
Package ‘DEoptim’
January 20, 2025

Version 2.2-8

Title Global Optimization by Differential Evolution

Description Implements the Differential Evolution algorithm for global
optimization of a real-valued function of a real-valued parameter
vector as described in Mullen et al. (2011) <doi:10.18637/jss.v040.i06>.

Suggests foreach, iterators, colorspace, lattice, parallelly

Depends parallel

Imports methods

BugReports https://github.com/ArdiaD/DEoptim/issues

URL https://github.com/ArdiaD/DEoptim

License GPL (>= 2)

Repository CRAN

Maintainer Katharine Mullen <mullenkate@gmail.com>

NeedsCompilation yes

Author David Ardia [aut] (<https://orcid.org/0000-0003-2823-782X>),
Katharine Mullen [aut, cre],
Brian Peterson [aut],
Joshua Ulrich [aut],
Kris Boudt [ctb]

Date/Publication 2022-11-11 18:10:09 UTC

Contents
DEoptim . 2
DEoptim-methods . 7
DEoptim.control . 10
SMI . 14
xrrData . 15

Index 16

1

https://doi.org/10.18637/jss.v040.i06
https://github.com/ArdiaD/DEoptim/issues
https://github.com/ArdiaD/DEoptim
https://orcid.org/0000-0003-2823-782X

2 DEoptim

DEoptim Differential Evolution Optimization

Description

Performs evolutionary global optimization via the Differential Evolution algorithm.

Usage

DEoptim(fn, lower, upper, control = DEoptim.control(), ..., fnMap=NULL)

Arguments

fn the function to be optimized (minimized). The function should have as its first
argument the vector of real-valued parameters to optimize, and return a scalar
real result. NA and NaN values are not allowed.

lower, upper two vectors specifying scalar real lower and upper bounds on each parameter
to be optimized, so that the i-th element of lower and upper applies to the i-
th parameter. The implementation searches between lower and upper for the
global optimum (minimum) of fn.

control a list of control parameters; see DEoptim.control.

fnMap an optional function that will be run after each population is created, but before
the population is passed to the objective function. This allows the user to impose
integer/cardinality constraints. See the the sandbox directory of the source code
for a simple example.

... further arguments to be passed to fn.

Details

DEoptim performs optimization (minimization) of fn.

The control argument is a list; see the help file for DEoptim.control for details.

The R implementation of Differential Evolution (DE), DEoptim, was first published on the Com-
prehensive R Archive Network (CRAN) in 2005 by David Ardia. Early versions were written in
pure R. Since version 2.0-0 (published to CRAN in 2009) the package has relied on an interface
to a C implementation of DE, which is significantly faster on most problems as compared to the
implementation in pure R. The C interface is in many respects similar to the MS Visual C++ v5.0
implementation of the Differential Evolution algorithm distributed with the book Differential Evo-
lution – A Practical Approach to Global Optimization by Price, K.V., Storn, R.M., Lampinen J.A,
Springer-Verlag, 2006. Since version 2.0-3 the C implementation dynamically allocates the memory
required to store the population, removing limitations on the number of members in the population
and length of the parameter vectors that may be optimized. Since version 2.2-0, the package al-
lows for parallel operation, so that the evaluations of the objective function may be performed using
all available cores. This is accomplished using either the built-in parallel package or the foreach
package. If parallel operation is desired, the user should set parallelType and make sure that the

DEoptim 3

arguments and packages needed by the objective function are available; see DEoptim.control, the
example below and examples in the sandbox directory for details.

Since becoming publicly available, the package DEoptim has been used by several authors to solve
optimization problems arising in diverse domains; see Mullen et al. (2011) for a review.

To perform a maximization (instead of minimization) of a given function, simply define a new
function which is the opposite of the function to maximize and apply DEoptim to it.

To integrate additional constraints (other than box constraints) on the parameters x of fn(x), for
instance x[1] + x[2]^2 < 2, integrate the constraint within the function to optimize, for instance:

fn <- function(x){
if (x[1] + x[2]^2 >= 2){
r <- Inf

else{
...

