word recogni-
tion, Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Process-
ing], IEEE Transactions on , vol.26, no.1, pp. 43-49, Feb 1978. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1163055

https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

initialize_plane 23

Examples

#--- Do the vector-based incremental DTW
calculation and compare it with the basic
Q <- cumsum(rnorm(100))
C <- Q[11:100] + rnorm(90, 0, 0.5)

initial calculation
res0 <- idtw2vec(Q = Q, newObs = C, gcm_lc = NULL)

incremental calculation for new observations
nobs <- rnorm(10)
res1 <- idtw2vec(Q, newObs = nobs, gcm_lc = res0$gcm_lc_new)

compare with result from scratch
res2 <- dtw2vec(Q, c(C, nobs))
res1$distance - res2$distance

#--- Perform an incremental DTW calculation with a
customized distance function.
d_cos <- function(x, y){

1 - sum(x * y)/(sqrt(sum(x^2)) * sqrt(sum(y^2)))
}

x <- matrix(rnorm(100), ncol = 5, nrow = 20)
y <- matrix(rnorm(150), ncol = 5, nrow = 30)
cm1 <- cm(x, y, dist_method = d_cos)

initial calculation
res0 <- idtw2vec(Q = cm(x, y[1:20,], dist_method = d_cos),

newObs = "cm")

incremental calculation for new observations
res1 <- idtw2vec(Q = cm(x, y[21:30,], d_cos), newObs = "cm",

gcm_lc = res0$gcm_lc_new)$distance

compare with result from scratch
res2 <- dtw2vec(Q = cm1, C = "cm")$distance
res1 - res2

initialize_plane Initialize and navigate in the plane of possible fits

Description

Initialize and navigate in the plane of possible fits to detect subsequences (of different lengths) in a
long time series that are similar (in terms of DTW distance) to a query pattern: Initialize the plane
of possible fits as .planedtw object. Increment and decrement the time series observations and

24 initialize_plane

respective DTW calculation. Reverse the time order to increment or decrement observations at the
other end of the time horizon. Refresh the DTW calculation without changing the time series.

Usage

initialize_plane(Q, C, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric2", "symmetric1"), ws = NULL)

S3 method for class 'planedtw'
increment(x, newObs, direction = c("C", "Q"), ...)

S3 method for class 'planedtw'
decrement(x, direction = c("C", "Q", "both"),

refresh_dtw = FALSE, nC = NULL, nQ = NULL, ...)

S3 method for class 'planedtw'
refresh(x, ...)

S3 method for class 'planedtw'
reverse(x, ...)

is.planedtw(x)

Arguments

Q a time series (vector or matrix for multivariate time series)
C a time series (vector or matrix for multivariate time series)
dist_method character, describes the method of distance measure. See also dtw.
step_pattern character, describes the step pattern. See also dtw.
ws integer, describes the window size for the sakoe chiba window. If NULL, then

no window is applied. (default = NULL)
x object of class planedtw (output from initialize_plane)
newObs a time series (vector or matrix for multivariate time series). If Q and C are vectors,

newObs must be a vector. If Q and C are matrices with nc columns, then newObs
must also have nc columns. See details for the correct time order of newObs.

direction character, gives the direction of increment or decrement. decrement() is a
wrapper for dtw_partial and the direction parameter is translated to the re-
spective partial_Q and partial_C parameters.

refresh_dtw logical (default = FALSE), after decrementing the time series, should the DTW
calculation be refreshed, or not.

nC integer, default = NULL, if not NULL, then decrement subsets the time series
C to the range of 1:nC, drops invalid interim calculation results, and refreshes if
refresh_dtw = TRUE.

nQ analog to nC

... additional arguments (currently not used)

initialize_plane 25

Details

All functions are wrapper functions for idtw2vec and dtw_partial.

• initialize_plane calculates the DTW distance between Q and C and saves the last column
and row of the global cost matrix. It returns an object of class planedtw that contains all
necessary information to incrementally update the DTW calculation with new observations.
Also for decrementing the calcultions for skipping some observations at the end.

• increment updates the DTW calculation by appending new observations to C or Q (depends
on the parameter direction) and calculating DTW by recycling previous results represented
by gcm_lc_new and gcm_lr_new. A wrapper for idtw2vec

• decrement is a wrapper for dtw_partial and also returns a planedtw object.

• refresh serves to recalculate the gcm_lc_new and gcm_lr_new from scratch, if these objects
are NULL (e.g. after decrementing with refresh_dtw = FALSE).

