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FME-package A Flexible Modelling Environment for Inverse Modelling, Sensitivity,
ldentifiability, Monte Carlo Analysis.
Description

R-package FME contains functions to run complex applications of models that produce output as a
function of input parameters.

Although it was created to be used with models consisting of ordinary differential equations (ODE),
partial differential equations (PDE) or differential algebraic equations (DAE), it can work with other
models.

It contains:

Functions to allow fitting of the model to data.

Function modCost estimates the (weighted) residuals between model output and data, variable
and model costs.

Function modFit uses the output of modCost to find the best-fit parameters. It provides a
wrapper around R’s built-in minimisation routines (optim, nlm, nlminb) and nls.1lm from
package minpack. 1m.

Package FME also includes an implementation of the pseudo-random search algorithm (func-
tion pseudoOptim).

Function sensFun estimates the sensitivity functions of selected output variables as a function
of model parameters. This is the basis of uni-variate, bi-variate and multi-variate sensitivity
analysis.

Function collin uses as input the sensitivity functions and estimates the "collinearity" index
for all possible parameter sets. This multivariate sensitivity estimate measures approximate
linear dependence and is useful to derive which parameter sets are identifiable given the data
set.

Function sensRange produces ’envelopes’ around the sensitivity variables, consisting of a
time series or a 1-dimensional set, as a function of the sensitivity parameters. It produces
"envelopes" around the variables.

Function modCRL calculates the values of single variables as a function of the sensitivity pa-
rameters. This function can be used to run simple "what-if" scenarios
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* Function modMCMC runs a Markov chain Monte Carlo (Bayesian analysis). It implements the
delayed rejection - adaptive Metropolis (DRAM) algorithm.

* FME also contains functions to generate multiple parameter values arranged according to a
grid (Grid) multinormal (Norm) or uniform (Unif) design, and a latin hypercube sampling
(Latinhyper) function

Details

bug corrections:

* version 1.3.6, sensFun: corrected calculation of L2 norm (now consistent with help page),

* version 1.3, modCost: minlogp was not correctly estimated if more than one observed variable
(used the wrong sd).

Author(s)

Karline Soetaert
Thomas Petzoldt

References

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03

Examples

## Not run:

## show examples (see respective help pages for details)
example(modCost)

example(sensFun)

example (modMCMC)

example (modCRL)

## open the directory with documents
browseURL (paste(system.file(package = "FME"), "/doc"”, sep = ""))

## open the directory with examples
browseURL (paste(system.file(package = "FME"), "/doc/examples”, sep = ""))

## the vignettes
vignette("FME")
vignette("FMEdyna")
vignette("FMEsteady")
vignette("FMEother")
vignette("FMEmcmc")

edit(vignette("FME"))
edit(vignette("FMEdyna"))
edit(vignette("FMEsteady"))
edit(vignette("FMEother"))
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edit(vignette("FMEmcmc"))

## End(Not run)

collin Estimates the Collinearity of Parameter Sets

Description
Based on the sensitivity functions of model variables to a selection of parameters, calculates the
"identifiability" of sets of parameter.
The sensitivity functions are a matrix whose (i,j)-th element contains
(‘)yi AOG j
00 4 Ayl

and where y; is an output variable, at a certain (time) instance, i, Ay; is the scaling of variable y;,
AO; is the scaling of parameter O ;.

Function collin estimates the collinearity, or identifiability of all parameter sets or of one param-
eter set.

As a rule of thumb, a collinearity value less than about 20 is "identifiable".

Usage

collin(sensfun, parset = NULL, N = NULL, which = NULL, maxcomb = 5000)

## S3 method for class 'collin'
print(x, ...)

## S3 method for class 'collin'

plot(x, ...)
Arguments

sensfun model sensitivity functions as estimated by SensFun.

parset one selected parameter combination, a vector with their names or with the in-
dices to the parameters.

N the number of parameters in the set; if NULL then all combinations will be tried.
Ignored if parset is not NULL.

which the name or the index to the observed variables that should be used. Default =
all observed variables.

maxcomb the maximal number of combinations that can be tested. If too large, this may
produce a huge output. The number of combinations of n parameters out of a
total of p parameters is choose(p, n).

X an object of class collin.

additional arguments passed to the methods.
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Details

The collinearity is a measure of approximate linear dependence between sets of parameters. The
higher its value, the more the parameters are related. With "related" is meant that several paraemter
combinations may produce similar values of the output variables.

Value

a data.frame of class collin with one row for each parameter combination (parameters as in
sensfun).

Each row contains:

for each parameter whether it is present (1) or absent (0) in the set,
N the number of parameters in the set,

collinearity  the collinearity value.

The data.frame returned by collin has methods for the generic functions print and plot.

Note

It is possible to use collin for selecting parameter sets that can be fine-tuned based on a data set.
Thus it is a powerful technique to make model calibration routines more robust, because calibration
routines often fail when parameters are strongly related.

In general, when the collinearity index exceeds 20, the linear dependence is assumed to be critical
(i.e. it will not be possible or easy to estimate all the parameters in the combination together).

The procedure is explained in Omlin et al. (2001).

1. First the function collin is used to test how far a dataset can be used for estimating certain
(combinations of) parameters. After selection of an ’identifiable parameter set’ (which has a low
"collinearity") they are fine-tuned by calibration.

2. As the sensitivity analysis is a local analysis (i.e. its outcome depends on the current values of the
model parameters) and the fitting routine is used to estimate the best values of the parameters, this
is an iterative procedure. This means that identifiable parameters are determined, fitted to the data,
then a newly identifiable parameter set is determined, fitted, etcetera until convergenc is reached.

See the paper by Omlin et al. (2001) for more information.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Brun, R., Reichert, P. and Kunsch, H. R., 2001. Practical Identifiability Analysis of Large Environ-
mental Simulation Models. Water Resour. Res. 37(4): 1015-1030.

Omlin, M., Brun, R. and Reichert, P., 2001. Biogeochemical Model of Lake Zurich: Sensitivity,
Identifiability and Uncertainty Analysis. Ecol. Modell. 141: 105-123.

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03
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Examples

#H#
## Test collinearity values
##

## linearly related set... => Infinity
collin(cbind(1:5, 2x(1:5)))

## unrelated set => 1
MM <- matrix(nr = 4, nc = 2, byrow = TRUE,
data = c(-0.400, -0.374, 0.255, 0.797, 0.690, -0.472, -0.546, 0.049))

collin(MM)
##
## Bacterial model as in Soetaert and Herman, 2009
#H#
pars <- list(gmax = 0.5,eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01)

solveBact <- function(pars) {
derivs <- function(t, state, pars) { # returns rate of change
with (as.list(c(state, pars)), {
dBact <- gmaxxeff*Sub/(Sub + ks)*Bact - dB*Bact - rB*Bact
dSub  <- -gmax *Sub/(Sub + ks)*Bact + dB*Bact
return(list(c(dBact, dSub)))
»
}
state <- c(Bact = 0.1, Sub = 100)
tout <- seq(@, 50, by = 0.5)
## ode solves the model by integration...
return(as.data.frame(ode(y = state, times = tout, func = derivs,
parms = pars)))

out <- solveBact(pars)

## We wish to estimate parameters gmax and eff by fitting the model to
## these data:
Data <- matrix(nc = 2, byrow = TRUE, data =
c( 2, 0.14, 4, 0.2, 6, ©.38, 8, 0.42,
10, 0.6, 12, ©.107, 14, 1.3, 16, 2.9,
18, 3.0, 20, 4.5, 22, 6.15, 24, 11,
26, 13.8, 28, 20.0, 30, 31, 35, 65, 40, 61)
)
colnames(Data) <- c("time","Bact")
head(Data)

Data2 <- matrix(c(2, 100, 20, 93, 30, 55, 50, @), ncol = 2, byrow = TRUE)
colnames(Data2) <- c("time”, "Sub")
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## Objective function to minimise
Objective <- function (x) { # Model cost

pars[] <- x

out <- solveBact(x)

Cost <- modCost(obs = Data2, model = out) # observed data in 2 data.frames
return(modCost(obs = Data, model = out, cost = Cost))

}

## 1. Estimate sensitivity functions - all parameters
sF <- sensFun(func = Objective, parms = pars, varscale = 1)

## 2. Estimate the collinearity
Coll <- collin(sF)

## The larger the collinearity, the less identifiable the data set
Coll

plot(Coll, log = "y")

## 20 = magical number above which there are identifiability problems
abline(h = 20, col = "red")

## select "identifiable” sets with 4 parameters
Coll [Coll[,"collinearity”] < 20 & Coll[,"N"]1==4,]

## collinearity of one selected parameter set
collin(sF, c(1, 3, 5))
collin(sF, 1:5)

collin(sF, c("gmax", "eff"))
## collinearity of all combinations of 3 parameters
collin(sF, N = 3)

## The collinearity depends on the value of the parameters:
P <- pars

P[1:2] <- 1 # was: 0.5

collin(sensFun(Objective, P, varscale = 1))

cross2long Convert a dataset in wide (crosstab) format to long (database) format

Description

Rearranges a data frame in cross tab format by putting all relevant columns below each other,
replicating the independent variable and, if necessary, other specified columns. Optionally, an err
column is added.
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Usage
cross2long( data, x, select = NULL, replicate = NULL,
error = FALSE, na.rm = FALSE)
Arguments
data a data frame (or matrix) with crosstab layout
X name of the independent variable to be replicated
select a vector of column names to be included (see details). All columns are included
if not specified.
replicate a vector of names of variables (apart from the independent variable that have to
be replicated for every included column (e.g. experimental treatment specifica-
tion).
error boolean indicating whether the final dataset in long format should contain an
extra column for error values (cf. modCost); here filled with 1’s.
na.rm whether or not to remove the NAs.
Details

The original data frame is converted from a wide (crosstab) layout (one variable per column) to a
long (database) layout (all variable value in one column).

As an example of both formats consider the data, called Dat consisting of two observed variables,
called "Obs1" and "Obs2", both containing two observations, at time 1 and 2:

name time val err
Obsl 1 50 5

Obsl 2 150 15
Obs2 1 1 0.1
Obs2 2 2 0.2

for the long format and

time Obsl Obs2
1 50 1
2 150 2

for the crosstab format.