}
return(r)

}

This simplistic strategy usually does not work all that well for gradient-based or Newton-type meth-
ods. It is likely to be alright when the solution is in the interior of the feasible region, but when the
solution is on the boundary, optimization algorithm would have a difficult time converging. Fur-
thermore, when the solution is on the boundary, this strategy would make the algorithm converge to
an inferior solution in the interior. However, for methods such as DE which are not gradient based,
this strategy might not be that bad.

Note that DEoptim stops if any NA or NaN value is obtained. You have to redefine your function to
handle these values (for instance, set NA to Inf in your objective function).

It is important to emphasize that the result of DEoptim is a random variable, i.e., different results
may be obtained when the algorithm is run repeatedly with the same settings. Hence, the user
should set the random seed if they want to reproduce the results, e.g., by setting set.seed(1234)
before the call of DEoptim.

DEoptim relies on repeated evaluation of the objective function in order to move the population
toward a global minimum. Users interested in making DEoptim run as fast as possible should
consider using the package in parallel mode (so that all CPU’s available are used), and also ensure
that evaluation of the objective function is as efficient as possible (e.g. by using vectorization in
pure R code, or writing parts of the objective function in a lower-level language like C or Fortran).

Further details and examples of the R package DEoptim can be found in Mullen et al. (2011) and
Ardia et al. (2011a, 2011b) or look at the package’s vignette by typing vignette("DEoptim").
Also, an illustration of the package usage for a high-dimensional non-linear portfolio optimization
problem is available by typing vignette("DEoptimPortfolioOptimization").

Please cite the package in publications. Use citation("DEoptim").

Value

The output of the function DEoptim is a member of the S3 class DEoptim. More precisely, this is a
list (of length 2) containing the following elements:

4 DEoptim

optim, a list containing the following elements:

• bestmem: the best set of parameters found.

• bestval: the value of fn corresponding to bestmem.

• nfeval: number of function evaluations.

• iter: number of procedure iterations.

member, a list containing the following elements:

• lower: the lower boundary.

• upper: the upper boundary.

• bestvalit: the best value of fn at each iteration.

• bestmemit: the best member at each iteration.

• pop: the population generated at the last iteration.

• storepop: a list containing the intermediate populations.

Members of the class DEoptim have a plot method that accepts the argument plot.type.
plot.type = "bestmemit" results in a plot of the parameter values that represent the lowest value
of the objective function each generation. plot.type = "bestvalit" plots the best value of the
objective function each generation. Finally, plot.type = "storepop" results in a plot of stored
populations (which are only available if these have been saved by setting the control argument of
DEoptim appropriately). Storing intermediate populations allows us to examine the progress of the
optimization in detail. A summary method also exists and returns the best parameter vector, the
best value of the objective function, the number of generations optimization ran, and the number of
times the objective function was evaluated.

Note

Differential Evolution (DE) is a search heuristic introduced by Storn and Price (1997). Its re-
markable performance as a global optimization algorithm on continuous numerical minimization
problems has been extensively explored; see Price et al. (2006). DE belongs to the class of ge-
netic algorithms which use biology-inspired operations of crossover, mutation, and selection on a
population in order to minimize an objective function over the course of successive generations
(see Mitchell, 1998). As with other evolutionary algorithms, DE solves optimization problems
by evolving a population of candidate solutions using alteration and selection operators. DE uses
floating-point instead of bit-string encoding of population members, and arithmetic operations in-
stead of logical operations in mutation. DE is particularly well-suited to find the global optimum
of a real-valued function of real-valued parameters, and does not require that the function be either
continuous or differentiable.

Let NP denote the number of parameter vectors (members) x ∈ Rd in the population. In order to
create the initial generation, NP guesses for the optimal value of the parameter vector are made,
either using random values between lower and upper bounds (defined by the user) or using values
given by the user. Each generation involves creation of a new population from the current population
members {xi | i = 1, . . . ,NP}, where i indexes the vectors that make up the population. This is
accomplished using differential mutation of the population members. An initial mutant parameter
vector vi is created by choosing three members of the population, xr0 , xr1 and xr2 , at random.
Then vi is generated as