• reverse reverses the order of Q and C, and refreshes the calculation for the new order. This is
useful for appending observations to Q or C at the other end, the beginning. For incrementing
in the reverse order also apply the function increment. Then the time series in the parameter
newObs also needs to be in reverse order. Assent et al. (2009) proved that the DTW distance
is reversible for the step pattern "symmetric1", so dtw(Q, C) = dtw(rev(Q), rev(C)). Also
see examples. For the step pattern "symmetric2" DTW is not exactly reversible, but empirical
studies showed that the difference is realtive small. For further details please see the appendix
A of the vignette "IncDTW: An R Package for Incremental Calculation of Dynamic Time
Warping" on CRAN.

Value

distance the DTW distance
normalized_distance

the DTW distance devided by the sum of the lengths of Q and C (see also dtw).

gcm_lc_new the last column of the new global cost matrix

gcm_lr_new the last row of the new global cost matrix

Q the time series

C the time series

control list of input parameters and the lengths of the time series

References

• Leodolter, M.; Pland, C.; Brändle, N; IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping. Journal of Statistical Software, 99(9), 1-23. doi: 10.18637/
jss.v099.i09

• Assent, Ira, et al. "Anticipatory DTW for efficient similarity search in time series databases."
Proceedings of the VLDB Endowment 2.1 (2009): 826-837.

https://CRAN.R-project.org/package=IncDTW
https://doi.org/10.18637/jss.v099.i09
https://doi.org/10.18637/jss.v099.i09

26 initialize_plane

Examples

Not run:

#--- 1. example: Increment too far and take a step back:
rw <- function(nn) cumsum(rnorm(nn))
Q <- sin(1:100)
C <- Q[1:90] + rnorm(90, 0, 0.1)
WS <- 40

start with the initial calculation
x <- initialize_plane(Q, C, ws = WS)

Then the incremental calculation for new observations
y1 <- Q[91:95] + rnorm(5, 0, 0.1)# new observations
x <- increment(x, newObs = y1)

Again new observations -> just increment x
y2 <- c(Q[96:100] + rnorm(5, 0, 0.1), rw(10))# new observations
x <- increment(x, newObs = y2)

Compare the results with the calculation from scratch
from_scratch <- dtw2vec(Q, c(C, y1, y2) , ws = WS)$normalized_distance
x$normalized_distance - from_scratch
plot(x)

The plot shows alignments of high costs at the end
=> attempt a decremtal step to find better partial matching
x <- decrement(x, direction = "C", refresh_dtw = TRUE)
x
plot(x)

#--- 2. example: First increment, then reverse increment
rw <- function(nn) cumsum(rnorm(nn))
Q <- rw(100)
C <- Q[11:90] + rnorm(80, 0, 0.1)
WS <- 40

initial calculation
x <- initialize_plane(Q, C, ws = WS)
plot(x)

incremental calculation for new observations that
are appened at the end of C
y1 <- Q[91:100] + rnorm(10, 0, 0.1)
x <- increment(x, newObs = y1)

reverse the order of Q and C
x <- reverse(x)

append new observations at the beginning: the new

lowerbound 27

obervations must be in the same order as Q and C
=> so newObs must be in reverse order, so y2 is
defined as Q from 10 to 6 (plus noise).
y2 <- Q[10:6] + rnorm(5, 0, 0.1)
x <- increment(x, newObs = y2)

another incremental step in the reverse direction
y3 <- Q[5:1] + rnorm(5, 0, 0.1)
x <- increment(x, newObs = y3)

compare with calculations from scratch, and plot x
from_scratch <- dtw2vec(rev(Q), rev(c(rev(y3), rev(y2), C, y1)),

ws = WS)$distance
x$distance - from_scratch
print(x)
plot(x)

End(Not run)

lowerbound lowerbound

Description

Calculate the lowerbound for the DTW distance measure in linear time.

Usage

lowerbound(C, ws, scale = c("z", "01", "none"),
dist_method = c("norm1", "norm2", "norm2_square"),
Q = NULL, tube = NULL)

lowerbound_tube(Q, ws, scale = c("z", "01", "none"))

Arguments

Q vector or matrix, the query time series
C vector or matrix, the query time series
dist_method distance method, one of ("norm1", "norm2", "norm2_square")
scale either "none", so no scaling is performed, or one of ("z", "01") to scale both Q

and C. Also see dtw

ws see dtw

tube tube for lower bounding. "tube" can be the output from lowerbound_tube(). If
tube = NULL, then Q must not be NULL, so that tube can be defined. If the
tube is passed as argument to lowerbound(), then it is necessary that the scale
parameter in the lowerbound() call is identical to the scaling method applied on
Q before calculating the tube.

28 lowerbound

Details

Lower Bounding: The following methods are implemented:

• LB_Keogh for univariate time series (Keogh et al. 2005)

• LB_MV for multivariate time series with the dist_method = "norm2_square", (Rath et al.
2002)

• Adjusted for different distance methods "norm1" and "norm2", inspired by (Rath et al. 2002).