The parameters x, select, and replicate should be disjoint. Although the independent variable
always has to be replicated it should not be given by the replicate parameter.
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Value

A data frame with the following columns:

name Column containing the column names of the original crosstab data frame, data
X A replication of the independent variable

y The actual data stacked upon each other in one column

err Optional column, filled with NA values (necessary for some other functions)

all other columns from the original dataset that had to be replicated (indicated
by the parameter replicate)
Author(s)

Tom Van Engeland <tom.vanengeland @nioz.nl>

References

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03

Examples
#H#
## Suppose we have measured sediment oxygen concentration profiles
##
depth <- 0:7

o2mud <- c( 6, 1, 0.5, 0.1, 0.05,0, 0, 0)
02silt <- c( 6, 5, 3, 2, 1.5 1, 0.5 0)
4, 3
C

02sand <- c( 6, 6, 5, s , 2, 1, 0)
zones <- c("a", "b", "b", "c", "c", "d", "d", "e")
oxygen <- data.frame(depth = depth,

zone = zones,

mud = 02mud,

silt = 02silt,
sand = 02sand

)

cross2long(data = oxygen, x = depth,
select = c(silt, mud), replicate = zone)

cross2long(data = oxygen, x = depth,
select = c(mud, -silt), replicate = zone)

# twice the same column name: replicates
colnames(oxygen)[4] <- "mud”

cross2long(data=oxygen, x = depth, select = mud)
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gaussianWeights A kernel average smoother function to weigh residuals according to
a Gaussian density function This function is still experimental... use
with care
Description

A calibration dataset in database format (cf. modCost for the database format) is extended in order
to fit model output using a weighted least squares approach. To this end, the observations are
replicated for a certain number of times, and weights are assigned to the replicates according to a
Gaussian density function. This density has the relevant observation as mean value. The standard
deviation, provided as a parameter, determines the number of inserted replicate observations (see
Detail).

This weighted regression approach may be interesting when discontinuities exist in the observa-
tional data. Under these circumstances small changes in the timing (or more general the position
along the axis of the independent variable) of the model output may have a disproportional impact
on the overall goodness-of-fit (e.g. timing of nutrient depletion). Additionally, this approach may
be used to model uncertainty in the independent variable (e.g. slices of sediment profiles, or the
timing of a sampling).

Usage
gaussianWeights (obs, x = x, y =y, xmodel, spread, weight = "none",
aggregation = x ,ordering)
Arguments
obs dataset in long (database) format as is typically used by modCost
X name of the independent variable (typically x, cf. modCost) in obs. Defaults to
x (not given as character string; cf. subset)
y name of the dependent variable in obs. Defaults to y.
xmodel an ordered vector of unique times at which model output is produced. If not
given, the independent variable of the observational dataset is used.
spread standard deviation used to calculate the weights from a normal density function.
This value also determines the number of points from the model output that are
compared to a specific observa- tion in obs (2 * 3 * spread + 1; containing 99.7%
of the Gaussian distribution, centered around the observation of interest).
weight scaling factor of the modCost function ("sd", "mean", or "none"). The Gaussian
weights are multiplied by this factor to account for differences in units.
aggregation vector of column names from the dataset that are used to aggregate observations
while calculating the scaling factor. Defaults to the variable name, "name".
ordering Optional extra grouping and ordering of observations. Given as a vector of

variable names. If none given, ordering will be done by variable name and inde-
pendent variable. If both aggregation and ordering variables are given, ordering
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will be done as follows: x within ordering (in reverse order) within aggregation
(in reverse order). Aggregation and ordering should be disjoint sets of variable
names.

Details

Suppose: spread = 1/24 (days; = 1 hour) x = time in days, 1 per hour
Then: obs_i is replicated 7 times (spread = observational periodicity = 1 hour):
=>o0bs_i-3=... =obs_i-1 = obs_i = obs_i+1 =... = obs_i+3

The weights (W_i+j, for j = -3 ...3) are calculated as follows: W’_i+j = 1/(spread * sqrt(2pi)) *
exp(-1/2 * ((obs_i+j - obs_i)/spread)"2

W_i+j = W’_i+j/sum(W_i-3,...,W_i+3) (such that their sum equals 1)

Value

A modified version of obs is returned with the following extensions:

1. Each observation obs[i] is replicated n times were n represents the number of modelx values
within the interval [obs_i - (3 * spread), obs_i + 3 * spread)].
2. These replicate observations get the same x values as their modeled counterparts (xmodel).
3. Weights are given in column, called "err"
The returned data frame has the following columns:
* "name" or another name specified by the first element of aggregation. Usually this column
contains the names of the observed variables.
* "x" or another name specified by x
* "y" or another name specified by y
 "err" containing the calculated weights

* The rest of the columns of the data frame given by obs in that order.

Author(s)

Tom Van Engeland <tom.vanengeland @nioz.nl>

Examples

##
## A Sediment example
#H#

## Sediment oxygen concentration is measured every

## centimeter in 3 sediment types

depth <- 0:7

observations <- data.frame(
profile = rep(c("mud”,"silt"”,"sand"), each=8),
depth = depth,
02 c(c(6,1,0.5,0

c(6,5,3,2,1
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c(6,6,5,4,3,2,1,0)
)
)

## A model generates profiles with a depth resolution of 1 millimeter
modeldepths <- seq(@, 9, by = 0.05)

## All these model outputs are compared with weighed observations.
gaussianWeights(obs = observations, x = depth, y = 02,

xmodel = modeldepths,

spread = 0.1, weight = "none”,

aggregation = profile)

# Weights of one observation in silt at depth 2:
Sub <- subset(observations, subset = (profile == "silt" & depth == 2))
plot(Sub[,-11)
SubWW <- gaussianWeights(obs = Sub, x = depth, y = 02,
xmodel = modeldepths, spread = 0.5,
weight="none", aggregation = profile)
SubWW[,-11]

Grid Grid Distribution

Description

Generates parameter sets arranged on a regular grid.

Usage

Grid(parRange, num)

Arguments
parRange the range (min, max) of the parameters, a matrix or a data.frame with one row
for each parameter, and two columns with the minimum (1st) and maximum
(2nd) column.
num the number of random parameter sets to generate.
Details

The grid design produces the most regular parameter distribution; there is no randomness involved.
The number of parameter sets generated with Grid will be <= num.

Value

a matrix with one row for each generated parameter set, and one column per parameter.
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Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

See Also

Norm for (multi)normally distributed random parameter sets.
Latinhyper to generates parameter sets using latin hypercube sampling.
Unif for uniformly distributed random parameter sets.

seq the R-default for generating regular sequences of numbers.

Examples

## 4 parameters
parRange <- data.frame(min = c(@, 1, 2, 3), max = c(10, 9, 8, 7))
rownames (parRange) <- c("par1”, "par2", "par3", "par4")

## grid
pairs(Grid(parRange, 500), main = "Grid")

Latinhyper Latin Hypercube Sampling

Description

Generates random parameter sets using a latin hypercube sampling algorithm.

Usage

Latinhyper(parRange, num)

Arguments
parRange the range (min, max) of the parameters, a matrix or a data.frame with one row
for each parameter, and two columns with the minimum (1st) and maximum
(2nd) column.
num the number of random parameter sets to generate.
Details

In the latin hypercube sampling, the space for each parameter is subdivided into num equally-sized
segments and one parameter value in each of the segments drawn randomly.

Value

a matrix with one row for each generated parameter set, and one column per parameter.
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Note

The latin hypercube distributed parameter sets give better coverage in parameter space than the
uniform random design (Unif). It is a reasonable choice in case the number of parameter sets is
limited.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

References

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007) Numerical Recipes in
C. Cambridge University Press.

See Also
Norm for (multi)normally distributed random parameter sets.
Unif for uniformly distributed random parameter sets.

Grid to generate random parameter sets arranged on a regular grid.

Examples

## 4 parameters
parRange <- data.frame(min = c(0, 1, 2, 3), max = c(10, 9, 8, 7))
rownames(parRange) <- c("par1”, "par2", "par3", "par4")

## Latin hypercube
pairs(Latinhyper(parRange, 100), main = "Latin hypercube")

modCost Calculates the Discrepancy of a Model Solution with Observations

Description

Given a solution of a model and observed data, estimates the residuals, and the variable and model
costs (sum of squared residuals).

Usage

NULL, err = NULL,
FALSE, cost = NULL, ...)

modCost(model, obs, x = "time", y
weight = "none"”, scaleVar
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Arguments

model model output, as generated by the integration routine or the steady-state solver,
a matrix or a data.frame, with one column per dependent and independent vari-
able.

obs the observed data, either in long (database) format (name, x, y), a data.frame, or
in wide (crosstable, or matrix) format - see details.

X the name of the independent variable; it should be a name occurring both in the
obs and model data structures.

y either NULL, the name of the column with the dependent variable values,or an in-
dex to the dependent variable values; if NULL then the observations are assumed
to be in crosstable (matrix) format, and the names of the independent variables
are given by the column names of this matrix.

err either NULL, or the name of the column with the error estimates, used to weigh
the residuals (see details); if NULL, then the residuals are not weighed.

cost if not NULL, the output of a previous call to modCost; in this case, the new output
will combine both.

weight only if err=NULL: how to weigh the residuals, one of "none", "std", "mean", see
details.

scalevar if TRUE, then the residuals of one observed variable are scaled respectively to the
number of observations (see details).
additional arguments passed to R-function approx.

Details

This function compares model output with observed data.

It computes

1. the weighted residuals, one for each data point.
2. the variable costs, i.e. the sum of squared weight residuals per variable.

3. the model cost, the scaled sum of variable costs .

There are three steps:
1. For any observed data point, i, the weighted residuals are estimated as:

MOdi - Obsz

Eerror;

res; =

with weight; = 1/err; and where M od; and Obs; are the modeled, respectively observed value of
data point i.

The weights are equal to 1/error, where the latter can be inputted, one for each data point by speci-
fying err as an extra column in the observed data.

This can only be done when the data input is in long (database) format.

When err is not inputted, then the weights are specified via argument weight which is either:

* "none”, which sets the weight equal to 1 (the default)
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* "std"”, which sets the weights equal to the reciprocal of the standard deviation of the observed
data (can only be used if there is more than 1 data point)

* "mean”, which uses 1/mean of the absolute value of the observed data (can only be used if not
0).

2. Then for each observed variable, j, a variable cost is estimated as the sum of squared weighted
residuals for this variable:

n;
Costyar; = E res;’
i=1

where n; is the number of observations for observed variable j.
3. Finally, the model Cost is estimated as the scaled sum of variable costs:

Ny

ModCost = Z

Costyar,

scaleyar,

and where scalemTj allows to scale the variable costs relative to the number of observations. This
is set by specifying argument scaleVar. If TRUE, then the variable costs are rescaled. The default
is NOT to rescale (i.e. scaleyqr,=1).

The models typically consist of (a system of) differential equations, which are either solved by:

* integration routines, e.g. the routines from package deSolve,

* steady-state estimators, as from package rootSolve.

The data can be presented in two formats:

* data table (long) format; this is a two to four column data.frame that contains the name of
the observed variable (always the FIRST column), the (optional) value of the independent
variable (default column name = "time"), the value of the observation and the (optional)
value of the error. For data presented in this format, the names of the column(s) with the
independent variable (x) and the name of the column that has the value of the dependent
variable y must be passed to function modCost.

* crosstable (wide) format; this is a matrix, where each column denotes one dependent (or
independent) variable; the column name is the name of the observed variable. When using this
format, only the name of the column that contains the dependent variable must be specified

(x).

As an example of both formats consider the data, called Dat consisting of two observed variables,
called "Obs1" and "Obs2", both containing two observations, at time 1 and 2:

name time val err
Obsl 1 50 5
Obsl 2 150 15
Obs2 1 1 0.1
Obs2 2 2 0.2
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for the long format and

time Obsl Obs2
1 50 1
2 150 2

for the crosstab format. Note, that in the latter case it is not possible to provide separate errors per
data point.