DEoptim 5

vi
.
= xr0 + F · (xr1 − xr2)

where F is the differential weighting factor, effective values for which are typically between 0 and
1. After the first mutation operation, mutation is continued until d mutations have been made, with
a crossover probability CR ∈ [0, 1]. The crossover probability CR controls the fraction of the
parameter values that are copied from the mutant. If an element of the trial parameter vector is
found to violate the bounds after mutation and crossover, it is reset in such a way that the bounds
are respected (with the specific protocol depending on the implementation). Then, the objective
function values associated with the children are determined. If a trial vector has equal or lower
objective function value than the previous vector it replaces the previous vector in the population;
otherwise the previous vector remains. Variations of this scheme have also been proposed; see Price
et al. (2006) and DEoptim.control.

Intuitively, the effect of the scheme is that the shape of the distribution of the population in the
search space is converging with respect to size and direction towards areas with high fitness. The
closer the population gets to the global optimum, the more the distribution will shrink and therefore
reinforce the generation of smaller difference vectors.

As a general advice regarding the choice of NP , F and CR, Storn et al. (2006) state the following:
Set the number of parents NP to 10 times the number of parameters, select differential weighting
factor F = 0.8 and crossover constant CR = 0.9. Make sure that you initialize your parameter
vectors by exploiting their full numerical range, i.e., if a parameter is allowed to exhibit values in the
range [-100, 100] it is a good idea to pick the initial values from this range instead of unnecessarily
restricting diversity. If you experience misconvergence in the optimization process you usually
have to increase the value for NP , but often you only have to adjust F to be a little lower or higher
than 0.8. If you increase NP and simultaneously lower F a little, convergence is more likely to
occur but generally takes longer, i.e., DE is getting more robust (there is always a convergence
speed/robustness trade-off).

DE is much more sensitive to the choice of F than it is to the choice of CR. CR is more like a fine
tuning element. High values of CR like CR = 1 give faster convergence if convergence occurs.
Sometimes, however, you have to go down as much as CR = 0 to make DE robust enough for
a particular problem. For more details on the DE strategy, we refer the reader to Storn and Price
(1997) and Price et al. (2006).

Author(s)

David Ardia, Katharine Mullen <mullenkate@gmail.com>, Brian Peterson and Joshua Ulrich.

References

Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G. (2011) Differential Evolution with DE-
optim. An Application to Non-Convex Portfolio Optimization. R Journal, 3(1), 27-34. doi:10.32614/
RJ2011005

Ardia, D., Ospina Arango, J.D., Giraldo Gomez, N.D. (2011) Jump-Diffusion Calibration using
Differential Evolution. Wilmott Magazine, 55 (September), 76-79. doi:10.1002/wilm.10034

Mitchell, M. (1998) An Introduction to Genetic Algorithms. The MIT Press. ISBN 0262631857.

Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline,J. (2011). DEoptim: An R Package for Global
Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1-26. doi:10.18637/
jss.v040.i06

https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.1002/wilm.10034
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06

6 DEoptim

Price, K.V., Storn, R.M., Lampinen J.A. (2006) Differential Evolution - A Practical Approach to
Global Optimization. Berlin Heidelberg: Springer-Verlag. ISBN 3540209506.

Storn, R. and Price, K. (1997) Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Journal of Global Optimization, 11:4, 341–359.

See Also

DEoptim.control for control arguments, DEoptim-methods for methods on DEoptim objects, in-
cluding some examples in plotting the results; optim or constrOptim for alternative optimization
algorithms.

Examples

Rosenbrock Banana function
The function has a global minimum f(x) = 0 at the point (1,1).
Note that the vector of parameters to be optimized must be the first
argument of the objective function passed to DEoptim.
Rosenbrock <- function(x){

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

DEoptim searches for minima of the objective function between
lower and upper bounds on each parameter to be optimized. Therefore
in the call to DEoptim we specify vectors that comprise the
lower and upper bounds; these vectors are the same length as the
parameter vector.
lower <- c(-10,-10)
upper <- -lower

run DEoptim and set a seed first for replicability
set.seed(1234)
DEoptim(Rosenbrock, lower, upper)

increase the population size
DEoptim(Rosenbrock, lower, upper, DEoptim.control(NP = 100))

change other settings and store the output
outDEoptim <- DEoptim(Rosenbrock, lower, upper, DEoptim.control(NP = 80,

itermax = 400, F = 1.2, CR = 0.7))

plot the output
plot(outDEoptim)