Value

lowerbound distance measure that is proven to be smaller than the DTW distance measure

References

• Keogh, Eamonn, and Chotirat Ann Ratanamahatana. "Exact indexing of dynamic time warp-
ing." Knowledge and information systems 7.3 (2005): 358-386.

• Rath, Toni M., and R. Manmatha. "Lower-bounding of dynamic time warping distances
for multivariate time series." University of Massachusetts Amherst Technical Report MM 40
(2002).

• Sakurai, Yasushi, Christos Faloutsos, and Masashi Yamamuro. "Stream monitoring under
the time warping distance." Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 2007.

Examples

Not run:

#--- Univariate time series Q and C
ws <- sample(2:40, size = 1)
dist_method <- "norm1"
N <- 50
N <- 50
Q <- cumsum(rnorm(N))
C <- cumsum(rnorm(N))
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")

lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, Q = Q.z)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, Q = Q)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",

dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",

dist_method = dist_method, ws = ws)$distance

c(lb, lb.z, d1, d2)

#--- with pre-calculated tube
ws <- sample(2:40, size = 1)
dist_method <- "norm1"

plot.dba 29

N <- 50
N <- 50
Q <- cumsum(rnorm(N))
C <- cumsum(rnorm(N))
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")

tube <- lowerbound_tube(Q, ws, scale = "z")

lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, tube = tube)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, tube = tube)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",

dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",

dist_method = dist_method, ws = ws)$distance

c(lb, lb.z, d1, d2)

#--- Multivariate time series Q and C
ws <- sample(2:40, size = 1)
dist_method <- sample(c("norm1", "norm2", "norm2_square"), size = 1)
N <- 50
Q <- matrix(cumsum(rnorm(N * 3)), ncol = 3)
C <- matrix(cumsum(rnorm(N * 3)), ncol = 3)
Q.z <- IncDTW::scale(Q, "z")
C.z <- IncDTW::scale(C, "z")

lb.z <- lowerbound(C = C.z, ws = ws, scale ="none", dist_method = dist_method, Q = Q.z)
lb <- lowerbound(C = C, ws = ws, scale ="z", dist_method = dist_method, Q = Q)
d1 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric1",

dist_method = dist_method, ws = ws)$distance
d2 <- dtw2vec(Q = Q.z, C = C.z, step_pattern = "symmetric2",

dist_method = dist_method, ws = ws)$distance

c(lb, lb.z, d1, d2)

End(Not run)

plot.dba Plot the results from Dynamic Time Warping Barycenter Averaging

Description

Plot function for objects of type dba, the output of dba().

30 plot.idtw

Usage

S3 method for class 'dba'
plot(x, type = c("barycenter", "m2m", "m2lot"), ...)
an alias for plot_dba
plot_dba(x, type = c("barycenter", "m2m", "m2lot"), ...)

plotBary(x, ...)

plotM2m(x, ...)

plotM2lot(x, ...)

Arguments

x output from dba()

type character, one of c(’barycenter’, ’m2m’, ’m2lot’)

... Other arguments passed on to methods. Currently not used.

Details

• 'barycenter' plots the iterations of the barycenter per dimension.

• 'm2m' plots the distances (distance method set by iter_dist_method, see dba) of one barycenter-
iteration to the former iteration step.

• 'm2lot' plots the distances (if step_pattern == 'symmetric2' the normalized distances are
plotted) of the barycenter to the list of time series per iteration.

See Also

dba

Examples

see examples of dba()

plot.idtw Plot the results from Dynamic Time Warping

Description

Plot function for objects of type idtw, the output of dtw() and idtw() respectively.

plot.idtw 31

Usage

S3 method for class 'idtw'
plot(x, type = c("QC", "warp"), partial = NULL, selDim = 1, ...)

an alias for plot_idtw
plot_idtw(x, type = c("QC", "warp"), partial = NULL, selDim = 1, ...)

S3 method for class 'planedtw'
plot(x, type = c("QC", "warp"), partial = NULL, selDim = 1, ...)

an alias for plot_planedtw
plot_planedtw(x, type = c("QC", "warp"), partial = NULL, selDim = 1, ...)

plotQC(x, Q, C, partial = NULL, selDim = 1, ...)

plotWarp(x, Q, C, partial = NULL, selDim = 1, ...)

Arguments

x output from dtw(Q, C)

Q one dimensional numeric vector

C one dimensional numeric vector

type character, one of c(’QC’, ’warp’)

partial list, the return value of dtw_partial(). Default = NULL, see dtw_partial()
for details.

selDim integer, gives the column index of the multivariate time series (matrices) to be
plotted. (default = 1) If Q and C are univariate time series (vectors) then selDim
is neglected.

... Other arguments passed on to methods.

