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GillespieSSA-package Gillespie Stochastic Simulation Algorithm package

Description

Package description and overview of basic SSA theory

GillespieSSA is a versatile and extensible framework for stochastic simulation in R and provides a
simple interface to a number of Monte Carlo implementations of the stochastic simulation algorithm
(SSA). The methods currently implemented are: the Direct method, Explicit tau-leaping (ETL), Bi-
nomial tau-leaping (BTL), and Optimized tau-leaping (OTL). The package also provides a library
of ecological, epidemiological, and evolutionary continuous-time (demo) models that can easily be
customized and extended. Currently the following models are included, Decaying-Dimerization Re-
action Set, Linear Chain System, single-species logistic growth model, Lotka predator-prey model,
Rosenzweig-MacArthur predator-prey model, Kermack-McKendrick SIR model, and a metapopu-
lation SIRS model.

The stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is a procedure for constructing simulated trajectories
of finite populations in continuous time. If Xi(t) is the number of individuals in population i
(i = 1, . . . , N ) at time t the SSA estimates the state vector X(t) ≡ (X1(t), . . . , XN (t)), given that
the system initially (at time t0) was in state X(t0) = x0. Reactions, single instantaneous events
changing at least one of the populations (e.g. birth, death, movement, collision, predation, infection,
etc), cause the state of the system to change over time. The SSA procedure samples the time τ to
the next reaction Rj (j = 1, . . . ,M ) and updates the system state X(t) accordingly. Each reaction
Rj is characterized mathematically by two quantities; its state-change vector νj ≡ (ν1j , . . . , νNj),
where νij is the change in the number of individuals in population i caused by one reaction of type
j and its propensity function aj(x), where aj(x)dt is the probability that a particular reaction j will
occur in the next infinitesimal time interval [t, t+ dt].

SSA implementations

There are numerous exact Monte Carlo procedures implementing the SSA. Perhaps the simplest
is the Direct method of Gillespie (1977. The Direct method is an exact continuous-time numeri-
cal realization of the corresponding stochastic time-evolution equation. Because the Direct method
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simulates one reaction at a time it is often, however, computationally too slow for practical applica-
tions.
Approximate implementations of the SSA sacrifices exactness for large improvements in compu-
tational efficiency. The most common technique used is tau-leaping where reaction-bundles are
attempted in coarse-grained time increments τ . Speed-ups of several orders of magnitude com-
pared to the Direct method are common. Tau-leaping must be used with care, however, as it is not
as foolproof as the Direct method.

Example models

Individual demo models can be run by issuing demo(<model name>), alternatively all of the demo
models can be run using demo(GillespieSSA). The following example models are available:

Decaying-Dimerization Reaction Set (Gillespie, 2001)
vignette("decaying_dimer", package = "GillespieSSA")

SIRS metapopulation model (Pineda-Krch, 2008)
vignette("epi_chain", package = "GillespieSSA")

Linear Chain System (Cao et al., 2004)
vignette("linear_chain", package = "GillespieSSA")

Pearl-Verhulst Logistic growth model (Kot, 2001, Pineda-Krch, 2008)
vignette("logistic_growth", package = "GillespieSSA")

Lotka predator-prey model (Gillespie, 1977; Kot, 2001)
vignette("lotka_predator_prey", package = "GillespieSSA")

Radioactive decay model (Gillespie, 1977)
vignette("radioactive_decay", package = "GillespieSSA")

Rosenzweig-MacArthur predator-prey model (Pineda-Krch et al., 2007, Pineda-Krch, 2008)
vignette("rm_predator_prey", package = "GillespieSSA")

Kermack-McKendrick SIR model (Brown & Rothery, 1993)
vignette("sir", package = "GillespieSSA")
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ssa Invoking the stochastic simulation algorithm
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Usage

ssa(
x0, # initial state vector
a, # propensity vector

nu, # state-change matrix
parms = NULL, # model parameters

tf, # final time
method = ssa.d(), # SSA method
simName = "",

tau = 0.3, # deprecated
f = 10, # deprecated

epsilon = 0.03, # deprecated
nc = 10, # deprecated
hor = NA_real_, # deprecated
dtf = 10, # deprecated
nd = 100, # deprecated

ignoreNegativeState = TRUE,
consoleInterval = 0,
censusInterval = 0,

verbose = FALSE,
maxWallTime = Inf

)

Arguments

x0 numerical vector of initial states where the component elements must be named
using the same notation as the corresponding state variable in the propensity
vector, a.

a character vector of propensity functions where state variables correspond to the
names of the elements in x0.