By calling modCost several consecutive times (using the cost argument), it is possible to combine
both types of data files.

Value

a list of type modCost containing:

model one value, the model cost, which equals the sum of scaled variable costs (see
details).
minlogp one value, -log(model probablity), where it is assumed that the data are normally

distributed, with standard deviation = error.
var the variable costs, a data.frame with, for each observed variable the following
(see details):
¢ name, the name of the observed variable.

* scale, the scale-factor used to weigh the variable cost, either 1 or 1/(number
observations), defaults to 1.

* N, the number of data points per observed variable.

* SSR.unweighted, the sum of squared residuals per observed variable, un-
weighted.

* SSR, the sum of weighted squared residuals per observed variable(see de-
tails).
residuals the data residual, a data.frame with several columns:
¢ name, the name of the observed variable.
* x, the value of the independent variable (if present).
e obs, the observed variable value.
* mod, the corresponding modeled value.
* weight, the factor used to weigh the residuals, 1/error, defaults to 1.
* res, the weighted residuals between model and observations (mod-obs)*weight.
* res.unweighted, the residuals between model and observations (mod-obs).

Note

In the future, it should be possible to have more than one independent variable present. This is not
yet implemented, but it should allow e.g. to fit time series of spatially dependent variables.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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References

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03

Examples
##
## Type 1 input: name, time, value
##
## Create new data: two observed variables, "a", "b"

Data <- data.frame(name = c(rep(”a”, 4), rep("b"”, 4)),
time = c(1:4, 2:5), val = c(runif(4), 1:4))

## "a nonsense model”

Mod <- function (t, y, par) {
da <- 0
db <- 1
return(list(c(da, db)))

3

out <- ode(y = c(a = 0.5, b = 0.5), times = 0:6, func = Mod, parms = NULL)

Data # Show
out

## The cost function
modCost(model = out, obs = Data, y = "val")

## The cost function with a data error added
Dat2 <- cbind(Data, Err = Data$valx@.1) # error = 10% of value
modCost(model = out, obs = Dat2, y = "val”, err = "Err")

##
## Type 2 input: Matrix format; column names = variable names
#H#

## logistic growth model
1T <- seq(1, 100, 2.5)

NO <- 0.1
r <- 0.5
K <- 100

## analytical solution
Ana <- cbind(time = TT, N = K/(1 + (K/N@ - 1) * exp(-r*TT)))

## numeric solution
logist <- function(t, x, parms) {
with(as.list(parms), {
dx <= r % x[1] *x (1 - x[11/K)
list(dx)


https://doi.org/10.18637/jss.v033.i03
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»
}

time <- 0:100
parms <- c(r = r, K = K)
X <- c(N = No)

## Compare several numerical solutions

Euler <- ode(x, time, logist, parms, hini = 2, method = "euler")

Rk4  <- ode(x, time, logist, parms, hini = 2, method = "rk4")

Lsoda <- ode(x, time, logist, parms) # lsoda is default method

Ana2 <- cbind(time = time, N = K/(1 + (K/N@ - 1) * exp(-r * time)))

## the SSR and residuals with respect to the "data”
cEuler <- modCost(Euler, Ana)$model
cRk4  <- modCost(Rk4 , Ana)$model
cLsoda <- modCost(Lsoda, Ana)$model
cAna  <- modCost(Ana2 , Ana)$model
compare <- data.frame(method = c("euler”, "rk4", "lsoda", "Ana"),
cost = c(cEuler, cRk4, clLsoda, cAna))
## Plot Euler, RK and analytic solution
plot(Euler, Rk4, col = c("red”, "blue"), obs = Ana,
main = "logistic growth”, xlab = "time"”, ylab = "N")

legend("bottomright”, c("exact”, "euler”, "rk4"), pch = c(1, NA, NA),
col = c("black”, "red"”, "blue"), 1ty = c(NA, 1, 2))
legend("right”, ncol = 2, title = "SSR",
legend = c(as.character(compare[,1]),
format(compare[,2], digits = 2)))

compare

##
## Now suppose we do not know K and r and they are to be fitted...
## The "observations” are the analytical solution

##

## Run the model with initial guess: K =10, r = 2
parms["K"] <- 10
parms["r"] <- 2

init <- ode(x, time, logist, parms)

## FITTING algorithm uses modFit
## First define the objective function (model cost) to be minimised

## more general: using modFit
Cost <- function(P) {
parms["K"] <- P[1]
parms["r"] <- P[2]
out <- ode(x, time, logist, parms)
return(modCost(out, Ana))

}
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(Fit<-modFit(p = c(K = 10, r = 2), f = Cost))
summary (Fit)

## run model with the optimized value:
parms[c("K", "r")] <- Fit$par
fitted <- ode(x, time, logist, parms)

## show results, compared with "observations”

plot(init, fitted, col = c("green”, "blue"”), lwd = 2, 1ty =1,
obs = Ana, obspar = list(col = "red"”, pch = 16, cex = 2),
main = "logistic growth”, xlab = "time"”, ylab = "N")

legend("right”, c("initial”, "fitted"), col = c("green”, "blue"), lwd = 2)

Cost(Fit$par)

modCRL

modCRL Monte Carlo Analysis

Description

Given a model consisting of differential equations, estimates the global effect of certain (sensitivity)

parameters on selected sensitivity variables.

This is done by drawing parameter values according to some predefined distribution, running the
model with each of these parameter combinations, and calculating the values of the selected output

variables at each output interval.

This function is useful for “what-if”” scenarios.

If the output variables consist of a time-series or spatially dependent, use sensRange instead.

Usage

modCRL (func, parms = NULL, sensvar = NULL, dist = "unif”,

parInput = NULL, parRange = NULL, parMean = NULL, parCovar = NULL,

num = 100, ...)

## S3 method for class 'modCRL'
summary(object, ...)

## S3 method for class 'modCRL'
plot(x, which = NULL, trace = FALSE, ask = NULL, ...)

## S3 method for class 'modCRL'
pairs(x, which = 1:ncol(x), nsample = NULL, ...)

## S3 method for class 'modCRL'
hist(x, which = 1:ncol(x), ask = NULL, ...)
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Arguments

func

parms

sensvar

dist

parRange

parInput

parMean

parCovar

num

object
X

which

nsample

trace

ask
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an R-function that has as first argument parms and that returns a vector with
variables whose sensitivity should be estimated.

parameters passed to func; should be either a vector, or a list with named ele-
ments. If NULL, then the first element of parInput is taken.

the output variables for which the sensitivity needs to be estimated. Either NULL,
the default=all output variables, or a vector with output variable names (which
should be present in the vector returned by func), or a vector with indices to
output variables as present in the output vector returned by func.

the distribution according to which the parameters should be generated, one
of "unif” (uniformly random samples), "norm”, (normally distributed random
samples), "latin” (latin hypercube distribution), "grid"” (parameters arranged
on a grid).

The input parameters for the distribution are specified by parRange (min,max),
except for the normally distributed parameters, in which case the distribution is
specified by the parameter means parMean and the variance-covariance matrix,
parCovar. Note that, if the distribution is "norm” and parRange is given, then
a truncated distribution will be generated. (This is useful to prevent for instance
that certain parameters become negative). Ignored if parInput is specified.

the range (min, max) of the sensitivity parameters, a matrix or (preferred) a
data.frame with one row for each parameter, and two columns with the mini-
mum (1st) and maximum (2nd) value. The rownames of parRange should be
parameter names that are known in argument parms. Ignored if parInput is
specified.

a matrix with dimension (*, npar) with the values of the sensitivity parameters.

only when dist is "norm”: the mean value of each parameter. Ignored if
parInput is specified.

only when dist is "norm”: the parameter’s variance-covariance matrix.

the number of times the model has to be run. Set large enough. If parInput is
specified, then num parameters are selected randomly (from the rows of parInput.

an object of class modCRL.
an object of class modCRL.

the name or the index to the variables and parameters that should be plotted.
Default = all variables and parameters.

the number of Xy pairs to be plotted on the upper panel in the pairs plot. When
NULL all xy pairs plotted. Set to a lower number in case the graph becomes too
dense (and the exported picture too large). This does not affect the histograms
on the diagonal plot (which are estimated using all values).

if TRUE, adds smoothed line to the plot.

logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask=.) and dev.interactive.

additional arguments passed to function func or to the methods.
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Value

a data.frame of type modCRL containing the parameter(s) and the corresponding values of the sensi-
tivity output variables.

The list returned by modCRL has a method for the generic functions summary and plot — see note.

Note
The following methods are included:

* summary, estimates summary statistics for the sensitivity variables, a table with as many rows
as there are variables (or elements in the vector returned by func) and the following columns:
x, the mapping value, Mean, the mean, sd, the standard deviation, Min, the minimal value, Max,
the maximal value, q25, 950, q75, the 25th, 50 and 75% quantile.

* plot, produces a plot of the modCRL output, either one plot for each sensitivity variable and
with the parameter value on the x-axis. This only works when there is only one parameter!

OR

one plot for each parameter value on the x-axis. This only works when there is only one
variable!

* hist, produces a histogram of the modCRL output parameters and variables.

* pairs, produces a pairs plot of the modCRL output.

The data.frame of type modCRL has several attributes, which remain hidden, and which are generally
not of practical use (they are needed for the S3 methods). There is one exception - see notes in help
of sensRange.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>.

References

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03

Examples

#t
## Bacterial growth model as in Soetaert and Herman, 2009
##

pars <- list(gmax = 0.5,eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01)

solveBact <- function(pars) {
derivs <- function(t,state,pars) { # returns rate of change
with (as.list(c(state,pars)), {
dBact <- gmaxxeff x Sub/(Sub + ks)*Bact - dB*Bact - rBxBact
dSub <- -gmax * Sub/(Sub + ks)*Bact + dB*Bact
return(list(c(dBact, dSub)))
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byl
b

state <- c(Bact = 0.1, Sub = 100)

tout <- seq(@, 50, by = 0.5)

## ode solves the model by integration...

return(as.data.frame(ode(y = state, times = tout, func = derivs,
parms = pars)))

3
out <- solveBact(pars)

plot(out$time, out$Bact, main = "Bacteria”,
xlab = "time, hour"”, ylab = "molC/m3", type = "1", lwd = 2)

## Function that returns the last value of the simulation
SF <- function (p) {

pars["eff"] <- p

out <- solveBact(pars)

return(out[nrow(out), 2:3])

3

parRange <- matrix(nr = 1, nc = 2, c(0.2, 0.8),
dimnames = list("eff"”, c("min”, "max")))

parRange

CRL <- modCRL(func = SF, parRange = parRange)

plot(CRL) # plots both variables
plot(CRL, which = c("eff"”, "Bact"), trace = FALSE) #selects one

modFit Constrained Fitting of a Model to Data

Description

Fitting a model to data, with lower and/or upper bounds

Usage

modFit(f, p, ..., lower = -Inf, upper = Inf,
method = c("Marqg”, "Port"”, "Newton",
"Nelder-Mead”, "BFGS", "CG", "L-BFGS-B", "SANN",
"Pseudo”, "bobyga"), jac = NULL,
control = list(), hessian = TRUE)

## S3 method for class 'modFit'
summary (object, cov=TRUE,...)
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## S3 method for class 'modFit'
deviance(object, ...)