Details

The plot function visualizes the time warp and the alignment of the two time series. Also for partial
alignments see dtw_partial()

Examples

Q <- cumsum(rnorm(100))
C <- Q[11:100] + rnorm(90, 0, 0.5)
tmp <- dtw(Q = Q, C = C, ws = 15, return_wp = TRUE, return_QC = TRUE)

plot(tmp, type = 'QC')
plotQC(tmp)
plot(tmp, type = 'warp')
plotWarp(tmp)

32 plot.rundtw

plot.rundtw Plot

Description

Plot the results from rundtw.

Usage

S3 method for class 'rundtw'
plot(x, knn = TRUE, minima = TRUE,

scale = c("none", "01", "z"),
selDim = 1, lix = 1, Q = NULL, C = NULL, normalize = c("none", "01", "z"), ...)

Arguments

x output from rundtw

knn logical, if TRUE (= default) and the k nearest neighbors were found by rundtw,
then they are plotted. See details.

minima logical, if TRUE (= default) and Q is either passed or also returned by rundtw
then the local (with window size of the lengh of Q) minima of the vector of
distances is plotted. See details.

scale character, one of c("none", "01", "z"). If "01" or "z" then the detected minima
and knn are normed and plotted.

selDim integer vector, default = 1. Set the dimensions to be plotted for multivariate time
series Q and C.

lix list index, integer, default = 1. If C is a list of time series, set with lix the list
entry of C to be plotted.

Q time series, default = NULL, either passed as list entry of x (when the param-
eter return_QC of rundtw is set to TRUE) or passed manually. Necessary for
plotting the minima.

C time series, default = NULL, either passed as list entry of x (when the param-
eter return_QC or rundtw is set to TRUE) or passed manually. Necessary for
plotting the minima and knn.

normalize deprecated, use scale instead. If normalize is set, then scale is overwritten
by normalize for compatibility.

... additional arguments passed to ggplot()

Details

Only for those subsequences for which the calculations were finished by rundtw, the distances are
plotted (see the parameters threshold, k and early_abandon of rundtw).

rundtw 33

See Also

rundtw

Examples

#--- Simulate a query pattern Q and a longer time series C,
and detect rescaled versions of Q in C
set.seed(123)
Q <- sin(seq(0, 2*pi, length.out = 20))
Q_rescaled <- Q * abs(rnorm(1)) + rnorm(1)
C <- c(rnorm(20), Q_rescaled , rnorm(20))

Force rundtw to finish all calculations and plot the vector of DTW distances
ret <- rundtw(Q, C, threshold = NULL, lower_bound = FALSE)
ret
plot(ret)

Allow early abandoning and lower bounding, and also plot C
ret <- rundtw(Q, C, return_QC = TRUE, ws = 5)
ret
plot(ret)

Get 1 nearest neighbor -> allow early abandon and lower bounding,
and plot C and also plot the scaled detected nearest neighbors
ret <- rundtw(Q, C, ws = 5, k = 1, return_QC = TRUE)
ret
plot(ret, scale = "01")

#--- See the help page of rundtw() for further examples.

rundtw rundtw

Description

Detect recurring patterns similar to given query pattern by measuring the distance with DTW.
A window of the length of the query pattern slides along the longer time series and calculates
computation-time-efficiently the DTW distance for each point of time. The function incrementally
updates the scaling of the sliding window, incrementally updates the cost matrix, applies the vector-
based implementation of the DTW algorithm, early abandons and applies lower bounding methods
to decrease the calculation time.

Usage

rundtw(Q, C, dist_method = c("norm1", "norm2", "norm2_square"),
step_pattern = c("symmetric1", "symmetric2"), k = NULL,
scale = c("01", "z", "none"), ws = NULL, threshold = NULL,

34 rundtw

lower_bound = TRUE, overlap_tol = 0, return_QC = FALSE,
normalize = c("01", "z", "none"))

S3 method for class 'rundtw'
print(x, ...)

S3 method for class 'rundtw'
summary(object, ...)

is.rundtw(x)

Arguments

Q vector or matrix, the query time series

C vector or matrix (equal number of columns as Q), the longer time series which
is scanned for multiple fits of the query time series. C can also be a list of
time series (either all vectors, or all matrices of equal number of columns) with
varying lengths. See Details.

dist_method see dtw

step_pattern see dtw, only for "symmetric1" the lower bounding is implemented yet

k integer >= 0. If k > 0, then the k-nearest neighbors to the query pattern that
are found in all possible sub-sequences of the long time series C are returned.
Per default the found fits don’t overlap, except the overlap_tol parameter is
adjusted (this should be done with care!). If k > 0 then lowerbound is set to
TRUE.