'Wild' function, global minimum at about -15.81515
Wild <- function(x)

10 * sin(0.3 * x) * sin(1.3 * x^2) +
0.00001 * x^4 + 0.2 * x + 80

plot(Wild, -50, 50, n = 1000, main = "'Wild function'")

DEoptim-methods 7

outDEoptim <- DEoptim(Wild, lower = -50, upper = 50,
control = DEoptim.control(trace = FALSE))

plot(outDEoptim)

DEoptim(Wild, lower = -50, upper = 50,
control = DEoptim.control(NP = 50))

The below examples shows how the call to DEoptim can be
parallelized.
Note that if your objective function requires packages to be
loaded or has arguments supplied via \code{...}, these should be
specified using the \code{packages} and \code{parVar} arguments
in control.
Not run:

Genrose <- function(x) {
One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
make it take some time ...
Sys.sleep(.001)
1.0 + sum (100 * (x[-n]^2 - x[-1])^2 + (x[-1] - 1)^2)

}

get some run-time on simple problems
maxIt <- 250
n <- 5

oneCore <- system.time(DEoptim(fn=Genrose, lower=rep(-25, n), upper=rep(25, n),
control=list(NP=10*n, itermax=maxIt)))

withParallel <- system.time(DEoptim(fn=Genrose, lower=rep(-25, n), upper=rep(25, n),
control=list(NP=10*n, itermax=maxIt, parallelType=1)))

Compare timings
(oneCore)
(withParallel)

End(Not run)

DEoptim-methods DEoptim-methods

Description

Methods for DEoptim objects.

Usage

S3 method for class 'DEoptim'

8 DEoptim-methods

summary(object, ...)
S3 method for class 'DEoptim'
plot(x, plot.type = c("bestmemit", "bestvalit", "storepop"), ...)

Arguments

object an object of class DEoptim; usually, a result of a call to DEoptim.

x an object of class DEoptim; usually, a result of a call to DEoptim.

plot.type should we plot the best member at each iteration, the best value at each iteration
or the intermediate populations?

... further arguments passed to or from other methods.

Details

Members of the class DEoptim have a plot method that accepts the argument plot.type.
plot.type = "bestmemit" results in a plot of the parameter values that represent the lowest value
of the objective function each generation. plot.type = "bestvalit" plots the best value of the
objective function each generation. Finally, plot.type = "storepop" results in a plot of stored
populations (which are only available if these have been saved by setting the control argument of
DEoptim appropriately). Storing intermediate populations allows us to examine the progress of the
optimization in detail. A summary method also exists and returns the best parameter vector, the
best value of the objective function, the number of generations optimization ran, and the number of
times the objective function was evaluated.

Note

Further details and examples of the R package DEoptim can be found in Mullen et al. (2011) and
Ardia et al. (2011a, 2011b) or look at the package’s vignette by typing vignette("DEoptim").

Please cite the package in publications. Use citation("DEoptim").

Author(s)

David Ardia, Katharine Mullen <mullenkate@gmail.com>, Brian Peterson and Joshua Ulrich.

References

Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G. (2011) Differential Evolution with DE-
optim. An Application to Non-Convex Portfolio Optimization. R Journal, 3(1), 27-34. doi:10.32614/
RJ2011005

Ardia, D., Ospina Arango, J.D., Giraldo Gomez, N.D. (2011) Jump-Diffusion Calibration using
Differential Evolution. Wilmott Magazine, 55 (September), 76-79. doi:10.1002/wilm.10034

Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline,J. (2011). DEoptim: An R Package for Global
Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1-26. doi:10.18637/
jss.v040.i06

See Also

DEoptim and DEoptim.control.

https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.1002/wilm.10034
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06

DEoptim-methods 9

Examples

Rosenbrock Banana function
The function has a global minimum f(x) = 0 at the point (1,1).
Note that the vector of parameters to be optimized must be the first
argument of the objective function passed to DEoptim.
Rosenbrock <- function(x){