nu numerical matrix of change if the number of individuals in each state (rows)
caused by a single reaction of any given type (columns).

parms named vector of model parameters.

tf final time.

method an SSA method, the valid options are:

• ssa.d() — Direct method (default method),
• ssa.etl() - Explicit tau-leap,
• ssa.btl() — Binomial tau-leap, or
• ssa.otl() — Optimized tau-leap.

simName optional text string providing an arbitrary name/label for the simulation.

tau [DEPRECATED], see ssa.etl()

f [DEPRECATED], see ssa.btl()

epsilon [DEPRECATED], see ssa.otl()

nc [DEPRECATED], see ssa.otl()
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hor [DEPRECATED], see ssa.otl()

dtf [DEPRECATED], see ssa.otl()

nd [DEPRECATED], see ssa.otl()

ignoreNegativeState

boolean object indicating if negative state values should be ignored (this can oc-
cur in the etl method). If ignoreNegativeState=TRUE the simulation finishes
gracefully when encountering a negative population size (i.e. does not throw
an error). If ignoreNegativeState=FALSE the simulation stops with an error
message when encountering a negative population size.

consoleInterval

(approximate) interval at which ssa produces simulation status output on the
console (assumes verbose=TRUE). If consoleInterval=0 console output is
generated each time step (or tau-leap). If consoleInterval=Inf no console
output is generated. Note, verbose=FALSE disables all console output. Console
output drastically slows down simulations.

censusInterval (approximate) interval between recording the state of the system. If censusInterval=0
(t, x) is recorded at each time step (or tau-leap). If censusInterval=Inf only
(t0, x0) and (tf , xt) is recorded. Note, the size of the time step (or tau-leaps)
ultimately limits the interval between subsequent recordings of the system state
since the state of the system cannot be recorded at a finer time interval the size
of the time steps (or tau-leaps).

verbose boolean object indicating if the status of the simulation simulation should be
displayed on the console. If verbose=TRUE the elapsed wall time and (t, x) is
displayed on the console every consoleInterval time step and a brief summary
is displayed at the end of the simulation. If verbose=FALSE the simulation runs
entirely silent (overriding consoleInterval). Verbose runs drastically slows
down simulations.

maxWallTime maximum wall time duration (in seconds) that the simulation is allowed to run
for before terminated. This option is useful, in particular, for systems that can
end up growing uncontrolably.

Details

Although ssa can be invoked by only specifying the system arguments (initial state vector x0,
propensity vector a, state-change matrix nu), the final time (tf), and the SSA method to use, substan-
tial improvements in speed and accuracy can be obtained by adjusting the additional (and optional)
ssa arguments. By default ssa (tries to) use conservative default values for the these arguments,
prioritizing computational accuracy over computational speed. These default values are, however,
not fool proof for the approximate methods, and occasionally one will have to hand tweak them in
order for a stochastic model to run appropriately.

Value

Returns a list object with the following elements,

• data: a numerical matrix object of the simulation time series where the first column is the
time vector and subsequent columns are the state frequencies.
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• stats: sub-list object with elements containing various simulation statistics. The of the sub-
list are:

• stats$startWallTime: start wall clock time (YYYY-mm-dd HH:MM:SS).

• stats$endWallTime: end wall clock time (YYYY-mm-dd HH:MM:SS).

• stats$elapsedWallTime: elapsed wall time in seconds.

• stats$terminationStatus: string vector listing the reason(s) for the termination of the re-
alization in ’plain words’. The possible termination statuses are:

– finalTime = if the simulation reached the maximum simulation time tf,
– extinction = if the population size of all states is zero,
– negativeState = if one or several states have a negative population size (can occur in

the ETL method),
– zeroProp = if all the states have a zero propensity function,
– maxWallTime = if the maximum wall time has been reached. Note the termination status

may have more than one message.

• ‘stats$nSteps“ total number of time steps (or tau-leaps) executed.

• stats$meanStepSize: mean step (or tau-leap) size.

• stats$sdStepSize: one standard deviation of the step (or tau-leap) size.

• stats$SuspendedTauLeaps: number of steps performed using the Direct method due to OTL
suspension (only applicable for the OTL method).

• arg$...: sub-list with elements containing all the arguments and their values used to invoke
ssa (see Usage and Arguments list above).