## S3 method for class 'modFit'
coef(object, ...)

## S3 method for class 'modFit'
residuals(object, ...)

## S3 method for class 'modFit'
df.residual (object, ...)

## S3 method for class 'modFit'
plot(x, ask = NULL, ...)

## S3 method for class 'summary.modFit'
print(x, digits = max(3, getOption("digits"”) - 3),

.2
Arguments

f a function to be minimized, with first argument the vector of parameters over
which minimization is to take place. It should return either a vector of residuals
(of model versus data) or an element of class modCost (as returned by a call to
modCost.

p initial values for the parameters to be optimized over.
additional arguments passed to function f (modFit) or passed to the methods.

lower lower bounds on the parameters; if unbounded set equal to -Inf.

upper upper bounds on the parameters; if unbounded set equal to Inf.

method The method to be used, one of "Marq", "Port", "Newton", "Nelder-Mead", "BFGS",
"CG", "L-BFGS-B", "SANN", "Pseudo", "bobyqa" - see details.

jac A function that calculates the Jacobian; it should be called as jac(x, ...) and
return the matrix with derivatives of the model residuals as a function of the
parameters. Supplying the Jacobian can substantially improve performance; see
last example.

hessian TRUE if Hessian is to be estimated. Note that, if set to FALSE, then a summary
cannot be estimated.

control additional control arguments passed to the optimisation routine - see details of
nls.1lm ("Marq"), nIminb ("Port"), optim ("Nelder-Mead", "BFGS", "CG", "L-
BFGS-B", "SANN"), nlm ("Newton") or pseudoOptim("Pseudo").

object an object of class modFit.

X an object of class modFit.

digits number of significant digits in printout.

cov when TRUE also calculates the parameter covariances.
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ask logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask=.) and dev.interactive.

Details

Note that arguments after . . . must be matched exactly.
The method to be used is specified by argument method which can be one of the methods from
function optim:

¢ "Nelder-Mead", the default from optim,

* "BFGS", a quasi-Newton method,

* "CG", a conjugate-gradient method,

* "L-BFGS-B", constrained quasi-Newton method,

* "SANN", method of simulated annealing.

Or one of the following:
* "Marq", the Levenberg-Marquardt algorithm (nls.1m from package minpack) - the default.
Note that this method is the only least squares method.
» "Newton", a Newton-type algorithm (see nlm),
* "Port", the Port algorithm (see nlminb),
* "Pseudo", a pseudorandom-search algorithm (see pseudoOptim),
* "bobyqa", derivative-free optimization by quadratic approximation from package minga.
For difficult problems it may be efficient to perform some iterations with Pseudo, which will bring

the algorithm near the vicinity of a (the) minimum, after which the default algorithm (Marq) is used
to locate the minimum more precisely.

The implementation for the routines from optim differs from constrOptim which implements an
adaptive barrier algorithm and which allows a more flexible implementation of linear constraints.

For all methods except L-BFGS-B, Port, Pseudo, and bobyga that handle box constraints internally,
bounds on parameters are imposed by a transformation of the parameters to be fitted.

In case both lower and upper bounds are specified, this is achieved by a tangens and arc tangens
transformation.

This is, parameter values, p’, generated by the optimisation routine, and which are located in the
range [-Inf, Inf] are transformed, before they are passed to f as:

p = (upper + lower) /2 + (upper — lower) - arctan(p') /=

which maps them into the interval [lower, upper].

Before the optimisation routine is called, the original parameter values, as given by argument p are
mapped from [lower,upper] to [-Inf, Inf] by:

p’ = tan(mw/2 - (2p — upper — lower)/(upper — lower))
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In case only lower or upper bounds are specified, this is achieved by a log transformation and a
corresponding exponential back transformation.

In case parameters are transformed (all methods) or in case the method Port, Pseudo, Marq or
bobyqa is selected, the Hessian is approximated as 2 - J T'. J, where J is the Jacobian, estimated by
finite differences.

This ignores the second derivative terms, but this is reasonable if the method has truly converged to
the minimum.

Note that finite differences are not extremely precise.

In case the Levenberg-Marquard method (Marq) is used, and parameters are not transformed, 0.5
times the Hessian of the least squares problem is returned by nls. 1m, the original Marquardt algo-
rithm. To make it compatible, this value is multiplied with 2 and the TRUE Hessian is thus returned
by modFit.

Value

a list of class modFit containing the results as returned from the called optimisation routines.

This includes the following:

par the best set of parameters found.

ssr the sum of squared residuals, evaluated at the best set of parameters.

Hessian A symmetric matrix giving an estimate of the Hessian at the solution found - see
note.

residuals the result of the last f evaluation; that is, the residuals.

ms the mean squared residuals, i.e. ssr/length(residuals).

var_ms the weighted and scaled variable mean squared residuals, one value per observed

variable; only when f returns an element of class modCost; NA otherwise.

var_ms_unscaled
the weighted, but not scaled variable mean squared residuals

var_ms_unweighted
the raw variable mean squared residuals, unscaled and unweighted.

any other arguments returned by the called optimisation routine.

Note: this means that some return arguments of the original optimisation functions are renamed.

More specifically, "objective" and "counts" from routine nlminb (method = "Port") are renamed;
"value" and "counts"; "niter" and "minimum" from routine nls.1m (method=Marq) are renamed;
"counts" and "value"; "minimum" and "estimate" from routine nlm (method = "Newton") are re-
named.

The list returned by modFit has a method for the summary, deviance, coef, residuals, df.residual
and print.summary — see note.
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Note

The summary method is based on an estimate of the parameter covariance matrix. In computing the
covariance matrix of the fitted parameters, the problem is treated as if it were a linear least squares
problem, linearizing around the parameter values that minimize Chi?.

The covariance matrix is estimated as 1/(0.5 - Hessian).

This computation relies on several things, i.e.:

1. the parameter values are located at the minimum (i.e. the fitting algorithm has converged).

2. the observations y; are subject to independent errors whose variances are well estimated by
1/(n — p) times the residual sum of squares (where n = number of data points, p = number of
parameters).

3. the model is not too nonlinear.

This means that the estimated covariance (correlation) matrix and the confidence intervals derived
from it may be worthless if the assumptions behind the covariance computation are invalid.

If in doubt about the validity of the summary computations, use Monte Carlo fitting instead, or run
a modMCMC.

Other methods included are:

e deviance, which returns the model deviance,
* coef, which extracts the values of the fitted parameters,
¢ residuals,which extracts the model residuals,
* df.residual which returns the residual degrees of freedom
e print.summary, producing a nice printout of the summary.
Specifying a function to estimate the Jacobian matrix via argument jac may increase speed. The

Jacobian is used in the methods "Marq", "BFGS", "CG", "L-BFGS", "Port", and is also used at the
end, to estimate the Hessian at the optimum.

Specification of the gradient in routines "BFGS", "CG", "L-BFGS" from optim and "port" from
nlminb is not allowed here. Within modFit, the gradient is rather estimated from the Jacobian jac
and the function f.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>,

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

References

Bates, D., Mullen, K. D. Nash, J. C. and Varadhan, R. 2014. minqa: Derivative-free optimization
algorithms by quadratic approximation. R package. https://cran.r-project.org/package=
minga

Gay, D. M., 1990. Usage Summary for Selected Optimization Routines. Computing Science Tech-
nical Report No. 153. AT&T Bell Laboratories, Murray Hill, NJ 07974.
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Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization without
derivatives. Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of
Cambridge, UK. https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 2007. Numerical Recipes in C.
Cambridge University Press.

Price, W.L., 1977. A Controlled Random Search Procedure for Global Optimisation. The Computer
Journal, 20: 367-370. doi:10.1093/comjnl/20.4.367

Soetaert, K. and Petzoldt, T. 2010. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R
Using Package FME. Journal of Statistical Software 33(3) 1-28. doi:10.18637/jss.v033.i03

Please see also additional publications on the help pages of the individual algorithms.

See Also

constrOptim for constrained optimization.

Examples
##
## logistic growth model
##
TT < seq(1, 60, 5)
NO <- 0.1
r <- 0.5
K <- 100

## perturbed analytical solution
Data <- data.frame(
time = TT,
N =K / (1+(K/No-1) * exp(-r*TT)) * (1 + rnorm(length(TT), sd = 0.01))

)

plot(TT, Datal,"N"]1, ylim = c(@, 120), pch = 16, col = "red",
main = "logistic growth”, xlab = "time”, ylab = "N")

HH
Hi
HH

## Fitted with analytical solution #

T
HH#
HH

## initial "guess”
parms <- c(r = 2, K =10, No = 5)

## analytical solution
model <- function(parms,time)

with (as.list(parms), return(K/(1+(K/NO-1)xexp(-r*xtime))))

## run the model with initial guess and plot results
lines(TT, model(parms, TT), lwd = 2, col = "green")

## FITTING algorithm 1
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ModelCost <- function(P) {
out <- model(P, TT)
return(Data$N-out) # residuals

}
(Fita <- modFit(f = ModelCost, p = parms))
times <- 0:60

lines(times, model(Fita$par, times), lwd = 2, col = "blue")
summary (Fita)

## Fitted with numerical solution #

HH#:

## numeric solution
logist <- function(t, x, parms) {
with(as.list(parms), {
dx <- r = x[1] * (1 - x[11/K)
list(dx)
D)
}

## model cost,
ModelCost2 <- function(P) {
out <- ode(y = ¢(N = PL["N@"]]), func = logist, parms = P, times = c(@, TT))
return(modCost(out, Data)) # object of class modCost
}

Fit <- modFit(f = ModelCost2, p = parms, lower = rep(@, 3),
upper = c(5, 150, 10))

out <- ode(y = c(N = Fit$par[["N@"]1]1), func = logist, parms = Fit$par,
times = times)

lines(out, col = "red”, 1ty = 2)

legend("right”, c("data”, "original”, "fitted analytical”, "fitted numerical”),
1ty = c(NA, 1, 1, 2), lwd = c(NA, 2, 2, 1),
col = c("red”, "green", "blue"”, "red"), pch = c(16, NA, NA, NA))

summary (Fit)

plot(residuals(Fit))

#H#
## the use of the Jacobian
##

## We use modFit to solve a set of linear equations
A <- matrix(nr = 30, nc = 30, runif(900))

X <- runif(30)

B <- A %x% X

## try to find vector "X"; the Jacobian is matrix A

29
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## Function that returns the vector of residuals
FUN <- function(x)
as.vector(A %*% x - B)

## Function that returns the Jacobian
JAC <- function(x) A

## The port algorithm
print(system.time(

mf <- modFit(f = FUN, p
)
print(system.time(

mf <- modFit(f = FUN, p
)
max(abs(mf$par - X)) # should be very small

runif(30), method = "Port")

runif(30), method = "Port”, jac = JAC)

## BFGS
print(system.time(

mf <- modFit(f = FUN, p
))
print(system.time(

mf <- modFit(f = FUN, p
)
max (abs(mf$par - X))

runif(30), method = "BFGS")

runif(30), method = "BFGS", jac = JAC)

## Levenberg-Marquardt
print(system.time(

mf <- modFit(f = FUN, p
)
max (abs(mf$par - X))

runif(30), jac = JAC)

modMCMC

modMCMC Constrained Markov Chain Monte Carlo

Description

Performs a Markov Chain Monte Carlo simulation, using an adaptive Metropolis (AM) algorithm

and including a delayed rejection (DR) procedure.