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

lower <- c(-10, -10)
upper <- -lower

set.seed(1234)
outDEoptim <- DEoptim(Rosenbrock, lower, upper)

print output information
summary(outDEoptim)

plot the best members
plot(outDEoptim, type = 'b')

plot the best values
dev.new()
plot(outDEoptim, plot.type = "bestvalit", type = 'b', col = 'blue')

rerun the optimization, and store intermediate populations
outDEoptim <- DEoptim(Rosenbrock, lower, upper,

DEoptim.control(itermax = 500,
storepopfrom = 1, storepopfreq = 2))

summary(outDEoptim)

plot intermediate populations
dev.new()
plot(outDEoptim, plot.type = "storepop")

Wild function
Wild <- function(x)
10 * sin(0.3 * x) * sin(1.3 * x^2) +

0.00001 * x^4 + 0.2 * x + 80

outDEoptim = DEoptim(Wild, lower = -50, upper = 50,
DEoptim.control(trace = FALSE, storepopfrom = 50,
storepopfreq = 1))

plot(outDEoptim, type = 'b')

dev.new()
plot(outDEoptim, plot.type = "bestvalit", type = 'b')

Not run:

10 DEoptim.control

an example with a normal mixture model: requires package mvtnorm
library(mvtnorm)

neg value of the density function
negPdfMix <- function(x) {

tmp <- 0.5 * dmvnorm(x, c(-3, -3)) + 0.5 * dmvnorm(x, c(3, 3))
-tmp

}

wrapper plotting function
plotNegPdfMix <- function(x1, x2)

negPdfMix(cbind(x1, x2))

contour plot of the mixture
x1 <- x2 <- seq(from = -10.0, to = 10.0, by = 0.1)
thexlim <- theylim <- range(x1)
z <- outer(x1, x2, FUN = plotNegPdfMix)

contour(x1, x2, z, nlevel = 20, las = 1, col = rainbow(20),
xlim = thexlim, ylim = theylim)

set.seed(1234)
outDEoptim <- DEoptim(negPdfMix, c(-10, -10), c(10, 10),

DEoptim.control(NP = 100, itermax = 100, storepopfrom = 1,
storepopfreq = 5))

convergence plot
dev.new()
plot(outDEoptim)

the intermediate populations indicate the bi-modality of the function
dev.new()
plot(outDEoptim, plot.type = "storepop")

End(Not run)

DEoptim.control Control various aspects of the DEoptim implementation

Description

Allow the user to set some characteristics of the Differential Evolution optimization algorithm im-
plemented in DEoptim.

Usage

DEoptim.control(VTR = -Inf, strategy = 2, bs = FALSE, NP = NA,
itermax = 200, CR = 0.5, F = 0.8, trace = TRUE, initialpop = NULL,
storepopfrom = itermax + 1, storepopfreq = 1, p = 0.2, c = 0, reltol,
steptol, parallelType = c("none", "auto", "parallel", "foreach"),

DEoptim.control 11

cluster = NULL, packages = c(), parVar = c(),
foreachArgs = list(), parallelArgs = NULL)

Arguments

VTR the value to be reached. The optimization process will stop if either the max-
imum number of iterations itermax is reached or the best parameter vector
bestmem has found a value fn(bestmem) <= VTR. Default to -Inf.

strategy defines the Differential Evolution strategy used in the optimization procedure:
1: DE / rand / 1 / bin (classical strategy)
2: DE / local-to-best / 1 / bin (default)
3: DE / best / 1 / bin with jitter
4: DE / rand / 1 / bin with per-vector-dither
5: DE / rand / 1 / bin with per-generation-dither
6: DE / current-to-p-best / 1
any value not above: variation to DE / rand / 1 / bin: either-or-algorithm. Default
strategy is currently 2. See *Details*.

bs if FALSE then every mutant will be tested against a member in the previous gen-
eration, and the best value will proceed into the next generation (this is standard
trial vs. target selection). If TRUE then the old generation and NP mutants will be
sorted by their associated objective function values, and the best NP vectors will
proceed into the next generation (best of parent and child selection). Default is
FALSE.