Preparing a run

In order to invoke SSA the stochastic model needs at least four components, the initial state vector
(x0), state-change matrix (nu), propensity vector (a), and the final time of the simulation (tf). The
initial state vector defines the population sizes in all the states at t = 0, e.g. for a system with
two species X1 and X2 where both have an initial population size of 1000 the initial state vector
is defined as x0 <- c(X1=1000,X2=1000). The elements of the vector have to be labelled using
the same notation as the state variables used in the propensity functions. The state-change matrix
defines the change in the number of individuals in each state (rows) as caused by one reaction of a
given type (columns). For example, the state-change matrix for system with the species S1 and S2

with two reactions
S1

c1−→ S2

S2
c2−→ 0

is defined as nu <- matrix(c(-1,0,+1,-1),nrow=2,byrow=TRUE) where c1 and c2 are the per
capita reaction probabilities. The propensity vector, a, defines the probabilities that a particular
reaction will occur over the next infinitesimal time interval [t, t+ dt]. For example, in the previous
example the propensity vector is defined as a <- c("c1*X1","c2*X2"). The propensity vector con-
sists of character elements of each reaction’s propensity function where each state variable requires
the corresponding named element label in the initial state vector (x0).
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Example

Irreversible isomerization: Perhaps the simplest model that can be formulated using the SSA is the
irreversible isomerization (or radioactive decay) model. This model is often used as a first pedagogic
example to illustrate the SSA (see e.g. Gillespie 1977). The deterministic formulation of this model
is

dX

dt
= −cX

where the single reaction channel is

S
c−→ 0

By setting X0 = 1000 and c = 0.5 it is now simple to define this model and run it for 10 time steps
using the Direct method,

out <- ssa(x0=c(X=1000),a=c("c*X"),nu=matrix(-1),parms=c(c=0.5),tf=10)

The resulting time series can then be displayed by,

ssa.plot(out)

Note

Selecting the appropriate SSA method is a trade-off between computational speed, accuracy of the
results, and which SSA actually works for a given scenario. This depends on the characteristics
of the defined system (e.g. number of reaction channels, number of species, and the absolute and
relative magnitude of the propensity functions). Not all methods are appropriate for all models.
When selecting a SSA method all of these factors have to be taken into consideration. The various
tau-leap methods accept a number of additional arguments. While the default values of these argu-
ments may work for some scenarios they may have to be adjusted for others. The default values for
the tau-leap methods are conservative in terms of computational speed and substantial increase in
efficiency may be gained by optimizing their values for a specific system.

See Also

GillespieSSA-package, ssa.d(), ssa.etl(), ssa.btl(), ssa.otl()

Examples

## Irreversible isomerization
## Large initial population size (X=1000)
parms <- c(c=0.5)
x0 <- c(X=10000)
a <- c("c*X")
nu <- matrix(-1)
out <- ssa(x0,a,nu,parms,tf=10,method=ssa.d(),simName="Irreversible isomerization") # Direct method
plot(out$data[,1],out$data[,2]/10000,col="red",cex=0.5,pch=19)

## Smaller initial population size (X=100)
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x0 <- c(X=100)
out <- ssa(x0,a,nu,parms,tf=10,method=ssa.d()) # Direct method
points(out$data[,1],out$data[,2]/100,col="green",cex=0.5,pch=19)

## Small initial population size (X=10)
x0 <- c(X=10)
out <- ssa(x0,a,nu,parms,tf=10,method=ssa.d()) # Direct method
points(out$data[,1],out$data[,2]/10,col="blue",cex=0.5,pch=19)

## Logistic growth
parms <- c(b=2, d=1, K=1000)
x0 <- c(N=500)
a <- c("b*N", "(d+(b-d)*N/K)*N")
nu <- matrix(c(+1,-1),ncol=2)
out <- ssa(x0,a,nu,parms,tf=10,method=ssa.d(),maxWallTime=5,simName="Logistic growth")
ssa.plot(out)

## Kermack-McKendrick SIR model
parms <- c(beta=0.001, gamma=0.1)
x0 <- c(S=499,I=1,R=0)
a <- c("beta*S*I","gamma*I")
nu <- matrix(c(-1,0,+1,-1,0,+1),nrow=3,byrow=TRUE)
out <- ssa(x0,a,nu,parms,tf=100,method=ssa.d(),simName="SIR model")
ssa.plot(out)

## Lotka predator-prey model
parms <- c(c1=10, c2=.01, c3=10)
x0 <- c(Y1=1000,Y2=1000)
a <- c("c1*Y1","c2*Y1*Y2","c3*Y2")
nu <- matrix(c(+1,-1,0,0,+1,-1),nrow=2,byrow=TRUE)
out <- ssa(x0,a,nu,parms,tf=100,method=ssa.etl(),simName="Lotka predator-prey model")
ssa.plot(out)

ssa.btl Binomial tau-leap method (BTL)

Description

Binomial tau-leap method implementation of the SSA as described by Chatterjee et al. (2005).
Should be passed as method argument for ssa().