Usage

modMCMC(f, p, ..., jump = NULL, lower = -Inf, upper = +Inf,
prior = NULL, var® = NULL, wvar@ = NULL, n@ = NULL,
niter = 1000, outputlength = niter, burninlength = 0,
updatecov = niter, covscale = 2.4%2/length(p),
ntrydr = 1, drscale = NULL, verbose = TRUE)

## S3 method for class 'modMCMC'
summary(object, remove = NULL, ...)
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## S3 method for class 'modMCMC'
pairs(x, Full = FALSE, which = 1:ncol(x$pars),
remove = NULL, nsample = NULL, ...)

## S3 method for class 'modMCMC'
hist(x, Full = FALSE, which = 1:ncol(x$pars),
remove = NULL, ask = NULL, ...)

## S3 method for class 'modMCMC'
plot(x, Full = FALSE, which = 1:ncol(x$pars),
trace = TRUE, remove = NULL, ask = NULL, ...)

Arguments

.f_‘

jump

prior

varo

wvaro
no

lower
upper
niter

outputlength

the function to be evaluated, with first argument the vector of parameters which
should be varied. It should return either the model residuals, an element of class
modCost (as returned by a call to modCost) or -2*log(likelihood). The latter
is equivalent to the sum-of-squares functions when using a Gaussian likelihood
and prior.

initial values for the parameters to be optimized over.
additional arguments passed to function f or to the methods.

jump length, either a number, a vector with length equal to the total number
of parameters, a covariance matrix, or a function that takes as input the current
values of the parameters and produces as output the perturbed parameters. See
details.

-2*log(parameter prior probability), either a function that is called as prior(p)
or NULL; in the latter case a non-informative prior is used (i.e. all parameters are
equally likely, depending on lower and upper within min and max bounds).

initial model variance; if NULL, it is assumed that the model variance is 1, and the
return element from f is -2*log (likelihood). If it has a value, it is assumed that
the return element from f contain the model residuals or a list of class modFit.
See details. Good options for var® are to use the modelvariance (modVariance)
as returned by the summary method of modFit. When this option is chosen, and
the model has several variables, they will all be scaled similarly. See vignette
FMEdyna. In case the model has several variables with different magnitudes,
then it may be better to scale each variable independently. In that case, one can
use as vard, the mean of the unweighted squared residuals from the model fit as
returned from modFit (var_ms_unweighted). See vignette FME.

"weight" for the initial model variance — see details.

parameter used for weighing the initial model variance - if NULL, it is estimated
as n@=wvar@xn, where n = number of observations. See details.

lower bounds on the parameters; for unbounded parameters set equal to -Inf.
upper bounds on the parameters; for unbounded parameters set equal to Inf.
number of iterations for the MCMC.

number of iterations kept in the output; should be smaller or equal to niter.
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updatecov

covscale

burninlength
ntrydr

drscale

verbose

object
X
Full

which

trace

remove

nsample

ask

Details

modMCMC

number of iterations after which the parameter covariance matrix is (re)evaluated
based on the parameters kept thus far, and used to update the MCMC jumps.

scale factor for the parameter covariance matrix, used to perform the MCMC
jumps.

number of initial iterations to be removed from output.

maximal number of tries for the delayed rejection procedure. It is generally not
a good idea to set this to a too large value.

for each try during delayed rejection, the cholesky decomposition of the pro-
posal matrix is scaled with this amount; if NULL, it is assumed to be c(@.2,0.25,
9.333, 0.333, ...)

if TRUE or 1: prints extra output, if numeric value i > 1, prints status information
every i iterations.

an object of class modMCMC.
an object of class modMCMC.

If TRUE then not only the parameters will be plotted, but also the function value
and (if appropriate) the model variance(s).

the name or the index to the parameters that should be plotted. Default = all pa-
rameters. If FUll=TRUE, setting which = NULL will plot only the function value
and the model variance.

if TRUE, adds smoothed line to the plot.

a list with indices of the runs that should be removed (e.g. to remove runs during
burnin).

the number of xy pairs to be plotted on the upper panel in the pairs plot. When
NULL all xy pairs plotted. Set to a lower number in case the graph becomes too
dense (and the exported picture too large). This does not affect the histograms
on the diagonal plot (which are estimated using all MCMC draws).

logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par (ask=.) and dev.interactive.

Note that arguments after ... must be matched exactly.

R-function f is called as f(p,

...). It should return either -2 times the log likelihood of the model

(one value), the residuals between model and data or an item of class modFit (as created by function

modFit.

In the latter two cases, it is assumed that the prior distribution for 6 is either non-informative or
gaussian. If gaussian, it can be treated as a sum of squares (SS). If the measurement function is

defined as:

y=f(0) + & N(0,0?)

where ¢ is the measurement error, assumed normally distribution, then the posterior for the param-
eters will be estimated as:
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S5(6)

o2

p(8ly, 0?) o exp(—0.5 - ( + 55,r:(0))
and where o2 is the error variance, SS is the sum of squares function SS(0) = Y (y; — f(6))%. If
non-informative priors are used, then S.5,,;(8) = 0.

The error variance o2 is considered a nuisance parameter. A prior distribution of it should be

specified and a posterior distribution is estimated.

If wvar@ or n@ is >0, then the variances are sampled as conjugate priors from the inverse gamma
distribution with parameters var@ and n@=wvar@#*n. Larger values of wvar@ keep these samples
closer to varo.

Thus, at each step, 1/ the error variance (¢~ 2) is sampled from a gamma distribution:

(no+n) (no-vard+ SS(G)))
2 ’ 2

p(o2ly,0) ~ T(

where n is the number of data points and where n0 = n - wvar(, and where the second argument
to the gamma function is the shape parameter.

The prior parameters (var@ and wvar®) are the prior mean for o2 and the prior accuracy.
By setting wvar® equal to 1, equal weight is given to the prior and the current value.

If wvar@ is 0 then the prior is ignored.

If wvar@ is NULL (the default) then the error variances are assumed to be fixed.

var@ estimates the variance of the measured components. In case independent estimates are not
available, these variances can be obtained from the mean squares of fitted residuals. (e.g. as reported
in modFit). See the examples. (but note that this is not truly independent information)

vara®@ is either one value, or a value for each observed variable, or a value for each observed data
point.

When var@ is not NULL, then f is assumed to return the model residuals OR an instance of class
modCost.

When var@=NULL, then f should return either -2*log(probability of the model), or an instance of
class modCost.

modMCMC implements the Metropolis-Hastings method. The proposal distribution, which is used to
generate new parameter values is the (multidimensional) Gaussian density distribution, with stan-
dard deviation given by jump.

jump can be either one value, a vector of length = number of parameters or a parameter covariance
matrix (nrow = ncol = number parameters).

The jump parameter, jump thus determines how much the new parameter set will deviate from the
old one.

If jump is one value, or a vector, then the new parameter values are generated by sampling a normal
distribution with standard deviation equal to jump. A larger value will lead to larger jumps in the
parameter space, but acceptance of new points can get very low. Smaller jump lengths increase the
acceptance rate, but the algorithm may move too slowly, and too many runs may be needed to scan
the parameter space.

If jump is NULL, then the jump length is taken as 10% of the parameter value as given in p.
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jump can also be a proposal covariance matrix. In this case, the new parameter values are generated
by sampling a multidimensional normal distribution. It can be efficient to initialise jump using the
parameter covariance as resulting from fitting the model (e.g. using modFit) — see examples.

Finally, jump can also be an R-function that takes as input the current values of the parameters and
returns the new parameter values.

Two methods are implemented to increase the number of accepted runs.

1. In the "adaptive Metropolis" method, new parameters are generated with a covariance matrix
that is estimated from the parameters generated (and saved) thus far. The idea behind this is
that the MCMC method is more efficient if the proposal covariance (to generate new parameter
values) is somehow tuned to the shape and size of the target distribution.

Setting updatecov smaller than niter will trigger this functionality. In this case, every
updatecov iterations, the jump covariance matrix will be estimated from the covariance ma-
trix of the saved parameter values. The covariance matrix is scaled with (2.4% /npar) where
npar is the number of parameters, unless covscale has been given a different value. Thus,
Jump = (cov(1, 02, ....0,) - diag(np, +1e~1¢) - (2.4% /npar) where the small number 1e =16
is added on the diagonal of the covariance matrix to prevent it from becoming singular.

Note that a problem of adapting the proposal distribution using the MCMC results so far is
that standard convergence results do not apply. One solution is to use adaptation only for the
burn-in period and discard the part of the chain where adaptation has been used.

Thus, when using updatecov with a positive value of burninlength, the proposal distribution
is only updated during burnin. If burninlength = 0 though, the updates occur throughout the
entire simulation.

When using the adaptive Metropolis method, it is best to start with a small value of the jump
length.

2. Inthe "delayed rejection” method, new parameter values are tried upon rejection. The process

of delaying rejection can be iterated for at most ntrydr trials. Setting ntrydr equal to 1 (the
default) toggles off delayed rejection.
During the delayed rejection procedure, new parameters are generated from the last accepted
value by scaling the jump covariance matrix with a factor as specified in drscale. The accep-
tance probability of this new set depends on the candidates so far proposed and rejected, in
such a way that reversibility of the Markov chain is preserved. See Haario et al. (2005, 2006)
for more details.

Convergence of the MCMC chain can be checked via plot, which plots for each iteration the values
of all parameters, and if Full is TRUE, of the function value (SS) and (if appropriate) the modeled
variance. If converged, there should be no visible drift.

In addition, the methods from package coda become available by making the object returned by
modMCMC of class memc, as used in the methods of coda. For instance, if object MCMCres is returned
by modMCMC then as.mcmec (MCMCres$pars) will make an instance of class mcmc, usable by coda.

The burninlength is the number of initial steps that is not included in the output. It can be useful
if the initial value of the parameters is far from the optimal value. Starting the MCMC with the best
fit parameter set will alleviate the need for using burninlength.

Value

a list of class modMCMC containing the results as returned from the Markov chain.

This includes the following:
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pars an array with dimension (outputlength, length(p)), containing the parameters
of the MCMC at each iteration that is kept.
SS vector with the sum of squares function, one for each row in pars.
naccepted the number of accepted runs.
sig the sampled error variance %, a matrix with one row for each row in pars.
bestpar the parameter set that gave the highest probability.
bestfunp the function value corresponding to bestpar.
prior the parameter prior, one value for each row in pars.
count information about the MCMC chain: number of delayed rejection steps (dr_steps),

the number of alfa steps Alfasteps, the number of accepted runs (num_accepted)
and the number of times the proposal covariance matrix has been updated (num_covupdate.)

settings the settings for error covariance calculation, i.e. arguments var@, n@ and N the
number of data points.