scale character, one of c("01", "z", "none") (default = "01"), if not "none" then Q
(once at the start) and C (running scaling) are scaled. Either min-max ("01") or
the z-scaling ("z") is applied. TRUE (identical to ’01’) and FALSE (identical to
’none’) are deprecated and will be dropped in the next package version.

ws see dtw

threshold numeric >= 0, global threshold for early abandoning DTW calculation if this
threshold is hit. (also see dtw). If NULL (default) no early abandoning is ap-
plied.

lower_bound logical, (default = TRUE) If TRUE (default) then lower bounding is applied (see
Details).

overlap_tol integer between 0 and length of Q, (default = 0) gives the number of observations
that two consecutive fits are accepted to overlap.

return_QC logical, default = FALSE. If TRUE then Q and C are appended to the return list.

normalize deprecated, use scale instead. If normalize is set, then scale is overwritten
by normalize for compatibility.

x the output object from rundtw.

object any R object

... further arguments passed to print or summary.

rundtw 35

Details

This function and algorithm was inspired by the work of Sakurai et al. (2007) and refined for
running min-max scaling and lower bounding.

Lower Bounding: The following methods are implemented:

• LB_Keogh for univariate time series (Keogh et al. 2005)

• LB_MV for multivariate time series with the dist_method = "norm2_square", (Rath et al.
2002)

• Adjusted for different distance methods "norm1" and "norm2", inspired by (Rath et al. 2002).

Counter vector:

• "scale_reset" counts how many times the min and max of the sliding window and the scaling
need to be reset completely

• "scale_new_extreme" how many times the min or max of the sliding window are adjusted
incrementally and the scaling need to be reset completely

• "scale_1step" how many times only the new observation in the sliding window needs to be
scaled based on the current min and max

• "cm_reset" how many times the cost matrix for the sliding window needs to be recalculated
completely

• "cm_1step" how many times only the front running column of the cost matrix is calculated

• "early_abandon" how many times the early abandon method aborts the DTW calculation be-
fore finishing

• "lower_bound" how many times the lower bounding stops the initialization of the DTW cal-
culation

• "completed" for how many subsequences the DTW calculation finished

C is a list of time series: If C is a list of time series, the algorithm concatenates the list to one long
time series to apply the logic of early abandoning, lower bounding, and finding the kNN. Finally
the results are split to match the input. The

Value

dist vector of DTW distances

counter named vector of counters. Gives information how the algorithm proceeded. see
Details

knn_indices indices of the found kNN

knn_values DTW distances of the found kNN
knn_list_indices

indices of list entries of C, where to find the kNN. Only returned if C is a list of
time series. See examples.

Q, C input time series

36 rundtw

References

• Keogh, Eamonn, and Chotirat Ann Ratanamahatana. "Exact indexing of dynamic time warp-
ing." Knowledge and information systems 7.3 (2005): 358-386.

• Rath, Toni M., and R. Manmatha. "Lower-bounding of dynamic time warping distances
for multivariate time series." University of Massachusetts Amherst Technical Report MM 40
(2002).

• Sakurai, Yasushi, Christos Faloutsos, and Masashi Yamamuro. "Stream monitoring under
the time warping distance." Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 2007.

Examples

Not run:
#--- Simulate a query pattern Q and a longer time series C with
distorted instances of Q within C. Apply rundtw() do detect
these instances of C.

rw <- function(nr) cumsum(rnorm(nr))
noise <- function(nr) rnorm(nr)
set.seed(1234)
nC <- 500
nQ <- 40
nfits <- 5

nn <- nC - nfits * nQ # length of noise
nn <- nn/nfits + 1

Q <- sin(seq(from = 1, to = 4 * pi, length.out = nQ))
Qscale <- IncDTW::scale(Q, type = "01")
C <- rw(0)
for(i in 1:nfits){

C <- c(C, rw(nn) ,
Q * abs(rnorm(1, 10, 10)) +

rnorm(1, 0, 10) + noise(nQ))
}

Apply running min-max scaling and allow lower
bounding to find the 3 NN
x <- rundtw(Q, C, scale = '01', ws = 10, k = 3,

lower_bound = TRUE, return_QC = TRUE)

Have a look at the result and get the best indices
with lowest distance.
x
summary(x)
find_peaks(x$dist, nQ)
plot(x, scale = "01")

The fourth and fifth simuated fits are not returned,
since the DTW distances are higher than the other found 3 NN.
The algorithm early abandons and returns NA for these

rundtw 37

indices. Get all distances by the following command:
x_all <- rundtw(Q, C, scale = '01', ws = 10,

k = 0, lower_bound = FALSE)
plot(x_all)

Do min-max-scaling and lower bound
rundtw(Q, C, scale = '01', ws = 10, lower_bound = TRUE)

Do z-scaling and lower bound
rundtw(Q, C, scale = 'z', ws = 10, lower_bound = TRUE)