Usage

ssa.btl(f = 10)

Arguments

f coarse-graining factor (see page 4 in Chatterjee et al. 2005).
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Details

Performs one time step using the Binomial tau-leap method. Intended to be invoked by ssa().

References

Chatterjee et al. (2005)

See Also

GillespieSSA-package, ssa()

Examples

ssa.btl(f = 40)

ssa.d Direct method (D)

Description

Direct method implementation of the SSA as described by Gillespie (1977). Should be passed as
method argument for ssa().

Usage

ssa.d()

References

Gillespie (1977)

See Also

GillespieSSA-package, ssa()

Examples

ssa.d()
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ssa.etl Explicit tau-leap method (ETL)

Description

Explicit tau-leap method implementation of the SSA as described by Gillespie (2001). Should be
passed as method argument for ssa().

Usage

ssa.etl(tau = 0.3)

Arguments

tau tau-leap.

Details

Performs one time step using the Explicit tau-leap method. Intended to be invoked by ssa().

References

Gillespie (2001)

See Also

GillespieSSA-package, ssa()

Examples

ssa.etl(tau = .1)

ssa.otl Optimized tau-leap method (OTL)

Description

Optimized tau-leap method implementation of the SSA as described by Cao et al. (2006). Should
be passed as method argument for ssa().

Usage

ssa.otl(epsilon = 0.03, nc = 10, hor = NA_real_, dtf = 10, nd = 100)
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Arguments

epsilon error control parameter.

nc number of critical reactions threshold parameter.

hor Highest order reaction vector. There must be one entry per species in x. Must be
one of 1: first-order, 2: second-order or 22: homo-dimer. If hor is NA, defaults
are all second-order.

dtf Direct method threshold factor for temporarily suspending the OTL method.

nd number of Direct method steps to perform during an OTL suspension.

Note

Third order-reactions (S1 + S2 + S3 → . . .) are not supported currently since they are approxima-
tions to sets of coupled first- and second-order reactions). See Cao et al. (2006) for more details.

References

Cao et al. (2006)

See Also

GillespieSSA-package, ssa()

Examples

ssa.otl(
hor = 1,
nc = 10,
epsilon = .03,
dtf = 10,
nd = 100

)

ssa.plot Simple plotting of ssa output

Description

Provides basic functionally for simple and quick time series plot of simulation output from ssa().

Usage

ssa.plot(
out = stop("requires simulation output object"),
file = "ssaplot",
by = 1,
plot.from = 2,
plot.to = ncol(out$data),
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plot.by = 1,
show.title = TRUE,
show.legend = TRUE

)

Arguments

out data object returned from ssa().
file name of the output file (only applicable if plot.device!="x11".
by time increment in the plotted time series
plot.from first population to plot the time series for (see note)
plot.to last population to plot the time series for (see note)
plot.by increment in the sequence of populations to plot the time series for (see note)
show.title boolean object indicating if the plot should display a title
show.legend boolean object indicating if the legend is displayed

Note

The options by, plot.from, plot.to, and plot.by can be used to plot a sparser sequence of data
points. To plot the population sizes using a larger time interval the by option can be set, e.g. to plot
only every 10th time point by=10. To plot only specific populations the plot.from, plot.to, and
plot.by options can be set to subset the state vector. Note that the indexing of the populations is
based on the (t,X) vector, i.e. the first column is the time vector while the first population is index
by 2 and the last population by N + 1. Display of a plot title above the plot and legend is optional
(and are set with the arguments show.title and show.legend. Above the plot panel miscellaneous
information for the simulation are displayed, i.e. method, elapsed wall time, number of time steps
executed, and the number of time steps per data point.

See Also

GillespieSSA-package, ssa()

Examples

## Define the Kermack-McKendrick SIR model and run once using the Direct method
parms <- c(beta=.001, gamma=.100)
x0 <- c(S=500, I=1, R=0) # Initial state vector
nu <- matrix(c(-1,0,1,-1,0,1),nrow=3,byrow=TRUE) # State-change matrix
a <- c("beta*S*I", "gamma*I") # Propensity vector
tf <- 100 # Final time
simName <- "Kermack-McKendrick SIR"
out <- ssa(x0,a,nu,parms,tf,method="D",simName,verbose=TRUE,consoleInterval=1)

## Basic ssa plot
ssa.plot(out)

# Plot only the infectious class
ssa.plot(out,plot.from=3,plot.to=3)
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