The list returned by modMCMC has methods for the generic functions summary, plot, pairs — see
note.

Note
The following S3 methods are provided:

* summary, produces summary statistics of the MCMC results
* plot, plots the MCMC results, for all parameters. Use it to check convergence.
* pairs, produces a pairs plot of the MCMC results; overrides the default gap = @, upper.panel
=NA, and diag.panel.
It is also possible to use the methods from the coda package, e.g. densplot.

To do that, first the modMCMC object has to be converted to an mcmc object. See the examples for an
application.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>
Marko Laine <Marko.Laine @fmi.fi>

References

Laine, M., 2008. Adaptive MCMC Methods With Applications in Environmental and Geophysi-
cal Models. Finnish Meteorological Institute contributions 69, ISBN 978-951-697-662-7, Finnish
Meteorological Institute, Helsinki.
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See Also

modFit for constrained model fitting

Examples

##
## Sampling a 3-dimensional normal distribution,
##
# mean = 1:3, sd = 0.1

# f returns -2xlog(probability) of the parameter values

NN <- function(p) {

mu <- ¢(1,2,3)

-2xsum(log(dnorm(p, mean = mu, sd = 0.1)))  #-2*xlog(probability)
3

# simple Metropolis-Hastings
MCMC <- modMCMC(f = NN, p = 0:2, niter = 5000,
outputlength = 1000, jump = 0.5)

# More accepted values by updating the jump covariance matrix...

MCMC <- modMCMC(f = NN, p = 0:2, niter = 5000, updatecov = 100,
outputlength = 1000, jump = 0.5)

summary (MCMC)

plot(MCMC)  # check convergence
pairs(MCMC)

##
## test 2: sampling a 3-D normal distribution, larger standard deviation...
## noninformative priors, lower and upper bounds imposed on parameters

##

NN <- function(p) {

mu <- ¢(1,2,2.5)

-2*sum(log(dnorm(p, mean = mu, sd = 0.5))) #-2xlog(probability)
3

MCMC2 <- modMCMC(f = NN, p = 1:3, niter = 2000, burninlength = 500,
updatecov = 10, jump = 0.5, lower = c(0, 2, 1), upper = c(1, 3, 3))

plot (MCMC2)

hist(MCMC2, breaks = 20)

## Compare output of p3 with theoretical distribution
hist(MCMC2, which = "p3", breaks = 20)
lines(seq(1, 3, 0.1), dnorm(seq(1, 3, @.1), mean = 2.5,
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sd = 0.5)/pnorm(3, 2.5, 0.5))
summary (MCMC2)

# functions from package coda...
cumuplot (as.mecmc(MCMC2$pars))
summary (as.mcmc (MCMC2$pars))
raftery.diag(MCMC2$pars)

#H#
## test 3: sampling a log-normal distribution, log mean=1:4, log sd = 1
##

NL <- function(p) {

mu <- 1:4

-2*%sum(log(dlnorm(p, mean = mu, sd = 1))) #-2*log(probability)
}
MCMC1 <- modMCMC(f = NL, p = log(1:4), niter = 3000,

outputlength = 1000, jump = 5)

plot(MCMC1)  # bad convergence
cumuplot(as.mcmc(MCMCl$pars))

MCMC1 <- modMCMC (f = NL, p = log(1:4), niter = 3000,
outputlength = 1000, jump = 2%(2:5))

plot(MCMCl) # better convergence but CHECK it!

pairs(MCMC1)

colMeans(log(MCMCl$pars))

apply(log(MCMCl$pars), 2, sd)

MCMC1 <- modMCMC (f = NL, p = rep(1, 4), niter = 3000,
outputlength = 1000, jump = 5, updatecov = 100)

plot(MCMC1)

colMeans(log(MCMCl$pars))

apply(log(MCMCl$pars), 2, sd)

#i#t
## Fitting a Monod (Michaelis-Menten) function to data
##

# the observations
Obs <- data.frame(x=c( 28, 55, 83, 11e, 138, 225, 375), # mg COD/1
y=c(0.053,0.06,0.112,0.105,0.099,0.122,0.125))  # 1/hour
plot(Obs, pch = 16, cex = 2, xlim = c(@, 400), ylim = c(@, 0.15),
xlab = "mg COD/1", ylab = "1/hr", main = "Monod")
# the Monod model
Model <- function(p, x) data.frame(x = x, N = p[1]1*x/(x+p[2]))

# Fitting the model to the data

# define the residual function
Residuals <- function(p) (Obs$y - Model(p, Obs$x)$N)
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# use modFit to find parameters
P <- modFit(f = Residuals, p = c(0.1, 1))

# plot best-fit model
X <-0:375
lines(Model(P$par, x))

# summary of fit

sP <- summary(P)
sP[]
print(sP)

# Running an MCMC

# estimate parameter covariances
# (to efficiently generate new parameter values)
Covar  <- sP$cov.scaled * 2.4"2/2

# the model variance
s2prior <- sP$modVariance

# set nprior = @ to avoid updating model variance
MCMC <- modMCMC(f = Residuals, p = P$par,jump = Covar, niter = 1000,
var@ = s2prior, wvar@ = NULL, updatecov = 100)

plot(MCMC, Full = TRUE)
pairs(MCMC)

# function from the coda package.
raftery.diag(as.mcmc(MCMCS$pars))
cor (MCMC$pars)

cov(MCMC$pars)  # covariances by MCMC
sP$cov.scaled # covariances by Hessian of fit

X <= 1:400

SR <- summary(sensRange(parInput = MCMC$pars, func = Model, x = x))
plot(SR, xlab="mg COD/1", ylab = "1/hr", main = "Monod")
points(Obs, pch = 16, cex = 1.5)

Norm Normal Random Distribution

Description

Generates random parameter sets that are (multi)normally distributed.

Usage

Norm(parMean, parCovar, parRange = NULL, num)
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Arguments

parMean
parCovar

parRange

num

Details
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a vector, with the mean value of each parameter.
the parameter variance-covariance matrix.

the range (min, max) of the parameters, a matrix or a data.frame with one row
for each parameter, and two columns with the minimum (1st) and maximum
(2nd) column.

the number of random parameter sets to generate.

Function Norm, draws parameter sets from a multivariate normal distribution, as specified through
the mean value and the variance-covariance matrix of the parameters. In addition, it is possible to
impose a minimum and maximum of each parameter, via parRange. This will generate a truncated
distribution. Use this for instance if certain parameters cannot become negative.

Value

a matrix with one row for each generated parameter set, and one column per parameter.

Note

For function Norm

to work, parCovar must be a valid variance-covariance matrix. (i.e. positive

definite). If this is not the case, then the function will fail.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

See Also

Unif for uniformly distributed random parameter sets.

Latinhyper to generates parameter sets using latin hypercube sampling.

Grid to generate random parameter sets arranged on a regular grid

rnorm the R-default for generating normally distributed random numbers.

Examples

## multinormal parameters: variance-covariance matrix and parameter mean
parCovar <- matrix(data = c(@0.5, -0.2, 0.3, 0.4, -0.2, 1.0, 0.1, 0.3,

parCovar

parMean <- 4:1

0.3, 0.1, 1.5, -0.7, 1.0, 0.3, -0.7, 4.5), nrow = 4)

## Generated sample
Ndist <- Norm(parCovar = parCovar, parMean = parMean, num = 500)
cov(Ndist) # check

pairs(Ndist, main

= "normal™)
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## truncated multinormal
Ranges <- data.frame(min = rep(@, 4), max = rep(Inf, 4))

pairs(Norm(parCovar = parCovar, parMean = parMean, parRange = Ranges,

num

500), main = "truncated normal")

obsplot

Plot Method for observed data

Description

Plot all observed variables in matrix formalt

Usage

obsplot(x,

Arguments

X

which

ask

Xyswap

., which = NULL, xyswap = FALSE, ask = NULL)

amatrix or data.frame, containing the observed data to be plotted. The "x’-
values (first axis) should be the first column.

Several other matrices or data.frames can be passed in the . . ., after x (unnamed)
- see second example.

If the first column of x consists of factors, or characters (strings), then it is
assumed that the data are presented in long (database) format, where the first
three columns contain (name, X, y). See last example.

the name(s) or the index to the variables that should be plotted. Default = all
variables, except the first column.

logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask=.) and dev.interactive.

if TRUE, then x-and y-values are swapped and the y-axis is from top to bottom.
Useful for drawing vertical profiles.

additional arguments.

The graphical arguments are passed to plot.default and points.

The dots may contain other matrices and data.frames with observed data to be
plotted on the same graphs as x - see second example.

The arguments after ... must be matched exactly.
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Details

The number of panels per page is automatically determined up to 3 x 3 (par(mfrow = c(3, 3))).
This default can be overwritten by specifying user-defined settings for mfrow or mfcol. Set mfrow
equal to NULL to avoid the plotting function to change user-defined mfrow or mfcol settings.

Other graphical parameters can be passed as well. Parameters are vectorized, either according to the

number of plots (x1ab, ylab,main, sub,xlim, ylim, log, asp, ann, axes, frame.plot,panel.first,panel.last,
cex.lab,cex.axis,cex.main) or according to the number of lines within one plot (other parame-

ters e.g. col, 1ty, lwd etc.) so it is possible to assign specific axis labels to individual plots, resp.

different plotting style. Plotting parameter ylim, or x1im can also be a list to assign different axis

limits to individual plots.

See Also

print.deSolve, ode, deSolve

Examples

## 'observed' data

AIRquality <- cbind(DAY = 1:153, airquality[, 1:4])
head(AIRquality)

obsplot(AIRquality, type="1", xlab="Day since May")

## second set of observed data
AIR2 <- cbind( 1:100, Solar.R = 250 * runif(100), Temp = 90-30*cos(2*pi*1:100/365) )

obsplot(AIRquality, AIR2, type = "1", xlab = "Day since May” , 1lwd = 1:2)

obsplot(AIRquality, AIR2, type = "1", xlab = "Day since May" ,
lwd = 1 : 2, which =c("Solar.R", "Temp"),
xlim = list(c(@, 150), c(@, 100)))

obsplot(AIRquality, AIR2, type = "1", xlab = "Day since May" ,
lwd = 1 : 2, which =c("Solar.R", "Temp"), log = c("y", ""))

obsplot(AIRquality, AIR2, which = 1:3, xyswap = c(TRUE,FALSE,TRUE))

## ' a data.frame, with 'treatments', presented in long database format
Data <- ToothGrowth[,c(2,3,1)]

head (Data)

obsplot(Data, ylab = "len"”, xlab = "dose")

# same, plotted as two observed data sets
obsplot(subset(ToothGrowth, supp == "VC", select = c(dose, len)),
subset(ToothGrowth, supp == "0J", select = c(dose, len)))
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pseudoOptim

Pseudo-random Search Optimisation Algorithm of Price (1977)

Description

Fits a model to data, using the pseudo-random search algorithm of Price (1977), a random-based

fitting technique.