Don't scaling and don't lower bound
rundtw(Q, C, scale = 'none', ws = 10, lower_bound = FALSE)

kNN: Do z-scaling and lower bound
rundtw(Q, C, scale = 'z', ws = 10, k = 3)

#--- For multivariate time series
rw <- function(nr, nco) {

matrix(cumsum(rnorm(nr * nco)), nrow = nr, ncol = nco)
}

nC <- 500
nQ <- 50
nco <- 2
nfits <- 5

nn <- nC - nfits * nQ# length of noise
nn <- nn/nfits

Q <- rw(nQ, nco)
Qscale <- IncDTW::scale(Q, type="01")
C <- matrix(numeric(), ncol=nco)
for(i in 1:nfits){

C <- rbind(C, rw(nn, nco), Q)
}

Do min-max-scaling and lower bound
rundtw(Q, C, scale = '01', ws = 10, threshold = Inf,

lower_bound = TRUE)

Do z-scaling and lower bound
rundtw(Q, C, scale = 'z', ws = 10, threshold = NULL,

lower_bound = TRUE)

Don't scale and don't lower bound
rundtw(Q, C, scale = 'none', ws = 10, threshold = NULL,

lower_bound = FALSE)

38 scale

#--- C can also be a list of (multivariate) time series.
So rundtw() detects the closest fits of a query pattern
across all time series in C.
nC <- 500
nQ <- 50
nco <- 2
rw <- function(nr, nco){

matrix(cumsum(rnorm(nr * nco)), nrow = nr, ncol = nco)
}

Q <- rw(nQ, nco)
C1 <- rbind(rw(100, nco), Q, rw(20, nco))
C2 <- rbind(rw(10, nco), Q, rw(50, nco))
C3 <- rbind(rw(200, nco), Q, rw(30, nco))
C_list <- list(C1, C2, C3)

Do min-max-scaling and lower bound
x <- rundtw(Q, C_list, scale = '01', ws = 10, threshold = Inf,

lower_bound = TRUE, k = 3, return_QC = TRUE)
x
Plot the kNN fit of the 2nd or 3rd list entry of C
plot(x, lix = 2)
plot(x, lix = 3)

Do z-scaling and lower bound
rundtw(Q, C_list, scale = 'z', ws = 10, threshold = Inf,

lower_bound = TRUE, k = 3)

Don't scale and don't lower bound
x <- rundtw(Q, C_list, scale = 'none', ws = 10,

lower_bound = FALSE, k = 0, return_QC = TRUE)
x
plot(x)

End(Not run)

scale Time Series Scaling

Description

scales a time series per dimension/column.

Usage

scale(x, type = c('z', '01'), threshold = 1e-5,
xmean = NULL, xsd = NULL, xmin = NULL, xmax = NULL)

deprecated
norm(x, type = c('z', '01'), threshold = 1e-5,

xmean = NULL, xsd = NULL, xmin = NULL, xmax = NULL)

scale 39

Arguments

x time series as vector or matrix

type character, describes the method how to scale (or normalize) the time series (per
column if x is multivariate). The parameter type is either ’z’ for z-scaling or
’01’ for max-min scaling.

threshold double, defines the minimum value of the standard deviation, or difference of
minimum and maximum. If this value is smaller than the threshold, then no
scaling is performed, only shifting by the mean or minimum, respectively. De-
fault value = 1e-5.

xmean mean used for z-scaling. See details.

xsd standard deviation used for z-scaling. See details.

xmin minimum used for 0-1 scaling. See details.

xmax maximum used for 0-1 scaling. See details.

Details

For a vector x the z-scaling subtracts the mean and devides by the standard deviation: of (x-mean(x))/sd(x).
The min-max scaling performs (x-min(x))/(max(x)-min(x)).

The parameters xmean, xsd, xmin, can be set xmax or passed as NULL (= default value). If these
values are NULL, they are calculated based on x.

Value

x the scaled vector or matrix

Examples

min-max scaling or z-scaling for a vector
x <- cumsum(rnorm(100, 10, 5))
y <- scale(x, "01")
z <- scale(x, "z")
par(mfrow = c(1, 3))
plot(x, type="l")
plot(y, type="l")
plot(z, type="l")
par(mfrow = c(1, 1))

columnwise for matrices
x <- matrix(c(1:10, sin(1:10)), ncol = 2)
y <- scale(x, "01")
z <- scale(x, "z")
par(mfrow = c(1, 3))
matplot(x, type="l")
matplot(y, type="l")
matplot(z, type="l")
par(mfrow = c(1, 1))

40 simulate_timewarp

IncDTW::scale() and base::scale() perform same z-scaling
x <- cumsum(rnorm(100))
xi <- IncDTW::scale(x, type = "z")
xb <- base::scale(x, TRUE, TRUE)
sum(abs(xi-xb))

simulate_timewarp Simulate time warp

Description

Simulate a time warp for a given time series.