NP number of population members. Defaults to NA; if the user does not change the
value of NP from NA or specifies a value less than 4 it is reset when DEoptim is
called as 10*length(lower). For many problems it is best to set NP to be at
least 10 times the length of the parameter vector.

itermax the maximum iteration (population generation) allowed. Default is 200.

CR crossover probability from interval [0,1]. Default to 0.5.

F differential weighting factor from interval [0,2]. Default to 0.8.

trace Positive integer or logical value indicating whether printing of progress occurs
at each iteration. The default value is TRUE. If a positive integer is specified,
printing occurs every trace iterations.

initialpop an initial population used as a starting population in the optimization procedure.
May be useful to speed up the convergence. Default to NULL. If given, each
member of the initial population should be given as a row of a numeric matrix,
so that initialpop is a matrix with NP rows and a number of columns equal to
the length of the parameter vector to be optimized.

storepopfrom from which generation should the following intermediate populations be stored
in memory. Default to itermax + 1, i.e., no intermediate population is stored.

storepopfreq the frequency with which populations are stored. Default to 1, i.e., every inter-
mediate population is stored.

p when strategy = 6, the top (100 * p)% best solutions are used in the mutation.
p must be defined in (0,1].

c c controls the speed of the crossover adaptation. Higher values of c give more
weight to the current successful mutations. c must be defined in (0,1].

12 DEoptim.control

reltol relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) after steptol steps.
Defaults to sqrt(.Machine$double.eps), typically about 1e-8.

steptol see reltol. Defaults to itermax.

parallelType Defines the type of parallelization to employ, if any. none: The default, this
uses DEoptim on only one core. auto: will attempt to auto-detect foreach, or
parallel. parallel: This uses all available cores, via the parallel package, to
run DEoptim. foreach: This uses the foreach package for parallelism; see the
sandbox directory in the source code for examples.

cluster Existing parallel cluster object. If provided, overrides + specified parallelType.
Using cluster allows fine-grained control + over the number of used cores and
exported data.

packages Used if parallelType='parallel'; a list of package names (as strings) that
need to be loaded for use by the objective function.

parVar Used if parallelType='parallel'; a list of variable names (as strings) that
need to exist in the environment for use by the objective function or are used as
arguments by the objective function.

foreachArgs A list of named arguments for the foreach function from the package foreach.
The arguments i, .combine and .export are not possible to set here; they are
set internally.

parallelArgs A list of named arguments for the parallel engine. For package foreach, the
argument i is not possible to set here; it is set internally.

Details

This defines the Differential Evolution strategy used in the optimization procedure, described below
in the terms used by Price et al. (2006); see also Mullen et al. (2009) for details.

• strategy = 1: DE / rand / 1 / bin.
This strategy is the classical approach for DE, and is described in DEoptim.

• strategy = 2: DE / local-to-best / 1 / bin.
In place of the classical DE mutation the expression

vi,g = oldi,g + (bestg − oldi,g) + xr0,g + F · (xr1,g − xr2,g)

is used, where oldi,g and bestg are the i-th member and best member, respectively, of the
previous population. This strategy is currently used by default.

• strategy = 3: DE / best / 1 / bin with jitter.
In place of the classical DE mutation the expression

vi,g = bestg + jitter + F · (xr1,g − xr2,g)

is used, where jitter is defined as 0.0001 * rand + F.

• strategy = 4: DE / rand / 1 / bin with per vector dither.
In place of the classical DE mutation the expression

vi,g = xr0,g + dither · (xr1,g − xr2,g)

is used, where dither is calculated as F + rand ∗ (1− F).

DEoptim.control 13

• strategy = 5: DE / rand / 1 / bin with per generation dither.
The strategy described for 4 is used, but dither is only determined once per-generation.

• strategy = 6: DE / current-to-p-best / 1.
The top (100 ∗ p) percent best solutions are used in the mutation, where p is defined in (0, 1].

• any value not above: variation to DE / rand / 1 / bin: either-or algorithm.
In the case that rand < 0.5, the classical strategy strategy = 1 is used. Otherwise, the expres-
sion

vi,g = xr0,g + 0.5 · (F + 1) · (xr1,g + xr2,g − 2 · xr0,g)

is used.