Usage
pseudoOptim(f, p,..., lower, upper, control = list())
Arguments
f function to be minimised, its first argument should be the vector of parameters
over which minimization is to take place. It should return a scalar result, the
model cost, e.g the sum of squared residuals.
p initial values of the parameters to be optimised.
arguments passed to function f.
lower minimal values of the parameters to be optimised; these must be specified; they
cannot be -Inf.
upper maximal values of the parameters to be optimised; these must be specified; they
cannot be +Inf.
control a list of control parameters - see details.
Details

The control argument is a list that can supply any of the following components:

* npop, number of elements in the population. Defaults to max(5*length(p),50).

* numiter, maximal number of iterations to be performed. Defaults to 10000. The algorithm
either stops when numiter iterations has been performed or when the remaining variation is
less than varleft.

* centroid, number of elements from which to estimate a new parameter vector, defaults to 3.

* varleft, relative variation remaining; if below this value the algorithm stops; defaults to le-8.

* verbose, if TRUE, more verbose output will contain the parameters in the final population,
their respective population costs and the cost at each succesful interation. Defaults to FALSE.

see the book of Soetaert and Herman (2009) for a description of the algorithm AND for a line to
line explanation of the function code.
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Value
a list containing:

par the optimised parameter values.

cost the model cost, or function evaluation associated to the optimised parameter
values, i.e. the minimal cost.

iterations the number of iterations performed.

and if control$verbose is TRUE:

poppar all parameter vectors remaining in the population, matrix of dimension (npop,length(par)).
popcost model costs associated with all population parameter vectors, vector of length

npop.
rsstrace a 2-columned matrix with the iteration number and the model cost at each suc-

cesful iteration.

Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

References

Soetaert, K. and Herman, P. M. J., 2009. A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer, 372 pp.

Price, W.L., 1977. A Controlled Random Search Procedure for Global Optimisation. The Computer
Journal, 20: 367-370.

Examples

amp <- 6
period <- 5
phase <- 0.5

X <= runif(20)*13
y <- amp*sin(2*pixx/period+phase) + rnorm(20, mean = @, sd = 0.05)
plot(x, y, pch = 16)

cost <- function(par)
sum((par[1] * sin(2*pi*x/par[2]+par[3])-y)*2)

1, phase = 1, period
1, phase = 1, period

1), fn cost)
1), fn = cost,

p1 <- optim(par = c(amplitude
p2 <- optim(par = c(amplitude
method = "SANN")
p3 <- pseudoOptim(p = c(amplitude = 1, phase = 1, period = 1),
lower = c(@, 1e-8, @), upper = c(100, 2*pi, 100),
f = cost, control = c(numiter = 3000, verbose = TRUE))

TRUE)
TRUE)

curve(pl1$par[1]*sin(2xpixx/pi$par[2]+pi$par[3]), lty
curve(p2$par[1]*sin(2xpixx/p2$par[2]+p2$par[3]), lty

2, add
3, add
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curve(p3$par[1]*sin(2xpixx/p3$par[2]+p3$par[3]), 1ty = 1, add = TRUE)
legend ("bottomright”, lty = c(1, 2, 3),
c("Price”, "Mathematical”, "Simulated annealing”))

sensFun Local Sensitivity Analysis

Description

Given a model consisting of differential equations, estimates the local effect of certain parameters
on selected sensitivity variables by calculating a matrix of so-called sensitivity functions. In this
matrix the (i,j)-th element contains

82/1‘ ] A@J
8@j Ayl

and where y; is an output variable (at a certain time instance), ©; is a parameter, and Ay; is the
scaling of variable y;, A©); is the scaling of parameter ©;.

Usage

sensFun(func, parms, sensvar = NULL, senspar = names(parms),
varscale = NULL, parscale = NULL, tiny = 1e-8, map = 1, ...)

## S3 method for class 'sensFun'
summary(object, vars = FALSE, ...)

## S3 method for class 'sensFun'
pairs(x, which = NULL, ...)

## S3 method for class 'sensFun'
plot(x, which = NULL, legpos="topleft"”, ask = NULL, ...)

## S3 method for class 'summary.sensFun'

plot(x, which = 1:nrow(x), ...)
Arguments
func an R-function that has as first argument parms and that returns a matrix or

data.frame with the values of the output variables (columns) at certain output
intervals (rows), and — optionally — a mapping variable (by default the first col-
umn).

parms parameters passed to func; should be either a vector, or a list with named ele-
ments. If NULL, then the first element of parInput is taken.
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sensvar

senspar

varscale

parscale

tiny

map

object

vars

which

legpos

ask

Details
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the output variables for which the sensitivity needs to be estimated. Either NULL,
the default, which selects all variables, or a vector with variable names (which
should be present in the matrix returned by func), or a vector with indices to
variables as present in the output matrix (note that the column of this matrix
with the mapping variable should not be selected).

the parameters whose sensitivity needs to be estimated, the default=all parame-
ters. Either a vector with parameter names, or a vector with indices to positions
of parameters in parms.

the scaling (weighing) factor for sensitivity variables, NULL indicates that the
variable value is used.

the scaling (weighing) factor for sensitivity parameters, NULL indicates that the
parameter value is used.

the perturbation, or numerical difference, factor, see details.

the column number with the (independent) mapping variable in the output ma-
trix returned by func. For dynamic models solved by integration, this will be
the (first) column with time. For 1-D spatial output, this column will be some
distance variable. Set to NULL if there is no mapping variable. Mapping vari-
ables should not be selected for estimating sensitivity functions; they are used
for plotting.

additional arguments passed to func or to the methods.
an object of class sensFun.
an object of class sensFun.

if FALSE: summaries per parameter are returned; if TRUE, summaries per pa-
rameter and per variable are returned.

the name or the index to the variables that should be plotted. Default = all
variables.

position of the legend; set to NULL to avoid plotting a legend.

logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask = ...) and dev.interactive.

There are essentially two ways in which to use function sensFun.

* When func returns a matrix or data frame with output values, sensFun can be used for sensi-
tivity analysis, estimating the impact of parameters on output variables.

* When func returns an instance of class modCost (as returned by a call to function modCost),
then sensFun can be used for parameter identifiability. In this case the results from sensFun
are used as input to function collin. See the help file for collin.

For each sensitivity parameter, the number of sensitivity functions estimated is: length(sensvar) *
length(mapping variable), i.e. one for each element returned by func (except the mapping variable).

The sensitivity functions are estimated numerically. This means that each parameter value ©; is
perturbed as max (tiny, ©; - (1 + tiny))
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Value

a data.frame of class sensFun containing the sensitivity functions this is one row for each sensitivity
variable at each independent (time or position) value and the following columns:

x, the value of the independent (mapping) variable, usually time (solver= "ode.."), or distance
(solver= "steady.1D")

var, the name of the observed variable,
..., anumber of columns, one for each sensitivity parameter

The data.frame returned by sensFun has methods for the generic functions summary, plot, pairs
— see note.

Note

Sensitivity functions are generated by perturbing one by one the parameters with a very small
amount, and quantifying the differences in the output.

It is important that the output is generated with high precision, else it is possible, that the sensitivity
functions are just noise. For instance, when used with a dynamic model (using solver from deSolve)
set the tolerances atol and rtol to a lower value, to see if the sensitivity results make sense.

The following methods are provided:

» summary. Produces summary statistics of the sensitivity functions, a data.frame with: one
row for each parameter and the following columns:

L1: the LI-norm £ - 3 (5,1,

L2: the L2-norm /2 3083, - i,

Mean: the mean of the sensitivity functions,

— Min: the minimal value of the sensitivity functions,
— Max: the maximal value of the sensitivity functions.

* var the summary of the variables sensitivity functions, a data.frame with the same columns as
model and one row for each parameter + variable combination. This is only outputted if the
variable names are effectively known

* plot plots the sensitivity functions for each parameter; each parameter has its own color.

By default, the sensitivity functions for all variables are plotted in one figure, unless which
gives a selection of variables; in that case, each variable will be plotted in a separate figure,
and the figures aligned in a rectangular grid, unless par mfrow is passed as an argument.

* pairs produces a pairs plot of the sensitivity results; per parameter.

By default, the sensitivity functions for all variables are plotted in one figure, unless which
gives a selection of variables.

Overrides the default gap = 9, upper.panel = NA, and diag.panel.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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Examples
##
## Bacterial growth model as in Soetaert and Herman, 2009
##
pars <- list(gmax = 0.5, eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01)

solveBact <- function(pars) {
derivs <- function(t, state, pars) { # returns rate of change
with (as.list(c(state, pars)), {
dBact <- gmax * eff x Sub/(Sub + ks) * Bact - dB * Bact - rB x Bact
dSub <- -gmax * Sub/(Sub + ks) * Bact + dB * Bact
return(list(c(dBact, dSub)))
»
}
state <- c(Bact = 0.1, Sub = 100)
tout <- seq(@, 50, by = 0.5)
## ode solves the model by integration ...
return(as.data.frame(ode(y = state, times = tout, func = derivs,
parms = pars)))

3
out <- solveBact(pars)

plot(out$time, out$Bact, ylim = range(c(out$Bact, out$Sub)),
xlab = "time, hour”, ylab = "molC/m3", type = "1", lwd = 2)

lines(out$time, out$Sub, 1ty = 2, lwd = 2)

lines(out$time, out$Sub + out$Bact)

legend("topright”, c("Bacteria”, "Glucose", "TOC"),
1ty = c(1, 2, 1), lwd = c(2, 2, 1))

## sensitivity functions
SnsBact <- sensFun(func = solveBact, parms = pars,

sensvar = "Bact”, varscale = 1)
head(SnsBact)
plot(SnsBact)
plot(SnsBact, type = "b", pch = 15:19, col = 2:6,
main = "Sensitivity all vars")
summary (SnsBact)

plot(summary(SnsBact))
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SF <- sensFun(func = solveBact, parms = pars,

sensvar = c("Bact”, "Sub"), varscale = 1)
head (SF)
tail(SF)

summary (SF, var = TRUE)

plot(SF)

plot(SF, which = c("Sub”,"Bact"))

pm <- par(mfrow = c(1,3))

plot(SF, which = c("Sub”, "Bact"), mfrow = NULL)
plot(SF, mfrow = NULL)

par(mfrow = pm)

## Bivariate sensitivity
pairs(SF) # same color
pairs(SF, which = "Bact"”, col = "green”, pch = 15)
pairs(SF, which = c("Bact”, "Sub"), col = c("green”, "blue"))
mtext(outer = TRUE, side = 3, line = -2,
"Sensitivity functions”, cex = 1.5)

## pairwise correlation
cor(SnsBact[,-(1:2)1)

sensRange Sensitivity Ranges of a Timeseries or 1-D Variables

Description

Given a model consisting of differential equations, estimates the global effect of certain (sensitivity)
parameters on a time series or on 1-D spatial series of selected sensitivity variables.