Usage

simulate_timewarp(x, stretch = 0, compress = 0,
stretch_method = insert_linear_interp,
p_index = "rnorm", p_number = "rlnorm",
p_index_list = NULL, p_number_list = NULL,
preserve_length = FALSE, seed = NULL, ...)

insert_const(x, ix, N, const = NULL)

insert_linear_interp(x, ix, N)

insert_norm(x, ix, N, mean = 0, sd = 1)

insert_linear_norm(x, ix, N, mean = 0, sd = 1)

Arguments

x time series, vector or matrix

stretch numeric parameter for stretching the time series. stretch >= 0, see details

compress numeric parameter for compressing the time series. compress >= 0 & compress
< 1, see details

stretch_method function, either one of (insert_const, insert_linear_interp, insert_norm, insert_linear_norm),
or any user defined function that needs the parameters x (univariate time series
as vector), ix (index where to insert), N (number of observations to insert) and
any other arguments required for that function. See Details.

p_index string, distribution for simulating the indices where to insert simulated observa-
tions, e.g. "rnorm", "runif", etc.

simulate_timewarp 41

p_number string, distribution for simulating the number of observations to insert per index,
e.g. "rnorm", "runif", etc.

p_index_list list of named parameters for the distribution p_index

p_number_list list of named parameters for the distribution p_number

preserve_length

logical, if TRUE (default = FALSE) then the length of the return time series is
the same as before the warping, so the compression and stretching do not change
the length of the time series, nevertheless perform local warpings

seed set a seed for reproducible results

... named parameters for the stretch_method

ix index of x where after which to insert

N number of simulated observations to insert at index ix

const the constant to be inserted, if NULL (default), then const <- x[ix]

mean mean for rnorm

sd sd for rnorm

Details

The different distributions p_index and p_number also determine the behavior of the warp. A
uniform distribution for p_number more likely draws high number than e.g. log-normal distributions
with appropriate parameters. So, a uniform distribution more likely simulates fewer, but longer
warps, that is points of time where the algorithm inserts simulations.

The algorithm stretches by randomly selecting an index between 1 and the length of the time series.
Then a number of observations to be inserted is drawn out of the range 1 to the remaining number
of observations to be inserted. These observations are inserted. Then the algorithm starts again with
drawing an index, drawing a number of observations to be inserted, and proceeds until the requested
time series length is achieved.

The algorithm for compressing works analogous, except it simply omits observations instead of
linear interpolation.

The parameter stretch describes the ratio how much the time series x is stretched: e.g. if compress
= 0 and ...

• stretch = 0 then length(x_new) = length(x), or

• stretch = 0.1 then length(x_new) = length(x) * 1.1, or

• stretch = 1 then length(x_new) = length(x) * 2

The parameter compress describes the ratio how much the time series x is compressed: e.g. if
stretch = 0 and ...

• compress = 0 then length(x_new) = length(x), or

• compress = 0.2 then length(x_new) = length(x) * 0.8

There are four functions to chose from to insert new simulated observations. You can also define
your own function and apply this one. The four functions to chose from are:

42 simulate_timewarp

• insert a constant, either a constant defined by the user via the input parameter const, or if
const = NULL, then the last observation of the time series where the insertion starts is set as
const

• insert linear interpolated observations (default)

• insert a constant with gaussian noise

• insert linear interpolated observations and add gaussian noise.

For the methods with Gaussian noise the parameters mean and sd for rnorm can be set at the function
call of simulate_timewarp().

Value

A time warped time series

Examples

Not run:
#--- Simulate a time warped version of a time series x
set.seed(123)
x <- cumsum(rnorm(100))
x_warp <- simulate_timewarp(x, stretch = 0.1, compress = 0.2, seed = 123)
plot(x, type = "l")
lines(x_warp, col = "red")

#--- Simulate a time warp of a multivariate time series
y <- matrix(cumsum(rnorm(10^3)), ncol = 2)
y_warp <- simulate_timewarp(y, stretch = 0.1, compress = 0.2, seed = 123)
plot(y[,1], type = "l")
lines(y_warp[,1], col = "red")