Several conditions can cause the optimization process to stop:

• if the best parameter vector (bestmem) produces a value less than or equal to VTR (i.e. fn(bestmem)
<= VTR), or

• if the maximum number of iterations is reached (itermax), or

• if a number (steptol) of consecutive iterations are unable to reduce the best function value by
a certain amount (reltol * (abs(val) + reltol)). 100*reltol is approximately the percent
change of the objective value required to consider the parameter set an improvement over the
current best member.

Zhang and Sanderson (2009) define several extensions to the DE algorithm, including strategy 6,
DE/current-to-p-best/1. They also define a self-adaptive mechanism for the other control parame-
ters. This self-adaptation will speed convergence on many problems, and is defined by the control
parameter c. If c is non-zero, crossover and mutation will be adapted by the algorithm. Values in
the range of c=.05 to c=.5 appear to work best for most problems, though the adaptive algorithm
is robust to a wide range of c.

Value

The default value of control is the return value of DEoptim.control(), which is a list (and a
member of the S3 class DEoptim.control) with the above elements.

Note

Further details and examples of the R package DEoptim can be found in Mullen et al. (2011) and
Ardia et al. (2011a, 2011b) or look at the package’s vignette by typing vignette("DEoptim").
Also, an illustration of the package usage for a high-dimensional non-linear portfolio optimization
problem is available by typing vignette("DEoptimPortfolioOptimization").

Please cite the package in publications. Use citation("DEoptim").

Author(s)

David Ardia, Katharine Mullen <mullenkate@gmail.com>, Brian Peterson and Joshua Ulrich.

14 SMI

References

Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G. (2011) Differential Evolution with DE-
optim. An Application to Non-Convex Portfolio Optimization. R Journal, 3(1), 27-34. doi:10.32614/
RJ2011005

Ardia, D., Ospina Arango, J.D., Giraldo Gomez, N.D. (2011) Jump-Diffusion Calibration using
Differential Evolution. Wilmott Magazine, 55 (September), 76-79. doi:10.1002/wilm.10034

Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline,J. (2011). DEoptim: An R Package for Global
Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1-26. doi:10.18637/
jss.v040.i06

Price, K.V., Storn, R.M., Lampinen J.A. (2006) Differential Evolution - A Practical Approach to
Global Optimization. Berlin Heidelberg: Springer-Verlag. ISBN 3540209506.

Zhang, J. and Sanderson, A. (2009) Adaptive Differential Evolution Springer-Verlag. ISBN 978-3-
642-01526-7

See Also

DEoptim and DEoptim-methods.

Examples

set the population size to 20
DEoptim.control(NP = 20)

set the population size, the number of iterations and don't
display the iterations during optimization
DEoptim.control(NP = 20, itermax = 100, trace = FALSE)

SMI Swiss Market Index data

Description

See Mullen et al. (2011) for description of this dataset.

Usage

data("SMI")

References

Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline,J. (2011). DEoptim: An R Package for Global
Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1-26. doi:10.18637/
jss.v040.i06

https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.1002/wilm.10034
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06

xrrData 15

xrrData X-ray reflectometry data

Description

See Mullen et al. (2011) for description of this dataset.

Usage

data("xrrData")

References

Mullen, K.M, Ardia, D., Gil, D., Windover, D., Cline,J. (2011). DEoptim: An R Package for Global
Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1-26. doi:10.18637/
jss.v040.i06

https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.18637/jss.v040.i06

Index

∗ datasets
SMI, 14
xrrData, 15

∗ methods
DEoptim-methods, 7

∗ minimization
DEoptim, 2

∗ nonlinear
DEoptim, 2
DEoptim.control, 10

∗ optimize
DEoptim, 2
DEoptim.control, 10

constrOptim, 6

DEoptim, 2, 8, 12, 14
DEoptim-methods, 7
DEoptim.control, 2, 3, 5, 6, 8, 10

optim, 6

plot.DEoptim (DEoptim-methods), 7

SMI, 14
summary.DEoptim (DEoptim-methods), 7

xrrData, 15

y (SMI), 14

16

	DEoptim
	DEoptim-methods
	DEoptim.control
	SMI
	xrrData
	Index