This is done by drawing parameter values according to some predefined distribution, running the
model with each of these parameter combinations, and calculating the values of the selected output
variables at each output interval.

This function thus produces "envelopes’ around the sensitivity variables.

Usage
sensRange(func, parms = NULL, sensvar = NULL, dist = "unif”,
parInput = NULL, parRange = NULL, parMean = NULL,
parCovar = NULL, map = 1, num = 100, ...)

## S3 method for class 'sensRange'
summary (object, ...)

## S3 method for class 'summary.sensRange'
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plot(x, xyswap = FALSE,
which = NULL, legpos = "topleft”,
col = c(grey(0.8), grey(0.7)),
quant = FALSE, ask = NULL, obs = NULL,
obspar = list(), ...)

## S3 method for class 'sensRange'
plot(x, xyswap = FALSE,
which = NULL, ask = NULL, ...)

Arguments

func an R-function that has as first argument parms and that returns a matrix or
data.frame with the values of the output variables (columns) at certain output
intervals (rows), and — optionally — a mapping variable (by default the first col-
umn).

parms parameters passed to func; should be either a vector, or a list with named ele-
ments. If NULL, then the first element of parInput is taken.

sensvar the output variables for which the sensitivity needs to be estimated. Either NULL,
the default, which selects all variables, or a vector with variable names (which
should be present in the matrix returned by func), or a vector with indices to
variables as present in the output matrix (note that the column of this matrix
with the mapping variable should not be selected).

dist the distribution according to which the parameters should be generated, one
of "unif” (uniformly random samples), "norm”, (normally distributed random
samples), "latin” (latin hypercube distribution), "grid” (parameters arranged
on a grid). The input parameters for the distribution are specified by parRange
(min,max), except for the normally distributed parameters, in which case the
distribution is specified by the parameter means parMean and the variance-
covariance matrix, parCovar. Note that, if the distribution is "norm" and parRange
is given, then a truncated distribution will be generated. (This is useful to pre-
vent for instance that certain parameters become negative). Ignored if parInput
is specified.

parRange the range (min, max) of the sensitivity parameters, a matrix or (preferred) a
data.frame with one row for each parameter, and two columns with the mini-
mum (1st) and maximum (2nd) value. The rownames of parRange should be
parameter names that are known in argument parms. Ignored if parInput is
specified.

parInput a matrix with dimension (*, npar) with the values of the sensitivity parameters.

parMean only when dist is "norm”: the mean value of each parameter. Ignored if
parInput is specified.

parCovar only when dist is "norm”: the parameter’s variance-covariance matrix.

num the number of times the model has to be run. Set large enough. If parInput is
specified, then num parameters are selected randomly (from the rows of parInput.

map the column number with the (independent) mapping variable in the output ma-
trix returned by func. For dynamic models solved by integration, this will be
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the (first) column with time. For 1-D spatial output, this column will be some
distance variable. Set to NULL if there is no mapping variable. Mapping vari-
ables should not be selected for estimating sensitivity ranges; they are used for

plotting.
object an object of class sensRange.
X an object of class sensRange.
legpos position of the legend; set to NULL to avoid plotting a legend.
xyswap if TRUE, then x-and y-values are swapped and the y-axis is from top to bottom.

Useful for drawing vertical profiles.

which the name or the index to the variables that should be plotted. Default = all
variables.

col the two colors of the polygons that should be plotted.

quant if TRUE, then the median surrounded by the quantiles q25-q75 and q95-q95 are
plotted, else the min-max and mean +- sd are plotted.

ask logical; if TRUE, the user is asked before each plot, if NULL the user is only asked
if more than one page of plots is necessary and the current graphics device is set
interactive, see par(ask=...) and dev.interactive.

obs a data.frame or matrix with "observed data" that will be added as points

to the plots. obs can also be a 1ist with multiple data.frames and/or matrices
containing observed data. The first column of obs should contain the time or
space-variable. If obs is not NULL and which is NULL, then the variables, com-
mon to both obs and x will be plotted.

obspar additional graphics arguments passed to points, for plotting the observed data.
If obs is a 1ist containing multiple observed data sets, then the graphics argu-
ments can be a vector or a list (e.g. for x1im, ylim), specifying each data set
separately.

additional arguments passed to func or to the methods.

Details

Models solved by integration (i.e. by using one of 'ode', 'ode.1D', 'ode.band', 'ode.2D"),
have the output already in a form usable by sensRange.

Value

a data. frame of type sensRange containing the parameter set and the corresponding values of the
sensitivity output variables.

The list returned by sensRange has a method for the generic functions summary,plot and plot. summary
— see note.

Note

The following methods are included:
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* summary, estimates summary statistics for the sensitivity variables, a data.frame with as many
rows as there are mapping variables (or rows in the matrix returned by func) and the following
columns: x, the mapping value, Mean, the mean, sd, the standard deviation, Min, the minimal
value, Max, the maximal value, 25, 50, q75, the 25th, 50 and 75% quantile

* plot, produces a "matplot" of the sensRange output, one plot for each sensitivity variable and
with the mapping variable on the x-axis.

Each variable will be plotted in a separate figure, and the figures aligned in a rectangular grid,
unless par mfrow is passed as an argument.

* summary.plot, produces a plot of the summary of the sensRange output, one plot for each
sensitivity variable and with the ranges and mean +- standard deviation or the quantiles as
coloured polygons.

Each variable will be plotted in a separate figure, and the figures aligned in a rectangular grid,
unless par mfrow is passed as an argument.

The output for models solved by a steady-state solver (i.e. one of 'steady', 'steady.1D',
'steady.band', 'steady.2D', needs to be rearranged — see examples.

For plot.summary.sensRange and plot.sensRange, the number of panels per page is automati-
cally determined up to 3 x 3 (par (mfrow = c¢(3, 3))). This default can be overwritten by specifying
user-defined settings for mfrow or mfcol. Set mfrow equal to NULL to avoid the plotting function to
change user-defined mfrow or mfcol settings.

Other graphical parameters can be passed as well. Parameters are vectorized, either according to the

number of plots (x1ab, ylab, main, sub, xlim, ylim, log, asp, ann, axes, frame.plot,panel.first,panel.last,
cex.lab,cex.axis,cex.main) or according to the number of lines within one plot (other parame-

ters e.g. col, 1ty, lwd etc.) so it is possible to assign specific axis labels to individual plots, resp.

different plotting style. Plotting parameter ylim, or x1im can also be a list to assign different axis

limits to individual plots.

Similarly, the graphical parameters for observed data, as passed by obspar can be vectorized, ac-
cording to the number of observed data sets (when obs is a 1ist).

The data.frame of type sensRange has several attributes, which remain hidden, and which are
generally not of practical use (they are needed for the S3 methods).

There is one exception, i.e. if parameter values are imposed via argument parInput, and these
parameters are generated by a Markov chain (modMCMC). If the number of draws, num, is less than
the number of rows in parInput, then num random draws will be taken. Attribute, "pset” then
contains the index to the parameters that have been selected.

The sensRange method only represents the distribution of the model response variables as a func-
tion of the parameter values. But an additional source of noise is due to the model error, as repre-
sented by the sampled values of sigma in the Markov chain. In order to represent also this source of
error, gaussian noise should be added to each sensitivity output variables, with a standard deviation
that corresponds to the original parameter draw — see vignette "FMEother".

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
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Examples

#i#
## Bacterial growth model from Soetaert and Herman, 2009
##

pars <- list(gmax = 0.5,eff = 0.5,
ks = 0.5, rB = 0.01, dB = 0.01)

solveBact <- function(pars) {
derivs <- function(t,state,pars) { # returns rate of change
with (as.list(c(state,pars)), {
dBact <- gmax*eff * Sub/(Sub + ks)*Bact - dB*Bact - rB*Bact
dSub <~ -gmax * Sub/(Sub + ks)*Bact + dBxBact
return(list(c(dBact,dSub)))
»
}

state <- c(Bact = 0.1,Sub = 100)

tout <- seq(@, 50, by = 0.5)

## ode solves the model by integration ...

return(as.data.frame(ode(y = state, times = tout, func = derivs,
parms = pars)))

3
out <- solveBact(pars)
mf  <-par(mfrow = c(2,2))

plot(out$time, out$Bact, main = "Bacteria”,
xlab = "time, hour”, ylab = "molC/m3", type = "1", lwd = 2)

## the sensitivity parameters
parRanges <- data.frame(min = c(0.4, 0.4, 0.0), max = c(0.6, 0.6, 0.02))

rownames (parRanges)<- c("gmax", "eff", "rB")

parRanges

tout <- 0:50

## sensitivity to rB; equally-spaced parameters ("grid")

SensR <- sensRange(func = solveBact, parms = pars, dist = "grid",
sensvar = "Bact"”, parRange = parRanges[3,], num = 50)

Sens <-summary(SensR)
plot(Sens, legpos = "topleft”, xlab = "time, hour”, ylab = "molC/m3",
main = "Sensitivity to rB”, mfrow = NULL)

## sensitivity to all; latin hypercube
Sens2 <- summary(sensRange(func = solveBact, parms = pars, dist = "latin”,


https://doi.org/10.18637/jss.v033.i03

Unif 53

sensvar = c("Bact”, "Sub"), parRange = parRanges, num = 50))

## Plot all variables; plot mean +- sd, min max
plot(Sens2, xlab = "time, hour”, ylab = "molC/m3",
main = "Sensitivity to gmax,eff,rB”, mfrow = NULL)

par(mfrow = mf)

## Select one variable for plotting; plot the quantiles
plot(Sens2, xlab = "time, hour”, ylab = "molC/m3", which = "Bact”, quant = TRUE)

## Add data

data <- cbind(time = c(0,10,20,30), Bact = c(0,1,10,45))

plot(Sens2, xlab = "time, hour”, ylab = "molC/m3", quant = TRUE,
obs = data, obspar = list(col = "darkblue"”, pch = 16, cex = 2))

Unif Uniform Random Distribution

Description

Generates uniformly distributed random parameter sets.

Usage

Unif(parRange, num)

Arguments
parRange the range (min, max) of the parameters, a matrix or a data.frame with one row
for each parameter, and two columns with the minimum (1st) and maximum
(2nd) value.
num the number of random parameter sets to generate.
Details

In the uniform sampling, each parameter is uniformly random distributed over its range.

Value

a matrix with one row for each generated parameter set, and one column per parameter.

Note

For small sample sizes, the latin hypercube distributed parameter sets (Latinhyper) may give better
coverage in parameter space than the uniform random design.
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Author(s)

Karline Soetaert <karline.soetaert @nioz.nl>

See Also

Norm for (multi)normally distributed random parameter sets.
Latinhyper to generates parameter sets using latin hypercube sampling.
Grid to generate random parameter sets arranged on a regular grid

runif the R-default for generating uniformally distributed random numbers.

Examples

## 4 parameters
parRange <- data.frame(min = c(0, 1, 2, 3), max = c(10, 9, 8, 7))
rownames (parRange) <- c("parl1”, "par2", "par3", "par4")

## uniform
pairs(Unif(parRange, 100), main = "Uniformly random™)
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