#--- Stretchings means to insert at new values at randomly
selected points of time. Next the new values are set as constant NA,
and the points of time simulated uniformly:
y_warp <- simulate_timewarp(y, stretch = 0.2, p_number = "runif", p_index = "runif",

stretch_method = insert_const,
const = NA)

matplot(y_warp, type = "l")

insert NA and simulate the points of time by log normal
y_warp <- simulate_timewarp(y, stretch = 0.2, p_number = "rlnorm",

p_number_list = list(meanlog = 0, sdlog = 1),
stretch_method = insert_const,
const = NA)

matplot(y_warp, type = "l")

insert linear interpolation
y_warp <- simulate_timewarp(y, stretch = 0.2, p_number = "rlnorm",

simulate_timewarp 43

stretch_method = insert_linear_interp)
matplot(y_warp, type = "l")

insert random walk with gaussian noise
y_warp <- simulate_timewarp(y, stretch = 0.2, p_number = "rlnorm",

stretch_method = insert_norm,
sd = 1, mean = 0)

matplot(y_warp, type = "l")

insert constant, only 1 observation per random index
y_warp <- simulate_timewarp(y, stretch = 0.2, p_number = "runif", p_index = "runif",

p_number_list = list(min = 1, max = 1),
stretch_method = insert_const)

matplot(y_warp, type = "l")

insert by customized insert function
my_stretch_method <- function(x, ix, N, from, to){

c(x[1:ix],
sin(seq(from = from, to = to, length.out = N)) + x[ix],
x[(ix + 1):length(x)])

}
y_warp <- simulate_timewarp(y, stretch = 0.5, p_number = "rlnorm",

stretch_method = my_stretch_method,
from = 0, to = 4 * pi)

matplot(y_warp, type = "l")

End(Not run)

Index

∗ DTW
IncDTW-package, 2

∗ classif
dba, 3
dtw2vec, 13
dtw_dismat, 14
idtw2vec, 21
scale, 38

∗ cluster
dba, 3
dec_dm, 6
dtw, 9
dtw2vec, 13
dtw_dismat, 14
dtw_partial, 16
idtw, 19
idtw2vec, 21
scale, 38

∗ datasets
drink_glass, 8

∗ ts
dba, 3
dec_dm, 6
dtw, 9
dtw2vec, 13
dtw_dismat, 14
dtw_partial, 16
idtw, 19
idtw2vec, 21
initialize_plane, 23
scale, 38
simulate_timewarp, 40

brush_teeth (drink_glass), 8

centroid, 3, 4
centroid (dba), 3
cm (dtw), 9

DBA (dba), 3

dba, 3, 3, 30
dec_dm, 6
decrement (initialize_plane), 23
drink_glass, 8
dtw, 3, 4, 9, 13, 14, 16, 17, 19, 22, 24, 25, 27,

34
dtw2vec, 3, 4, 12, 14
dtw2vec_cm (dtw2vec), 13
dtw2vec_multiv (dtw2vec), 13
dtw2vec_univ (dtw2vec), 13
dtw_dismat, 3, 5, 14
dtw_disvec (dtw_dismat), 14
dtw_partial, 16, 24, 25, 31

find_peaks, 18

idtw, 3, 10, 19
idtw2vec, 3, 16, 21, 25
idtw2vec_cm (idtw2vec), 21
idtw2vec_multiv (idtw2vec), 21
idtw2vec_univ (idtw2vec), 21
IncDTW-package, 2
increment, 3
increment (initialize_plane), 23
initialize_plane, 23
insert_const (simulate_timewarp), 40
insert_linear_interp

(simulate_timewarp), 40
insert_linear_norm (simulate_timewarp),

40
insert_norm (simulate_timewarp), 40
is.dba (dba), 3
is.idtw (dtw), 9
is.planedtw (initialize_plane), 23
is.rundtw (rundtw), 33

lowerbound, 27
lowerbound_tube (lowerbound), 27

norm (scale), 38

44

INDEX 45

plot.dba, 29
plot.idtw, 10, 20, 30
plot.planedtw (plot.idtw), 30
plot.rundtw, 32
plot_dba (plot.dba), 29
plot_idtw (plot.idtw), 30
plot_planedtw (plot.idtw), 30
plot_rundtw (plot.rundtw), 32
plotBary (plot.dba), 29
plotM2lot (plot.dba), 29
plotM2m (plot.dba), 29
plotQC (plot.idtw), 30
plotWarp (plot.idtw), 30
print.dba (dba), 3
print.idtw (dtw), 9
print.planedtw (initialize_plane), 23
print.rundtw (rundtw), 33

refresh (initialize_plane), 23
reverse (initialize_plane), 23
rundtw, 3, 32, 33, 33, 34

scale, 38
simulate_timewarp, 40
summary.dba (dba), 3
summary.idtw (dtw), 9
summary.rundtw (rundtw), 33

walk (drink_glass), 8

	IncDTW-package
	dba
	dec_dm
	drink_glass
	dtw
	dtw2vec
	dtw_dismat
	dtw_partial
	find_peaks
	idtw
	idtw2vec
	initialize_plane
	lowerbound
	plot.dba
	plot.idtw
	plot.rundtw
	rundtw
	scale
	simulate_timewarp
	Index

